PUC-RIo - Certificacdo Digital N° 0812626/CA

3

Supporting Heterogeneous Configuration Knowledge of
Software Product Lines with Domain Knowledge Modeling
Languages

Using object-oriented frameworks as bases for building software prod-
uct lines might bring several benefits. The main advantage of frameworks
is their built-in functionalities. Instead of understanding the implementation
of the framework, developers should only keep focus on the ways of config-
uring and customizing concepts. The framework programming interface is
the responsible for providing the set of supported concepts and constrain-
ing the means of instantiating them in the source code. However, under-
standing, verifying, and evolving, framework-based source code are challenge
(Antkiewicz and Czarnecki 2006). As a consequence, this might increase com-
plexity and cost of adopting framework-based product lines following an ex-
tractive approach (see Chapter 2).

In software engineering, modeling is a well recognized technique for
dealing with complexity. A model is a representation of a system that is useful
for investigating the properties of entities, phenomena, or process that are part
of the system. In some case, one model allows for answering questions about
the system or predicting future outcomes. Models come in different flavours. A
UML model, a Java program, a XML document, an entity-relationship schema
are all examples of models. Every model needs to be expressed using a formal
or informal meta-modeling language. A meta-modeling language is a set of
models that can be expressed using a collection of concepts and their mutual
relations within a certain domain. For example, a XML Schema defines all
elements and grammatical rules governing the order of elements that the XML
document content must satisfy.

In this Chapter, we present a domain-specific model-supported engineer-
ing of software product lines that intends to deal with the complexity and
cost of adopting framework-based product lines following an extractive ap-
proach. It is based on domain knowledge modeling languages, which formal-
izes framework’s programming interface and concepts. We propose using eCore

as abstract syntax definition formalism. We choose to define the structure of

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 39

framework’s programming interface using eCore because it is convenient for ex-
pressing well-formedness rules based on multiplicities and parameterized types,
which is an important aspect of DKMLs. eCore is a metamodeling notation
equivalent to the Essential Meta-Object Facility (eMOF) profile. The Meta-
Object Facility is a Object Management Group (OMG) standard for expressing
metamodels of modeling languages. It is heavily used in industry today, and
most of modeling tools rely on MOF as metamodeling language.

In the following sections we explore the details of engineering software
product lines with DKMLs. We define the DMKL concept and its properties
in Section 3.2. Then, we discuss how feature visualization occurs with DKMLs
through examples in Section 3.3. As DKMLs must capture the knowledge
about feature assignment to concept instances, in Section 3.4 we make model
well-formedness checking feature sensitive. We define some well-formedness
rules that guide the developer on creating models that always conform to
the abstract syntax of the DKMLs, that is, models that always meets the
framework’s programming interface. Once the models are well-formed, we use
a constraint satisfaction programming model to ensure that every feature

assignment are respecting both feature model and DKMLs semantics.

3.1
Domain-specific model-supported Engineering of Framework-based
Software Product Lines

Software product line is a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a par-
ticular market segment or mission and that are developed from a common
set of core assets in a prescribed way (Clements and Northrop 2001). Soft-
ware product line engineering (Clements and Northrop 2001) is a paradigm
for constructing, customizing and delivering products from a set of reusable
artefacts. We consider in this work feature-oriented software product line en-
gineering (Apel and Késtner 2009, Czarnecki and Eisenecker 2000). The pro-
cess of engineering product lines comprise four general phases according to
(Pohl et al. 2005, Czarnecki and Eisenecker 2000): (i) domain analysis; (ii) do-
main design; (iii) domain implementation; (iv) product configuration.

The domain analysis is the phase of defining the product line
scope in terms of features. A feature (Czarnecki and Eisenecker 2000,
Apel and Késtner 2009) is a system property that is relevant to any stake-
holder (analysts, architects, managers, developers). Therefore, the feature
concept pervades all of other phases. There are several classifications for

features (Czarnecki and Eisenecker 2000). More common classification clas-

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 40

sifies features as: mandatory, optional, alternative, and or-feature. Feature
cardinality, groups and attributes represent the variability. The cardinality
determines the number of times the feature should occur in one product.
The group expresses choices among features. Finally, attributes represent a
numeric or textual value of a feature. Features are hierarchically organized into
feature diagrams, where each successively deeper level in the tree corresponds
to a more fine-grained configuration option. Feature models also provide ad-
ditional specifications of interaction among features. Interactions are defined
as parent-children or cross-tree relationships. Interaction captures constraints
that must be held when selecting a set of features during the product con-
figuration phase. Feature are organized in a feature model, which are used
to distinguish the software product line commonalities from product-specific
features (optional/alternatives)

In the design and implementation phases, the developers typically create
a set of reusable artifacts and the configuration knowledge. The configuration
knowledge relates features and reusable artifacts. The configuration knowl-
edge might exist in different flavours, but in general it specifies which arte-
facts implements combination of features. More important, the configuration
knowledge also establishes the valid relation among the reusable artefacts im-
plementing features. Based on the feature model and configuration knowledge,
products can be derived in most of cases automatically. Due to the configura-
tion knowledge, the developers only needs to specify the set of features desired
for the intended product.

