

4 Case Study – the Big Brother Reality Show

4.1 Introduction

We define public, open ended, submission systems the class of software sys-

tems in which the public at large can submit a contribution in the format of a digi-

tal object. Typical examples of such systems are conference management and user

generated content websites, where users can register and submit their contribution

in the format of digital files. Such systems are, undoubtedly, a great improvement

over manual systems that usually require the use of physical media and additional

services, e.g. mail, at a much higher cost.

Recent technological advancements and the popularization of digital media

capturing devices, specially photo and video cameras, have made it possible for

the common citizen to produce multimedia files routinely [BREITMAN 2010].

The YouTube phenomena attest to this fact. Recently, it has been common to find

applications, such as head hunting systems that require video footage in addition

to the candidate’s resume. As a potential drawback of this trend, multimedia files

may require a lot of processing power, to encode, process and compress submis-

sions to some desired standard or file format at the receiver’s end.

Thus, the combination of public, open access systems, that allow users from

around the globe to make submission at very little cost and the fact that these

submissions may very well contain large multimedia files, poses a great challenge

to the conception and design of such systems. Estimating storage space and pro-

cessing power to enable such applications has become harder and demand non-

trivial solutions.

In what follows we argue that Cloud Computing technology provides the

necessary requirements for a viable solution. It provides the necessary infrastruc-

ture to develop submission applications in which both storage and processing

needs can be dimensioned as needed. For this purpose we propose a general

cloud-based architecture for open, public submission of user-generated content.

This paper is organized as follows. Section 4.2 summarizes the major char-

acteristics of cloud computing environments. Section 4.3 introduces a general ar-

chitecture in which to implement scalable submission system applications. Sec-

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 27

tions 4.4 and 4.5 demonstrate the viability of the proposed approach with a case

study. In Section 4.6 we present our concluding remarks.

4.2 Cloud Computing

This section briefly summarizes Cloud Computing aspects relevant to this

paper.

The Cloud can be both infrastructure and software, meaning it can be an ap-

plication that can be accessed through the Web or some servers that can be provi-

sioned exactly when needed. It’s a paradigm of computing in which dynamically

scalable and usually virtualized resources are provided as a service over the Inter-

net.

From the infrastructure point of view there are some interesting aspects in

Cloud Computing [ARMBRUST 2009][VOGELS 2008][MILLER 2009][VOUK

2008]:

• The perception of infinite computing resources available on demand,

thereby eliminating the need for Cloud Computing users to plan far ahead for pro-

visioning;

• The mitigation of an up-front commitment by Cloud users, thereby allow-

ing companies to start small and increase hardware resources only when there is

an increase in their needs;

• The ability to pay for use of computing resources on a short-term basis as

needed (e.g., processors by the hour and storage by the day) and release them as

needed, thereby rewarding conservation by letting machines and storage go when

they are no longer useful [REESE 2009].

There are a few commercial companies, e.g., Amazon, Google, HP, and

IBM that offer Cloud Computing services to the public in general. For the purpos-

es of this paper we’ll focus on Amazon Cloud services, which can be split in dif-

ferent infrastructure services as detailed bellow.

Amazon S3 – Amazon Simple Storage Service is cloud-based persistent

storage and operates independently from other Amazon services. [AWS S3] It can

be used to upload data in the cloud and pull it back out. Its infrastructure is very

primitive when compared to traditional file systems [CHANG

2008][GHEMAWAT 2003].

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 28

Amazon EC2 – Amazon Elastic Compute Cloud is a web service that pro-

vides resizable compute capacity in the cloud. [AWS EC2] It provides an API for

provisioning, managing, and deprovisioning virtual servers inside the Amazon

cloud. It’s the heart of the cloud and allows remote deployment of virtual server

with a single web service call.

Amazon SQS – Amazon Simple Queue Service is a highly scalable, relia-

ble, hosted queue for storing messages as they travel between computers. It can be

used to move data between distributed components of an application that perform

different tasks, without losing messages or requiring the components to be always

available.

Amazon SimpleDB – Amazon SimpleDB is a web service that provides

core database functions such as data indexing and querying in the cloud. It func-

tions as a very simple relational database.

