
4.
Domain Engineering of Ubiquitous Applications

“One significant aspect of this emerging mode of computing is the constantly changing

execution environment… Similarly, the computer user may move from one location to

another, joining and leaving groups of people, and frequently interacting with computers

while in changing social situations”.

Bill N. Schilit, Norman Adams, and Roy Want, “Context-

Aware Computing Applications,” IEEE Workshop on

Mobile Computing Systems and Applications, 1994.

In this Chapter, we describe the technological support we developed to make our

approach viable as well as our reuse-oriented support sets – i.e. building blocks.

Figure 4.1 shows the transversal domains of Ubiquitous Computing and

Intentional MAS. Based on these domains, we developed the building blocks in

the Domain Engineering of Ubiquitous Applications.

Figure 4.1 - Reusable Building Blocks for intentional ubiquitous applications

We focus our efforts on the Development for Reuse based on the main

ubiquitous concerns/issues and the intentional MAS paradigm. Since 2007, we

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 63

have been developing ubiquitous applications in different cognitive domains (e.g.

e-commerce and dental clinic) (Serrano et al. 2011a; Serrano and Lucena 2011a;

Serrano and Lucena 2011b; Serrano and Lucena 2011c; Serrano and Lucena

2010a; Serrano and Lucena 2010b; Serrano et al. 2009; Serrano et al. 2008). We

started the development of these applications by using behavioral agents.

However, we tried to improve the cognitive capacity of the agents in ever-

changing environments by using the intentionality abstraction from the Goal-

Orientation paradigm. Therefore, we developed some of those applications

centered on intentional MAS. According to our experimental work and the

literature, there are some advantages in developing intentional-agents, such as the

BDI-based agents presented in our reuse-oriented building blocks as well as other

goal-based agents. According to (Dignum and Conte 1997), the new goals

formation is a fundamental feature of autonomous entities, “existing formal

theories of agents are found essentially inadequate to account for the formation of

new goals and intentions of the agent”. The agent’s cognition capacity and the

rationale significantly increase using the distributed intentionality (Yu 1997) as a

goal-orientation-centered approach. The agents based their decisions on reasoning

techniques and the user satisfaction, being aware of the ubiquitous context. In this

scenario, the context awareness is centered on the agents’ beliefs, desires and

intentions as interpretation of the human-mental states. In addition, some common

problems are avoided by using BDI-based agents, for example: it is really simple

to deal with the agents’ adaptability according to different ever-changing

environments, by dynamically updating the agents’ knowledge bases, their beliefs,

their goals’ formation and their sequence of tasks to achieve the desired goals.

Strengthening our argumentation, we can define the world “intention” as the state

of one's mind at the time one carries out an action.

Our experimental work helped us to compose an adequate view of the

main ubiquitous concerns/issues and also to provide a suitable approach centered

on the development for reuse to systematically and incrementally construct

intentional-MAS-driven ubiquitous applications. Among different concerns/issues

that our reuse-oriented approach deals with, we have: (i) the intentional modeling

of ubiquitous applications; (ii) the non-functional requirements (NFRs) modeling

by considering their interdependencies and operationalizations; (iii) the

integration of heterogeneous devices as well as the integration of the MAS

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 64

platform composed of containers that represent distributed environments in

ubiquitous contexts; (iv) the intentional agents’ reasoning by considering the

goals’ formation, ever-changing situations (e.g. users with different preferences,

intrinsic mobility and devices in constant evolution), quality criteria (e.g. security,

response time, performance and others), privacy & personalization balancing,

invisibility & transparency balancing, and agents’ inter-operability and

communication need; (v) the interface construction at runtime by adapting

contents (e.g. images, videos, files and texts) and different Graphical User

Interface (GUI) elements according to the devices features and other ubiquitous

profiles information; (vi) the ubiquitous specific issues (e.g. content adaptability

and context awareness); and (vii) the ubiquitous profiles manipulation (e.g. store,

retrieving and update) “on the fly.”

Thus, we zoom in the Intentional Modeling Building Block focused on the

i* Framework; the NFR Catalogue Building Block based on the NFR Framework;

the Integration Building Block centered on the JADE-LEAP Platform; the

Intentional Agents’ Reasoning Building Block based on the JADEX Framework

and the Fuzzy-Logic Library; the Dynamic Interface Construction Building Block

based on Ontologies; the Ubiquity Issues Building Blocks focused on Ubiquity-

Based Frameworks; and the Dynamic Database Building Block centered on the

Type-Square Architecture, the WURFL Repository and the Persistence

Framework. The use of frameworks, libraries, patterns and models to support the

software development process has grown in the last few years. Contributing to

this field, the proposed approach – as mentioned – also uses those resources to

promote the reuse in ubiquitous contexts. Finally, Section 4.8 summarizes the

Chapter by presenting some concluding remarks.

4.1.
Intentional Modeling Building Block

We propose the use of the intentionality abstraction to model ubiquitous

applications based on the stakeholders’ beliefs, desires and intentions in order to

improve the specification/documentation/modeling of the human practical

reasoning (Bratman 1999) in ever-changing contexts.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 65

The i* Framework (or iStar, which means Distributed Intentionality) is an

initiative of the University of Toronto (UofT) in order to model applications

centered on the Goal-Oriented Requirements Engineering (GORE) (Mylopoulos

2008). It proposes an agent-oriented approach to requirements modeling focused

on the intentional agents’ properties, such as goals, beliefs, abilities and

commitments. Therefore, the i* Framework offers two models: (i) the Strategic-

Dependency (SD) model; and (ii) the Strategic-Rationale (SR) model. The former

support is used to model the dependencies between actors/actors, actors/agents

and agents/agents by, for example, giving rise to opportunities and vulnerabilities.

The latter support models tasks as alternative actions to achieve the actor’s and/or

the agent’s goals by assessing her/his/its strategic positioning in a specific context.

The intentionality-based modeling is particularly interesting for dealing

with non-functional requirements (e.g. dependability, accountability and security),

called softgoals in the i*. The i* models offer resources to establish the impacts

between the alternatives (i.e. i* tasks to achieve functional requirements – i.e. i*

goals) and the softgoals of the application. Figure 4.2 – designed by using the

OME tool (OME 2011) (i.e. a specific tool to model applications according to the

i* Framework) – shows a simple situation, in which the i* abstractions are used to

model two alternative actions (i.e. Perform the Patient’s Registration in a Dental

Clinic With a Privacy-Aware Application and Perform the Patient’s Registration

in a Dental Clinic Without a Privacy-Aware Application) to achieve the patient’s

goal – Patient’s Registration Be Performed. The dependencies between the

Patient actor and the Attendant agent are also presented.

Figure 4.2 - Example of i* model based on the dental clinic domain

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 66

Moreover, the model also represents the contributions between the

alternatives and the softgoals – e.g. Perform the Patient’s Registration in a Dental

Clinic with a Privacy-Aware Application positively contributes (some +) to the

Dependability and Perform the Patient’s Registration in a Dental Clinic without a

Privacy-Aware Application negatively contributes (some -) to the Dependability.

Furthermore, we represent the impacts of the softgoals Dependability,

Accountability and Security to the main softgoal Privacy – e.g. all of these

softgoals positively contribute (some +) to Privacy.

Based on the intentionality abstraction and the i* Framework models, we

propose a building block – called Intentional Modeling Building Block (Figure

4.3) – to model ubiquitous applications by considering the intrinsic ever-changing

contexts they are embedded; the heterogeneity of the users’ preferences, the

necessity to deal with different quality criteria (i.e. non-functional requirements),

and other ubiquitous issues. Therefore, this building block is mainly composed of

the i* Framework conceptual model; the association between abstractions of

intentional ubiquitous applications and i* abstractions, which is briefly illustrated

in Figure 4.4; and different ubiquitous design patterns modeled by using

intentionality. These ubiquitous design patterns were first proposed by (Landay

and Borriello 2003) and some of them modeled with the i* abstractions by our

research group. The main idea is to facilitate the model reuse as well as the

proliferation of good practices in the incremental and systematic development of

ubiquitous applications. Figure 4.5 briefly shows the Find-a-Friend ubiquitous

design pattern by considering its background, solution and some more details.