To address the heterogeneous configuration knowledge problem we aban-
don annotation-based and general-purpose model-based techniques and in-
stead use domain knowledge modeling languages to represent the configuration
knowledge. We propose a development model that is a extension of traditional
code-oriented techniques. In this development model, during the design and
implementation phases, developer still identifying features in existing source
code, however now they have an option of explicitly identify feature as domain
concepts. For that, they instantiate a domain-specific model by creating visual
representations of existing concept instances. The model describes the product
line from the framework perspective and instantiation constraints. To assign
features to concept instances, a developer selects the respective elements in
domain knowledge models and expresses this directly in the models.

The domain-specific models are expressed using DKMLs. The metamodel
of an DKML is needed for the correct creation of model elements and the as-
signment of features to concept instances. Unlike in model-driven engineering,

domain-specific models are auxiliary development artifacts, which enables easy

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 41

adoption in existing projects. Therefore, it can be considered as an unified tech-
nique to product line development. Domain-specific models and source code
coexist and build on each other instead of opposing each other. As a conse-
quence, domain knowledge models can be (semi-)automatically projected from
the existing code and as benefits they provide: (i) a visual representation of
the software product line from the framework perspective; (ii) easy naviga-
tion from model to source code instantiating concepts; and (iii) checking the
conformance of configuration knowledge against the framework’s programming
interface.

In addition to feature model and domain-knowledge models, the imple-
mentation model is employed to be a visual representation of source code, in
terms of programming languages concepts such as packages, classes, files. This
model also represents fine-grained references to fragments inside source code
artifacts. Finally, the configuration model organizes the assignments among
features and elements from the domain knowledge models and/or implemen-

tation model.

3.2
DKML: Definition and Properties

A DKML is a language designed for specifying the configuration knowl-
edge of a single domain. Indeed, heterogeneous programming interfaces are
the basis of many modern software development principals: service oriented
architecture or component-based development. Heterogenous API integration
is role in the construction of new web-based software applications, for exam-
ple to support interwind data and functional code from different sources (e.g.,
only communities, on demand video systems, so on). More generally, building
any medium or even small size enterprise software application usually involves
managing a plethora of programming interfaces. Therefore, in complex soft-
ware product lines, multiple DKMLs might be necessary to cope with different
concerns (e.g., service integration, business process, user interface).

Each DKML consists of an abstract syntax complemented with two
dimensional relations: the first dimension corresponds to associations and
references between DKML concepts; the second dimension expresses code
mappings, that is, they hold references to source code artifacts instantiating
concepts. The first dimension — concept’s associations and references — captures
the framework’s programming interface in terms of concept decomposition. The
second dimension — code mappings — expresses the instantiation constraints,
that is, the steps that developers must fulfil when they are instantiating

concepts.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software

Product Lines with Domain Knowledge Modeling Languages 42
EPackage EClassifer
name: String |& I name:String
nsURI: String eClassifiers

7

EClass EDatatype
abstract: boolean

eSuperTypes

eReferenceType 'y
eAttributeType

eStructuralFeatures

EStructuralFeature
name: String
lowerBound: int
upperBound: int

*

EReference eOpposite EAttribute

L containment: boolean 0.1 —

eOpposite | 0..1

Figure 3.1: Ecore language structure.

The abstract syntax defines a decomposition of framework-provided con-
cepts into associations and references between class abstraction, and re-
semble the Ecore language structure (see Figure 3.1). The Ecore syntax en-
compasses the following elements: EPackage, EClass; EAttribute; EReference;
EDataType. Every Ecore model must contain a root element representing the
entire model. The model has children elements that are represented as EPack-
ages, whose children are EClasses. Children of classes are EAttributes or ERef-
erences. Therefore, the DKMLs are rendered hierarchically with a focus on the
concept decomposition and towards to showing relations among concepts. An
important property of DKMLs is the support for expressing optionality, that
is, it provides means to express where a concept instance can be optionality
removed from a domain knowledge model. This mechanism guarantees that
no product can invalidate the DKML and consequently the framework’s pro-
gramming interface.

In the DKML abstract syntax class represents elements with a name
attribute and zero or more references. References represent one end of an
association between two classes. It can be a simple containment — association
— or a parametrized containment — reference — to the class to which it points.
Each reference has a cardinality in the form <min,max>, which is an interval
specifying how many times a concept instance can or must be created. Note

that a name attribute is essential for defining concept instances in DKMLs.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 43

Spring Domain Knowledge Modeling Language

[DKML] Spring
<1-*> [reference] context : Context
[class] Context : Selectable
<1-*> [reference] bean : Bean
[class] Bean : Selectable
<1-1> [reference] interface : BeanInterface
<1-*> [reference] implementation: BeanImplementation
[class] BeanInterface
[class] BeanImplementation : Selectable
<1-*> [reference] constructorInjection : ConstructorInjection
<1-*> [reference] propertyInjection : PropertyInjection
[class] ConstructorInjection : Selectable
<1-1> [reference] constructorParameter : ConstructorParameter
<1-1> [reference<Bean>] bean : Bean
[class] ConstructorParameter
[class] PropertyInjection : Selectable
<1-1> [reference] propertyMethod : PropertyMethod
<1-1> [reference<Bean>] bean : Bean
[class] PropertyMethod

Figure 3.2: Exemplar Spring Domain Knowledge Modeling Language.