Please refer to [AWS S3][AWS EC2] for more complete descriptions.

4.3 Proposed Architecture

In this section, we describe the proposed architecture for a system to process

user generated content [JENSEN 2008] that must be stored and later reviewed us-

ing a Content Management System. The system should be able to receive video

files encoded in any format, uploaded by users using a web-based application.

The content received is stored in Amazon S3, and for each video received an

input message is written in SQS Queue to instruct EC2 instances to process a new

job. The EC2 job must take care of transcoding the video to a standard format

(mpeg4/h.264/aac) that could be easily reproduced by any video player (e.g. flash

player). To guarantee that our storage can scale horizontally, the output video file

is stored at Amazon S3 once again.

The queue (SQS) is consumed by an EC2 instance that monitors for input

jobs and uses FFmpeg [TOMAR 2006] to do the transcoding. Output video files

are stored in S3 and a new message is written on SQS with data of the job that just

completed.

Figure 4.1 illustrates the basic architecture.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 29

Figure 4.1. Proposed architecture for the public submission system.

We detail the process in the following basic steps:

1. Video submitted by user is stored in Amazon S3;

2. Local server writes the message in the input queue of SQS detail-

ing the job to be done;

3. Local server creates a new EC2 instance to process the job;

4. EC2 instance reads the message from the input queue;

5. Based on the data of the message the input video is retrieved from

S3 and stored locally in the EC2 instance;

6. Video is transcoded by EC2 and the generated output is stored in

S3;

7. EC2 instance writes a message in the output queue describing the

work performed;

8. Confirmation of the work completed is read by the local server

from SQS output queue.

SQS messages use the basic structure format adopted by mail messages and

HTTP headers and defined in RFC-822 [CROCKER 1982]. Input messages are as

follows:

C
loud

Local Machines

Amazon AWS

S3

Central
Server

MySQL
SQS

EC2
1

2

3

5

4

6

7

8

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 30

Figure 4.2. Example of data in the input message used by the application.

Where Bucket and InputKey are the identifiers of the file in the S3 infra-

structure, and OriginalFileName is the source filename. Web services were im-

plemented using the Boto library [GARNAAT 2006].

The output message is defined as:

Figure 4.3. Example of data in the output message used by the application.

Where we also define the hostname of the EC2 instance that processed the

job and the timestamps when the job was received and when it finished.

There should be noted that the use of the queue does not constrain the sys-

tem from processing multiple files simultaneously. The system is capable of re-

ceiving simultaneous files from different users, process and upload them to S3.

Each process will have its own job messages associated in the queue. The only

limitation regarding multiple file processing will be the upload bandwidth while

sending the files to the cloud infrastructure (bandwidth will be shared).

The EC2 instance that is launched uses a specific Amazon Machine Image

(AMI) created with all the dependencies necessary to process the video. That in-

cludes an updated version of the Linux kernel, git to retrieve the latest source code

available for this framework, python and the FFmpeg software, which does the

actual video transcoding.

Once the AMI image is instantiated it reads a configuration file that keeps

parameters as:

• FFmpeg command line and arguments;

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 31

• Maximum processing time before marking the job as dead;

• Input queue name to read SQS messages;

• Output queue name to store SQS messages;

• Maximum number of retries in case of error;

• Notification e-mail (for debugging purposes);

• Python class to be invoked for the processing.

The configuration file is shown in figure 4.4.

Figure 4.4. Configuration file for EC2 instance.

4.4 Case Study

The Brazilian Big Brother reality show is broadcasted by free-to-air TV

network with an audience of more than fifty million people simultaneously. The

idea behind this reality show is to portray the life of 16 random anonymous people

while living together under the same roof, for a total period of three months. They

are isolated from the outside world but are continuously monitored by television

cameras. The housemates try to win a cash prize by avoiding periodic evictions

from the house.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 32

The application process to participate in the reality show is open to any resi-

dent in the country, and usually requires that candidates send a videotape (by

mail) with a small video clip introducing them. In the last edition (2009) partici-

pants were also required to create a profile in a social network web site.