Figure 4.3 - Intentional Modeling Building Block packages

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 67

Figure 4.4 - Association between abstractions of intentional-MAS-driven ubiquitous applications and

i* abstractions
1

Figure 4.5 - Find-a-Friend ubiquitous design pattern (adapted from (Landay and Borriello 2003))

1 Some associations were omitted in order to facilitate the visualization.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 68

4.2.
NFR Catalogue Building Block

In order to specifically deal with non-functional requirements commonly found in

ubiquitous applications, we propose a catalogue centered on the NFR Framework.

The NFR Framework constitutes a Goal-Oriented Requirements Engineering

(hereafter GORE) approach to capturing NFRs in the domain of interest, and

defining their interdependencies and operationalizations. Nowadays, there is much

interest in this kind of approach within the Requirements Engineering community

as goal-oriented elaboration processes end where traditional ones (e.g. RUP and

other object-oriented approaches) begin. Thus, the NFR Framework focuses on

activities that precede the requirements specification, and results in models that

can be used during the design stage to drive and validate architectural decisions.

We chose the NFR Framework because it allows for capturing alternatives

for different NFRs; dealing with conflicts, tradeoffs and priorities; evaluating the

decisions impact centered on NFRs that commonly influence the success of

ubiquitous applications; and systematically refining the models through the

contributions specification for all alternatives on the NFRs. The NFR Framework

offers graphs – Softgoals Interdependency Graphs (SIGs) – for NFRs modeling.

SIGs represent NFRs as nodes; their refinements using AND/OR decompositions

links; their positive and negative interdependencies as some+(help), some-(hurt),

some++(make), some--(break) contribution links; their operationalizations as leaf

nodes; and claims as annotations in natural language. Figure 4.6 illustrates a very

simple SIG that models the Software Ubiquity, by considering its decompositions

– AND links – in Software Pervasiveness, Software Mobility, and User

Satisfaction; an interdependency between Software Mobility and User

Satisfaction: Mobility[Software] positively impacts (help) on Satisfaction[User];

an operationalization: “Mobile Agents using special capabilities” help

Mobility[Software]; and a claim “The software delegates the complex device’s

configuration activity to the user” hurt the decomposition between

Ubiquity[Software] and Satisfaction[User]. It is also possible to analyze the SIG

using propagation rules (e.g. if Pervasiveness[Software] AND Mobility[Software]

AND Satisfaction[User] are satisficed (√), then Ubiquity[Software] is satisficed).

It means “satisfied in a certain degree” (Yu 1997). The NFR Framework applied

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 69

a qualitative approach to the evaluation of the NFRs represented in the SIG.

Therefore, the impact of the decisions is qualitatively propagated through the

graph by using propagation labels (i.e. from denied (χ) to satisficed (√)) to

determine how well a chosen target system satisfices its NFRs.

Figure 4.6 - Example of NFR SIG notation

The NFR Catalogue Building Block – Figure 4.7 – is composed of

different Ubiquity-Based Softgoals Interdependency Graphs to both: (i) provide

models reuse by extending and/or instantiating them from the proposed SIGs

Knowledge Base; and (ii) guide the software engineers in the non-functional

requirements elicitation, analysis and operationalization.

Figure 4.7 - NFR Catalogue Building Block packages

In order to develop the catalogue, we concentrated our efforts on three

activities: NFRs elicitation; NFRs decomposition; and NFRs interdependencies

identification. These activities started from ubiquitous scenarios and the quality

criteria identification obtained in the State-Of-The-Art, experts consultation, and

during our experimental research. The elicited NFRs were evaluated with user

participation. Those activities were iteratively performed, which allowed us to

incrementally construct our knowledge base through the following phases:

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 70

(i) State-Of-The-Art Investigation - We started our work investigating the

literature to compile an adequate initial understanding of ubiquitous concerns

focusing on Ubiquitous Computing (e.g. (Weiser 1991; Weiser 1993; Abowd et

al. 1998)) and experimentation-oriented papers (e.g. (Ravindran et al. 2002; Estrin

et al. 2002; Scholtz and Consolvo 2004)). This investigation, conducted from

different viewpoints (e.g. requirements and software engineers), allowed us to

obtain a first version of the catalogue. It consisted of top-level ubiquitous

requirements as well as their direct refinements. Specifically, the catalogue

included three top-level NFRs (Ubiquity, Pervasiveness, and Mobility), and four

refinement NFRs (Content Adaptability, Context Awareness, Device

Heterogeneity, Software Processes Complexity Invisibility);

(ii) Experimental Research - Based on the initial version, we performed our first

experimental research at the PUC-Rio Software Engineering Laboratory. Our

main goal consisted of applying the first version of the catalogue’s reusable

models to the systematic development of ubiquitous applications. We obtained

some interdependencies, and operationalizations for each specified NFR.

Moreover, the research suggested some refinements for the first proposal, such as:

we incorporated User Satisfaction as a seminal ubiquitous issue; and also other

important NFRs as well as their refinements. Notable among them were Usability,

Content/Service Accessibility, and Ubiquitous Profiles Awareness. As a result, the

evolved catalogue constituted of 21 NFRs;

(iii) Iterative Evolution - During the last four years, from 2007 to 2010, we

performed several iterations to evolve the catalogue. Basically, the catalogue’s

iterative evolution involved: (a) literature investigation; (b) catalogue content

exploration; (c) catalogue content identification, considering ever-changing

contexts, simulated by our case studies (e.g. some of them are presented in the

beginning of this Chapter); (d) application of the catalogue on these case studies;

(e) incremental refinement of the catalogue according to the newly discovered

ubiquitous concerns; (f) comparative evaluation of refined and reusable models

obtained from the catalogue to validate the refinements; and (g) catalogue

evolution based on successful refinements. Our approach included developing

other support sets to guide the design of ubiquitous applications, by dealing

systematically with key ubiquitous issues. Basically, during this phase we

iteratively created novel catalogue content, while eliminating replications,

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 71

redundancies and ambiguous specifications. We also combined NFRs in one SIG

to obtain a structured reusable model, while at other times we refined one NFR in

different SIGs to improve our reusable models; and

(iv) Evolution and Maintenance – Throughout the process, collaborators could

submit new SIGs and review the catalogue. This phase includes novel

experimental research to incrementally refine the actual reusable models version,

considering the use of our reusable models in different Ubiquitous Computing

groups’ projects. The catalogue’s latest version consists of almost 700

interdependent softgoals (Table 4.1).

Table 4.1 - Summary of the main ubiquitous NFRs issues addressed by our models

NFR Meaning First Identification Priority Top Down View Category

Software Ubiquity … Phase 1 Extremely High 1

Software Pervasiveness … Phase 1 Extremely High 1

Software Mobility … Phase 1 Extremely High 1

Content Adaptability … Phase 1 Very High 2

Context Awareness … Phase 1 Very High 2

Device Heterogeneity … Phase 1 Very High 2

Process Complexity Invisibility … Phase 1 Very High 2

Software Distribution … Phase 1 Very High 2

User Satisfaction … Phase 2 Extremely High 1

Software Usability … Phase 2 High 3

Content/Service Accessibility … Phase 2 Very High 2

Ubiquitous Profiles Awareness … Phase 2 Very High 2

User Privacy … Phase 3 – First Iteration High 3

Software Traceability … Phase 3 – First Iteration Very High 2

Software Recoverability … Phase 3 – First Iteration Very High 2

Software Portability … Phase 3 – First Iteration Very High 2

Software Self-Regulation … Phase 3 – Second Iteration High 3

Software Autonomy … Phase 3 – Second Iteration High 3

Software Flexibility … Phase 3 – Second Iteration High 3

Software Reactivity … Phase 3 – Second Iteration High 3

… … … … …

Software Accuracy … Phase 3 – Last Iteration High 3

Software Controllability … Phase 3 – Last Iteration High 3

Software Transparency … Phase 3 – Last Iteration Very High 2

New One … Phase 4 … …

These softgoals are organized according to their importance for ubiquitous

applications, obtained from our experimental research. The main softgoals – the

most commonly found in the ubiquitous applications development process as well

as the most generic ones – received highest priority. The catalogue is actually

organized into four main softgoals (Ubiquity, Pervasiveness, Mobility, and User

Satisfaction) at the top level. Moreover, there are 17 softgoals in the second level,

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 72

including: Content Adaptability, Context Awareness, Device Heterogeneity,

Transparency, and Process Complexity Invisibility. Furthermore, there are almost

200 NFRs at the third level, such as: Self-Regulation, Autonomy, Reactivity, and

Controllability. This categorization – driven by the capturing of ubiquitous NFRs

issues in several different ubiquitous applications – was applied to the entire

catalogue, improving its applicability. It is important to notice that as the

catalogue is in constant evolution, the refinements involve refactoring in the

prioritizations and, consequently, they reflect on the catalogue’s organization.

