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Abstract

Gribel, Daniel Lemes; Vidal, Thibaut Victor Gaston (Advisor).Hy-
brid Genetic Algorithm for the Minimum Sum-of-Squares
Clustering Problem. Rio de Janeiro, 2017. 54p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Clustering plays an important role in data mining, being useful in
many fields that deal with exploratory data analysis, such as information
retrieval, document extraction, and image segmentation. Although they are
essential in data mining applications, most clustering algorithms are ad-
hoc methods. They have a lack of guarantee on the solution quality, which
in many cases is related to a premature convergence to a local minimum
of the search space. In this research, we address the problem of data
clustering from an optimization perspective, where we propose a hybrid
genetic algorithm to solve the Minimum Sum-of-Squares Clustering (MSSC)
problem. This meta-heuristic is capable of escaping from local minima and
generating near-optimal solutions to the MSSC problem. Results show that
the proposed method outperformed the best current literature results –
in terms of solution quality – for almost all considered sets of benchmark
instances for the MSSC objective.

Keywords
Clustering; Meta-heuristic; Unsupervised learning; Minimum sum-

of-squares; Data mining.
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Resumo

Gribel, Daniel Lemes; Vidal, Thibaut Victor Gaston (Orientador).
Algoritmo Genético Híbrido para o Problema de Clusteri-
zação Minimum Sum-of-Squares. Rio de Janeiro, 2017. 54p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

Clusterização desempenha um papel importante em data mining, sendo
útil em muitas áreas que lidam com a análise exploratória de dados, tais
como recuperação de informações, extração de documentos e segmentação
de imagens. Embora sejam essenciais em aplicações de data mining, a maio-
ria dos algoritmos de clusterização são métodos ad-hoc. Eles carecem de
garantias na qualidade da solução, que em muitos casos está relacionada
a uma convergência prematura para um mínimo local no espaço de busca.
Neste trabalho, abordamos o problema de clusterização a partir da per-
spectiva de otimização, onde propomos um algoritmo genético híbrido para
resolver o problema Minimum Sum-of-Squares Clustering (MSSC, em in-
glês). A meta-heurística proposta é capaz de escapar de mínimos locais e
gerar soluções quase ótimas para o problema MSSC. Os resultados mostram
que o método proposto superou os resultados atuais da literatura – em ter-
mos de qualidade da solução – para quase todos os conjuntos de instâncias
considerados para o problema MSSC.

Palavras-chave
Clusterização; Meta-heurística; Aprendizado não-supervisionado;

Mínima soma dos quadrados; Mineração de dados.
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1
Introduction

Clustering plays an important role in data mining, being useful in many
fields that require the separation of objects into meaningful groups. Clustering
arises whenever one has a collection of objects or patterns – say, a set of
photographs, documents, or micro-organisms – and is trying to classify or
organize them into coherent groups (20). It has found many applications in
fields that deal with exploratory data analysis, such as information retrieval,
document extraction, and image segmentation.

Due to permanent social and physical interactions, human beings have
developed the ability of clustering objects, once we are required to do it and
draw conclusions from it in a large variety of daily situations. Although the
human brain works very well (and quickly) on clustering some objects in two
or three dimensions, it is not capable of performing the same task in a very
large number of dimensions or in the presence of a large amount of data. Thus,
one of the fundamental questions on clustering is: “How can we propose some
means to lead the human cognitive capacity of quickly separating objects in a
low dimension of features to a high dimension?”. Most of research on clustering
analysis is spending efforts on answering this question in a satisfactory way
(8).

Numerous definitions of clustering analysis have been proposed in the
literature. Clustering is typically oriented to study the internal structure of
data (19), but it can assume different definitions and roles according to the
domain of study and goals. Even finding a good criteria to validate the output
of a clustering algorithm is not trivial. As clustering is a generalization of
what humans perceive, it is depicted by many informal definitions and guided
by subjective criteria, revealing the difficulty of providing a singular and
sufficiently broad definition. Beyond this, clustering criteria are sometimes
known and well defined, but results should be given according to a specific
and adequate perspective that better attends someone view of the problem.
For example, some criteria to validate clusters consider the cohesion and/or
separability of patterns. The former asserts that patterns in one cluster should
be as similar to each other as possible. The latter asserts that clusters should
be well separated, i.e., patterns in different clusters should be as different to
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Chapter 1. Introduction 11

each other as possible. These different perspectives have led to the development
of different classes of algorithms.

