
3 

State-of-the-art 

For problem solving, formal validation of systems, as well educational 

purposes, it is convenient the use of proof assistants. There are two main 

approaches: the automatic proof assistants and the interactive proof assistants. 

The intelligence in problem solving is fully concentrated in the specification 

phase of the set of sentences that represent the problem. From this point, it is 

possible to submit them to the theorem prover, which would give the derivation 

that shows the correct answer, if any. It is important to notice that an automatic 

theorem prover, in most cases, has a set of heuristics, literally speaking, to 

enhance performance. Theorem proving in propositional logic is a problem which 

the best known algorithm is exponential time. That is why heuristics are needed. 

[17] cfr. section 7.1. 

For learning and teaching formal reasoning, interactive proof assistants are 

very useful. Logic students and researchers can use the logic definition language 

of a proof assistant to try different logics with hands on. Beginners can go forth 

and backward, step by step, in order to understand the way to apply the inference 

rules on formulae. 

Neither automatic nor interactive proof assistants reach usability ideal. A 

third approach would be The Saint Thomas Aquinas Machine, which is semi-

automatic. An automatic theorem prover, that asks for user interaction only in the 

most difficult steps. The prover accepts descriptions of logics, being able to 

support different logics. Each logic description defines in which cases a decision 

is needed. The machine’s architecture supports software agent users making the 

decisions. 

The Saint Thomas Aquinas Machine is a virtual machine that executes code 

written in an assembly language. Any theorem prover for any logic and deduction 

system can be written. In order to help developers, an upper level language was 

defined. A compiler for the upper level language is also provided. 

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA



State-of-the-art 23 

 

Theorem proving is already an explored area. Some theoretical and practical 

advances have been made. The logic and formal methods community counts with 

many theorem provers. 

Jape [14] for example, takes a description of a logic as a system of inference 

rules, and supports the development of proofs in that logic. It has a tactic language 

which is used to control the display of proofs and to perform simple searches. 

Significant human effort is needed for simple proofs. Even trivial goals require 

users to specify rules and tactics. Large proofs are a problem consequently. 

Isabelle [13] also accepts the description of different logics and deduction 

systems. Logics are formulated with a meta logic. Isabelle has a language to 

instantiate deduction systems. It is a very flexible approach. However, not every 

deduction system can be naturally instantiated for it. Isabelle is based on tree-

structured deductions. Systems like SEQ0+�� (section 2) cannot be instantiated 

for it. Necessarily, some proofs in Isabelle are much bigger than they should be. 

Another popular mechanized formal method is PVS [21]. PVS is distributed 

with lots of tools to aid the description of deduction systems. Its interactive 

theorem prover supports the use of several decision procedures. Although its 

language seems to support many deduction systems; internally, it makes all the 

proofs as a sequent calculus. This limitation is overcome by the presented 

approach. 

The Cathedral Theorem Proving Platform is graph-based. The formulas and 

proofs are represented on the machine as graphs. The deduction system is 

specified as graph transformations. It represents a new way to make automatic 

theorem provers. With it, it is possible to describe systems that support the new 

requisites that arouse from theoretical studies (presented in section 2 and [4]). 

The presented theorem proving platform supports strategies. Decision 

making is done through a defined protocol. While proving theorems, the process 

can be interrupted in order to delegate decisions to an external agent. The proof 

process is designed as a goal achieving process. 

 

DBD
PUC-Rio - Certificação Digital Nº 0611892/CA