Therefore, we are also proposing another way to organize our catalogue based on

different criteria such as: most used NFRs or ones that address greater number of

issues receive higher priorities.

Due to the huge number of NFRs and reusable models shared in our

baseline, we also developed a Web-application to facilitate their access and to

help in the presentation and browsing of its contents. This application offers

different mechanisms to investigate and navigate - e.g. an exploration tree to

navigate and choose the desired NFR, their meaning, and links to their SIGs and

Frame-Like Notations. In addition, according to our experimental research, the

NFRs’ elicitation has been a good starting point for capitalizing knowledge in

ubiquitous contexts, since they do not vary much from one ubiquitous application

to another. It makes our reusable models as well as their decompositions,

interdependencies, and operationalizations applicable to a broad class of

ubiquitous applications. Moreover, we also developed a catalogue usage method,

which is described in the detailed activity-based representation shown as follows.

Figure 4.8 illustrates the meta-model of the used representation.

Figure 4.8 – Meta-model of the used activity-based representation

1. Explore activity (Figure 4.9): divided into Consult and Extract sub-activities.

The Consult sub-activity consists of the catalogue knowledge investigation to

understand ubiquitous concerns. The Extract sub-activity consists of the

deduction of what knowledge is pertinent for the desired ubiquitous application.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 73

The success of this sub-activity depends on whether the Consult is satisfactorily

accomplished.

Figure 4.9 - NFR Catalogue Usage Method – Explore activity

The catalogue mainly helped us with regard to knowledge capitalization – by

providing resources to search it and to navigate through its interdependencies –

and terms familiarization. Contributing to this field, the catalogue presents the

meaning of all baseline terms and information sources for further and deeper

investigations. After this exploratory searching, we were able to identify the

main NFR-related issues; determine their impacts on the concern under

analysis; and capitalize sufficient knowledge to put together a comprehensive

view of ubiquitous main concerns.

2. Collect activity (Figure 4.10): composed of Pick-up and Instantiate/Evolve

sub-activities. The Pick-up activity occurs if the extracted knowledge matches

with the ubiquitous application’s needs. Thus, it is not necessary to perform the

next activity – i.e. Model activity – and the software engineers can directly go

to the Operationalize activity. If adjustments are necessary, the

Instantiate/Evolve sub-activity is performed. Thus, the knowledge in SIG and

Frame-Like Notation is instantiated and evolved.

Figure 4.10 - NFR Catalogue Usage Method – Collect activity

3. Model activity (Figure 4.11): based on Decompose and Determine

Interdependencies in SIG Notation; and Specify Decomposition, Claim,

Correlation Rule in Frame-Like Notation – depending on the chosen notation. It

is also possible to use both. The first is a graphical view whereas the second is a

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 74

semi-structured specification centered on parent, offspring, contribution,

constraint and condition. Both SIG and Frame-Like notations are based on the

NFR Framework conceptual model (Chung et al. 2000).

SIG Notation: In the Decompose sub-activity, it is possible to decompose NFRs

that were instantiated or evolved in the Collect activity. In the Determine

Interdependencies sub-activity, it is necessary to determine the

interdependencies among the instantiated/evolved NFRs as well as their

decomposed NFRs by using contribution links (e.g. some+ (help), some- (hurt),

some++ (make) and some-- (break)).

FRAME-LIKE Notation: In the Specify Decomposition sub-activity, it is

possible to specify the parent, offspring (e.g. decomposed NFRs) and

contribution (e.g. help and hurt) for the NFRs that were instantiated/evolved in

the Collect activity. In the Specify Claim sub-activity, the specification is

focused on parent (e.g. nfr1 AND nfr2 AND nfr3 SATISFICE nfrparent), offspring

(e.g. Claim[argument]), contribution and constraint (e.g. /*argument*/). Finally,

in the Specify Correlation Rule sub-activity, the specification is based on

parent, offspring, contribution and condition (e.g. true and false) between the

instantiated/evolved NFRs and their decomposed NFRs.

Figure 4.11 - NFR Catalogue Usage Method – Model activity

4. Operationalize Activity (Figure 4.12): to define an adequate set of

operationalizations for further implementations. Our catalogue already offers

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 75

some operationalizations to be reused and attend needs faster. In order to

operationalize with the NFR Catalogue support by simply selected and picked

up operationalizations from the baseline, the method suggests to perform the

Select Operationalizations Based On NFR Catalogue sub-activity. However, it

is also possible to establish new support by using developer expertise.

Therefore, the method suggests the Specify Operationalizations Not Based On

NFR Catalogue sub-activity.

Figure 4.12 - NFR Catalogue Usage Method – Operationalize activity

5. Validate activity (Figure 4.13): divided into Evaluate and Solve Conflicts

sub-activities. The Evaluate sub-activity mainly checks interdependencies using

correlation rules and stakeholders’ meetings by identifying possible conflicts

(e.g. to satisfy the parent NFR – e.g. nfrparent – the decomposed NFRs must be

satisficed (√) – i.e. Satisficed means “satisfied in a certain degree” (Yu 1997)).

The Solve-Conflicts sub-activity deals with conflicts and open states by solving

them with alternative interdependencies/operationalizations.

Figure 4.13 - NFR Catalogue Usage Method – Validate activity

Furthermore, the method contemplates the feedback notion, allowing

refinements when misconception/misunderstanding occurs from faulty

judgment, deficient knowledge or lack of forethought. Thus, it is necessary to

constantly return to previous activities to review details.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 76

4.3.
Integration Building Block

Another reuse-based mechanism proposed in our approach is the Integration

Building Block – to integrate heterogeneous devices with the MAS platform –

centered on the JADE-LEAP platform (Java Agent Development Environment-

Lightweight Extensible Agent Platform) (Caire 2003). It is an extension for the

JADE platform to deal with heterogeneous mobile devices (e.g. simple cell-

phones and Smartphones). It allows the development of FIPA-compliant MASs in

these devices, which are normally limited in terms of memory and processing

capacities. Therefore, it provides execution modes to integrate heterogeneous

devices (e.g. jse-based devices
2
, PJava devices

3
 and MIDP devices

4
) with the

MAS platform. In this work our attention is on two specific execution modes, the

standalone and the split modes. The standalone mode integrates the PJava devices

with the MAS platform. These devices are powerful in memory and processing

capacities. Thus, they are able of running the platform’s container by using their

own resources. In this case, a complete container is executed on the device. The

split mode integrates the MIDP devices – i.e. the great majority of Java enabled

cell-phones – with the MAS platform. In this mode, the container is split into a

Front-End and a Back-End. Both, Front-End and Back-End, are linked through

the wireless connection. Moreover, the Front-End runs on the MIDP device and

the Back-End runs on a powerful machine (normally a jse host). As the Front-End

is lighter than a complete container, the split execution mode is interesting for

limited mobile devices, which are constrained in memory and processing

capacities. In both modes the device’s user is not concerned about the integration

process.

