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Abstract

Pires Alves, João Antônio; Sampaio Filho, Rubens (Advisor). A
deterministic and stochastic analysis of wind turbines.
Rio de Janeiro, 2016. 172p. Doctoral Thesis — Departamento de
Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

This thesis presents a dynamic analysis of a three-blade wind turbine with

tubular cross section under deterministic and stochastic concentrated and

distributed loads including those caused by wind and by sea currents.

Variations in soil conditions are allowed, being modeled as linear axial and

torsional springs installed at the base of the tower. The random loading is

due to the action of the wind on the turbine blades. The symmetries involved

allow the tower to be modeled as having four separated and superimposed

structural behaviors: a beaming spatial (lateral motion), a shaft (torsional)

motion and a bar (axial) motion. Finite elements are used for approximating

the dynamic of the tower and then a reduced model is constructed using

a basis of finite dimension of the structure eigenvectors. The other turbine

components, namely, the nacelle, the shaft and the blades are modeled as

rigid bodies whose links are imposed by constraints functions. An algorithm

based on Newmark method was developed to integrate the system of

equations in time. Velocities, accelerations, forces and torques as well as

the resulting stresses are obtained for several configurations.

Keywords
Dynamics; Random loads; Flexible structures; Wind turbines.
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Resumo

Pires Alves, João Antônio; Sampaio Filho, Rubens. Uma análise
determińıstica e estocástica de turbinas eólicas. Rio de Ja-
neiro, 2016. 172p. Tese de Doutorado — Departamento de Engenha-
ria Mecânica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

Este trabalho apresenta uma análise dinâmica de uma turbina eólica

com torre tubular e com rotor de três pás sob carregamentos determińısticos

e estocásticos, concentrados e distribúıdos, dentre eles os provocados pelo

vento e por correntes marinhas. Variações nas condições do solo são per-

mitidas sendo simuladas como molas axiais e torcionais lineares instaladas

na base da torre. Os carregamentos aleatórios são devidos à ação do vento

sobre as pás da turbina. As simetrias envolvidas permitem que a torre seja

modelada como quatro elementos estruturais distintos e superpostos: uma

viga com movimento espacial (dois movimentos laterais independentes), um

eixo (movimento de torção) e uma barra (movimento axial). Elementos fi-

nitos são utilizados para a aproximação da dinâmica da torre, sendo então

constrúıdo um modelo reduzido, utilizando uma base de dimensão finita

com autovetores da estrutura. Os demais componentes da turbina, nacele,

eixo e pás são modelados como corpos ŕıgidos. Todos os componentes são

agrupados e para modelar seus v́ınculos são impostas equações de restri-

ção. Um algoritmo baseado no método de Newmark foi desenvolvido para

integrar o sistema de equações no tempo. Velocidades, acelerações, forças e

torques são obtidos para diversas configurações.

Palavras–chave
Dinâmica; Carregamento randômico; Estruturas flex́ıveis; Tur-

binas eólicas.
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...Yes, and how many times can a man turn
his head
And pretend that he just doesn’t see?
The answer, my friend, is blowin’ in the wind
The answer is blowin’ in the wind...

Bob Dylan, Blowin’ in the wind.
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1
Introduction

The proposal of this work is to study the dynamic behavior of a horizon-

tal three-bladed wind turbine (HAWT), considering both deterministic and

stochastic loading and to contribute with an algorithm for wind turbine eval-

uations using multi-body approximation. Two types of loading are possible:

concentrated forces and torques (deterministic and stochastic), which, in a

simplified way, simulates the wind and deterministic water loading. Although

simplified, it is sufficiently comprehensive so that it can be a good basis for

further studies and improvements aiming the understanding and development

of such devices. Wind turbines are seemingly simple at a first glance, but are

indeed challenging from the stand point of engineering. Considering the load-

ing, for example, the action of the wind is far from being simple as it changes

in intensity and direction at random. Considering the instantaneous variations

of the wind (originated from the turbulence near the blades), it is known that

its assessment is highly complex and crucial for predicting the life of various

components of the system, especially the rotor and blades. So, in general, the

action of the wind on the blades (and also on the tower and nacelle) is random

and can be modeled as a set of stochastic processes. The action of wind on the

blades causes twisting and bending. That loads are transmitted through the

shaft to engine and to structure and also has a random nature. Besides, when

the turbine is installed offshore the action of the tides, currents and waves load

the tower and contribute to the complexity of the analysis. This is an ancient

idea that still keeps challenging nowadays.

In order to achieve the purpose, in Chapter 2, some historical and general

aspects on wind turbines are explored together with a bibliographic revision.

The general dynamic formulation of rigid and flexible bodies is discussed in

Chapter 3 as the base to formulate the whole turbine. The tower is considered a

flexible tube, then, a general model for its structural analysis is obtained, using

variational formulation and, then, the dynamics is approximated using the

eigenvectors of the structure. Details of how the bodies are assembled imposing

constraint functions are also discussed there, as well as the strategy for finding

an approximating solution. Chapter 4 presents the models for deterministic

and random wind and water forces that act on the turbine. Some aerodynamics

related to the interaction between wind and blade are discusses in detail.

In Chapter 5, the results for some simulations are presented and dis-

cussed. In Chapter 6, the conclusions about the work are presented.
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2
Wind energy

2.1
General aspects

Energy and momentum are contained in the wind and in the case of using wind

turbines for generating electricity, the energy recovery occurs by transferring

them to the blades that move a horizontal (or vertical) shaft which turns an

electric generator. Attempts to transform wind energy (mechanical energy) into

electrical energy begun at the end of the nineteenth century and was intensified

during the 1970s, with the advent of the oil crisis. At that time, there was an

impulse to develop equipment for wind turbines in a commercial scale, which

happened also to other forms of energy generation, such as solar. Since the first

commercial wind turbine (connected to the public grid), installed in 1976 in

Denmark, the number of installed equipment is growing exponentially. In 1991,

the European Wind Energy Association - EWEA had set a goal of installing 4

GW of wind power in Europe by the year 2000 and 11.5 GW by the year 2005.

The forecasts were surmounted in years 1996 and 2001, respectively. Then, it

was established the target of 40 GW in Europe by the year 2010. Data from

the year 2011 showed that the installed capacity in Europe was about 97 GW

keeping the rhythm of growing. The countries that showed the best results were

Germany and Spain, with about 29 GW and 22 GW, respectively. From that

time to now, the development in this area had an astonishing impulse. Wind

energy capacity in Europe has been increasing of about 10% a year since 2013,

so that the amount of installed power is of about 128.8 GW in European Union

nowadays. The countries that keep still leading are Germany, Spain, UK and

France with about 39 GW, 23 GW, 12 GW and 9.2 GW, respectively (data

from the end of 2014,1). In the early 1990s, the United States had an installed

power of about 4.6 GW and an annual growth of about 10%. In 2011, USA,

Canada and Mexico had together a total installed capacity of about 53 GW

(46.9 GW in the USA, 3.3 GW in Canada and 569 MW in Mexico). Data from

2014 presented larger values with a total capacity of about 78.1 GW (about

65.9 GW, 9.7 GW and 2.5 GW in USA, Canada and Mexico, respectively),

showing a good advance in this period. Africa and Middle East took part

on the race with an installed power of 1.1 GW, with Egypt being the most

active on the African continent in early 1990’s. Today, the panorama changed

1http://www.gwec.net/wp-content/uploads/2015/03/GWEC Global
Wind 2014 Report LR.pdf
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a little and Morocco and South Africa are the leaders (785 MW and 570 MW,

respectively). Asia continues under the leadership of China, which had in 2011,

about 82 MW installed. In that year, China increased its production capacity

in more than 17 GW, what was about ten times the installed capacity in Brazil

at that time. Nowadays, China is from far still the leader. Its installed power

is 114.6 GW which is only about 14% less than the total installed power in

the whole Europe. India follows China but just with 22.5 MW installed, in

the end of 2014. In Brazil, the real interest in using the wind as a source of

energy came a little later. In 1976−77, the Space Activities Institute from the

Aerospace Technical Center, IAE/CTA, established a specific procedure for

wind data (from anemometers) measured in Brazilian airports. It was verified

that the annual mean of 4 m/s at 10 m high already pointed the coast of

the Northeast and Fernando de Noronha island as good places to start pilot

projects for generating of electricity [4].

In 1987, CHESF - São Francisco Hydro-Electric Company elaborated the

study for the wind potential for Northeast [4] using data from anemographic

results for a period of 5 years (1977−1981) from 81 stations at 10 m high, from

Northeast Meteorological Net. Federal University of Paráıba was responsible

for the analysis. The largest annual mean velocities found for the height of 10

m were 5.5 m/s and 4.3 m/s, for Macau, RN, and Caetité, BA, respectively.

Other regional studies were carried out for mapping the energetic capacity

in other Brazilian estates like Minas Gerais, Rio Grande do Sul and Rio de

Janeiro [4].

In 1979, it was started the first National Atlas of Survey of the Prelim-

inary Potential Wind by Eletrobrás-CONSULPUC. In 1980s, Eletrobrás and

Padre Leonel Franca Foundation continued this work, realizing an extensive

meteorological study that included data processing for 389 anemometer sta-

tions of 10m high, installed throughout the Brazilian territory and elaborating

the first National Wind Potential Atlas [4]. The higher wind speeds happened

next the shore and also in some spots with low roughness. Some places with

wind speed and 5 m/s and 6 m/s were detected. In the 1990s, measurements in

higher towers installed in specific spots for several regions in Brazil were carried

out: states of Ceará, Bahia, Minas Gerais and Paraná. In 1998, the Brazilian

Wind Energy Center - CBEE, the Federal University of Pernambuco - UFPE,

with the support of ANEEL - National Electrical Energy Agency and the Min-

istry of Science and Technology - MCT, published the first version of the Wind

Atlas of the Northeast. This resulted in the publication of the ”Wind Poten-

tial Panorama” in Brazil. Unfortunately, nowadays the contribution of wind

energy in electricity generation is still small compared to the installed capacity
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for hydro and fossil fuels. Nevertheless, Brazil is the leader in Latin America

followed by Chile with 836 MW. Recent data from Brazilian Association for

Wind Energy-ABEEólica 2, Brazil has now 322 wind farms with a capacity of

8.12 GW already producing or in installation. Two of the largest are located

in Água Doce, Santa Catarina and in Osorio, Rio Grande do Sul. The region

that stands out is the Northeast. Wind maps developed by the Brazilian Wind

Energy Center has shown that the area has one of the best resources in the

world, having good wind speed, low turbulence and good uniformity 3. The

total potential is estimated in 30 GW 4 and Ceará holds 40% of the country’s

capacity with 17 farms.

Aiming to enlarge the exploration of new sources of energy, Brazilian

government has gradually given incentives aiming to improve the sector.

Proinfa (Incentive Program for Alternative Sources of Electric Energy) created

by the Law 10.438/2002, implanted, by 2011, a total of 119 projects, among

them, 41 related to wind energy (964 MW). This kind of incentive besides

of contributing to diversify the Brazilian energetic alternatives, also fomented

the generation of 150 thousand new jobs over the country and the industrial

development. It is estimated that this investments will indirectly reduct the

CO2 emissions in about 2.5 millions tons eq/year. 5.

A known limitation of wind generation is its ”inconsistency” in energy

production, although it also occurs in other energy modes such as hydraulic.

However, in Brazilian Northeast, wind generation has its peak concomitantly

with the period of lower water availability. In this case, the wind power and

hydraulic modal are perfectly complementary 6.

The biggest hindrance to the wind energy nowadays is economic. The

cost of kW installed is higher than other types of power generation (hydraulic,

thermoelectric, etc.) but has reduced significantly in recent decades. As hap-

pens with all economic activities, technological developments (advanced trans-

mission systems, better aerodynamics and materials, control strategies in the

operation of the turbine, etc.) improve together with the expansion of the

production scale, provoking the reduction of costs and providing better perfor-

mance and reliability for the equipments. This creates the conditions for the

competitiveness.

Wind generation has advantaged and disadvantages. The main advan-

tages are:

2http://www.portalabeeolica.org.br/index.php/2012-11-23-19-20-59.html
3http://www.aneel.gov.br/aplicacoes/atlas/pdf/06-energia eolica(3).pdf
4http://www.brasil.gov.br/sobre/economia/energia/matriz-energetica/energia-eolica
5http://www.eletrobras.com/elb/Proinfa
6http://www.aneel.gov.br/aplicacoes/atlas/pdf/06-energia eolica(3).pdf
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– It is inexhaustible;

– No residue is generated;

– Versatility;

– Low environmental costs;

– The farms can share the place with others activities;

– Reduces energy dependence on fossil fuels;

– It is in conformance with international protocols (Kioto, e.g.);

– It has the potential to compete with traditional energy sources;

– Free energy once payback period is expired.

The disadvantages are:

– Visual impact;

– Noise from blades;

– Danger to animals (e.g. birds and bats);

– Electro-magnetic interference;

Those disadvantages must be evaluated carefully in order to attenuate

their importance in the whole turbine project. The visual impact that one or

a set of wind turbines causes to an observer is difficult to quantify due to

its subjectivity. Nowadays, the towers are getting bigger and the speed of the

rotors getting smaller. Low speeds together with better blade design brought

down the noise to reasonable levels, although noise in turbines is not a big

problem in offshore installations. Reduction of the blade speed tends to reduce

the danger to migratory birds because they can see the blades and avoid them

somehow. Anyway, the tendency is to install towers where there is not any

intensive animal migration. It must be mentioned that it is possible to quantify

somehow the risk of collisions in a given region during the operation [41].

Concerning to electro-magnetic interference, it is a fact and it can be produced

and suffered by the electric-electronic components of the turbine. The blade

movement also may affects the performance of TV and FM broadcast reception

and a variety of navigation systems by obstructing, reflecting or refracting the

electromagnetic waves. Modern blades are typically made of synthetic materials

which have a minimal impact on the transmission of electromagnetic radiation.

Nacelle insulation attenuates the turbine electrical system interference so it

is not usually a potential problem on telecommunications. Interferences to

mobile radio services are usually negligible. Anyway, preventive and corrective

solutions to attenuate those effects are already available or under study [34][7].
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2.2
Wind

2.2.1
Origin of the wind

The atmosphere is constituted of air, that is, a mixture of nitrogen, oxygen,

and argon mainly as well as water vapor and other gases in smaller quantities.

It can be divided into five main layers (troposphere, stratosphere, mesosphere,

thermosphere and exosphere). The troposphere contains the water vapor and

is the denser part of the atmosphere. The temperature in this layer declines

with altitude although phenomena like inversion (when a sublayer of higher

temperature can superpose another with lower temperature) may take place.

The air movement in troposphere happens due to the difference between the

radiation intensity over the planet surface and also due to its rotation. This is

a complex movement of mass and energy and processes from the magnitude

of thousands of kilometers in which huge masses of air move throughout the

globe in periods of several days to local weather systems, whose magnitude

range from one to hundreds of kilometers and very short turbulent movements

(with a range of few meters and a lifetime of few minutes). At the equator, a

low pressure region is created when the air is heated and blows up. Then it is

deviated to east due to Coriolis acceleration. When in high altitudes and far

from equator, the air masses go down and is deviated to the west due to the

Coriolis acceleration and keep moving this way. Same phenomenon happens in

other regions, near the poles and in temperate zones, as well. From the north

pole, the cold air goes to south in low altitudes bending to the west. On the

other hand, warm winds coming from the temperate subtropical high pressure

zone make the opposite movement. In south hemisphere, similar phenomena

occur. A deeper understanding on this subject can be obtained in [54] and [19].

The sub-layer from ground level to a height of approximately 1 km

is called atmospheric boundary layer. Above it, the wind is considered not

turbulent and in areas far from the high-pressure and low-pressure zones, the

wind is considered only dependent on the horizontal pressure gradient and

Coriolis acceleration [19]. Those winds are called geostrophic. On the other

hand, the presence of low- or high-pressure regions, make wind to rotate. Those

are called gradient wind. In the atmospheric boundary layer, the wind speed

increases and turbulence decreases with height. Turbulence is generated in the

presence of obstacles like buildings, vegetation and relief. The wind direction

also is affected suffering a deviation from horizontal of typically 20o downwards.

Nevertheless, this variation is only noticeable for a height of about 200m from
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the ground [19].

2.2.2
Local wind evaluation

The wind speed and direction change all time and its observation is made by

using anemometers for quite long period of time (some years). This equipment

is positioned at a given hight (x1= 20m, x1=50m) collecting data from wind

speed and azimuthal direction. Those data may be analyzed in both time and

frequency domain. Using the later, a power spectral density function is obtained

which can be represented graphically as shown in Figure 2.1. The form of such

a curve is typical, all having three zones [19][16]:

– A zone of low frequencies (periods of some days);

– A zone of high frequencies (periods of some seconds to some minutes

related to turbulence);

– A zone of little spectral energy (periods between 10 minutes and 1 hour).

The graph depicted in Figure 2.1 shows that there is a very high density

for frequencies of about 0.01 cycle/h which correspond to a periods of several

days. About 0.1 cicle/h, other maximum value happens, that may correspond

to daily variations in wind velocity. A noticeable large density is present

for lager frequencies (about 60 cycle/h or 1 cycle/min). Nevertheless, as

mentioned above, there is a region of very low spectral density in the interval of

1 cycle/h to 6 cycle/h. This interval, the spectral gap, means that for sampling

periods shorter than 1 h low frequencies are not detected and also that for those

intervals, the mean of the process does not change in time and the variance

is that associated to the turbulence. Also, low and high frequencies signals

(long and short terms) are uncorrelated due to this low energy interval. This

permits to model the wind speed as a quasi-stationary process defined as sum

of a constant value, which represents the mean value of the wind speed in a

given period of time plus a random signal representing the turbulence, that is
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Figure 2.1: Typical power spectrum for horizontal wind component [16]

Wax(x1, 0, 0, t) = Wax(x1) + Waσx(x1, 0, 0, t)

Way(x1, 0, 0, t) = Way(x1) + Waσy(x1, 0, 0, t)

Waz(x1, 0, 0, t) = Waz(x1) + Waσz(x1, 0, 0, t)

(2.1)

where Wax(x1, 0, 0, t), Way(x1, 0, 0, t) and Waz(x1, 0, 0, t) are the total com-

ponents of the wind velocity vector. Wax(x1), Way(x1) and Waz(x1) are the

horizontal mean wind speed in the interval of time considered at the acqui-

sition height (x1). Waσx(x1, 0, 0, t), Waσy(x1, 0, 0, t) and Waσz(x1, 0, 0, t) are

Gaussian random processes with null mean standard deviation σa, modeling

the turbulent speeds in three directions. Each period of 10 min to 1 h, depend-

ing on the analysis (or any standard recommendation), the turbulence is used

for generating 3D velocity stochastic vector.

As the wind speeds are sampled at an specific height, two hypothesis are

made in order to know the wind behavior in a larger area. First, the mean wind

varies only with the height (coordinate x). This is known as the logarithmic

wind profile function. Wind velocity vector component Wa(x) is a function of

the height from the ground (x) and is given by the following equation [71]:

Wa(x) = Wa(x1)
ln(x/x0)

ln(x1/x0)
(2.2)

where x1 is the height where the wind speed values were taken (sampled) and

x0 is the parameter relative to the roughness of the terrain and it is considered

as size of the characteristic hight where the mean wind speed is null. [19][71].

Figure 2.2 depicts schematically the horizontal wind speed profile Wa(x) and

the random component Wσa(x, 0, 0, t).

Second, the wind has its own power spectral density and coherence func-

tions. Some are available like von Karman, Davenport or Kaimal. For instance,
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Figure 2.2: Wind speed profile and turbulent wind direction

the Kaimal spectrum [32] [31] is recommended by standard IEC61400−1 [71].

In Chapter 4, this approach will be used in order to generate the random pro-

cesses acting in the rotor swept area.

Collecting the wind speed for a large period of time, mean wind speeds

may be calculated for periods of time specified (10 min to 1 h, depending on the

standard adopted). The number of those intervals of time, say ∆tw, must be

representative of the whole turbine life time. Those values may be organized in

a histogram where the mean speeds are plotted against the relative frequency

of occurrence. The width of the data interval is in general 1 m/s. Figure 2.3

shows such a typical histogram which gives the relative frequency of any of

those intervals ∆tw to have a given speed.

Several distribution were suggested to describe the wind regime given

by histograms like that depicted in Figure 2.3, but the Weibull distribution is

considered the adequate [16], [23], [71]. This distribution is given by
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Figure 2.3: Histogram for the wind speed [16]


fweWa

(Wa) = 1− e−( Wa
cwe

)kwe

cwe = W̄a

Γ(1+1/kwe)

0 ≤ Wa < ∞

(2.3)

where Wa is the wind speed, W̄a is the total averaged wind speed, cwe is a scale

parameter and kwe is a non-dimensional form parameter.

For kwe = 2, the Weibull distribution becomes a Rayleigh distribution

and dependent on a single parameter, the mean value.

2.3
Wind evaluation

The companies interested in the exploration of a specific site need, at first,

to get as complete as possible technical information about the intensity and

regularity of the wind. This is done by collecting and analyzing wind data of

the wind regime for a certain period of time (maybe for some years) before

starting a project. Observing the documentation available from 1980s to now

related to the wind distribution all over the country, it is noticed a clear

improvement in the quality of the information. This is, in part, due to the

competitiveness and more strict regulations established by the government

which make investors and engineers be more careful with the investment and

decisions about technical solutions. More region-specific studies were made in

order to get more precise information on specific spots to give to the investors

and engineers more comfort to decide. Nowadays, several states in Brazil have

already elaborated their own wind map where a very detailed information
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about the distribution of the wind can be found.

In order to know the state of the wind in a given place, to begin with,

data from several spots over the region is obtained and then, maps as that

depicted in Figure 2.4 are elaborated, showing the distribution of annual wind

power flux taken all over the region at a specific height (that one is for 50

m height but other distribution can be obtained for other levels, for smaller

regions or even for shorter periods [5] [4].

Figure 2.4: Distribution of Wind Potential in Brazil (Adapted from [4])

Other maps and tables containing the main information about the wind

characteristics and details about its distribution must be also available like

those containing the Weibull parameters. Graphics are also of good use and

one of the most common are the wind rose containing the typical distribution

for both, direction and speed of the wind in a region. An example is shown

in Figure 2.57. It shows that the prevailing wind is South-North direction and

just roughly 0.5% of the time, the wind speed is situated between 8.23 m/s

and 10.8 m/s and about 5% of the time the speed is situated between 3.09

m/s and 8.23 m/s, in that direction. It is also observed that the wind rarely

7https://en.wikipedia.org/wiki/Wind rose
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blows from South-East and that stronger winds (above 10.8 m/s) blows from

Northwest-East and West directions but they are relatively rare. Finally, 3.6%

of the time, there is no wind. [5][4].

Figure 2.5: Wind regime in a given region

Selecting a place is critical and details are important. It is known from

theory (see, for instance, [35]) that the power available from the wind is related

to the cube of the wind speed. So a 25% increase in wind speed, almost double

the power output.

2.4
Extracting energy from wind

There are basically two principles for extracting energy from wind:

– Using lift forces;

– Using drag forces.

The aerodynamic forces acting in a body are due to only two basic sources,

namely, the pressure and the shear distribution over the body surface.

Figure 2.6 shows schematically the action of the wind in an airfoil (first

drawing) in which the lift force is predominant. This kind of profile is used in

airplanes and also in wind turbines blades. Depending on the relative position

between the airfoil and the flow (depending of the angle of attack), the force

configuration changes. In case of airfoils used in airplane wings, the goal is

the increasing of the lift force and the reduction of the drag force. For wind
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Figure 2.6: Lift and drag forces in solids

turbines, the maximization is focused in the force component in the plane of

rotation. Some turbines make use of drag force and the ”blade” profile must

change in order to maximize this force. Lift force can be present, but marginally.

This profile is shown in the right draw in Figure 2.6. Drag devices seem to be

the first attempt to extract energy from wind and there is evidence of their

usage in ancient mills, some still working, as those in the town of Nashtifan,

located in the southern parts of Khorasan Razavi province in Iran (Figure

2.7)8.

Figure 2.7: Ancient windmills in Iraq

Those windmills have vertical shafts and the wind panels rotate hori-

zontally. In 14th century, the traditional windmill was created. Initially, built

with wood but later rock and brick were used. The blades permitted to the air

to pass trough and drag forces were important but the concept changed: the

blades now moved in a plane perpendicular to the wind direction and its speed

became no more limited as happened to drag devices, whose tangential speed

is limited to the speed of the wind.

8http://www.amusingplanet.com/2014/07/the-ancient-windmills-of-nashtifan.htm2

DBD
PUC-Rio - Certificação Digital Nº 1112566/CA



Chapter 2. Wind energy 35

2.4.1
Vertical and horizontal wind turbines

Vertical axis wind turbines are those whose axis of rotation is vertical. They

are closer to the ground and seems to be the ideal for catching lower-speed

wind in residential and urban areas. The rotor spins around a vertical axis and

the blades can catch wind blowing from any direction. They typically require

less maintenance than a horizontal axis wind turbine. There are currently two

types of vertical axis wind turbines in production: Darrieus and Savonius.

Darrieus wind turbines were designed and patented by Georges Jean Marie

Darrieus, a French aeronautical engineer in 1931. They use basically lift forces

and originally are formed by two big and slim arched blades as shown in Figure

2.8(a)9. In the Figure 2.9(a)10, in a simplified way, it is explained its principle.

Some have wires to stabilization from the tip to the soil, due their flexibility.

Those turbines need a small external torque to be put in movement and for

this purpose, a low-powered motor is used.

2.8(a): Darrieus turbine 2.8(b): Savonius turbine

Figure 2.8: Darrieus and Savonius turbines

9http://energythic.com/view.php?node=201
10http://datab.us/i/Darrieus%20wind%20turbine
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2.9(a): Darrieus principle 2.9(b): Savonius Principle

Figure 2.9: Darrieus and Savonius principles

Figure 2.10: Conjugation Darrieus/Savonius

The Figure 2.8(b) shows a real Savonius turbine. They explore drag forces

mainly. It was invented by Sigurd Johannes Savonius in 1924 and the Figure

2.9(b) shows its principle. The idea is that the difference between the curvature,

convex when moving against the wind (less drag) and concave when moving

with the wind (more drag), causes the Savonius turbine to spin around the
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vertical shaft. The relations between parameters e and d are important. Values

of e
d

of 1
3

were originally used. Now is known that its better performance is for

a value of 1
6

for an optimized rotor reaching CP (power coefficient) of 0.3. That

means that the internal flow is important for the performance. Savonius rotor

is characterized as having big starting torques and start up with low intensity

winds (2 m/s to 3 m/s) and it is one of the reasons for sometimes conjugating

Darreus and Savonius turbines [73]. The Figure 2.10 shows this possibility.

They are drag-type devices, then extract much less of the wind’s power

than other similarly-sized lift-type turbines [44]. Besides having the velocity of

the blade tip limited by the velocity of the wind, some power is consumed when

part of the turbine is moving against the wind. In both types of turbines, the

electrical items responsible to obtaining, treating and transmitting energy and

the gearbox are located close to the ground, making the maintenance easier.

Drag principle was used to build the first vertical turbine which was used

to product electrical energy from wind in 1887 by James Blyth in Scotland, as

shown in Figure 2.11 [62].

Figure 2.11: James Blyth Rotor

Horizontal turbines (HAWT) have the shaft of the rotor in the horizontal

position. Currently, the experience accumulated over decades of development

of horizontal turbines leaded to turbines with three blades, pitch and yaw

control using induction generators 11, as illustrated in Figure 2.12(c). A simpler

configuration is a rotor with two blades, Figure 2.12(b). This kind of turbine

has its own particularities concerning stability, which is more critical than in

other turbines with more blades. Generally rotating at higher angular velocity,

they have the advantage of being cheaper and simpler to assemble. Besides, its

11http://www.aneel.gov.br/aplicacoes/atlas/pdf/06-Energy Eolica (3).pdf
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performance approaches those achieved by three bladed turbines. The simplest

configuration is that with one single blade as can be seen in Figure 2.12(a).

The first wind turbines developed in a commercial scale had power

between 10 kW and 50 kW. In the early 1990s, the power of the engines

increased from the range of 100 kW - 300 kW to 300 kW - 750 kW. In 1999

the first wind turbines of 2MW was put in operation and today there are some

from 3.6MW to 4.5MW 12 and even higher as that built by Siemens which is

the largest in the world, located in the field Osterild, Denmark. Each one of

the 3 blades is 75 meters long with a total diameter of 154 meters. The turbine

is designed to generate a power of 6 MW.

2.12(a): One-bladed turbine 2.12(b): Two-bladed

turbine

2.12(c): Three-bladed

turbine

Figure 2.12: Horizontal turbines - one, two and three blades

2.5
Components of a horizontal turbine

2.5.1
Nacelle and internal components

In the nacelle, all the components for mechanical and electro-electronic system

for transforming and treating the energy are installed (shaft, gear-box, gener-

ator and all circuits to treat the electric signal). The turbines can also work

using direct drive system, not requiring gearboxes. This is possible by means

of induction generators with several poles and control systems that allow their

operation in any variable speed. In Figure 2.13 13 is shown a nacelle with the

components. In Figure 2.14 is shown a turbine with a direct drive system.