Instead, any other attribute is required. Attributes do not take part in the
configuration knowledge. The abstract syntax also defines the selectable,
which serves to give configuration foundation for DKMLs. While the class
determines the universe of concepts accountable to have those instances present
in every model created from a DKML, the selectable takes place to define
which concepts may have those instances optionally excluded. Therefore,
according to DKML semantics, only instances of selectable concepts are
candidate to be assigned to features in the configuration knowledge.

Figure 3.2 illustrates a DKML for Spring framework. This language
expresses the decomposition of Spring-provided concept into classes and
references. The Context element is a class. It holds zero or more associ-
ations to Bean, which is also a class. The Bean in turn holds one and only
one reference to BeanInterface class and one or more references to BeanImple-
mentation class. The BeanlInterface means the interface that is implemented
by its Bean. The BeanImplementation represents the code implementing the
services of its associated Bean. Note that in this case Beans might provide
more than one choice of implementation for one defined interface, although
one and only one will be part of a product. The BeanImplementation holds

references to class elements meaning the different variants of dependency

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 44

Spring Domain Knowledge Model

DKM Spring
Context : application-context
Bean : WeatherService
BeanInterface : WeatherService
BeanImplementation : WeatherServiceImpl
ConstructorInjection : CityDAO
ConstructorParameter : cityDao
Reference<Bean : CityDAO>
ConstructorInjection : WeatherUserServiceDAO
ConstructorParameter : weatherUserServiceDAO
Reference<Bean : WeatherUserServiceDAO>
Bean : CityDAO (...)

Bean : WeatherUserServiceDAO (...)

Figure 3.3: Exemplar Spring Domain Knowledge Model.

injection provided by Spring. The Constructorinjection class represents the
constructor-based variant (see Section 2.1.1). It contains a reference to one
and only one ConstructArgs class representing to which constructor param-
eter the concept instance refers. The Propertylnjection class represents the
setter-based variant (see Section 2.1.1). It contains one and only one reference
to another class called PropertyMethod, which represents the methods defined
in the code customization used by Spring to dependency injection.

A DKM conforming to this abstract syntax describes Spring-
provided concept instance. In Figure 3.3 is defined a concrete Context
— applicationContext — comprising series of Beans — WeatherService,
CityDAO and WeatherUserServiceDAO. The Bean WeatherService, for ex-
ample, holds a reference to a concrete Beanlnterface called WeatherService.
It also encompasses a reference to a concrete BeanImplementation called
WeatherServiceImpl. The BeanImplementation in turn defines two concrete
ConstructorInjection — CityDAO and WeatherUserServiceDAO. Each Con-
structionInjection element defines its respective constructor argument in the
code customization of the Bean WeatherService. Finally, each Constructor-
Ingection — CityDAQ and WeatherUserServiceDAD — also maintains a reference
for injectable Bean, CityDAQ and WeatherUserService, respectively.

In this context, the abstract syntax captures the concepts as classes
and encodes the framework’s programming interface through references and
the configuration semantic as selectabel. For example, the Spring DKML
ensures that every Bean instance explicitly defines its interface and at least

one implementation. Note that the Beanlnterface class cannot be assigned

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 45

Spring Domain Knowledge Modeling Language
[DKML] Spring

<1-*> [reference] context : Context

[class] Context : Selectable
<1l-*> [reference] bean : Bean
<1-1> [reference<File>] context : File
[class] Bean : Selectable
<1-1> [reference] interface : BeanInterface
<1-*> [reference] implementation: BeanImplementation
[class] BeanInterface
<1-1> [reference<Class>] interface : Class
[class] BeanImplementation : Selectable
<1-*> [reference] constructorInjection : ConstructorInjection
<1-*> [reference] propertyInjection : PropertyInjection
<1-1> [reference<Fragment>] configuration : Fragment
<1-1> [reference<Class>] implementation : Class
[class] ConstructorInjection : Selectable
<1-1> [reference] constructorParameter : ConstructorParameter
<1-1> [reference<Bean>] bean : Bean
<1-1> [reference<Fragment>] constructorArgs : Fragment
[class] ConstructorParameter
<1-1> [reference<Fragment>] parameter : Fragment
[class] PropertyInjection : Selectable
<1-1> [reference] propertyMethod : PropertyMethod
<1-1> [reference<Bean>] bean : Bean
<1-1> [reference<Fragment>] property : Fragment
[class] PropertyMethod
<1-1> [reference<Fragment>] setProperty : Fragment

<1-1> [reference<Fragment>] getProperty : Fragment

Figure 3.4: Spring Domain Knowledge Modeling Language with references.

to features. This obeys the Spring instantiation constraint that asks for an
interface for every Bean. Rather, the Bean is defined as selectable, meaning
that a Bean instance can be defined and exclude in any product.

The mapping of the abstract syntax to source code artifacts defines how
concepts map to code configuration and customization. As concept instance
code might consist of multiple artifacts, mappings of a single Class might
correspond code scattered across the product line source code. Class might
also represent semantics facts about the framework. In this case, Class might
not correspond to any code, and consequently not expresses any code mapping.
Code mappings are parametrized references in the abstract syntax structure
holding references to one element from the implementation model. That is,

each mapping has a predefined type. It must refer to Classes, Files, Folders,

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 46

Packages, or Fragments. That way, DKMLs are not fixed to a particular artifact
type and provides support for a new set of artifact types. For example, the
implementation model can be modified to visually represents C++ artifacts,
such as, header files. Code mappings in the abstract syntax must be defined
as references having cardinality of one and only one — <1-1>, that is, every
class instance directly corresponds to a source code element.