The integration process is performed by the agents without disturbing the

user or even distracting her/him (Weiser and Brown 1995), which contributes to

the invisibility – a quality criterion important for the user satisfaction and a social

implication of Ubiquitous Computing (Langheinrich 2001). Moreover, the JADE-

LEAP agent is registered and its life-cycle is controlled by specific services of the

2 Desktops and Notebooks with jdk1.2 or superior.
3 PDAs that run Personal Java.
4 Mobile phones that support the MIDP (Mobile Information Device Profile) – a Java runtime environment

for mobile devices.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 77

platform, respectively the Directory Facilitator (DF) Service – i.e. Yellow Pages –

and the Agent Management System (AMS) Service – i.e. White Pages. These

services improve the dependability, accountability and security of the agents’

activities by also contributing to the safety of the user data management.

Our Integration Building Block based on the JADE-LEAP platform is

composed of the Reuse-Based Support package (Figure 4.14), in which the main

sub-package is the “Invisibility-Based Support.” This sub-package supports the

ubiquitous application invisibility by providing, for example, the “Platform

Integration Support.” This latter support consists of an API to deal with the

integration of different devices with the intentional MAS platform. A JADE-

LEAP Agent, which is a behavioral agent, performs the integration process. In this

case, we used a behavior-based agent instead of an intentional agent, as the former

agent is lighter than the latter one. It avoids problems with the limited nature of

mobile devices with low memory and processing capacities. Moreover, the

integration demands the support offered in both sub-packages “Split Execution

Mode” and “Standalone Execution Mode” to respectively integrate MIDP and

PJava devices with the intentional MAS platform. Furthermore, the usage of a

JADE-LEAP agent improves the accountability in case of future investigation

based on some unapproved/unattested conduction during the integration process

as: (i) this agent is registered into the MAS platform with a unique identifier

centered on the DF Service; (ii) there is one agent responsible for each integration

process; and (iii) the agent’s life-cycle is totally controlled by the services offered

into the platform. It allows, among other contributions, to monitor the agent “on

the fly,” by also tracing its activities.

Figure 4.14 - Integration Building Block packages

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 78

4.4.
Intentional Agents’ Reasoning Building Block

In order to develop intentional agents centered on a BDI-based reasoning engine,

we focused our attention on the JADEX Framework (Braubach et al. 2003;

Braubach et al. 2004). This framework is developed by a research group at

Hamburg University. It is an API that provides support to develop MAS

applications centered on the BDI model. This model is based on the belief, desire

and intention abstractions. The belief represents the agent’s knowledge – i.e. its

informational state based on its beliefs about the world. The desire is the agent’s

goal – i.e. its motivational state. Finally, the intention is an action or a sequence of

actions to achieve this goal – i.e. its deliberative state. Therefore, the BDI-based

agents are intentional and capable of acting in a goal-oriented manner by using

their beliefs, desires and intentions. The JADEX reasoning engine provides useful

methods – by extending abstract classes as plan Java classes – for dispatching

goals, sub-goals and events; sending messages and awaiting internal events.

During this process, the agent’s beliefs base can be modified – by manipulating

the stored facts – to update the agent’s knowledge by respecting the context at

runtime. In order to improve the context-aware agents, the JADEX uses an XML-

based Agent Definition File (ADF), which specifies the initial beliefs, desires and

intentions. The engine uses this file – at runtime – to instantiate an agent model.

The mentioned infrastructure can be pertinent in the development of

privacy-based ubiquitous applications. For example, a correct management of the

user profiles – as previously mentioned – is a complex task when we consider

highly everywhere/anywhere-applications. The need for high performance

combined with the necessity of guaranteeing security, integrity and dependability

for sensitive profile information often results in a trade-off between distributed

and centralized approaches. This trade-off is even more critical if it is necessary to

update ubiquitous profiles in a dynamic way. In these scenarios, intentional agents

can be used to make decisions on whether to present the service or not by profile-

matching between different profiles and the users’ preferences or the service

providers’ business rules. It intends to provide personalized service. In addition, if

the profiles evolve over time, intentional agents can also evolve their beliefs base

by, for example, representing the users and/or the service providers as personal

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 79

assistants, conscious about the context. Moreover, those agents have specific and

useful properties, such as: autonomy, reactivity, proactivity, mobility, reasoning

capacity, learning capacity and adaptability. Therefore, the development of these

entities based on the BDI model may confer to them the ability of preserving the

confidentiality of the user profile information and the service provider’s

commercial strategies.

In addition, the agent’s functionalities compose reusable modules – called

Capabilities in the JADEX. These modules can be plugged into existing agents by

improving their capacity in the MAS platform, even at runtime. Examples of

specific functionalities are the capabilities to allow: the agent’s dynamic creation

and mobility and the agent’s dynamic learning based on the services offered by

the MAS platform. The agent’s creation and mobility performed at runtime

contribute to the invisibility of the application by improving the agent’s autonomy

condition to act and to respond the context situation without the human

intervention, which in our approach means: “without disturbing people.”

Moreover, the mobility directly deals with the location and proximity concern –

i.e. according to (Langheinrich 2001), it is a principle of privacy. Finally, the

possibility of learning how to use a service and how to interact with the agents of

this service by respecting specific business rules of the service provider at runtime

can be viewed as an interesting mechanism for ever-changing environments.

Concentrating our attention on the JADEX-based resources, we propose

the Intentional Agents’ Reasoning Building Block. This support set is composed of

the Reuse-Based Support package (Figure 4.15), in which the main sub-package is

the “Invisibility-Based Support.” Different resources confer on this package the

ability to balance the invisibility and transparency and the personalization and

privacy issues. In this scenario, we can mention the “Autonomy- Reactivity-

Proactivity- Mobility- & Adaptability-Based Support” package and its main sub-

package: “Intentional Multi-Agent Systems Support.” This sub-package consists

of an API to support the development of JADEX Agents centered on the BDI

Model, the FIPA Standards Ontological Support (Bellifemine et al. 2007; Serrano

and Lucena 2010b) and specific JADEX Capabilities.

The BDI Model is also part of the Agents’ Cognitive-Ability-Based

Support, which offers resources to improve the cognitive ability of the JADEX

Agents centered on the intentionality abstraction. The FIPA Standards

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 80

Ontological Support is part of the Agents’ Interoperability-Based Support, whose

resources (Serrano and Lucena 2010b) contribute to the agents’ communication

and inter-operability by using ontologies. Moreover, the success of the agents’

communication demands ubiquitous profiles investigation by including the users’

privacy preferences “capturing” at runtime. The JADEX Capabilities is part of the

Dependability- Accountability- & Security-Based Support, which provides

Specific Capability Support, such as: (i) to improve the accountability by using

the DF Capability to register and deregister the platform’s agents with a unique

identifier that may be used to determine which agent is dealing or dealt with the

user data. The identification of a specific agent can be dynamically performed

anywhere and at any time, which confers the user the possibility to interact with

the application by trusting it; and (ii) to allow that an intentional agent moves

from one container to another by using the Mobility Capability in order to perform

complex services in a dedicated server. It also improves the invisibility issue.

Figure 4.15 - Intentional Agents’ Reasoning Building Block packages

Furthermore, we also improve the agents’ reasoning to specifically deal

with non-functional requirements (e.g. privacy and their correlated issues, such as:

dependability, accountability, integrity and security) at runtime by instantiating –

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 81

based on the cognitive domain and the application under analysis – the Fuzzy-

Logic Library proposed in (Bigus and Bigus 2001). This library provides

resources to the specification of fuzzy-logic conditional rules. Based on this

library, we constructed the Fuzzy-Logic-Based Support package (Figure 4.16) to

complement the Intentional Agents’ Reasoning Building Block. This package

provides resources for the proposed approach to deal with quality criteria at

runtime. Simplifying the process, intentional agents basically analyze their belief

base, the ubiquitous profiles and additionally run those fuzzy-logic conditional

rules – “on the fly” – to choose an alternative task that better satisfy a specific

user by considering the specified non-functional requirements of the ubiquitous

application under analysis and the user preferences. All the process is performed

at runtime without disturbing the user – i.e. the user may even be unaware that it

is actually being performed. Only to illustrate, consider two specific criteria:

security and price. Following the described process is possible to determine – at

runtime – that the security, for example, is more relevant than the price by

considering the user under analysis. Therefore, the agent can choose an alternative

task that minimizes the impact on security.