12ttp://www.aneel.gov.br/aplicacoes/atlas/pdf/06-Energia Eolica(3).pdf
13http://www2.aneel.gov.br/aplicacoes/atlas/pdf/06-energia eolica(3).pdf
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Figure 2.13: Nacelle with its elements

Figure 2.14: Direct drive turbine

2.5.2
Blades

The blades are made of composite material, fiberglass, in general but internally,

in order to give resistance to structure, wood and aluminum are used. More

recently carbon-fiber has been used in some components and there is a tendency
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of making big blades completely of that material which permits to increase the

blade length. There are some two-bladed wind turbines but three blades are the

consolidated number and widely used. The blades transmit the loads caused

by the wind to the structure through the shaft. They, together with the hub

(which is coupled to the rotor shaft) comprises the rotary systems that generate

mechanical energy. In Figure 2.15 is shown schematically the internal structure

of a blade. As can be seen, they are like airplane wings, hollow and reinforced

internally with structural parts. In the base, where they are fixed by bolts

in the hub, they are made more rigid and resistant to support the moments

and to permit its fixation. The profile changes from certain point aiming an

optimized aerodynamic performance. Then externally, they are finished with

plastic and fiberglass or even with carbon-fiber.

Turbines are getting bigger and so the blades. It is said that larger sizes

will increase the competitiveness of the wind generation simply because larger

blades can absorb more energy. The challenge is then to built larger blades

with low weight. Carbon fiber is a good solution and maybe in the future, the

complete blade will be built from carbon fiber which can improve the overall

economics of wind turbines in several ways 14,15:

– They will have more precise aerodynamic;

– The weight will be considerably smaller;

– Smaller weighted nacelle, then less expensive tower and foundations;

– Longer blades, more wind energy at lower wind speeds;

– The costs will reduce as smaller masses will be manipulated.

2.5.3
Base

The base is the structure that supports the entire weight and variable load.

Turbine bases are generally made of concrete and steel, like that shown in

Figure 2.16, and holds the tower which is fixed by mean of screws. Figure 2.17

shows schematic drawings for various types of offshore foundations. From the

left to the right, a mono-pile type foundation, a suction caisson type, multi-pod

(tripod or tetra-pod) and gravity based foundation. Several other possibilities

can be explored as shown in Figure 2.18, but some of them are not still a

proved technology and need more time to consolidate [30]. The first is a ”spar

buoy” and the last is a kind of barge, both anchored and stabilized by mooring

systems. The second type is a platform with legs to permit the stabilization

14http://www.gizmag.com/worlds-longest-wind-turbine-blade/25750/
15http://www.technologyreview.com/news/510031/the-quest-for-the-monster-wind-

turbine-blade/
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Figure 2.15: Blade structure

by a tensioned mooring system. Those turbines are in general relatively more

expensive due to the structure needed to hold the tower and mooring systems.

They must be stable enough to face the tides, currents and sea waves, keeping

controlled oscillation. Some countries like Denmark, Germany, Portugal, USA

and Japan have been investing on off-shore floating turbines. According to

EWEA - European Wind Energy Association 16, the structure for holding

the turbines (base) in- and offshore (on line) in 2009 were 65% single pillar;

gravity, jacket, and tripod types, 25%. Floating turbines, less than 1%. This is

consistent with the fact that floating turbines are more complicated to simulate

and built, but it is a matter of time to those structures become a profitable

way of obtaining energy. Figures 2.19(a) and 2.19(b) depicts two offshore types

of turbines. The first is a floating turbine and the second is fixed in the bottom

of the sea by mean of jackets and partially built with a truss.

16www.ewea.org
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Figure 2.16: Base made with concrete and steel

Figure 2.17: Foundations for off-shore turbines [1]

2.19(a): Floating turbine 2.19(b): Fixed turbine (jacket)

Figure 2.19: Real types of offshore turbines [30]
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Figure 2.18: Concepts for floating off-shore turbines [30]

2.5.4
Tower

The tower is generally tubular in shape and has dimensions which depend on

the required power, wind conditions and are constructed from welded steel

plates mainly. They are built in segments and assembled by mean of screws.

The cross-section is variable along the length of the tube, in general. Trusses

are also used. The Figure 2.20 shows a typical tower segment.

Figure 2.20: Segments of a wind tower
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2.5.5
Conditions for generation

Economically speaking, only wind speeds larger than 2.5 m/s (cut-in speed)

are useful, so the region I in the graph depicted in Figure 2.21 must be avoided.

From 2.5 m/s to 12.0 m/s, region II, the power available at the generator shaft

performs useful electromechanical conversion and the wind power generation

is proportional to the cube of wind speed. For wind speeds above 12.0 m/s

and slower than 25.0 m/s, region III, the turbine is generating steadily and,

in order to keep power limited, some kind of automatic power limiting system

is activated (controlling of the pitch angle of the blades or using aerodynamic

stall). If the wind speed exceeds 25.0 m/s, region IV, a protection procedure

reduces the rotation of the blades and the electric generator is disconnected

from the power grid. So, good places to be explored are those with high

probability of having wind speeds in the region IV.

Figure 2.21: Wind turbine power curve [16]

2.6
Generators

Wind turbines, due to the variable speed of the wind, can not transform wind

energy maintaining constant the rotation of the shaft, so the generator and

electric installation must be capable of generating and delivering electricity

to the network with constant frequency by using special electric circuits that

treat the signal generated.
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There are basically two types of generators used in wind generation:

Asynchronous and synchronous generators. Asynchronous generators are three-

phased and can be with cage rotor or wound rotor. As the asynchronous

generators work in a higher operating speed than that of the turbine, they

require gear-box to be coupled to the shaft in order to amplify the speed.

Those generators rotate with some fraction of the frequency of line which is

inversely proportional to the number of the poles of the generator. If a torque

is applied, increasing or decreasing the shaft speed, a counter-torque appears

and active power is absorbed or delivered to the line. This torque made by the

generator is proportional to the slip (difference between the generator and line

frequencies). They can start alone without any external action.

Synchronous generators work in a three-phased configuration, with in-

dependent excitation or permanent magnets in the rotor. In this technology,

for lower power (less than 1 MW), the synchronous generator has a speed

well above the turbine speed operation, requiring a gear-box coupled between

the rotor shaft and the generator. But, for power greater than 1 MW, syn-

chronous generators are typically manufactured with a large number of poles

so that their speeds are in the same order, requiring only a planetary coupling
17. Those generators do not start alone and must be somehow put in syn-

chronization with the line. When synchronized, the generator keeps the speed

very stable. When external torque is applied in the shaft, a counter-torque is

developed so that the synchronization is kept.

2.6.1
Literature review

Nowadays, wind generation is intensively studied by groups pertaining to

Universities and Companies. As a complex system, wind towers must be

analyzed using different tools and approaches. It is invested time and money

aiming the fast development of this challenging way to obtain clean energy so

that it can be made competitive with other forms of energy. A fast look on

the literature available in the usual sources, shows an astonishing quantity

of researches and investigations in several fields that uses quite different

approaches to solve specific problems. The researches are developed roughly in

the following areas:

– Wind farm layout optimization;

– Sea and wind;

– Aero-elasticity and interaction fluid structure;

17http://catalogo.weg.com.br/files/wegnet/WEG-geracao-de-energia-eolica-tecnologias-
atuais-e-futuras-artigo-tecnico-portugues-br.pdf
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– Foundations;

– Control;

– Dynamics and Structure;

– Electric(Generation, signal processing, distribution);

– Law and environment;

Farm layout optimization

In the farm layout optimization, the focus is kept on the arrange of a set of

turbines in the place chosen to be explored so that the obtained configuration

is optimized following some criteria, in general, economic. Recently, in [75],

it was discusses the optimization of a farm layout as a way to decrease wind

power losses caused by the wake interaction between wind turbines aiming

to figure out the best cost model for the layout optimization using two cost

models (Mosetti’s model and Chen’s model). In [53], it was developed a novel

evolutionary algorithm for optimal positioning of wind turbines in wind farms

is proposed considering a realistic model for the wind farm considering orogra-

phy, shape of the wind farm, simulation of the wind speed and direction, and

costs of installation, connection and road construction among wind turbines.

In [49], some current uncertainties in the offshore wind market were analyzed,

identifying some uncertainties compromising offshore wind farm structural

design, as examples, the design of the transition piece and the difficulties for

the soil properties characterization. Evaluation of standardization in this field

was made indicating that there is room to improvements in several points

among them, those related to the lifetime and return period. In [51] it was

identified that hurricanes are potential risk to shallow offshore turbines.

Aero-elasticity and interaction fluid-structure

The work presented in [11] studied the mooring system for tri-floater floating

offshore wind turbines. Both ultimate (ULS) and accidental (ALS) limit states

are examined for environmental loads for power production and parked wind

turbine conditions. Also present a probabilistic model to estimate the number

of turbines that would be destroyed by hurricanes in an offshore wind farm

estimate the risk to offshore wind farms in four representative locations in

the Atlantic and Gulf Coastal waters of the United States. Applying this

approach it was shown that in the most vulnerable areas now being actively

considered by developers, nearly half the turbines in a farm are likely to

be destroyed in a 20-years period. In the work [14], it was investigated the

technical and economic feasibility of ten commercial small wind turbines with

rated power from 2.5 kW to 200 kW for five of the main European Union

countries (France, Germany, Italy, Spain and The Netherlands) considering
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their installation and operative conditions, evaluating some parameters that

affect wind turbine performances estimating the annual cash flow during

the expected plant life-time. In [20], it was elaborated a design method for

combined aerodynamic and structural (aero-elastic) design of large wind

turbine blades using the blade element momentum theory. The chord and

twist distributions are determined with respect to the airfoil characteristics

and the design tip speed ratio to yield optimal glide number and induction

factors in a realistic and manufacturable design. A complete analysis of the

blade is carried out including several structural blade components and the

final structural design is found through an iterative process. Both ultimate

loads and fatigue loads have been investigated. The design of several spars

types to approximate the Sandia SNL100− 00 blade (”monoplane spar”) and

the biplane blade (”biplane spar”), using analytical and computational models

was presented in [52]. The analytical model used the method of minimum

total potential energy; the computational model used beam finite elements

with cross-sectional analysis. Simple load cases were applied to each spar and

their deflections, bending moments, axial forces, and stresses were compared.

Similar performance trends are identified with both the analytical and com-

putational models. Buckling was carried out and a parametric analysis shows

biplane spar configurations have 25 % - 35 % smaller tip deflections and 75 %

smaller maximum root bending moments than monoplane spars of the same

length and mass per unit span indicating that this configuration are attractive

design for large (100 m) blades. A mathematical model for fluid dynamics wind

turbine design(based on the blade element momentum theory) was developed,

implemented and improved in [37]. The mathematical simulations have been

compared with experimental data found in the literature.

Foundations

Tower foundations and their interactions with the soil is a field itself. In general

and mainly in offshore installations this is a very expensive step and it is wiser

to spend the all necessary time to explore the possible loading configurations

to avoid surprises concerning to the operation. This is object of constant

attention by the researchers. Still in 2015, [15] studied the fixation of large

turbines in deeper waters when it is necessary to use multi-footing structures

such as tripods or jackets to fix the turbine in the bottom. To improve that

fixation, it was presented a concept of using helical pile foundations. This type

of structure has been routinely applied onshore where large tension capacities

are required.
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Sea and wind

The behavior of a specific site concerning to extreme values was investigated

in [72] for wave and wind. It was used real data Peaks Over Threshold (POT)

extreme value estimation technique to analyze and to estimate the wind

shear coefficients and gust factors. Seven to thirty-two years of buoy data

at five locations near areas of possible commercial interest in gulf of Maine

(USA) were examined and the results could be compared with the wind cast

predictions.

Control

It was presented in [36] an intelligent wind turbine control system based on

models integrating the following three approaches: data mining, model predic-

tive control, and evolutionary computation. The model involves five different

objectives with different weights controlling the wind turbine performance.

These weights are adjusted in response to the variable wind conditions and

operational requirements. In [8] it is made an study on a methodology for

multidisciplinary design optimization of offshore wind turbines at system level

using a formulation to integrate aerodynamic and structural design of the

rotor and tower simultaneously, whose objective is to minimize the cost of

energy, using several, geometric, dynamic and constitutive parameters. The

model was tested in a real case. A model was developed in [58] on the strategy

for performing maintenance aiming to minimize costs of a wind turbine with

the maintenance, following multilevel opportunistic preventive maintenance

strategy. In this strategy, opportunity for performing preventive actions on

components is taken while a failed component is replaced. A numerical study

is used to illustrate the model.

Legal and Environmental

Environmental laws are getting more important and strict. Situations where

the turbine may cause damage to the environment, for instance, when it is

responsible for a great number of animal fatalities, must be detected a priori

to avoid extra costs due to the frequent shutdowns. Nowadays, neglecting

environmental aspects may create important limitations to the viability of the

project in the future. The contribution of [42] was a proposal for a general

design platform for control system of wind turbines. Different models of wind

turbine systems are summarized and a novel control strategy for wind turbine

control is proposed as a general platform for control system design. In the

work [9], observations of audio noise in frequency range from 20 Hz to 20000

Hz from wind turbines were made. The observations were performed about the
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theoretically calculated 40 dB noise perimeter around the wind turbine farm

at Oxhult, Sweden. This paper describes a newly designed and constructed

a field qualified data acquisition system to measure spectra and total noise

level of sound from wind turbines. In [41] it is proposed and studied a new

methodological approach to reduce potential conflicts in the planning as

well as during the operation phase of a wind energy project by quantifying

the risk of the collision of migratory animals. The model permits to define

areas with different collision risks so that the system is stopped when peak

migration happen. In the work [18] the reasons why wind tower attracts bats

causing a large number fatalities were analyzed. This study aims to determine

the conditions to avoid this problem. Electro-magnetic interference has been

studied as the presence of wind turbines or wind farms may cause troubles

in telecommunication services. In [34] it was provided a general overview on

Electro-magnetic interference with respect to big (some MW) wind turbines

showing all types of electromagnetic interferences fields resulting from a GSM

transmitter mounted on a big wind turbine. The fields were analyzed and

described analytically the electro-magnetic fields. A comprehensive review

on the impact of wind turbines on the telecommunication services (weather,

air traffic control and marine radars, radio navigation systems, terrestrial

television and fixed radio links) is presented in [7]. The description of the

potential affections, the methodology to evaluate this impact and mitigation

measures to be taken in case of potential degradation, both preventive and

corrective are made. Anyway, preventive and corrective solutions to attenuate

those effects are already available or under study.

Dynamics and structure

In a more accurate evaluation of this area, several subareas can be detected:

modeling of blades, tower and their mutual interaction, evaluation of fatigue

and life prediction, optimization and reliability. The development of wind tur-

bines as a serious possibility of compete with other sources of energy started

to become reality in the 1970s. In [50], it is made an analysis of the state

of the art by 1989. He attests that from 1974 to 1989 the development of

WTGs has progressed more than in the preceding 60 years. This happened

due to the efforts of the governments, especially Canada, Denmark, Germany,

Sweden, the U.K. and the U.S.A. Those countries put money to research de-

velopment, installation, testing and gaining operating experience with large

prototype wind turbine generators (TGW). By 1984, the technical problems

were surmounted but the implementation of WTGs was not economical viable

at that time and could not compete with conventional plants using nonrenew-
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able fuels. The work discusses the main definitions related to wind turbines

and attests that just for a little bit more than a decade of work on prototype

units aimed at making the machines cheaper, more durable and demonstrating

the reliability and availability of the units. The economics of WTGs can only

improve with increased production showing a good agreement with the reality

nowadays. The simpler way to model a wind turbine is consider it a column

with concentrated mass with or without rotational inertia. The movement of

the blades are considered concentrated loads (forces and torques) acting at

the tip of the tower. The model is based on an Euler-Bernoulli beam. Several

works have been published on the determination of natural modes for towers

or piles surrounded or not by water, usually modeled in analyses as cantilevers

with a tip mass. In the work [64], it was studied the eigenvalue problem of a

beam with lumped mass and transversal spring at the tip subjected to an axial

force which simulated a pier of a highway bridge. Hollow beams with variable

cross-section with concentrated tip inertias immersed in fluid were studied in

[48]. Since then, the problem has been studied mainly using strong formulation

for obtaining exact responses (for exact is meant that the solutions are those in

which the governing equation and boundary conditions are fulfilled exactly).

Concerning numerical approach, [39] developed an algorithm using classical

Rayleigh-Ritz method combined with Schmidt’s procedure to analyze elastic

restrained cantilever beams with tip mass and varying cross section. In [17], the

authors based their studies in experimental and theoretical works to perform a

modal analysis on an immersed beam with rotational and translational springs

at its base. A review on this subject can be found in [69] for the state of the

art by 1998. From that time on, some researchers have been still working on

the subject considering the tower submersed or not, under several boundary

conditions. It can also be mentioned [76] and [77], who formulated an immersed

beam and compared the results to numerical ones. In [1], it was also developed

an experimental methodology to obtain the soil structure interaction parame-

ters, but without considering the presence of fluid, and compared the results

to those from theoretical formulation. It is a fact that facing the problem using

strong formulation, when the modal analysis is performed by direct solution of

the differential equation of equilibrium by method of separation of variables,

requires a big amount of work, mainly when complicated boundary conditions

are imposed. Numerical approach, that means, variational formulation in con-

junction with finite element discretization, seems to be the adequate method

to reach, although not exact, an acceptable approximation for the solution. In

[3], it was focused the study of the dynamic behavior of a two bladed wind

turbine, considering random wind loading. The aerodynamic forces acting on

DBD
PUC-Rio - Certificação Digital Nº 1112566/CA



Chapter 2. Wind energy 51

the blades were calculated using a simple approach, assuming that both, the

fluctuation of the wind speed incident on the airfoil and pitch angle have a

linear relation with the resultant loadings meaning that variations in lift and

drag forces can be approximated by an affine transformation at a given point

of operation. The nacelle and rotor blades were also considered rigid bodies

mounted in a flexible tower. All movements, except for the in-plane rotation

of the rotor, were considered small so that a linear approach could be applied.

Based on this model, the calculation of stochastic stresses in critical spots over

the structure was performed. In [65], it was investigated the characterization

of the dynamic behavior of a specific type of turbine, considering the free vi-

bration analysis (modal analysis), incorporating lumped mass and foundation

effects. The analysis was made using both variational and strong formulations.

In both approaches, some specific properties were chosen as random. Monte

Carlo and collocation methods were used as the base to check out the effec-

tiveness of the Finite Element algorithm. In the work [2], it was analyzed the

dynamic behavior of a specific configuration of a wind turbine. A tower was

attached to a flexible base which was permitted to move laterally and rotate

in the bending plane. The analysis incorporated effects due to lumped mass,

interactions between fluid and structure (the tower is considered partially im-

mersed) as well as the foundation conditions. The analysis was made using

variational formulation in a 2D approach. Some loading configurations were

applied to the structure and the responses were analyzed.

In [12], it is presented a new method, so called constrained stochastic

simulation, developed in order to generate extreme gust time series, to be

used to calculate the extreme loading of wind turbines. The method produces

stochastic gusts, denoted NewGust, which are, in a statistical sense, not distin-

guishable from gusts selected from a (very long) stochastic time series, with the

same amplitude. This new probabilistic method enables wind turbine manufac-

turers to build more reliable and optimized wind turbines. Also the theoretical

mean gust shape, as well as the probability of occurrence of gusts, has been

verified by measurements and compared to real measured results. In [38], it

was studied, among other subjects, the nonlinear equations of motion of a ro-

tating wing are derived using the Bernoulli-Euler beam theory within a blade

fixed rotating coordinate system. Instead of using a full model tower/blade,

it is applied a forced support point motion, so that the tower-nacelle system

is decoupled from the wing. A reduced modal model is derived for the blade

permitting obtaining characteristic frequencies. An analysis of stability of the

nonlinear wing is carried out by the use of Lyapunov exponents. It is shown

that wind turbine wings (blades) experience significant changes in both flow
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velocity and direction due to tower passage, rotation in a shear wind field,

turbulence components, active control of the wing and elastic deformations.

In the work presented in [79], a simplified but accurate dynamic wind turbine

fatigue design is studied, resulting in an extensive discussion about the almost

all aspects (economic , maintenance, fatigue and standardization) related to

wind turbines. In [43], it was elaborated a design optimization model for plac-

ing frequencies of a wind turbine tower/nacelle/rotor structure in free yawing

motion where the large amplitude caused by the yawing-induced vibrations in

the case of horizontal-axis wind turbines or rotational motion of the blades

about the tower axis in case of vertical-axis wind turbines. It is said that it

can be a major cause of fatigue failure and might severely damage the whole

tower/nacelle/rotor structure. Multi-body formulation was used in [25] to de-

velop a new different updating algorithms of the moving frame of reference

parameters for flexible structures based on the motion of one or two beam el-

ement nodes in the structure. The work [33] aimed to develop a mathematical

model of a horizontal axis wind turbine with flexible tower and blades able

to describe the flapping flexure of the tower and blades taking into account

pitch angle and structural damping. The approximated solution is obtained

by using eigenvalue approximation of the problem and compared to analytical

solutions. Among other results it was observed small vibrations of the tower in-

duce important blade deflections, and thus, the dynamic tower-blade coupling

cannot be considered insignificant. In [68] it was studied a full probabilistic de-

sign of wind turbines. It was possible to assess the optimal reliability level by

cost-benefit optimization is an offshore wind turbine example. The uncertainty

modeling is illustrated by an example where physical, statistical and model un-

certainties are estimated. In [74], the authors worked in a mixed flexible-rigid

multi-body mathematical model and applied it to predict the dynamic perfor-

mance of a wind turbine system. It is considered the rotor and the tower as

flexible thin-walled structures. The wind turbine systems governing equations

of each flexible and rigid body are derived using Lagrange approach. Using

this model, the influence of the tower stiffness on the blade tip deformation is

studied. It is made a simplified model considering a single pole tower configu-

ration having thin-walled circular cross section with constant taper along the

tower height where the modeling and the solution are obtained analytically.

The fatigue is also a very important issue, as the turbines must be designed for

a prescribed life when it must work profitably. Several works were developed

in this area. In [45], it is determined the calibration of the appropriate par-

tial safety Fatigue Design Factors (FDF) for steel substructures for OWTs (off

shore wind turbines) in a reliability basis. The strength and load uncertainties
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are described by stochastic variables leading to acceptable reliability level for

fatigue failure of OWTs and the results are presented for calibrated optimal

fatigue design factors, considering the influence of inspections order to extend

and maintain a given target safety level. The interaction of foundation and the

underlying soil is studied in [24]. A complete three bladed turbine is modeled

using Euler-Lagrange approach. The foundation of the structure is modeled as

a rigid gravity based foundation with two degrees of freedom whose movement

is related to the surrounding soil by means of complex impedance functions gen-

erated using cone model. Simulations are carried out for different soil stiffness

conditions for steady state and turbulent wind loading, developed using blade

element momentum theory and the Kaimal spectrum. Comparison is made

with standards. It is shown that soil-structure interaction affects the response

of the wind turbine. An interesting work made by [59] looks to a different con-

cept using Magnus effect to produce lift from rotating cylinders which works

as blades. Determination of the power performance and characteristics of such

generators are made. In this study, the importance of research carried out for

determining lift and drag forces of rotating circular cylinders is highlighted and

reviewed. The formulation for the potential flow around the ”Magnus blades”

is obtained and the blade element momentum (BEM) theory is formulated for

this kind of blade. Two works, [40] and [78], used the reliability-based design

optimization (RBDO). The former studied the mono-pile transition piece for

offshore wind turbine system investigating two design approaches for the cost-

effective and reliable design: deterministic optimization (DO) and RBDO. The

later author, studied the tripod sub-structure of offshore wind turbines con-

sidering dynamic response requirements using a RBDO approach. The former

attests that the costs of supporting structure of offshore wind turbines is so

high that optimization in the design stage is a basic requirement and also that

manufacturing tolerances, material properties, as well as environmental loads

should be treated always as uncertainties since their variability has a strong

effect on dynamic responses. Thats why RBDO must be used. The work [46] is

dedicated to study of floating turbines focusing on designing of economic sys-

tems able to compete with fixed turbines. The preliminary platform design was

obtained and the application on an experimental test showing good agreement

for relevant platform properties. Finally, the work made in [29] demonstrated

that fully flexible multi-body dynamic model can better reflect the operating

condition of the wind turbine. As the calculation with the needed precision or

the fully flexible multi-body dynamic model consumes much time, an artificial

neural network method is proposed for the prediction of wind turbine dynamic

behaviors. It is demonstrated that combination of the multi-body method and
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the artificial neural network can reduce the simulation runtime, guaranteeing

the accuracy meantime.

As can be noticed, wind turbines multidisciplinary subject and the

state of art is now very advanced and very specialized. Therefore, in the

author’s opinion the model for a wind turbine must be obtained considering

the complete set. This means to model, at least, the soil, the tower as

a flexible component and the blades (flexible or not). In this work, the

blades are considered rigid. It is a considerable simplification as there are

couplings between flexibility, displacement and rotation degrees of freedom.

The tower is a flexible cylindric tower installed over springs. As small angles

and displacements are considered concerning to the tower, the only the

flexibility is modeled which simplifies enormously the analysis. The nacelle

is considered a rigid mass containing a shaft and a set of rigid blades.

Water and wind can load the structure as well as concentrated forces and

torques. Under those assumptions, a model is constructed using finite element

to approximate the dynamics of the tower in a reduced model basis. The

attitude of the body is parametrized using Euler parameters. This parameters

introduce some inconveniences in the model but the matrices and partial

derivatives are calculated in a more straightforward way. The evaluation of

the dynamic response of these structures to wind and sometimes sea currents

excitation requires calculation of natural frequencies and modes. This may be

done at least for two reasons. First, the modal evaluation of the structure

furnishes more understanding on its natural behavior. Second, the resulting

dynamics can be obtained by approximating the response of the structure by

a combination of the natural modes. This permits to model the problem in

successive approximations, meaning that the more modes are used, the more

precise is the approximation to the solution.
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Dynamic formulation

The turbine will be analyzed as a multi-body system composed by 6 bodies:

tower, nacelle, shaft and three blades and may be a semi-immersed in water.

As depicted in Figure 3.1, springs are the support for the whole structure.

The blades are fixed rigidly to the shaft configuring a rotor which can spin

relatively to the nacelle. The top of the tower and the base of the nacelle

are joined and in this section there is not any relative movement between the

nacelle and the tower. Yaw is not modeled. The base of the tower can displace

and rotate due to the flexibility of the springs. It will be made an analysis

using Lagrangian approach, Newton-Euler equation is obtained for the system

of bodies and, as they are linked somehow, it will be imposed the appropriate

constraint equations. The basis for this development is given in section 7.2 in

Appendix and was based in the work developed in [60], where a full model is

presented for the general dynamics of a rigid and flexible multi-body. First,

it is necessary to begin with the expression which represents the velocity of a

body with respect to a inertial frame as the kinetic energy is used to obtain the

equation of motion using Lagrangian formulation. As can be seen in Equation

7.68, repeated here, the total velocity vector of any point if a body b is given

by

ṙb =
[
[I] [Bb] [Ab][H̄b]

] ∣∣∣{Ṙb}T{Θ̇b}T{ ˙̄Ub}T
∣∣∣T (3.1)

where {Ṙb}, is the velocity of the origin of the body frame, and {Θb} is the

vector containing the Euler parameters to model the attitude of the body. [Ab]

is the transformation matrix and [H̄b] is the interpolating matrix. In this work

the flexible component is the tower and will be modeled as an Euler-Bernoulli

beam under a variational approach aiming to use Finite Element Method.

Then, { ˙̄Ub} is the nodal velocity vector of any point of the body, relative to

the body frame and [H̄b], the interpolation matrix. [Bb]{Θ̇b} = d
dt
{[Ab]{r̄b}}.

For rigid bodies, the third part of Equation 3.1 is null and the equation for the

rigid components of the turbine is

ṙb =
[
[I] [Bb]

] [
{Ṙb}T {Θ̇b}T

]T
(3.2)
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Figure 3.1: Model of the turbine in water

Nevertheless, if only the flexibility is considered, that is, neither the

rotation nor the displacement of the body frame are important, then, the first

and the second parts of that equation are null. The velocity for any point of

the tower is given by

ṙb = ˙̄rb = [H̄b]{ ˙̄Ub}, (3.3)

considering that [Ab] = [I] (I is the identity matrix). As the body frame

does not move, in this case, { ˙̄Ub} ≡ {U̇b}. Then,

ṙb = ˙̄rb = [Hb]{U̇b}. (3.4)

This second notation will be used. So, for nacelle, shaft and blades, the

Equation 3.2 is used. Equation 3.4 is used for the tower dynamic formulation.

Lagrange equation is used together with the appropriated constraints equations

to assembly all the bodies adequately. A single coupled system of equations

is obtained whose coupling is due to the presence of the constraint equations.

The elements of the turbine will be analyzed separately, first, nacelle, shaft

and blades, and then, the tower. This will be made as if they were not linked.

The links will be discussed later, constraint equations will be deduced and

incorporated to the equations of motion.
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3.1
Dynamic formulation of the nacelle, shaft and blades

The Lagrangian equation for a system of constrained bodies is given by

Equation 7.111, repeated here

{
d

dt

{
∂Ec

∂{ ˙̌q}

}
−
{
∂Ec
∂{q̌}

}
− {Q}+

{
∂[Gh]

∂{q̌}

}
+

{
∂[Gnh]

∂{ ˙̌q}

}}
= {0} (3.5)

where [Ḡh] is the vector containing the augmented holonomic constraints

and [Ḡnh] is the vector containing the non-holonomic dissipation functions for

the set of bodies [21]. Ec is the kinetic energy of the system which is a sum of

the kinetic energies of all bodies and {q̌} is the vector containing all generalized

coordinates. For a number i of bodies,

{q̌} = {{R1}T {Θ1}T {U1}T {R2}T {Θ2}T {U2}T ...{Ri}T {Θi}T {Ūi}T}T .

