
Part II

Preference Reasoning

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

87

In the previous part, we presented a metamodel that allows representing
preferences provided by users. The vocabulary that this metamodel provides was
built based on patterns and expressions extracted from a study of how humans
express preferences, so it models high-level preferences adopted by people. While
proposing this preference metamodel, we were not concerned with the feasibility or
existence of a way of reasoning about the set of preferences that can be modelled
with our metamodel. We have focused on developing a metamodel that shows which
kind of information should be ideally used as input for algorithms to reason about
preferences, in scenarios where users state their preferences, i.e. preferences are not
captured implicitly. So, in this part, starting from our preference metamodel, we
tackle the problem of reasoning about preferences in order to choose one option of
a set of available.

We begin with a literature review of work in the context of reasoning about
preferences, presented in Chapter 5. As taking into account individual preferences
is relevant for different purposes, such as content personalisation, decision support
systems and automation of user tasks, this problem was investigated in different
research areas within computer science, such as artificial intelligence and databases.
To capture similarities and differences between these different works, we present
them in the form of a systematic review, thus enabling their comparison. We identify
issues left unaddressed.

Next, we propose in Chapter 6 a technique for reasoning about preferences
and making decisions, addressing these identified issues. Preferences that our
technique receives as input are expressed in a language that is built based on a
restricted version of our preference metamodel. In addition, this technique uses
principles of human decision making, in order to deal with trade-off situations. We
also compare our technique with existing work and evaluate it with information
collected in our study of how humans express preferences.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

5
A Systematic Review of Reasoning about Preferences

Preferences are involved with many problems of computer science. People
who have complex decisions to be made can be assisted with decision support
systems, and such decisions must be made based on preferences of a particular
individual. Information provided in the web is nowadays massive, and even with
search tools it may be hard to find the information that is needed in a short time as it
is common to obtain lots of websites as results of a search. These different scenarios
lead to the emergence of research on preference in many research areas, such as
artificial intelligence (AI) and databases. As a consequence, there is a large number
of approaches proposed. In addition, new approaches are typically compared to
existing ones in the same research area; however, there is limited investigation of
the relationship of approaches across different areas.

Work on preferences investigates different problems, often associated with
one of these topics: preference elicitation (how to obtain preferences from users),
preference representation (how to model preferences), and preference reasoning
(how to use preferences for making decisions, ordering search results, and other
purposes). In this chapter, we present a systematic review1 of approaches that
propose mechanisms to reason about preferences, which include algorithms and
algebras. The goal of this comparison is to obtain a clear overview of the approaches
and find out how existing approaches differ with respect to preference reasoning.
As this is a topic investigated in many research areas, our aim is to provide a
comprehensive review of these approaches to identify the kinds of issues they
are addressing, which structures they use as input, how they work and their
limitations. We begin by describing the evaluation framework adopted to analyse
each investigated approach in Section 5.1. Approaches are then presented from
Section 5.3 to Section 5.7, organised in the following way.

We first describe a background on Multi-Attribute Utility Theory
(Section 5.2), which is one of the oldest approaches to help decision makers to make
choices, and inspired much of the existing work on reasoning about preferences in
different research areas. It established definitions that were adopted in most of the

1We use the term systematic because this literature review was performed in a systematic
way. Nevertheless, the review is not a systematic review in the sense of social sciences
(Petticrew and Roberts 2006).

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 89

presented approaches. The first group of approaches we present consists of those
based on utility functions (a function that represents preference quantitatively),
which propose specific models to represent preferences and forms to derive utility
functions from these models, which are supposed to be more natural for users
(Section 5.3). Section 5.4 describes approaches that extend Constraint Satisfaction
Problems (CSPs) to incorporate soft constraints, i.e. constraints that can remain
unsatisfied. Utility functions and CSPs are two classical approaches for dealing
with preferences and making decisions, and approaches detailed in Section 5.5 take
another direction: they propose new graphical structures to represent and reason
about preferences. Databases are another research area that has been investigating
preferences, and works in this area are presented in Section 5.6. These works
propose extensions of query languages to incorporate preferences and algorithms
to provide query results taking the specified preferences into account. Finally, more
recently, researchers from argumentation in AI investigated the explicit use of
preferences in argumentation frameworks to make decisions, which is discussed
in Section 5.7. After presenting all these approaches, we further discuss them and
show how they are related in Section 5.8, followed by Section 5.9, which concludes
this chapter.

5.1
Review Method

Our comparison of approaches to reasoning about preferences follows an
evaluation framework composed of seven different criteria, which are described
below. Criterion that is not applicable for an approach is omitted in its corresponding
section.

Goals. Many of the approaches have the goal of answering a user question that is
related to preferences and decision making (see next criterion), so they propose
preference representation models and/or algorithms to answer those questions.
Other approaches start from an existing (lower-level) preference representation
model, which has associated algorithms, and propose means for transforming
high-level preference models into low-level ones. Therefore, in these criterion we
classify approaches according to the following goals: (i) proposition of preference
representation models; (ii) proposition of algorithms, algebras or semantics to
answer preference-related questions or interpret preference constructions; and (iii)
proposition of X to Y transformation, i.e. transform preferences represented in a
model X to preferences represented in a model Y .

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 90

Questions. Which are the preference-related questions addressed by the
proposed approach? As stated before, many of the approaches aim to answer
preference-related questions. So, in cases that the approach has this goal, we show
which are the questions addressed by each approach. The types of questions are
detailed below, from which the first three have been defined by Boutilier et al.
(Boutilier et al. 2004).

– Outcome optimisation — which is the optimal outcome according to a given
preference structure?

– Dominance queries — is an outcome o preferred to another outcome o′? If
so, it is said that o dominates o′.

– Ordering queries — is an outcome o′ not preferred to another outcome o? If
so, it is said that o is consistently orderable over o′ with respect to the given
preference structure.

– Non-dominated outcomes — which are the non-dominated outcomes
according to a given preference structure?

Input. What is the input required by the approach? If the approach relies on a
particular structure, specific for the approach, we provide details. Some of these
structures were already introduced in Chapter 4, such as CP-nets.

Interpretation. Which is the interpretation adopted for preference statements?
Most of the approaches use preference statements (or a particular representation
of it) as input, but they can be interpreted in different ways: (i) Ceteris paribus
(Hansson 1996) — meaning “all else being equal”, i.e. if one states “I prefer value
x to value x ′ with regard to attribute X ,” it means that this preference can be
considered only when the values of all other attributes are equal; (ii) Not ceteris
paribus — meaning, when a preference is provided, it is applied to any context. For
example, if one states that “lowest” price is a preference for cars, any cheaper car is
preferred to any more expensive car.

How it works. An explanation of how each approach works is provided but, as
our goal is not to give an extensive description of the involved algorithms and all
their steps, we give only a broad understanding of them.

Complexity. Which is the complexity of the proposed algorithm? Some
approaches do not provide complexity analysis, so this aspect is omitted in their
sections.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 91

Limitations. Which are the limitations of the proposed approach? Presented
approaches may have limitations in different directions, such as having algorithms
that takes exponential time to be executed or preferences expressed in a way that
are hard to elicit. In Chapter 4, which focused on preference representation, we
detailed the kinds of preferences addressed by most of the approaches described
here and their particular representation models. Therefore, the lack of expressivity
of the approaches will not be reported in this chapter, as it was discussed previously.

5.2
Background on Multi-Attribute Utility Theory

Multi-Attribute Utility Theory (MAUT) is a set of methods designed to
handle decision problems involving multiple objectives and trade-offs. According
to Dyer (Dyer 2005), MAUT has become synonymous in the view of many scholars
with the theory proposed by Keeney and Raiffa (Keeney and Raiffa 1976), which
emphasised the use of multi-attribute preference models based on the theories
of von Neumann and Morgenstern (von Neumann and Morgenstern 1944), who
presented a set of axioms about preferences and utilities such that any decision
maker satisfying these axioms has a utility function.

MAUT is concerned with the valuation of the outcomes of an option of a
decision maker. A problem is described in terms of attributes X = {x1, ..., xn},
and each of them can have a value assigned according to their respective domains
D1, ...,Dn , which establish the range of possible values of an attribute. The set of
all possible outcomes is the cartesian product of attribute domains D1 × ... × Dn .
Feasible outcomes are a subset of all possible outcomes, and are those that consist
of valid combinations of attribute values. A (cardinal) utility function is a function
that maps outcomes to a real value that represents the preference for each outcome.
The higher is the value, the more preferred the outcome is. In Table 5.1, we give
the definition of the three main terms (option, outcome and attribute) adopted in
MAUT and decision making, which were already introduced above, together with
alternative terminology, as different approaches may use different terms. In some
cases, options lead to only one possible outcome, and in such cases the term option
and outcome are used as synonyms, for example choosing a product A to be bought
(option) leads to the single consequence of buying this product (outcome), therefore
A can be used to refer to both the option and the outcome.

Keeney and Raiffa (Keeney and Raiffa 1976) discuss decisions that can be
made under certainty or uncertainty. The first refers to situations in which the
outcome, represented by multiple attributes, of an option is known. In these
scenarios, the main issue is to resolve trade-offs among preferences, which typically
conflict because in general they cannot be maximised at the same time. For instance,

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 92

Term Definition Alternative Terminology
Options Elements of the same conceptual

class, which is the subject of the
decision making process

Actions, Alternatives,
Record, Tuples

Outcomes Results obtained by choosing an
option

Payoffs, Consequences

Attribute Characteristics used to describe
options

Variables, Features

Table 5.1: Main terms adopted in decision making.

two preferences might be maximise quality and minimise costs, but lower costs
are normally achieved by compromising quality. In the second, the cases in which
uncertainty is present, or in other words risky situations, there is a probability
associated with the possible outcomes of an option. In their work, Keeney and Raiffa
consider that this probability is given.

A preference representation function under certainty is referred to as a value
function v . v associates a real number with each point x in the outcome space,
representing the preference structure of the decision maker, provided that

∀ x ′, x ′′ ∈ D x ′ ∼ x ′′ ⇔ v (x ′) = v (x ′′) and x ′ ' x ′′ ⇔ v (x ′) > v (x ′′)

∼ and ' represent indifference and preference, respectively. Based on v , the
goal is to find an outcome x ∈ D to maximise v (x).

When the decision making is based on assumption of the existence of
value functions, two concepts (preference independence and mutual preference
independence) play an important role, as they are related to properties of the value
function, which can facilitate its elicitation process. The definition of these two
concepts are given below.

Preference Independence. An attribute set Y , where Y ⊂ X , is preferentially
independent of its complement Y if the preference order of two outcomes
involving different values assigned to Y does not depend on the fixed values
assigned to attributes in Y . For example, if the laptop colour is preferentially
independent of the remaining laptop attributes, and one states that prefers
silver to black, by fixing values of the remaining attributes, any silver laptop
is preferred to any black laptop.

Mutual Preference Independence. The attributes x1, ..., xn are mutually
preferentially independent if every subset Y of X is preferentially
independent of its complementary set.

