PUC-RIo - Certificacdo Digital N° 0711311/CA

5.
Reuse-Oriented Approach for Incremental and Systematic
Development of Intentional Ubiquitous Applications

“Users will be able to choose from among a variety of devices to gain mobile, high-
bandwidth access to data and computational resources anywhere on the network. These
devices will be intuitive, attractive and responsive. They will automatically adapt their
behavior to suit the current user and context”.
Roy Want, Bill N. Schilit, Norman 1. Adams, Rich Gold,
Karin Petersen, David Goldberg, John R. Ellis and Mark
Weiser, “The ParcTab Ubiquitous Computing
Experiment,”Journal of Mobile Computing, pp. 45-102,
1996.

In this Chapter we describe our reuse-oriented approach. First, we present an
overview of our approach by emphasizing the Domain Engineering of Ubiquitous
Applications — i.e. Development for Reuse — and the Ubiquitous Application
Engineering — i.e. Development with Reuse. We consider for both developments
their entries, controls, mechanisms and exits by using the Structured Analysis and
Design Technique (SADT) (Marca and McGowan 1987). It is important to
remember that this Chapter depends on the previous one, in which we describe the
Domain Engineering of Ubiquitous Applications — performed by us during the last
four years, from 2007 to 2010 — by proving building blocks.

Figure 5.1 illustrates the proposed process, which has two main steps: (1)
Domain Engineering of Ubiquitous Applications, and (2) Ubiquitous Application
Engineering. First, in the Domain Engineering of Ubiquitous Applications,
presented in Chapter 4, the Software Engineers developed the artifacts (i.e.
REUSE-ORIENTED BUILDING BLOCKS - also discussed in the previous
Chapter). This activity is centered on Ubiquitous Issues (e.g. device and user
heterogeneity, mobility, distributed environments, content adaptability need, and
others), and oriented by the Investigation of Different Ubiquitous Applications,
Ubiquitous Computing Literature, and GENERIC CONTROLS (e.g. from the
Conceptual Model of the i* Framework to the Conceptual Model of the

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

104

Persistence Framework). This engineering also involves interactions with Users.
Moreover, TOOLS are mechanisms that help the software engineers in this
activity.

Ubiquitous Computing Literature

Investigaton of iferent GENERIC CONTROLS
Ubiquitous Applications

CONTROLS GENERIC CONTROLS
S - | REUSE-QRIENTED
Ubiquitous _ | Domain Engineering of Ubiquitous Applications BUILDING BLOCKS
lssues <<Development for Reuse>>) Intentional
Ubiquitous Ubiquitous Application Engineering MAS-Driven
T, Application’s <<Development with Reuse>> Ubiquitous
{ :‘ T T00LS ssues 2 Application
Users [ﬁ’ f T ?
Software Engineers SEDIENE E" ? , T00LS
Users ? I
Legend: Software Engineers
TOOLS: GENERIC CONTROLS: REUSE-ORIENTED BUILDING BLOCKS:
- IDE (Integrated Development Environment) - Conceptual Model of the i* Framework - Intentional Modeling Building Block
- OME (Organization Modeling Environment) - Concaptual Model of the NFR Framework -NFR Catalogue Building Block
- Database Tool - Conceptual Model of the JADE-LEAP Platform -Integration Building Block
-i* Framework - Conceptual Model of the JADEX Framework - Intentional Agents' Reasoning Building Block
- NFR Framework - FIPA Standards Ontological Support - Fuzzy-Logic-based Support
- JADE-LEAP Platform - Conceptual Model of the Type-Square Architecture - Dynamic Interface Construction Building Block
- JADEX Framewark - WURFL Repository - Ubiquity Issues Building Blocks
- Fuzzy-Logic Library - Conceptual Model of the Persistence Framewark - Dynamic Database Building Block
- Persistence Framework

Figure 5.1 - Development of intentional-MAS-driven ubiquitous applications based on a reuse-
based approach

In the Ubiquitous Application Engineering, the Software Engineers,
centered on Ubiquitous Application’s Issues (e.g. specific privacy policies,
specific business rules, specific non-functional requirements and others)
systematically develop the Intentional-MAS-Driven Ubiquitous Application. The
REUSE-ORIENTED BUILDING BLOCKS’ CONTROLS (i.e. conceptual
models of the building blocks produced in the Domain Engineering of Ubiquitous
Applications) and the GENERIC CONTROLS orient the software engineers in the
application’s development in accordance with the Users. The computational
support is provided by TOOLS and REUSE-ORIENTED BUILDING BLOCKS’
MECHANISMS (i.e. frameworks, libraries, catalogues and patterns produced in
the Domain Engineering of Ubiquitous Applications to facilitate the development
in the Ubiquitous Application Engineering).

In Section 5.1, we present the use of REUSE-ORIENTED BUILDING
BLOCKS in the Ubiquitous Application Engineering. It is relevant to emphasize
that the REUSE-ORIENTED BUILDING BLOCKS’ CONTROLS represent

conceptual models that among other contributions describe the way-of-working

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

105

based on the building blocks, their knowledge and concepts. The REUSE-
ORIENTED BUILDING BLOCKS’ MECHANISMS represent frameworks,
libraries, catalogues and patterns that can be used as they are provided or reused
by instantiation or extension to better satisfy the application’s needs in its
systematic development. Furthermore, we zoom in the proposed reuse-oriented
architecture (Section 5.2) and the life-cycle used to incrementally and
systematically develop intentional-MAS-driven ubiquitous applications (Section

5.3). Finally, Section 5.4 presents some final remarks.

5.1.
Working with Reuse-Oriented Building Blocks

As mentioned, in the Ubiquitous Application Engineering the focus is on the
development with reuse by directly reusing the building blocks as well as by
extending or instantiating them. Only to present some details in this field, we
illustrate — from Section 5.1.1 to Section 5.1.8 — the usage or instantiation or

extension of some building blocks in the Ubiquitous Application Engineering.

5.1.1.
Intentional Modeling Building Block Reuse

In order to model ubiquitous applications by using distributed intentionality, we
suggest the reuse-oriented support centered on the i* Framework. In this field the
main REUSE-ORIENTED BUILDING BLOCK is:

e The Intentional Modeling Building Block that offers abstractions mainly
based on goals, softgoals, beliefs and tasks to facilitate the intentional
modeling by improving — among other contributions — the goal formation,
the like-me recognition and the human practical reasoning specification.
Therefore, the ubiquitous application under analysis is investigated by
identifying its requirements (i.e. ubiquitous requirements and application-
specific requirements). In order to facilitate this elicitation process as well
as the requirements’ intentional modeling, we also provide the association
between some ubiquitous abstractions and the i* abstractions as presented
in Chapter 4 — Section 4.1. Figure 5.2 shows the reuse of the Intentional

Modeling Building Block in a ubiquitous application from the TROPOS’

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

106

Early Requirements discipline — i* Early Requirements Model(s) — to the

TROPOS’ Detailed Design discipline — Detailed Design Requirements

Model(s) based on models evolution.