In Figure 3.4, mappings are attached to class as parametrized
references. For example, the mapping context attached to the Context class
specifies that instances of such concept correspond to Files. The mapping class
attached to BeanImplementation class specifies that its instances correspond
to Classes. More fine-grained mappings can also be specified via Fragments.
For example, the mapping constructorArgs attached to ConstructorInjection
class specifies that instance such concept correspond to Fragments, in this
case, the construction-arg tag defined in an XML application context files
(see Section 2.1.1). Note that semantic mapping that specifies the actual cor-
respondence cannot be defined directly as classes and references. As we
will show in next Chapter, the abstract syntax needs to be enriched with some
metadata about code patterns in order to support the actual correspondence
of classes and references to source code elements.

Figure 3.5 presents mapping definitions for the DKML from Fig-
ure 3.3. The instance application-context of the Context class directly

corresponds to File applicatonContext-userservices.xml. An instance

Spring Domain Knowledge Model

DKM Spring
Context : application-context
Reference<File : applicationContext-userservices.xml>
Bean : WeatherService
BeanInterface : WeatherService
BeanImplementation : WeatherServiceImpl
Reference<Fragment : <bean id="WeatherService(..)>
Reference<Class : WeatherUserServicelImpl.java>
ConstructorInjection : CityDAO
ConstructorParameter : cityDao
Reference<Bean : CityDAO>
ConstructorInjection : WeatherUserServiceDAO
ConstructorParameter : weatherUserServiceDAO
Reference<Bean : WeatherUserServiceDAO>
Bean : CityDAO (...)

Bean : WeatherUserServiceDAO (...)

Figure 3.5: Spring Domain Knowledge Model with references.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 47

of BeanImplementation class corresponds exactly to one code config-
uration defined by the concrete Fragment <bean id="WeatherService"
class="...WeatherServiceImpl>" and to one code customization defined by
the File WeatherUserServicelImpl.java. Note that code mappings strictly
express the steps that developers must fulfill to properly instantiate the cor-
respondent framework-provided concept. Therefore, as we will discuss in the
next sections, they directly define how concepts realize their features, further
improving the visualization of features code, in addition to enable automated

product derivation, consistency checking and guided development.

33
Visualizing Features Code

Program comprehension has become an important concern of software
development. Especially in the case of software product lines building via a
extractive /reactive fashion, the source code is constantly modified and grow
larger, which means that a great deal of effort is spent on performing evolution
tasks. Specially, understating software product line source code often requires
the analysis of individual feature codes apart from the base code, as well as
their interactions. In Chapter 2, we criticized code-oriented techniques for their
suboptimal support for visualizing feature code in framework-based software
product lines, missing direct traceability based o framework-provided concepts
and tendency to obfuscate and scatter feature code along the entire base code.

In previous section we integrated DKMLs into a traditional product
line engineering (Apel and Késtner 2009, Czarnecki and Eisenecker 2000) to
encapsulate and document the configuration knowledge using domain-specific
concepts and their instantiation constraints. In this section, through the
previously presented illustrative examples, we show how DKMLs can enhance
the visualization of feature code. We distinguish two means of visualizing

feature code:

— Visualizing on domain knowledge models abstracts the source code and
support developers to comprehend the configuration knowledge based on

framework-provided concepts and their associations.

— Visualizing on source code is the basic way to understand assignments
of features to source code, since its elements are shown annotated with
the according feature. Visualizing on source code mimics the annotation-

based techniques (see Section 2.2.1).

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 48

Visualizing on domain knowledge models Observe in the examples that
one of the key facilities of DKMLs is that developers can find what concept in-
stances belong to a feature without being distracted by other concerns. Domain
knowledge models show a subtree of the concept hierarchic and hide distracting
details that are not relevant for understating feature implementation (e.g XML
tags, Java code). For example, the mappings aggregated to BeanImplementa-
tion WeatherServiceImpl in Figure 3.5 correspond to source code elements
spread over two different files — applicationContext-userservices.xml and
WeatherServiceImpl. java. This way, developers are conditioned to directly
navigate to source code keeping focus only on the desired concept instances
without getting lost. Clearly, a scattered, core-oriented technique does not
support this kind of reasoning even when traceability is partially supported by
views or general-purpose models. Furthermore, DKMLs maintain mappings to
source code elements instantiating concepts, which might be physically located
in different places.

Developers can also quickly search for all uses of a certain concept in-
stance. That is, to figure out the impact of feature assignments first they do not
need to waste time investigating all the source code since the relevant parts
are abstracted as domain knowledge model elements. Moreover, technically,
developers can automatically search on domain knowledge models to discover
when a feature assignment impact any other concept instance. For example
the Bean WeatherService from Figure 3.5 defines via standard cross-element
references that depend on the Beans CityDAO and WeatherUserServiceDAO.
Therefore, as we detail in next Chapter, based on such cross references de-
velopers can inspect models by searching for all places where a certain model
element is referred or having the end of a reference marked when they select an
association to inspect. As a direct benefit, even when the configuration knowl-
edge contains complex constraints it still easy for developers to understand
the impact of features over concepts instances once this information is clear in
domain knowledge models.