(3.6)
For this work, the vector {q̌} was organized in the following way

{q̌} = {{U}T {Rn}T {Θn}T {Rs}T {Θs}T {Rb1}T {Θb1}T ... {Rb3}T {Θb3}T}T

(3.7)
where the indexes n, s, b1, b2 and b3 mean nacelle, shaft and blades 1, 2

and 3. As the tower is the only flexible component the index ”t” is not used.

Related to the constraints, they can involve just the body itself. It may happen

when the body has a fixed point or even a point with a prescribed trajectory.

In the present work, for instance, it must be imposed that ({Θb}T{Θb} = 1),

index b meaning ”body”. This means that the Euler parameters used to define

the attitude of the body are dependent. If the bodies do not have any link

among them, the system of equations of motion for each body contains only

the generalized coordinate associated to the body itself. So, the assembled

system of equations for all bodies will have the following aspect
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[M1] 0 · · · 0

0 [M2] · · · 0
...

...
...

...

0 0 · · · [Mi]



{q̈1}
{q̈2}

...

{q̈i}

+


[Jh1 ]T 0 · · · 0

0 [Jh2 ]T · · · 0
...

...
...

...

0 0 · · · [Jhi ]
T


[ph]


{gh1}
{gh2}

...

{ghi}

+ [kh]


{λ1}
{λ2}

...

{λi}






[Jnh1 ]T 0 · · · 0

0 [Jnh2 ]T · · · 0
...

...
...

...

0 0 · · · [Jnhi ]
T


[pnh]


{gnh1}
{gnh2}

...

{gnhi}

+ [knh]


{λ̇1}
{λ̇2}

...

{λ̇i}



 =


{Qv1}
{Qv2}

...

{Qvi}

+


{Qe1}
{Qe2}

...

{Qei}

+


{Qd1}
{Qd2}

...

{Qdi}

+


{Qk1}
{Qk2}

...

{Qki}


(3.8)

which has i independent sub-systems and i is associated to each body. [khi ]

and [knhi ] are diagonal matrices containing the scale factors for Lagrange

multipliers. [phi ] and [pnhi ] are diagonal matrices containing the penalty

coefficients. {Qvi}, {Qdi}, {Qki} and {Qei}are the quadratic velocity, damping,

flexibility and external loading vectors, respectively. It may also happen that

the constraints involve generalized coordinates of two or more bodies, that

is, they are linked somehow. In this case, the equations of motion of the

body are no more independent, the constraints will depend on generalized

coordinates associated to several bodies. As discussed in 7.7.1, in the Appendix,

the equations for a rigid body i without constraints can be formulated as

[
mi[I] 0

0 [Ḡi]
T [J̄i]Ḡi]

]{
q̈i

}
=

{
{0}

{−2[ ˙̄Gi]
T [J̄n]{Ω̄i}}

}
+

{
{Fi}

{[Bi]
T{Fi}}

}
.

(3.9)
where mi is the body mass, [Ḡi] = 2[Ēi] and [Ei][Ē

T
i ] = [Ai]. The matrix

[Bi] is the derivative of [Ai]{rbi} with respect to vector of the generalized

coordinates {
qi

}
=
{
Rxi Ryi Rzi Θ0i Θ1i Θ2i Θ3i

}T
. (3.10)

Equation 3.9 can be used to model all the rigid elements of the turbine.
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The last element to be modeled is the tower. It is flexible, so, for large dis-

placement and rotations, it is quite difficult to model due to the coupling of the

generalized coordinates. Nevertheless, for linear approach when the displace-

ments and rotations are small, only the flexibility is taken in consideration,

that is, {Rt} and {Θt} are null. So, the strategy used is to model the tower as

an Euler-Bernoulli beam and as the nacelle is installed at the top of it (x = L),

the tower and nacelle has the same rotations and the same displacement in the

surface of contact, as mentioned. The tower analysis will be made next and

then all the elements of the turbine will be assembled considering the links

imposed by means of appropriated constraint equations.

3.2
Variational formulation of the tower

The tower is loaded axially by the nacelle and blades weights. So, it must be

designed to support static as well as dynamic axial loads in order to avoid

buckling. Axial loads (its own weights and those of the other components) also

affect the lateral motion of the column, changing its natural frequency and this

must be considered. In a complete analysis it will be modeled to consider axial

and transversal loads as well as torsion. Simplifications will be made due to

the symmetry of the cross section which permits to uncouple the kinematic of

the tower into three independent structural elements:

– Bar, axially loaded;

– Beams axially and transversally loaded in two longitudinal orthogonal

planes;

– Shaft, submitted to torsion.

The tower is the most complicated component in this work and is discussed in

more detail in the Section 7.1 of the Appendix, where a set of differential

equations is obtained together with conditions related to the state of the

system at the beginning of the analysis, the initial and boundary conditions.

As the purpose here is to use finite elements to get to an approximation of

the solution in an iteratively way, it would be convenient to take that set

of differential equations associating each equation to a space of admissible

functions. This will result in a set of variational equations incorporating the

natural boundary conditions. The space of the admissible functions defines

the regularity of the problem and incorporate part of the essential conditions

[57]. In variational formulation, the differential equations are projected in

a space generated by some chosen base functions ψ̄(x), test functions, and

integrated over the domain. Those functions have at least one restrictions and

the resulting restricted set of functions is the admissible set
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Adm =

{
ψ̄(x) : (0, L)→ < : /

∫ L

0

ψ̄2(x) <∞
}

. (3.11)

The choice of the base for Adm is crucial to approximate de solution

for the problem. Some Variational Approximation Methods are: Rayleigh-Ritz,

Galerkin, Petrov-Galerkin and Least Squares [57]. In the Galerkin method, the

same base used to approximate the solution is used to project the dynamics.

The space of admissible functions is linear with infinite dimension. So, any

element of Adm, ψ̄x, can be expressed as a linear combination of the elements

of the base, ψ̄, so that, for arbitrary constants aj,

ψ̄x =
∞∑
j=1

ajψ̄j. (3.12)

The next important point related to Galerkin method, consists in finding

an approximation for the solution of the problem in a sub-set of Adm of finite

dimension. From 3.12, using a subset of dimension N ,

ψ̄x =
N∑
j=1

ajψ̄j +
∞∑

k=N+1

akψ̄k = ψ̄N + ε̄N , (3.13)

where ψ̄N ∈ AdmN , a finite subset of Adm. Neglecting ε̄N means introducing

an error in the solution. The variational problem is formulated with integral

operators I(.) and F(.) as follows

I(ψ̄x, ψ̄) = F(ψ̄). (3.14)

Substituting Equation 3.13 into Equation 3.14 one obtains

I(ψ̄N + ε̄Nx , ψ̄) = F(ψ̄), (3.15)

which can be rewritten as

I(ψ̄N , ψ̄)−F(ψ̄) = I(ε̄N , ψ̄), (3.16)

where I(ε̄N , ψ̄) is the error of the approximation. Finally, Galerkin method

imposes this projection error on the base of Adm to be null, meaning that the

error is orthogonal to the space AdmN .

I(ψ̄N , ψ̄)−F(ψ̄) = 0. (3.17)

The base of eigenvectors associated to the mechanical problem can

be used to approximate its dynamics [47]. This base has the advantage of

containing informations on the structure behavior and one can chose the

elements to use. The determination of the eigenvectors can be performed

numerically by using finite element discretization of the structure. Then, the

dynamic can be approximated as precise as needed. Next, the variational

formulation will be applied using Galerkin method, that is, the equations
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of motion are multiplied by weight functions that are the same used to

approximate the solution. Then, the equations are integrated over the domain.

3.2.1
Bar formulation

For bar formulation, the first equation of 7.25 in Appendix applies. Multiplying

it in both sides by the test function φxj = φxj(x) one obtains

∫ L

0

∂

∂x

(
EA

∂wx
∂x

)
φxjdx+

∫ L

0

fxφxjdx =

∫ L

0

ρAẅxφxjdx. (3.18)

Integrating by parts,

φxjEA
∂

∂x
wx

∣∣∣∣
L

− φxjEA
∂

∂x
wx

∣∣∣∣
0

−
∫ L

0

∂

∂x

(
EA

∂

∂x
wx

)
∂

∂x
φxjdx

−
∫ L

0

ρAẅxφxjdx = −
∫ L

0

fxφxjdx

. (3.19)

Recalling Equations 7.34 to 7.35 (Appendix), it follows that

−mtipφxj(L)ẅx(L)− kaxφxwx(0) + F (L, t)φxj(L)−
∫ L

0

EA
∂wx
∂x

d

dx
φxjdx

−
∫ L

0

ρAẅxφxjdx = −
∫ L

0

fxφxjdx

(3.20)
and now, one considers that the field w(x, t) is approximated by a

combination of functions, composed by a product of a spatial and a time

dependent function w(x, t) =
∑N

1 φx(x)iaxi(t), that permits to obtain the

following operators[
Mx(φxi , φxj)

]
äxi +

[
Kx(φxi , φxj)

]
axi =

[
Fx(φxj)

]
(3.21)

where

Mx =

(∫ L

0

ρAφxiφxjdx+mtipφxi(L)φxj(L)

)
Kx =

(∫ L

0

EA
dφxi
dx

dφxj
dx

dx+ kaxφxiφxjdx

)
Fx =

(∫ L

0

fxφxjdx+ Fx(L, t)φxj(L)

) . (3.22)
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3.2.2
Shaft formulation

The same is made for shaft model. Multiplying the second Equation of 7.25 in

Appendix by the appropriate test functions φθj ,

∫ L

0

∂

∂x

(
GIxx

∂θi
∂x

)
φθjdx+

∫ L

0

mxφθjdx =

∫ L

0

ρIxxθ̈xφθjdx (3.23)

Integrating by parts

φθjGIxx
∂

∂x
θx

∣∣∣∣
L

− φθjGIxx
∂

∂x
θx

∣∣∣∣
0

−
∫ L

0

∂

∂x

(
GIxx

∂

∂x
θx

)
∂

∂x
φθjdx+∫ L

0

φθjmxdx =

∫ L

0

ρIxxθ̈xφθjdx

.

(3.24)
Recalling the boundary conditions given by Equations 7.46 and 7.47

(Appendix) it follows that

− φθjJxxθ̈x − φθjkrxθx + Tx(L, t)φθj −
∫ L

0

∂

∂x

(
GIxx

∂

∂x
θx

)
∂

∂x
φθjdx+∫ L

0

φθjmxdx =

∫ L

0

ρIxxθ̈xφθjdx

.

(3.25)
If θx(x, t) =

∑N
1 φθj(x)aθj(t) it becomes that[

Mθ(φθi , φθj)
]
äθi +

[
Kθ(φθi , φθj)

]
aθi =

[
Fθ(φθj)

]
(3.26)

where

Mθ =

(∫ L

0

ρIxxφθiφθjdx+ Jxxφθi(L)φθj(L)

)
Fθ =

(∫ L

0

mxφθj + Tx(L)φθidx

)
Kθ =

(∫ L

0

GIxx
dφθi
dx

dφθj
dx

dx+ krxφθiφθj

) . (3.27)

3.2.3
Beam formulation

Again, multiplying third equation of 7.25 by the test function ψy(x) = ψy in

Appendix and integrating over the domain one obtains
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∫ L

0

∂2

∂x2
(EIzz

∂2

∂x2
wy)ψydx+

∫ L

0

∂

∂x
(P

∂

∂x
wy)ψydx+

∫ L

0

∂

∂x
mzψydx

+

∫ L

0

∂

∂x
(ρIzz

∂

∂x
ẅy)ψydx+

∫ L

0

(ρA+ ClρfAc)ẅyψydx+∫ L

0

sign (Wy − ẇy) (ρfDCDWyẇy)ψydx−∫ L

0

sign (Wy − ẇy)
(

1

2
ρfDCDẇ

2
y

)
ψydx =

∫ L

0

foyψydx+∫ L

0

(1 + Cl)ρfAcWyψydx+

∫ L

0

sign (Wy − ẇy)
(

1

2
ClD(x)W 2

y

)
ψydx+∫ L

0

ρClAẆyψydx.

(3.28)
Integrating by parts,

ψy
∂ψy
∂x

(EIzz
∂2

∂x2
wy) |L − ψy

∂

∂x

(
EIzz

∂2

∂x2
wy

)
|0 − EIzz

∂2wy
∂x2

dψy
dx
|L +

EIzz
∂2wy
∂x2

dψy
dx
|0 +

∫ L

0

EIzz
∂2wy
∂x2

d2ψy
dx2

dx+ P (x)
∂wy
∂x

ψy |L − P
∂wy
∂x

ψy |0−∫ L

0

P (x)
∂wy
∂x

∂ψy
∂x

dx+ ρIzz
∂ẅy
∂x

ψy |L − ρIzz
∂ẅy
∂x

ψy |0 −
∫ L

0

ρIxx
∂ẅy
∂x

∂ψy
∂x

dx+

mzψy |L −mzψy |0 −
∫ L

0

mz
∂ψy
∂x

dx+

∫ L

0

(ρA+ ClρfAc) ẅyψydx+∫ L

0

sign (Wy − ẇy) (ρfDCDWyẇy)ψydx−∫ L

0

sign (Wy − ẇy)
(

1

2
ρfDCDẇ

2
y

)
ψydx =

∫ L

0

foy(x, t)ψydx+∫ L

0

(1 + Cl) ρfAcWyφydx+

∫ L

0

sign (Wy − ẇy)
(

1

2
ClDW

2
y

)
ψydx+∫ L

0

ρClAẆyψydx.

(3.29)
Again, using conditions from Equations 7.30 to 7.33,
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mtipẅy(L, t)ψy(L) + kaywy(0, t)ψy(0) +

∫ L

0

∂

∂x

[
(EIzz

∂

∂x
wy

∂

∂x

]
dx−∫ L

0

(P (x)
∂

∂x
wy)ψydx−

∫ L

0

∂

∂x
(ρIzz

∂

∂x
)ψydx+

∫ L

0

∂

∂x
mzψydx+∫ L

0

(ρA+ ClρfAc)ẅyψydx+

∫ L

0

sign (Wy − ẇy) (ρfDCDWyẇy)ψydx−∫ L

0

sign [Wy − ẇy]
[

1

2
ρfDCDẇ

2
y

]
ψydx =

∫ L

0

foy(x, t)ψydx+∫ L

0

(1 + Cl)ρfAcWyψydx+

∫ L

0

(sign(Wy − ẇy)
[

1

2
ClDW

2
y

]
ψydx+∫ L

0

ρClAẆyψydx− Tz(L, t)
∂ψy
∂x

(L, t)− Fy(L, t)ψy.

(3.30)
If θ(x, t) =

∑N
1 ψθi(x)aθi(t) it becomes that

Ky(ψyi , ψyj) + Py(ψzi , ψzj)− Iz(ψzi , ψyj) +My(ψyi , ψyj)+

Cy(w,ψ) +Ny(ψzi , ψyj)−Fy(ψyj) = 0
(3.31)

where the operators above are

My = −
∫ L

0

ρIxx
∂ẅy
∂x

∂ψy
∂x

dx+

∫ L

0

(ρA+ ClρfAc) ẅyψydx+

mtipẅy(L, t)ψy(L) + kaywy(0, t)ψy(0)

Ky =

∫ L

0

EIzz
∂2wy
∂x2

∂2ψy
∂x2

dx+ kaywy(0, t)ψy(0)

Py = −
∫ L

0

P
∂wy
∂x

∂ψy
∂x

dx

Cy = sign (Wy(x, t)− ẇy(x, t))
∫ L

0

D(x) CD(x)ρf ẇy(x, t)φ(x)dx

Ny = sign (Wy(x, t)− ẇy(x, t))
∫ L

0

1

2
D(x) CD(x)ρf ẇy(x, t)

2φ(x)dx

Iy = −
∫ L

0

ρIxx
∂ẅy
∂x

∂ψy
∂x

dx+

∫ L

0

∂

∂x
mzψydx

Fy =

∫ L

0

foy(x, t)ψydx+

∫ L

0

(1 + Cl)ρfAcWyψydx+∫ L

0

sign (Wy − ẇy)
[

1

2
ClDW

2
y

]
ψydx+∫ L

0

mz
∂ψy
∂x

dx+

∫ L

0

ρClAẆyψydx+ Tz(L, t)
∂φy
∂x

(L, t) + Fy(L, t)ψy.

(3.32)
My, Ky, Py, Cy, Ny, and Fy are mass, stiffness, damping, non-linear
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force and force operators for transversal displacements in plane xy. The same

can be made for bending in the plane xz. Given a set of initial conditions,

wx(x, t), wy(x, t), wz(x, t), θx(x, t), they must be transformed to be given as

functions of the nodal quantities. For the displacements

w0x(x) =
∞∑
i=1

axi(0)φi(x); w0y(x) =
∞∑
i=1

ayi(0)ψi(x)

w0z(x) =
∞∑
i=1

azi(0)ψi(x); θ0x(x) =
∞∑
i=1

aθi(0)φi(x).

(3.33)

For velocities,

ẇ0x(x) =
∞∑
i=1

ȧxi(0)φi(x); ẇ0y(x) =
∞∑
i=1

ȧyi(0)ψi(x)

ẇ0z(x) =
∞∑
i=1

ȧzi(0)ψi(x); θ0x(x) =
∞∑
i=1

ȧθi(0)φi(x).

(3.34)

Multiplying both sides of the equations above by the appropriated function ψ

or φ and integrating in the domain [0 L], results in

a0xi
=

∫ L
0
w0xφidx

m̄xij

; a0yi
=

∫ L
0
w0yψidx

m̄yij

a0zi
=

∫ L
0
w0zψidx

m̄zij

; a0θi =

∫ L
0
θ0xφidx

m̄θij

.

(3.35)

Using the same procedure, the initial nodal velocity vector can be obtained

ȧ0xi =

∫ L
0
ẇ0xφidx

m̄xij

; ȧ0yi =

∫ L
0
ẇ0yψidx

m̄yij

ȧ0zi =

∫ L
0
ẇ0zψidx

m̄zij

; ȧ0θi =

∫ L
0
θ̇0xφidx

m̄θij

(3.36)

In equations above,

m̄xij =

∫ L

0

φiφjdx; m̄yij =

∫ L

0

ψiψjdx

m̄zij =

∫ L

0

ψiψjdx; m̄θij =

∫ L

0

φiφjdx.

(3.37)

3.2.4
Finite element discretization

In finite element context, the domain is discretized in small sub-domains and

the deformed geometry is interpolated using a set of interpolating functions.

For beam element, it is quite usual to use two nodes Hermite interpolating

functions and, for bar and shaft elements, linear Lagrangian polynomials for
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interpolating the axial displacements and torsional angles [26]. The element is

presented in Figure 3.2.4 and corresponds to twelve degrees of freedom. The

Hermite polynomials are

ψ(1) = ψ(1)(xe) = 1 + 2
x3
e

L3
e

− 3
x2
e

L2
e

ψ(2) = ψ(2)(xe) = xe +
x3
e

L2
e

− 2
x2
e

Le

ψ(3) = ψ(3)(xe) = 3
x2
e

L2
e

− 2
x3
e

L3
e

ψ(4) = ψ(4)(xe) =
x3
e

L2
e

− x2
e

Le

(3.38)

and Lagrange polynomials are

φ(1) = φ(1)(xe) =
1

Le
(Le − xe)

φ(2) = φ(2)(xe) =
1

Le
xe

(3.39)

where Le is the length of the element and 0 ≤ xe ≤ Le.

3.2(a): Element with twelve d.o.f.

So, the axial displacement element function is, using Lagrange polyno-
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mials
wex = φ(1)U e(1)

x + φ(2)U e(2)
x (3.40)

and, using the same linear Lagrangian function to interpolate the angular

displacements,
θex = φ(1)U

e(1)
θx

+ φ(2)U
e(2)
θx

(3.41)

For transversal (y and z directions) displacements, one uses Hermite

polynomials ψ(xe), so

wey = ψ(1)U e(1)
y + ψ(1)U

e(1)
θz

+ ψ(2)U e(2)
y + ψ(2)U

e(2)
θz

(3.42)

wez = ψ(1)U e(1)
z + ψ(1)U

e(1)
θy

+ ψ(2)U e(2)
z + ψ(2)U

e(2)
θy

(3.43)

The upper right indexes (1) and (2) mean node numbers. The Equations

3.40 to 3.43 can be gathered in a single 4× 12 matrix so that,

{Ue(xe, t)} = [He(xe)]{U e(t)} (3.44)

where {Ue(xe, t)} is a vector containing the displacement functions, [He(xe)]

is a matrix with the interpolating functions and the vector U e(t) is the nodal

displacement vector for one finite element. This matrix equation is calculated

for each element integrating the Equations 3.21,3.26,3.31 and 3.32 in element

domain, resulting in the following expression, for each finite element

[M e
t ] {Ü e(t)}+ [Ce

t ]{U̇ e(t)}+ {N e
t (U̇ e(t))}+ [Ke

t ]{U e(t)} = {F e
t (t)};

{U e(0)} = {U e
0} and {U̇ e(0)} = {U̇ e

0},
(3.45)

Using Equations 3.21, 3.26 and 3.31 one obtains all individual element

matrices, which are assembled in a single global matrix, resulting in the

following system:

[Mt] {Ü(t)}+ [Ct]{U̇(t)}+ {Nt(U̇(t))}+ [Kt]{U(t)} = {Ft(t)};

{U(0)} = {U0} and {U̇(0)} = {U̇0}.
(3.46)

The system represented in Equation 3.46 is formed by a set of differ-

ential equations which, together with the initial conditions, represents a time

dependent and nonlinear problem, whose solution can be approximated using

Newmark method. The nonlinearity is in the force {Nt(U̇)(t)} which takes in

consideration the interaction fluid-structure.
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3.2.5
Construction of a reduced model

In general, the finite element formulation has a large number of degrees of

freedom. Solving the problem in time can be expensive because of the large

amount of computational operations. In order to diminish that number, more

information about the structure must be obtained and a way to do so is to

access its natural frequencies and modes. The natural modes and frequencies

can be obtained by solving the eigenvalue problem

det
[
[Kt]−$2[Mt]

]
= 0. (3.47)

Solving the Equation 3.47, a set of pairs of eigenvalues and its respec-

tive eigenvectors ($2
i ,v̄i) is obtained. Then, the eigenvectors can be used to

approximate the displacements of the structure and the more frequencies are

considered, the better is the approximation of the solution. Nevertheless, to

improve the approximation, the number of finite elements must be increased.

It is expected that, as the number of finite elements tends to infinity, so do

the eigenfunctions, and consequently, in the limit, the dynamics will be fully

represented. Then it is must be possible to find a finite set of eigenfunctions

and frequencies which approximate the dynamics within a certain precision

[57]. This can be made iteratively by increasing the number of elements of the

beam until the ith mode converges for the required precision.

After obtaining a the set of ndof eigenvalues $2
i and their respective

eigenvectors {v̄}i, they are organized in two matrices of dimension ndof ×ndof :
one diagonal containing the eigenvalues and other, [ ¯̄H], whose columns are

composed by the eigenvectors. It is known that the eigenvectors form a base

for the space <ndof and the nodal displacement vector can be approximated by

a linear combination of the eigenvectors as follows [27], [47]:

{U(t)} = [ ¯̄H]{ ¯̄U(t)}. (3.48)

where { ¯̄U(t)} is a vector with time dependent components. The matrices and

vectors after reduction will have the dimension neig×neig and neig×1. Although

the Equation (3.46) is nonlinear, the non-linearities are not in the geometry.

This means that a modal analysis can be performed using the undeformed

configuration of the tower as the displacements and rotations are small. Due

to the presence of the nonlinear force, the reduction of the degrees of freedom

must be made on the incremental equation when applying the step by step

method.
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3.2.6
Incorporating the constraints

The turbine considered here is composed by six bodies. One of them, the

tower, is flexible and the others are rigid. It is installed in the ground and

small displacements and rotations are permitted at the base (x=0), due to

the soil flexibility. The nacelle is fixed on top of tower and moves rigidly in

connection with its top cross section. The shaft rotates keeping the axis of its

proper rotation fixed with respect to the nacelle. It is also rigidly coupled to the

blades. Each body was modeled separately in previous sections, but, due to the

links they have, constraint equations must be introduced in order to impose the

actual interaction between the bodies. Summarizing, the restriction imposed

are:

– Tower tip cross section is rigidly coupled to the bottom surface of the

nacelle;

– Shaft moves with the nacelle except for its proper rotation;

– Shaft and the blades are rigidly coupled.

As mentioned in section 3.1, the choice of the Euler parameters for

defining the attitude of the rigid bodies imposed automatically five constraints,

since those parameters are mutually dependent. They are:

ghn = 1− {Θn}T{Θn}

ghs = 1− {Θs}T{Θs}

ghb1 = 1− {Θb1}T{Θb1}

ghb2 = 1− {Θb2}T{Θb2}

ghb3 = 1− {Θb3}T{Θb3}.

(3.49)

The tower is represented in Figure 3.2. The nacelle is installed on the

tower and rotates rigidly with its top cross section. As the point (2) is common

to both, nacelle and tower, then

{ght,n} = {UuL} − [An]{nr̄t} − {Rn}, (3.50)

where {UuL} = {UuL(t)} is the tower nodal displacement vector for x = L (last

node). The vector {nr̄t} is the position of the tower frame relative to nacelle

frame and represented with respect to it (Figure 3.3).

The other holonomic constraints can be easily determined as

{ghn,s} = {Rn} − [As]{sr̄n} − {Rs}

{ghs,b1} = {Rs}+ [As]{sr̄h} − [Ab1]{b1r̄h} −Rb1

{ghs,b2} = {Rs}+ [As]{sr̄h} − [Ab2 ]{b2r̄h} −Rb2

{ghs,b3} = {Rs}+ [As]{sr̄h} − [Ab3 ]{b3r̄h} −Rb3 ,

(3.51)
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Figure 3.2: Tower

where {sr̄n}, {sr̄h}, {b1r̄h}, {b2r̄h} and {b3r̄h} are represented in Figure 3.3.

For non-holonomic constraints, five sets of equations are obtained. Again,

considering that the angular velocity of the top of the tower is the same as that

experienced by the nacelle,

{gnht,n} = {U̇θL} − [Gn]{Θ̇n} (3.52)

where {U̇θL} = {U̇θL(t)} is the vector with the angular velocities relative to

the section containing the node at the tip of the tower (x = L). The matrix

[G] is defined in the section 7.2 of the Appendix. The shaft is carried by the

nacelle but has a proper rotation. The nacelle and shaft angular velocities are

the same except for the shaft spin. So, if the shaft angular velocity were the

same as that of the nacelle, one would write

[Ḡn]{Θ̇n} = [An]−1[Gs]{Θ̇s}. (3.53)

Now, one imposes that the first and the third components of 3.53 are the

same and the third component is free, then
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Figure 3.3: Nacelle, shaft and blades

{gnhn,s}1,3 = [Ḡn]1,3{Θ̇n} − [Ḡ∗s]1,3{Θ̇s}, (3.54)

where [Ḡ∗s] = [An]−1[Gs] and the index 1, 3 means that only the first and

the third components are considered to be equal. The other component for

shaft and nacelle are also in the same direction always but are different in

magnitude. The difference between those two components gives the magnitude

of the relative angular velocity between the shaft and the nacelle.

The other constraints result from the fact that the shaft and blades have

the same angular velocity. Those assumptions are expressed as

{gnhs,b1} = [Gs]{Θ̇s} − [Gb1]{Θ̇b1}

{gnhs,b2} = [Gs]{Θ̇s} − [Gb2]{Θ̇b2}

{gnhs,b3} = [Gs]{Θ̇s} − [Gbl3]{Θ̇b3}.

(3.55)

One defines the following vectors of dimension 20× 1 and 17× 1:

[Gh] = {{ght,n}T {ghn,s}T {ghs,b1}T {ghs,b2}T {ghs,b3}T}T (3.56)

[Gnh] = {{gnht,n}T {gnhn,s}T {gnhs,b1}T {gnhs,b2}T {gnhs,b3}T} (3.57)

The Jacobian matrix is then the derivatives of the holonomic set of

equations with respect to all generalized coordinates, resulting in the following
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20× 38 matrix

∂Gh

∂{q}
= [Jh] =



[03] [03] −2{Θn}T [03] [04] [03] [04] [03] [04] [03] [04]

[03] [03] [04] [03] −2{Θs}T [03] [04] [03] [04] [03] [04]

[03] [03] [04] [03] [04] [03] −2{Θb1}T [03] [04] [03] [04]

[03] [03] [04] [03] [04] [03] [04] [03] −2{Θb2}T [03] [04]

[03] [03] [04] [03] [04] [03] [04] [03] [04] [03] −2{Θb3}T

[I3] −[I3] −[Bn,t] [03] [034] [03] [034] [03] [034] [03] [034]

[03] [I3] [034] −[I3] −[Bs,n] [03] [034] [03] [034] [03] [034]

[03] [03] [034] [I3] [Bhs] −[I3] −[Bh,b1] [03] [03] [034] [034]

[03] [03] [034] [I3] [Bh,s] [03] [034] −[I3] −[Bh,b2] [034] [034]

[03] [03] [034] [I3] [Bh,s] [03] [034] [03] [03] −[I3] −[Bh,b3]



,

where [I3] is the 3×3 identity matrix. [03], [034], [024] and [023] are 3×3, 3×4,

2× 4 and 2× 3, respectively. [013] and [014] are matrices with dimensions 1× 3

and 1× 4, respectively.

For non-holonomic constraints, the following 17× 38 matrix is obtained

(see, section 7.7 of the Annex).