Figure 4.16 - Fuzzy-Logic-Based Support complementary package

4.5.
Dynamic Interface Construction Building Block

We also offer an ontology-based mechanism to improve the agents’

communication and inter-operability and the dynamic interface construction. We

published a detailed view of how to apply FIPA Standards Ontological Support to

intentional-MAS-oriented ubiquitous applications in (Serrano and Lucena 2010b;

Serrano and Lucena 2011b). According to the FIPA SL Codec (Bellifemine et al.

2007), the ontology is composed of the vocabulary and the nomenclature. The

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 82

vocabulary describes the concepts terminology. These concepts are used by the

agents in the interaction among them. The nomenclature describes the concepts

semantic and structure, and depends on the relationships among these concepts. In

order to implement the ontology, we had to extend the classes BasicOntology and

ACLOntology, predefined in the FIPA SL Codec, by adding the elements schemas

that describe the structure of the concepts, agent actions, and predicates of the

exchanged messages. The Concept, AgentAction, and Predicate are interfaces,

which correlated classes are ConceptSchema, AgentActionSchema, and

PredicateSchema. In fact, these interfaces have a super-class called

ObjectSchema. As follows, we have a brief description of Concept, AgentAction,

and Predicate:

- Concept represents expressions that indicate entities with a complex

structure, such as: (User :id 000000 :name James :address "1111

Something Avenue"). It means that there is a user with the id 000000, the

name James, and the address 1111 Something Avenue;

- AgentAction represents concepts that indicate actions performed by the

agents in the MAS platform, such as: (Request (Registration :Web site

"Music Store") (User :id 000000)). It means that the user with the id

000000 requests the registration for the web site “Music Store”; and

- Predicate represents expressions that inform some detail about the status

of the world, such as: (Is-user-of (User :id 000000) (Web site :name

"Music Store")). It means that the user with the id 000000 is user of the

Web site, which name is “Music Store”.

We are particularly following the reference model proposed by Fabio

Bellifemine, Giovanni Caire, and Dominic Greenwood in (Bellifemine et al.

2007). In different ubiquitous applications, we have, for example, Elements in the

interface level; cognitive domain level, and application level. We firstly defined

an ontological Java class that extends the Ontology class for each interface

Element in the application’s context. Each ontological Java class is declared as a

singleton object as this class is normally not evolved during the agent’s lifetime.

For the same reason, we defined another Java class, which also extends the

Ontology class, and contains a static method in order to access this singleton

object. It means that different software agents that are in the same Java Virtual

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 83

Machine can share the same ontology object. An example of ontological Java

classes in the interface level is presented as a code fragment in Figure 4.17.

Each element in a schema has a name and a type. An element can be

declared as "OPTIONAL" or "MANDATORY." An "OPTIONAL" element

means it can assume a "null" value. On the other hand, a "MANDATORY"

element means that an OntologyException will be thrown if a "null" value was

found. An element in a schema can also be a list, in which, for example, the

cardinality of this element is zero or more String type elements.

Figure 4.17 - Ontological Java class

Only to clarify the idea, some interface Elements – used by an Interface

Agent to dynamically construct forms that will be presented to the user using

her/his own device and according to the her/his preferences and the devices

features (e.g. memory/processing capacities, screen size, and resolution) – are:

- SendMIDPForm agent action: is the ontological representation for an action

performed by the Interface Agent in order to send a form;

- MIDPStringItem concept: is an ontological concept that describes a StringItem

element, which can be used to compose the Form, by representing a spring;

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 84

- MIDPChoiceElement concept: is an ontological concept that describes a

ChoiceElement, which can be used to compose the ChoiceGroup, by

representing the alternative text;

- MIDPChoiceGroup concept: is an ontological concept that describes a

ChoiceGroup, which can be used to compose the Form, by representing a

group of choices. Moreover, it can be composed of one or more

ChoiceElement(s);

- MIDPImage concept: is an ontological concept that represents an Image,

which can be adapted based on the device features to compose the Form; and

- MIDPForm concept: is an ontological concept that describes a Form, which

can be composed of zero or more StringItem(s), ChoiceGroup(s) and

Image(s).

The ontological Java class implements the Vocabulary Java class, which

code fragment is illustrated in Figure 4.18.

Figure 4.18 - Ontology vocabulary for Interface Elements

As presented on (Bellifemine et al. 2007), the next three steps are

necessary to conclude the ontology: (i) define the content language; (ii) register

the content language and the ontology using a software agent; and (iii) create or

manipulate the content expressions as Java Objects.

i. The first step consists of defining the content language. Using the FIPA Coder

and Decoder we have the possibility to choose the SL Language or the LEAP

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 85

language. It is also possible to develop an agent that uses a proper language by

implementing the jade.content.lang.Codec interface. The SL Language is a

human-readable content language, which content expression is a string. The

LEAP language is a non-human-readable content language, which content

expression is a sequence of bytes. Moreover, the LEAP language is lighter

than the SL language. This feature is particularly interesting in strong memory

and processing limitations. In order to illustrate our proposal, we used the SL

language.

ii. The second step consists of registering the content language and the ontology

using a software agent. Normally, in behavior-based agents, this registration is

performed in the agent setup() method as presented in Figure 4.19 for the

Interface Agent – a JAVA code fragment. As this Interface Agent runs inside

the MIDP device, we decided to use a “light” agent, based on behavior to

avoid problems with the device memory and processing limitations.

Figure 4.19 - Registering content language and ontology using a behavioral Interface Agent

However, as we are focusing on using intentional agents to improve the

cognitive capacity, the “like me” recognition, and the goal formation, we also

registered the content language and the ontology according to the JADEX

specifications and the BDI notation as shown in Figure 4.20 – XML code

fragment of the Intentional Agent (property tag).

Figure 4.20 - Registering content language and ontology using an Intentional Agent

iii. The third step consists in creating and manipulating the content expressions as

Java Objects. Figure 4.21 shows the code fragment about this step using the

Interface Agent.

...

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 86

Figure 4.21 - Creating/manipulating the content expressions of MIDP GUI Ontology as Java objects

using the Interface Agent

Again, in order to create and manipulate the content expressions using

intentional agents, we extended the Plan class specified on the JADEX

documentation and we also implemented the DecideRPRequestPlan and the

ExecuteRPRequestPlan as plans of the Intentional Agent. Figures 4.22 and

4.23 respectively present code fragments of these plans.

Figure 4.22 - Manipulating the content expressions of MIDP GUI Ontology using the Intentional

Agent (DecideRPRequestPlan)

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 87

Figure 4.23 - Manipulating the content expressions of MIDP GUI Ontology using the Intentional

Agent (ExecuteRPRequestPlan)

Based on the described ontological support, we also propose a dynamic

interface adaptation approach for ubiquitous devices centered on intentional

agents. In addition, our interface adaptation is focused on the generic components

of the Graphical User Interface (GUI), such as: forms, string items, radio buttons

and others. Based on these components, we propose a generic ontology that

describes the interface elements used to dynamically construct interfaces in our

approach. Our GUI Generic Ontology is composed of common found interface

elements, such as Form, StringItem, RadioButtons, ImageItem, DateField,

TextField, ChoiceGroup, ChoiceElement, List, ListElement, TextBox and others.

Moreover, it also describes components to represent specific interface elements,

such as: (i) LoginScreen component for login information capture; (ii)

DigitalSignature component to deal with specific devices that capture the use’s

digital signature at runtime, and (iii) BiometricInformation component for a

digital finger printer, which can be captured by using biometric-based devices.