Intentional Modeling Building Block
<<requirements modeling>>

Reuse-Based Support
<<requirements modeling>>

Intentional Modeling Support
i* Framework Conceptual Model Design Patterns Models
<<technological support>> S patieni22
FIND-A-FRIEND
Strategic Dependency (SD) Model Strategic Rationale (SR) Model <<design pattern>>
<<intentional>> <<intentional>>
[J [J PRIVACY-SENSITIVE ARCHITECTURES
<<design pattern>>
Intentional Models {LIMITEDACCESS TO PERSONAL DATA]
<<design pattern>>
<<Knowledge Base>> (il)
Ubiquity-Based Abstractions & i* Abstractions Association NOTIFICATION ON ACCESS OF PERSONAL DATA
<<ubiquity>> <<design pattern>>
Ubiquity-Based Abstractions i* Abstractions [J
<<ubiquity>> iati <<intentional>> CONTEXT-SENSITIVE /0
CEERRI <<design pattern>>
[uses | extends / instantiates
<<reuse>>
i* Early Requirements Model(s) i* Late Requirements Model(s) i* Architectural Design Model(s) i* Detailed Design Model(s)
[P <ubiquitous-application-speciﬁc>>] <<ubiquitous-application-specific>> <<ubiquitous-application-specific>> <<ubiquitous-application-specific>>
evolves evolves evolves
= = -
Model-driven Devel >

Figure 5.2 - Reuse of the Intentional Modeling Building Block in the Ubiquitous Application
Engineering

5.1.2.
NFR Catalogue Building Block Reuse

In order to provide resources for non-functional requirements elicitation, analysis
and operationalization, we provide the reuse-based support centered on the NFR
Catalogue (Figure 5.3). Based on this catalogue, a relevant REUSE-ORIENTED
BUILDING BLOCK is:

e the NFR Catalogue Building Block that provides SIGs for non-functional
ubiquitous requirements, which can be refined based on the ubiquitous
application’s investigation. This support promotes and facilitates the
model reuse, by also improving the elicitation of non-functional ubiquitous

requirements; the determination of their interdependencies with other

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

107

specified non-functional ubiquitous requirements; and the knowledge of
how to operationalize them with traditional and emergent technologies

(e.g. BDI model and MAS).

NFR Catalogue Building Block
<<nfr requirements>>

Reuse-Based Support
<<nfr requirements>>

[NFRs_Models-Reuse-Based Support]

NFR Catalogue
<<ubiquity>>

[Ubiquity-Based Softgoals Interdependency Graphs)

(Uhiquity-Based NFRs] [NFRs Interdependencies) [NFRs Operationalizationsj

=

SIGs
<<Knowledge Base>>

)

extends [instantiates
<<reuse>>
NFR Catalogue Building Block
<<nfr requirements>>

Reuse-Based Support
<<nfr requirements>>

[NFRs_Models-Reuse-Based Support)

NFR Catalogue
<<ubiquity>> <<ubiquitous-application-specific>>

[Ubiquity-Based & Ubiquitous-Application-Specific Softgoals Interdependency Graphs)

[Ubiquity-Based & Ubiquitous-Application-Specific NFRs]

[Ubiquity-Based & Ubiquitous-Application-Specific NFRs Interdependencies)

)
)

l: Ubiquity-Based & Ubiquitous-Application-Specific NFRs Operationalizations)

&

Ubiquitous-Application-Specific SIGs
<<Knowledge Base>>

Figure 5.3 - Reuse of the NFR Catalogue Building Block in the Ubiquitous Application Engineering

5.1.3.
Integration Building Block Reuse

We also have the Integration Building Block centered on the JADE-LEAP
Platform resources (e.g. Platform Integration Support). In this field, some support
sets (Figure 5.4) that compose this REUSE-ORIENTED BUILDING BLOCK are:

e the MIDP Device Integration Support to configure and deal with the

integration of MIDP devices by considering the ubiquitous application

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

108

under analysis. It deals with the invisibility principle and privacy issues
(e.g. accountability to know who is manipulating the user’s data) by using
the Split Execution Mode. In this mode there is a light behavioral agent —
i.e. JADE-LEAP Agent — inside the device to facilitate the integration
process and to better deal with the accountability issue by, for example,
using the DF Service. This light agent avoids problems with the MIDP
device’s limited capacity as well as the DF Service registers the agent that
manipulates the user’s data with a unique identifier at the Yellow Pages. It
facilitates the agent’s identification and traceability at runtime; and

the PJava Device Integration Support to configure and deal with the
integration of PJava devices by considering the ubiquitous application.
This integration support also respects the invisibility and accountability by

using the Standalone Execution Mode.

[

Integration Building Block
<<integration>>

Reuse-Based Support
<<privacy>> <<device_heterogeneity>> <<integration>>

Behavioral Agent Support

Invisibility-Based Support
<<control>>

[Accountability-Based Support)
(JADE-LEAP Agent) (DF Senice | (split Execution Mode) (standalone Execution Mode |

| |

(Platform Integration Support]

A oxtends [instantiates
<<reuse>>

[

Integration Building Block
<<integration>>

(

<<privacy>> <<device_heterogeneity>> <<integration>>

Reuse-Based Support J

Behavioral Agent Support

Invisibility-Based Support
<<control>>

|

Accountability-Based Support P|'atf?l'm Integtati&?n Support
<<ubiquitous-application-specific>> <<ubiquitous-application-specific>>
Split Execution Mode (mJ
JADE-LEAP Agent] (DF Service
MIDP Device Integration Support Pjava Device Integration Support
<<ubiquitous-application-specific>> <<ubiquitous-application-specific>>

MIDP Devices PJava Devices
<<ubiquitous-application-specific>> <<ubiquitous-application-specific>>

JI [)

Figure 5.4 - Reuse of the Integration Building Block in the Ubiquitous Application Engineering

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

109

5.1.4.
Intentional Agents’ Reasoning Building Block Reuse

Other examples of support sets that also comprise the REUSE-ORIENTED
BUILDING BLOCKS (Figure 5.5), but now mainly centered on the JADEX
Framework, are presented as follows:

o the Autonomous Entity Support. The agents' infra-structure offered by the
autonomous entity-support intends to improve the cognitive capacity of
the application’s agents by using a BDI-based engine; their interoperability
and communication by using ontologies; and, consequently, how they deal
with the non-functional requirements at runtime and how they balance the
invisibility and transparency and personalization and privacy issues; and

e the Ubiquitous-Application-Based Capability, for example, the Privacy-
Aware Capability conceptual model. It suggests the use of capabilities to
improve the agents’ cognitive capacity in dealing with different users,
service providers and their specific business rules. This support — applied
to the ubiquitous application and among other contributions — protects the
users’ personal information related to the ubiquitous application by
respecting the users’ preferences (e.g. I would like to share my personal
information or I am not comfortable in sharing my personal information
with the ubiquitous application). These preferences can be previously
stored into the dynamic database as mandatory, private, or public.
Moreover, they can be dynamically investigated, by consulting the user
“on the fly.” Furthermore, we also have the DF Capability to register and
deregister the agents at the platform with a unique identifier, which can be
used as an accountability resource to attribute responsibilities to the
agents; the Mobility Capability to deal with the intrinsic mobility of the
users by providing location-aware resources to improve the invisibility
into the ubiquitous application; the AMS Capability to automate the
creation of the agents at runtime — invisibility-centered resource — by
maintaining control of the agents’ life-cycle — dependability- & security-
centered resource. It is important to contextualize that the traceability of
the agents’ activities — by manipulating personal information of the users —

is really improved by using this latter resource.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