∂Gnh

∂{q̇}
= [Jnh] =

[I3] [03] −[Gn] [03] [034] [03] [034] [03] [034] [03] [034]

[023] [023] [Ḡn]1,3 [023] [G∗s]1,3 [03] [024] [023] [024] [023] [024]

[03] [03] [034] [03] [Gs] [03] −[Gb1] [03] [034] [03] [034]

[03] [03] [03x4] [03] [Gs] [03] [034] [03] −[Gb2] [03] [034]

[03] [03] [034] [03] [Gs] [03] [034] [03] [034] [03] −[Gb3]


where [G∗s] = −[A]−1

n [Gs], [I3] is the 3× 3 identity matrix.

3.2.7
Assembling and solving the system of equations

It was obtained the equation for the motion of the rigid bodies, nacelle, shaft

and blades (Equation 3.9). The formulation for the tower is given in Equation

3.46. In this section, the constraints were formulated resulting in Equations

3.58 and 3.58. It is now possible to assemble all equations and imposing

the constrains so that the complete system shown in Equation 3.58 can be

assembled:
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[M]{¨̌q}+ [Jh]T ([Ph]{Gh}+ [Kh]{Λh}) + [Jnh]T ([Pnh]{Gnh}+

[Knh]{Λ̇nh})− {Qd} − {Qk} − {Qv} − {Qe} = {0}

[Kh]{Gh} = {0}

[Knh]{Gnh} = {0}

{q̌(t0)} = {q̌0}

{ ˙̌q(t0)} = { ˙̌q0}

{Λh(t0)} = {Λ0nh}

{Λ̇nh(t0)} = {Λ̇0nh}

(3.58)

where [M] is the overall mass matrix (with the contribution of all bodies),

{Qd}, {Qk}, {Qv} and {Qe}, are vectors of the external generalized damping

force, generalized force due to the flexibility of the body and other external

elastic forces (springs, for instance), the quadratic velocity vector and the

generalized external force, respectively. The calculation of those forces are

presented in sections 7.6 and 7.8 of the Appendix. {Λh} and {Λ̇nh} are the

Lagrange multipliers for holonomic and non-holonomic constrains, respectively.

{Gh} and {Gnh} are the vector of the overall holonomic and non-holonomic

functions respectively. All those vectors contain the contribution of all bodies

that composes the system. The vector

{q̌} = {{U}T {qn}T {qs}T · · · {qb3}T}T (3.59)

is the vector of all the generalized coordinates. The matrices {Jh} and {Jnh} are

presented in Equations 3.58 and 3.58. Finally, matrices [Kh], [Knh], [Ph] and

[Pnh] are diagonal overall matrices containing the scale factors and penalty

factors holonomic and non-holonomic constraints.

Related to the initial conditions, it must be mentioned that they can not

be applied independently, but the kinematic for all bodies must satisfy the

constraints. If initial conditions are prescribed to the tower, then the angles

and displacements at its tip must be the same as the base of the nacelle, and

vice-versa. The angular velocity of the shaft must be the same as those of the

rotation of the blades and so on. In this work, initial velocities and positions

are null, except for the shaft and blades. For those components, it is possible to

impose an initial speed. Next, it will be discussed the integration in time, but

first, one must define the following augmented coordinate generalizes vector

{qΛ} = {{U}T {qn}T {qs}T · · · {qb3}T {Λh} {Λnh}}T , (3.60)

in order to include the Lagrange multipliers. The problem presented in
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Equation 3.58 is non-linear and, to be analyzed in a time interval [0; tmax], it

is usual to divide this interval into a certain number, say N , of sub-intervals

of smaller uniform time steps of size ∆t. Knowing the state in a time (for

instance, in t = 0 (when the system given in Equation 3.58 is verified), one

predicts the next values for accelerations, velocities and positions, by using the

Newmark method, which defines the following integration scheme for the step

l + 1

{ ˙̃qΛ}l+1 = { ˙̃qΛ}l + (1− γ)∆t{¨̃qΛ}l + γ∆t{¨̃qΛ}l+1

{q̃Λ}l+1 = {q̃Λ}l + ∆t{ ˙̃qΛ}l + (
1

2
− β)(∆t)2{¨̃qΛ}l+1

(3.61)

where {q̃Λ}l, { ˙̃qΛ}l and {¨̃qΛ}l are approximations to {qΛ}, {q̇Λ} and {q̈Λ},
respectively. The parameters γ and β are associated with the accuracy and

stability of the scheme ([10],[26]). For dealing with the nonlinearities, the

interactive Newton-Raphson method is used. At the end of each step the

convergence is checked by measuring the error that must be below the level

of precision required the approximate the solution. Newton-Raphson method

defines the following iterative process for a kth iteration

{¨̃qΛ}k+1
l+1 = {¨̃qΛ}kl+1 +

1

β∆t2
{∆q̃Λ}

{ ˙̃qΛ}k+1
l+1 = { ˙̃qΛ}kl+1 +

γ

β∆t
{∆q̃Λ}

{q̃Λ}k+1
l+1 = {q̃Λ}kl+1 + {∆q̃Λ}

(3.62)

where {∆q̃Λ} is the solution of the following linear system of algebraic equations

(
1

β∆t2
∂{r∗}
∂{q̈Λ}

+
1

β∆t

∂{r∗}
∂{q̇Λ}

+
∂{r∗}
∂{qΛ}

)
{∆q̃Λ} = −{r∗}({¨̃qΛ}, { ˙̃qΛ}, {q̃Λ}).

(3.63)
The residue {r∗} is defined as

{r∗} =[M̃]{ ˜̌̈q}+ [J̃h]T ([Ph]{G̃h}+ [Kh]{Λ̃h}) + [J̃nh]T ([Pnh]{G̃nh}+

[Knh]{ ˙̃Λnh})− {Q̃d} − {Q̃k} − {Q̃v} − {Q̃e},
(3.64)

submitted to the same initial conditions presented in Equation 3.58. The con-

strained initial value problem of Equation 3.58 together with the Newmark

scheme shown in Equation 3.61 define a nonlinear problem of algebraic equa-

tions with unknowns {qΛ}l, {q̇Λ}l and {q̈Λ}l. This is an approximation using

Taylor expansion in step l and iteration k and imposing {r∗}(k+1)
l = {0}. In

order to solve the Equation 3.63 for {∆q̃Λ}, the necessary derivatives of the

residue with respect to {q̃Λ}, { ˙̃qΛ} and {¨̃qΛ} must be calculated. They are
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∂{r∗}
∂{q̈Λ}

= [M̃Λ]

∂{r∗}
∂{q̇Λ}

=
∂

∂{q̇Λ}
{[M̃Λ]{¨̃qΛ}} −

∂

∂{q̇Λ}
{Q̃d} −

∂

∂{q̇Λ}
{Q̃k} −

∂

∂{q̇Λ}
{Q̃v}

− ∂

∂{q̇Λ}
{Q̃f}+ {[J̃nh]T [Pnh][J̃nh]}+ {[J̃nh]T [Knh]}

+
∂[J̃nh]T

∂{q̇Λ}
[Pnh]{G̃nh}+

∂[J̃nh]T

∂{q̇Λ}
[Knh]{q̇Λ}

∂{r∗}
∂{qΛ}

=
∂

∂{qΛ}
{[M̃Λ]{¨̃qΛ}} −

∂

∂{qΛ}
{Q̃d} −

∂

∂{qΛ}
{Q̃k} −

∂

∂{qΛ}
{Q̃v}

− ∂

∂{qΛ}
{Q̃e}+ {[J̃h]T [Ph][J̃h]}+ {[J̃h]T [Kh]}

+
∂[J̃h]T

∂{qΛ}
[Ph]{G̃h}+

∂[J̃h]T

∂{qΛ}
[Kh]{qΛ}}

(3.65)
where it was also considered that

∂

∂{ ˙̃qΛ}
([J̃h]T [Kh]Λ̃h) =

∂

∂{ ˙̃qΛ}
([Knh]

˙̃Λnh) = 0. (3.66)

Concerning the constrains, it can be said that

− {G̃∗h} =
∂

∂{˜̌q}
{G̃h}{∆˜̌q} = J̃h{∆˜̌q}

− {G̃∗nh} =
∂

∂{ ˙̌̃q}
{G̃nh}{∆ ˙̌̃q} = J̃nh{∆ ˙̌̃q}

(3.67)

since, at the end of incremental step one imposes that {G̃h}k+1
l = 0 and

{G̃nh}k+1
l = 0. The calculation of all derivatives is given in section 7.8 in

Appendix.

In order to construct the reduced model with the eigenvectors of the

structure, on has to define the following matrix [H̄]:

[ ¯̄H] =



¯̄H11
¯̄H12 · · · ¯̄H1neig 0 · · · 0

¯̄H21
¯̄H22 · · · ¯̄H2neig 0 · · · 0

...
...

...
...

...
...

...
¯̄̄
Hndof1

¯̄̄
Hngc2 · · ·

¯̄̄
Hndofneig 0 · · · 0

1 0 0 · · · 0 · · · 0

0 1 0 · · · 0 · · · 0

0 0 1 · · · 0 · · · 0
...

...
...

...
...

...
...

· · · · · · · · · · · · 1 0 0

0 0 · · · · · · 0 1 0

0 0 · · · · · · 0 0 1



(3.68)
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so that

[ ¯̄H]{q̃red} = {q̃Λ} (3.69)

and, now, the vector {q̃red} contains in first neig lines, the reduced beam d.o.f.

So, substituting Equation 3.69 into 3.63, it becomes

(
1

β∆t2
∂{r∗}
∂{q̈Λ}

+
1

β∆t

∂{r∗}
∂{q̇Λ}

+
∂{r∗}
∂{qΛ}

)
[ ¯̄H]{∆q̃red} = −{r∗}({¨̃q∗Λ}, { ˙̃q∗Λ}, {q̃∗Λ}).

(3.70)
Projecting the dynamics into the space generated by the eigenvectors,

[ ¯̄H]T
(

1

β∆t2
∂{r∗}
∂{q̈Λ}

+
1

β∆t

∂{r∗}
∂{q̇Λ}

+
∂{r∗}
∂{qΛ}

)
[ ¯̄H]{∆q̃red} = −{r∗red} (3.71)

and
{r∗red} = [ ¯̄H]T{r∗}({¨̃q∗Λ}, { ˙̃q∗Λ}, {q̃∗Λ})., (3.72)

Using the matrix [ ¯̄H], only the degrees of freedom related to the tower

will be transformed. The matrices 3.58, 3.58 can be transformed in order to

consider the reduced tower degrees of freedom. The transformation results, for

[Jnhred ],

[Jhred
] =

{0neig
} {03} −2{Θn}T {03} {04} {03} 2{04} {03} {04} {0nm} {04}

{0neig
} {03} {04} {03} −2{Θs}T {03} {04} {03} [{04} {03} {04}

{0neig
} {03} {04} {03} {04} {03} −2{Θb1}T {03} {04} {03} {04}

{0neig
} {03} {04} {03} {04} {03} {04} {03} −2{Θb2}T {03} {04}

{0neig
} {03} [04] {03} {04} {03} {04} {03} {04} {03} −2{Θb3}T

[ ¯̄HuL
] −[I3] −[Bn,t] [03] [034] [03] [034] [03] [034] [03] [034]

[03neig
] [I3] [034] −[I3] −[Bs,n] [03] [034] [03] [034] [03] [03x4]

[03neig
] [03] [034] [I3] [Bhs] −[I3] −[Bh,b1] [03] [03] [034] [034]

[03neig
] [03] [034] [I3] [Bh,s] [03] [034] −[I3] −[Bh,b2] [034] [034]

[03neig
] [03] [034] [I3] [Bh,s] [03] [034] [03] [03] −[I3] −[Bh,b3]



.

and for [Jnhred ],

[Jnhred ] =

[ ¯̄HθL ] [03] −[Gn] [03] [034] [03] [034] [03] [034] [03] [034]

[03nm] [03] [Gn] [03] [G∗s] [03] [034] [03] [034] [03] [034]

[03nm] [03] [034] [03] [Gs] [03] [034] [03] [034] [03] [034]

[03nm] [03] [034] [03] [Gs] [033] −[Gb1] [03] [034] [03] [034]

[03nm] [03] [03x4] [03] [Gs] [03] [034] [03] −[Gb2] [03] [034]

[03nm] [03] [034] [03] [Gs] [03] [034] [03] [034] [03] −[Gb3]


and the constraint ght,n can be rewritten as

{ght,n} = [ ¯̄HuL ]{ ¯̄UuL(t)} − [An](nrt)− {Rn}. (3.73)

and gnht,n , as
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{gnht,n} = [ ¯̄HθL ]{ ˙̄̄
UθL(t)} − [Gn]{Θ̇n} (3.74)

The matrices [ ¯̄HuL ] and ¯̄HθL ] are sub-matrices of the eigenvectors matrix

[ ¯̄H] associated to the system, and defined as below

[ ¯̄HuL ] =


¯̄Hundof−5,1 ... ¯̄Hndof−5,2 · · · ¯̄Hndof−5,neig

¯̄Hndof−4,1 ... ¯̄Hndof−4,2 · · · ¯̄Hndof−4,neig

¯̄Hndof−3,1 ... ¯̄Hndof−3,2 · · · ¯̄Hndof−3,neig

 (3.75)

[ ¯̄HθL ] =


¯̄Hndof−2,1 ... ¯̄Hndof−2,2 · · · ¯̄Hndof−2,neig

¯̄Hndof−1,1 ... ¯̄Hndof−1,2 · · · ¯̄Hndof−1,neig

¯̄Hndof ,1 ... ¯̄Hndof ,2 · · · ¯̄Hndof,neig

 (3.76)

where the components ¯̄Huij and ¯̄Hθij are obtained for x = L and are associated

to the degrees of freedom of displacement and rotation, respectively, at the node

of the beam at the interface with the nacelle.

Taking in consideration Equations 3.67, the problem is finally formulated

as
[Kred]{∆q̃red} = −{r∗red}

[J̃hred ]{∆˜̌qred} = −{G̃∗nhred}

[J̃nhred ]{∆
˜̌̇qred} = −{G̃∗nhred},

(3.77)

with the initial conditions

{q̌(t0)} = {q0}

{ ˙̌q(t0)} = {q̇0}

{Λh(t0)} = {Λ0}

{Λ̇nh(t0)} = {Λ̇0},

(3.78)

where, {r∗red} is given by the Equation 3.72.The vectors {qred} and {q̌red} are,

respectively:

{qred} = {{ ¯̄U}T {qn}T {qs}T · · · {qb3}T {Λh} {Λnh}}T (3.79)

and
{q̌red} = {{ ¯̄U} {qs}T · · · {qb3}T}T . (3.80)

The matrix Kred is

Kred = ¯̄HT

(
1

β∆t2
∂{r∗}
∂{q̈Λ}

+
1

β∆t

∂{r∗}
∂{q̇Λ}

+
∂{r∗}
∂{qΛ}

)
¯̄H. (3.81)

The incremental scheme is given by Equations 3.61 and 3.62. Opera-

tionally, the appropriated derivatives are performed in Equation 7.8. So, the

matrix at the left of the system given in 3.77 is obtained. Then, the second

and third matrices are obtained and assembled. The initial conditions must

be introduced (considering the they are compatible with the constraints) and
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the system is solved for the Lagrange multipliers and accelerations. With the

initial state determined, the Newmark and Newton-Raphson schemes are used

to integrate in time.

Related to the convergence criteria, two measures are used in this work

to check the level of precision. One controls the evolution of the residue and

the other the constraints. In practical terms, this procedure of founding the

approximation for the solution continues until the L2 norm of the residual

vector and the residual constraints vector becomes smaller than a specified

tolerance, that is

‖r∗red‖ ≤ εr∗

‖G∗red‖ ≤ εG∗ ,
(3.82)

where εr∗ and εG∗ are imposed tolerances.
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4.1
Wind and water loads acting on the tower

The wind passes through the plane of rotation causing torques and forces that

are felt by the tower through the shaft. The tower is affected by the wind

directly when the it flows around. Also, mainly in case of upwind turbines,

complex effects take place when the blades pass in front of the tower causing

perturbation in the flow. Terrain roughness and other turbines installed nearby

also causes the flow to be perturbed and affects the behavior of the tower. In

some offshore structures, the tower is partially immersed, so that the movement

of the water loads the tower. The loads will vary with the direction of the

currents and surface waves. On the other hand, the presence of the water

damps the structure and reduces its natural frequencies due to the ”added

mass” effect, whenever there is a relative acceleration between the fluid and

the tower. In this work, only the current effect will be considered without any

wave effects.

Figure 4.1: Fluid interaction with the tower (cross section)
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4.2(a): Model (plane xy) 4.2(b): Model (plane xz)

The wind deterministic speed can be modeled by a logarithmic equation

given in Equation 2.2, which describes the mean profile of the wind as the

height varies and, for the case of immersed tower,

Wa(x) = W̄a(x1)(log((x− hw)/x0)/log(x1/x0)), [hw < x ≤ L∗], (4.1)

where, hw is the height of level of the water surface and L∗ is the maximum

height of the water level.

The water deterministic speed in this work is modeled as

Ww(x, t) = W̄w(x) + ∆W̄w(x)cos($wt+ θw), [0 ≤ x ≤ hw], (4.2)

with
Ww(x, t) = ‖{Ww(x, t)}‖ (4.3)

and W̄w(x) and ∆W̄w(x) are constant functions of x.

{Ww(x, t)} =


0

Wwy(x, t)

Wwz(x, t)

 . (4.4)
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4.2
Wind loads in the blades

As discussed previously, the focus of this thesis is kept in horizontal axis wind

turbine (HAWT) what means that the wind blows perpendicularly to the plane

of the rotor. When wind approaches the plane of the rotor it is influenced by

the rotor itself, slows down and the pressure increases. When passing through

the blades it transfers kinetic energy so that the pressure drops, causing a force

over the blades (thrust). The process can be explained using simplified models

without using any specific turbine design, but only energy concepts [35]. The

simpler idea is to consider the turbine as a permeable actuator disc and assume

that the interaction fluid/disc is ideal. This is known as 1-D momentum theory

for ideal turbines [23]. It can be found in those two previous references all the

details about the interaction between blades and wind. Nevertheless, those

ideas and concepts will be again shown here just because they are the key

for understanding the subject. First it is considered that a front of wind with

diameter equal to that of the rotor contains the available power of

Pav =
1

2
ρaAswW

3
a∞ . (4.5)

However, this power is not entirely transmitted to the blades because

not all mass will pass through the blades as shown in Figure 4.2. Besides, the

wind after passing the turbine may still has kinetic energy. This means that

there must be a limit in the transmission of energy from the wind mass to the

blades. This is known as the Betz limit(after Albert Betz (1885-1968)). Then,

the power factor, the relation between the extracted and available power is

Figure 4.2: Conservative flow in an actuator [23]
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CP = Pex/Pav (4.6)

4.2.1
1-D Momentum theory for ideal turbine

As already mentioned, this theory idealizes a permeable disc positioned per-

pendicularly to the ideal flow. The assumptions are [23]:

– The disc is permeable and considered a drag device;

– Mach number is small and density of the air is constant;

– The flow is stationary, incompressible and frictionless;

– It is considered an infinite number of blades;

– The wake does not rotate downstream;

– Far from the disk, the static pressure upstream and downstream are equal

to the undisturbed static pressure.

Under those conditions, Bernoulli equation can be applied just at left

and at right of the disc, considering that

∆p = pl − pr (4.7)

and using continuity considerations

Wal = War = Wa. (4.8)

Then, applying Bernoulli equation,

p∞ +
1

2
ρaW

2
a∞ = p+

1

2
ρaW

2
a (4.9)

and
(pl −∆p) +

1

2
ρaW

2
al

= pr +
1

2
ρaW

2
ar (4.10)

Combining two previous equations

∆p =
1

2
ρa(W

2
a∞ −W

2
ar) (4.11)

The thrust force is resultant of the drop of the pressure in the rotor plane

and is

Th = ∆pAsw =
1

2
ρa(W

2
a∞ −W

2
ar)Asw (4.12)

Applying the integral equation (momentum equation) in the volume of

Figure 4.2 to calculate the variation of the momentum in axial direction, it

becomes that:

Th = −(ρaW
2
arAr + ρaW

2
a∞(Acv − Ar) + ṁoutWa∞ − ρaW 2

a∞Acv) (4.13)
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The mass that crosses the control volume per unit of time, using conser-

vation of mass, is

ṁout = ρaAr(Wa∞ −War) (4.14)

and,

ṁ = ρaWaAsw = ρaWarAr (4.15)

Combining 4.13, 4.14 and 4.15, results that

Th = ρaWaAsw(Wa∞ −War) (4.16)

It is possible to demonstrate that [23]

Wa =
1

2
(Wa∞ +War) (4.17)

Using this, the power equation becomes

Pex =
1

2
ρaWa∞Asw(W 2

a∞ −W
2
ar) (4.18)

The axial induction factor a is defined as

a =
Wa∞ −Wa

Wa∞

(4.19)

then
Wa = (1− a)Wa∞ . (4.20)

Considering that the power transmitted to the device is the same as that

lost by the wind

Pex =
1

2
ρaW

3
a∞a(1− a)2Asw. (4.21)

The thrust is then

Th =
1

2
ρaW

2
a∞a(1− a)Asw. (4.22)

The power coefficient was defined in Equation 4.6. Substituting the

equation 4.21 into 4.6 it results in

CP = 4a(1− a)2 (4.23)

and in the same way for the thrust,

CTh = 4a(1− a). (4.24)

Derivatives of CP and CT with respect to a equated to zero gives the

maximum coefficient CP = 16/27 for a = 1/3. For thrust coefficient, the

maximum is CT = 1 and occurs for a = 0.5. The value of CP = 16/27 is the

Betz limit. This theory is limited to values for induction factor a <≈ 0.4 [23].

Due to the mechanical and electrical efficiency, the amount of power obtained
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is even smaller. Then, useful electric power Pout is affected by the overall power

coefficient

ηtot =
Pout

1
2
ρaAswW 3

a∞

, (4.25)

ηtot = ηeleηmecCP , (4.26)

so that, the useful electric power is

Pout = ηtot(
1

2
ρaAswW

3
a∞). (4.27)

4.2.2
Rotation in wake

Only one direction was used and necessary to understand the mechanism of

transmission of energy from wind to the turbine, although radial components

are present in this kind of flow too. Two important quantities, the thrust over

the disk and power transfered could be calculated without any reference to the

blades. Nevertheless, in real turbines, after exiting the rotor the flow rotates

due the interaction with the blades and this has to be also considered. This

interaction produces the torque which makes the blades rotate in the opposite

direction of that of the wind. The problem must be analyzed in each position

r of the blade as the tangential velocity of each point of the blade changes

linearly from the hub to the tip of the blade. Than, the properties of flow are

dependent on r. The Figure 4.3 shows the flow at upwind with two components

of velocity ua, axial and va, radial. One starts, assuming that the magnitudes

of those speed components do not change when passing through the plane of

rotation, but the presence of the blade results in an angular component wa.

As the flow is considered radially symmetric, it can be said that the variation

in time of an infinitesimal angular momentum of any chosen infinitesimal ring

like that shown in Figure 4.2 is equal to the infinitesimal torque over the ring.

So,

dTa = 2ρaWaωar
2πrdr. (4.28)

The Bernoulli constants can be calculated for points 1 and 2, so that it

can be obtained [35]

b1 − b2 = ∆p− 1

2
ω2
ar

2 (4.29)

where b1 and b2 are the Bernoulli constants at point 1−3 and 2−4 respectively.

This means that the infinitesimal torque in the blades decreases the kinetic

energy of the fluid of an amount −1
2
ω2
ar

2. This also means that when the fluid
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Figure 4.3: Flow with rotation in wake

rotates, the term ∆p must decrease to keep the total energy constant since the

axial velocity is constant when passing through the plane of rotation. So,

p∞ − pr =
1

2
ρa(W

2
a2
−W 2

a1
) +

1

2
ρaω

2
a2
r2

2

1

2
ρaω

2r2+

(h0 − h1) =
1

2
ρa(W

2
a2
−W 2

a1
) +

1

2
ρa(ω

2
a2
r2

2 − ω2
ar

2) + ∆p ..
(4.30)

Also, applying Bernoulli equation between plane 3 and 4 it is found that

∆p =
1

2
ρa(−Ω2

b + (Ωb − ωa)2r2 = ρa(Ωb + ωa)ωar
2. (4.31)

Substituting 4.31 into 4.30 results in

p1 − p2 =
1

2
ρa(W

2
a2
−W 2

a1
) + ρa(Ωb + ωa)r

2. (4.32)

Using the variation of the axial momentum in control volume as made in

previous section,

dTh = ρau2(Wa1 −Wa2)dA2 = (Ωb + ωa2) + (p1 − p2)dAsw2 . (4.33)

But,
dThw = ρa(Ωb + ωa)Ωbr

2dAsw, (4.34)
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Figure 4.4: Infinitesimal rotating wind volume - view from downwind

then, combining equations 4.30, 4.33 and 4.34 it results that,

1

2
(Wa∞ −Wa2)2 =

(
Ωb +

ωa2

2

Wa2

−
Ωb +

ωa2

2

Wa∞

)
Wa2r

2
2ωa2 . (4.35)

Now, defining the tangential induction factor a′ = Wa

2Ωb
,

dThw = ∆pdA = 4ρaπΩ2
ba
′(1 + a′)r3dr. (4.36)

It was already shown that (Equation 4.22)

dThw = 2ρaπWa(Wa −Wa1)dA = 4πρaW
2
a1
a(1− a)rdr (4.37)

and, as the two previous equations represents the same quantity, they can be

equated to permit to obtain the relation between the two induction factors a

and a′. The following equality is obtained

a(1 + a)

a′(1 + a′)
=

Ω2
br

2

W 2
a1

= λb(r)
2, (4.38)

where λb(r) is the speed ratio at a radial position r in the blade. The torque

acting on the infinitesimal ring element is, then

dTo = 4ρaπWa1Ωba
′(1− a)r3dr. (4.39)

The power can be obtained as

dP =
1

2
ρaAswW

3
a1

(
8

λ2
b

a′(1− a)λ3
b(r)dλb). (4.40)
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The power coefficient is obtained by the integration over the transversal swept

area Asw for all local infinitesimal power coefficient, resulting in

CP =
8

λ2
b

∫ R

0

a′(1− a)λ3
b(r)dλb. (4.41)

For a given available power Pav, the coefficient CP changes as a function of

a. If the angles of attack are small enough to avoid stall, a and a′ are not

independent and the Equation 4.38 is valid ([35], [23]). Then, the Equation

4.38 can be written in the following way

a′ = −1

2
+

1

2

√
1 +

4

λ2
b(r)

a(1− a). (4.42)

Solving both Equation 4.42 and Equation 4.41 for maximizing the power

coefficient, one obtains

λ2(r) =
(1− a)(4a− 1)2

(1− 3a)
; and a′ =

1− 3a

4a− 1
. (4.43)

The maximum power coefficient is then calculated substituting the

Equation 4.43 into Equation 4.41 and performing the integration in relation

to the induction factor a. That is,

CPopt =
24

λ2
b

∫ a2

a1

(1− a)(1− 2a)(1− 4a)

(1− 3a)
. (4.44)

In Equation 4.44, λb = 0 happens for a1 = 0.25 and λb =∞ when a2 = 1
3
.

The final expression for the power coefficient is then ([35])

CPopt =
8

729λ2
b

[
64

5
x5 + 72x4 + 124x3 + 38x2 − 63x− 12ln(x)− 4x−1

]x=0.25

x=(1−3a2)

.

(4.45)
The analysis made in this section completes the simpler model discussed

in previous section (1D model), in which it was not considered the rotation of

the wind when leaving the turbine. So, it is expected that in the limit, both

models tends to give the same results. In fact, this happens when λb tends

to large values, what means a and CPopt approaching 1
3

and 16
27

(Betz limit),

respectively [35].

4.2.3
Blade element theory

In the simple one-dimensional model, details of the rotor geometry, number

blades, chord length distribution as well as the kind of airfoils are not

considered. Blade element theory, developed by Herman Glauert (1892-1934),

permits the calculation of loads, thrust and power for different set ups of wind

speed rotations and pitch angles. The wind-cylinder presented previously is
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discretized into Nb annular elements of length dr. The sides are stream-lines,

so the mass in each volume is constant in time. Concerning to the flow, some

hypothesis are assumed [23]:

– The volumes are independent each other;

– Forces from the blades on the flow are constant in each annular element;

– Rotor assumed with infinite number of blades;

– Pressure along the curve stream lines enclosing the wake does not give

any axial force component.

Under those conditions it can be used the formulation developed in

previous section [23]. The Figure 4.5 shows a cut in a position r of the blade

determining a shape of an airfoil. The angle θb(r) is the sum of the pitch angle

, θb0 , and the twist of the blade βb(r). The Figure 4.6 shows the forces acting

in a particular section of the blade. Basically two forces act: the thrust in the

direction of the wind and the torque, orthogonal to the thrust. The drag is the

force acting in the direction of the relative wind and is caused by the viscosity

of the fluid. The lift force acts orthogonally to the relative direction of the

wind.