DKMLs also encode the knowledge about code customization using con-
cept instances declared into code configuration. From the developers point of
view, it becomes particle to observe the impact of features assignment to con-
cept instances since DKMLs avoid the need to jump from code configuration
to customization and back again. More detail about how this information is
encoded in DKMLs abstract syntax will shown in next Chapter. Another class
of feature visualization considers context sensitive instantiation of concept in-
stances. With DKMLs the knowledge about framework programming interface

is explicitly represented, which further specifies whether each concept instance

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 49

Spring Domain Knowledge Model

DKM Spring
Context : application-context

Bean : EventDAO
BeanInterface : EventDAO
BeanImplementation : EventDAOHibernate

Bean : EventDAO
BeanInterface : EventDAO
BeanImplementation : AcademicEventDAOHibernate

Bean : EventDAO
BeanInterface : EventDAO

BeanImplementation : TravelEventDAOHibernate

Figure 3.6: Spring Domain Knowledge Modeling - Bean EventDAO.

will be available or not. Therefore, DKMLs make it possible to developers know
whether a feature assignment is missing by accident or on purpose.

Now, developers do not need to examine in detail unnecessary code or
even reading the framework documentation in order to discover the full range
of concepts and their intrinsic instantiation rules, which in most of cases
is cumbersome and expensive. Furthermore, engineering product lines with
DKMLs also ensure that developer will not forget to observe an important part
of source code. It is essentially important because programmers tend to spend
more time understanding the code than working with it. A quicker recognition
of features tends to significantly improve the speed of software product line
comprehension. Consequently, the discussed benefits result in less development
effort and chances of introducing errors.

It is also worth to note that the domain knowledge models emulate some
sort of modularity. A developer can trace a feature or feature expression from
the feature model to its implementation summarized in a specific subtree.
Nevertheless, selecting the necessary context information is an important de-
sign decision when visualizing feature code. Without context, developers can-
not properly understand the abstractions or source code elements in isolation.
For example, in Figure 3.6, the Spring-DKM encompasses tree Beans called
EventDAQO, where each one is associated with a different BeanImplementation
model element (e.g., EventDAO, AcademicEventDAQO, TravelEvent). A view of
configuration knowledge just relating Beans and features would not be helpful
in understanding the feature code. As the context information is insufficient,
developers have to look into other models or at least the source code to under-
stand which concept instance actually is implementing the feature. Therefore,

we choose to leave the whole structure (e.g., instances of the parent concepts)

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 50

that affects the feature code as context. As additional information, we also
leave code mappings to directly indicate the physical source code elements
implementing features.

However, when the context is too large, the benefit of a feature code
visualization technique might become irrelevant. Therefore, it is also possible,
as we show in next Chapter, to provide a visualization on single or multiple
features. Visualization on feature (Késtner et al. 2008) includes only concept
instances assigned to of a given feature. For example, X and Y are included
for the Feature X, but not the K and W, since it does not contain any feature
code, or not the U and A that are assigned to the Feature K.

Concluding, with models representing the knowledge about domain-
specific concepts, we solve the problems outlined in Chapter 2. First it
improves feature code visualization by putting in evidence which source code
elements belong to a feature as framework concepts, at the same time that
ensure code configuration and customization assigned to the same feature.
Moreover, as DKMLs results in structured models, they also facilitate the
navigability through association between concept instances — both parent-
child and references — in addition to support the implementation of more
advanced functionalists such as mark occurrences of model elements. DKMLs
also benefit developers with support for visualizing the impact assigning feature
to associated concept instances. Finally, as DKMLs encodes the framework’s
programming interface and supports the specification of additional constraints,
it also support developers reasoning about concept configuration overloading
in scenarios in which the constraints that enforce concept instantiation are
context sensitive. More details about the mentioned benefits will be presented

next.

Visualizing on source code Domain knowledge model is not exactly the
appropriated notation that developers can rely on for visualizing fine-grained
variability. Intentionally, they are not designed to represent assignments of
features to source code elements that are not instantiating abstractions. Indeed,
we observed that framework-based software product lines not only implement
features as concept instances but also present fine-grained variability that are
directly related to source code statements (see Chapter 2). Moreover, feature
assignment on source code might benefit developers with further support for
keeping track of the according feature belonging to the annotated code element
when performing some maintenance tasks. Visualizing on source code can show
how multiple features interact in the same file much more directly.

To overcome this, we decide to provide support for visualizing features

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 51

directly on source code. The idea is to virtually project both fine-grained and
coarse-grained variability in the source code realizing them. We use the term
project because actually annotations are not physically stored in the source,
but derived from assignment of features to model elements. There are two ways

in which an annotation is created:

1. if the investigated file contains fragments assigned to features in the
implementation model, an annotation is created. Note that creating such
annotations is trivial because elements of the type fragment maintain a
direct reference to source code elements. Therefore, we just annotate the

specified location in the source code with the associated feature.

2. if the investigated file contains fragments aggregated to domain knowl-
edge model element assigned to features, an annotation is also cre-
ated. However, projecting features assigned to domain model elements
on source code might poses some challenges. Especially for nested el-
ements in the hierarchic, in some cases, it might be compelling to
annotate their related code fragments with features assigned to some
of their parent. For example, observe in Figure 3.5 that assigning
the Bean WeatherService to a feature does not guarantee that an
annotation will be created to Fragment <bean id="WeatherService"
class="...WeatherServiceImpl>" aggregated to its Beanlmplementa-
tion WeatherServiceImpl. Observe that in other cases it might pollute
the source code, for example annotating every nested element with its
parents feature. For example, it does not make sense annotating every
Bean declared inside a Context file with the feature assigned to it. In such
case, instead of improve feature code visualization it might complicate

developers on properly comprehend the source code.