These definitions are used to identify a very important property of value
functions: if the mutual preference independence is held, then it can be proved

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 93

that the form of the value function is additive, and this form of representation is
one of the most common approaches for evaluating multiattribute alternatives. In
this representation, attribute values are considered independent, and therefore the
value of an outcome can be calculated by adding values of individual attributes.
This approach is ideal because it is compact, as a specific value does not need to
be specified for each possible outcome, whose number is exponential on the size
of attribute domains. In this thesis, we adopt the term compact as an adjective to
approaches that with little information (preference statements, utility values) one
can derive a preference order between two outcomes.

When uncertainty is considered, the preference representation function is
referred to as utility function, which takes into account the probability of outcomes.
We now introduce definitions related to decisions under this kind of scenario —
many of these definitions come from the formalisation of expected utility theory by
von Neumann and Morgenstern (von Neumann and Morgenstern 1944).

– A lottery is any option with an uncertain outcome. Examples: investment,
roulette, football game.

– A probability of an outcome (of a lottery) is the likelihood that this outcome
occurs. Example: the probability often is estimated by the historical frequency
of the outcome.

– The probability distribution of the lottery depicts all possible outcomes in
the lottery and their associated probabilities. The probability of any particular
outcome is between 0 and 1 and the sum of the probabilities of all possible
outcomes is equal to 1.

The definitions of (mutual) preference independence are then extended by
considering uncertainty: an attribute xi is said to be utility independent of its
complementary attributes if preferences over lotteries with different values of xi

do not depend on the fixed values of the remaining attributes. Attributes x1, x2, ..., xn

are mutually utility independent if all proper subsets of these attributes are utility
independent of their complementary subsets.

We discuss next goals and limitations of MAUT, which can be related to many
of the approaches that will be presented, which rely on utility or value functions.

Goals. A preference representation model in the form of utility functions. The
approach presented in MAUT does not focus directly on presenting algorithms to
answer questions related to preference reasoning, because once utility functions
are correctly defined for a decision maker, typical preference tasks and associated
questions, such as comparing and ranking outcomes, can be easily performed and

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 94

answered, as it requires only a numerical comparison. The challenge is to reveal the
utility function of decision makers.

Limitations. The main issue related to MAUT and other utility function-based
approaches is the elicitation process. The process of obtaining the information
required to generate a good utility function requires considerable effort on the
part of the user. Users may be able to express preferences in other kinds of
preference statements, but revealing the utility function underlying such preferences
is a challenging task. Moreover, existing techniques for revealing utility functions
typically rely on presenting users with several pairs of options and requesting them
to compare these pairs, which is a time-consuming task that users may not be willing
to perform, unless the consequences of making a wrong choice are very important
for the decision maker.

5.3
Utility Function-based Approaches

In this section, we present approaches that use utility functions2 to reason
about preferences and, as discussed above, the main challenge is to identify
which is the utility function of the decision maker. The first presented approach
proposes a graphical structure to represent utility functions and algorithms, and
the two remaining approaches propose methods to transform qualitative preference
statements into utility functions. As our focus is not the elicitation process, we do
not describe approaches that propose revealing utility functions by means of user
interaction.

5.3.1
CUI networks

CUI networks are claimed by Engel and Wellman (Engel and Wellman 2008)
as a compact graphical representation of utility functions over multiple attributes.
These networks model multiattribute utility functions using the concept of
conditional utility independence — CUI stands for (Conditional) Utility
Independence — which requires a (cardinal) preference order over a subset of
the attributes to be independent of another subset of attributes.

Goals. A preference representation model (CUI networks) and algorithms.

Questions. Outcome optimisation.
2Although these approaches claim to adopt utility functions, they rely on value functions

according to the definition of Keeney and Raiffa (Keeney and Raiffa 1976).

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 95

Input. The required input for answering outcome optimisation queries based on
CUI networks is a set of CUI conditions. These conditions indicate when a set of
attributes Y is utility independent of a set of attributes X , meaning that the utility of
an assignment for Y does not depend on X . In addition, the utility of the assignment
for Y may depend on values assigned to a set of attributes Z (conditionality).
Considering these sets of attributes, the utility function can be decomposed into

U (X ,Y ,Z) = f (X ,Z) + g(X ,Z)U (X ′,Y ,Z), g(·) > 0

where X ,Y ,Z are sets of attributes, X ′ is an assignment for X . The function
sums the utility of attributes in X (conditioned to Z), with the utility of attributes
in Y (conditioned to Z) — considering a weight g(·) > 0 of the utility of Y . In
addition, since U (X ′,Y ,Z) is a function only of Y and Z (its value does not change
for different assignments X ′), it can also be written as U (Y ,Z).

The set σ of CUI conditions on the attribute set S = {x1, ..., xn}, such that for
each x ∈ S , σ contains a condition of the form CUI (S\(x ∪ P (x)), x | P (x)).
The CUI condition indicates a set of attributes P (x), which separates the rest
of the attributes from x . If we apply this condition to x1, for example, we have
U (S) = f1(x1,P (x1)) + g1(x1,P (x1))Ux 0

1
(S\{x1}).

Interpretation. Not ceteris paribus.

How it works. The proposed approach consists of initially transforming a given
set of CUI conditions into a graphical model. For accomplishing this, a procedure
is described by Engel and Wellman (not detailed here), which builds a graph whose
nodes are attributes based on this given set of conditions and an order on the set S ,
namely the CUI network. The goal of providing a graphical form for CUI conditions
is that, according to the authors, CUI networks provide a potentially compact
representation of the multi-attribute utility function, via functional decomposition
to lower-dimensional functions that depend on a node and its parents.

Based on CUI networks, two optimisation algorithms for discrete domains
were developed. This first is applied only to CUI trees, which are a CUI network in
which no node has more than one child (upside down version of a standard directed
tree). The main idea of the algorithm is to select an optimal value function (OVF)
for a node based on parents and child. However, as the algorithm runs from roots
to leaf, the OVF of the child is calculated after visiting the parent, so when the
value for the child is set, the parent values may be corrected, and this is propagated
to the roots of the tree. The second algorithm applies to general directed acyclic
graphs (DAGs). In the tree case, correcting the value of the child of a node x is

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 96

sufficient in order to separate x from the rest of the graph, excluding ancestors.
Each value of the child is considered at a time, so it also determines the values for
all the ancestors. In a general DAG it is no longer sufficient for the OVF to depend
on the children, because they do not provide sufficient information to determine
the values of the ancestors of x . So this notion is generalised to be the scope of x
(Sc(x)), which is a set of nodes on which the OVF of x must depend, in order for
an iterative computation of the OVF to be sound. With this generalisation, the DAG
algorithm is similar to the tree algorithm. Further details can be seen elsewhere
(Engel and Wellman 2008).

Complexity. For CUI networks structured as a tree, in case the numeric data at
the nodes is available, factoring in the time it takes to recover the utility value for
each outcome (which is O(n)), the algorithm runs in time O(n2maxi | D(xi) |2),
where n is the number of attributes and D(xi) is the domain of attribute xi . For
CUI networks structured as a DAG, the performance of the optimisation algorithm
is exponential in the size of the largest scope Sc(x) (plus one).

Limitations. This approach is restricted to dealing only with conditional utility
independent functions, which, on the one hand, are a weaker independence
condition in comparison to additive independence and, on the other hand, are still
a limitation, because it assumes a particular kind of preference independence. In
addition, as other quantitative approaches, it requires capturing numeric utility
values from users, which is not a trivial task.

5.3.2
Utility functions for Ceteris Paribus Preferences

McGeachie and Doyle (McGeachie and Doyle 2008) present a set of methods
for translating preference information from a qualitative representation to a
quantitative representation. They consider ceteris paribus preferences, represented
with a propositional language augmented with an ordering relation used to express
preferences over propositional combinations of a set of elementary attributes. This
qualitative representation is converted to an ordinal utility function in order to be
used in reasoning processes.

Goals. A transformation from qualitative statements to utility functions.

Input. The input required by the method is preference statements interpreted
under the ceteris paribus semantics and represented in a formal logic. A restricted
logical language L is adopted, using only two logical operators: ¬ (negation) and ∧

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 97

(conjunction) to construct finite sentences over a set of atoms, each corresponding to
an attribute from a space of binary attributes describing possible worlds. A complete
consistent set of literals is a model.

A preference order is a complete preorder (reflexive and transitive relation) !
over the set of all models of L. When, given two models m and m ′, m ! m ′, it is
said that m is weakly preferred to m ′. If m ! m ′ and m ′ ! m, it is said that m is
strictly preferred to m ′, written m ' m ′. If m ! m ′ and m ′ ! m, then it is said m

is indifferent to m ′, written m ∼ m ′.

Interpretation. Ceteris paribus.

How it works. The general idea of the approach is to generate an ordinal UF from
a set C of ceteris paribus preferences over attributes F . An initial step is performed,
which translates the provided statements represented in a logical representation of
ceteris paribus preferences to an attribute-vector representation. The latter is then
used to produce the UF in the following way. The structure of preference statements
in the attribute-vector representation is used to infer additive utility independence
among attributes. Next, subutility functions are defined for each utility independent
set of attributes. This is done based on the representation of preorders consistent
with the preferences by building a graph over assignments to the attributes. Finally,
to assign relative weights of satisfaction of different attributes, a linear programming
problem is solved. In the end, a utility function that can be used to evaluate the utility
of different assignments to values of F is built.

Complexity. This work has two different complexity questions, which are
associated with: (i) time and space required to construct the utility function u;
(ii) the time and space required to evaluate u(m) on a particular model m. Both
of them take exponential time, in worst cases. Constructing u involves solving a
satisfiability problem, where time required depends on the number of rules involved
in conflicts on each utility independent set. On the other hand, computing u(m)
involves computing ui (m), where ui is a minimising utility function, for all the
utility independent attribute sets. Each of the subutility functions can be exponential
in the size of the utility independent set.

Limitations. The main limitations of the approach presented by McGeachie and
Doyle (McGeachie and Doyle 2008) are that it is able to deal only with boolean
attributes, and the intractability of the solution.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 98

5.3.3
Learning Utility Functions with SVM

Domshlak and Joachims (Domshlak and Joachims 2007) proposed an
approach that takes a new direction for reasoning about preferences. First, it
adopts a new form of representing preferences: instead of seeing an option as
values (parameters) specified for a set of attributes, it linearises the possible
combinations of attribute values and each of these combinations is seen in a unified
non-parametric way, i.e. as a unique specification. For instance, “red big suitcase”
is not an option (suitcase) parameterised with values assigned to colour and size,
but as a single option. Second, machine learning techniques are adopted to generate
a utility function to model user preferences.

Goals. A transformation from qualitative statements to utility functions.

Questions. Experiments used utility functions constructed with the approach to
generate an ordering and rank of k best options for users.

Input. The presented approach receives as input qualitative preference statements,
which can be of three different types: (i) dyadic statements; (ii) monadic
statements; and (iii) A is preferred to B more than C is preferred to D. These
are represented with logic-based qualitative preference expressions, as detailed in
Section 4.5.