[

Intentional Agents’ Reasoning Building Block
<<intentional reasoning>>

Reuse-Based Support
f

[<<cognitive pacity>> <<human-p

like-me-recognition>> <<privacy>>]

ical reasoning>> <<g ‘mation>>
i ional agent ing i
Invisibility-Based Support
<<control>>
[Autonomy- Reactivity- Proactivity- & ility-B. d Support J

(__Intentional Multi-Agent Systems Support |

(Agents' Interoperability-Based Supportj [Dependability- Accountability- & Security-Based Support]

[FIPA Standards Ontological Support]

d JADEX Capability

)

(

J (

)

A

(Agents’ Cognitive-Ability-Based Support)

extends / instantiates’
<<reuse>>

BDI Model

(_ Autonomous Entity Support)

‘ JADEX Agent ’

extends / instantiates
<<reuse>>

[DF capability)

[AMS capability]

J

extends / instantiates
<<reuse>>

(Mobility Capability
()

finstantiates

(quuit Application-Based Capabili y)

(

)

extends / instantiates
<<reuse>>

[

Intentional Agents’ Reasoning Building Block
<<intentional reasoning>>

<<cognitive capacity>> <<human-practical reasoning>> <<goal
<<intentional agent reasoning engine>>

Reuse-Based Support
mation>>

like-me-recognition>> <<privacy>>}

Invisibility-Based Support
<<control>>

(Autonomy- Reactivity- Proactivity- bility- & ility-B: d Support]
(Intentional Multi-Agent Systems Support]
(Agents’ Interoperability-Based Support] (D dability- Accour ity- & Security-Based Support]

[FIPA Standards Ontological Supportj

¢

(

JADEX Capability

J

(

)

extends / instantiates

A |

(Agents‘ Cognitive-Ability-Based Supportj

<<reuse>>

extends / instantiates
<<reuse>>

110

PUC-RIo - Certificacdo Digital N° 0711311/CA

AMS Capability
f e c)

DF Capability

extends / instantiates
<<reuse>>

Mobility Capability
extends / instantiates
<<reuse>>

[Autonomous Entity Support |

JADEX Agent
extends / instantiates
T <<r’euse>> Privacy-Aware-Capability
<<ubiquitous-application-specific>>

[Ubiquitous Application Agent |

Figure 5.5 - Reuse of the Intentional Agents’ Reasoning Building Block in the Ubiquitous Application

Engineering

5.1.5.
Fuzzy-Logic-Based Package Reuse

Another example of support set that enhances the REUSE-ORIENTED
BUILDING BLOCKS is centered on a Fuzzy-Logic Library (Figure 5.6). As we

concentrate our efforts on the usage of intentional agents based on the Belief-

Desire-Intention (BDI) model, our approach already contemplates a certain degree

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

111

of cognition. Therefore, it supports the goal formation (Dignum and Conte 1997)
and the like-me recognition (Gordon 2005) driven by the user’s beliefs, desires
and intentions. However, there are interesting ways to improve the human-
practical reasoning (Bratman 1999). In order to deal with this field, we also
developed a reuse-based support — Fuzzy_Logic-Based Support package — focused
on fuzzy-logic-based reasoning. This support is centered on different non-
functional issues (e.g. security and price) and on the usage of a specific fuzzy-
logic library (Bigus and Bigus 2001; Serrano and Lucena 2010a), which can be

extended or instantiated to better attend the ubiquitous application’s issues.

Fuzzy_Logic-Based Support
<<nfrs-based reasoning>>

Reuse-Based Support
<<nfrs-based reasoning>>

Fuzzy-Logic-Library

[Fuzzy-Logic Conditional Rules) (FuzzySets]

Fuuy Varlables

Input Fuzzy Variables Output Fuzzy Variables ’

extends / instantiates
<<reuse>>

[Fuzzy_Logic-Based Support]

<<nfrs-based reasoning>>

Reuse-Based Support
<<nfrs-based reasoning>>

[

Fuzzy-Logic-Library

)

Fuzzy-Logic Conditional Rules

Fuzzy Sets

{<<ubiquitous-appllcation-speciﬁc>>} [<<ubiquituus-application-speciﬁc>>]

Fuzzy Variables
<<ubiquitous-application-specific>>

Input Fuzzy Variables Output Fuzzy Variables ‘

L

Figure 5.6 - Reuse of the Fuzzy-Logic-Based package in the Ubiquitous Application Engineering

The fuzzy variables, fuzzy sets and fuzzy rules are specified by
considering the ubiquitous application under analysis. According to our
experimental research, the application-issues-aware variables, sets and rules
comprise a suitable technological support to improve the agents’ reasoning at
runtime. The intentional agents perform their tasks based on this technological
support by dynamically deciding which is the best way to achieve the delegated
goal. For each agent’s decision, the fuzzy conditional rules are executed at
runtime by considering the context under analysis and the pre-defined fuzzy sets
and fuzzy variables.

Simplifying the process, we can say that an intentional agent — that

represents the user as a personal agent — collaborates with the agents responsible

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

112

for content providers (e.g. images, videos and files) or service providers (e.g.
download service and payment service) in order to obtain information based on
different quality criteria (e.g. security, price and download time issues). The
personal agent analyzes the received information centered on its beliefs base, the
ubiquitous profiles — that contain the user’s preferences (e.g. which quality
criterion is more important for her/him) and privacy policies, the device features,
the network specification and the contract information between the user and the
content provider or the service provider — and by running the fuzzy-logic
conditional rules with the acquired information. Therefore, the decision is
determined by considering, for example, that the security criterion is more
important than the price as well as the price criterion is more important than the
download time. Finally, the personal agent establishes contact with the agent
responsible for the chosen content provider or service provider to receive the
desired content or service. It is also possible to perform adaptations to adequate,
for example, the content according to the ubiquitous profiles. Finally, the adapted

content is provided to the user from her/his device.

5.1.6.
Dynamic Interface Construction Building Block Reuse

An interesting resource of our approach is the Dynamic Interface Construction
Building Block that also composes the REUSE-ORIENTED BUILDING
BLOCKS. It is a reuse-oriented support to deal with the construction of interfaces
by taking into consideration the device features and the user preferences. The
construction is performed by intentional agents “on the fly” centered on the FIPA
Standards Ontological Support. Figure 5.7 shows the use of this building block in
the Ubiquitous Application Engineering. We zoom in the GUI Generic Ontology
of the Domain Engineering of Ubiquitous Applications. In the Ubiquitous
Application Engineering, it is also possible to just reuse the GUI Generic
Ontology as well as the MIDP GUI Ontology as they are defined. Furthermore, if
the application under development demands an ontology with very particular
interface elements — that do not match with the pre-defined interface elements of
the GUI Generic Ontology and/or the MIDP GUI Ontology, it is recommended to

define this specific ontology — GUI Ontology — by constructing its asserted model

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

113

(Protege 2011), then associate this ontology with the GUI Generic Ontology by

using heuristics. Finally, it is necessary to develop a service to adapt the interface

elements of the desire ontology b

Dynamic Interface Construction Building Block
<<dynamic interface construction>>

ased on the heuristics.