Figure 4.5: Flow with rotation in wake

It can be seen in the Figure 4.5 that the following equation can be derived:

tan(φb) =
(1− a(r))Wa∞

(1− a(r)′)Ωbr
(4.46)
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Figure 4.6: Forces in a section of a blade

and

αb(r) = φb(r)− θb(r) (4.47)

and also,

θb(r) = θ0 + βb(r). (4.48)

Lift and drag forces can be calculated as

Lb(r) =
1

2
ρaW

2
a cb(r)CLb(r) (4.49)

Db(r) =
1

2
ρaW

2
a cb(r)CDb(r). (4.50)

Projecting the two forces in rotor plane and perpendicular directions,

py(r) = Lbcos(φb(r)) +Db(r)sin(φb(r)) (4.51)

pz(r) = Lbsin(φb(r))−Db(r)cos(φb(r)). (4.52)

Normalizing with 1
2
ρaW

2
a cb(r)

Cy(r) = CLbcos(φb(r)) + CDb(r)sin(φb(r)) (4.53)
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Cz(r) = CLb(r)sin(φb(r))− CDb(r)cos(φb(r)) (4.54)

where
Cy(r) =

Py
1
2
ρaW 2

a cb(r)
(4.55)

and
Cz(r) =

Pz
1
2
ρaW 2

a cb(r)
. (4.56)

From figure 4.5,
Wasin(φb(r)) = Ωb(1− a(r)) (4.57)

Wacos(φb(r)) = Ωbr(1 + a′(r)). (4.58)

Defining the solidity (σb(r)) as a fraction occupied buy the blades in the

circumference of radius r it comes that

σb(r) =
cb(r)Nb

2πr
. (4.59)

Then,
dTy(r) = Nbpy(r)dr (4.60)

dTz(r) = rNbpz(r)dr (4.61)

resulting that

dTy(r) =
1

2
ρaNbW

2
a∞(1− a)2(1/sin2(φb))cb(r)CL(r)dr (4.62)

dTz(r) =
1

2
ρaNbWa∞(1−a(r))Ωbr(1+a′(r))(1/sin(φb(r))cos(φb(r)))CL(r)cb(r)rdr

(4.63)
It is obtained the following equations

a(r) =
1

(4sin2(φb(r))
σb(r)Cy(r)

+ 1)
and a′(r) =

1

(4cos(φb(r))sin(φ(r))
σb(r)Cz(r)

− 1)
. (4.64)

Up to this point all the parameters were determined to make possible to

use the BEM theory. To make it operational, a set of steps must be performed

so that in a iterative way, the loads an moments can be calculated. Below, a

flowchart showing the steps to achieve this [23].

– Step 1 =⇒ initialize a(r) and a′(r) (a(r) = 0; a′(r) = 0);

– Step 2 =⇒ Compute φ(r) using eq 4.46

– Step 3 =⇒ Compute the local angle of attack using equation 4.47;

– Step 4 =⇒ Read off CL(αb(r)) and CD(αb) from table for r;

– Step 5 =⇒ Compute Cy(r) and Cz(r) from eq 4.53 and 4.54;

– Step 6 =⇒ Compute a(r) and a′(r) from Equations 4.64

– Step 7 =⇒ If a(r) and a′(r) gets stable and changes within certain

tolerance;

– Step 8 =⇒ Compute the loads on the segment of the blades.
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4.2.4
Numerical evaluation for the moments and forces

The equations obtained above must be integrated along the blade in order to

obtain the forces and torques acting on the blades. Experimentally, three loads

per unity length are obtained, when testing the airfoil: lift force, drag force

and torque. The Figure 4.7 shows a blade with sections and the corresponding

graphs for forces py and pz. Usually [23], the intervals are integrated from ri

to ri+1 assuming a linear function between that two points and are calculated

as follows. First assume that

Figure 4.7: Division of the blade in N sections

pzi = azir + bzi (4.65)

so,
azi =

(pzi+1
− pzi)

(ri+1 − ri)
and bzi =

(pziri+1i− pzi+1
ri)

(ri+1 − ri)
(4.66)

dTz =

∫ ri+1

ri

rpzidr =

∫ ri+1

ri

(azir
2 + bir)dr (4.67)

∆Tzi,i+1
= (

1

3
azir

3 +
1

2
bzir

2) |ri+1

ri
=

1

3
azi(r

3
i+1 − r3

i ) +
1

2
bzi(r

2
i+1 − r2

i ) (4.68)

Tz = Nb(
N−1∑

1

Tzi,i+1
) (4.69)

The same idea can be used to calculate the other forces and torques compo-

nents.

4.2.5
Prandtl tip loss factor

When deducing the aerodynamics about the blade, some hypothesis were made

including the one imposing that the number of the blades were infinite. The

problem is that, in practice, the number of blades are small and this affects

the turbine performance. This problem was solved by Prandtl who proposed
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the following relation for the correction factor related to the finite number of

blades [23]:
Fl =

2

π
cos−1(e−fl) (4.70)

and
fl(r) =

Nb

2

Lb − r
rsin(φr)

(4.71)

This correction is applied in the induction factors [23]

a(r) =
1

4Fl(r)sin2(φ(r))
σb(r)Cy(r)

+ 1
and a′(r) =

1
4Fl(r)cos(φ(r))sin(φ)

σ(r)Cz(r)
− 1

. (4.72)

4.2.6
Corrections for a larger than 0.4

If the value of a(r) approaches 0.4, momentum theory is not valid anymore.

The solution for the flow is obtained empirically a relation between the trust

coefficient Cz(r) and a(r).

As an example on may has [23]

CThz(r) = 4a(r)(1− a(r))Fl(r), ifa(r) ≤ 1/3

CThz(r) = 4a(r)(1− 1

4
(5− 3a(r))a(r))Fl(r) if a(r) ≥ 1

3

(4.73)

Other relations can be obtained in other authors [23]. From the local aerody-

namics, the infinitesimal thrust dTh on an annular element is given by Equation

4.63 . For an annular control volume CT is, by definition

Cz(r) =
dT

1
2
ρaW 2

a∞2πrdr
(4.74)

Using the equation 4.62 to substitute dT ,

Cz =
(1− a(r))2σCy

sin2(φ)
(4.75)

Equating the two equations, 4.74 and 4.75, it comes that, for a(r) < ac,

4a(r)(1− a(r))F =
(1− a(r))2σb(r)Cy(r)

sin2(φ(r))
(4.76)

a =
1

(4Fl(r)sin2(φ(r))
σb(r)Cy(r)

) + 1
. (4.77)

If a > ac
4(a2

c + (1− 2ac)a(r))Fl(r) =
(1− a(r))2σb(r)Cy

sin2(φ(r))
, (4.78)

giving [23]

a(r) =
1

2
[2 +Kl(r)(1− 2ac)−

√
((Kl(r)(1− 2ac) + 2)2 + 4(Kl(r)a2

c − 1))]

(4.79)
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Kl(r) =
4Fl(r)sin

2(φ(r))

σb(r)Cy(r)
. (4.80)

4.2.7
Wind simulations

The real wind is variable in time and space, that means that in the plane of

rotation, in a position (x, z), the wind speed is a function of time and it is

random as shown in Figure 4.8. The problems is now how to find this function

considering information from the local wind. This is made by using the power

spectral density for the local wind.

Figure 4.8: Stochastic wind

Given a power spectral density, it is possible to determine the correspon-

dent time series [57]. Nevertheless, this is just a realization of the random

process and only makes sense for ergodic processes. Then, a more elaborated

theory must be applied to deal with more general processes. When analyz-

ing the wind behavior, each point in the plane of rotation may be considered

a random process and to each process is associated a power spectral density

function. The mutual influence among process are modeled by a coherence

function. Using this two functions, a set of harmonic functions are created and

superposed, weighted by coefficients that account for the relative importance

that each frequency value has in the time response, considering the density

and spatial correlation. As already discussed in Chapter 2, the wind spectral

density function and coherence functions where already studied, for the atmo-

spheric boundary layer and different analytical expressions to approximate Sf
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functions exist, (such as the Kaimal, Frost or von Karman) [70]. For example,

the Kaimal spectrum as given in [23]:

Sf (f) =
I2
wWtsl(

1 + 1.5 fl
Wats

) 5
3

(4.81)

Iw = σw
Wats

is the turbulence intensity, f is the frequency (in Hz), Wats is the

ts min averaged wind speed (maybe from standards), and l is a length scale,

l = 20h for h < 30m and l = 600m for h > 30m, where h is the height above

ground level. The coherence function is dependent on the relative positions

between two individual processes and also on the frequency considered. The

coherence function is

Cohjk(l̄jk, f) = exp

(
−12

(
f l̄jk
Wats

))
(4.82)

where j and k indexes represent two single process in two different positions

in the plane of rotation. l̄jk are the distances between the two point in

analysis. The spectral representation method starts by considering n Gaussian

stationary random processes f0j(t), j = 1, 2, ...n with zero mean and with a cross

spectral density matrix S0(ωs) given by

[S0(ω)] =


S0

11 S0
12 ... S0

1n

S0
21 S0

22 ... S0
2n

...
...

. . .
...

S0
n1 S0

n2 ... S0
nn.

 (0 ≤ ω ≥ ∞) (4.83)

By definition, S0(ω)jk = F
(
R0
jk

)
where F (·) means the Fourier transform

operator and R0
jk is the cross-correlation. As the process is stationary, S0

jk =

S̄0
jk, R0

jk(τ) = R0
kj(τ) and S0

jk is Hermitian and positive definite [57]. One

defines [H] as a triangular matrix for which the Fourier transform exists and

also satisfies the relation

[S0(ω)] = [H(ω)][H(ω)]T (4.84)

[H]T is the transpose complex conjugate. The matrix [H(ω)] can be obtained

by the Spectral Representation Method [56] and a methodology to do will be

discussed next. Considering the equation, the process can be simulated by the

series

Waj(t) =
m∑
k=1

N∑
n=1

|H|
√

2∆ωcos[ω̂nt+ θjk(ωn) + Φkn]. (4.85)

where ∆ω is the interval of the discretization and ω̂n = ωn+ψkn∆ω, where NP

is the number of points, ψkn are random values uniformly distributed between

0 and 1, Φkn is the random independent phase angles uniformly distributed
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between 0 and 2π and

θjk(ωn) = tan−1

(
= (Hjk(ωn))

< (Hjk(ωn))

)
. (4.86)

If the matrix [Hjk(ωn)] is real, then, θjk(ωn)]=0. It can be proved that

[56] the processes Waj(t), simulated by Equation 4.85 can produces the cross

correlation R0
jk(τ) and the spectral density S0

jk(ωs), with respect to the group

mean. With the formulation presented is possible to derive the time dependent

wind velocity field. The path to do so will be presented next.

First, a matrix, Sjk, is mounted, containing the elements

Sjk = Cohjk
√
SjjSkk (4.87)

where Sjj and Skk are the psd functions of points j and k respectively. The

off diagonal terms Sjk are the magnitudes of the cross-spectra. If the number

of points in space is NP , then, the matrix Sjk has the dimension NP ×NP .

Then, a lower triangular H matrix is computed through following recursive

formulation:

Hjk =
Sjk −

∑k−1
l=1 HjlHkl

Hkk

(4.88)

Hkk =

√√√√(Skk −
k−1∑
l=1

H2
kl) (4.89)

For each point indexed by k and for each discrete frequency, fn = n/T ,

a random number, Φkn, between 0 and 2π, is sorted to represent the phase as

in equation. n varies between 1 and N/2, where N is the number of discrete

points in the time histories (t = i∆t, i = 1, · · · , N). Then, one determines

the vector of complex velocities components {Wa(fn)}, calculated as:

<(Waj(fn)) =

j∑
l=1

H2
jkcos(φkn); and =(Waj(fn)) =

j∑
l=1

H2
jksin(φkm)

(4.90)
Then, the amplitude and the phase are

Aj(fn) =
√
<(Wa(fn))2 + =(Wa(fn))2

Φj(fn) =
=(Wa(fn))

<(Wa(fn))

(4.91)

and all time histories at the points j = 1, NP can be computed as:

Waj(t) = W̄a +

N/2∑
n=1

2Aj(fn)cos(2πfnt− Φj(fn))

t = i ∆t, for i = 1, ..., N .

(4.92)

Time series of two points apart are of course different but this difference

grows with the distance. The coherence depends on the frequency and the
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Figure 4.9: Points to simulate the velocity (view from upwind)

lower the frequency, the better is the correlation [23].

The natural choice of points for calculation of the punctual wind speeds is

that shown in Figure 4.9 [23] because the points are aligned with the blade. The

field determined by methodology above gives the velocities for fixed points but

the blades sweep through the grid. So, interpolation must be made to obtain

the value for the wind speed between to radial set of points. Those velocities

in space do not represent the true action over the blade [23]. It means that it

should be determined the time history of the wind seen by a point on the blade.

A time history for a point on the rotating blade is called rotational sampling

and it was shown in [70] that it can be directly calculated for a blade with a

constant rotational speed.
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5
Evaluation of a turbine

A turbine, schematically represented in the Figure 3.1 whose parameters are

given in the Table 5.1 and Table 5.2, was loaded and simulated in time. It is

supposed to be installed in the ground whose dynamic behavior is represented

by the springs as indicated. It can be also partially immersed and subjected

forces due to the water and wind flows but the wind is considered to act only

in the blades. The wind will be considered as being equivalent to random

forces and torques acting at the top of the structure. The displacements are

measured with respect to inertial frames situated at the center of the mass

of the bodies at t = t0. The Table 5.2 gives details about the nacelle, shaft

and blades configurations. Same of turbine data were taken from [1], but some

were adopted. In the same way, blade data were adopted and based on data

taken from [23]. They are shown in graphics depicted in Figure 5.2 for chord

length and twist angles, ( βb(r), c(r) and θT (r)), as well as, for the drag, lift

and torque coefficients (CD(r), CL(r) and CM(r)). They are all as a function

of angle of attack α.

Figure 5.1: Nacelle details (Table 5.2)
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Table 5.1: Parameters used in all simulations
Tower Values Nacelle Values

L 55 m mn 35700 kg

D 3.37 m Jnxx 666600 kgm2

tht 0.0068 mm Jnyy 33330 kgm2

E 210 GPa Jnzz 666600 kgm2

G 85 GPa Jnxy 0 kgm2

ν 0.3 Jnxz 0 kgm2

ρ 7860 kg/m3 Jnyz 0 kgm2

Blade Values Shaft Values

mb 2000 kgm2 Ds 0.4 m

Lb 25 m ths 0.01 m

Jbxx 333 kgm2 Ls 3 m

Jbyy 33330 kgm2 ρs 7860 kg/m3

Jbzz 33330 kgm2 − −
Jbxz 0 kgm2 − −
Jbxy 0 kgm2 − −
Jbyz 0 kgm2 − −
Soil Values Wind Values

kax ∞ x0 0.1 m

kay 7.5× 108 N/m x1 50 m

kaz 7.5× 108 N/m Wa1 10 m/s

krx ∞ − −
kry 1.55× 1010 Nm/rad − −
krz 1.55× 1010 Nm/rad − −
Water Values Flow Values

ρw 1000 kg/m3 Cl 1

νw 1.72× 10−5 kg/m3 CDa 0.8

− − CDw 1.0
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Table 5.2: Dimensions used in calculation

Parameters Values Parameters Values

Rn,tx 0.5 m lh,b 7 m

Rn,ty 1.0056 m lh,s 1.5 m

Rn,tz 0 m mtip 39.7e3 kg

Rs,tx 0.5 m Jtipx 1.0843e6 kgm2

Rs,ty −4 m Jtipy 4.2733e5 kgm2

Rs,tz 0 m Jtipz 1.0843e6 kgm2

Rh,tx 0.5 m ξs 0o

Rh,ty −5.5 m ξb 0o

Rh,tz 0 m - -

The turbine has its parameters given the Table 5.1 and the airfoil data

are shown in graphs of Figure 5.2.
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Figure 5.2: Blade details

In order to simulate energy generation, a generator used here and it has

a very simplified model. It is supposed that if it is working at the operational

speed Ω̄op no torque is generated. If its speed is smaller than the operational

speed, for instance when the wind is very weak, then the generator acts like

a motor and generate a positive torque, consuming energy. On the contrary,

for instance when the wind is strong enough, the rotor tends to increase its

speed and then, the generator acts to stabilize the speed close to, but a bit

higher, than the operational one. In this case, electric energy is generated. The

counter torque produced is proportional to the difference Ω̄op − Ω̄sy . Then on

has

T̄g = kg(Ω̄op − Ω̄sy) (5.1)

where kg is a constant associated to the generator. Ω̄op and Ω̄sy are the

operational and actual speeds of the shaft/blades in ys axis direction. Ω̄sy is

the components of the shaft angular velocity in the direction ys represented in

the shaft coordinate frame.

The turbine evaluation will be made in two steps in order to approximate

the dynamics in a more efficient way. First, a number of eigenfunction must

be chosen so that the tower dynamics is approximated properly and the

simulations can be carried out. After that, the number of elements of the

set (of the eigenvectors) is increased and a new dynamic analysis is performed.

Both results are compared and a decision must be made, based on a prescribed

precision, if the results converged to a good approximation of the solution. The

codification of all presented by now was made in MathLab R©and simulated for

an specific turbine. This is discussed next.
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5.1
Modal analysis

The determination of eigenfunctions and eigenvalues is performed in order

to get more information about the structure and then construct the reduced

model. 2D analysis can be made in order to evaluate the dynamics of the

structure and the mutual influence of the components of the system in a simpler

way with low computational costs [2]. Nevertheless, real wind turbine moves

in 3D space and this code was made in order to make possible a more realistic

dynamic analysis. The geometric and constitutive data were introduced in the

program and the eigenvalues were obtained. The modal results can be obtained

for immersed and non-immersed tower. To simulate this, a concentrated mass

in the tip of the tower (mtip) is considered, whose magnitude is the sum of the

individual masses of the nacelle, shaft and blades. Also, the matrix of inertia

[Jtip] represents the composition of all individual inertia matrices (nacelle, shaft

and blades). It is considered, for tower modal calculations, that the center of

the mass mtip is in the axis of the tower and its distance from the top of the

tower is not relevant (just concerning to the modal evaluation). In this case, the

resultant matrix of inertia for the mass mtip is diagonal. Two modal analysis

will be made for two situations. For a turbine installed inland and another,

offshore, semi-immersed. In the latter case, the presence of the water affects

the natural behavior of the tower, as already was discussed in the work. The

case of inland installation, it is considered that the air has little influence in

the natural motion of tower.

5.1.1
Tower installed inland

This simulation was made imposing at first a precision of a value equal

or less than 0.1%. The program initiates with a minimum number of 20

elements and doubles the value at each iteration. For the prescribed precision

an approximation for the eigenvalues and eigenvectors were obtained with

a calculated precision of 0.072 % after three interactions. The number of

necessary finite elements for that precision was 80 elements. Imposing the

precision of 0.01 %, the results were obtained after 5 iterations and 320 elements

were necessary to give a precision of 0.0045 %. It took approximately 1.3 s for

obtaining the first set of results and 260 s for the second. The graphic results

for precision of 0.01% are presented in Figures 5.1.1 to 5.1.1. In the Table 5.3,

the natural frequency values for the two imposed precisions (0.1% and 0.01%)

are presented. Also, the difference between those two results is shown in the

4th column of that table. It can be observed that the maximum absolute value
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for the error was 0.02.

Table 5.3: First 20 natural frequencies for inland turbine in Hz

Mode Precis. Precis. Differ. Mode Precis. Precis. Differ.

0.1 % 0.01% 0.1% 0.01 %

1th 0.458 0.458 −1.0−7 11th 30.140 30.138 −1.8−3

2th 0.460 0.460 −1.0−7 12th 38.799 38.797 −2.0−3

3th 2.670 2.670 −1.0−7 13th 39.599 39.597 −2.1−3

4th 4.144 4.144 −6.4−6 14th 50.404 50.401 −3.1−3

5th 4.736 4.736 −1.3−5 15th 59.928 59.914 −1.4−2

6th 9.985 9.984 −4.1−5 16th 61.983 61.975 −7.2−3

7th 11.727 11.727 −9.7−6 17th 62.439 62.432 −7.3−3

8th 12.356 12.356 −8.6−5 18th 89.744 89.724 −2.0−2

9th 21.047 21.047 −3.8−4 19th 89.819 89.771 −4.9−2

10th 22.699 22.698 −4.3−4 20th 90.039 90.019 −2.0−2
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Figure 5.3: 1st to 4th eigenvectors - precision: 0.01%

The eigenvalues and the respective eigenvectors were organized in a

sequence of ascending magnitude in order to give an idea of the components of

the spectrum. This helps to select the components to be used in the reduced

model, that may be chosen in a sequential manner or not. It can be sometimes
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Figure 5.4: 5th to 8th eigenvectors - precision: 0.01%

interesting to chose the eigenfunctions in a more convenient way. In present

work the motion of the tower in axial, torsional, and transversal planes are

independent. That means that the eigenvectors have null in all d.o.f except for

in one. Looking at the Table 5.3 and Figures 5.1.1 to 5.1.1, it can be taken,

for instance, three eigenfunctions for each movement of the tower, that is, for

axial displacement, 7th and 14th eigenfunctions. For motion in plane xy and xz,

1st, 5th, 8th and 2nd, 4th, 6th eigenfunction. Finally for twist displacement, 3st,

11th and 15th. In the present case, each kind of movement of the tower will be

formed by a linear combination of those chosen eigenfunction. As mentioned

above, the natural behavior of the tower is dependent, among other properties,

on the mass and moment of inertia of the set installed at its tip, as well as,

on its own distributed weight. The Table 5.5 shows the natural frequencies for

some tip loads and moments of inertia and their relative deviation from those

results presented in Table 5.3. It is clear that as the mass or the moments of

inertia of the set formed by nacelle and blades increases, the frequencies drop,

that is, the natural tower motion gets slower.
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Figure 5.5: 9th to 12th eigenvectors - precision: 0.01%

Table 5.4: First 20 natural frequencies in air and immersed (20m) in Hz
Mode Nat. freq. Nat. freq. Mode Nat. freq. Nat. freq.

In air In water In water In air
1th 0.458 0.459 11th 30.140 31.204
2th 0.460 0.459 12th 38.799 38.786
3th 2.670 2.644 13th 39.599 49.880
4th 4.144 4.121 14th 50.404 50.404
5th 4.736 5.140 15th 59.928 59.926
6th 9.985 9.927 16th 61.983 61.975
7th 11.727 11.727 17th 62.439 70.957
8th 12.356 15.764 18th 89.744 89.739
9th 21.047 21.019 19th 89.819 89.818
10th 22.699 30.135 20th 90.039 95.821

5.1.2
Semi-immersed tower

As the tower is 55m high and the blades have 25m, it is necessary to ensure

some distance between the tip of the blades and the surface of the water. It

will be considered a distance of 10m between the water surface and the tip of

the blades as a safe distance. Under this assumption, the highest possible level

reached by the water surface is 20m. The simulations were carried out, the
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Figure 5.6: 13th to 16th eigenvectors - precision: 0.01%

natural frequencies were obtained and given in Table 5.4, together with the

values for inland turbine. Not all the frequencies are affected by the presence

of the fluid but those related to the lateral displacement of the tower (planes

xy and xz). It can be seen at the graphs presented in the Figure 5.1.2 for some

modes that they happen at lower frequencies if compared to the case of in

which any fluid is present.

As expected, the results corroborate what was previously discussed. A

comparison between the two data, those for the tower in the air, Table 5.3,

and those for the tower semi-immersed, is presented in Table 5.4. The values

show the differences are quite significant specially for higher frequencies. Also

must be noticed that the values in plane xy and xz are different because the

moments of inertia in y and z directions are also different.

5.2
Deterministic turbine Dynamics

The algorithm developed to integrate the system of equation of motion is

based on Newmark method and parameters (β and γ) must be set in order to

the convergence to happen. In the simulations carried out here, the following

Newmark parameters were used: β = 0.25 and γ = 0.5. The increment of

time was set to be 1/10 of the smallest tower period. It will be presented only

DBD
PUC-Rio - Certificação Digital Nº 1112566/CA



Chapter 5. Evaluation of a turbine 106

0 10 20 30 40 50
−1

−0.5

0

0.5

1
Eigen function 17

x

v̄
y
(x
)

0 10 20 30 40 50
−1

−0.5

0

0.5

1
Eigen function 18

x

v̄
z
(x
)

0 10 20 30 40 50
−1

−0.5

0

0.5

1
Eigen function 19

x

v̄
θ
(x
)

0 10 20 30 40 50
−1

−0.5

0

0.5

1
Eigen function 20

x

v̄
y
(x
)

Figure 5.7: 17th to 20th eigenvectors - precision: 0.01%
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Figure 5.8: Some affected beam modes for the semi-submersed tower (plane
xy) - precision: 0.01%
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Table 5.5: First 20 natural frequencies for several mass and moments of inertia
Nat. Freq. 3× Jyy 3× Jzz 3 ×Jxx 3×mtip

1st 0.455 0.452 0.458 0.286
2nd 0.460 0.458 0.460 0.293
3rd 2.670 2.670 1.556 2.670
4th 3.990 3.022 4.145 4.134
5th 4.144 4.736 4.736 4.665
6th 9.645 8.421 9.985 7.320
7th 9.985 11.728 11.728 9.919
8th 11.728 12.356 12.356 12.365
9th 20.889 20.394 21.048 20.822
10th 21.047 22.699 22.699 22.548
11th 30.139 30.140 29.979 30.139
12th 38.716 38.479 38.799 38.5478
13th 38.798 39.600 39.600 39.357
14th 50.402 50.404 50.404 48.198
15th 59.917 59.929 59.847 59.917
16th 61.927 62.439 61.983 61.729
17th 61.977 89.618 89.744 62.180
18th 89.693 89.618 89.744 62.180
19th 89.729 89.766 89.490 89.776
20th 89.781 90.040 90.040 89.781
Nbr elem 160 80 80 160
Time 1.4s 1.3s 1.4s 1.46s
Erro(Hz) 0.0434 % 0.0721 % 0.0721 % 0.0434 %

displacements in x, z plane because the other are much smaller and will be

omitted.

5.2.1
Turbine with constant rotor speed

In this simulation, the turbine is assumed to have a constant rotor angular

speed of 0.2 rad/s. Any load is applied, except for its own weight. So, the

analysis considers that the turbine started from a static equilibrium. It is

considered that structure is under its own weight and already in equilibrium

under that load. The results for the displacements of the center of mass of

the blades are depicted in Figures 5.9, 5.10 and 5.11. The rotation of the rotor

does not affects the tower because it is balanced. Then, theoretically, the tower

does not move with the simple rotation of the rotor, then, its dynamics was

approximated using 4 eigenvectors. It can be seen also the graph in the Figure

5.12 the harmonic nature of the loads on the blades due to the centripetal force.

At the beginning of the analysis, blade 1 is in the vertical position (pointing

up). The time of simulation was 60 s.
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Figure 5.9: Blade 1 - Displacement of the center of mass - constant speed
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Figure 5.10: Blade 2 - Displacement of the center of mass - constant speed
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Figure 5.11: Blade 3 - Displacement of the center of mass - constant speed
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Figure 5.12: Centripetal force acting on the blade 2 - constant speed

5.2.2
Turbine loaded by an external torque

This simulation is made to see the behavior of the rotor when submitted to

a constant torque without any limitations in the rotor speed. It is expected

that the rotor in this circumstances will accelerate constantly since there is not

any dissipative forces acting in the model. In this simulation, the turbine is

also assumed to be at rest in time t = 0. Then, an external torque is imposed

in the rotor by applying forces in the blades in the plane of rotation. Those

forces follow the blades, always keeping their direction parallel to z direction

considering the local frames. They have the magnitude of 1000 N and as they

are applied in the center of the mass of the blades, the total positive torque

acting in the shaft is 21000Nm, since the distance of the center of mass from
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the axis of the shaft is 7 m.In fact, the graphs in Figure 5.13 shows that. In

Figure 5.14 it is shown the position of the blades center of masses near the

plane of rotation with time.
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Figure 5.13: Blade 1 - Displacement of the center of mass - external torque
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Figure 5.14: Positions of blades center of mass with time - external torque
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Figure 5.15: Angular velocity - turbine with a generator

5.2.3
Turbine with a generator

If the turbine is not generating it can be accelerated beyond the safe limit

as happened in the previous simulation. But if it is producing energy, safety

systems ensure its operation at a minimum risk. In this simulation, the turbine

is put to operate assuming that it is initially at rest by means of an electric

motor which is connected to the rotor. This will generate a torque that will

turn the shaft (Equation 5.1). The graph shown in Figure 5.16 depicts the

displacement of center of mass for blade 1 while that in Figure 5.17, the

positions of the center of mass of the three blades in time. The Figure 5.15

depicts the evolution of the proper rotation of the shaft. Again, as in the

previous simulation, it is considered that structure is under its own weight and

already in equilibrium under that load. As the rotation of the rotor does not

affects the tower, this motion has no importance so that only some numerical

noise in a very small scale is obtained. As in the previous simulation, only 4

eigenvectors were use for modeling the tower dynamics. Again, at the beginning

of the analysis, the blade 1 is in the vertical position (pointing up) and the

simulation took 60 s.
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Figure 5.16: Blade 1 - Displacement of the center of mass - turbine with a

generator
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Figure 5.17: Positions of blades center of mass with time - turbine with

generator

5.2.4
Turbine loaded by an external torque, with a generator

If the motor/generator is on, the torque made by the forces will act together

with that torque made by the motor to put the rotor in the operation rotation.
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Then the axial component of the acceleration of the shaft is, approximately

Ω̇y =
Tby
Jby

= (21000+500000×0.2)/(3×(2000×72 +33330)) ≈ 0.31
rad

s2
. (5.2)

This same result was obtained in the simulation which can be observed

in the graph of the Figure 5.18. This graph shows the angular acceleration of

the rotor in its axis or rotation from a value of approximately 0.31 rad/s to

zero. If no resistance is found by the external torque, the blades will rotate

in an ascending angular velocity as can be seen in graphs presented in Figure

5.13. If a generator is present, a counter-torque given by the Equation 5.1 will

tend to stabilize the rotor speed. Two situations were explored: in the first the

magnitude of the generator constant is kg = 100000Nms/rad and in the second,

the generator is able to apply a larger counter-torque (kg = 500000Nms/rad).