Interpretation. Not ceteris paribus. Each parameter ui of the utility function
can be seen as representing the marginal utility of the interaction between the
attributes associated with ui when these take specific values. This means that each
individual statement does not state a particular interpretation, such as preference
independence, but gives a contribution for (in)dependency among attributes.

How it works. The two main aspects from this work are the proposed underlying
preference representation, i.e. how the the qualitative preference statements are
represented, and how the utility function is generated.

The situation explored by Domshlak and Joachims is when the system cannot
assume a significant independence structure on outcome attributes. So, the basic
idea is that if no useful preferential independence information in the original
representation space is provided, a different space is adopted in which no such
independence information is required. This new space is the following: assuming
that the attributes X are all binary-valued, there is a map from the options χ into a
new, higher dimensional space F using a certain mapping Φ = χ +→ F = R4n .

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 99

The mapping Φ is not arbitrary, and it establishes a connection between the
dimensions χ and F , in which each element of F is a combination of values
of attributes. This mapping is used for representing preference statements. Each
element of F is associated with weights, and these must be in accordance with
provided statements. Statements are used as constraints over weights together
with an objective function in an optimisation problem. For calculating weights,
techniques frequently used in machine learning in the context of Support Vector
Machiness (SVMs) (Vapnik 1998) are adopted.

Complexity. Solving the optimisation problem of this approach poses several
complexity issues. First, though this constraint system is linear, it is linear in
the exponential space R4n . Second, the very description size of the optimisation
problem, and, in fact, of each individual constraint of it, can be exponential in
n. Nevertheless, Domshlak and Joachims show that these complexity issues can
be overcome by using some duality techniques from optimisation theory and
Reproducing Kernel Hilbert Spaces (RKHS).

Limitations. This work is highly associated with machine learning. It interprets
each pairwise comparison as likes and dislikes of options with similar values for
attributes and builds a model with values that generalises these comparisons, which
can also be a comparison with the whole set of options, when monadic statements
are provided. Therefore, there is a statistical generalisation, and for achieving good
results with this approach a large amount of statements may be needed. This is
reflected in the future work reported by the authors, whose goal is to specify the
number of preference statements that a user has to provide for inferring a utility
function that is effective.

5.4
Constraint Programming

Constraint Satisfaction Problems (CSPs) are mathematical problems defined
as a set of objects (options) whose state must satisfy a number of constraints or
limitations. Constraints can be seen as preferences that should ideally be satisfied,
but when no solution is found for an over constrained problem, these (soft)
constraints can be relaxed. Typically, each constraint is associated with a penalty
for their not satisfaction (or a degree of preference for their satisfaction), and there
is an objective of minimising penalty (or maximising preference satisfaction). In
this section, we present approaches that use CSPs for dealing with preferences.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 100

5.4.1
Semiring-based Constraint Satisfaction

Different approaches were proposed to deal with soft constraints, i.e.
when constraints are used to formalise desired (preferred) properties rather than
requirements that cannot be violated. Examples of these approaches are fuzzy
and weighted constraints, which associate a value with constraints indicating the
preference for a constraint satisfaction and the cost of not satisfying a constraint,
respectively. Bistarelli et al. (Bistarelli et al. 1997) defined a constraint solving
framework where all such extensions, as well as classical CSPs, can be cast. The
main idea is based on the observation that a semiring (i.e. a domain plus two
operations satisfying certain properties) is all that is needed to describe many
constraint satisfaction schemes.

Goals. A preference representation model in the form of an abstract CSP.

Questions. The main question addressed by soft constraints is to find a solution
for over constrained problems, so we can say that the typical question answered
is outcome optimisation, in which the optimal outcome is that satisfying the most
important constraints. In this approach, each constraint of a CSP is associated with
a preference value (or a penalty) and the goal is to find a solution that maximises
the overall preference value (or minimises the penalty of not satisfied constraints).

Input. The required input for soft constraint-based approaches is a Soft Constraint
Satisfaction Problem (SCSP), which was introduced in Section 4.1.1, which consists
of a constraint system and a set of constraints, which are associated with a value
representing the penalty for unsatisfied constraints or the preference for their
satisfaction.

Interpretation. Not ceteris paribus.

How it works. Semiring-based constraints rely on a simple algebraic structure,
called a c-semiring since it is very similar to a semiring, to formalize the notion of
satisfaction degrees, or preference levels. Recall that, in this term, “c” stands for
“constraint,” meaning that this kind of semiring is a natural structure to be used
when handling constraints.

The structure is specified by a set E of satisfaction degrees, where two binary
operators are defined: ×s specifies how to combine preferences, while +s is used
to induce a partial ordering on E . Additional axioms, including the usual semiring

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 101

Table 5.2: Different specific frameworks modelled as c-semirings
(Meseguer et al. 2006).

Semiring E ×s +s "s 0 1
Classical t , f ∧ ∨ t "s f f t
Fuzzy [0, 1] min max ≥ 0 1
k-weighted 0, ..., k +k min ≤ k 0
Probabilistic [0, 1] xy max ≥ 1 0
Valued E ⊗ minv #v 1 ⊥

axioms, are added to precisely capture the notion of satisfaction degrees in soft
constraints.

A c-semiring is a 5-tuple < E ,+s ,×s , 0, 1 > such that:

– E is a set, 0 ∈ E , 1 ∈ E ;

– +s is an operator closed in E , associative, commutative and idempotent for
which 0 is a neutral element and 1 an annihilator;

– ×s is an operator closed in E , associative and commutative for which 0 is an
annihilator and 1 a neutral element; and

– ×s distributes over +s .

Compared to a classical semiring structure, the additional properties required
by a c-semiring are the idempotency of +s (to capture a lattice ordering) and the
existence of a minimum and a maximum element (to capture hard constraints).

In the SCSP framework, the values specified for the tuples of each constraint
are used to compute corresponding values for the tuples of values of the attributes
in con (set part of the constraint problem), according to the semiring operations:
the multiplicative operation is used to combine the values of the tuples of each
constraint to get the value of a tuple for all the attributes, and the additive operation
is used to obtain the value of the tuples of the attributes in the type of the problem.
More precisely, this is the definition of the operations of combination and projection
over constraints.

The c-semiring is a generic framework for representing soft constraint
problem solvers, and by capturing their commonalities in a generic framework
one can design generic algorithms and properties instead of several
apparently unrelated, but actually similar properties, theorems and algorithms.
Different specific frameworks were presented as soft constraint networks
(Meseguer et al. 2006, Bistarelli et al. 1997), which are summarised in Table 5.2.

Complexity. Since semiring-based constraints properly generalise classical
constraints, this task is NP-hard. As in the classical case, perhaps the most direct

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 102

way to solve a soft constraint network is searching in its state space, exploring
the set of all possible assignments. Since an optimal solution is an assignment that
minimises the violation degree (or equivalently, maximises the satisfaction degree),
solving optimally a soft constraint network is an optimisation problem, thus harder
than solving classical constraint networks. Different techniques were proposed to
optimise optimal solutions, such as defining lower and upper bounds of branch and
bound algorithms.

Limitations. As other quantitative approaches, soft constraint-based approaches
have the limitation of extracting from users numerical values for preferences, what
is not intuitive for them. In addition, solving SCSPs is a NP-hard task. Finally, these
approaches do not deal with multiple objectives, the only objective is to maximise
the constraints that are satisfied (considering their weight), but additional objectives
such as minimise price cannot be represented. Only intervals for acceptable prices
can be provided as constraints.

Extensions

There are extensions of the c-semiring framework, whose goal is to represent
other kinds of preferences. Next, we briefly describe two of these extensions.

Representing Bipolar Preferences. Bistarelli et al. (Bistarelli et al. 2010) state
that preferences on a set of possible choices are often expressed in two forms:
negative and positive statements. The former restricts the set of acceptable
options, indicating what users do not want, and the latter indicates options
that users prefer with respect to other acceptable options. These two kind of
preferences are referred to as bipolar preferences. The approach described for
bipolar preferences proposes a tool to represent these two types of preferences
in a single framework and provides algorithms that, given as input a problem
with these preferences, return its best solutions.

Representing Intervals. Gelain et al. (Gelain et al. 2010) argue that it is difficult
to specify precise values associated with constraints to represent preferences,
and it is more reasonable to consider intervals instead of specific values. The
authors then define several definitions for optimal solutions in such problems,
providing algorithms to find optimal solutions and also to test whether a
solution is optimal.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 103

5.4.2
Preference-based Problem Solving for Constraint Programming

Junker (Junker 2008) points out that traditional optimisation approaches
compile preferences into a single utility function and use it as the optimisation
objective when solving the problem, but they do not explain why the resulting
solution satisfies the original preferences, and do not indicate the trade-offs made
during problem solving. The author then argues that the whole problem solving
process becomes more transparent and controllable by the user if it is based on the
original preferences.

He tackled the problem of multi-objective optimisation by decomposing it
into alternative sequences of single-criterion optimisation problems, which can
be solved by standard optimisers. The chosen sequence gives information that
explains the optimality of the solution. Based on the explanation, the user can either
accept the solution or modify the preferences. The problem solver then modifies
the solution correspondingly. Preferences thus allow the user to interact with the
problem solver and to control its behaviour.

Goals. A preference representation model (introduced in Section 4.1.2), and an
algorithm based on constraint problem solvers to find optimal outcomes.

Questions. Outcome optimisation. In addition, based on an optimal solution,
users may ask two questions.

1. Why can’t the criteria z have a value better than ω∗ (the optimal solution)?

2. Why hasn’t the value ω been chosen for the criteria z?

Input. A set of preferences are modelled in the form of a preorder ! on criteria
and their respective domains, consisting of a strict part ' and an indifference relation
∼ (see Section 4.1.2 for details), and a set of available options, which are described
in terms of values for attributes that have specific domains, and constraints over
possible values.

Interpretation. Not ceteris paribus.

How it works. As opposed to combinatorial problems with preferences, which
are classically solved by compiling all preferences into a single utility function
and by determining an option satisfying the constraints that has maximal or nearly
maximal utility, Junker uses individual preferences with constraint solvers, in order

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 104

to allow the optimiser to give an explanation of optimality in terms of the original
preferences.

First, an atomic optimisation step is performed, which finds options satisfying
the constraints C that assign a '-maximal value to a single criterion z . This is
possible if the user provides a total order over the domain of z , but if it is not the
case, all possible total orders are generated based on the provided partial order, and
the constraint solver runs for each possible total order. Maximal options in this case
are the union of maximal options of each of them.

In order to address multiple criteria optimisation, importance order is
introduced on the preferences and to decide trade-offs in favour of the more
important preferences. Lexicographic optimisation is then used to define an ordering
on the option space based on this importance principle, which leads to finding a
lexicographically optimal option. As the importance among the criteria is unknown,
permutations of all possible orders are done. If users are unsatisfied with the results,
they can establish the importance among the criteria, which is a strict partial order
I ⊆ Z × Z . Thus, only permutations that respect this strict partial order will be
considered.

