
 

2 
Proof Compression 

Proofs in logic can become very big and complex. The existing theorem 

provers and theoretical techniques are tree-oriented. They can only deal with 

proofs in a tree-structure. Such approach leads some derivations to high 

complexity. 

Recent works [4], [12] have implemented ways to compress logical proofs. 

Some of these approaches are based on circuit-structures. For these new 

approaches, there is no known automatic theorem prover. This work presents a 

graph-oriented generical theorem prover. It can handle the new circuit-oriented 

systems and the tree-oriented techniques as well. 

 

2.1. 
Sequent Calculus SEQ0 

As presented in [12] and [8] cfr. Chapter 5, SEQ0 is defined bellow. The 

system is also known as Schütte-Rasiowa-Sikorski-Tait as well as one sided 

system sequent calculus. It is a form of sequent calculus for propositional logic. 

 

2.1.1. 
Syntax 

1. Propositional variables: ��, ��, … ��, … 

2. Boolean connectives: ∨,∧, ¬ (binary positive or and and; unary atomic 

negation). 

3. Literals: �� , ¬�� (variables and negated variables). 

4. Formulas: 
, �, … 

Recursively defined: 

If it is literal, it is formula. 

If F and G are formulas, then � ∨ 
 and � ∧ 
 are formulas. 

5. General negation: �� 
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SEQ0 extends atomic negation onto arbitrary formulas by familiar De Morgan 

clauses: 

 ��� ≔ ¬�� 
 ¬������� ≔ �� 
 � ∨ 
������� ≔ �� ∧ 
�  
 � ∧ 
������� ≔ �� ∨ 
�  

6. Sequents: �Γ, Σ, Δ, … |Γ = ��, ��, … �� (finite list of formulas). 

If the equivalent formula Γ� ≔ �� ∨ �� ∨ … �� is valid in propositional logic, 

then Γ is valid. 

 

2.1.2. 
Axioms and rules 

All axioms and rules are exposed modulo permutation of/in sequents. 

1. Axioms:  

Γ, ��, ¬�� 
2. Disjunction rule �: 

Γ, �, 

Γ, � ∨ 
 � 

3. Conjunction rule �: 

Γ, �  Γ, 

Γ, � ∧ 
 � 

� ∨ 
 and � ∧ 
 are called the main formula of � and � exposed, respectively. 

Formulas occurring in Γ are called minor formulas (more precisely: minor 

formula-occurrences). 

 

2.1.3. 
Auxiliary Rules 

These rules do not belong to SEQ0. 

1. Cut rule ���: 

Γ,   Γ,  �
Γ ��� 

  and  � are called cut formulas of ��� exposed; formulas occurring in Γ are 

called minor. ��� instances whose cut formulas are literals are called atomic 

cuts. 
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2. Weakened substitution rule !": 

Γ
#$Γ%, Σ !" 

For any substitution #: '()*(+,-. → �0)12,(. and uniquely determined 

homomorphic extension #: 3-42-56./�0)12,(. → 3-42-56./�0)12,(.. Σ is 

optional, when it is not present, the rule is a substitution. #  can be such that 

#$Γ% = Γ, in this case, the rule is a weakening. If both exceptions occur, it is a 

repetition. 

 

For any rule 
89,8:,…8;

8  and * = 1,2, … , >, Δ? and Δ are called premise and 

conclusion, respectively. The pair is abbreviate by Δ? ↣ Δ. The entire rule is 

designated analogously e.g. by 

Δ�Δ�⋮ΔB
↣ Δ. 

 

2.1.4. 
Tree-structured deductions 

Let Γ be any given sequent. A tree-structured deduction C of Γ is a finite sequent 

tree whose bottom vertex (called root) is Γ, the highest vertices (called leaves) are 

axioms, and except for the leaves, every vertex is the conclusion of an instance of 

a rule of inference in SEQ0 whose premises are upper neighbors of the conclusion. 

If two vertices are in the intersection of two given paths, then so is every vertex 

that lies between them. 