The results for the displacements in blades center of mass are shown in Figures

5.19 for the first case and in Figure 5.22, for the second. It can be noticed

the differences between the two graphs for the angular speed due to the

proper rotation of the shaft. As expected, in the second case, Figure 5.23,

the stabilization is faster. As in the previous simulation, it is considered that

structure is under its own weight, in equilibrium before starting the motion.

Only 4 eigenvectors were use for modeling the tower. Again, at the beginning

of the analysis, the blade 1 is in the vertical position (pointing up).
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Figure 5.18: Shaft axial angular acceleration - turbine with generator and

external torque
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Figure 5.19: Blade 1 - Displacement of the center of mass
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Figure 5.20: 1 - Angular velocities
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Figure 5.21: Positions of blades center of mass with time - turbine with

generator and torque
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Figure 5.22: Blade 1 - Displacement of the center of mass - turbine with

generator and torque
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Figure 5.23: Blade 1 - Angular velocity

5.2.5
Deterministic water loads

In this case, the turbine is semi-immersed in water. Loads are present due

to the water current. For water, one uses the Equation 4.2. The parameters

related to the water motion are:

hw = L∗ = 20 m; x1 = 50 m; x0 = 0.1 m; W̄w(x) = W̄w = 0

m/s; ∆W̄w(x) = ∆W̄w = 1 m/s; $w = 0.2 Hz; ιw = 0 rad

giving the following equation for the water velocity expression:

Ww(x, t) = cos(0.4πt), [0 ≤ x ≤ hw]. (5.3)

It will be assumed that the flow is in the z direction, so, the vector

velocity of the water is

{Ww(x, t)} =


0

0

cos(0.4πt)

 (5.4)

in m/s. The Figure 5.24 presented below depicts the results for this simulation.

The nonlinearities due to the interaction fluid-structure make this simulation

to be slow. The integration is made in element level. In the element domain

the fluid velocity in the two lateral motion of the beam must be known so that

the forces can be calculated properly.
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Figure 5.24: Z tower displacement at x=2.75 m, 13.7 5m, 41.25m and 55m

5.3
Turbine under random forces and torques at the tip

Concentrated force and torque {F (L, t)} and {T (L, t)} are applied at the tip

of the turbine (x = L, in the tower). This can somehow simulate the action

of the wind over the structure. The rotor is free but at rest and the loads are

considered random.

It was mentioned previously that, due to the symmetry considerations,

each eigenvector can be associated to a single structural component, namely,

a bar (axis x), two beams (moving in xy and xz planes) and a shaft (torsion).

This means that it is possible to increase the number of eigenvectors, improving

the dynamics of one specific structural component. For instance, one begins

the analysis, chosen 11 modes to be used in the approximation of the tower

dynamics: they are chosen to be from the 1st to the 9th, the 11th and the 14th,

meaning four eigenvectors for each beam motion, two for axial motion and one

for rotation. Using this in the simulation, the displacements obtained for the

tower in the four heights are depicted in Figure 5.26. Then, the 14th eigenvalue

was removed from the set and the results are given in the Figure 5.27, where

it is observed that the graph for x displacement got smoother. Finally, the set

was reduced in order to contain the 1st to the 6th eigenvectors. This means

that all components are considered and each beam motion is represented using

two functions. The results for this possibility is in Figure 5.28. This will be

considered a good approximation in this work and the further simulations will

be performed using this set.
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Concerning to the loads, it was supposed that no complete information is

available. It is know, however, that the force acts in y direction and the torque

in z direction. Besides, their magnitude will be always in the intervals [Fyl Fyu ],

for the force, and [Tzl Tzu ], for the torque, whose values are, respectively, 7000

N, 13000 N, 70000 Nm and 130000 Nm. With that information, as discussed

in Section 7.10 of the Appendix, the PDF associated to this information that

maximizes the uncertainty is, via Principle of Maximum Entropy [61], the

uniform distribution. Taking in consideration the limits imposed in loading it

can be said that,

fF(f |Fyl , Fyu) =
1

Fyl − Fyu
; Fyl ≤ Fy ≤ Fyu .

0; otherwise.

, (5.5)

and
fT(f |Tzl , Tzu) =

1

Tzl − Tzu
; Tzl ≤ Tz ≤ Tzu .

0; otherwise.

(5.6)

All the other variables and parameters are considered deterministic and

can be obtained in the Table 5.1 and Table 5.2. Under those assumptions,

Monte Carlo simulation was performed in order to find out the structure

response when submitted to this loading.

The time for simulation was 10 s and the processes were obtained for

a number of 100 realizations. Incorporating the last set of eigenvalues as

discussed above in the turbine kinematics and simulating using the random

loads discussed above, the results for stresses can be obtained, as shown in

graphs of the Figures presented next. The Figure 5.29, shows the graphs

with the distribution of the axial stresses for the four points located at

5%L = 2.75m, 25%L = 13.75m, 75%L = 41.25m and 1%L = 55m located

as depicted in Figure 5.25. The Figures 5.31 and 5.32 show the stresses as a set

of realizations of random processes, considering that the force and the torque

are both random. In the Figure 5.3 is shown a zoom in a part of the graph

of the first graph of the Figure 5.31, showing random stresses in more detail.

The graphs show a clear superposition of two axial stress components. One due

to the bending motion, with lower frequency and other with higher frequency

caused by pure axial loads (due to the weight of the structure itself). This

happens because at t = 0, the turbine is considered instantaneously loaded,

causing those oscillations in x (axial) direction.

DBD
PUC-Rio - Certificação Digital Nº 1112566/CA



Chapter 5. Evaluation of a turbine 119

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3 Displacement u
x

t[s]

u
x

 

 

x = 2.75m

x = 13.75m

x = 41.25m

x = 55m

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Displacement u
y

t[s]

u
y

 

 

x = 2.75m

x = 13.75m

x = 41.25m

x = 55m

Figure 5.26: Results using the first set of eigenvectors

Figure 5.25: Points for stress calculation

5.3.1
Wind loads

In this work, the random wind can be modeled as forces and torques at the tip

of the tower. But, in order to improve the algorithm to make it possible the

full random wind implementation, the approach presented in Chapter 4, the

BEM method, was implemented so that forces and torques acting in the blades
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Figure 5.27: Results using the second set of eigenvectors
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Figure 5.28: Results using the third set of eigenvalues
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Figure 5.29: Axial stress distribution in four points in the tower

for one dimension wind can be calculated. The following data are considered

in calculation:

– The velocity for ts interval was Wats = 5.5m/s;

– Hub height (Hh) = 55m;

– Length of the blade (Lb) = 25m;

– Wind speed at reference height (x1) was of =5.5;

– Roughness of the terrain (x0) = 0.1 m;

The wind speed at the hub height is found to be 5.5 m/s. The speed of

the blades (the same of the shaft) is considered to be 0.2 rad/s. The calculated

parameters for this velocity as well as the ones of the blade adopted here

are presented in Figures 5.33 to 5.36. Those from Figure 5.33 show the axial

and angular induction factors as a function of the radial position r along

the blade length. The Figures 5.34 depicts graphs for the local relative wind

speeds and the pith angle for each radial position of the blades. Figure 5.35

depicts the distributed normal (perpendicular to the plane of the rotation) and

tangential (responsible for the rotation of the blades) forces. Figure 5.36 shows

the torques acting in the blades. Notice that, in the first graph is shown the
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Figure 5.30: Zoom in the first graph of Figure 5.31
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Figure 5.31: Axial stresses at point of heights 1 and 2

torque component orthogonal to the blade, responsible for the rotation of the

shaft. In the second graph, the in-plane component of the torque that bends

the blade in the direction of the wind. It must be said that in thee present work

there is no any control of the pitch angle. Consequently, the data available for

the airfoil do not permit a large variation in the air speed.
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Figure 5.32: Axial stresses at point of heights 3 and 4
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Figure 5.33: Induction factors
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5.34(a): Wind speeds
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Figure 5.34: Wind speed and blade angle
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5.35(a): Distributed forces
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Figure 5.35: Forces
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Figure 5.36: BEM calculations - Wa = 5.5 m/s and Ωy = 0.2 rad/s

DBD
PUC-Rio - Certificação Digital Nº 1112566/CA



6
Conclusions

In order to obtain a basic platform for developing and studying the several

dynamics of a HAWT a complete structure formed by base, tower, nacelle,

shaft and three blades was modeled and analyzed. The soil flexibility was

modeled by axial and torsional springs. The tower is a tube of constant cross

section and considered to be the only flexible component. The shaft, also a

tube, and the three blades form a rigid rotor. In the case of real design of

turbines it is necessary to adjust the geometry of the blades to maximize the

power coefficient. In this work, the wind actions were modeled as random forces

an torques at the tip of the tower. However, Blade Element Momentum was

incorporated to the model as well as the random wind generation.

The forces due to the water action as well as the concentrated ones

can be constant or harmonic. In order to simulate the energetic production

it was coupled an induction motor which reacts depending on the signal of the

difference between the actual angular velocity of the rotor and a prescribed

operational angular velocity.

The dynamics is represented by a system of nonlinear differential equa-

tions such that each rigid body is represented by seven generalized coordinates,

namely, three displacements of the center of mass and four Euler parameters

for modeling the attitude. The tower is modeled using finite elements of two

nodes. Due to symmetries involved it was possible to uncouple the tower dy-

namics into three different elements: a beam for bending, a bar and a shaft for

axial and torsional movements, respectively. Hermite polynomials were used

for beam approximation and Lagrange polynomials for the others. To deal

with the large number of degrees of freedom resulting from the finite element

discretization of the tower, a reduction of the model is performed. Then, the ap-

proximation of the solution is obtained step by step using the reduced model.

A code for integrating the equations was developed based in the Newmark

method and the convergence at the end of each step is reached using Newton-

Raphson method, under a imposed a tolerance.

The model was codified in Matlab R©and permits:

– The calculation of desired modes of the tower for a given precision for a

further reduction of d.o.f.;

– The calculation of the external loads (wind, water or others);

– Reduction of the number of tower d.o.f and free chosen of the modes to

be used;
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– The integration in time using an integrator based on Newmark method;

– To perform a random simulation, if it is the case;

– The calculation of the kinematic and dynamic quantities:

– Position, velocities and accelerations of the center of mass for all the

rigid bodies;
– Angular velocity and acceleration of the rigid bodies;
– Forces and torques in four sections of the tower;
– Stresses (von Mises, axial and shear) in any four sections of the tower

in any chosen point;
– Forces and torques in shaft and blades at the hub connection.

The time spent in obtaining the approximation for the solution depends on

the number of the eigenvalues used to approximate the solution. It increases

considerably for large number of eigenvalues. This happens for two reasons:

the matrices get larger and the time step gets smaller because the integrator

uses, as increment, 1/10 of the smaller period. For instance, for obtaining

the results for the problem of the Section 5.2.4 it took on average 35 s using

6 eigenvectors. Using 3 eigenvectors, only 6s are spent. If the analysis with

deterministic movement of the water is performed, the time spent is quite

high. For the problem of the section 5.2.5, 1h:5min was spent, for instance and

this happens due to the nonlinearities caused by the interaction fluid structure,

due to the Morison equation.

This work aims to be a comprehensive (although not profound) modeling

of the dynamics of a HAWT as it has almost all steps for the wind turbine

analysis, as can be noticed. Wind turbines are complex structures and are still

nowadays under intense study. So, this work may be improved in several ways,

in short, medium and long terms. In short term it can be mentioned:

– Implementation of a more realistic wind model,

– Using a realistic set of blades;
– Modeling pitch control.

– Evaluations must be made using other time integrators. As mentioned the

integrator used was developed by the author based in Newmark method,

in order to save time;

– Coupling of a more realistic electric generation system;

– Implementation of variable cross sections. Improvement in graphic inter-

face (animation for instance).

In medium term:

– Implementation of random water loading;

– Implementation of the flexibility for shaft and blades;

– Implementation of Reliability analysis;
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In long therm:

– Implementation of a control system (pitch and yaw);

– Extend the analysis to floating bases;

The simulations show that the program can deal with initial angular

velocities and several kinds of loads including random ones. In this case, a

distribution of stresses are determined so that calculating probabilities can

be easily calculated. The formulation using Euler parameters showed to be

effective. The matrices and vectors involved are simple functions of Euler

parameters. Derivatives involving those structures, needed in the Newmark

method, are either linear with respect to those parameters or constant. It

saves time in the analysis.
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Appendix

7.1
Formulation for the tower

7.1.1
Beam kinematics

Beams are important structural elements and the interest in its behavior is very

old. In 17th century Jacob Bernoulli (1654−1705) discovered that the curvature

of an elastic beam under pure bending is proportional to the moment applied

and Daniel Bernoulli (1700 − 1782), formulated the differential equation of

motion of a vibrating beam. Leonhard Euler (1707−1783) studied the problem

later and contributed to the theory studying several loading configurations and

their responses [22]. The Euler-Bernoulli beam theory was developed under

the hypothesis that the cross-sections remain orthogonal to the neutral line

(passes through the centroid of the cross section), as represented in Figure

7.1−a, for the plane xy, and the shear strain is null. Then, this beam theory

is the simplest, whose limitations leads to errors, depending on the case. The

absence of shear strains makes the beam more rigid and as a consequence,

in dynamical problems, it overestimates the natural frequencies specially for

those of higher modes [22]. It is good for slender beams and those cases

where the shear can be neglected. The Rayleigh (1842 − 1919) beam theory

(1877) included the effect of the rotation of the cross-section in inertia of

the beam and was an improvement on Euler-Bernoulli theory. It corrected

partially the overestimation of natural frequencies in Euler-Bernoulli model,

but just marginally [22]. Both formulations lead to differential equations whose

unknown variable is the deflection of the neutral line. Timoshenko (1878-

1972) proposed a beam theory which associates the effects of shear distortion

to the Euler-Bernoulli model [66][67]. This model is suitable to non-slender

beams and for high-frequency responses where shear or rotary effects are not

negligible. Two independent variables are considered for characterizing the

behavior of the beam: the deflection of its neutral line and the angle between

the tangent to this line and the plane of the cross-sections after deformation,

as shown in Figure 7.2. The difference between those two angles are the shear

angles, {Ψi(x, t)}, (i = z, y) and are caused by shear forces. Consequently, two

differential equation are obtained for beam formulation in each plane xy and

xz. In Euler-Bernoulli model, {Ψ(x, t)} = {0}, then {θz(x, t)} = −{ ∂
∂x
wy(x, t)}
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and {θy(x, t)} = { ∂
∂x
wz(x, t)}, as can be seen in Figure 7.1. If the sections

remain plane the shear strains must be constant, but, at the edge of the cross

sections surface, the strain are null. This discrepancy is overcome by using the

shape factors (also called the shear coefficient or area reduction factor) which

give the ratio of the average strain on a section to the shear strain at the

centroid. Those coefficients contain information on the material of the beam

as it is a function of Poisson’s ratio, on the shape of the cross-section, as well as,

on the frequency of vibration. Some researchers suggested methods to calculate

the shape factor as a function of the shape of the cross-section and Poisson’s

ratio and [63] demonstrated the variation in the shape factor with frequency.

Figure 7.1: Euler-Bernoulli hypothesis

Figure 7.2: Timoshenko hypothesis

Theory of Elasticity was used to model beams and, under the hypothesis

imposed in each approach, the results showed compatibility under the hypothe-

ses for Timoshenko and Euler-Bernoulli models. Despite their limitations, the

Euler-Bernoulli and Timoshenko beam theories are still widely used [22].

Next, it will be discussed a model for beam analysis, that can be simplified

into Timoshenko, Rayleigh and Euler-Bernoulli. For sake of completeness, in
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7.3(a): Loaded beam 7.3(b): Deformed sections

Figure 7.3: Deformation process

this discussion it will be included the beam twist resulting in a coupled system

with bending in two directions, axial traction/compression and warping of the

cross sections, as well as, the influence of the axial forces in lateral motion.

What follows concerning to the determination of the equations of motion of

the tower was based in [6].

7.1.2
Beam Dynamics

A cylinder with length L, area of the cross-section A = A(x) at an axial

position x, 0 ≤ × ≤ L, moments of inertia of area Ixx = Ixx(x), Iyy = Iyy(x)

and Izz = Izz(x), density ρ = ρ(x) is represented in Figure 7.3. The movement

of the beam after being loaded can be completely described by its displacements

{w} = {w(x, t)} and rotations of the cross section, {θ} = {θ(x, t)}. The

cylinder is loaded by a distributed force per unit length {f} = {f(x, t)} and

by a distributed moment {m} = {m(x, t)}. There is a total mass mtip (which

is the sum of the mass of the nacelle and blades) fixed at its tip, and springs

at its base, simulating the behavior of the soil. Those rotational springs have

spring constants krx, kry, krz and the translational ones have constants kax,

kay, kay, respectively. The model is simplified and one considers that rotations

and displacements are small. So, the undeformed and deformed state can both

be described in a fixed inertial frame with base unit vectors {x̂0}, {ŷ0} and

{ẑ0}. As the external loads are applied the beam is deformed and the that

loads are balanced by an internal section force vector {F̄} = {F̄ (x, t)} and an

internal section torque {T̄} = {T̄ (x, t)} whose components are

{F̄} = (F̄x, F̄y, F̄z)
T and {T̄} = (T̄x, T̄y, T̄z)

T (7.1)

F̄x = F̄x(x, t) is the axial force, whereas the components F̄y = F̄y(x, t)

and F̄z = F̄z(x, t) are the shear forces components in the y- and z -directions.
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The axial component F̄x = F̄x(x, t) is the torque in x direction, due to the twist

the cylinder. The components F̄y = F̄y(x, t) and T̄z = T̄z(x, t) in the y- and

z-directions are torques due to the bending of the cylinder. It is assumed that

the displacements remain small the equation of motion can be established in

the referential state. Referring to the small segment of the cylinder in Figure

7.3 at the coordinate x, the load in the section is supposed to be applied in the

centroid of the area. At the right end-section, these vectors are changed into

{F̄ + dF̄} and {T̄ + dT̄}, respectively. The following equation of equilibrium

can be formulated

{F̄}+ {dF̄} − {F̄}+ {f}dx = ρAdx{ẅ}

{dF̄}+ {f}dx = ρA{ẅ}dx
(7.2)

Taking the moment of the forces with respect to the point 0,

{T̄}+ {dT̄} − {T̄}+ {x̂} × {F̄ + dF̄}dx+ {m}dx+ {f}dx
2

2
=

{dT̄}+ {x̂} × {F̄ + dF̄}dx+ {m}dx+ {f}dx
2

2
=∫

A

ρ(y2 + z2)dAdx{θ̈}.

(7.3)

Developing the term {dT̄}+ {x̂} × {F̄ + dF̄} of equations 7.3,

{x̂0}×{F̄} = {x̂0}× (F̄x{x̂0}+ F̄y{ŷ0}+ F̄z{ẑ0}) = −F̄z{ŷ0}+ F̄y{ẑ0}). (7.4)

If it is considered that the axial force affects the transversal movement due to

the deflection of the cylinder, than

{x̂} × (F̄x
∂wy
∂y
{ŷ}+ F̄x

∂wz
∂z
{ẑ}) = (F̄x

∂wy
∂z

){ẑ} − (F̄x
∂wz
∂z

){ŷ}. (7.5)

The Equations 7.2 and 7.3 above, taking in consideration the Equations

7.4 and 7.5, can be written in its components in three directions

∂

∂x
F̄x + fx = ρAẅx

∂

∂x
F̄y + fy = ρAẅy

∂

∂x
F̄z + fz = ρAẅz

∂

∂x
T̄x +mx = ρIxxθ̈x

∂

∂x
T̄y −

∂

∂x
(F̄x

∂wz
∂x

) + F̄z +my = ρIyyθ̈y,

∂

∂x
T̄z +

∂

∂x
(F̄x

∂wy
∂x

) + F̄y +mz = ρIzz θ̈z .

(7.6)
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The distribution of stress in the surfaces of cross sections permits one to

write the following

F̄x =

∫
A

σxxdA; F̄y =

∫
At

σxydA; F̄z =

∫
A

σxzdA

T̄x =

∫
A

(σxzy − σxyz)dA; T̄y =

∫
A

σxxzdA; T̄z =

∫
A

σxxydA .

(7.7)

Now, it will be discussed the deformation hypothesis.

7.1.3
Kinematics of deformation

As mentioned before, classical beam theory is based in the idea that the

deformations take place, keeping all the cross sections plane. The movement to

a deformed position is uniquely described by a vector of lateral displacements

of the axial neutral line {w} = {w(x)} and a vector (just for small rotations)

of rotation {θ} = {θ(x, t)}. This angle can be considered as a sum of two

components: One dependent on the deflection of the neutral line {w} =

{w(x, t)} and other due to de action of the shear forces, {Ψ} = {Ψ(x, t)}.
So, {θ} = ∂

∂x
{w} + {Ψ}. Then, any (x, y, z) pertaining to any undeformed

cross-section can be related to a point in the deformed cross-section in the

following way

ux(x, y, z) = wx + zθy − yθz
uy(x, y, z) = wy − zθx
uz(x, y, z) = wz + yθx.

(7.8)

Recalling the definition of strain (in case of small deformations), it

becomes that,

εxx(x, y, z) =
∂ux
∂x

=
∂wx
∂x

+ z
∂θy
∂x
− y∂θz

∂x

γxy(x, y, z) =
∂ux
∂y

+
∂uy
∂x

=
∂wy
∂x
− z∂θx

∂x
− θz

γxz(x, y, z) =
∂ux
∂z

+
∂uz
∂x

=
∂wz
∂x

+ y
∂θx
∂x

+ θy.

(7.9)

Equations 7.9 for γxy and γxz shows that they are neither dependent on

y nor on z. This means that those strains are constant or null in the section.

Under the Euler-Bernoulli model hypothesis, they are null.

On the other hand, for Timoshenko beam, shear deformation is included

a priori in the model as a constitutive relation, as will be shown later. The

model says that the strain is constant in section. This is not true and a way

to remedy this inconsistency is to use shape factors.

The Equations 7.8 consider that the twist of the cylinder does not produce
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any change in the cross-sections. This is true for beams whose section is

circular. In any other case, the twist of the beam causes deformation in the

cross-section and induce an additional non-planar displacement in the x-axis,

say, ω = ω(y, z). This affects only the axial component of the displacement and

be generally written as uω(x, y, z) = ω(y, z) ∂
∂x
θx. Under these considerations,

the total displacement is, after the deformation, given by

ux(x, y, z) = wx + zθy − yθz + ω
∂θx
∂x

, (7.10)

so, the components of Equation 7.9 for strains are completed as below

εxx(x, y, z) =
∂ux
∂x

=
∂wx
∂x

+ z
∂θy
∂x
− y∂θz

∂x
+ ω

∂2θx
∂x2

γxy(x, y, z) =
∂ux
∂y

+
∂uy
∂x

=
∂wy
∂x
− θz + (

∂ω

∂y
− z)

∂θx
∂x

γxz(x, y, z) =
∂ux
∂z

+
∂uz
∂x

=
∂wz
∂x

+ θy + (
∂ω

∂z
+ y)

∂θx
∂x

(7.11)

7.1.4
Differential equations

Taking in consideration the constitutive relations,

σxx = Eεxx = E(
∂wx
∂x

+ z
∂θy
∂x
− y∂θz

∂x
+ ω

∂2θx
∂x2

)

σxy = Gγxy = G(
∂wy
∂x
− θz + (

∂ω

∂y
− z)

∂θx
∂x

)

σxz = Gγxz = G(
∂wz
∂x

+ θy + (
∂ω

∂z
+ y)

∂θx
∂x

) .

(7.12)

Equations 7.7 can be integrated over the cross-section using Equations

7.12, so that the following relation is obtained:

F̄x = E(A
∂wx
∂x

+ Iy
∂θy
∂x
− Iz

∂θz
∂x

+ Iω
∂2θx
∂x2

)

F̄y = G(κyA(
∂wy
∂x
− θz) + Iωy

∂θx
∂x

)

F̄z = G(κzA(
∂wz
∂x

+ θy) + Iωz
∂θx
∂x

)

T̄x = G(Iz(
∂wz
∂x

+ θy)− Iy(
∂wy
∂x
− θz) +Ksv

∂θx
∂x

)

T̄y = E(Iy
∂wx
∂x

+ Iyy
∂θy
∂x
− Iyz

∂θz
∂x

+ Iωz
∂θx
∂x

)

T̄z = E(−Iz
∂wx
∂x
− Iyz

∂θy
∂x

+ Izz
∂θz
∂x
− Iωy

∂θx
∂x

)

, (7.13)

where the parameters Iωy, Iz, Iy, Iω, Ksv, Iyy, Izz, Iωy and Iωz are defined as

below
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Iwy =

∫
A

(
∂ω

∂y
− z)dA; Iwz =

∫
A

(
∂ω

∂z
+ y)dA

Iy =

∫
A

zdA; Iz =

∫
A

ydA; Iω =

∫
A

ωdA; Ixx =

∫
A

x2dA

Izz =

∫
A

z2dA; Iyz =

∫
A

yzdA; Iωy =

∫
A

ωydA;

Iωz =

∫
A

ωzdA; Ksv = Ixx +

∫
A

(y
∂ω

∂z
− z∂ω

∂y
) .

(7.14)

The parameters listed above are the cross-sectional area, A, the shape

factors κy and κz, for compensating the fact that the shear stresses are not

constant in the section. Iωy and Iωz are dependent on the warping shape ω(y, z)

and also on the geometric characteristics. Iy and Iz are denoted as the first

order moment about y and z. Iω is the first moment of the warping shape

function. Iyy, Izz and Iyz are the moment and product of inertia of area with

respect to y and z. Iωy and Iωz are the moments of the warping shape function.

Finally, Ksv is related to the St. Venant torsion.

Considering what was exposed by now, the following matrix equation can

be written



F̄x

T̄x

T̄y

T̄z

F̄y

F̄z


= [E1]



∂wx
∂x
∂wy
∂x
∂wz
∂x
∂θx
∂x
∂θy
∂x
∂θz
∂x

θy

θz
∂2θx
∂x2



, (7.15)

where,

[E1] =



EA 0 0 0 EIy −EIz 0 0 EIω

0 −GIy GIz Ksv 0 0 GIz GIy 0

EIy 0 0 EIωz EIyy −EIyz 0 0 0

−EIz 0 0 −EIωy −EIyz EIzz 0 0 0

0 GκyA 0 GIωy 0 0 0 −GκyA 0

0 0 GκzA GIωz 0 0 GκzA 0 0


(7.16)

Recalling the Equations 7.6, it comes that
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∂
∂x
F̄x

∂
∂x
T̄x

∂
∂x
T̄y

∂
∂x
T̄z

∂
∂x
F̄y

∂θy
∂x
F̄z


+



0

0

F̄z

F̄y

0

0


+



0

0

−F̄x ∂wz∂x

F̄x
∂wy
∂x

0

0


+



fx

mx

my

mz

fy

fz


=



ρAẅx

ρIxxθ̈x

ρIzz θ̈y

ρIyyθ̈z

ρtAẅy

ρAẅz


(7.17)

Working with Equations 7.15 and making appropriated substitutions in

Equations 7.17, it results that

∂

∂x



[E1]



∂wx
∂x
∂wy
∂x
∂wz
∂x
∂θx
∂x
∂θy
∂x
∂θz
∂x

θy

θz
∂2θx
∂x2





+ [E2]



∂wx
∂x
∂wy
∂x
∂wz
∂x
∂θx
∂x
∂θy
∂x
∂θz
∂x

θy

θz
∂2θx
∂x2



+



0

0

−F̄x ∂wz∂x

F̄x
∂wy
∂x

0

0


+



fx

mx

my

mz

fy

fz


=



ρAẅx

ρIxxθ̈x

ρIzz θ̈y

ρIyyθ̈z

ρAẅy

ρAẅz


,

(7.18)
where,

[E2] =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 −GκzA −GIωz 0 0 GκzA 0 0

0 0 GκzA GIωz 0 0 GκzA 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


(7.19)

This system of differential equations needs the initial conditions to be

prescribed
{w(x, 0)} = {w0(x)} {ẇ(x, 0)} = {ẇ0(x)}. (7.20)

For boundary conditions, if the essential ones are prescribed, one can use

{w(0, t)} = {w0(t)}; {w(L, t)} = {wL(t)}

{ẇ(L, t)} = {ẇL(t)}; {ẇ(L, t)} = {ẇL(t)}
(7.21)

On the other hand, if the natural conditions are active, one can use

{F̄ (0, t)} = {F̄0(t)}; {T̄ (0, t)} = {T̄0(t)}

{F̄ (L, t)} = {F̄L(t)}; {T̄ (L, t)} = {T̄L(t)}.
(7.22)
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7.1.5
Model for this work

As already mentioned, wind turbines are columns which must resist to axial

distributed (its own weight, for instance) and concentrated loads (it holds the

mass of the nacelle and blades), in conjunction with loads transversally applied

to its longitudinal axis resultant of the movement of the blades, action of the

wind, and, in case of offshore turbines, sea waves, currents and tides. The

Figure 7.4 represents a situation of using a wind turbine which is installed on

the sea, whose soil has some elasticity (represented by springs), and can be

partially submersed, that is, the level of the sea can reach part of the tubular

structure. In this case, interaction between fluid and structure is present.

The right drawing in Figure 7.4 shows scheme to model the turbine. The

center of mass of the whole set, nacelle, shaft and blades is in the axis of the

tower. Although conic tubes with large relations between the length and mean

diameter are used in practice, in this work, the tower is a tube of constant cross

section. For cases of circular cross sections, the warping is null, as well as the

parameter cross product Iyz. Recalling the Equation 7.18, it is observed that

the constitutive relation for shear stresses are already present in formulation.