Finally, pareto-optimality is adopted to capture all the possible trade-offs,
because using a lexicographic approach gets a best value for a more important
criterion z1, and a less important criterion z2 is completely penalised. In this case,
pareto-optimal options are found, which are those that pareto-dominates other
options, i.e. optional options are better in at least one criterion, and equally good in
the other ones. As there is no direct way to transform a pareto-optimization problem
into a solved form of the optimisation problem even if it is based on totally ordered
preferences, the author introduces the notion of wishes, which establish penalisation
limits for criteria.

Complexity. CSPs are known to be NP-hard, but this solution is based on the use
of standard optimisers, such as constraint-based branch-and-bound, which improve
performance.

Limitations. There are some steps in the work described by Junker that are not
completely detailed, such as the mapping of preferences 〈z , >〉 to a utility function
u. In addition, one of the most challenging problems in preference reasoning is
dealing with trade-off. When a solution is optimal for all criteria, it is trivially
optimal. However, requiring users to establish penalisation limits for resolving
trade-offs has two main drawbacks: (i) for domains that users are not very familiar
with, they might have a vague idea of which is a good limit to establish the trade-off;
and (ii) this solution may lead to a situation in which the more important criterion is

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 105

maximised to a value that sets the maximum penalty to the less important criterion;
however users may prefer something in between.

5.5
Graphically-structured Approaches

As seen in previous sections, the use of utility functions and CSPs has
drawbacks associated with preference representation as they require not trivial
preference elicitation processes. In this section, we present approaches that
aim at addressing them by proposing new forms of representing preferences
and relationships among attributes. These representations, which rely on graph
structures, have the goal of capturing preferences in a intuitive way and also to
be used in algorithms to reason about preferences.

5.5.1
CP-nets

CP-nets represent preferences in a compact graphical form and, according to
Boutilier et al. (Boutilier et al. 2004), represent preference statements in a natural
way. These statements are conditional qualitative preference statements interpreted
under the ceteris paribus semantics.

Goals. A preference representation model (CP-nets) and algorithms.

Questions. Outcome optimisation, dominance queries and ordering queries.

Input. A CP-net (introduced in Section 4.2.1) over attributes V = X1, ...,X2 is
a directed graph G over X1, ...,X2 whose nodes are annotated with conditional
preference tables CPT (Xi) for each Xi ∈ V . While the required input for outcome
optimisation requires only a CP-net as input, and optionally a partial assignment for
attributes, the input for both dominance and ordering queries is a CP-net N and two
outcomes o and o′.

Interpretation. Ceteris paribus.

How it works. In order to provide a better understanding of CP-nets, we first
introduce a simple example (Boutilier et al. 2004) that expresses preferences over
dinner configurations. This network, depicted in Figure 5.1(a), consists of two
attributes S and W , standing for soup and wine, respectively. Fish soup (Sf) is
strictly preferred to vegetable soup (Sv), while preference between red (Wr) and

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 106

5.1(a): Preferences for soup and wine. 5.1(b): Induced graph.

Figure 5.1: Example of a CP-net (Boutilier et al. 2004).

white (Ww) wine is conditioned on the soup to be served: red wine is preferred if
served with a vegetable soup, and white wine if served with a fish soup.

The semantics of a CP-net is defined in terms of the set of preference rankings
that are consistent with the set of preference constraints imposed by its conditional
preference tables (CPTs). Figure 5.1(b) shows the preference graph over outcomes
induced by the previously described CP-net. An arc in this graph directed from
outcome oi to oj indicates that a preference for oj over oi can be determined directly
from one of the CPTs in the CP-net.

Next we briefly describe how each of the preference-related questions are
answered using CP-nets.

Outcome Optimisation. In order to generate the optional outcome of a CP-net,
the network is sweep from top to bottom. The forward sweep procedure
(Boutilier et al. 2004) is provided, which constructs the most preferred
outcome. It considers, in order to be more general, a given evidence
constraining possible outcomes in the form of an instantiation z of some
subset Z ⊆ V of the network attributes. The algorithm sets Z = z , and
instantiate each Xi " Z in turn to its maximal value given the instantiation of
its parents.

Ordering queries. For acyclic CP-nets, Boutilier et al. define a corollary that
provides an algorithm for answering ordering queries. The corollary states
that given an acyclic CP-net N and a pair of outcomes o and o′, if there
exists an attribute X in N , such that: (i) o and o′ assign the same values to all
ancestors of X in N ; and (ii) given the assignment provided by o (and o′) to
the parents of X , o assigns a more preferred value to X than that assigned by
o′, then N ! o′ ' o.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 107

Dominance queries. Boutilier et al. demonstrate the equivalence of answering
dominance queries with the task of determining the existence of an improving
(or worsening) sequence of attribute value flips with respect to the given
CP-net. A sequence of improving flips from one outcome to another provides
a proof that one outcome is preferred, or dispreferred, to another in all
rankings satisfying the network. The authors also showed that this task can be
reduced to a special subclass of classical planning problems, and presented
several techniques that can be used in a generic search procedure for an
improving flipping sequence.

Complexity. CP-nets were investigated to be used with different algorithms
related to reasoning about preferences, and these had their complexity analysed with
different graph topologies. Outcome optimisation queries can be answered using
the forward sweep procedure, taking time linear in the number of attributes. The
complexity of two of the comparison queries (dominance and ordering) has been
analysed for different graph topologies of CP-nets, which can be seen in Table 5.3.
These results are associated with boolean attributes, but ordering results also hold
for multi-valued attributes.

Table 5.3: Complexity Analysis of CP-nets (boolean attributes).
Graph topology Dominance Ordering
Directed Tree O(n2) O(n)
Polytree (indegree ≤ k) O(22kn2k+3) O(n)
Polytree NP-Complete O(n)
Singly Connected (indegree ≤ k) NP-Complete O(n)
DAG NP-Complete O(n)
General Case PSPACE-Complete NP-Hard

Given a CP-net N over n attributes and a set of complete assignments
o1, ..., om , ordering these assignments consistently with N can be done using
ordering queries only, in time O(nm2).

Limitations. This work leaves different open theoretical questions, mainly related
to the complexity analysis of other scenarios in which CP-nets are used to reason
about preferences. In addition, CP-nets address representing preferences over
discrete domains, and common preferences, such as price minimisation, cannot be
directly represented. Moreover, CP-nets, when identifying optimal outcomes, first
optimise parent attribute values for later assigning values for their children. This
leads to a lexicographic importance among attributes, which may capture trade-off
situations in a not appropriate way. This issue is investigated in TCP-nets, presented
in Section 5.5.4, which add importance relations and conditional relative importance
statements to the the conditional ceteris paribus statements supported by CP-nets.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 108

5.5.2
Combining CP-nets and Soft Constraints

Domshlak et al. (Domshlak et al. 2003) establish a connection between the
CP-nets and soft constraints machinery. As dominance queries are hard to be
answered using a CP-net structure (Section 5.5.1), the authors propose constructing
a semiring structure with a given acyclic CP-net, in order to be able to answer this
kind of queries.

Goals. A transformation from CP-nets to SCSPs.

Questions. Domshlak et al. focus on answering dominance queries in
polynomial time. This is achieved by using a semiring structure, so the main
question is how to transform a CP-net into this structure, so that dominance queries
can be answered in polynomial time.

Input. An acyclic CP-net.

Interpretation. Ceteris paribus.

How it works. This work consists of approximating CP-nets via soft constraints,
i.e. defining a SCSP based on a CP-net. This provides a uniform framework to
combine user preferences with both hard and soft constraints. So, given an acyclic
CP-net, a corresponding SCSP is constructed in two steps. First, a constraint graph,
named SC-net, is built. Second, preferences and weights for the constraints in
the SC-net are computed, and this computation depends on the actual semiring
framework being used. Basically, the SC-net constructed consists of one node for
each node of the CP-net plus new nodes for nodes from the CP-net that have more
than one parent. Arcs correspond to hard and soft constraints, and the latter is
associated with weights and penalties.

For calculating these values, two alternative semiring frameworks are
presented, based on (i) min+ and (ii) Soft-constraint Lexicographic Ordering (SLO)
semirings. In both cases, the computation of preferences and weights ensures
information preserving and satisfies the cp-condition, i.e. approximations preserve
the ceteris paribus property.

Complexity. Given an acyclic CP-net N with the node in-degree bounded by a
constant, the construction of the corresponding SC-net based on weighted SCSP

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 109

Nc is polynomial in size of N . No complexity analysis was presented for SLO soft
constraints.

Limitations. This approach aims at solving an issue of CP-nets — tractability
of dominance testing — by approximating a CP-net ordering via soft constraints.
Even though this goal is achieved, precision is compromised to some degree.
Different approximations (such as min+ and SLO) can be characterised by how
much of the original ordering they preserve, the time complexity of generating
the approximation, and the time complexity of comparing outcomes in the
approximation. Incomparable outcomes with min+ are considered equal or ordered
in either ways, and with SLO, an strict order will always be defined.

5.5.3
UCP-networks

A directed network representation for utility functions that combines certain
aspects of quantitative and qualitative approaches for preferences was proposed by
Boutilier et al. (Boutilier et al. 2001). The UCP-network formalism is an extension
of the CP-network model (Boutilier et al. 2004) that allows one to represent
quantitative utility information rather than only preference orderings.

Goals. A preference representation model (UCP-networks) and algorithms.

Questions. Outcome optimisation and dominance queries.

Input. The required input of this approach is a network representation, namely
UCP-networks (or UCP-nets), which combine aspects of CP-nets and generalised
additive independence (GAI) models. Sets of attributes Xi are said to generalised
additive independent if the expected value of the utility function u is not affected by
correlations between the Xi , but it depends only on the marginal distributions over
each Xi .

UCP-nets are similar to CP-nets in that they are also a graph whose nodes are
attributes, and an arc from one node to another indicates that preferences over an
attribute are conditioned to values of a parent attribute. However, the graph structure
is restricted to a DAG and instead of annotating nodes with CPTs, a table associates
values of an attribute and its parents with a utility value. In other words, a UCP-net
extends a CP-net with conditional utility information. For purposes of elicitation
and computation, it is often convenient to normalise utilities over the range [0, 1].

Every UCP-net specifies a GAI decomposition of its underlying utility
function, i.e. the utility of an outcome is calculated by summing the different

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 110

factors fi (Xi ,Ui), where Xi is each individual attribute, and Ui is the parents of
Xi . In addition, the GAI decomposition must respect the conditional preference
independence imposed by the network.

Interpretation. Ceteris paribus.

How it works. For dominance queries, the utilities of two outcomes are
compared, and they are obtained by extracting and summing the values of
each factor in the network. On the other hand, for outcome optimisation
queries, the CP-net structure is exploited and the forward sweep procedure
(Boutilier et al. 2004), introduced in Section 5.5.1, is used.