 

2.1.5. 
Circuit-structured derivations 

Let Γ be any given sequent. A circuit-structured deduction C of Γ is a finite rooted 

sequent circuit, i.e. simple directed acyclic graph (DAG), whose vertices are 

labeled by sequents, Γ being the label of the root, that satisfies all conditions of 

previous definition; it is understood that premises are sources going to the 

conclusions. Every tree-structured deduction is a circuit-structured one.  
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A following piece of circuit-structured deduction from Γ, F, G, H to Γ, GHF ∨
$G ∨ H%I ∧ H$F ∨ H% ∨ GIJ fails to satisfy the tree intersection property. 

Γ, F, G, HΓ, F, G ∨ H �
Γ, F ∨ $G ∨ H% �  

Γ, F, H, GΓ, F ∨ H, G �
Γ, $F ∨ H% ∨ G �

Γ, GHF ∨ $G ∨ H%I ∧ H$F ∨ H% ∨ GIJ K 
 

Γ, F, G, H↣�
↣�

Γ, F, G ∨ HΓ, F ∨ H, G ↣�
↣�

Γ, F ∨ $G ∨ H%
Γ, $F ∨ H% ∨ G ↣� Γ, GHF ∨ $G ∨ H%I

∧ H$F ∨ H% ∨ GIJ 

 

Γ, F, G, H by disjunction leads to Γ, F, G ∨ H and Γ, F ∨ H, G. Applying 

disjunction again leads respectively to Γ, F ∨ $G ∨ H% and Γ, $F ∨ H% ∨ G; which 

are premises to the conjunction rule that leads to the consequent Γ, GHF ∨
$G ∨ H%I ∧ H$F ∨ H% ∨ GIJ. 

The two representations are valid. The first one is the default way to 

visualize the proof. Premises and consequents are separated by a horizontal line 

where the premises are seen over the line and the consequents are below the line. 

The last representation is less seen. It represents the proof in a circuit 

representation. This representation illustrates better the advantage of circuits over 

trees and the way a circuit is stored in a memory, using a data structure. 

In the example, using circuit structured derivation; the sequent Γ, F, G, H is 

not repeated as it would in a tree-structured proof. Instead, when a rule leads to 

the same sequent, it short-circuits to it. The use of this short-circuiting per see 

represents a proof contraction. 

The contraction is a general result. It can be accomplished by different 

implementations. One flavor of implementation might short-circuit the proof 

while applying the rule and identifying an existing premise. Another approach is 

the theorem prover that searches the proof after applying the deduction rules. 

Circuit-structured weakening rule alone can compress deductions, as shown 

in the example bellow. 
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 δ�⇓Γ, F
 

δ�⇓Γ, F, GΓ, F ∨ G �
Γ, F ∧ $F ∨ G% N 

 

δ� ⟹ Γ, F↣ Γ, F, G ↣�
↣� Γ, F ∨ G ↣ Γ, F ∧ $F ∨ G% 

  

Γ, F, G by weakening leads to Γ, F; which is one of the premises of the 

conjunction rule applied in the example. The circuit structured weakening makes 

the path Γ, F ↣ Γ, F, G to that same sequent Γ, F of the path Γ, F ↣ Γ, F ∧ $F ∨ G%. 
 

2.1.6. 
Properties 

Let C be a deduction (these definition holds for both circuit-structured and tree-

structured deductions). 

1. Size .$C% is the total number of symbols. The size of a sequent is the total 

number of symbols occurring on it. 

2. Weight w$C% is the total number of vertices. 

3. Height h$C% is the maximal path length. 

4. Boolean complexity of a given formula is 1 + total number of positive 

connectives (connectives that are not negation (¬)) occurring in it. 

5. Cut degree cdg$C% is the maximal boolean complexity of cut formulas 

occurring in C. 

 

2.1.7. 
Completeness and admissibility 

The following theorems are stated in [12] and are stated here in order to 

provide self containeress. 

Theorem I A given sequent Γ is valid iff any (hence both) of the following two 

conditions holds. 

1. Γ has a tree-structured deduction in SEQ0. 

2. Γ has a circuit-structured deduction in SEQ0. 
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In particular, since any formula is a sequent, a given formula F is valid in 

propositional logic iff it has a tree-structured deduction in SEQ0 and iff it has a 

circuit structured deduction in SEQ0. 