Nevertheless, in Euler-Bernoulli beam, no hypothesis is made with respect to

shear stresses and one has to step back to equation 7.17. Differentiating the

third and fourth lines with respect to x, results in

∂

∂x

(
∂

∂x
T̄y

)
+

∂

∂x
F̄z −

∂

∂x

(
F̄x
∂wz
∂x

)
+

∂

∂x
my =

∂

∂x

(
ρIzz θ̈y

)
∂

∂x

(
∂

∂x
T̄z

)
+

∂

∂x
F̄y +

∂

∂x

(
F̄x
∂wy
∂x

)
+

∂

∂x
mz =

∂

∂x

(
ρIyyθ̈z

)
. (7.23)

Under those considerations, the system of equation given in Equa-

tions 7.23 above becomes uncoupled except for the terms ∂
∂x

(
F̄x

∂wz
∂x

)
and

∂
∂x

(
F̄x

∂wy
∂x

)
. Those term are the two components resulting of the actions of

the axial internal force in the two directions y and z. This terms couples the

first and the last two equations. They are dependent on the axial force but af-

fects the lateral motion of the tower by increasing its natural frequencies (and

stability), if upwards, and reducing them, if downwards. In order to uncouple

the equations, one assumes that the axial force that affects the lateral motion

of the tower is the weight of the structure itself and any load applied axially

at the top of the tower. Mathematically,

F̄x(x) ≈ Px(x) = −g(mtip +

∫ L

x

ρA(η)dη) + Fx(L, t) (7.24)
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where Fx(L, t) is an arbitrary vertical concentrated load acting at point x = L.

Finally, the set of uncoupled equations can be obtained. From Equations 7.13,

it is clear that, T̄y = −EIzz ∂wz∂x
and T̄z = EIyy

∂wy
∂x

. Also, imposing the shear

angle to be null, (θy = −∂wz
∂x

and θz = ∂wy
∂x

), following Euler-Bernoulli beam

formulation, the second and third equations in 7.6 can be introduced in the

fourth and fifth equations, also considering Equations 7.17, the system becomes

− ∂

∂x

(
EA

∂wx
∂x

)
+ ρAẅx = fx

− ∂

∂x

(
GIxx

∂θx
∂x

)
+ ρIxxθ̈x = mx

− ∂

∂x

(
∂

∂x
EIzz

∂2wz
∂x2

)
− ∂

∂x

(
F̄x
∂wz
∂x

)
+

∂

∂x
my +

∂

∂x

(
ρIzz

∂ẅz
∂x

)
+

ρAẅz = fz

∂

∂x

(
∂

∂x
EIyy

∂2wy
∂x2

)
+

∂

∂x

(
F̄x
∂wy
∂x

)
+

∂

∂x
mz −

∂

∂x

(
ρIyy

∂ẅy
∂x

)
+

ρAẅy = fy.

(7.25)
This means that the problem can be analyzed in four independent

formulations:

– A beam/column moving only in x-y plane, submitted to bending and axial

loading effect;

– A beam/column moving only in x-z plane, submitted to bending and axial

loading effect;

– A bar, submitted to traction and compression;

– A shaft, submitted to torsion.

It is considered that the support is a pillar its base is permitted to rotate

and move laterally as shown in Figure 7.4. Those conditions can be modeled by

using translational and rotational springs at the base whose elastic constants

are kax, krx, kay, kry, kaz, krz [17] [1]. Those six springs simulates the soil

characteristics as well as the specificities relative to the installation of the base

(a pillar) in the ground. The tower has a mass of magnitude mtip and matrix

of inertia [Jtip] installed at its tip. The center of mass is at a height of hm from

the top of the beam (at x = L). The tower is submitted to wind and water

loads.

If the tower is immersed in a fluid, in this case,water, the generalized

Morison equation [13] can be used to model the force (per unity of length)

acting at the lateral of the tower during the relative transversal movement
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Figure 7.4: Wind tower and its model

between the tower itself and the fluid. It must be said that the present model

does not include other more complex effects like von Karman vortexes nor the

perturbation in the flow caused when the blades pass in front of the tower.

This can be made for wind and water but it can be said that the effects due

to the water is much more important. Considering an infinitesimal slice of the

tower at any point x immersed in a fluid, the components of the force vector

per unit of length acting in the direction of the flow [13]

ffi(x, t) = ρfAc(x)Wfi(x, t) + ρfClAc(x)(Ẇfi(x, t)− ẅi(x, t))+
1

2
ρfD(x)CD(x)

∣∣∣Ẇfi(x, t)− ẇi(x, t)
∣∣∣ (Ẇfi(x, t)− ẇi(x, t)).

(7.26)

where the index i means any transversal displacement in y or z directions.

Wfi is the speed of the fluid transversally to the axis of the cylinder. This

distributed load can only affect the lateral movement of the tower, so that its

component x direction is null. So, concerning to beam formulation, one recall

the Equation 7.25.

Combining them with with Equation 7.26, one obtains, for plane xy
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− ∂2

∂x2

(
EIzz

∂2

∂x2
wy

)
− ∂

∂x
(Px

∂

∂x
wy) +

∂

∂x

(
ρIzz

∂

∂x
ẅy

)
+

(ρA+ ClρfAc)ẅy + sign
(
Wfy − ẇy

) (
ρfD(x)CD(x)Wfyẇy

)
−

sign
(
Wfy − ẇy

)(1

2
ρfDCDẇ

2
y

)
+

∂

∂x
mz = foy+

(1 + Cl)ρfAc(x)Wfy + sign
(
Wfy − ẇy

)(1

2
ClDW

2
fy

)
+ ρClAẆfy

(7.27)

and, for plane xz direction,

∂2

∂x2
(EIyy

∂2

∂x2
wz) +

∂

∂x
(Px

∂

∂x
wz)−

∂

∂x
(ρIyy

∂

∂x
ẅz)+

(ρA+ ClρfAc)ẅz + sign (Wfz − ẇz) (ρfDCDWfzẇz)−

sign (Wfz − ẇz)
(

1

2
ρfDCDẇ

2
z

)
+

∂

∂x
my = foz+

(1 + Cl)ρfAcWfz + sign (Wfz − ẇz)
(

1

2
ClDW

2
fz

)
+ ρClAẆfz .

(7.28)

In the Equations (7.26), Cl = 1 and CD is the drag coefficient and D the

diameter for a section of a cylinder. Consider that fi(x, t) = ffi(x, t)+foi(x, t),

i = y, z, and that foi(x, t) represents other distributed forces acting in the

tower.

The Equations 7.27 and 7.28 are nonlinear in ẇ. In the case studied here,

the tower is immersed in water from the bottom to some specific height, say

x = hw, 0 ≤ hw ≤ L∗, where L∗ is an admissible length, as it must be kept

a safe distance between the surface of the fluid and the tip of the blades. The

rest of the tower interacts with the air. As the presence of the fluid causes

an apparent increasing of mass when transversal accelerations are present,

the tower behaves as if it was made of two different materials with different

densities. So, two differential equations must be obtained for each interval of the

domain and for each longitudinal plane (xy and xz), concerning to transversal

movement, what is quite easy when using finite element discretization. Next

an analysis of the boundary conditions will be performed.

Boundary and initial conditions

Concerning to the boundary conditions at the base of the tower (x = 0) there

are two possibilities: Springs are not active and the column is fixed into the

ground. It is equivalent to set the spring constants to infinity. In this case, for

the essential boundary conditions, both the vector displacement of the neutral

line and the angular component associated to the torsion are null. Then,
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{w(0, t)} = {0} and θx(0, t) = 0. (7.29)

On the other hand, if the springs are active, no essential boundary

conditions is imposed so that the natural ones show up. Considering the Figures

7.1.5 to 7.1.5, the forces and torques at x = 0 and x = L can be determined.

Boundary conditions for (x = 0)

{F̄ (0, t)} =

kax 0 0

0 kay 0

0 0 kaz


wx(0, t)wy(0, t)

wz(0, t)

 (7.30)

{T̄ (0, t)} =

krx 0 0

0 0 −kry
0 krz 0


θx(0, t)∂wy(0,t)

∂x
∂wz(0,t)
∂x

 (7.31)

Boundary conditions for (x = L)

{F̄ (L, t)} = −mtip

ẅx(L, t)ẅy(L, t)

ẅz(L, t)

+ {F (L, t)} (7.32)

{T̄ (L, t)} = −

Jxx 0 0

0 Jyy

0 Jzz 0


 θ̈x

∂ẅy(L,t)

∂x
∂ẅz(L,t)

∂x

+ {T (L, t)} (7.33)

7.5(a): Bar model (x = 0)

Using the Equations 7.17 and the conditions given from Equation 7.30

to Equations 7.33.

Bar formulation

For x = 0,

AE
∂

∂x
wx(0, t) = kaxwx(0, t) (7.34)

For x = L,
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7.5(b): Bar model (x = L)

AE
∂wx(0, t)

∂x
= −mtipẅz(L, t) + Fx(L, t) (7.35)

Beam formulation Considering that

Ty = −EIzz
∂2wz(x, t)

∂x2
(7.36)

and

Tz = EIyy
∂2wy(x, t)

∂x2
(7.37)

At x = 0,

F̄y(0, t) = − ∂

∂x

(
EIzz

∂2wy(0, t)

∂x2

)
−mz(0, t)− P (L)

∂wy(L, t)

∂x
+

ρIzz
∂ẅy
∂x

(0, t) = kaywy(0, t)

(7.38)

F̄z(0, t) = − ∂

∂x

(
EIyy

∂2

∂x2
wz(0, t)

)
+my(0, t)− P (L)

∂wz(0, t)

∂x
−

ρtIyyẅz(0, t) = kaz
∂

∂x
wz(0, t)

(7.39)

T̄y(0, t) = −EIzz(x)
∂2

∂x2
wz(0, t) = −kry

∂

∂x
wz(0, t) (7.40)

T̄z(0, t) = EIyy(x)
∂2

∂x2
wy(0, t) = krz

∂

∂x
wy(0, t) (7.41)

At x = L,

F̄y(L, t) = − ∂

∂x

(
EIzz

∂2

∂x2
wy(L, t)

)
−mz(L, t)− Px(L)

∂wy(L, t)

∂x
+

ρIzzẅy(L, t) = −mtipẅy(L, t) + Fy(L, t)

(7.42)
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7.5(c): Beam model

7.5(d): Forces and torques

Figure 7.5: Beam - Boundary conditions in plane xy

F̄z(L, t) = − ∂

∂x

(
EIyy

∂2

∂x2
wz(L, t)

)
+mz(L, t)− Px(L)

∂wz(L, t)

∂x
+

ρIyyẅy(L, t) = −mtipwz(L, t) + Fz(L, t)

(7.43)

T̄y(L, t) = −EIyy
∂2

∂x2
(wz(L, t)) = −Jyy

∂

∂
ẅz(L, t) + Ty(L, t) (7.44)

T̄z(L, t) = EIzz
∂2

∂x2
(wy(L, t)) = −Jzz

∂ẅy(L, t)

∂
+ Tz(L, t) (7.45)

Shaft formulation

At x = 0,

T̄x(0, t) = GIxx
∂θ(0, t)

∂x
= krxθx(0, L) (7.46)

For x = L,
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7.6(a): Beam model

7.6(b): Forces and torques

Figure 7.6: Beam - Boundary conditions in plane xz

T̄x(L, t) = GIxx
∂θ(L, t)

∂x
= Jxxθ̈x(L, t)− Tx(L, t) (7.47)

As initial conditions one has {w(x, 0)} = {w0} and {ẇ(x, 0)} = {ẇ0}
and {θ(x, 0)} = {θ0} and {θ̇(x, 0)} = {θ̇0} .

7.2
Kinematics of a rigid body

To describe a rigid body motion, it is necessary, first, to establish an inertial

coordinate system (or an inertial frame) and then to chose a point of the body

and make it the origin of another coordinate system (the body frame). If one

makes this frame attached to the body, all coordinates of the points of the

body, with respect to the body frame, remain the same throughout its motion.

Two important theorems helped to understand the dynamic of rigid bodies. In

the first, Euler proved that the motion of any rigid body (or of its frame) with

a fixed point (with respect to the inertial frame) is a rotation about an axis
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7.7(a): Shaft model

that passes trough this point. Later, Chasles demonstrated that the general

motion of a body frame can be separated into two independent movements: a

translation of the origin and a rotation about an axis whose direction is fixed

with respect to a inertial frame.

Suppose two frames, (xb yb zb), attached to the body and other, inertial,

(x0 y0 z0), fixed elsewhere. {r̄bB} is the representation of a vector indicating

the position of a point B of the body with respect to the body frame (index

”b”) and measured relatively to it (indicated as a bar). If this vector initially

coincides with the spatial point P0, after the movement, the point B goes to

a new position in space, P . Then, its representation in the inertial coordinate

system will be

{rbP } = {Rb}+ [Ab]{r̄bB} (7.48)

where {rP} is the vector of final position represented with respect to the

inertial frame, {Rb} is the position of the origin of the body frame, represented

with respect the inertial frame and [Ab] is the rotation or transformation

matrix. If one considers that this is valid for any point of the body, both

indexes, ”B” and ”P”, can be suppressed and the expression in Equation 7.48

can be re-written as

{rb} = {Rb}+ [Ab]{r̄b} (7.49)

where {rb} and {r̄b} are vectors indicating the position of any point of

the body ”b”relative to the inertial frame. {r̄b} is relative also represented with

respect to the body frame. There are some possible ways to define that matrix

[60]. This means that there are also some possibilities to describe the attitude

of the body in space. It may be done using Euler angles, Euler parameters,

Rodrigues parameters or direction cosines. Taking in consideration Chasles

theorem, one can separate the translation from rotations, and, just for sake

of simplicity, forget for a wile about the former and concentrate in the latter.
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Euler theorem says that a body goes from an attitude to another just by

rotating about an axis whose direction is given by the unity vector {vb}, fixed

in relation to the inertial frame (x0 y0 z0). The angle of rotations is ϑb as

shown in Figure 7.7. It can be demonstrated [60] that the position vector the

new position of the vector {r̄b} after rotation, is given by

{r̆b} =

(
[I] + [ṽb]sin(ϑb) + 2[ṽb]

2sin2(
ϑb
2

)

)
{r̄b}. (7.50)

In Equation 7.50, {r̄b} is measured relatively to the body system origin

but written with respect to the inertial frame. In this transformation, four

dependent parameters are involved: three components of the unity vector about

which the body rotates and the angle of rotation. The dependency among those

parameters is due to the fact that the three coordinates of the vector {vb} are

dependent. From Equation 7.50 it is clear that

[Ab] = [I] + [ṽb]sin(ϑb) + 2[ṽb]
2sin2(

ϑb
2

). (7.51)

The Euler parameters are

Θ0b = cos(
ϑb
2

); Θ1b = v1bsin(
ϑb
2

); Θ2b = v2bsin(
ϑb
2

); and Θ3b = v3bsin(
ϑb
2

).

(7.52)

Figure 7.7: Rotation of a rigid body

The matrix [Ab], in terms of Euler parameters is

[Ab] =

 1− 2Θ2
2b
− 2Θ2

3b
2(Θ1bΘ2b −Θ0bΘ3b) 2(Θ1bΘ3b + Θ0bΘ2b)

2(Θ1bΘ2b + Θ0bΘ3b) 1− 2Θ2
1b
−Θ2

3b
2(Θ2bΘ3b −Θ0bΘ1b)

2(Θ1bΘ3b −Θ0bΘ2b) 2(Θ2bΘ3b + Θ0bΘ1b) 1− 2Θ2
1b
−Θ2

2b

 .

(7.53)
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The matrix transformation [Ab] also can be written as a product of two

matrices.

[Ab] = [Eb][Ēb]
T (7.54)

where,

[Eb] =

−Θ1b Θ0b −Θ3b Θ2b

−Θ2b Θ3b Θ0b −Θ1b

−Θ3b −Θ2b Θ1b Θ0b

 ,[Ēb] =

−Θ1b Θ0b Θ3b −Θ2b

−Θ2b −Θ3b Θ0b Θ1b

−Θ3b Θ2b −Θ1b Θ0b

 .

The matrices Eb and Ēb are used to obtain the angular velocity as follows

[Gb] = 2[Eb] and [Ḡb] = 2[Ēb]. (7.55)

so that {Ω} = [Gb]{Θ̇} and {Ω̄} = [Ḡb]{Θ̇b}

{Ω̇} = [Gb][Θ̈b] and { ˙̄Ωb} = [Ḡb][Θ̈b]
(7.56)

where {Ωb}, {Ω̄b} are the representation of the angular velocity of the body

with respect to the inertial and body frames, respectively. In the same way,

{Ω̇b} and { ˙̄Ωb} representation of the angular acceleration of the body with

respect to the inertial and body frames, respectively.

The derivative of the matrix [Ab] with respect to the Euler parameters

are

∂[Ab]

∂Θ0b

=

 0 −2Θ3b 2Θ2b

2Θ3b 0 −2Θ1b

−2Θ2b 2Θ1b 0

 ∂[Ab]

∂Θ2b

=

 0 2Θ2b 2Θ3b

2Θ2b −4Θ1b −2Θ1b

2Θj
3b

2Θ0b −4Θ1b


(7.57)

∂[Ab]

∂Θ2b

=

−4Θ2b 2Θ1b 2Θ1b

2Θ1b 0 2Θ3b

−2Θ1b 2Θ2b −4Θ2b

 ∂[Ab]

∂Θ4b

=

−4Θ3b −2Θ0b 2Θ1b

2Θ0b −4Θ3b 2Θ2b

2Θ1b 2Θ2b 0


The second derivative of the matrix A with respect to the generalized

coordinates is constant matrix as well as the first derivatives of [Gb] and [Ḡb].

This information will be used when calculating the derivatives of the residue

in step by step formulation. It is easily obtained from Equations 7.55 and 7.58.

The derivative of the matrix Ab with respect to time is

˙[Ab]{r̄b} = [Bb]{Θ̇b}, (7.58)

where,
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Bbik =
∂(Abij r̄bj)

∂Θk
b

, (7.59)

that is, the differentiation of the product [Ab]{r̄b} with respect to the

generalized coordinates. Operationally, the scheme to obtain the matrix Bbik

is as follows:

[B] =

[{[
∂[Ab]

∂Θ1b

]
{r̄b}

}{[
∂[Ab]

∂Θ2b

]
{r̄b}

}{[
∂[Ab]

∂Θ3b

]
{r̄b}

}{[
∂[Ab]

∂Θ4b

]
{r̄b}

}]
.

(7.60)
In the approximation of the solution in a multi-body formulation, a step

by step algorithm is used. In order to formulate the tangent matrix, it will be

necessary to determine the derivatives of [Bb]{Θ̇b} and [Bb]{Θ̈b}. Multiplying

both sides of the Equation 7.59 the vector {Θ̇bk} and differentiating with

respect to Θbm , one obtains

∂(BikΘ̇bkk)

∂Θbm

=
∂2(Abij r̄j)

∂Θbk∂Θbm

Θ̇bk . (7.61)

In the same way;

∂(BikΘ̈bk)

∂Θbm

=
∂2(Abij r̄bj)

∂Θbk∂Θbm

Θ̈bk . (7.62)

7.3
Kinematics of a flexible body

If deformations are present when the body moves, than, Equation 7.49 changes

to

{rb} = {Rb}+ [Ab]{¯̆rb} (7.63)

where now, the vector {¯̆rb} is composed by two parts, one relative to

rotation of rigid body and other relative to the deformation, as shown in Figure

7.8

Then
{¯̆rb} = {r̄b}+ {ūb} (7.64)

were {ūb} = [H̄b(xb, yb, zb)]{Ūb} is the a function representing the dis-

placements of the body. The matrix [H̄b(xb, yb, zb)] is the shape matrix and it

is dependent on the on the hypothesis of the body deformation. {Ūb} is the

time-dependent elastic generalized coordinates. The final coordinates of the

body is, in the deformed state,

{rb} = {Rb}+ [Ab]{r̄b}+ [Ab][H̄b]{Ūb}. (7.65)

Velocity is obtained by differentiating the Equation 7.65 with respect to

time, results in
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Figure 7.8: Rotation of a flexible body

{ṙb} = {Ṙb}+ [Ȧb]{r̄b}+ [Ab][H̄b]{ ˙̄Ub} (7.66)

since { ˙̄rb} = {0}. Operating in the second term of the right side of

Equation 7.66 it is possible to obtain the following relation

˙[Ab]{r̄b} = [Bb]{Θ̇b}. (7.67)

The matrix [Bb] is a matrix whose columns are formed by the products

of the matrices resultant from the derivatives of the matrix [Ab] with respect

to each Euler parameter Θbi multiplied by the vector {r̄b}. Then, the Equation

7.66 becomes

{ṙb} = {Ṙb}+ [Bb]{Θ̇b}+ [Ab][H̄b]{ ˙̄Ub} (7.68)

The Equation 7.68 can be rewritten in the following way

ṙb =
[
[I] [Bb] [Ab][H̄b]

] [
{Ṙb}T {Θ̇b}T { ˙̄Ub}T

]T
, (7.69)

or
{ṙb} = [Lb]{q̇b}. (7.70)

In the same way, differentiating the vector {ṙb} with respect to time

again,

{r̈b} = [Lb]{q̈b}+ {L̇b}{q̇b} (7.71)

and the matrix {L̇b} is
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{L̇b} =
[
[0] [L̆b] [B̆b]{Θ̇b}

]
(7.72)

where, [0] is the 3 × 3 identity matrix. The matrix [B̆b] is built so that

each column is the product of the matrix resultant from the derivatives of the

matrix [Ab] with respect to each Euler parameter Θbi multiplied by the vector

[H̄b]{ ˙̄Ub}. The vector {L̆b} is calculated as

L̆bi =
∂

∂Θbm

∂

∂Θbk

Abijb r̄bjΘ̇bmΘ̇bk . (7.73)

In previous equations, {Rb}, {Θb} and {Ūb} are the generalized coor-

dinates associated to the body b, for translation, rotation and deformation,

respectively. For flexible bodies,

{qb} =


{Rb}
{Θb}
{Ūb}

 . (7.74)

If the body is considered rigid, the generalized coordinates relative to the body

b are

{qb} =

{
{Rb}
{Θb}

}
. (7.75)

7.4
Virtual work and generalized forces

Newton’s second law says that the resultant of the forces acting on a particle

i is equal to the rate of variation of its linear momentum, that is

{F}i = mi{ṙi} (7.76)

or
{F}i −mi{ṙi} = 0. (7.77)

where {F}i is the resultant force acting at the body which is composed

by external forces {Fe}i and that forces due to the restriction of its motion

(constraints), {Fc}i. {ṙi} and mi are the velocity vector and mass of any

particle i. Then,

{Fe}i + {Fc}i −mi{ṙi} = 0. (7.78)

Multiplying the Equation 7.78 by a vector of virtual displacements δ{r}i

one obtains

({Fe}i + {Fc}i −mi{ṙi})δ{r}i = 0. (7.79)

For all particles,

np∑
i=1

({Fe}i + {Fc}i −mi{ṙi}).δ{r}i = 0 (7.80)
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Developing, the equation 7.80,

n∑
j=1

np∑
i=1

({Fe}i + {Fc}i −mi{ṙi}).∂{r}
i

∂qj
δqj = 0. (7.81)

If the motion of the particle is constrained (for instance, they movement

must be over a surface or line), only certain admissible virtual displacements

are possible and they must be parallel to the constraint and the reaction must

be perpendicular to it. In this case, the product {Fc}i.∂{r}
i

∂qj
δqj = 0. Then,

np∑
i=1

({Fe}i − {mi{ṙi}).∂{r}
i

∂qj
δqj = 0, (7.82)

which is the d’Alembert principle for a particle i. The Equation 7.82 can be

put in the form

δWe+δWi =

np∑
i=1

{Fe}i.
∂{r}i

∂qj
δqj−

n∑
i=1

mi{ṙi}.∂{r}
i

∂qj
δqj = Qi

eδqj−Qi
iδqj (7.83)

where, Qi
e and Qi

i are defined as the virtual external forces and virtual inertial

forces, respectively, associated to the virtual displacement δqj.

7.5
Lagrangian equation

7.5.1
Unconstrained motion

If the position {r} of a particle i is described by a set of generalized coordinates,

qj, j = 1, 2, · · ·n, and also by the time, that is,

{r}i = {r(q1, q2, · · · , qn, t)}i, (7.84)

then, if one differentiate it with respect to time, it gives

˙{r}
i

=
n∑
j=1

∂{r}i

∂qj
q̇j +

∂{r}i

∂t
(7.85)

and then, differentiating with respect to qk it is obtained

d

dt
(
∂{r}i

∂qk
) =

n∑
k=1

∂2{r}i

∂qjqk
q̇k +

∂2{r}i

∂qj∂t
=
∂ ˙{r}

i

∂qj
. (7.86)

The increment of virtual work associated to the inertia forces for all

particles is

δWi =

np∑
i=1

n∑
j=1

mi ¨{r}
i
· ∂{r}

i

∂qj
δqj (7.87)
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Changing the order of the summation, the equation 7.87 can be re-written as

δWi =
n∑
j=1

(
np∑
i=1

(m ¨{r})i · ∂{r}
i

∂qj

)
δqj (7.88)

The following equality can be obtained:

np∑
i=1

d

dt

(
mi ˙{r}

i
· ∂{r}

i

∂qj

)
=

(
np∑
i=1

mi ¨{r}
i
· ∂{r}

i

∂qj

)
+

np∑
i=1

mi ˙{r}
i
· d
dt

(
∂{r}i

∂qj

)
,

(7.89)
which can be put in the form

np∑
i=1

mi ¨{r}
i
· ∂{r}

i

∂qj
=

np∑
i=1

d

dt

(
mi ˙{r}

i
· ∂{r}

i

∂qj

)
−

np∑
i=1

mi ˙{r}
i
· d
dt

(
∂{r}i

∂qj

)
.

(7.90)
Substituting the right side of Equation 7.90 knowing that ∂{ṙ}i

∂q̇j
= ∂{r}i

∂qj
,

it follows that

np∑
i=1

mi ¨{r}
i
· ∂{r}

i

∂qj
=

np∑
i=1

{
d

dt

[
∂

∂q̇j

(
1

2
mi ˙{r}i

T
· ˙{r}

)]
− ∂

∂qj

(
1

2
mi ˙{r}i

T
· ˙{r}i

)} (7.91)

The term 1
2
mi ˙{r}i

T
· ˙{r}i is the kinetic energy associated to particle i.

Recalling that the total kinetic energy is Ec =
∑np

i=1 E
i
c, the equation 7.91

becomes

np∑
i=1

mi ¨{r}
i
· ∂{r}

i

∂qj
=

np∑
i=1

(
d

dt

(
∂Ec
∂q̇j

)i
−
(
∂Ec
∂qj

)i)
(7.92)

From equation 7.83, it can be said that

n∑
j=1

[
d

dt

(
∂Ec
∂q̇j

)
−
(
∂Ec
∂qj

)
−Qej

]
δqj = 0. (7.93)

where Qej is the generalized force associated to the generalized coordinate

qj. In case of independence of the generalized coordinates the Equation 7.93

becomes the Lagrange equation

d

dt

(
∂Ec
∂q̇j

)
−
(
∂Ec
∂qj

)
−Qej = 0; j = 1, 2, · · · , n. (7.94)
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7.5.2
Constrained motion

As already mentioned before, the analysis of multi-body systems includes some-

how restrictions in the bodies movements, in general due to the interactions

among the bodies themselves which are connected by mechanical links as uni-

versal, prismatic or re-volute joints. These restrictions in the movement of the

bodies, the kinematic constraints, are introduced in the dynamic formulation

of the system by a set o non-linear algebraic constraint equations, dependent

of the system generalized coordinates and also on time, that is

{g(q̇, q, t)} = {0} (7.95)

where {g(q̇, q, t)} = (g1({q̇}, {q}, t) g2({q̇}, {q}, t) · · · gnc({q̇}, {q}, t)) is

a vector with nc independent constraints. If the constraint are not dependent

on q̇ it is defined as holonomic and Equation 7.95 becomes,

{gh(q, t)} = {0}. (7.96)

If in Equation 7.96 the time appear explicitly, then, the system is said to be

scleronomic, otherwise it is called reonomic. There are at least two possibilities

for dealing with constraints [60]. In the simpler, used for holonomic systems,

some coordinates are chosen as independent and written as functions of the

others

{ghd(qd)} = {ghi(qi)} (7.97)

where {qd} and {ghi} are the dependent and independent set of coordinates.

Then,

{Jhd}{δqd} = {Jhi}{δqi} (7.98)

where [ghd] =
∂ghd
∂qd

and [ghi ] =
∂ghi
∂qi

are the Jacobian matrices for depen-

dent and independent coordinates, respectively. The matrix Jhd is invertible

and follows that
{δqd} = −[Jhd ]

−1[Jhi ]{qi}. (7.99)

It can be written that

{δq} =

[
{δqi}
{δqd}

]
=

[
[I]

[B̄di]

]
{δqi}, (7.100)

The constraints are now function of only independent coordinates. Re-

turning to D’Alembert equation,[
d

dt
{ ∂Ec
∂{q̇}

}T − { ∂Ec
∂{q}

}T − {Q}T
]

[B̄di] = {0}T . (7.101)

The other possibility is to use the Lagrange undetermined multipliers.