One of the main reasons to move from qualitative to quantitative preference
models is to support decisions under (quantified) uncertainty about outcomes of
options. So, when the distributions induced by options can be structured in a Bayes
net (Jensen 2001), UCP-nets can be used to help structure the decision problem. The
approach presented (Boutilier et al. 2001) for this purpose uses GAI factorisation of
utilities afforded by the UCP-net.

Complexity. Both outcome optimisation and dominance queries can be done in
time linear in the size of the network, due to the use of CP-nets with utility functions.

Limitations. An initial problem of this approach is that determining if a
quantified network is in fact a UCP-net requires a case-by-case analysis for each
“extended family” in the network involving a number of tests exponential in the size
of the extended families (each consisting of an attribute, its parents, its children,
and its children’s parents). However, it is not so problematic, given that families
are not expected to have a large size. The major issue is related to the adoption of a
quantitative approach, which brings problems to the elicitation process. The authors
assume that both structure and local value functions are something that users will
often be able to provide without too much difficulty.

5.5.4
TCP-nets

CP-nets represent the class of conditional qualitative preference statements.
Brafman et al. (Brafman et al. 2006) address a limitation of this approach by
extending CP-nets to capture another class of preference statements: those with
conditional relative importance. These statements have the following form: “it is
more important to me that the value of X be high than that the value of Y be high.”

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 111

CP-nets were extended with new types of arcs, and questions to be answered based
on this new graphical representation of preferences were investigated.

Goals. A preference representation model (TCP-nets) and algorithms.

Questions. Outcome optimisation, dominance and ordering queries. However,
little attention has been given to ordering queries, as they are weaker than
dominance queries.

Input. A TCP-net (which is a CP-net that also allows to represent attribute
importance, and was presented in Section 4.2.2) is the only required input
for outcome optimisation, and it can also be provided with an optional partial
assignment for attributes. The required input for both dominance and ordering
queries is a TCP-net N and two outcomes o and o′.

Interpretation. Ceteris paribus.

How it works. Informally, the semantics of TCP-nets is as follows. A strict partial
order ' satisfies:

– the conditional preferences for attribute X , if any two complete assignments
that differ only on the value of X are ordered by ' consistently with the
ordering on X values in the CPT of X . This ordering can depend on the
parent of X in the graph;

– the assertion that X is more important than Y , if given any two complete
assignments that differ on the value of X and Y only, ' prefers that
assignment which provides X with a better value; and

– the assertion that X is more important than Y given some assignment z
to attribute set Z , if given any two complete assignments that differ on the
value X and Y only, and in (both of) which Z is assigned z , ' prefers that
assignment which provides X with a better value.

A particular class of TCP-nets is investigated by Brafman et al., because it
is a class of networks that are proven satisfiable. This class of TCP-nets consists
of conditionally acyclic TCP-nets, whose key property is that they induce an
“ordering” over the nodes of the network. A TCP-net is conditionally acyclic if its
induced dependency graph is acyclic and for every assignment w to the union of all
selector sets (i.e. sets of the attributes associated with conditional importance arcs)
of the network, the induced w -directed graphs are acyclic. Therefore, verifying if

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 112

a TCP-net is conditionally acyclic becomes a relevant issue. This is performed in
polynomial time in certain situations, which are identified and detailed elsewhere
(Brafman et al. 2006); however, this verification is generally hard.

Outcome Optimisation. For computing the most preferred outcome of an acyclic
TCP-net and a (possible empty) partial assignment x on its attributes,
the forward sweep procedure introduced in Section 5.5.1 can be used.
Nevertheless, it is not possible if a set of hard constraints is provided. This
happens because the key difference between processing an acyclic CP-net
and a conditionally acyclic TCP-net is that, while the former induces a single
partial order of importance over attributes, the latter induces a hierarchically
structured set of such partial orders. So, a branch-and-bound algorithm is
presented for computing the optimal outcome in this scenario, which consists
of two parts: Search-TCP and Reduce. The Search-TCP algorithm is guided
by the underlying TCP-net N . It proceeds by assigning values to the attributes
in a top-down manner, assuring that outcomes are generated according to the
preferential ordering induced by N . The Reduce algorithm, in turn, refines
a TCP-net N with respect to a partial assignment K ′: it reduces both the
CPTs and the CITs involving this attribute, and removes this attribute from
the network.

Dominance queries. Much like in CP-nets, a dominance query 〈N , o, o′〉 with
respect to a TCP-net can be treated as a search for an improving flipping
sequence from the (purported) less preferred outcome o′ to the (purported)
more preferred outcome o through a sequence of successively more preferred
outcomes, such that each flip in this sequence is directly sanctioned by the
given TCP-net.

Complexity. Brafman et al. present a theorem that states that every conditionally
acyclic TCP-net is satisfiable. Based on this theorem outcome optimisation and
dominance queries in the context of this class of TCP-nets are investigated, with
the following complexity analyses provided.

– Determining that a TCP-net is conditionally acyclic is co-NP-hard.

– TCP-nets have the optimal outcomes generated using the forward sweep
procedure, and therefore the complexity for performing this task also applies
for TCP-nets.

– If a set of hard constraints is provided, determining the set
of preferentially non-dominated outcomes is not trivial, and a

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 113

branch-and-bound algorithm is used, whose worst case leads to
exponential time complexities.

– Dominance testing with respect to CP-nets, and thus TCP-nets, is NP-hard.

Limitations. As TCP-nets are an extension of CP-nets, they inherit some of
the limitations of CP-nets, which are related to the complexity of algorithms to
reason about preferences and the types of attributes addressed. In addition, even
though TCP-nets capture importance relations between attributes, the way that these
relations are interpreted lead to the maximisation of the most important attribute and
a high penalisation for the least important ones.

5.5.5
Graphically Structured Value Function Compilation

Brafman and Domshlak (Brafman and Domshlak 2008) provide an approach
for compiling the information captured by CP-nets and TCP-nets to value functions.
As reasoning about preferences represented by value functions is easy as they
establish an order among outcomes by ordering computed values, the challenge
here is to convert these graphical structures into them. The authors assume that
preference statements were already elicited or informed by users, and represented
as a TCP-net — or a CP-net, in case there is no (conditional) relative importance
between pairs of attributes. The graphical structure plays an important role in
analysing and compiling these statements.

Goals. A transformation from TCP-nets (and CP-nets) to value functions.

Input. The input required is qualitative preferences represented in either a CP-net
or a TCP-net, therefore the approach is able to deal with the kinds of statements
represented by these graphical structures.

Interpretation. Ceteris paribus.

How it works. This work proposes to use a TCP-net to initially organise
qualitative preference statements obtained from the user. Then, this information
is compiled to a value function that maintains the qualitative structure and
independence assumptions implicit in this TCP-net. This obtained value function
is used as the model of user’s ordinal preference, and as new information comes
from the user, this value function is refined, while still maintaining independence
assumptions implied by the original TCP-net, if possible.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 114

A TCP-net can be represented as a value function, as it defines a (partial)
order among outcomes. So, the main issue is to investigate whether there exists a
generalised additive (GA) value function defined over small factors “implied” by
the structure of the network, i.e. find a structured value function that, in some sense,
is as compact as the original TCP-net.

For CP-nets, the concept of a CP-family is defined, which is the set of
an attribute and its parents. That is, the goal is to define a GA value function
whose factors are the families of the CP-net. It is shown that every acyclic CP-net
is GA-decomposable over its CP-families, by constructing a system of linear
inequalities (CP-conditions) and finding a solution for it. A similar approach is
presented for TCP-nets — every acyclic TCP-net is GA-decomposable over its
TCP-families — a TCP-family is the set of an attribute, its parents and the attributes
that impose conditionality to the target attribute.

The approach is also extended to incorporate new item-level rankings
provided by users. It is shown that this value function compilation is not only
efficient and sound, but also complete, that is, the ability to generate the value
function is guaranteed.

Complexity. A system of linear inequalities L, either for CP-nets or TCP-nets,
is locally exponential. However, if the maximum cardinality of all extended
CP-families (an attribute, its parents, its children, and its children’s parents) of a
CP-net N is a constant k , a value function consistent with N can be constructed in
time polynomial in the size of N . It also holds for TCP-nets.

Limitations. Regarding preferences representation and interpretation, as this
work relies on TCP-nets, limitations described for them (and CP-nets), are also
applied. Moreover, the authors themselves point out that their work raises numerous
open theoretical questions, including (Brafman and Domshlak 2008): (i) when (if at
all) GA-decomposition is complete for cyclic TCP-nets, or even just cyclic CP-nets?
(ii) what is the most compact form of GA-decomposition that is complete for all
consistent TCP-nets?

5.6
Query-based Approaches

Most of the presented approaches were investigated in the context of AI, but
more recently preferences have also been taken into account in research related to
databases. This was mainly motivated by a scenario that emerged from the web, as
users search online store databases and their specified preferences often result in a
query over constrained, which has no result. In addition, web search engines provide

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 115

a huge amount of results for a set of keywords (a query), which can be reduced and
ranked if preferences are taken into account. This section presents work that aims
at integrating preferences into a query language.

5.6.1
Scoring Function

Agrawal and Wimmers (Agrawal and Wimmers 2000) proposed a framework
for expressing and combining user preferences, based on the definition of an atomic
scoring function, together with combination operations used to compute a score
for each result tuple. The framework has two basic components: (i) a preference
function that specifies user preferences; and (ii) a single meta-combining form
combine that is based on value functions. Details of how the framework works are
provided below.

Goals. A preference representation model and algorithms.

Questions. Ordering queries: how options are ranked according to preference
functions provided by multiple users?

Input. Given a framework (detailed in Section 4.3.1) in which preferences for an
entity in this framework are expressed by a numeric score between 0 and 1, vetoing
it, or explicitly stating indifference, the required input to answer ordering queries
is a database with available options and a set of preference functions, which are
functions that map options to a score.

Interpretation. Not ceteris paribus. A preference function defines scores for
specific options (or projections), and therefore a score is provided for a fully
specified context, or, if the score is given for an option projection, it means that
the score is also valid for any combination of values for the remaining option names
(or attributes). In addition, when the wild type (*) is used for a name, the specified
score will be considered for options with all possible values for that name too.

How it works. Preference functions consist of scores provided by (or elicited
from) users for individual combinations of values of option names. Then, a
preference function meta-combining form is defined, named combine, which takes
a “value function” that states how to compute a new score based on the original
scores and produces a preference function combining form, which takes a finite
list of preference functions and produces the new preference function. Combine
abstracts how different scores are combined: this function receives a function

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 116

as parameter, which determines how to combine scores. The example provided
where the framework was proposed (Agrawal and Wimmers 2000) is a FirstVeto
function, which establishes that scores of an specific individual are more important
than of another.

Limitations. In terms of preference representation, this approach requires users
to provide scores for each combination of values, if no elicitation method is used.
In addition, no particular inference is performed to reason about preferences: scores
order options in a particular order, and therefore ranking options is straightforward.
Moreover, the provided preference function combining form is abstract, in the
sense that resolving score combination is still part of specific instantiations of the
framework, and the example provided (FirstVeto) is trivial.