The adaptation service for MIDP devices is developed based on these

interface elements and the interface elements of the GUI Generic Ontology. This

service is specialized in the association between the GUI Generic Ontology and

the MIDP GUI Ontology by adapting generic interface elements to allow their

visualization in MIDP devices. Table 4.2 exemplifies these relationships, which

are based on the similarities of the elements. Heuristics can contribute to the

determination of relationships, such as the DigitalSignature and the

BiometricInformation represented as ChoiceGroups. In order to simplify the

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 88

interfaces for MIDP devices, it is necessary to consider that this kind of device

does not provide powerful resources to capture the user’s digital signature or even

her/his biometric information. A ChoiceGroup, for example, can be used in this

case to capture if the user does or does not agree with the service provider’s rules.

Table 4.2 - GUI Elements & MIDP GUI Elements

GUI Element MIDP GUI Element

Form MIDPForm

ImageItem MIDPImage

StringItem MIDPStringItem

ChoiceGroup MIDPChoiceGroup

… …

LoginScreen MIDPLoginScreen

DigitalSignature MIDPChoiceGroup

BiometricInformation MIDPChoiceGroup

The ubiquitous application can directly use or even reuse our interface

ontological support for MIDP devices if it attends the ubiquitous application’s

need. However, another important step for dealing with the dynamic interface

adaptation problem by considering specific needs of the ubiquitous application

under analysis is the determination of the heuristics that correlate the ubiquitous

application’s ontology and our GUI Generic Ontology. Therefore, the interface

elements of the specific ontology is associated with the interface elements of the

GUI Generic Ontology, which already have an adaptation service to convert them

to the interface elements of the MIDP GUI Ontology. The latter ontology is

prepared to deal with interface elements even if the device is limited. Details of

this kind of correlation are presented in Chapter 6 with a ubiquitous application

from the dental clinic cognitive domain.

Based on the described ontological support, we propose the Dynamic

Interface Construction Building Block (Figure 4.24). This support set has a Reuse-

Based Support package, which is composed of our GUI Generic Ontology

package, the MIDP GUI Ontology package, the Adaptation Service, the Graphical

User Interface (GUI) package, and the FIPA Standards Ontological Support

package. The application under development can just use the GUI Generic

Ontology and/or the MIDP GUI Ontology as they are provided by the Dynamic

Interface Construction Building Block. Moreover, they can be

extended/instantiated to better attend the application’s interface elements based on

the offered interface elements. However, if the application under development

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 89

have specific interface elements that do not match with the pre-defined interface

elements, thus it is necessary to define these elements and establish the heuristics

that associate the desire ontology and the proposed generic ontology. In addition,

a new ontological java class as well as a new vocabulary must be defined. Finally,

the software engineers can follow the guidelines proposed by the Dynamic

Interface Construction Building Block to define the content language, register it,

and create/manipulate it.

Figure 4.24 - Dynamic Interface Construction Building Block packages

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 90

4.6.
Ubiquity Issues Building Bocks

Another constructed computational support – based on our empirical research of

different technologies – is the Ubiquity-Based Frameworks that compose our

Ubiquity Issues Building Blocks. Figure 4.25 shows the Ubiquity-Based

Frameworks package, in which we have some frameworks to deal with specific

ubiquitous concerns, such as the Intentional Framework for Content Adaptation

in Ubiquitous Computing Systems (IFCAUC) (Serrano et al. 2008) to perform the

content adaptability by considering the ubiquitous profiles and some quality

criteria (e.g. security and download time). Therefore, the ubiquity-based support

improves the invisibility, context-awareness and ubiquitous-profiles-awareness

issues. Furthermore, it positively impacts on privacy issues by dynamically

retrieving/adapting/managing the content and the services, respecting the context

under analysis and the profile information, also in accordance with the users’

preferences – Personalization-Based Support.

Figure 4.25 - Ubiquity Issues Building Block packages

In ever-changing environments, the content adaptation is really important

to improve or even to guarantee user satisfaction by considering the service

omnipresence supported by different devices. The content adaptation can be

described as a process in which the requested contents are adapted according to

specific profiles. Therefore, we cannot think about content adaptation without

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 91

thinking about profiles. Profiles are the main key of an appropriate content

adaptation. This notion is intrinsic to Ubiquitous Computing and commonly

applied to the ubiquitous applications development (W3C - CC/PP 2011; Berhe et

al. 2004).

The main ubiquitous profiles are: (i) the user profile, which represents the

user preferences and personal data; (ii) the device profile, which contains the

device features (e.g. resolution, memory and processing capacities); (iii) the

network profile, which stores the network specifications (e.g. bandwidth); (iv) the

content profile, which represents the content characteristics (e.g. we can consider

the size to download and the type as some characteristics for a media content);

and (v) the contract profile, which contains the contract information that is

established between the service provider and the final user.

There are three ways to perform content adaptation in ubiquitous

applications: (i) inside the device, in which it is important to deal with the device

memory and processing capacities; (ii) in the application server, in which it is

relevant to consider a possible server overload; and (iii) in a dedicated server, in

which we must consider a specific support to avoid problems with the security of

information that is exchange between the application server and the dedicated

server.

Additionally, the context information can be described as dynamic or

static. The dynamic information (e.g. requested content and network

specifications) must be obtained during the adaptation process at runtime. The

static information (e.g. user personal data) can previously be defined and stored

for further consultation. However, the proliferation of different devices combined

with the necessity of the context-aware service personalization emphasizes the

importance of technological support to deal with dynamic information. Our

approach tries to fill this gap by providing a dynamic content adaptation driven by

intentional agents to adequately satisfy the user’s expectations.

Moreover, our approach demands different content adaptations. Therefore,

we also classified them into five main categories: (i) adaptation based on resizing,

to adapt the content according to the device screen resolution; (ii) adaptation

based on transcoding, to transcode the content from one format to another; (iii)

adaptation based on reduction, to adapt the content using data compression; (iv)

adaptation based on replacement, to replace a sequence with still frames, which

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 92

are combined to form a slide show; and (v) adaptation based on integration, to

adapt the content using service composition. For example, a video can be obtained

by combining different image frames with the corresponding audio.

Summarizing the proposed content adaptability process (Figure 4.26): (i)

the request is performed by the client using her/his device; (ii) the device is

integrated by the autonomous entities with the platform container (main container

or other); (iii) the agents (e.g. Interface Agent, Initiator Agent, AMS Agent, DF

Agent, Mobile Agent and Adapter Agent) collaborate to achieve the client’s goal

(e.g. download a content); (iv) the desired content as well as its service provider is

identified by considering specific quality criteria (e.g. security and price), which

are specified and analyzed by the agents at runtime using fuzzy variables, fuzzy

sets and fuzzy conditional rules; (v) the adaptability need is detected according to

the ubiquitous profiles, the agents’ belief base, and the context under analysis; (vi)

the content is adapted in a dedicated server by performing specific content

adaptation techniques (e.g. resizing) and/or the combination of them (e.g. resizing

and transcoding); and (vii) the adapted content is provided to the user on her/his

device by considering, among other ubiquitous profiles information, the device’s

screen resolution, the device’s accepted colors and the user’s preferences. As

follows, some details of this process are presented.

Figure 4.26 - The proposed content adaptability process

In the described process, the user’s device is identified at runtime by using

different properties depending on of the device’s platform:

• jse devices – are based on the Java Standard Edition platform, such as laptops

and desktop PCs. This platform is a widely used platform for programming in

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 93

the Java language. In other words, it consists of a virtual machine, which must

be used to run Java-based programs by allowing file systems, networks and

graphical interfaces from within those programs.

• Java Personal Edition devices – are based on the Personal Java platform, such

as modern Smatphones (e.g. Blackberry). This platform is a Java edition for

mobile and embedded systems based on the Windows Embedded Compact

(Windows CE). The Windows CE represents an operating system specifically

developed by the Microsoft for minimalist computers and embedded systems.