Although they are essential in data mining applications, most clustering
algorithms are ad-hoc methods, which can be assimilated to a greedy construc-
tion procedure or local search for some optimization problem. These methods
are designed for specific clustering criteria, being not adapted to different pur-
poses. In addition, they have no optimality guarantee and usually have volatile
performance in the domain of the optimization problem to which they are at-
tached. Thus, these methods work relatively well for certain applications but
fail in others.

K-means is an example of a very popular algorithm for clustering, based
on iterative updates of cluster centers until convergence. Although iterative
algorithms are easy to implement and usually demand low computational
time (linear in the number of samples in K-means), they have typically two
disadvantages (8): (i) they are likely to converge to a local optimum; (ii) their
performance is usually very sensitive to the initial conditions of the search;
and (iii) they are highly dependent of the shape of clusters.

The main motivation of this work is to overcome the lack of guarantee
on the solution quality of classical clustering algorithms. For this purpose,
this research addresses the problem of data clustering from an optimization
perspective, where we explore a particular formulation, the Minimum sum-of-
squares clustering (MSSC) in the Euclidean space. In addition, the limitation
imposed by classical ad-hoc methods is in many cases related to premature
convergence. To overcome these issues, the present work proposes a meta-
heuristic capable of escaping from local minima and generating near-optimal
solutions to the MSSC problem.

The MSSC is the most treated formulation in data clustering literature,
since it expresses both homogeneity and separation (16). The Euclidean MSSC
corresponds to the minimization of the sum-of-squares of Euclidean distances
of objects to their cluster means, or equivalently, to the minimization of within-
group sum-of-squares (30). In this work we refer to objects or samples to be
clustered as data points.

The method proposed in this document is a hybrid genetic algorithm that
combines a K-means local improvement procedure with crossover, mutation
and diversification operators. This allows to efficiently escape from local
minima and reach high quality solutions. The method outperforms the best
current literature results for all considered sets of benchmark instances in
terms of solution quality for the MSSC model. In some cases, the results of
the K-means algorithm are more than 1100% off the solution quality of the
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Chapter 1. Introduction 12

proposed method. Additionally, as this work is an accurate and stable method
for the MSSC objective, it is also an important starting point to solve different
objectives in clustering. Although the scope of the present work is focused on
solving the MSSC problem, the long-term goal in this research is to have a
general framework that solves any classical clustering model. As we tackle the
clustering problem from an optimization perspective through a meta-heuristic,
we can elaborate a neighborhood structure that is general enough to deal with
different models, where the evaluation cost of a solution varies according to
the objective. Thus, the proposed method is an important instrument to the
coming step of this work, which consists in testing different clustering models
and verifying their impact on clustering results.

This document is structured as follows: in Chapter 2, we discuss the
differences between the early ad-hoc and the model-based approaches for
clustering, focusing in the case of MSSC. In Chapter 3, we describe the
proposed methodology, a meta-heuristic designed to solve the MSSC problem.
In Chapter 4, we present the experimental results and the analysis we draw
from them. Finally, the final remarks and the future perspectives are addressed
in Chapter 5.
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2
Problem Statement and Literature Review

Most algorithms proposed for data clustering are based on heuristics
with intuitive procedures (11). These algorithms are also referred as ad-hoc
methods, since they are solutions designed for specific clustering criteria,
being non-generalizable and not adaptive. As these ad-hoc methods are based
on greedy constructions or local improvements, they have some limitation
regarding solution quality and local optimum convergence.

There is little systematic guidance in such algorithms for solving im-
portant questions in cluster analysis (11). K-means is an example of a very
popular ad-hoc algorithm for clustering, based on iterative updates of cluster
centers until convergence. Although K-means is easy to implement and usually
demand low computational time, it has not any optimality guarantee and is
highly dependent on initial conditions to deliver good outcomes.