We implemented one solution for the second case, however the presented
case remains open to explore. In our implementation, we search for two different
patterns. First, we recursively search in the parent hierarchy for the first
occurrence of a model element assigned to a feature, and that is not associated
to any element from the implementation model. We assume that children of
supporting elements are their actual implementation. For example, this pattern
is enough to guarantee that every Fragment aggregated to BeanImplementation
will be annotated with its parent feature, in case, the feature assigned to
instances of Bean. Second, we recursively search in the parent hierarchic
for occurrences of model elements assigned to features until that element is
associated to an implementation model element that is not container of the

current Fragment. Usually, the Fragment represents the code customization

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 52

of related concept instance. For example, suppose the developer assigning the
ConstructionInjection CityDAO to a feature X. In such case, the Fragment
CityDAO cityDAO will be annotated with the feature X, which make sense.

3.4
Consistency Checking and Guidance

Checking consistency of framework-based product lines early, that is,
during configuration knowledge editing time, is one of the primary applications
of DKMLs. Consistency checking is essential because errors on product lines
may appear only in some products with specific composition of features
(Késtner and Apel 2008). Due to the exponential number of products in
software product lines, deriving, separately compiling every variant in isolation
is usually infeasible. Even worse, the types of errors that we observe in
framework-based software product lines can only be detected at running time
(see Chapter 2), that is, at framework interpretation time. Therefore, some
errors can still undetected until the product perform a certain execution path.

In this section we address first structural errors (Section 3.4.1). As
stated in Section 3.4.1, structural errors occur when a product is ill-formed
regarding the right ways of decomposing framework-provided concepts. For
example, in Jadex, Plans represent the agent’s means to act in its environment.
Agents in general act in response to occurring Fvents or Goals. To indicate
in what cases a Plan is applicable the Trigger concept is used (see Figure
2.2). So, every Plan instance must define a Trigger. In this case, developers
cannot assign Triggers to optional/alternative features, once those might
cause a structural error when removed. After that, we propose a certain
level of guidance for ensuring that developers always follow the stipulated
framework’s instantiation constraints when creating the domain knowledge
models (Section 3.4.2). For example, prevents that Bean instances define their
code configuration but not the code customization. Finally, we use a constraint
satisfaction programming formulation of the configuration knowledge to ensure
that every feature assignment are respecting both feature model and DKMLs

semantics.

3.4.1
Disciplined Feature Assignment

Disciplined feature assignment is the most basic solution that prevents
errors in software product lines (Késtner et al. 2009). In case, they are assign-
ments to domain knowledge model elements that do not introduce structural

errors when those model elements are deleted. As discussed in Chapter 2, the

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 53

code-oriented techniques are prone to structural errors. They only support
arbitrary assignment of source code elements to features and checking them
taking into account the framework’s programming interface is not possible.

The reason that code-oriented techniques fail to prevent structural er-
rors is that they only consider the source code structure. Thus we still
able to remove any element from the source, since it does not intro-
duce any syntax or type error (Késtner and Apel 2008, Késtner et al. 2009,
Czarnecki and Pietroszek 2006). Even when they support expressing high-level
constraints, those are general-propose and still not considering the right way of
configuring the source code according to framework’s programming interface.

As DKMLs encode the structure defined by framework’s programming
interfaces, they specify which concepts may appear, where and how they are
related. But it needs an insight into which assignments are disciplined and
which are not. To determine this we rely on the selectable abstraction, as
presented in Section 3.2. From this information, we can infer which elements are
mandatory — not defined as selectable — and optional in the DMKL abstract
syntax. Instances of selectable elements are those which can be assigned
to features safely. For example, if we allow only assignments of features to
Plans in Jadex we guarantee that removing the related code fragment will
not introduce any syntax error regarding the Jadex programming interface.
Instead, developers cannot assign the Trigger concept defined inside a Plan
code configuration. As mentioned, according to Jadex instantiation constraints
every Plan must expresses an Trigger.

Therefore, initially two configuration rules provide the foun-
dational mechanisms for guaranteeing consistency, as also stated in
(Késtner et al. 2009):

— Optional rule. Only model elements defined as optional according to
framework’s instantiation constraints are allowed to be associated to

features and consequently removed from the common code.

— Hierarchical rule. This kind of rule propagates the feature of the parent
to its children. For example, if an Bean is removed, all children are

removed as well.

It is worth to note that disciplined assignments can only guarantee correct
assignments for already correct DKMs and does consider references between
model elements. Next, we present how DKMLs might guide developers on
the correct construction of DKMs and after that they are used to check the

consistency of the entire product line.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 54

3.4.2
Guidance

Only preventing errors regarding the right ways in which framework-
provided concepts may be decomposed is not sufficient, specially because in
order to analyze the DKMLs structure and to reason about feature assignment,
already the models must not contain structural errors. However, developers
often are not aware of the entire set of framework-provided concepts and
instantiation constraints, and the creation of domain models is also subject
to errors in general.