R euse- Based Support
|

[<<cognitive capacity>> <<human-p

me-t gniti

<<personalization>> <<agents’ |nter-operab|lny>> <<agents’ communication>>

Invisibility-Based Support
<<control>>

C ization- & Star ization-Based Support)

GUI Generic Ontology
<<ubiquity>>

Interface Elements

((©ntological Java class for Interface Elements)

((Ontology’s Registration Support Based on Behavioral Agents)

((©ntology’s Registration Support Based on Intentional Agents)

[(Ontology Vocabulary for Interface Elements |

(__ontology's Manipulation Support Based on Behavioral Agents)

) C

(__Ontology’s Manipulation Support Based on Intentional Agents)

Ad. iR Sa

uses uses this service to uses
be associated with
Graphical User Interface the MIDP GUI FIPA Standards Ontological Support
<<universal>> Ontology <<MAS-driven>>

4

rorm i LEAP L SL L
Form Radio Button CRavristicn E)) E))
uses this service to Reference Model
be associated with ()
MIDP GUI Ontology the GUI Generic
<<ubiquity>> <<MIDP devices>> Ontology

<<Omitted Part>>

{ Dynamic Interface Construction Building Block J

uses [extends / instantiates

<<dynamic interface construction>> <<reuse>>
Reuse-Based Support
<<cognitive capacity>> <<human-practical reasoning>> <<goal-formation>> <<like-me-recognition>>
<<personalization>> <<agents’ int P y vication>>

Invisibility-Based Support
<<control>>

(Per ization- & Star ization-Based Support |

GUI Generic Ontology
<<ubiquity>>

Interface Elements

((Ontology’s Registration Support Based on Behavioral Agents |

(Ontological Java class for Interface Elements

(o y's Registration Support Based on Intentional Agents |

)
jf)

(Ontology Vocabulary for Interface

J [Ontology’s Manipulation Support Based on Behavioral Agents]

(_ontology’s Manipulation Support Based on Intentional Agents |

uses

Graphical User Interface Bejass

<<universal>>

uses this service to

the GUI Ontology

uses

ociated with [FIPA Standards Ontological Support }

<<MAS-driven>>

[GUI Ontology }
N haort -

‘ Form Radio Button ‘ ot kit Seryice [LEAP Language J ESL Language) :

-)

uses this service to
be associated with
the GUI Generic
Ontology

Reference Model

Interface Elements
<<ubiqui icatic

)

Orrtologlcal Java class for Interface Elements
pecific>>

(ontology’s Registration Support Based on Intentional Agents)

J

j (__Ontology’s Manipulation Support Based on Intentional Agents |

<<ubiquitous-application-specific>>

J

[Ontology Vocabulary for Interface Elements

)

Figure 5.7 - Reuse of the Dynamic Interface Construction Building Block in the Ubiquitous

Application Engineering

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

114

5.1.7.
Ubiquity Issues Building Blocks Reuse

According to our proposal, different ubiquity-based frameworks can be reused to
deal with specific ubiquitous issues, such as content adaptation and context
awareness. This kind of practice can reduce the time spent in the development and
the software engineers’ effort. As presented on Chapter 4, we provide a Ubiquity
Issues Building Blocks composed of a reuse-based support centered on Ubiquity-
Based Frameworks package. It represents another REUSE-ORIENTED
BUILDING BLOCK. Figure 5.8 illustrates the reuse of a specific framework —i.e.
IFCAUC - to deal with content adaptability in ever-changing contexts. This
intentional-MAS-driven framework is offered as an API that can be instantiated or

extended to better attend the ubiquitous application under analysis.

Ubiquity Issues Building Blocks
<<ubiquity>>

Reuse-Based Support
<<ubiquity>>

Ubiquity-Based Frameworks
<<ubiquity>>

Invisibility-Based Support
<<ubiquity>>

[Personalization-Based Support]

(Context-Awareness Support]

(Ubiquitous-Profiles-Aware Support j
[Cuntent Adaptation Framework]

<<IFCAUC>>

extends [instantiates
<<reuse>>

Ubiquity Issues Building Blocks
<<ubiquity>>

Reuse-Based Support
<<ubiquity>>

Ubiquity-Based Frameworks
<<ubiquity>>

Invisibility-Based Support
<<ubiquity>>

(Personalization-Based Support j

(Context-Awareness Support]

[Ubiquitous-Profiles-Aware Supportj

<<IFCAUC>>

Content Adaptation Framework
<<ubiquitous-application-specific>>

Agents’ Strategies for Content Adaptation
<<ubiquitous-application-specific>>

[)

Figure 5.8 - Reuse of the Ubiquity Issues Building Block in the Ubiquitous Application Engineering

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

115

Focusing our attention on plans deliberation, goals, beliefs and events, the
BDI model — used as the main support in the [IFCAUC — is viewed as appropriate
to implement a complex ubiquitous application based on the MAS and Goal-
Orientation paradigms, since it represents the agents’ society as a natural
metaphor for human reasoning. This natural association inspired us to develop a
context-aware infrastructure to improve the content adaptation in ubiquitous
scenarios. According to the ubiquitous application’s issues, the IFCAUC can be
extended or instantiated by, for example, allowing intentional agents to perform
adaptations based on different strategies (e.g. resizing and transcoding). The
IFCAUC agents make their decisions mainly centered on the user profile and the
device profile. Figure 5.9 illustrates both agents’ adaptation strategies using a
pyramid representation and by considering that the desired ubiquitous application
must provide support to audio, image, text and video contents. Moreover, the
application under analysis demands efforts to deal with heterogeneous devices

(e.g. MIDP devices, PJava devices and Jse devices).

Agents’ Main Goal Agents’ Main Goal

User Satisfaction

i i . . i il
; Pjava Medium Resolution / P“‘If"e \
| Device ; | !
1 1
b Y + i v
A fo
!] . .
i o Device Compatibility
MIDP 1 . \
! f \ Low Resolution L
Device v / Profile \\
. 1
| ! |
! ‘\ ," ! \\
T
} i 4 1 \
| 1 1 A
Audio / Image | Text) Video Audio / Image | Text | Video

Figure 5.9 - Agents’ adaptation strategies

In adaptation based on resizing, the agents’ main goal is adapt the content
according to the device screen resolution. MIDP Device, for example, normally
has low memory and processing capacity. Therefore, intentional agents must
adapt the contents in MIDP devices by considering the low resolution need.

In adaptation based on transcoding, the agents’ main goal is to satisfy the
user. However, if it is not possible because of the device features, then the agents
try to achieve their goal by being compatible with the device. Therefore, the
agents adapt the content by converting its type according to: first, the user profile
information (e.g. type desired by the user); and/or alternatively, the device profile

information (e.g. type accepted by the device).

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

116

5.1.8.
Dynamic Database Building Block Reuse

The Dynamic Database Building Block, which enriches the REUSE-ORIENTED
BUILDING BLOCKS in the persistence layer, can be reused by mainly extending
or instantiating the Dynamic Data Model package based on the ubiquitous

application’s issues as presented in Figure 5.10.