• jme devices – are based on the Java Microedition platform, such as the MIDP

devices. This platform is a collection of Java APIs, which is defined by the Java

Community Process (JCP). It provides resources for the development of

embedded systems and applications, which run inside a device with a specific

purpose. Normally, this device is limited in comparison with the jse- and

Personal Java-based devices. Therefore, jme devices are a concern in Ubiquitous

Computing, by emphasizing the importance of the content adaptability.

Now, we will describe how to identify the device at runtime. For devices

that run jse, the public static final boolean is jse. Therefore, we use: String

property = System.getProperty("java. Runtime.name"). On one hand, if (property!

= null), then the platform is jse, which means that it is a powerful machine,

capable, for example, of receiving images with large resolution. On the other

hand, if the device is not jse, then it is possible to be a Personal Java or a MIDP

device. To check if the device is running Personal Java the detecting program asks

if the system property os.name contains the value Windows CE. As Windows CE

only runs Personal Java the platform will be Personal Java. Moreover, the

Personal Java devices include the iPAQ (high- spec PDA). If the string is

anything else or null then the platform is not Personal Java. Finally, to check if the

device is running MIDP the detecting program identifies it by using the

microedition properties (Microedition Properties 2005) (e.g.

microedition.platform, microedition.profiles and microedition.configuration). The

detecting program identifies the platform details, which means the proper java

platform type and the device’s model. Based on the model, it is possible to

retrieve its profile from the dynamic database and determine its limitations in

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 94

terms of memory capacity, processing capacity, resolution and other features at

runtime.

Continuing our adaptation process, the device is integrated to the agents’

platform by an Interface Agent. This agent also requests the creation and

registration of an Initiator Agent – i.e. a personal agent of the client – for

respectively the AMS Agent and the DF Agent. The Interface Agent intermediates

the Initiator Agent and the client communication. The agents’ communication and

inter-operability is facilitated by an ontological support (previously presented) that

describes, for example, the interface elements. Based on this ontology, the agent

knows how to adapt the content and all forms that will be exchanged during the

adaptation process. Moreover, the ontology describes how to present this content

as well as the forms from the device that the client is using at the moment of the

request. Therefore, it is also necessary to consult the profiles by using a Data

Access Object (DAO) (DAO 2011) – a data persistence pattern. For example, to

consult the user profile in the dynamic database, the Initiator Agent uses a data

access object and the Hibernate Query Language (HQL) (HQL 2011) – a

powerful query language, which is similar to SQL. However, it is “fully object-

oriented and understands notions like inheritance, polymorphism and association

(HQL 2011).”

Furthermore, the Initiator Agent requests the creation and registration of a

Mobile Agent for respectively the AMS Agent and the DF Agent. The Mobile

Agent receives the client and the device information to adapt the content in a

dedicated server. The Mobile Agent migrates, performs the adaptation with the

Adapter Agent by respecting the client’s preferences and the device features,

returns to the application’s server and sends the adapted content to the Initiator

Agent. This latter agent sends this content to the Interface Agent, which performs

the visualization of the adapted content to the client from her/his device. It is

important to notice that the client is not previously associated with a specific

device and its features are constantly updated based on the WURFL Repository

(WURFL 2011a; WURFL 2011b) (presented on Section 4.7). Therefore, the client

can change the device, perform another request and the MAS-oriented application

is able to identify the device at runtime, without disturbing the client or even

distracting her/him, as idealized by Mark Weiser’s vision – the complexity

invisibility need centered on Calm Technology.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 95

4.7.
Dynamic Database Building Block

Another technological contribution of our approach to improve the reuse in

ubiquitous scenarios is our Dynamic Database Building Block centered on the

Type-Square Architecture, the WURFL Repository and a Persistence Framework.

4.7.1.
Type-Square Architecture

In ever-changing contexts, the user desires to change her/his preferences and

device anywhere and at any time. Contributing to this difficult scenario, the

devices are in constant evolution by following novel technologies (e.g. yesterday

the devices contained a CD reader/writer, today they have a DVD reader/writer

and tomorrow all of them will have the blue-ray reader/writer). Moreover,

heterogeneous devices (e.g. mobile, small, just-call-phone, limited or powerful)

enter and leave different intelligent environments. The heterogeneity, the large

number of users and devices and the constant evolution in terms of user

preferences and device features are intrinsic in ubiquitous scenarios. Therefore,

they require adequate support to adapt and quickly change the user profile and the

device profile according to each user’s requirement. This usually is achieved by

storing user preferences, device features and other dynamic data (e.g. network

specifications and contract information) in a dynamic database.

Dynamic database is a new kind of value-based database (e.g. relational

database), in which tables, fields and values can be created, manipulated and

excluded wherever changes need to be made with immediate (but controlled)

effects on the system interpreting it. Moreover, the database relationships as well

as the location of related records are respectively specified and determined at

runtime. In order to improve the development of a dynamic database, the use of a

specific architecture that can dynamically adapt to new contexts at runtime is

appropriate. This kind of architecture is sometimes called a reflective-architecture

or a meta-architecture. Our approach is centered on a particular meta-architecture

– Type-Square Architecture focused on the Type-Object Pattern – which was first

proposed by (Yoder et al. 2001), as illustrated in Figure 4.27.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 96

Figure 4.27 – Type-Square architecture (adapted from (Yoder et al. 2001))

In Figure 4.27, the Entity-Type represents the classes and the Entity

represents the class instances. As a simple example, we have the Entity-Type

“Device” and the Entity “Nokia95 Device.” “Nokia95 Device” is an instance of

“Device.” Moreover, the Entity is associated with a specific Entity-Type and the

Entity-Type can be associated with zero or various Entities. Thus, the cardinality

in the first way is one to one (1..1) and in the opposite way is one to zero or more

(1 to 0..*). We can have different devices – e.g. “BlackBerryBold9700 Device,”

“NokiaN86 Device,” “MotorolaWX390 Device” and “SonyEricssonXperia-X10

Device.” Each of them (an Entity) is an instance of “Device” (an Entity-Type).

The “Device” Entity-Type can have different Properties-Types, such as:

“deviceModel,” “deviceMemory,” “deviceScreenSize,” “deviceBattery,” and

“deviceOperatingSystem.” Focused on this idea, the architecture stores the

properties’ values of a specific Entity (e.g. “Nokia95 Device”) as Properties. Thus,

for the “Nokia95 Device” Entity, the “deviceModel” is “Nokia95” and the

“deviceMemory” is “160MB”. The architecture also specifies other important

associations between: (i) Property and Property-Type – one Property must be

associated with only one Property-Type – e.g. the “Nokia95” Property is only

associated with the “deviceModel” Property-Type and (ii) Property-Type and

Property – one Property-Type can be associated with zero or more Properties –

e.g. the “deviceMemory” Property-Type is associated with the “160MB” and

“256MB” Properties.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 97

We extended this architecture model to better attend our needs by

improving the inheritance concept in multiple levels. In Figure 4.28 the Entity-

Property represents a new class/table in our Dynamic Database model that is

created based on the association between Entity and Property, which cardinality is

... It means that an Entity can be associated with zero or more (0..*) Property

and a Property can be associated with zero or more (0..*) Entity.

Figure 4.28 - Dynamic database architecture (first example)

One of our main purposes is to deal with contexts, such as: “A specific

device (Entity) is an instance of Device (Entity-Type). Thus, this specific device

(e.g. Nokia95 Device) contains the Device’s properties. Moreover, this same

specific device (Entity) is an instance of Device with Camera (other Entity-Type).

Thus, this specific device (e.g. Nokia95 Device) also contains the Device with

Camera’s properties. However, the Device with Camera is a Device! Thus, a

Device with Camera inherits the Device’s properties.”

We have the inheritance concept in the context presented before and the

Type-Square Architecture does not directly deal with this kind of context. Our

Dynamic Database allows dynamically defining one or more levels of inheritance:

a “Specific Device” (an Entity) is an instance of “Device with Camera” (an

Entity-Type), which is a “Device” (an Entity-Type�First-Level-Of-Inheritance).