Therefore, in addition to be highly desirable the storage of information
about the proper way of instantiating concepts in DKMLs abstract syntax, it is
also fundamental to use this information for guiding inexperienced developers
during configuration knowledge specification. In this context, we encode a
guidance model as editing operations. The concept of edition operations has
already suggested as a facility to guide developer toward a consistent model
(Xiong et al. 2009). The idea is that regardless its abstract syntax, models
can be represented as a sequence of operations performed to construct it
rather than by the set of elements it contains. We only consider one kind
of inconsistency: structural. Structural consistency constraints, in this case,
define the existence of elements and association that should hold between them.
These rules can be compared with well-formedness rules and syntactic rules.

One instance of a DKML is a domain knowledge model that mimics the
instantiated framework-provided concepts on the source code, and captures the
set of all possible configurations of the software product line. These elements
must follow the rules given in the DKML abstract syntax. Basically, the
classes in the abstract syntax limit the possible elements, and references
limit the possible association between model elements. The cardinality and
other constraints again limit the number of possible elements or impose the
creation of new ones. The validity of models, therefore, can be analyzed
by considering the validity of each element and the existence or absence of
association to other elements. The lower bound in the cardinality determines
whether there must be an element at the end of a reference or not. If the
lower bound is zero, the existence of reference is optional, otherwise it is
mandatory. The upper bound determines the maximum number of certain kind
of elements in one reference. Considering this information, simple editing
operations are offered by computing the semantics of DKMLs abstract syntax,

in accordance with the following rules:

— (ForAll) - <1-x> - The concept instance C; can incorporate at least one

reference for each type of concept C; in the set {C;...C),}.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 55

Spring Domain Knowledge Model

DKM Spring

OContext : application-context @

DKM Spring
Context : application-context

o Bean : WeatherService @

@ File : applicationContext-userservice.xml

DKM Spring
Context : application-context
Bean : WeatherService
@ BeanInterface : WeatherService
o BeanImplementation : WeatherServiceImpl @

File : applicationContext-userservice.xml

DKM Spring
Context : application-context
Bean : WeatherService
BeanInterface : WeatherService
Class : WeatherService.java
BeanImplementation : WeatherServiceImpl
ConstructorInjection : CityDAO
ConstructorParameter : cityDao

Reference<Bean : CityDAO>

0000 @

Class : WeatherService.java
File : applicationContext-userservice.xml <:>
Bean : CityDAO (...)

Figure 3.7: Detailed creation of Spring-DKM following the guidance rules.

— (Mandatory) - <1-1> - The concept instance C; must incorporate one

reference for each type of concept C; in the set {C}...C,, }.

— (Optional) - <0-*> - The concept instance C; can incorporate zero or

more references for each type of concept C; in the set {C;...C,,}.

For example, supposing the creation of Spring-DKM as exemplified in
Figure 3.7. At the first moment, a developer creates the Context application-
Context. As the association of Context and Bean has a cardinality <1-*> the
developer is informed about the need of creating a instance of one Bean, in this
case suppose that the developer decided to create the Bean WeatherService.
Once the WeatherService is created, the developer is asked for creating one
and only one instance of the Beanlnterface. Observe that she is not allowed
to create more than one instance of such concept. At the same time, she is

also asked for creating at least one instance of the BeanImplementation. In

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 56

this case, she created the WeatherServceImpl. Instance of Beanlmplementa-
tion, as defined in Spring documentation, can provide one, but only one, type
of dependency injection. Note that it is not an essential concept. In the case
of the WeatherService, it was defined two ConstructionInjection to Beans,
WeatherUserService and CityDAO. Observing only the WeatherUserService
we can see that the developer must define: (i) to which existing Bean the
WeatherUserService refers to — WeatherUserServiceDAQ; (ii) one instance
of ConstructorParameter — WeatherUserService.

Moreover, as all mappings to source code are also encoded in the abstract
syntax, the developers must follow the same rules. In this case, for example,
when they create the Beanlnterface WeatherService they are notified about
the need of defining a reference to one class of the implementation model due to
the <1-1> cardinality of such association. Therefore, the steps that developers
must follow when defining concept instances is clearly defined in the DKMLs
abstract syntax and can be checked for consistency.

Therefore, based on this previous scenario, we defined two more config-
uration rules that complement the foundational mechanisms for guaranteeing

consistency:

— Realization rule. When a model element is removed, all associated
source code elements must be removed as well. For example, when an
BeanImplementation is removed also the XML fragment declaring its
existence and Java class implementing its behavior must be removed as

well.

— Referential rule. A referential rule constrains the presence of two
elements. For example, if a instance of a Bean concept is chosen to be
removed from the common code, all related Beans instances must be

removed as well.

3.4.3
Consistency Checking

In second part of the analysis, we use a global verification to check con-
sistency of feature assignment to both spaces: domain knowledge and source
code. Here is sufficient for each assignment to check whether the they are sat-
isfied together. We have opted for a consistency approach based on Constraint
Satisfaction Problem (CSP) (Tsang 1993) since it affords us with great ex-
pressiveness and feedback. We can express local and global well-formedness
constraints in a uniform way, which allows constraint spanning multiple lan-

guages (e.g., feature model, configuration models, DKMs). Feedback messages

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 57

also can be derived from counter example representing a specific product that
will not work properly. The feedback message can be presented to the developer

for further debugging.

