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6
Experimenting with mimp-graphs in other logics.

In this chapter, we start with a brief overview of Deep Inference,
focusing on the propositional fragment only. Then, we present our proof-graphs
definition for SKS,, a deductive system for classical propositional logic, that is
presented in the calculus of structures (Briinnler 2004). Thereafter we will move
to describe the Bi-intuitionist Logic and present a proof-graph representation
for this logic.

6.1
Proof-graph for Deep Inference

Deep inference is a proof-theoretic methodology where proofs can be
freely composed by the logical operators, that is inference rules are applied
anywhere deep inside a formula, not only at the main connective, contrarily to
traditional proof systems, such as natural deduction and the sequent calculus
(Gentzen 1969).

In this section, we overview a formalism which allows deep inference
based on a deductive system for classical propositional logic called SKS,, that
is presented in the calculus of structures (Briinnler 2004). The translation
of derivations of a Gentzen-Schiitte sequent system into this system, and
vice versa, establishes soundness and completeness with respect to classical

propositional logic as well as cut elimination.

6.1.1
The system SKS,

As presented in (Briinnler 2004), SKS, is defined below.

Formulas for propositional logic are generated by the grammar

Su=f|t|la|[S,....S]](S,...,8)]|S,
N—— N——
>0 >0
where f and ¢ are the units false and true, [S,...,S] is a disjuntion and
(S,...,S) is a conjunction. Atoms are denoted by a, b, .... Formulas are denoted
by S,P,Q,R,T,U,V and W, and S is the negation of the formula S. Formula

contexts, denoted by S{ }, are formulas with one occurrence of { }, the empty
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Associativity: [R,[T],U]=[R,T,U] (R,(T),0) = (R,T,U)
Commutativity: [R,T] = [T, R] (R, T)=(T,R)

Units: [ttl=t (f,))=f (LR)=R [f,R]=R

|

=t t / [R_>T] = (RaT)
(R,T)=[R,T] R=R

Negation:

Context Closure: if R=T then S{R}=S{T} and R=T
if R=T then R=T

Table 6.1: Syntactic equivalence of formulas.

context or hole. The formula S{R} is obtained by replacing the hole in S{ }
by R. The curly braces are omitted when they are redundant, e.g., we shall
write S[R,T] instead of S{[R,T]}. A formula R is a subformula of a formula
T if there is a context S{ } such that S{R} is T

Formulas are (syntactically) equivalent modulo the smallest equivalence
relation induced by the equations shown in Table 6.1, where R, T and U are
finite sequences of formulas, and 7' is non-empty. Formulas are in negation
normal form if negation occurs only over propositional variables. For example,
the formulas [a, b, c] and (4, (b,¢)) are equivalent: the first is not in negation
normal form, the second is. Contrarily to the first, in the second formula,
disjunction and conjunction only occur in their binary form.

The letters denoting formulas, i.e. S, P, @), are schematic formulas.
Likewise, S{ } is a schematic context. An inference rule p is a scheme written
p% where V and U are formulas that may contain schematic formulas and
schematic formulas and schematic contexts. If neither U nor V contain a
schematic context, then the inference rule is called shallow, otherwise it is
called deep.

The inference rules of the symmetric system for propositional classical
logic is shown is given in Table 6.2. It is called system SKS,, where the first
S stands for ‘symmetric’, K stands for ‘klassisch’ as in Gentzen’s LK and the
second S says that it is a system in the calculus of structures. Small letters
are appended to the name of a system to denote variants. In this case, the g
stands for ‘general’, meaning that rules are not restricted to atoms: they can
be applied to arbitrary formulas.

The calculus of structures is symmetric in the sense that for each rule in
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the system, the dual rule is also in the system. The dual of an inference rule is
obtained by exchanging premise and conclusion and replacing each connective
by its De Morgan Dual.

The rules s, w] and c| are called respectively switch, weakening and
contraction. Their dual rules carry the same name prefixed with a ‘co-’, so
e.g. wt is called co-weakening. Rules |, w|, c| are called down-rules and their
duals are called up-rules. The dual of the switch rule s is the switch rule itself:

it is self-dual. For example

wp L) a] b),d] _ cT

a0 is dual to [a a]
[ ] ([ ,b],d)
down-rules up-rules
i S{t} it S(R,R)
S[R,R] S{f}
S([R,U],T)
" S[(R,T),U]
! o SIB)
S{R} S{t}
S[R,R] S{R}
4 stmy VSR, R