Dynamic Database Building Block
<<persistence>>

Reuse-Based Support
<<persistence>>

Invisibility-Based Support
<<persistence>>

Persistence Framework
<<persistence>>
Entity Manager

[Personalization-Based Support]

(

Context Awareness Support]

[Ubiquitous-Profiles-Aware Support]

manipulates Dynamic Data Model

<<model>>

<<Omitted Part>>
Extended Type-Square Architecture

K

WURFL Repository

extends / instantiates
<creuse>>

Dynamic Database Building Block
<<persistence>>

Reuse-Based Support
<<persistence>>

Invisibility-Based Support
<<persistence>>

[Personalization-Based Support J

[Context Awareness Support J

Persistence Framework [Ubiquitous-Profiles-Aware Support]
<<persistence>>

Dynamic Data Model J
pam oclel -

Entity Manager [del

User Profile

Entity Entity-TyPe | _ pevice Profile
<<model>> <<model>>

- Network Profile

Entity-Property [] (] - Contract Profile
<<model>> ‘ ‘

Property Property-Type | _ yserlD
L <<model>> <<model>>
()).

- devicelD
- name

Extended Type-Square Architecture

WURFL Repository

Figure 5.10 - Reuse of the Dynamic Database Building Block in the Ubiquitous Application
Engineering

In order to illustrate the ubiquitous profiles based on the dynamic data
model, we have the User Profile, Device Profile, Network Profile and Contract
Profile as Entity-Type(s) (Figure 5.11). Moreover, for each Entity-Type, we can
specify its attributes. For example, the userID, name, login, password, address
and other attributes as the Property-Type(s) of the User Profile. The Entity and

Property can be instantiated centered on the ubiquitous application under analysis.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

117

ol Entity Entity-Type ID NAME SUPERENTITYTYPE
1 UserProfile 1o] User Profile Entity-Type
) 2 2 DeviceProfie T Device Profile Entity-Type
'
1
o.% o.*
Property Property-Type |: |p NaME TYPE F_ENTITYTYPE
& i 1 uselD Long 1
2 name Sting 1
3 login Sting 1
4 password String 1 User Profile
5 address String 1 Property-Type
6 emai Stiing 1
7 mainQualityCriteria StringVector 1
8 preferedimageFormat Sting 1
9 preferedvideFormat String 1
10 devicelD Long 2
11 name Sting 2
12 model String 2
13 platform Sting 2
14 profiles Stiing 2 Device Profile
15 configuration Stiing 2 Property-Type
16 resolution Sting 2
17 memoryCapacity Integer 2
18 network Sting 2
2

19 compatiblelmageFormats StringVector

Figure 5.11 - Ubiquitous Profiles and the Dynamic Data Model

More details of the REUSE-ORIENTED BUILDING BLOCKS are
provided in Chapter 6, in which they are used to develop a dental clinic ubiquitous
application. Furthermore, these artifacts are reused according to the architecture

presented as follows.

5.2.
Reuse-Oriented Architecture

Summarizing our proposal centered on the development with reuse, we can
consider a reuse-oriented architecture that illustrates the usage or extension or
instantiation of the described building blocks in the Ubiquitous Application
Engineering (Figure 5.12). The architecture is based on the Model-View-
Controller (MVC) architectural pattern, which was firstly proposed in 1978/79 by
Trygve Reenskaug at XEROX PARC. It allowed us to separate the business logic
and the view logic. In the View, we concentrate the interface-based artifacts (e.g.
Dynamic Interface Construction Building Block, Heterogeneous Devices and their
Users). In the Controller, we have the building blocks that are the brain of our
intentional-MAS-driven approach, such as the Integration Building Block and the
Intentional Agents’ Reasoning Building Block. In the Model, we represent the
building blocks as well as some building blocks packages with specific business
rules, such as the Dynamic Database Building Block, the Ubiquity Issues Building
Blocks, the Intentional Modeling Building Block, the BDI Model, and the JADEX

Capability. Moreover, stereotypes are used to facilitate the representation of the

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RiIo - Certificagéo Digital N° 0711311/CA

118

building blocks obtained from the Domain Engineering of Ubiquitous
Applications (ubiquity stereotype) and their specialization in the Ubiquitous

Application Engineering (ubiq

uitous application stereotype).

< I

Dynamic Interface Construction Building Block |
based on Ontologies

Ve N <<ubiquity>>
(Q Q ; PR c—"
‘ @ ’ p / | |GUIGeneric Ontology |
W W‘ & ¥
User1 %

User2

S

User AN ﬁ—)
i D H D i i L " A T
-~ e eles g W uses! | uses/extendsfinstantiates |
T S v ! ! <reuse>> }
= <~ [\ [GuIOntol i
- o Graphical User Interface (GUI) ‘ L oo - !
= e | e<uongy PP)
4% f A
o I
- g
integrates uses 7 . uses| VIEW
v T
» L //' . .
Integration Building Block (i \ FIPA Standards Ontological Support |
b;egd it JADELEAP Platform Intentional Agents' Reasaning Building Block DN .. SO o)
<aubiguity>» based on the JADEX Framework ‘
b
|Platform Integration Support) <55 (DB Agens Ressoning Engire | - D 4
‘ | | B > Fuzzy LogicLibrary)
i RS
extendsfinstantiates ; I extendsfinstantiates //1‘ ! ‘
<<reuse>> | | <<reuse>> S by {)
- ————— R] ! X
i . i & A i] X
MIDS Dgynce\nteﬁmﬂ.onSuppon ‘Pja!a D.evwce Imegral.lon Support // E ! ! L \\\ extends/instantiates
i pp] (zeubig PP Lo } ! \ X N <<TRUSE>>
I |/ uses L ! Y N d
/ /// i ! ! \\\ \\\ Fuz;Y Lgtgic Libralrly ;
J I \ \ <<ubiquitous application>>
PRSI \ \ \ it okl ol D
Catalogue Building Block / i i 1 \\ Y [|
hasecli opthe NFR Framework } { \ N Y
<<ubiquity>> | ! \ \ \
| \ N,
P | | A \ .
Uniguity-Based Softgoals Interdependency Graphs | !] \ \ \
I ! i ! N
i J i l‘ \\ \\\ \\
A | ' : \ \
extendsfinstantiates | i ; ! \ Y
«revse>> | ! ! ' \ \
‘- 1 \ N
NFR Catalogue Support) ! \ \\ N
|ccubiquitous application>> ! | \ \ b
T | I) \ \
I ! \ X \
uses st west uses' s’y CONTROLLER
T
| 1 A 4
(Dynamic Datebase Bui ding Block) (BDiModel | JADEX Copaiftes Intetional odelng Bilig Block |
based on the Type-Square Architecture, the WURFL Repository and the Persistence Framework i bmli & the i* Framework
| <<ubiquity>> i <<ubiquity>>
i
| I
| Persistence Framework fUhiquituus Profiles J

(Entiiq Manager\\

’nynamit DataModel |
\ -

- =
- . [Strategic Dependency Model | | Strategjc Rationale Model
r : ~
| it oot | I
— = | camses ! cresen |
T lEntity, | Entity-Type | ! :
—_— Ll Ly
| Entity-Property | '_(

'Uhiquitous-App\ication-Based Capability)

! ‘/Autonomous Entity Support
$ |k]

1 ‘

(R

.