However, in the recent years there has been a considerable growth of
clustering methods designed in a model-oriented way. This approach is based
on formal models that usually produce more accurate solutions than ad-hoc
methods as they clearly state an objective to be achieved.

2.1
Ad-hoc methods

The ad-hoc methods proposed for data clustering usually belong to two
large classes: hierarchical and partitional algorithms.

Hierarchical clustering works by successively agglomerating or separating
clusters at each stage according to some distance measure. The methods of this
class can be roughly separated into two groups: agglomerative and divisive
methods. In an agglomerative approach, each data point starts at its own
cluster and at each stage of the algorithm it joins the two most similar clusters,
until a single cluster containing all data points is reached. The divisive method
is the opposite. The method proceeds by separating n data points successively
into finer groups.

Several algorithms for data clustering are based on hierarchical construc-
tions, once they do not require the number of clusters a priori and are in-
dependent from initial conditions, as strategic starting points. However, hi-
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Chapter 2. Problem Statement and Literature Review 14

erarchical methods are computationally expensive – usually O(n2 log n) for
computational complexity – and all decisions about joining/separating sets of
points are definitive, i.e., it is impossible to revert any merge or split operation.
BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) (32)
and CURE (Clustering Using Representatives) (12) are examples of popular
hierarchical clustering algorithms.

The methods belonging to partitional clustering directly divide data
points into some pre-specified number of clusters without any hierarchical
structure (31). It is composed of methods based on iterative relocation of
data points between clusters that, at each iteration, reduce the value of
some criteria function until convergence (19). The minimum sum-of-squares
function is one of the most widely used criteria, which aims to minimize
the sum of each data point to the center of its cluster. K-means and PAM
(Partitioning Around Medoids) are quite widespread partitioning clustering
methods. Although partitional clustering algorithms are suitable for large data
sets due to efficiency in computational time, they require the number of clusters
in advance and are heavily dependent on the initial conditions, which can lead
algorithms like K-means to a premature convergence (8).

Due to the popularity of K-means, several works have been dedicated
to proposing more efficient implementations, speed up techniques and smart
data structures for it. The work of Hamerly (13), in particular, provides
an efficient K-means algorithm which works with a complexity of O(nmd +
md2) per iteration, where n, m and d are the number of data points, the
number of clusters and the dimensionality of data, respectively. However, this
implementation is much faster in practice as it avoids most of the K-means
innermost loops.

2.2
Model-driven clustering

The above classes of ad-hoc methods are not guided by a model, but by
iterative constructions or re-assignments according to some underlying criteria.
For instance, in K-means algorithm, the criteria is to assign data points to the
closest center after the calculation of centers position. In hierarchical methods,
the criteria to merge/split a solution is based on a distance metric between pairs
of clusters. Due to these characteristics, it is difficult to assess if erratic results
come from inappropriate methods, or from a data that does not intuitively
leads to the result that we desire.

In order to detect this kind of behaviour, some solutions have been
designed to face data clustering from a model-oriented perspective, which
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Chapter 2. Problem Statement and Literature Review 15

means giving a formal definition of the clustering problem as an optimization
problem, where clear objective functions and restrictions are set. Therefore,
one can apply a method that minimizes/maximizes an objective function to
solve the model.

The work of Hansen and Jaumard (14) states that most of clustering
tasks are composed by the following elements:

– Data. Observation of d characteristics in n entities (patterns). This yields
a n× d data matrix.

– Similarities. Computation of the similarities between entities, i.e., the
derived measures from features that indicates how similar (dissimilar)
are each pair of entities.

– Constraints. Specification of existing constraints in the clustering task.
For instance: number of clusters, maximum cardinality per cluster,
number of clusters an entity can be assigned to, etc.

– Criterion. Selection of the criterion to express homogeneity or separabil-
ity of the clusters.

– Algorithm. Design of the algorithm to solve the clustering problem.

