
6
Description of the Tool Support

In this section, we sustain our approach with a tool developed, as a web

application, which supports the identification, classification, sharing, search,

recommendation, retrieval and subscription of agent components.

When the application begins, the agent platform starts with all agents that

will be running in the application, like is shown in the screenshot of Figure 13.

Figure 13: Agent Platform.

Figure 14 shows a screenshot of the home page with the existing categories

in the repository and the agents associated with these categories.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 74

Figure 14: Home Page.

There are only two agent components classified in the category

Communication. The union of their tags can be seen in the list of tags. The

visualization of each tag depends on its weight in the system, that influences in

the style of the font. If we select some tags, a filtered search is carried out pointing

out which agents are assigned by these tags.

For example, for the specific category Communication, we click the tags

Agent Conversation and Messaging, the list of agents associated with both tags,

will be Chat Android and Chat Standard. But if Android is included to the filter,

the result will be just Chat Android since Chat Standard was not registered with

this tag. Figure 15 illustrates the current situation.

If we click a link that refers to a specific agent, we can see its

characteristics. An example is depicted in Figure 16, which shows the description

of the Book Buyer Agent, already aforementioned.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 75

Figure 15: Tag Filtered Search

Figure 16: Agent's Description.

After a user logins in the system, he can register agent components how is

illustrated in Figure 17.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 76

Figure 17: Registering an Agent.

After the agent is registered in the repository, the next step is to add its

interfaces and to know with which agents it interacts and how. Figure 18 shows

how add the interfaces to a specific agent. The list of the agent participants was

cut, not listing all the possible agents, to help with the visualization of the

screenshot.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 77

Figure 18: Adding Interfaces to the Agent.

The user can establish relationships among agent components, how it is

illustrated in Figure 19. The list of the other agents was cut, not listing all the

agents already stored in the repository, to help with the visualization of the

screenshot.

To retrieve agents according to certain characteristics, the user can use a

filtered search how is depicted in Figure 20.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 78

Figure 19: Adding Relationships to the Agent.

Figure 20: Other Search Methods.

A user can subscribe to some categories of agents to be updated about how

it is happening in the current categories, as Figure 21 shows. There is a

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 79

description of each category and a description of each agent belonged to its

category for users to be guided by. The available feeders are My Yahoo and

Google, but the user can choose other applications, now built them into email

clients and browsers.

Figure 21: Subscription to Categories of Agents.

6.1.
Implementation

The data collection of the repository was initially populated with the

examples of software agents available in the web sites of JADE, Jadex and Jason

[26] platforms, and also those developed by the Software Engineering Laboratory5

(LES initials in Portuguese) at PUC-Rio6. All of these agents were implemented

for different application domains.

The current version of the taxonomies consists of concepts of the agent

components that populate the repository and the results of an online survey of

5 http://www.les.inf.puc-rio.br/wiki/index.php/P%C3%A1gina_principal
6 http://www.puc-rio.br/index.html

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 80

agent-oriented developers conducted at LES at PUC-Rio. The survey is showed in

the appendix B.

The repository was implemented using modern technologies. To develop all

the software agents in the system we adopted JADE framework, version 4.2,

implemented in Java language. JADE simplifies the implementation while ensure

interoperability of multi-agent systems due to it is compliance with the FIPA

specifications, it means it not only assists the FIPA list of speech acts (label with

the acts an agent can perform such as informing, asking and requesting), but also

provides a middleware infrastructure that facilitates the agent communication

(message exchange).

Since RDF is a W3C recommendation for representing metadata about web

resources, we define the ontology that models the agents and the taxonomies to

represent agent’ behaviors and application domains, on RDF. These semantic

concepts were developed with the version 4.1 of the free and open source

ontology editor and knowledge base framework Protégé [64]. The Protégé

platform, based on Java, provides a plug-and-play environment that makes it a

flexible for rapid prototyping and application development. Ontologies in Protégé

can be exported into a variety of formats including RDF, OWL, and XML Schema

[83]. An important benefit of the ontology and taxonomies is that they are

scalable, it means, new information can be added in them without affect the

current versions.

The corpus of the agents’ description was indexed by with Apache Lucene

[48], version 3.6.1. Lucene is a free and open source powerful library for

information retrieval with full text indexing and searching capabilities. It uses

synonyms defined by WordNet [82], a large lexical database (a combination of a

dictionary and thesaurus) for the English language. This database essentially

represents word forms interchangeable lexically and semantically (such as

synonyms, antonyms and homonyms) and its applications include search

advertising, query expansion, document classification, and solving other

languages processing problems.

We also used SPARQL [75] language to build unambiguous queries that

search over the ontology and taxonomies. SPARQL was designed to express

queries across diverse data sources, whether the data is natively stored as RDF or

viewed as RDF via middleware. It is capable of querying graph patterns along

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

Chapter 6 Description of the Tool Support 81

with their conjunctions and disjunctions, and also supports extensible value

testing and constraining queries by source RDF graphs. To integrate SPARQL

queries to the web application we employed Jena [27], version 2.6.4, an open

source framework for building semantic web applications in Java. Jena includes

an ontology API to handle OWL and RDF ontologies, a rule-based inference

engine for reasoning with RDF and OWL data sources, a query engine compliant

with SPARQL specification and a serve to allow RDF data to be published to

other applications using a variety of protocols including SPARQL.

Finally, to develop the web application we used Play! Framework [60],

version 1.2.4, which makes easy to build web applications with Java and Scala

[70]. Play! follows the model-view-controller architectural pattern and is based on

a lightweight, stateless, and features predictable and minimal resource

consumption for highly-scalable application.

DBD
PUC-Rio - Certificação Digital Nº 1012641/CA