5.6.2
Winnow

An extension to relational algebra was proposed by Chomicki
(Chomicki 2003) as preference query formalisation, in which preferences are
expressed as binary relations between tuples from the same database relation,
which represent options to be selected. The approach defines a central algebraic
operator (winnow), which selects the set of dominant options from a database
according to provided preferences, and this operator has algebraic properties
analysed, such as commutativity, commutation of selection or selection, and
distribution of winnow over union and different. Analysing such properties of
winnow is important (Chomicki 2003) as they can be exploited for formulating
efficient database query execution plans.

Goals. A preference representation model, an algebra and algorithms.

Questions. Non-dominated outcomes.

Input. As input, it is required a database with available options and a set of
preference formulae, defined as introduced in Section 4.3.2.

Interpretation. Not ceteris paribus.

How it works. An algebraic operator called winnow, whose definition is
presented below, picks from a given relation the set of the most preferred (dominant)
options, according to a given preference formula. A preference query is a relational
algebra query containing at least one occurrence of the winnow operator.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 117

Winnow. If R is a relation schema and C a preference formula defining a
preference relation 'C over R, then the winnow operator is written as ωC (R), and
for every instance r of R:

ωC (R) = {t ∈ r | ¬∃ t ′ ∈ r .t ′ 'C t}

There are three possible algorithms (Chomicki 2003) to evaluate winnow. The
first is a nested-loops algorithm, which compares every two options and discards
dominated ones. This algorithm is correct for any preference relation '. The
second, BNL, is an algorithm proposed by Borzsonyi et al. (Borzsonyi et al. 2001)
in the context of a specific class of preference queries, namely skyline queries, but
the algorithm is considerably more general than the previous one. And the third
(Chomicki et al. 2005), SFS, is a variant of the second, in which a presorting step
is used. The BNL and SFS algorithms require the preference relation to be a strict
partial order.

Complexity. The evaluation of the winnow operator, i.e. identifying dominant
options, is not part of the solution provided by Chomicki. However, the author
provides a complexity analysis of properties (irreflexivity, asymmetry, transitivity,
negative transitivity and connectivity) of preference formulae, which can be seen
elsewhere (Chomicki 2003). The best case complexity of the simple nested-loops
algorithm presented is of the order of O(n); n being the number of options in the
input. In the worst case, the complexity is of the order of O(n2).

Limitations. The main issue investigated by this approach is algebraic properties
of an operator added to relational algebra; however, the problem of identifying
the most preferred options is abstracted. Moreover, the goal is to identify
non-dominanted options, and there is no way to tell which is the optimal option
from this subset of options. Finally, even though any preference can be expressed
with a preference formula, including establishing a full total order among options,
it is not compact, which is relevant when preferences are provided by users. The
preference formula below, which expresses “I prefer white wine with fish, and red
wine with meat,” illustrates this issue.

(d , dt ,w ,wt) 'C (d0, dt0,w0,wt0) ≡ (d = d ′ ∧ dt = ‘fish ′ ∧ wt = ‘white ′

∧dt ′ = ‘fish ′ ∧ wt ′ = ‘red ′)

∨(d = d ′ ∧ dt = ‘meat ′ ∧ wt = ‘red ′

∧dt ′ = ‘meat ′ ∧ wt ′ = ‘white ′)

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 118

5.6.3
Best-Matches-Only Query Model

Kießling (Kießling 2002) defines preferences as strict partial orders and
proposes several preference constructors in order to support the accumulation of
single preferences into more complex ones. The author also provides a collection of
algebraic laws to manipulate such preference constructions, as well as defines how
to evaluate preference queries under the Best-Matches-Only (BMO) query model
and decomposition algorithms for complex preference queries.

Goals. A preference representation model, and an algebra.

Questions. Non-dominated outcomes.

Input. The input needed for querying non-dominated outcomes is a database
with available options and a set of preferences, built with preference constructors,
presented in Section 4.3.3. In summary, there are two classes of constructors: (i)
non-numerical base preferences, which include positive and negative preferences;
and (ii) numerical base preferences, which include preferences that specify
preferred numerical values of an attribute using, for example, intervals. A preference
term (i.e. a preference that is valid according to the provided constructors) can also
be composed of other preferences.

Interpretation. Not ceteris paribus.

How it works. The BMO result set contains only the best matches with respect
to the strict partial order of a preference P . It is a selection of unordered result of
options. All options t , t ′ ∈ BMO have equal or incomparable values regarding the
preference P .

A preference query is defined by σ[P](R) declaratively as follows:
σ[P](R) = {t ∈ R | t[A] ∈ max (PR)}. σ[P](R) evaluates P against a
database set R by retrieving all maximal values from PR. Preference queries
behave non-monotonically, in that they are sensitive (holistic) to the quality of a
collection of values. In addition, the following manipulations are provided in order
to evaluate preference queries:(i) preference hierarchies; (ii) decomposition of ‘+’
and and ‘$’-queries; (iii) decomposition of ‘&’-queries; and (iv) decomposition
of ‘⊕’-queries. These are accumulating and aggregating preference constructors
introduced in Section 4.3.3.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 119

Limitations. This approach is similar to the winnow operator (Section 5.6.2), and
the same limitations reported for it are applicable to the BMO query model.

5.6.4
Query Personalisation based on Preferences

The preference model proposed by Koutrika and Ioannidis
(Koutrika and Ioannidis 2006) is associated with preference selection algorithms,
generation of personalised answers and raking functions. These parts work together
in order to provide personalised results for a database search query, according
to the preferences of a specific user. Users have several preferences, and as
only some of them are relevant for a specific query, algorithms are proposed for
selecting preferences related to a query according to various criteria. Based on
a set of selected preferences and a query to be executed, the approach generates
personalised query and results, which are ranked based on the estimated user
interest.

Goals. A preference representation model, and algorithms.

Questions. Ordering queries, with a focus on the context of databases: how query
results are selected and ranked according to user preferences?

Input. The personalisation process has two main steps, and the output of the first
(preference selection) is used as input of the second (generation of personalised
results). Preference selection receives as input a set of user preferences, a query to
be executed, and a parameter K , which is a criterion for choice. The second step
requires the query to be executed, the set of preferences selected in the previous
step of query personalisation, and an explicit or implicit specification for L, which
indicates the number of preferences that should at least be satisfied. Preferences,
as detailed in Section 4.3.4, may be expressed for values of attributes, and for
relationships between entities, which indicate to what degree, if any, entities related
depend on each other.

Interpretation. Not ceteris paribus. The degree of interest given for each part of
attribute-value is independent of other attributes.

How it works. The first step of the query personalisation process deals with the
extraction of the top (most critical) K preferences related to a query. The selection
is based on a syntactic level, which means that a preference is related to a query, if
it maps to a path attached to the query graph. K is a criterion based on the degree

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 120

of criticality of preferences, which may specify for instance the top X preferences,
or preferences with a degree of criticality above a threshold c0.

With the execution of this first step, the top K preferences are integrated
into the user query and a personalised answer is generated. This answer should
be: (a) interesting to the user, in that it should satisfy (at least) L from the top K

preferences; (b) ranked based on the degree of interest; and (c) self-explanatory: for
each option returned, the preferences satisfied or not should be provided in order to
explain its selection and ranking.

Two approaches are described for the generation of personalised answers:
Simply Personalized Answers (SPA); and Progressive Personalized Answers (PPA).
The first integrates the top K preferences into the initial query and builds a new
one, which is executed. A personalised query is formulated as the union of a set of
sub-queries, each one mapping to one or more of the K preferences selected. The
last integrates preferences into sub-queries as in the SPA methodology. 1-to-many
absence preferences are integrated as if they were presence ones. Hence, two sets of
sub-queries are formed: a set of subqueries involving presence and 1-to-1 absence
preferences, Qs , and a set of subqueries involving 1-to-many absence preferences,
Qa . After the execution of each sub-query, a degree of interest dt is calculated for
each result using any ranking function for positive, negative or mixed combinations
of preferences. A class of ranking functions is provided, and we refer to reader to
the provided reference (Koutrika and Ioannidis 2006) for details. The list of options
returned, R, is ordered in decreasing degree of interest — those that do not achieve
a minimum degree of interest are discarded, and the remaining ones are given as the
result of the query.

Limitations. Besides the problem of relying on a quantitative preference model,
which are hard to elicit, the approach lets the ranking function as user-defined
function, which is one of the main issues of the decision making process. Finding a
numeric value that represents user preference for an option by combining individual
preferences is not trivial, and this is left as a variable point of the approach.

5.6.5
OWLPref

The declarative, domain-independent way of representing preferences in
OWL, namely OWLPref (Ayres and Furtado 2007), described in Section 4.4.1, has
an associated API, which maps concepts from the OWLPref to queries of the
SPARQL Preference (Siberski et al. 2006) query language. The authors support
this choice by arguing that SPARQL is currently the most important and used
language for querying semantic data, and also because they focused on the

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 121

ontology modelling, and not the inference engine for query execution, which is
provided by SPARQL. The idea is that each preference defined in OWLPref has a
defined mapping to a SPARQL preference statement, nevertheless this mapping is
not detailed (Ayres and Furtado 2007), and it is not straightforward — there are
kinds of preferences in OWLPref, e.g. AroundPreference, that do not have a
corresponding constructor in SPARQL Preference.

As the concrete preference reasoning is performed by SPARQL Preference
and the mapping process from OWLPref to it is not provided, we dedicate
the remainder of this section to detail this SPARQL extension that deals with
preferences. SPARQL Preference is extensively based on the winnow operator
(Chomicki 2003), which was described in Section 5.6.2.

Goals. A preference representation model (extension of a query language) and
formal definitions for each construction (semantics).

Questions. Non-dominated outcomes. More precisely:

1. Which are the solutions non-dominated by any other solutions? (Skyline
queries)

2. Which are the solutions that satisfy all the (hard and soft) constraints? If
none, by relaxing some or all soft constraints, which are best answers? (Soft
constraints)

Input. A database with available options and a SPARQL Preference query, which
is expressed in SPARQL with the PreferringClause extension, as shown below.

SolutionModifier ::= PreferringClause? OrderClause? LimitClause?

OffsetClause?

PreferringClause ::= ‘PREFERRING’ MultidimensionalPreference

MultidimensionalPreference ::= CascadedPreference

(‘AND’ CascadedPreference)*

CascadedPreference ::= AtomicPreference

(‘CASCADE’ AtomicPreference)*

AtomicPreference ::= BooleanPreference | HighestPreference |

LowestPreference

BooleanPreference::= Expression

HighestPreference::= ‘HIGHEST’ Expression

LowestPreference ::= ‘LOWEST’ Expression

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 122

Interpretation. Not ceteris paribus.

How it works. The SPARQL Preference syntax allows modelling two kinds of
preferences and two kinds of preference interaction, whose semantics is described
informally as follows. For a formal definition, we refer the reader to elsewhere
(Siberski et al. 2006).