> >
‘] B q PP g PP -
E j "PruEenxj (Property-Type i\ -
e N[) Ubiquity Issues Building Blocks (intenti i
= ‘ - Intentional Modeling
} | uses | based on Ubiquity-Based Frameworks <<ubigutous application>>
§ Extended Type-Square Arcitecture || [scubiouty> 8 —
T —_— \
T i 4 |Content Adaptation Framework |
extends/instantiates ! (7
<<reuse>> } /‘\ :M‘—l
‘/Dynam ausot (R i
| <<ubigui ... ion>> i . j
‘ij— ~‘ \“J‘ : extendsfinstantiates
3 _//) L e
IFCAUC

<<ubiquitous application>>
|)

| MODEL
Figure 5.12 - The proposed Reuse-Oriented Architecture

Only to exemplify the reuse-oriented architectural representation, we can

take a look on the proposed Dynamic Interface Construction Building Block

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

119

support. We zoom in its GUI Generic Ontology package reused in the Ubiquitous
Application Engineering by generating/developing a specific GUI Ontology based
on the ubiquitous application under analysis. This package helps the software
engineers to dynamically construct interfaces by also adapting them for
heterogeneous devices according to the ubiquitous profiles and other context-
aware information. Then, the adapted interfaces are displayed on the devices’

screen anywhere and at any time they were necessary.

5.3.
Incremental and Systematic Development Life-Cycle

The development of the ubiquitous applications is conducted by following an
incremental and systematic life-cycle centered on the disciplines of the TROPOS
Model-Driven Development (Bertolini et al. 2006). However, we incorporated
some Agile Methods principles (e.g. iterative and incremental model) and some
adjustments to deal with the systematic development of ubiquitous applications
based on reuse in different abstraction levels (e.g. model reuse in higher
abstraction levels and framework reuse in lower abstraction levels). Therefore, we
divided our incremental and systematic development approach in phases with
those disciplines.

In the Requirements Phase, the software engineers perform the Early &
Late Requirements disciplines. In the Design Phase, the software engineers
perform the Architectural & Detailed Design disciplines. In the Code Phase, the
software engineer concerns with the Implementation discipline. Thus, the Test
discipline is performed in the Evaluation Phase with the stakeholders’ interaction
to verify and validate the ubiquitous application or part of it if the application is in
intermediary stage of development. Furthermore, the application will be deployed
and evolved to follow technological trends. The phases are not obligatorily
performed in a sequential order. They can be (and we recommend it) performed in
parallel as expected by an incremental model, presented in Figure 5.13.

Thanks to the incremental nature of our life-cycle, we consider a A (delta)
for each phase in each iteration. Therefore, we have the Requirements Phase (Agr),
the Design Phase (Ap), the Code Phase (Ay) and the Evaluation Phase (At). The A

represents the development complementary part to conclude the phase under

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

120

analysis. For example, the Ag represents the development complementary part to

conclude the Requirements Phase composed of the Early & Late Requirements

disciplines.

irements

Early Requ

Analyze Initial Settings of the Domain Context
Model Initial Settings of the Domain Context

Elicit Initial Settings of the Domain Context

Ubiquitous ApplicationVn Ubiquitous Ubiquitous ,'

Late Requiremen Archi ral Design
ate Requirements Progress through steps chitectural Desigl
Refine by using a Detailed Analysis P T,‘ Specify the System Global Architecture
<<reuses> _ <<reuse>> %
" " L W
Incorporate the Application's Ubiquitous Issues ARn Specify the Agents Capabilities @’
<<reuses> <ereuse>> ()
) .)
Incorporate the Application Specify the Technological Support %

<<reuse>>

Refine the Agents’ Capabilities Modeling
<<reuse>>
Refine the Agents' Plans Modeling
<<reuse>>

efine the Technological Support
<<reuse>>

ubisag pajier=qg

\
<<Deployment>> Application V2 Application V1 “ \g }
1 i |
\\ \‘ \ |
\ A i i /
\ \‘ \AT /
\ATz . e Configure the Development Environment
b AN Ay,
\ ~ >
i \ S - —
Validate \ [P -g_
[
. i
U Verify Reuse in Low Abstraction Level 3
= <ereuses> I
A|2 .- -2
St <]
- 3
Define the Tests to be Performed | Specifi
@ pecific Issues
‘“‘1
% §
% A &
% In__ &
% [¢
Legend: .
Ag complementary requirements
- Early Requirements (ER) - Architectural Design (AD) - Implementation (1) - Test(T) Number of lterations A, complementary design
- Late Requirements (LR) - Detailed Design (DD) <<focus oncode>> <<focus on evaluation>> Version Specification p complementary implementation
<<focus on requirements>> <<focus on design>> 1,2,34.01,0 A; complementary test

Figure 5.13 - Life-cycle: Incremental and Systematic Development (adapted from (Boehm, 1986))

As follows we briefly describe each discipline of the life-cycle. It is

important to consider that our development approach focuses their main

contributions on the disciplines underlined. Therefore, we provide additional

details of them.

Early Requirements (ER) — Figure 5.14

This discipline is centered on TROPOS and comprehends the initial
organization setting of the cognitive domain under analysis. Therefore, it
is necessary to perform this discipline before the introduction of the
application-to-be in the goal-oriented analysis process. The cognitive
domain organization setting is elicited by using different elicitation
techniques (e.g. brainstorming, open/close questionnaires and
observation). Moreover it is modeled and analyzed by using the i* and the

NFR Frameworks. The result is the Early Requirements Models.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

121

Stakeholders Software Engi Team i NFR

Early Requirements Cognitive Domain Issues

a ’

{ Elicit Initial Settings of Cognitive Domain

—

i
i
:] Early
i
i

Elicited Initial Settings Elicitation
Problems
e . ae . Early
Meodel Initial Settings of Cognitive Domain e
1 a-d Problems
Early
Modeled Initial Settings Modeling
Problems

{Analyze Initial Settings of Cognitive Domain

Analyzed Initial Settings _l

+

Early Requirements Models

i

Late Requirements

Figure 5.14 - Early Requirements discipline

Late Requirements (LE) — Figure 5.15

This discipline is also centered on the TROPOS. Here, the application-to-
be is introduced in the domain model. Therefore, it is necessary to specify
the dependencies among the application and other modeled details. These
dependencies represent the “obligations” of the application towards its
environment and actors. In this field, it is recommended the use of the i*
Framework to model the dependencies, the use of the NFR Framework to
model the non-functional requirements and the use of the scenarios
representation and C&L Tool' to compose an adequate view of the
application’s main activities. Thus, the focus is on the application within
its operating environment. Moreover, we propose the introduction of the
application’s ubiquitous issues. At this moment, the ubiquitous issues are
specified and modeled. Furthermore, an internal analysis of this ubiquitous
application is performed by using goal analysis techniques. From the
elicitation to the analysis of the ubiquitous issues, our approach suggests
the reuse of the support provided by the Intentional Building Block and the
NFR Catalogue Building Block. Finally, it is important to perform some

refinements, whose necessity was identified during the detailed analysis

! Cendrios & Léxico (C&L) is an editor of scenarios and lexicon (http://pes.inf.puc-rio.br/cel/)

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

122

activity. The software engineers, for example, can choose SIGs from the
NFR Catalogue with non-functional requirements that match with the
application’s ubiquitous issues and then perform a detailed analysis to
solve conflicts with the stakeholders’ participation. Based on this process,
the ubiquitous application’s requirements are incrementally specified in

each iteration to obtain the Late Requirements Models.