Table 6.2: System SK.S,

6.1.2
Proof graphs for deep inference

Our proof-graphs introduced in Chapter 3, explore, basically, the sub-
formula sharing and, with this facilitate, the normalization procedure elimin-
ation of maximal formulas. We propose directed graphs associated with SK.S,
derivations, called deep-graphs, do not define a normalization procedure; how-
ever our graphs are a very convenient tool for defining and understanding
several of its aspects. Our aim now is quickly provide the necessary notions

about deep-graph.
Definition 29 L is the union of the three sets of labels types:

— R-Labels is the set of inference labels: {i}, it, wl, wt, ¢}, ct, s, =V, =",
:al, :aT, :fl} =tl, :fT’ :f/\l’ :tVl’ =t/\T’ :f/\T}
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— F-Labels is the set of formula labels: {t, f} for units false and true, the

letters {a,b,c,...} for atoms, and {(.),[,]} for connectives ,

— E-Labels is the set of edge labels: {l (left), v (right), p (premise), c

(conclusion)},

Formula: ®
False: (ﬂ

Conjunction:
y O e
~ \
\(

Atom: @
True: (? )

Disjunction:

1 //@\,

e .
S

formula node
(right subformula)

formula node
(left subformula)

formula node
(right subformula)

formula node
(left subformula)

Figure 6.1: Formula nodes in Deep-graphs

Definition 30 A deep-graph G is a directed graph (V, E, L) where: V is a
set of nodes, L is a set of labels, E is a set of labeled edges (ve V, te L, v'e
V) of source v, target v’ and label t and is identified with the arrow -0

Deep-graphs are recursively defined as follows:
Basis A formula graph p is a deep-graph.

Rule If Gy is a formula graph with root node R,,' and Gy is a deep-graph
that contains a node T, then the graph G that is defined as G1 ® Gy with

one R-node r; at the top position and the edges: R 2%y and 1y 25T,

where r; is one of the rules sketched below, is a deep-graph

Structural Rules

We use the terms R,,, T;, and U, to represent the principal connective of the formulas
R, T and U, respectively.
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identity cut weakening

contraction co-contraction

o)

Logical Rules

Commutativity

Units

co-weakening
X,

lt \I
4,
twi;)
~ ’

:

switch
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6.1.3
Summary

We can say that deep-graph preserve the symmetry of Calculus of Struc-
tures: (i) all rules have one premise and one conclusion (vertical symmetry),
(ii) there are dual rules, e.g. the identity rule and cut rule, weakening and
co-weakening, (iii) the constant node f is symmetrical with ¢;

We intend, as future work, to propose a normalization procedure for
deep-graphs, where we will use the technique of reduce cuts similar to what

one does in normalization for propositional mimp-graphs.


DBD
PUC-Rio - Certificação Digital Nº 1012697/CA


PUC-RIo - Certificacdo Digital N° 1012697/CA

Some Results in a Proof-theory Based on Graphs 80

6.2
Bi-intuitionistic logic seen from mimp-graph

6.2.1
A Brief review of bi-intuitionistic logic

Continuing with our aim of studying the complexity of proofs and provide
more efficient theorem provers, we propose a proof-graph version for Bi-
intuitionistic logic. We start with a brief overview of Bi-intuitionistic logic and
then we present a proof-graph representation for this logic in the fragment
composed by the implication and co-implication

Bi-intuitionistic logic is the extension of intuitionistic logic with the co-
implication < (also known as “subtraction” and “exclusion”), which is dual to
implication -, the formula C'«< B is read as “B co-implies C” or as “C excludes
B”. Bi-intuitionistic logic can also be seen as the union of intuitionistic logic
(lacking co-implication) with dual-intuitionistic logic (lacking implication).

Bi-intuitionistic logic was first studied by Rauszer as a Hilbert-style sys-
tem and a sequent calculus (Rauszer 1974) (Rauszer 1977). In (Restall 1977),
another sequent calculus is obtained by extending the multiple-conclusion se-
quent calculus for intuitionistic logic with co-implication rules dual to the
implication rules, but it neither the sequent calculus of Rauszer are fully cut
eliminable. Thus only cut-free calculi for Bi-intuitionistic logic either use ex-
tended sequent mechanisms such as labels (Pinto & Uustalu 2009), variables
(Goré & Postniece 2010) or nested sequents (Goré, Postniece & Tiu 2010), or
display calculi that rely on residuation (Goré 1998).

In this section we follow one kind of bi-intuitionistic propositional logic
(2Int) recently conceived by Wansing (Wansing 2013) that combines a notion
of dual proof (falsification) in addition to the more familiar notion of proof
(verification) in Natural Deduction. A falsification of an implication (A » B)
is a pair consisting of a verification of A and a falsification of B, whereas
the verificationist must specify verification conditions for co-implications.
Thus, Wansing proposed one single-conclusion system in natural deduction
(N2Int), where introduction and elimination rules are dualized for intuitionistic

propositional logic.