– Boolean preferences. Boolean preferences are specified by a boolean
expression over solutions of an ontology defined in OWL DL
(Patel-Schneider et al. 2004). An option Si dominates an option Sj , if the
boolean expression is evaluated to true for Si , and false for Sj .

– Scoring preferences. This kind of preference is specified by an expression,
which evaluates to a number or a value in other SPARQL domains that have
total ordering. They express the preference for maximising or minimising
a certain value. Therefore, an option Si dominates Sj , if Si has a higher
(lower) value than Sj , when a HighestPreference (LowestPreference)
is defined.

– Multidimensional Preferences. This kind of preference interaction indicates
that two preferences must be addressed in a combined form. For any solutions
Si and Sj , the domination relation to combine independent preferences
'|C1AND C2| establishes that Si is dominated by Sj in neither C1 nor C2,
and that Si dominates Sj in either C1 or C2.

– Cascaded Preference. A cascaded preference indicates that a preference C1
has a higher priority than C2. So, for any options Si and Sj , the domination
relation to combine prioritised preferences '|C1CASCADE C2| states that either
Si dominates Sj according to C1, or they are incomparable according to C1,
and Si dominates Sj according to C2.

Based on the definition of dominance among options, a SPARQL Preference
query returns as result all non-dominated solutions (skyline queries). If a solution
Si dominates Sj according to a preference C1, but Sj dominates Si according to a
preference C2, both options are presented as the result of the query.

Limitations. The major problem of this approach occurs when a best option is
not found, according to stated preferences, which is a scenario that typically occurs,
because trade-off among conflicting preferences is very common. For instance, if
a user wants to buy a laptop and she states that she prefers to minimise price and
maximise performance. The typical case is that price increases as the performance
is better and, therefore, according to these preferences no laptop dominates another

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 123

(there is none, or only a few laptops, that are more expensive and have worse
performance), and consequently the approach cannot select among these laptops.

5.7
Preferences in Argumentation Frameworks

Based on the different presented works, it can be seen that reasoning
about preferences has been target of research in different areas of computer
science, including AI, databases, and semantic web. Recently, this research topic
has been investigated in the context of argumentation (Rahwan and Simari 2009),
which can be abstractly defined as the interaction of different arguments for
and against some conclusion. Amgoud et al. (Amgoud et al. 2008) discuss how
to make decisions through preference-based argumentation, but they basically
illustrate an application of the use of argumentation frameworks for deciding
between two options, and there is no explicit representation of preferences. As
a consequence, this work is not detailed in this section. Modgil (Modgil 2009)
extended the classical Dung’s argumentation theory (Dung 1995) in order to
incorporate arguments that claim preferences between other arguments, thus
incorporating metalevel-argumentation-based reasoning about preferences in the
object level. This proposed extension is thus detailed next.

Goals. A preference representation model — Extended Argumentation
Framework (EAF) — and semantics for identifying which are the sets of justified
arguments, i.e. the possible extensions of a given EAF.

Input. The required input of this approach is an Extended Argumentation
Framework (EAF), which is an extension of the argumentation framework proposed
by Dung (Dung 1995). An argumentation framework models arguments, abstracting
from the underlying logic that represents them, as a directed graph in which
arguments are represented as nodes and a defeat relation is represented as arrows.
This structure is then used for determining which arguments are the justified. EAFs
accommodate arguments that claim preferences between other arguments, i.e. they
explicit capture the notion of preferences in argumentation frameworks. Formally,
an EAF is defined as follows.

An Extended Argumentation Framework (EAF) is a tuple (Args ,R,D) such
that Args is a set of arguments, and:

– R ⊆ Args × Args ,

– D ⊆ Args × R,

– If (X , (Y ,Z)), (X ′, (Z ,Y)) ∈ D then (X ,X ′), (X ′,X) ∈ R.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 124

Interpretation. The preference relation proposed by Modgil (Modgil 2009)
addresses preferences over attacks, and not over (a pair) of outcomes, as it is the
case of the other works presented in this chapter. Therefore, the interpretation of
preference statements does not apply for this work.

How it works. The main extension of EAFs is the inclusion of a second attack
relation D that ranges from arguments X to attacks (Y ,Z) ∈ R, where R is the
standard binary attack relation in a Dung framework. If (X ,Y), (Y ,X) ∈ R, i.e.
arguments X and Y attack each other, and there is a (Z , (Y ,X)) ∈ D, we can say
that the attack (X ,Y) is preferred to (Y ,X). Additionally, preference arguments
expressing contradictory preferences attack each other, where these attacks can
then themselves be attacked by preference arguments. Preferences are not defined
by some externally given preference ordering, but are themselves claimed by
arguments.

As Dung’s argumentation framework was extended, it is essential to redefine
some concepts, e.g. when a set is conflict free and the acceptability of arguments
(we refer the reader to Dung’s work (Dung 1995) for these definitions), i.e. the
semantics underlying Dung’s framework should also be extended. Modgil starts by
defining when an argument A defeats another argument B , which are in S ⊆ Args .
It occurs when there is an (A,B) ∈ R and there is no argument C ∈ S , such that
(C , (A,B)) ∈ D. It is said that AdefeatS B . Conflict free set is intuitively defined
as follows. If A,B ∈ S (S ⊆ Args) and A attacks B , then S is conflict free only if
B does not attack A and there is a C that defence attacks the attack from A to B .
Finally, an argument A ∈ Args is acceptable with respect to S ⊆ Args , if and only
if for all B such that B defeatS A, there is a C ∈ S such that C defeatS B and there
is a reinstatement set for C defeatS B (reinstatement set of an argument X is a set
of arguments that defeats any argument that attacks X). With these definitions, the
admissible, preferred, complete and stable extensions of an EAFs are defined in the
same way as for Dung’s framework.

Limitations. This work (Modgil 2009) has a different purpose in comparison
of other works presented in this section, in that it proposes a general framework
for supporting decision making, which is not restricted to choosing a preferred
outcome from a set or a pair of outcomes. Therefore, it is not clear how the
typical preference statements (discussed in other sections) can be represented
and, with them, answering the typical questions related to preference reasoning.
In addition, complexity is not a topic discussed, because, with the definition
when an argument defeats another, any algorithm to identify extensions of
argumentation frameworks can be used. However, only certain kinds of extensions

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 125

of argumentation frameworks with particular graph structures can be identified in
polynomial time.

5.8
Discussion

In this section, we present a comparison of the presented approaches and
discuss relevant points related to them. As stated in the introduction, our goal is not
to rate these approaches to choose the best one, but to better understand them and
their relationship. We start by summarising the key characteristics of the approaches
for reasoning about preferences, which are depicted in Table 5.4. For each approach,
we show six different aspects, which are presented in respective columns.

– Area: indicates to which research area the approach is mainly related.

– Qualitative/Quantitative Representation and Reasoning: classifies the
representation and the reasoning method adopted by the approach as
quantitative or qualitative.3 Quantitative approaches represent preferences as
a number (or a function that produces a number), such as ratings that capture
the value of an option. Qualitative approaches, on the other hand, allow
comparing outcomes without specifically stating how much an outcome or
attribute value is preferred to another (“I prefer X to Y”) or qualitatively
evaluate them (“I like X very much”).4 Representation is related to how
preferences captured from users are represented. This representation can
be directly manipulated or can be transformed into another representation
to be used by the algorithm of the approach (reasoning). For instance, the
approach “Graphically Structured Value Function Compilation” adopts a
qualitative representation (CP-net or TCP-net) but converts it to a quantitative
representation (value function) for reasoning about the provided preferences.

– Goals: the goals shown in this table follow the classification introduced in
Section 5.1. The acronyms stand for: PRM — Preference Representation
Model; ALGO — Algorithms; ALGE — Algebra; SEM — Semantics; TRANS
— Transformation.

– Questions: the questions shown in this table follow the classification
introduced in Section 5.1. The acronyms stand for: OO — Outcome
Optimisation; DQ — Dominance Query; OQ — Ordering Query; NDO —
Non-dominated outcomes.

3Table 5.4 shows this term in italics in order to make a better visual distinction between the terms
qualitative and quantitative.

4This distinction between quantitative and qualitative preferences is widely adopted by
researchers on preference reasoning, even though an ordinal scale is still quantitative, but imprecise.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 126

– Input: provides a general classification for the required input of the approach.
It can be utility (or value) functions, a particular structure (e.g. CP-nets),
qualitative preference statements (we do not specify here of which kinds), or
quantitative preference statements (we do not specify here the domain used
to rate outcomes or attribute values).

– Interpretation: indicates how preference statements are interpreted by the
approach. There are three possible options: (i) CP (Ceteris Paribus) — when
the approach uses the “all else being equal” interpretation for statements;
(ii) NCP (Not Ceteris Paribus) — any other possible interpretation for
provided statements, e.g. in the approach “Learning Utility Functions with
SVM” statements have a marginal contribution for the utility function;
and (iii) N/A (Not Applicable) — this is only the case of “Preferences in
Argumentation Frameworks.” As in this approach arguments are abstract and
are not necessarily preference statements, it is not possible to state a specific
interpretation adopted by the approach.

By analysing these approaches, we can observe that they address three main
problems: (i) given a representation of qualitative statements, how can the typical
questions (outcome optimisation and dominance queries) related to reasoning about
preferences be answered? (ii) given a representation of qualitative statements, how
can it be transformed into a utility function? and (iii) how can we represent compact
utility functions? In problem (i), preferences are considered easier to elicit than
in quantitative approaches, as qualitative statements are considered closer to the
user vocabulary, but are difficult to be reasoned about. Problem (iii) is related to
approaches that rely on utility functions to reason about preferences, and with them
one can easily compare outcomes. However, eliciting utility functions is not a trivial
task, and for particular contexts, combinations of attribute values have utility values
that cannot be represented in a compact form, such as assuming utility independence
among attributes. Therefore, problem (ii) aims at obtaining the main benefits of
(i), i.e. easy representation, and (iii), i.e. easy reasoning, but the challenge now is
the translation of qualitative to quantitative statements. In addition, considering all
possible combinations of attribute values is a combinatorial problem, therefore it is
very important to take into account the complexity of reasoning about preferences.
We do not discuss complexity in this section, as the worst case takes exponential
time to be computed for almost all approaches, and some of them do not provide
complexity analysis.

All the approaches aim at helping users to make decisions of choosing from
among alternatives, and we can classify this aim into two categories: (a) helping
users to make decisions in situations that they are confused and it is hard for them
to compare outcomes and identify the best one; and (b) helping users to make

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 127

Ta
bl

e
5.