Early Requirements. with the Early i Models

with the Late Requirements Viodels

77y 7y Qe Qea

Stakeholders Software Engineers Team i* NFR

E
= caL Building Block Building Block
Late Requirements Early Requirements Models <<reuse>> <<reuse>>

?

[Incorporate the Applicati E

|
Models with the Incorporated Application
i Problems with
the Application’s
[Inoorporate the Application’s Ubiquitous IssuesD Modeling

<<reuse>>

‘ Problems with
Models considering the ubiquitous Issues the Ubiquitous
‘ Issues’ Modeling

Refine by Using Detailed Analysis
<<reuse>>
I

Refined Models

Late Requirements Models

Architectural Design

Figure 5.15 - Late Requirements discipline

Architectural Design (AD) — Figure 5.16

This discipline is centered on TROPOS. Now, it is important to specify the
global architecture of the ubiquitous applications. Thus, sub-applications
of the application-to-be and their relationships with external sub-
applications and actors must be specified. Moreover, the set of capabilities
of the application are represented by both means-ends goals/tasks
relationship and task/softgoal contributions. Here, it is also recommended
the use of the Intentional Modeling Building Block and the NFR Catalogue
Building Block in order to improve the i* models and the SIGs obtained
from the Early & Late Requirements disciplines. The Catalogue Usage
Method (presented on Section 4.2) can facilitate this process by providing
guidelines to explore, collect, model, operationalize and validate the NFR
Catalogue’s SIGs. Finally, it is recommended to specify the main

technologies (e.g. intentional Multi-Agent Systems and BDI model) that

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

Early Requirements Problems with the Early Requirements Maodels
Late Requirements Problems with the Late Requirements Models

123

will be used throughout the application’s development. The
operationalizations provided by the NFR Catalogue’s SIGs can contribute
to the technological support determination. It is not necessary to specify
the technological support for the ubiquitous concerns, as the software
engineer will have the opportunity to do that in the next discipline,

Detailed Design. The process’s result is the Architectural Design Models.

with the Architectural Design Models

& R 7r_ 7p Quesd Qs

Stakeholders Software. Team ir Kk NFR Intentional Modeling ~ NFR Catalogue
= s Building Block Building Block
Architectural Design Late Requirements Models <<reuse>> <<reuse>>
;
Specify the Application’s Global Architecture
<<reuse>>
T
I
Application’s Global Architecture Modeling Problems with the

Application’s Modeling

. Specify the Agents’ Capabilities
Some suggestions based rronme
on the NFR Catalogue’s

)
1
1
I
i
i
i
i
i
i
i
i
i
i
i
: (s} ions: T
1
1
1
i
i
i
i
1
1
1
i
i
i

BDI Model Agents’ C: ili deli with Agents’
+ Capability Modeling

[Specify the Technological Support D

<<reuse>>

Intentional t T
Multi-Agent Systems l . Ubiquity-Independent
— 5 1

Support D

Architectural Design Models

Detailed Design

Figure 5.16 - Architectural Design discipline

Detailed Design (DD) — Figure 5.17
This discipline is centered on TROPOS. Here, AND-OR decomposition

diagrams are refined in order to complement the specification of the
agents’ capabilities. In other words, this discipline deals with the
specification of the agents' micro level by refining their rationale. We also
propose that the software engineers define the technological support to
deal with ubiquitous issues. In this field, the Integration Building Block
based on the JADE-LEAP Platform, the Intentional Agents’ Reasoning
Building Block based on the JADEX Framework and a Fuzzy Logic
Library, and the Ubiquity Issues Building Blocks based on Ubiquity-based
Frameworks (e.g. IFCAUC) are some examples of reuse-driven support
sets. They provide — among other contributions — conceptual models that

can be reused by facilitating the refinement process (i.e. the specification

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

124

of the agents' micro level). Moreover, the operationalizations specified in
the NFR Catalogue’s SIGs as well as the intentional design patterns
provided by respectively the NFR Catalogue Building Block and the
Intentional Modeling Building Block can contribute to the technological
support determination for ubiquitous issues. The result of this process is

the Detailed Design Models.

Early Requirements

Architectural Design

Stakeholders m

Detailed Design

Some suggestions based on the
NFR Catalogue’s
Operationalizations as well as on
the proposed building blocks:

JADE-LEAP Platform

Ubiquity-Based Support
(e.q. IFCAUC)
5%

Fuzzy Logic Library '

<<reuse>>
Architectural Design Models

with the Early Requirements Models

Problems with the Late Requirements Models

Problems with the Architectural Design Models

Problems with the Detailed Design Models

<<reuse>>

{ Refine Agents’ Capabilities

<<reuse>>

ProblemL with the

Agents’ Capability Refined Modeling

Agents’ Capability
Refined Modeling

s Problems with the
Refine the Agents’ Plans Agents’ Capability
<<reuse>> Refined Mogeling

Agents’ Plan Refined Modeling

Problems with Agents’
Plan Refined Modeling

<<reuse>>

Refine the Technological Support

Ubiquhv-DepencLent Technological
Support Definition

»_» IMBB CB
— T - -
Software Engi Team it NFR Modeling NFR Catalogue JADE-LEAP Platform JADEX Framework Fuzzy Logic Library
Building Block Building Block

IFCAUC

Intogration .n
IBB ¢
e

Building Block
<<reuse>>

Intentional Agents.

Reasoning .

Building Block
<<reuse>>

Ubiquity Issues
Building Block O UIBB ¢
<<reuse>> T

Detailed Design Models

Implementation
Figure 5.17 - Detailed Design discipline

Implementation (I) — Figure 5.18

This discipline is centered on TROPOS. It concerns with the
implementation of the ubiquitous application. In order to facilitate this
process, we offer the association between the higher abstraction levels (i.e.
modeling) and the lower abstraction levels (i.e. code) in our Intentional
Modeling Building Block. In Chapter 4 — Section 4.1, we already explained
the association between some abstractions of intentional ubiquitous
applications and the i* abstractions. This association is a punctual
contribution of our proposal. However, the association between the i*
abstractions and the JADEX BDI model abstractions — presented in Figure

5.19 —is based on (Serrano et al. 2011b). They offer heuristics centered on

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

Early Requirements Problems with the Early Requi Models
Late Requirements
Architectural Design Problems with the Architectural Design Models

Detailed Design e

L

Stakeholders

Implementation

Some suggestions based on the $

125

this association to facilitate the implementation of intentional applications
from their i* modeling. Summarizing the activities of this discipline, we
can focus on: (i) the development environment’s configuration; (ii) the
computational support reuse in low abstraction level — e.g. Intentional
Agents’ Reasoning Building Block based on the JADEX Framework and
the Fuzzy-Logic-Based Support, Dynamic Interface Construction Building
Block based on Ontologies and Dynamic Database Building Block based
on the Type-Square Architecture, the WURFL Repository and a
Persistence Framework — to avoid work replication in the implementation
of commonly found issues; and (iii) the specific issues implementation —
the application-to-be probably have some particular issues that require
special attention. In these specific situations it can be difficult to find ready
and extraordinary solutions. Therefore, the software engineers must
dedicate their time to deal with those issues. The process’s result is the

code of the intentional-MAS-driven ubiquitous application.