Definition 31 Let ¢ be a denumerable set of atomic formulas. Elements from
¢ are denoted by p, q, T, p1, P2, ..., etc. Formulas generated from ¢ are be
denoted by A, B, C, D, Ay, A,, ..., etc. The propositional language 2Int is

defined in Backus-Naur form as

Au=pi | L[ T|(AAA) | (AvA)| (A > A)| (A< A).
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In 2Int 1 is primitive, the co-negation —A of A is defined as (T« A) and
—~A of Ais defined as (A » 1).

Intuitionistic rule and its dual intuitionistic rule:

I - T AB A B
A A AAB AV B
AAB ~ AvB AAB ~ Av B
A A B B
A o~ A B ~ B
Av B AAB AvB AAB

[4] [B] [A] [B]

ANB C C = AsrB C C

C C

[A] [A] B

H ~ i AA>B ., A B<A
_B B B B
A->B B« A

Falsification of implications and verification of co-implications:

Z? A-> B A- B
A-> B A B
A B A« B A< B
A« B A B

Table 6.3: N2Int: a inference system in Natural Deduction for 2Int

Table 6.3 gives the rules of the N2Int, where the introduction and
elimination rules for intuitionistic propositional logic are dualized by replacing
T, 1, A, v, and > by their respective duals and single lines by double lines.
Besides, we added the suggested rules by (Wansing 2013) for the falsification
of implications and the verification of co-implications (see Table 6.3).

In a graphical presentation of derivations in N2Int, a single square
brackets [ ] indicates the cancellation of an assumption (a formula taken to be
true) and double-square brackets [ | in order to indicate the cancellation of a

counterassumption (a formula taken to be false).
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6.2.2
Proof-graphs to bi-intuitionistic logic

We propose proof-graphs to bi-intuitionistic logic for fragment {», <} in
the mimp-graph style and we call it 2Int-graphs. In this way, 2Int-graphs are
composed of the following objects:

1. The formula graphs that are composed by the formula nodes showed in

Figure 6.2;
Proposition: @ False: @ True: @
Implication: Co-implication:

ZO) PON
TN )
formula node formula node formula node formula node
(left subformula) (rigth subformula) (left subformula) (rigth subformula)

Figure 6.2: Formula nodes in 2Int-graph

2. A certain number of rules which are of the following types:

Intuitionistic absurdity 1; and its dual rule 1.

®

&)

s s
e :\ 12
,Mv . Dual » P
L) 4 L
e Te
5 (£
i @
formula node formula node
(conclusion) (conclusion)

Implication Elimination -E and its dual rule <E

formula node formula node
formula node @ (premise) formula node (premise)

(premise) (premise) /
r @Iﬁ\ .

formula node formula node
(conclusion) (conclusion)

Implication Introduction »I and its dual <
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delimiter node
(discharged counter-
assumption)
formula node h formula node

~formbla node

je=====- (premise)

delimiter node
(discharged
assumption

formula node formula node
(conclusion) (conclusion)

?, A - and S rules

formula node formula node  formula node formula node formula node formula node
(premise) (premise) (premise)  (premise) (premise) ;  (premise)

formula node formula node formula node
(conclusion) (conclusion) (conclusion)

«I, A< and <5 rules

formula node formula node formula node formula node formula node formula node
(premise) (premise) (premise) p (premise) (premise) ; (premise)

/. i)
Ny,
‘:_;\*\
A<

formula node formula node formula node
(conclusion) (conclusion) (conclusion)
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6.2.3
Examples

In the following figures we have examples of the translation of a derivation
in N2Int to 2Int-graphs.

[(B> B)« A
T A -
T<A 1
(B> B)<A)> (1« A)

g [1<A]
B> B A
(B> B)«<A
(T<A) > (Bo>B)<A) "

&

Figure 6.4: Translation of derivation in N2Int to 2Int-graph

6.2.4
Observation

The application of a mimp-style representation to Bi-intuitionistic logic
(2Int) aims to verify that using this graph representation results in a reduced
size of the proofs with respect to traditional ways of presentation in Natural
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Deduction (N2Int). It also allows a better understanding of the proving
process, due to the intuitive graphical interpretation the graphs provide.
For example, the use of the delimiter node hypothesis (assumptions and
counter-assumptions) has also proven useful. In particular, it has made duality
identification manageable and more elegant, in such way semantic properties

of logical connectives are determined by the rules nodes.
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