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 98

Moreover, a “Specific Device” (an Entity) is an instance of “Wireless Device with

Camera” (an Entity-Type), which is a “Device with Camera” (an Entity-Type�

Second-Level-Of-Inheritance). Only to illustrate, consider the example previously

presented in Figure 4.28 and the explanation as follows:

• Instantiation: As the “Nokia95 Device” is an instance of “Wireless Device

with Camera,” it contains the “deviceConnectivity” Property, which value is

“Bluetooth/Wi-Fi/InfraRed”;

• First-Level-Of-Inheritance: As a “Wireless Device with Camera” is a “Device

with Camera,” it also inherits the “Device with Camera” Property-Types (e.g.

“deviceCameraResolution”). We represent this relationship as a special

Property-Type called “SUPER,” which type is “Device with Camera.” Thus,

the “Nokia95 Device,” as an instance of “Wireless Device with Camera,” will

contain two Properties-Types (“super” and “deviceConnectivity”), which

values are respectively an object of “Device with Camera” (in which

“deviceCameraResolution” Property-Type is associated with the value “5.0

Megapixel”) and “Bluetooth/Wi-Fi/InfraRed”; and

• Second-Level-Of-Inheritance: As a “Device with Camera” is a “Device,” it

also inherits the “Device” Property-Types (e.g. “deviceModel” and

“deviceMemory”). We represent it as a Property-Type “SUPER,” which type

is “Device.” Thus, the object “SUPER” of the “Nokia95 Device” will contain

two Properties-Types (“super” and “deviceCameraResolution”), which

values are respectively an object of “Device” (in which “deviceModel” and

“deviceMemory” Properties-Types are associated with the values “Nokia95”

and “160MB”) and “5.0 Megapixel”.

Another context that we try to deal with is: “A specific device (Entity) is an

instance of Device (Entity-Type). Thus, this specific device (e.g. Nokia95 Device)

contains the Device’s properties (deviceModel, deviceMemory and

deviceBattery). In this context, a Device (Entity-Type) has battery as Property-

Type. BUT Battery is an Entity-Type, which has batteryType and batteryCapacity

as Properties-Types. It means that Device (Entity-Type) is associated with Battery

(another Entity-Type).”

We have a classical association in the context presented before and again

the Type-Square Architecture does not directly deal with this kind of context. Our

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 99

Dynamic Database proposes a various-to-various association between the

“Device” Entity-Type and the “Battery” Entity-Type, represented by the

cardinality 0..* to 0..* and the new class/table Entity-Property (see Figure 4.29) .

Figure 4.29 - Dynamic database architecture (second example)

For example:

• Instantiation: As the “Nokia95 Device” is an instance of “Device,” it contains

the “deviceModel,” “deviceMemory” and “deviceBattery” as its Properties,

which values are respectively “Nokia95,” “160MB” and an object “BL-5F.”

• Association: the object “BL-5F” is a “Battery.” It is represented as an

association between “Battery” and “Device.” Thus, the “Nokia95 Device”

also contains “batteryType” and “batteryCapacity” as its Properties, which

values are respectively “lithium-ion” and “950mAh.”

4.7.2.
WURFL Repository & Persistence Framework

In order to deal with the device technological evolution and other ever-changing

issues, we use a specific repository – named WURFL (Wireless Universal

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 100

Resource FiLe) and proposed by an open-source project (WURFL 2011a) – to

constantly update the device profile in our dynamic database. In short, the

WURFL is an XML configuration file (Figure 4.30) of device capability

information. In this context, capability means the ability to support certain

features (e.g. image formats, memory capacity, processing capacity, mark-ups,

screen resolution and screen colors). The repository contains over 500 capabilities

for each device that are divided into 30 groups, whose complete listing is

available on the WURFL documentation page (WURFL 2011b).

Figure 4.30 - Code fragment of the WURFL XML file

The profiles depend on the information acquisition, which can be

performed at runtime or previously obtained. Some examples of the acquisition

process at runtime are: (i) in systems that involve the user’s navigation, the

information about the user’s interests can be elicited during this navigation by

following the user’s accesses, (ii) the user’s information can also be acquired by

using her/his registration, (iii) the information about the content (e.g. its format

and its resolution) can be acquired with the proper content provider or by using a

software that extracts the content file’s properties at runtime and stores them into

the Content Profile, and (iv) when the device is identified (e.g. by applying the jse

or the microedition properties or by using an URL (Uniform Resource Location

(Berners-Lee et al. 1994)), it is possible to recover its features – stored in the

device profile, which are constantly updated by using the WURFL Repository – at

runtime. Based on the profile information, the content adaptation can be

dynamically performed to adequately satisfy the user’s needs.

A Persistence Framework – e.g. the Hibernate Framework (Hibernate

2011) – is used to manipulate the Dynamic Data Model centered on the ubiquitous

profiles. Figure 4.31 illustrates the proposed Dynamic Database Building Block

with a Reuse-Based Support package mainly composed of the Persistence

Framework package and the Personalization-Based Support package focused on

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 101

the ubiquitous profiles, the extended Type-Square Architecture and the WURFL

Repository.

The Persistence Framework package combined with the Dynamic Data

Model package positively impacts on the invisibility. Moreover, as previously

explained, the proposed data model is based on a flexible entity-model – the

Type-Square Architecture – to allow the storage, retrieving and exclusion of

ubiquitous profiles information at runtime. Concluding the presentation of the

Dynamic Database Building Block, the Personalization-Based Support helped us

with regard to the constant data management of different profiles by facilitating,

for example, the acquisition of the user preferences “on the fly” in order to

improve – among other contributions – the user satisfaction.

Figure 4.31 – Dynamic Database Building Block packages

4.8.
Closing Remarks

This Chapter presented the main technological support sets – i.e. building blocks –

developed by our approach – the Domain Engineering of Ubiquitous Applications

– for reuse in order to systematically and incrementally develop intentional-MAS-

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

 102

driven ubiquitous applications. The Intentional Modeling Building Block centered

on the i* Framework is used to model ubiquitous applications based on the

intentionality concept. The NFR Catalogue Building Block focused on the NFR

Framework provides models of non-functional ubiquitous requirements, with their

interdependencies and operationalizations. The Integration Building Block based

on the JADE-LEAP Platform offers execution modes to deal with different

devices and resources to integrate distributed smart-spaces with the MAS

platform. The Intentional Agents’ Reasoning Building Block focused on the

JADEX Framework provides a reasoning engine based on the BDI model and the

capability concept to improve the agents’ cognitive ability. The instantiation of

the Fuzzy Logic Library Support improves the Intentional Agents’ Reasoning

Building Block by allowing intentional agents to deal with non-functional

requirements (e.g. security, price and other quality criteria) at runtime. The

Ubiquity Issues Building Blocks based on Ubiquity-Based Frameworks deal with

specific ubiquitous concerns, such as the IFCAUC for the content adaptation

issue. The Dynamic Database Building Block centered on the Type-Square

Architecture, the WURFL Repository and a Persistence Framework is another

contribution of our approach. The Type-Square is basically a meta-architecture to

improve the data management “on the fly”. The WURFL Repository is an

international repository that evolves over time by updating the device profile and

following the technological trends. The Persistence Framework – in our case, the

Hibernate Framework – is used to manipulate the proposed dynamic data model.

In the next Chapter, we will discuss about our reuse-oriented proposal

centered on the building blocks developed from the Domain Engineering of

Ubiquitous Applications (presented in this Chapter) and the Ubiquitous

Application Engineering. In the Ubiquitous Application Engineering, we propose

the reuse of these building blocks (organized in different packages) to facilitate

the incremental and systematic development of ubiquitous applications by

offering an intentional-MAS-driven suitable support to deal with the main

concerns commonly found in these applications, such as: the complexity

invisibility, the integration need, the content adaptation, the context awareness,

the ever-changing conditions, and other intrinsic issues.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