Constraint Model Definition In order to define the constraint satisfaction
programming model used to automatically infer a configuration of the source
code from a feature model configuration, we begin by precisely defining the
entities that compose the models and the relationships between elements
from feature, DKMLs and implementation models. After that, we describe an
interpretation of these entities and relationships as variables and constraints,
respectively, of a constraint satisfaction problem.

The following definitions establish the building blocks of the constraint

satisfaction problem.

— Feature Model. Feature model has a diversity of forms. They can have
attributes, cardinalities and various types of constraints (e.g., includes,
excludes). We abstract from these different representations and, instead,
directly operate on the basic semantics. The feature model is assumed

as a set of features F.

— Implementation Model. The implementation model is a set of model

elements F;.

— Domain Knowledge Model. One domain knowledge model is defined
as a set of model elements F4 and a set of relations Ry C Ey x E4 and
a set of relations R; C E4 x Ej. Relations 74 € R4 are distinguished
between referential and hierarchical. Relations r; € R; are assumed as

realization relations.

— Configuration Model. The configuration model is a set of relations
Ro C Fg x E4U Ep, where Ffg is the set of all valid boolean expressions
b that can be built from the set of F.

Variables The model of features represents the actual configuration of the
product line. It encompasses a set of variables V' where each variable v € V
represents a feature f € F. The domain of each variable v is the same, 0
or 1 (i.e., false or true, respectively). It means that, when v represents a
selected feature, its domain value is defined as 1 (i.e., true); on the other
hand its domain value is defined as 0 (i.e., false). The constraint solver finds
an evaluation (i.e., instance) of other two sets of variables A and I based on

the values defined in the model of features.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 58

The set A represents the elements from E4. The domain of each variable
a € Ais defined as 0 or 1. At the end of the constraint problem evaluation, if a. ,
represents an element e, that must be part of the derived domain knowledge
model, its value is set to 1. Otherwise, if m., represents an element that must
be removed from this model configuration, its value is set to 0. Finally, the
variables ¢ € I represent elements from the set £; and in the same way they
assume 0 or 1. Similarly, if 7., represents an element e; that must be present in
the product configuration, its domain value is defined as 1, if not, its domain

value is defined as 0.

Constraints FEach assignment from feature to solution space element is a
bi-implication constraint constructed from the set of relation Ro, where the
positive evaluation of the boolean feature expression b implies in the derivation
of the associated Selectable element e € E4UE; — and vice-versa. Observe that
elements e € /4 U E are represented in the constraint programming model as
variables w € M U A.

b=1)< (w=1)

The relations between elements from the solution space models become
constraints among variables a € A and ¢ € I. We distinguish three kinds of

constraints:

— Realization. Each relation from domain knowledge models to implemen-
tation model is interpreted as a bi-implication constraint, where the
derivation of the element e4 € FE4 implies in the derivation of the el-

ement e; € E; — and vice-versa.

(me, =1) & (ae, = 1)

— Hierarchical. Each hierarchical relation is an implication constraint,
where the derivation of the child element ¢4 € E4 implies the positive

derivation of the parent element py € F 4.

(mCA = 1) = (mPA = 1)

— Referential. Each referential relation is an implication constraint, where
the derivation of the element e, € F 4 implies the positive derivation of

the referred element r4 € E4.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

PUC-RIo - Certificacdo Digital N° 0812626/CA

Chapter 3. Supporting Heterogeneous Configuration Knowledge of Software
Product Lines with Domain Knowledge Modeling Languages 59

(e, =1) = (m,, = 1)

Constraint Satisfaction Problem Solving and Product Derivation To
solve the constraint satisfaction problem, the constraint solver is invoked
utilizing its propagation functionality. The goal is to find an assignment to all
variables in A and I that do not violate any constraint. After the evaluation
of the constraint problem, the values of all variables in A and I serve as input
to decide which source code elements must be selected /removed to derive the
product.

The constraint programming model also describes the set of all valid
composition of source code elements. Since it is described as constraints over
the variables in F', A and I, a valid evaluation of these variables always
yields a valid product regarding the rules defined in the domain knowledge
models. However, when any constraint violation is found we can assume
the configuration knowledge as inconsistent and that a derivation, which
conforms with the feature selection and respect all constraints imposed by
the configuration model and domain knowledge models, does not exist. In this

case, the developer needs to revisit the configuration knowledge specification.

3.5
Summary

In this Chapter we presented the key ideas behind engineering framework-
based software product lines with domain-knowledge modeling languages.
DKMLs express framework’s programming interface and can be used for
defining models that describe how features are assigned to concept instances
in the scope of an DKML. We showed the definitions and properties for
modeling framework’s programming interface using DMKLs. We presented
how DKMLs improve feature code visualization by putting in evidence which
source code elements belong to a feature as framework concepts. At the
same time, we maintain all benefits of traditional code-oriented techniques.
Our technique can express fine-grained variability, provides easy to adopt
modeling language, is uniform for many languages artifacts and frameworks.
Finally, we presented how framework’s programming interfaces encoded in
DKMLs support consistency checking and guided configuration knowledge
specification. In next Chapter, we present the realization of such presented

ideas in a tool called GenArch™.

DBD
PUC-Rio - Certificação Digital Nº 0812626/CA