 

Proof 1 is well-known. 2 easily follows from 1. 

 

Theorem II The cut rule is admissible in SEQ0. That is if Γ,C and Γ, ¬  are 

both tree a/o circuit deducible in SEQ0, then so is Γ. 

 

Proof This readily follows from previous theorem. It says that Γ,C and Γ, ¬  are 

both deducible in SEQ0 iff HΓ� ∨ CI  ∧  HΓ� ∨ ¬ I is valid in propositional logic. 

This obviously yelds the result, since HΓ� ∨ CI  ∧  HΓ� ∨ ¬ I is logically equivalent 

to Γ�. Q.E.D. 

 

Theorem III The weakened substitution rule is admissible in SEQ0. That is for 

any sequent Γ and Σ, any variable substitution #, if Γ is tree a/o circuit deducible 

in SEQ0, then so is #$Γ%, Σ. Hence extending SEQ0 by cut rule a/o weakened 

substitution rule does not extend the set of tree a/o circuit deducible sequents. 

 

Proof Suppose that Γ = ��, ��, … �� is deducible in SEQ0. Hence by Theorem I, 

Γ� = �� ∨ �� ∨ … �� is valid in propositional logic. Moreover, by definition, 

validity is preserved under arbitrary assignments of formulas for variables, and 

hence #$��% ∨ #$��% ∨ … #$��% is valid as well, and obviously so is weakening 

#$��% ∨ #$��% ∨ … #$��% ∨ 
� ∨ 
� ∨ … 
Q, where Σ = 
� ∨ 
� ∨ … 
Q. From 

this, by Theorem I, we arrive at the required deducibility of #$Γ%, Σ. Q.E.D. 
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2.2. 
Proof Compression Example 

A proof compression example from [12] based on weakening a tree-

structured proof into a circuit-structured is presented. The compression is from a 

proof which size was exponential $2�R� − 1% to a proof of linear size $3$> −
2% + 5%. The presented proof is for the equation Γ�; as follows. 

ΓW ≔ ��� , �� ∧ ��� , �� ∧ �X� , … �WY� ∧ �W���, �W 

 

ΓW is obtained from a more intuitive equation. Let: 


� ≔ �� → �� 

X ≔ A� ∧ $�� → �X% 

⋮ 

[R� ≔ AW ∧ $�W → �WR�% 

⋮ 
 

And: 

�� ≔ $�� → ��% 
�� ≔ A� → $�� → ��% 
�X ≔ AX → $�� → �X% 

⋮ 
�[R� ≔ AWR� → $�� → �WR�% 

⋮ 
 

It is trivial to understand that �[ is a tautology. Γ[ is the canonical sequent 

form of �[. It is easily obtained as follows: ( → + is substituted by (� ∨ +. 

�[ = H�� → �� ∧ $�� → �X% ∧ … $�WY� → �W%I → $�� → �W% 
�[ = ¬$��� ∨ �� ∧ ��� ∨ �X ∧ … �WY������� ∨ �W% ∨ $��� ∨ �W% 

 

Applying De Morgan: 

�[ = �� ∧ ��� ∨ �� ∧ �X� ∨ … �WY� ∧ �W��� ∨ ��� ∨ �W 

 

Replacing “∨” by “,”: 

�[ = ��� , �� ∧ ��� , �� ∧ �X� , … �WY� ∧ �W���, �W = ΓW 
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The comparison is made between deductions in SEQ0 and in SEQ0+!". As 

shown in 2.1, the first is tree-structured and the second is circuit structured. The 

sizes of the deductions of Γ�; are 2�R� − 1 in SEQ0 and $3$> − 2% + 5% in 

SEQ0+!". SEQ0+��� can compress the proof of Γ�; to polynomial weight. 

However, SEQ0+!" provides a linear solution which is cutfree, a much 

interesting result. 

 

Theorem IV Given ΓW ≔ ��� , �� ∧ ��� , �� ∧ �X� , … �WY� ∧ �W���, �W; ∀C$ΓW%|C ∈
3^_` �; a$C% ≥ 25 − 1. 