It can be used in any systems but it is mandatory in non-holonomic systems
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because it is not possible, in such a systems, the separation of dependent

from independent generalized coordinates (they are velocity-dependent an non-

integrable). For application in this work, the later method is used. First, one

separates the constraints into two groups:

{g({q}, t)} = {0} (7.102)

and

{g({q̇}, t)} = {0} (7.103)

and associate to the constraints, Lagrange multipliers {λ} =

(λ1 λ2 λ3 · · ·λnc)T and {λ̇} = (λ̇1 λ̇2 λ̇3 · · · λ̇nc)T in the following way:

ğh({q}, {λh}) =
1

2
[ph]{gh}T{gh}+ [kh]{λh}T{gh} = 0. (7.104)

and analogously, for non-holonomic constraints,

ğnh({q̇}, {λ̇nh}) =
1

2
[pnh]{gnh}T{gnh}+ [knh]{λ̇nh}T{gnh} = 0. (7.105)

where the first part of the Equations 7.104 and 7.105 are equations of

penalty and [ph] and [pnh] are diagonal matrices containing penalty factors

[21]. The second part are the application of the Lagrange multipliers and the

diagonal matrices [kh] and [knh] are formed by scale factors associated to each

multiplier. Differentiating Equations 7.104 and 7.105 with respect to {q} and

{q̇}, respectively, {
∂{ḡh}
∂{q}

}
= [Jh]

T (ph{ḡh}+ kh{λh}) (7.106){
∂{ḡnh}
∂{q}

}
= [Jnh]

T (pnh{ḡnh}+ knh{λ̇nh}) (7.107)

Combining the previous equation with Equation 7.93 results that

{δq}T
[
d

dt

{
∂Ec
∂{q̇}

}
−
{
∂Ec
∂{q}

}
− {Q}+

{
∂ḡh
∂{q}

}
+

{
∂ḡnh
∂{q̇}

}]
= 0 (7.108)

The components of the vector {δq}, that is, the generalized coordinates, are

dependent. In order to overcome this limitation, the vectors {λh} and {λ̇nh}
can be selected so that [60]

{δqd}T
[
d

dt

{
∂Ec
∂{q̇}d

}
−
{
∂Ec
∂{q}d

}
− {Q}d +

{
∂ḡh
∂{q}d

}
+

{
∂ḡnh
∂{q̇}d

}]
= 0

(7.109)
For the independent variables it can be written that
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{δqi}T
[
d

dt

{
∂Ec
∂{q̇i}

}
−
{
∂Ec
∂{q}i

}
− {Q}i +

{
∂ḡh
∂{q}i

}
+

{
∂ḡnh
∂{q̇}i

}]
= 0

(7.110)
As {δqi}T is formed by independent generalized coordinates, Equation 7.110

reduces to

d

dt

{
∂Ec
∂{q̇}

}
−
{
∂Ec
∂{q}

}
− {Q}+

{
∂ḡh
∂{q}

}
+

{
∂ḡnh
∂{q̇}

}
= {0} (7.111)

This equation is valid to a system of bodies having links among them.

7.6
Equation of motion of a body without constraints

Utilizing the Lagrange’s equation one can write the system of equation of

motion of a body or a set of bodies in the multi-body analysis. Here, the

Equation 7.111 will be developed and the equation of motion will be found for

a body b without links, that is, any constraint is imposed. Using the virtual

work concept it can be said that

δWb = δWbf + δWbe (7.112)

where δWb is the virtual work resulting from the action of all forces acting

o body b, Wbs and Wbe is the virtual work due to elastic and external forces,

respectively. The, for the elastic forces,

δWbf = −{qb}T [Kb]{δqb} (7.113)

where [Kb] is the stiffness matrix for body b. For the external forces,

δWe = {Qe}T{δqb}. (7.114)

Substituting Equations 7.113 and 7.114 in Equation 7.112 it results in

δWb = −{qb}T [Kb]{δqb}+ {Qbe}T{δqb} (7.115)

or
{Qb} = −[Kb]{qb}+ {Qbe}. (7.116)

Developing the two first terms of Lagrange’s equation, one finds that

d

dt
{∂Ecb
∂q̇b
} − {∂Ecb

∂qb
} = [Mb]{q̈b}+ [Ṁb]{q̇b} −

1

2

[
∂

∂{qb}
(
{q̇b}T [Mb]{q̇b}

)]T
.

(7.117)
one can define the following vector

{Qbv} = −[Ṁb]{q̇b} −
1

2

[
∂

∂{qb}
(
{q̇b}T [Mb]{q̇b}

)}T
. (7.118)
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Combining the equation 7.116, 7.117, 7.117 and 7.118, it is obtained the

second order differential system of equations below

[Mb]{q̈b}+ [Kb]{qb} = {Qbe}+ {Qbv} (7.119)

The vector {Qbv} is called the quadratic velocity vector and can be

written in the following way [60]

{Qbv} =
{
{Qbv}TR{Qbv}TΘ{Qbv}TU

}T
(7.120)

where

{Qbv}R = −[Ab]
{

[ ˜̄Ωb]
2{Ī˘̄rb}+ 2[ ˜̄Ωb][ĪH̄b ]{Ūb}

}
{Qbv}Θ = −2[ ˙̄Gb]

T [ĪΘΘ]{Ω̄b} − 2[ ˙̄Gb]
T [ĪΘf ]{ ˙̄Ub}

{Qbv}U = −
∫
V̄

ρ
{

[H̄b]
T{[ ˜̄Ωb]

2{r̆b}+ 2[ ˜̄Ωb]{ ˙̄ub}}dV̄
} (7.121)

where [Ī˘̄rb ] =
∫
V̄

¯̆rbdV̄ and [ĪH̄b ] =
∫
V̄
H̄bdV̄ .

7.7
Constraints used in this work

Lets suppose that two bodies (b1) and (b2) represented in Figure 7.9 have

a condition that the distance of two points P1 and P2 is a function of the

generalized coordinates and of the time. This is a restriction to the movement

of both bodies and can be modeled with the following constraint equation

{Rb1}+ [Ab1 ]{r̄b1P1
} − {Rb2} − [Ab2 ]{r̄b2P2

} = {rP1,P2} (7.122)

In the present work this constraint is not dependent on the time (position of

points B1 and B2 coincides all time), than

{Rb1}+ [Ab1 ]{r̄b1P1
} − {Rb2} − [Ab2 ]{r̄b2P2

} = {0} (7.123)

and P2 coincide with P1. When the bodies are imposed to have some

restriction related to their angular velocity, the constraints equation are non-

holonomic. Non-holonomic constraints may be given by [60]

[G]{q̇}+ {g0} = 0 (7.124)

where {g0} = {g0({q}, t)} and [G] = [G({q}, t)] is a nc × n matrix.

In this work the non-holonomic constraints used have simpler form where

{g0} = {0} and [G] = [G({q})]. It is imposed when the angular velocities

between two orientations (or two bodies) are imposed to be the same. Then,
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{Ωb2} − {Ωb1} = {0} = [G({qb2})]{q̇b2} − [Gb1({qb1})]{q̇b1}. (7.125)

Figure 7.9: Link between two bodies

7.7.1
General formulation for a rigid body

In order to mount the system of equations for the solution of a multi-body

system, one begins with the expression for the kinetic energy associated with

one moving body as the nacelle, shaft and blades will be considered rigid

bodies. The kinetic energy of a body in movement is

Ecb =
1

2

∫
V̄

ρb{ṙb}T{ṙb}dV̄ . (7.126)

Using equation 7.70, one writes

Ecb =
1

2
{q̇b}T

[∫
V̄

ρb[Lb]
T [Lb]dV̄

]
{q̇b} (7.127)

The term under integration is the mass matrix of the body.

Ecb =
1

2
{q̇b}T [Mb]{q̇b} (7.128)

[Mb] =

∫
V̄

ρb

[
[I]

[Bb]
T

] [
[I] [Bb]

]
dV̄ =

∫
V̄

ρ

[
[I] [Bb]

symm. [Bb]
T [Bb]

]
V̄ =

[
[mRR] [mRΘ]

symm. [mΘΘ]

] (7.129)

where,
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[mRR] =

∫
V

ρ[I]dV̄ , [mΘΘ] =

∫
V̄

ρ[Bb]dV̄ , and [mΘΘ] =

∫
V̄

[Bb]
T [Bb]dV̄ .

(7.130)
The load due to the quadratic velocity is given by Equation 7.121 is

{Qvb} =
[
({Qvb})

T
R ({Qvb})

T
Θ ({Qv})TU

]T
(7.131)

and, for a rigid body, whose frame is at the center of mass, are

{Qvb}R = [0]

{Qvb}Θ = −2[ ˙̄Gb]
T [ĪΘΘb ]{Ω̄b}.

(7.132)

For external forces one has

{Qe}R = {Fb}

{Qe}Θ = {Bb}T{Fb} ,
(7.133)

where the matrix [Bb] is calculated at the point of application of the force [Fb].

Now, each sub-matrix can be calculated.

Sub-matrix [mRR]

[mRR] =

∫
V̄

ρbdV̄

1 0 0

0 1 0

0 0 1

 = mb

1 0 0

0 1 0

0 0 1

 (7.134)

where mb is the mass of the body.

Sub-matrix mRΘ. This sub-matrix is null for rigid bodies if the first

moment of mass in null, that is, the body coordinate system is set in the

center of mass.

[mRθ] = −[Ab]

[∫
V̄

ρb[
˜̆̄rb]dV̄

]
[Ḡb] (7.135)

where

[Ī˜̄̆rb
] =

∫
V̄

 0 −¯̆r3
¯̆r2

¯̆r3 0 −¯̆r1

−¯̆r2
¯̆r1 0

 dV̄ and [Ḡb] = 2[Ēb] (7.136)

It must be considered that {Ī¯̆rb} = {Īr̄b} + {Īūb}, where and {Ī¯̆rb} =∫
V̄
{¯̆rb}dV̄ , {Īr̄b} =

∫
V̄
r̄bdV̄ and {Īūb} =

∫
V̄
ūbdV̄ .

For rigid bodies with the origin of the frame put in the center of mass,

one has that {Īr̄b} = {Īūb} = {0}.
Sub-matrix [mθθ]
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This matrix depends of the generalized coordinates of rotation and of

deformation.

mθθ =

∫
V̄

ρb[Bb]
T [Bb]dV =

∫
V̄

ρb([Ab][˜̆rb][Ḡb])
T ([Ab][˜̆rb][Ḡb])dV̄ (7.137)

[mθθ] =

∫
V̄

ρb([Ḡb]
T [˜̆rb]

T [˜̆rb][Ḡb]dV̄ = [Ḡb]
T

[∫
V̄

ρb[˜̆rb]
T [˜̆r]

]
ḠbddV̄ =

[Ḡb]
T [Īθθ][Ḡb] .

(7.138)
The tensor [Īθθ] depends on the geometry of the body also its process of

deformation. If the body ir rigid, this tensor is the tensor of inertia [J], then,

[mθθ] = [Ḡb]
T [J̄b][Ḡb] (7.139)

and, for the generalized load {Qv}

{QvR} = [0]

{QvΘ
} = −2[ ˙̄Gb]

T [J̄b]{Ω̄b}
(7.140)

All these elements of the turbine are considered rigid, and their equation of

motion have the same form. As the form is the same the analysis will be made

for a generic body b. The equation of motion of a rigid body with the frame

located in its center, under a force {F̄b}, is

[
mb[I] 0

0 [Ḡb]
T [J̄b][Ḡb]

]{
q̈b

}
=

{
{0}

{−2[ ˙̄Gb]
T [J̄b]{Ω̄b}}

}
+

{
{Fb}

{[Bb]
T{Fb}}

}
(7.141)

where,

[Mb] =

[
mb[I] 0

0 [Ḡb]
T [J̄b][Ḡb]

]
, {Qv} =

{
{0}

{−2[ ˙̄Gb]
T [J̄b]{Ω̄b}}

}
and

{Qe} =

{
{Fb}

{[Bb]
T{Fb}}

}
(7.142)

7.8
Differentiating the residue

The expressions obtained in formulation of the turbine generate a vectors that

need to be differentiated with respect to the generalized coordinates. This

derivatives appear when the system of equation of motion are to be solved
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using a step by step method performing an incremental approximation. They

will be used to obtain the derivatives of the residue with respect to incremental

displacement. The expressions to be determined are

The residue {r∗} is defined as

{r∗} =[M̃]{ ˜̌̈q}+ [J̃h]T ([Ph]{G̃h}+ [Kh]{Λ̃h}) + [J̃nh]T ([Pnh]{G̃nh}+

[Knh]{ ˙̃Λnh})− {Q̃c} − {Q̃k} − {Q̃v} − {Q̃f},
(7.143)

submitted to the same initial conditions presented in Equation 3.58. The con-

strained initial value problem of Equation 3.58 together with the Newmark

scheme shown in Equation 3.61 define a nonlinear problem of algebraic equa-

tions with unknowns {qΛ}l, {q̇Λ}l and {q̈Λ}l. This is an approximation using

Taylor expansion in step l and iteration k and imposing {r∗}(k+1)
l = {0}. In

order to solve the Equation 3.63 for {∆q̃Λ}, the necessary derivatives of the

residue with respect to {q̃Λ}, { ˙̃qΛ} and {¨̃qΛ} must be calculated. They are

∂{r∗}
∂{q̈Λ}

= [M̃Λ]

∂{r∗}
∂{q̇Λ}

=
∂

∂{q̇Λ}
{[M̃Λ]{¨̃qΛ}} −

∂

∂{q̇Λ}
{Q̃c} −

∂

∂{q̇Λ}
{Q̃k} −

∂

∂{q̇Λ}
{Q̃v}

− ∂

∂{q̇Λ}
{Q̃f}+ {[J̃nh]T [Pnh][J̃nh]}+ {[J̃nh]T [Knh]}

+
∂[J̃nh]T

∂{q̇Λ}
[Pnh]{G̃nh}+

∂[J̃nh]T

∂{q̇Λ}
[Knh]{q̇Λ}

∂{r∗}
∂{qΛ}

=
∂

∂{qΛ}
{[M̃Λ]{¨̃qΛ}} −

∂

∂{qΛ}
{Q̃c} −

∂

∂{qΛ}
{Q̃k} −

∂

∂{qΛ}
{Q̃v}

− ∂

∂{qΛ}
{Q̃f}+ {[J̃h]T [Ph][J̃h]}+ {[J̃h]T [Kh]}

+
∂[J̃h]T

∂{qΛ}
[Ph]{G̃h}+

∂[J̃h]T

∂{qΛ}
[Kh]{qΛ}}

(7.144)

7.8.1
Rigid elements

Differentiating the matrix [M̃Λ] is differentiating separately each sub-matrix

[Mb] with respect to qb, where the index b means any rigid body, component

of the turbine. This differentiation becomes

∂{[Mb]{q̈b}}
∂{qb}

=
∂

∂{qb}

[
mb[I] 0

0 [Ḡb]
T [J̄b][Ḡb]

]{
q̈b

}
(7.145)
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In sub-matrix [Mb], the operation mb
∂

∂{qb}
[I]{q̈b}} results in a null matrix. The

bottom-right block is dependent only on the Euler parameters Θb. Then, one

needs only to determine ∂
∂{Θb}

(
[Ḡb]

T [J̄b][Ḡb]{q̈b}
)
. So,

∂

∂{Θb}

(
[Ḡb]

T [J̄b][Ḡb]{Θ̈b}
)

=

∂[Ḡb]

∂{Θb}

T

[J̄b][Ḡb]{Θ̈b}+ [Ḡb]
T [J̄b]

[
∂[Ḡb]

∂{Θb}
{Θ̈b}

] (7.146)

The vector force {Qvb} is In the case of rigid body with the frame located

at it center of mass all others have the same format given below

{Qvb} =

{
{0}

{2[ ˙̄Gb]
T [J̄b][

˙̄Gb]{Θb}+ [Ḡb]
T [J̄b][

˙̄Gb]{Θb}

}
.

whose derivative is

∂{Qvb}
∂{q}

=

[
[0]

2[ ˙̄Gb]
T [J̄b][

˙̄Gb] + [Ḡb]
T [J̄b][

˙̄Gb] + ∂
∂{Θb}

[Ḡb]
T [J̄b][

˙̄Gb]{Θb}

]
.

The forces {Qvb} must be performed for { ˙̌qb} too. Recalling that

[ ˙̄Gb]{Θ} = −[Ḡb]{Θ̇b} = {Ω̄b} when using Euler parameters,

∂{Qvb}
∂{q}b

=

[
[0]

−2 ∂
∂{Θb}

[ ˙̄Gb]
T [J̄b]{Ω̄b} − 2[ ˙̄Gb]

T [J̄b][Ḡb]− [Ḡb]
T [J̄b][Ḡb]

]
.

The same systematic is used for differentiating the vector of external

loads, {Qeb}, with respect to {q} and {q̇}. So, these derivatives limit to

∂

∂{q}
{Qeb} =

[
[0]

∂[Bb]
T

∂{Θb}
{Fb}

]
(7.147)

and ∂
∂{q̇}{Qeb} = [0] as [Bb] is not function of {q̇}.

7.8.2
Tower

The sub-matrices [Mt] and [Kt] have dimension ndof × ndof and are the result

of finite element formulation. They are constant matrices (in this work), The

the vector {qt} ≡ {U} is the vector of the nodal displacements with dimension

ndof × 1. The external forces are considered only dependent on the time in

this work, except for the non-linear force {N({U̇})} which appears when

considering the presence of surrounding water. With this information, it can

be deduced that
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∂
(

[Mt]{Ü}
)

∂{Ü}
= [Mt] (7.148)

∂
(

[Mt]{Ü}
)

∂{U̇}
=
∂
(

[Mt]{Ü}
)

∂{U}
= [0], (7.149)

∂ ([Kt]{U})
∂{U}

= [Kt] (7.150)

and ∂ ([Kt]{U})
∂{Ü}

=
∂ ([Kt]{U})

∂{U̇}
[Kt] = [0]. (7.151)

Concerning to the nonlinear interaction between the tower and fluid, two

forces arrive. One is linear and depends only on the time. The other is non-

linear in {U̇}, the nodal velocity vector. The interaction fluid-column force,
∂

∂{q̇}{N(q̇)}, will be performed below recalling Equation (3.32).

Fdy,z =

∫ L

0

sign (Wy,z(x, t)− ẇy,z(x, t))D(x) CD(x)ρf ẇy,z(x, t)ψ(x)dx

(7.152)

Ny,z =
1

2

∫ L

0

sign(Wy,z(x, t)− ẇy,z(x, t))D(x) CDρf (ẇy,z(x, t))
2ψ(x)dx

(7.153)
where Wy,z and ẇy,z are the water and tower transversal velocity vector

components in a given section of the tower, ψ(x) is the interpolating function.

The non-linear vector load {N({U̇}) is not dependent on the axial movement

of the tower, so the degrees of freedom active are those associated to the

transversal displacements. In element level the field of velocities in the domain

is given using the interpolating functions as below

{ẇ} = {Ψ̄}{U̇} (7.154)

where the vector {Ψ̄} contains the interpolating functions for transversal

degrees of freedom of the tower, only (wy and wz). In an explicit form, for a

generic finite element,
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wxwy
wz

 =


0 0 0 0 0 0 0 0 0 0 0 0 0

0 ψ1
wy 0 0 ψ1

θy
0 0 ψ2

wy 0 0 ψ2
θy

0 0

0 0 ψ1
wz 0 0 ψ1

θz
0 0 ψ2

wz 0 0 ψ2
θz

0





{U̇1
x}

{U̇1
y }

{U̇1
z }

{U̇1
θx
}

{U̇1
θy
}

{U̇1
θz
}

{U̇2
x}

{U̇2
y }

{U̇2
z }

{U̇2
θ }

{U̇2
θ }

{U̇2
θ },


(7.155)

recalling that the number of the degrees of freedom of the element used is 12.

Fdy,z =

∫ L

0
sign (Wy,z(x, t)− ẇy,z(x, t))D(x) CD(x)ρf ẇy,z(x, t)φ(x)dx (7.156)

ẇ = {Ψ̄}{U̇} (7.157)

Fdy,z = sign (Wy,z(x, t)− ẇy,z(x, t))
∫ L

0
D(x) CD(x)ρf{Ψ̄}T {Ψ̄}{U̇}dx (7.158)

then,

[Cdt ] = sign (Wy,z(x, t)− ẇy,z(x, t))
∫ L

0
D(x) CD(x)ρf{Ψ̄}T {Ψ̄}dx (7.159)

For the nonlinear case,

ẇ2 = {U̇}T {Ψ̄}T {Ψ̄}{U̇}, (7.160)

the ith component, of the nonlinear load {N({U̇})} is

Ni({U̇}) =
1

2

∫ L

0
sign[W − ẇ]D CD(x)ρf U̇

T [h̄]U̇ ψ̄idx (7.161)

and the derivative ∂
∂({U̇})N({U̇}) is a matrix whose elements are

[CNt(U̇)] =
∂

∂U̇j
Ni({U̇}) =

∫ L

0
sign[W − ẇ]ρfD CD(t)h̄jkψ̄iU̇kdx (7.162)

where h̄ = {Ψ̄}T {Ψ̄}.
This operation is made in the element level and for each iteration. In this work

the matrices [Cdt ] and [CNt(U̇)] are the only matrices associated to damping.

{Ft} is the external time dependent force vector acting in the tower. The

derivative ∂
∂{U}{Fet} is obviously a null.
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7.9
Determination of the reactions at t=0

At the beginning of the analysis the constraints are already present. As the values

for the reactions are unknown (the Lagrange parameters are unknown), they can be

included in the formulation making use of the constraints themselves. In a problem

of initial value, the velocities and positions are given at the beginning of the time.

In order to include the influence of the constraints in the beginning of the analysis,

consider the Equations presented in the Chapter 7.5.2 for the holonomic and non-

holonomic constraints, 7.95 and 7.96, respectively. Differentiating the former twice

with respect to time, one obtains [60]

[
∂{Gh}
∂{q̌}

]
{¨̌q} = −2

[
∂2{Gh}
∂{q̌}∂t

]
{¨̌q} −

[
∂

∂{q̌}

{[
∂{Gh}
∂{q̌}

]
{ ˙̌q}
}]
{ ˙̌q} −

{
∂2{Gh}
∂t2

}
= {Qch} .

(7.163)
Differentiating the latter once with respect to time, one obtains[

∂{Gnh}
∂{ ˙̌q}

]
{¨̌q} = −

[
∂Gnh

∂t

]
= {Qcnh}. (7.164)

The right side of the equations 7.163 and 7.164 represents generalized forces

due to the presence of the constraints. Considering that
[
∂Gh
∂{q̌}

]
= [Jh] and

[
∂Gnh
∂{ ˙̌q}

]
=

{¨̌q} = [Jnh] and that the time is not explicit, that is the case in this work, the

equations above become

[Jnh]{¨̌q} = −
[

∂

∂{q̌}

{[
∂{Gh}
∂{q̌}

]
{ ˙̌q}
}]
{ ˙̌q} (7.165)

and,

[Jnh]{¨̌q} = {0}. (7.166)

The system of equation of motion for the turbine was given in 3.2.7 and is

repeated here:



[M]{¨̌q}+ [Jh]T ([Ph]{Gh}+ [Kh]{Λh}) + [Jnh]T ([Pnh]{Gnh}+

[Knh]{Λ̇nh})− {Qc} − {Qk} − {Qv} − {Qf} = {0}

[Kh]{Gh} = {0}

[Knh]{Gnh} = {0}

{q̌(t0)} = {q̌0}

{ ˙̌q(t0)} = { ˙̌q0}

{Λh(t0)} = {Λ0nh}

{Λ̇nh(t0)} = {Λ̇0nh} .

(7.167)

Substituting the initial conditions, the system becomes at the time t = 0
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[M0]{¨̌q0}+ [Jh0 ]T ([Ph]{Gh0}+ [Kh0 ]{Λh0}) + [JTnh0
([Pnh]{Gnh}+

[Knh]{Λ̇nh0} = {Q0}

[Kh]{Gh0} = {Qh0}

[Knh]{Gnh0} = {Qnh0}

(7.168)

The second and third Equations of 7.168 are useless as they are identically

null. But they can be substituted by Equations 7.165 and 7.166, then,


[M0]{¨̌q0}+ [Jh0 ]T [Kh]{Λh0}+ [Jnh0 ]T [Knh]{Λ̇nh0} = {Q0}

[Jnh]{¨̌q} = {Qh} = −
[

∂

∂{q̌}

{[
∂{Gh}
∂{q̌}

]
{ ˙̌q}
}]
{ ˙̌q}

[Jnh]{¨̌q} = {Qnh0} = {0} .

(7.169)

The unknowns are {¨̌q0}, {Λh0} and {Λnh0}. The system 7.169 can that be

written in the following way


{¨̌q0}
{Λh0}
{Λ̇nh0}

 =

 [M] [Kh0 ][Jh0 ]T [Knh0 ][Jnh0 ]T

[Kh0 ][Jh0 ] [0] [0]

[Knh0 ][Jnh0 ] [0] [0]


−1

{Q}
{Q̌ch0

}
{Q̌cnh0

}

 (7.170)

where {Q̌ch0
} = [Kh0 ]{Qch0

} and {Q̌cnh0
} = [Knh0 ]{Qcnh0

}.
In order to solve the system of equations 7.170, it must be first calculated the

vectors {Qch0
} which means determining the derivative − ∂

∂{q̌}

[
∂gh
∂{q̌}{ ˙̌q}

]
{ ˙̌q}. In the

present work, {Qcnh0
} = {0} and the holonomic constraints are of the type

{ghbi,bj} = {Rbi}+ [Abi]{bir} − {Rbj} − [Abj ]{bjr} (7.171)

where the index bi and bj mean the bodies i and j. The Jacobian matrix for

this constraint is

Jhbi,bj =
[
[Ibi] · · · [Bbi] · · · −[Ibj ] · · · −[Bbj ]

]
, (7.172)

where [Ibi] and [Ibj ] are the identity matrix. [Bbi] and [Bbj ] are given by 7.58

7.59. Then, considering only the constraints given by Equation 7.171, for two bodies

ingle

− ∂

∂{q̌}

[
∂gh
∂{q̌}

{ ˙̌q}
]

= − ∂

∂{q̌}

[
[Ibi] [Bbi] [0] [0]

[0] [0] −[Ibj ] −[Bbj ]

]
Ṙbi

Θ̇bi

Ṙbj

Θ̇bj

 , (7.173)

then,
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− ∂

∂{q̌}

[
∂gh
∂{q̌}

{ ˙̌q}
]

= −

[
[0] ∂

∂Θbi
{[Bbi]{Θ̇bi}} [0] [0]

[0] [0] [0] − ∂
∂Θbj
{[Bbj ]{Θ̇bij}}

]
,

(7.174)
and ∂(Bik q̇k)

∂Θm
is obtained by using Equation 7.61.

From this differentiations, a matrix with dimensions 3nc × 7nb + ndof is

mounted considering the contribution of all bodies and then the vector {Qch} can be

calculated. Then, Equation 7.170 is solved and the initial generalized accelerations

and Lagrange multipliers are obtained. In order to determine the overall reactions

acting on the body in time, {Qch} and {Qcnh} are determined as

{Qch} = −[Kh][Jh)]T {Λh}

{Qcnh} = −[Knh][Jnh]T {Λ̇nh} .
(7.175)

The actual resulting forces acting in the bodies are directly determined in the

equations of movement and are represented by a vector in <3. The torques are not

represented this way if the generalized coordinates are the Euler parameters. In this

case, some transformation must be made in order to obtain the actual torque. It can

be demonstrated that the relation between the generalized torques and the real ones

are given by

{T̄Rh} =
1

4
[Ḡb]{Qchb}

{T̄Rnh} =
1

4
[Ḡb]{Qcnhb}

(7.176)

where {T̄Rh} and {T̄Rnh} are the actual torques acting on a body of the system

due to holonomic an non-holonomic constrains, respectively, {Qchb} and {Qcnhb}
are the generalized torques, for each body as well. The matrix [Ḡ] given in 7.55.

The quantities above are represented with respect to the body frame and must be

calculated for each body.

7.10
Uncertainty quantification

7.10.1
Maximum Entropy Principle

When the quantities involved in analysis have a random nature, this means that

one can not predict the exact value of those quantities but only say that a given

set of values has a probability of occurrence. Depending on the problem, available

data are rare and incomplete so that the associated probability density function is

not possible to be determined. However, based in the data available, it is possible

to find the best PDF (which gives the most conservative result) with suits with

the quality of the information contained in the data. This is due to the Principle of

Maximum Entropy [61], [28]. This Principal states that, under to known constraints,

the probability density function which best represents the current state of knowledge
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is the one with the largest entropy [55]. The uncertainty of a random variable X is

defined by

S(fX) = −
∫
D
fXlog(fX(X))dX (7.177)

where fX is the PDF of X and D is the domain. Suppose that the only available

information one has is that the random variable X exits only within a given range,

say [a b]. Then, the Equation 7.177 leads to the following uniform PDF

fX(x|a, b) =
1

b− a
; au ≤ x ≤ bu.0;otherwise. (7.178)

If the constraints are the positiveness and bounded second moment, the

Equation 7.177 indicates a gamma PDF. The gamma probability distribution

function has two parameters ag and bg, so that E(X) = ab and σ2
X = ab2, and

is given by

fX(x|a, b) =
1

b2Γ(a)
x(a−1)e−

x
b

0; otherwise.

(7.179)

Still, from Equation 7.177 for given mean value E(X) = µX and variation σ2
X,

a Gaussian is obtained

fX(x|µX, σX) =
1

σX
√

2π
e
− 1

2
(
x−µX
σ2
X

)
. (7.180)
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de Minas e Energia, 2001.

AMARANTE, O. A. C.; ET AL. Atlas eólico do Rio de Janeiro. Secretaria de
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