With technological advances the application process evolved from sending a

videotape by mail to uploading a digital video using the Internet. Due to legal rea-

sons, videos can not be hosted in websites such as YouTube or Vimeo. Applicants

are allowed to send videos in the video format of their choice. These must be

stored until the end of the selection process (three months). All the videos need to

be transcoded to a standard format, so that the production team is spared from the

hassle of having to deal with a plethora of video formats and different codecs.

The system should be able to receive a very large number of videos during

the three-month application process. With the new digital process it is expected

that more than 200,000 videos, about 60% of the total submission is uploaded dur-

ing the last week before the deadline.

A few specific characteristics leverage the use of Cloud Computer architec-

ture for this project in particular:

• Uncertainty in how much storage and processing capacity will be needed;

• Resources will be needed during the application and selection processes

only. After this period they can free the resources;

• Few but extreme high peak situations where the infrastructure will need to

scale up – 60% of the videos are expected to be sent in the last week.

The proposed architecture uses the cloud to store and process all this con-

tent, and to provide storage availability and scale resources as needed.

4.5 User Generated Content Architecture

After the text edit has been completed, the paper is ready for the template.

Duplicate the template file by using the Save As command, and use the naming

convention prescribed by your conference for the name of your paper. In this new-

ly created file, highlight all of the contents and import your prepared text file. You

are now ready to style your paper.

In this section we describe the already existing infrastructure to support the

reality show. The cloud architecture described in section 3 is a new component of

this existing system.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 33

To start the process the user must go to the reality show’s website [BBB 10]

and create a user account.

Figure 4.5. Web site for the Big Brother reality show.

Once logged in, some meta-data information related to the video must be

filled in, as shown in figure 4.6.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 34

Figure 4.6. Meta-data information for the UGC.

The User Generated Content architecture is illustrated in the figure bellow.

Figure 4.7. User generated content architecture.

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 35

In the following paragraphs we describe how the system used to work be-

fore the cloud component was added.

Once the received the full raw HTTP POST used to send both video and its

meta-data (video title, description and user information) is stored in the local file

system. This job is done by an apache module called ModUpload.

A daemon monitors the local file system for recent uploads and parses the

raw HTTP POST data separating metadata information from the video file.

Metadata is then written in a local MySQL database and the video file is stored in

a temporary local storage.

These three steps are represented in figure 5 by the green boxes (ModU-

pload, Parse and DB).

The video would then be transcoded by a local transcoding farm and stored

in the local final storage using MogileFS.

With the integration of the Cloud component, as described in section 3,

there’s no longer the need to have a local storage and a local transcoding server

farm. As already described in the previous sections the content is stored using

Amazon S3 and transcoded using EC2 instances.

4.6 Conclusion

The main contribution of the paper is twofold. Firstly we characterized a

class of systems that pose great design and implementation challenges, thus make

them excellent candidates for Cloud Computing solutions. Among those challeng-

es are the near impossibility of estimating total number of submissions, storage

required, and the punctual needs for a large amounts of processing power. The

second contribution of the paper is describing a scalable architecture, and imple-

mentation, that can be generalized to similar web-based, public submission sys-

tems.

If we were to calculate how much money would be spent to process 100,000

videos with an average size of 15MB, using the small EC2 instance we can pro-

cess a video in 50% real time, that would require 834 hours of CPU running.

Storage 1.5 TB U$0.15 / GB U$ 225.00

Transfer 1.5 GB U$0.14 / GB U$ 210.00

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

 36

Messages 200,000
U$0.01 / 10,000

requests
U$ 0.20

Computer Resources 834 hours U$0.085 / hour U$ 70.90

Total U$ 506.10

Table 4.1. Cost analysis of transcoding solution in the Cloud for 100,000 videos.

A total of U$506.10 for transcoding and storing 100,000 videos – that’s not

even a penny for each video.

Adding to that the fact that no up-front investment and deployment of infra-

structure was needed, neither a precise estimation on the expected load of the sys-

tem we can conclude that Cloud Computing is an excellent solution in this specif-

ic scenario. It is important to remark that economical viability of the proposed ar-

chitecture is such that enables it to quickly deploy at great reduction of the TCO,

typical of Cloud Computing implementation [WALKER 2009].

DBD
PUC-Rio - Certificação Digital Nº 0721336/CA