 

Proof The weight (w) of a proof is, by 2.1.6, the number of vertices in it. 

C ∈ 3^_`, thus it is tree-structured. Let Σ be any sequent obtained from ΓW by 

rewriting arbitrary conjunctions c ∧ d to c or to y. 

Clearly any Σ contains at least one pair of literals �?, �e�  and the 

corresponding chain (possibly empty) of conjunctions of either of these four 

forms:  

�? ∧ �fR������, … �gY� ∧ �e�$i ≤ j% 
�? ∧ �fY������, … �gR� ∧ �e�$i ≥ j% 
�g ∧ �eR������, … �?Y� ∧ �f�$i ≤ j% 
�g ∧ �eY������, … �?R� ∧ �f�$i ≥ j% 

 

Let > ≔ 1*5$1 + |* − k|%; given Cl = C$Σ% ∈ 3^_`. By induction on 

ℎ$C′%, having arrived at a conjunction �o ∧ �p���|q, 4 ∈ r*, ks ∧ |q − 4| = 1�, it is 

necessary to split it. Without loss of generality assume * ≤ q < q + 1 = 4 ≤ k. 
And find: 

a$C′% = 1 + r2$1 + q − *% − 1s + r2$1 + k − 4% − 1s 
a$C′% = 1 + 2$1 + q − *% − 1 + 2$1 + k − q − 1% − 1 

a$C′% = 2$1 + k − *% − 1 

a$C′% ≥ 2> − 1 

 

In particular, for Σ = ΓW, a$C% ≥ 25 − 1. Q.E.D. 
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Corollary Any tree-structured deduction of Γ�; in SEQ0 has at least 2�R� − 1 

vertices. 

 

 

Theorem V Given ΓW ≔ ��� , �� ∧ ��� , �� ∧ �X� , … �WY� ∧ �W���, �W; ∃CHΓ�;I|C ∈
3^_` + !"�; a$C% = v 2> + 1 ⟸ > ≤ 23$> − 2% + 5 ⟸ > > 2�. 
 

Proof The weight (w) of a proof is, by 2.1.6, the number of vertices in it. 

C ∈ 3^_` + !", thus it is circuit-structured. If k=1,2; the proof is trivial and 

tree-structured, the weight is given with no difficulties. For > > 2, the deduction 

must be exhibited: 

Given #: '()*(+,-. → y*6-)(,.: 
#$�?% ≔ z��;{9YfR������������� ⇐ 1 ≤ * ≤ 2�Y�

�� ⇐ * > 2�Y� � 
 

In order to prove Γ�; = ��� , �� ∧ ��� , �� ∧ �X� , … ��;Y� ∧ ��;����, ��;, the 

conjunction rule (2.1.2) is the first one applied, leading to: 

Γ�;{9 , Π  Δ, Γ�;{9∗
Γ�; � 

Γ�;{9 = ��� , �� ∧ ��� , �� ∧ �X� , … ��;{9Y� ∧ ��;{9�������, ��;{9 

Π = ��;{9R� ∧ ��;{9R����������, ��;{9R� ∧ ��;{9RX���������, … ��;{9 ∧ ��;����, ��; 
 

Δ = ��� , �� ∧ ��� , �� ∧ �X� , … ��;{9Y� ∧ ��;{9������� 
Γ�;{9∗ = ��;{9R����������, ��;{9R� ∧ ��;{9R����������, ��;{9R� ∧ ��;{9RX���������, … ��;{9 ∧ ��;����, ��; 

 

Substituting Γ�;{9∗  by #HΓ�;{9I, !" rule is applied: 

δ′ ⟹ Γ�;{9↣↣
Γ�;{9 , Π

Δ, #HΓ�;{9I ↣ Γ�; 

 

Let: 

a$C% = �$>% = v 2> + 1 ⟸ > ≤ 23$> − 2% + 5 ⟸ > > 2� 
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Supposing δl ∈ 3^_` + !" (a circuit structured deduction of Γ�;{9) and 

a$C′% = �$> − 1%; leads, by induction on k, to a$C% = �$> − 1% + 3 = �$>%. 
Q.E.D. 

The presented results are not original, come from [12]. 
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