4:
C

om
pa

ris
on

am
on

g
A

pp
ro

ac
he

s
to

R
ea

so
n

ab
ou

tP
re

fe
re

nc
es

.
A

pp
ro

ac
h

A
re

a
Q

ua
nt

ita
tiv

e/
Q

ua
lit

at
iv

e
G

oa
ls

Q
ue

st
io

ns
In

pu
t

In
te

r-
R

ep
re

se
nt

at
io

n
R

ea
so

ni
ng

pr
et

at
io

n
C

U
IN

et
w

or
ks

(E
ng

el
an

d
W

el
lm

an
20

08
)

A
I

Q
ua

nt
ita

tiv
e

Q
ua

nt
ita

tiv
e

PR
M

,A
LG

O
O

O
U

til
ity

Fu
nc

tio
ns

N
C

P
U

til
ity

Fu
nc

tio
ns

fo
r

C
et

er
is

Pa
rib

us
Pr

ef
er

en
ce

s
(M

cG
ea

ch
ie

an
d

D
oy

le
20

08
)

A
I

Q
ua

lit
at

iv
e

Q
ua

nt
ita

tiv
e

TR
A

N
S

Q
ua

nt
ita

tiv
e

Pr
ef

er
en

ce
s

C
P

Le
ar

ni
ng

U
til

ity
Fu

nc
tio

ns
w

ith
SV

M
(D

om
sh

la
k

an
d

Jo
ac

hi
m

s
20

07
)

A
I

Q
ua

lit
at

iv
e

Q
ua

nt
ita

tiv
e

TR
A

N
S

Q
ua

nt
ita

tiv
e

Pr
ef

er
en

ce
s

N
C

P

Se
m

iri
ng

-b
as

ed
C

on
st

ra
in

tS
at

is
fa

ct
io

n
(B

is
ta

re
lli

et
al

.1
99

7)
C

on
st

ra
in

t
Pr

og
ra

m
m

in
g

Q
ua

nt
ita

tiv
e

Q
ua

nt
ita

tiv
e

PR
M

O
O

Q
ua

nt
ita

tiv
e

Pr
ef

er
en

ce
s

N
C

P

Pr
ef

er
en

ce
-b

as
ed

Pr
ob

le
m

So
lv

in
g

fo
r

C
on

st
ra

in
tS

at
is

fa
ct

io
n

(J
un

ke
r2

00
8)

C
on

st
ra

in
t

Pr
og

ra
m

m
in

g
Q

ua
lit

at
iv

e
Q

ua
nt

ita
tiv

e
PR

M
,A

LG
O

O
O

So
ft

C
on

st
ra

in
t

Sa
tis

fa
ct

io
n

Pr
ob

le
m

N
C

P

C
P-

ne
ts

(B
ou

til
ie

re
ta

l.
20

04
)

A
I

Q
ua

lit
at

iv
e

Q
ua

lit
at

iv
e

PR
M

,A
LG

O
O

O
,

D
Q

,
O

Q
C

P-
ne

t
C

P

C
om

bi
ni

ng
C

P-
ne

ts
an

d
So

ft
C

on
st

ra
in

ts
(D

om
sh

la
k

et
al

.2
00

3)
A

I
Q

ua
lit

at
iv

e
Q

ua
nt

ita
tiv

e
TR

A
N

S
D

Q
A

cy
cl

ic
C

P-
ne

t
C

P

U
C

P-
ne

tw
or

ks
(B

ou
til

ie
re

ta
l.

20
01

)
A

I
Q

ua
lit

at
iv

e
Q

ua
nt

ita
tiv

e
PR

M
,A

LG
O

O
O

,D
Q

U
C

P-
ne

t
C

P
TC

P-
ne

ts
(B

ra
fm

an
et

al
.2

00
6)

A
I

Q
ua

lit
at

iv
e

Q
ua

lit
at

iv
e

PR
M

,A
LG

O
O

O
,D

Q
TC

P-
ne

t
C

P
G

ra
ph

ic
al

ly
St

ru
ct

ur
ed

Va
lu

e
Fu

nc
tio

n
C

om
pi

la
tio

n
(B

ra
fm

an
an

d
D

om
sh

la
k

20
08

)
A

I
Q

ua
lit

at
iv

e
Q

ua
nt

ita
tiv

e
TR

A
N

S
C

P-
ne

to
rT

C
P-

ne
t

C
P

Sc
or

in
g

Fu
nc

tio
n

(A
gr

aw
al

an
d

W
im

m
er

s
20

00
)

D
at

ab
as

es
Q

ua
nt

ita
tiv

e
Q

ua
nt

ita
tiv

e
PR

M
,A

LG
O

O
Q

Q
ua

nt
ita

tiv
e

Pr
ef

er
en

ce
s

N
C

P

W
in

no
w

(C
ho

m
ic

ki
20

03
)

D
at

ab
as

es
Q

ua
lit

at
iv

e
Q

ua
lit

at
iv

e
PR

M
,A

LG
O

,
A

LG
E

N
D

O
Q

ua
lit

at
iv

e
Pr

ef
er

en
ce

s
N

C
P

B
M

O
Q

ue
ry

M
od

el
(K

ie
ßl

in
g

20
02

)
D

at
ab

as
es

Q
ua

lit
at

iv
e

Q
ua

lit
at

iv
e

PR
M

,A
LG

E
N

D
O

Q
ua

lit
at

iv
e

Pr
ef

er
en

ce
s

N
C

P
Q

ue
ry

Pe
rs

on
al

is
at

io
n

ba
se

d
on

Pr
ef

er
en

ce
s

(K
ou

tri
ka

an
d

Io
an

ni
di

s
20

06
)

D
at

ab
as

es
Q

ua
nt

ita
tiv

e
Q

ua
nt

ita
tiv

e
PR

M
,A

LG
O

O
Q

Q
ua

nt
ita

tiv
e

Pr
ef

er
en

ce
s

N
C

P

O
W

LP
re

f(
Ay

re
s

an
d

Fu
rta

do
20

07
)

SP
A

R
Q

L
Pr

ef
er

en
ce

(S
ib

er
sk

ie
ta

l.
20

06
)

Se
m

an
tic

W
eb

D
at

ab
as

es
Q

ua
lit

at
iv

e
Q

ua
lit

at
iv

e
PR

M
,S

EM
N

D
O

Q
ua

lit
at

iv
e

Pr
ef

er
en

ce
s

N
C

P

Pr
ef

er
en

ce
s

in
A

rg
um

en
ta

tio
n

Fr
am

ew
or

ks
(M

od
gi

l2
00

9)
A

rg
um

en
ta

tio
n

(A
I)

Q
ua

lit
at

iv
e

Q
ua

lit
at

iv
e

PR
M

,S
EM

Ex
te

nd
ed

A
rg

um
en

ta
tio

n
Fr

am
ew

or
k

N
/A

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 128

decisions in situations that they know (or have an idea of) what is best, but the set of
possible outcomes is so large that this task becomes time-consuming and requires
too much effort of the user. Even though, in the end, the problem to be solved is
the same in these two categories, they differ in a very relevant aspect: engagement
of users in providing information about their preferences. A typical scenario for
(a) is a company manager that has to decide an action to be taken, and this action
has a crucial impact in the profit of the company. In addition, many attributes with
uncertain values are associated with this action. Therefore, this manager is willing to
spend a significant amount of time to precisely specify preferences among options
and related attributes. And a typical scenario for (b) is web users that make searches
with keywords and receive in return a large amount of results, which they have to
filter and rank.

MAUT has emerged with the goal described in (a), i.e. helping
a confused decision-maker to evaluate complex alternatives when their
outcomes are uncertain and have several relevant attributes. Therefore,
adopting utility functions to represent preference is reasonable (but still
difficult), as users are willing to spend time in eliciting them, i.e. when the
consequences of making a wrong decision compensates the time and effort
spent in eliciting (and building new) preferences. Even though there is work
(McGeachie and Doyle 2008, Domshlak and Joachims 2007) that obtains utility
functions from qualitative statements, it still has limitations reported in the
approaches presented in this chapter.

Query-based approaches address the scenario described in (b), and their
aim is not to totally automate the decision making process, but to provide a
reduced amount of results to users, possibly ranked. Considering preferences in
queries allows users to be more restrictive when providing constraints for queries
and still obtaining results that contain useful information — if the query is over
constrained it is likely that to return no result. Therefore, this family of approaches
aim at identifying non-dominated outcomes, and those dominated are discarded as
they have no advantage with respect to the non-dominated outcomes. Choosing
among non-dominated outcomes is a task that is still left for the user, but some
heuristics, such as considering lexicographic importance among attributes, can be
used to rank them, and give guidance to the users. There are two approaches
(Agrawal and Wimmers 2000, Koutrika and Ioannidis 2006) that are quantitative,
but for defining a total order of outcomes requires making assumptions, such as
independence among attributes. Moreover, expecting quantitative values from users
may require sophisticated elicitation processes.

In order to deal with over constrained problems, CSPs have been extended to
incorporate constraints that can remain unsatisfied, with a no-satisfaction penalty

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 129

associated with them. These approaches have the objective to minimise the
penalty of unsatisfied constraints (or maximising preferences), and other objectives,
e.g. minimise price, cannot be specified. In addition, trade-off situations among
conflicting objectives cannot be modelled either. SCSPs can help in solving a
significant class of problems, e.g. meeting scheduling problems, but there are
other kind of problems that cannot be addressed, such as those that include
multi-objectives and trade-off.

Finally, there are the graphically-structured approaches, which structure
qualitative preference statements in a graph and adopt the ceteris paribus
interpretation. For graphs with certain properties, these approaches can be
efficiently used to define optimal outcomes and, with the proposed techniques
(Domshlak et al. 2003), can also answer dominance queries efficiently. However,
two outcomes can be compared only when “all else is equal,” and in practice it
is often not the case. When other attribute values differ, outcomes are considered
incomparable and no decision can be made regarding dominance. Moreover, these
approaches can deal only with discrete attribute domains, and this is also a very
restrictive assumption. Furthermore, trade-off is only captured in TCP-nets, but a
lexicographic approach is adopted, unless a fully specified CIT is provided.

5.9
Final Considerations

In this chapter, we presented a systematic review of research work that aims at
helping and automating decision makers to make choices taking into account their
preferences. We were not limited to a specific research area, and included works
in the context of decision theory, artificial intelligence, constraint programming,
databases and semantic web. Each of these works was presented following an
evaluation framework, which facilitates their comparison. Our review allows
understanding not only each individual work but also, with our discussion, how
they are related, which kind of issues they typically address and their limitations.

This study shows that a main issue related to reasoning about preferences is
dealing with trade-off situations. Both utility functions and (conditional) qualitative
statements can capture them, but it is difficult to express this kind of preferences
in a compact form. For instance, if additive utility independence is not identified
among attributes, each possible outcome will have a particular utility that cannot be
derived from individual attribute values. And, in the case of qualitative statements,
each full assignment for attributes must be compared. Moreover, users typically do
not provide these kind of preferences, because they are constructed just when users
face a concrete decision making situation (Lichtenstein and Slovic 2006).

Moreover, many of the presented approaches are able to reason only about a

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

Chapter 5. A Systematic Review of Reasoning about Preferences 130

restricted set of preferences, thus constraining users while expressing preferences.
Dealing with heterogeneous types of preferences, as those of our preference
metamodel, which include natural-language-like expressions, is not a trivial task.
In next chapter, we present a decision making technique to address these issues of
existing work.

DBD
PUC-Rio - Certificação Digital Nº 0912914/CA