Problems with the Late Models

Problems with the Detailed Design Models

Problems with the

ST EM?_T

Software Engineers Team i* Framework Intentional Modeling JADE-LEAP Platform JADEX Framework Fuzzy Logic Library IFCAUC Development FIPA Standards
Building Block Environment ontological Support

<<reuse>>
Persistence Framework %
'

Detailed Design Models

Type-Square
Architecture

proposed building blocks:

WURFL Repository

[Configure the D pment Envi D

JADE-LEAP Platform (jar) K

.) ; Integrati
Configured Environment Problems with the au?lm;aalT:ck

‘
<srouse>> | wmm

JADEX Framework (jar)

P P e

i Environment

Intentional Agents,
Reasoning

Problems with the

Reuse in Low Abstraction Level i

uilding Block

<<reuse>> Environment <<reuse>>

IFCAUC (jar)

(Jar) K Ubiquity Issues

S << >

Problems with feuse
Fuzzy Logic Library Software Reuse

A

Code with Some Functionalities Dynamic Interface

Construction

Building Block

GUI Generic Ontology

|

P

Implement Specific Issues

A

Dynamic Database

P

TTTTITT

Code of the

1

Code with Specific Issues

'
\

MAS-Driven Ubigui

<sreuse>>
Oynamic Database |

Building Block
<<reuse>>

Figure 5.18 - Implementation discipline

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
i Building Block
|
|
|
|
|
|
|
|
|
|
|
|
r
|
|
|
|

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

126

High Abstraction Level - i* Abstractions

I I R e) ey e

o =aEs &3

Low Abstraction Level - JADEX BDI Model Abstractions

eaty Asepunog

S,
"%

B

Jaulejuo)

Figure 5.19 - Association between i* abstractions and JADEX BDI Model abstractions
e Test (T)— Figure 5.20
This discipline concerns with the topics: (i) find and document failures to
avoid their replication; (ii) evaluate the assumptions made in the previous
design disciplines — i.e. if the ubiquitous application works as designed,
using interactions with the users, their satisfaction and other non-
functional requirements as parameters; and (iii) evaluate if the
requirements are correctly implemented. Here, it is important to keep in
mind some questions, such as: (1) How could the ubiquitous application
break? Performing tests (e.g. stress test) are appropriate to evaluate this
kind of efforts; (2) Are there some situations in which the users'
satisfaction degree is low? Tests with the users’ participation can be
applied to this field; (3) Are there specific scenarios in which the
ubiquitous application could fail? Investigate the ubiquitous application
behavior on real environments or simulated ones can be an appropriate
way to analyze when it fails. The Test discipline focuses on the definition
of the tests to be performed; the verification of the ubiquitous application —
e.g. identification of incoherent specifications by re-analyzing the
application’s modeling using the i* Framework and its goals analysis
technique as well as the NFR Framework and its propagation rules —
presented in the last activity of the Catalogue Usage Method (Section 4.2);
and the validation of the ubiquitous application — e.g. identification of
inconsistencies in the ubiquitous application by using specific tests and

tools (e.g. JADEX Control Center?). The process’s result is the ubiquitous

“1,” obtained from “i”

application version iterations of the life-cycle.

? Jadex Control Center (JCC) represents the main access point for all available Jadex runtime
tools. It provides several options to evaluate Java expressions contained in Agent Definition Files.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RiIo - Certificagéo Digital N° 0711311/CA

127

Deployment (D)

This discipline concerns with the implantation of the developed ubiquitous
application. The proposed thesis is not focused on this discipline. We only
represent it into the life-cycle in order to present a complete overview of
the development process — i.e. from the application’s investigation to the
application’s implantation.

Evolution (E)

This discipline concerns with the evolution of the ubiquitous application —
after its deployment. The evolutionary maintainability is particularly
important in applications for ever-changing contexts, such as mobile,
pervasive and ubiquitous context. Again, the proposed thesis is not
focused on this discipline. We only represent it into the life-cycle in order
to present a complete overview of the development process — i.e. from the

application’s investigation to the application’s evolution.

é FEEDBACK
Early Requirements Problems with the Early Requit Models
Late Requirements Problems with the Late Requi Models
Architectural Design Problems with the Architectural Design Models
Detailed Design Problems with the Detailed Design Models
irmplamentation Problems with the Implementation
Problems with the Tests
N
. —
Stakeholders ‘Software Engineers Team i* Framework NFR Framework JADEX Framework Development Test Tools Test Techniques
Test <<goals analysis techniques>> <<propagation rules>> <<JADEX Control Center>> Environment
Code

Ndvaaaad

[Define the Tests to be Performed e
T
[

Set of Defined Tests Test
Redefinition

Need

5 Test
Verify (coneronce) Redefinition
Need
[Functional Requirements Testing |

A

Verified Application Verification Problems

[Non-Functional Requirements Testing 1
Validate (consistence)
AN

Validated Application

Ubiquitous Application Version i

<<obtained from " iterations o the lfe-cyclex> | FEEDBACK

UPDATED VERSION

Deployment UPDATE NEED m

Figure 5.20 - Test discipline

Our idea with the proposed life-cycle model is to deal with the necessity of

immediate results in ubiquitous contexts. The users’ interests in ubiquitous

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

PUC-RIo - Certificacdo Digital N° 0711311/CA

128

contexts as well as their devices, the network support, the services or contents and
other elements are in constant evolution. This intrinsic ever-changing feature of
ubiquitous contexts demands a development approach that quickly presents some
results, which can be evaluated by the users and, if necessary, refined. It
previously alerts about possible errors by avoiding their replications. Moreover, it
helps on the identification of good practices by allowing the reuse of them.
Considering a metaphor, in which a ubiquitous application is a house. The
proposal is not to construct the house (or the ubiquitous application) as a whole
and then show it to the client to know if everything is according to her/his
expectations. Instead, we suggest an incremental construction, in which a room is
constructed by firstly raising a wall. Then it is presented to the client. The
feedback of the client can imply on: (i) discarding undesired practices; (ii)

refining the wall’s construction; and (iii) reusing good practices.

5.4.
Closing Remarks

This Chapter presents our incremental and systematic development for intentional
ubiquitous applications. We zoom in the architecture and the life-cycle of the
development. The architecture is illustrated by using the MVC architectural
pattern and focusing on the reuse of building blocks, obtained from the Domain
Engineering of the Ubiquitous Applications. The life-cycle is represented as a
spiral model by emphasizing the incremental development of ubiquitous
applications — Ubiquitous Application Engineering — based on TROPOS’s
disciplines, which are performed by following a model-driven iterative process.
The Ubiquitous Application Engineering deals with the incremental and
systematic development with reuse. Therefore, our reuse-oriented approach
suggests the construction of intentional ubiquitous applications centered on the
offered building blocks. These building blocks are mainly composed of
conceptual models used as controls in the Ubiquitous Application Engineering;
and frameworks, libraries, catalogues and patterns used as mechanisms in the
Ubiquitous Application Engineering. In the next Chapter, we develop a dental
clinic ubiquitous application based on the proposed reuse-oriented approach for

incremental and systematic development of intentional ubiquitous applications.

DBD
PUC-Rio - Certificação Digital Nº 0711311/CA