– Interpretation. Analysis on how meaningful are the generated clusters.
For instance: use of descriptive statistics and data mining indicators.

Except for Interpretation, the above steps that characterize a general
clustering task are profitably addressed by the mathematical programming
perspective, as it is capable of explicitly define and delimit the problem.

Many formulations can be done to express a clustering task. Besides that,
some optimization problems are more suitable for specific clustering tasks,
or specific data sets. In this work, we consider a particular formulation for
data clustering: the Minimum sum-of-squares clustering (MSSC). The MSSC
is among the most studied problems in cluster analysis and has been the
focus of an extensive literature. Due to the large number of works considering
this formulation and to its intuitive way of understanding a solution for data
clustering, the MSSC was chosen to be tackled. Actually, the long-term purpose
of this work is to extend the proposed method to a range of formulations. Thus,
the MSSC is good starting point to validate the method, as much material is
available in the literature for comparison.
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Chapter 2. Problem Statement and Literature Review 16

2.3
The MSSC problem

The MSSC problem – also referred as the discrete clustering problem or
the hard clustering problem – has been extensively studied in the literature for
data clustering, possibly because this is the natural model which is addressed
by the K-means algorithm. It was first formulated mathematically by Vinod
(28), where the MSSC is defined as a problem that assumes integer variables
that can take values 0 or 1 only, recognizing it as an Integer programming
problem.

The objective in the MSSC problem is to minimize the total sum of the
distances of each data point to the mean point in its cluster. We are given a
set X of n data points in a d-dimensional space Rd (4):

X = {x1, x2, ..., xn}, where xi ∈ Rd, i = 1, ..., n.

The clustering procedure must partition the set X into m disjoint and
non empty subsets {S1, . . . , Sm}, such that Si ∩ Sj = ∅ for all (i, j) and
S1∪· · ·∪Sm = X, where m is the number of desired clusters. In other words, a
clustering algorithm aims to generate a partition that groups data consistently,
with most similar data points belonging to the same group and dissimilar data
points belonging to different groups.

In order to define the similarity between any two points in the space, a
function d assigns to any pair x, y ∈ Rd a distance metric d(x, y) ∈ R. Many
distance measures could be used to characterize how similar two points or
patterns are. A popular one in the domain of data mining is the Euclidean
distance, that can often be used to reflect the similarity between two patterns
when considering multiple dimensions (features) (18):

d(x, y) =

√√√√√ d∑
q=1

(xq − yq)2 = ‖x− y‖ , x, y ∈ Rd (2-1)

Here, xq is the value of the q-th feature of a point x, d is the number of
features and q = {1, ..., d}. Analogously, the set of data points xi ∈ X can be
described as a matrix X ′n×d, where an entry xiq is the value of the q-th feature
for the i-th data point. In this work we consider that points (including the
centroids) are in the Euclidean space, so the measure above (2-1) is used to
express the distance between any two points. Therefore, the MSSC problem
can be formulated as the following set partitioning problem:
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Chapter 2. Problem Statement and Literature Review 17

Minimize
|S|∑

k=1
zkyk (2-2)

|S|∑
k=1

aikyk = 1, ∀i (2-3)

|S|∑
k=1

yk = m (2-4)

yk ∈ {0, 1}, ∀k (2-5)
where S is the set of all possible subsets obtained from elements in X, |S| is
the size of S; aik = 1 if xi ∈ Sk and aik = 0 otherwise; yk are the decision
variables, with yk = 1 if the subset Sk is chosen and yk = 0 otherwise; and
zk is the cost function on subset Sk, i.e., the cost within the k-th subset. In
the MSSC problem, the centroid is the mean point ck of cluster Sk. Thus, the
contribution zk of each subset to the objective function is:

zk =
∑

xi∈Sk

d(xi, ck) (2-6)

where ck =
∑n

i=1 aikxi∑n
i=1 aik

2.3.1
Computational complexity

Regarding computational complexity, the MSSC can be solved in O(n3)
time for m ≥ 2 and one dimensional data (27). For general m ≥ 2 and general
dimension d, the MSSC is NP-hard (2). If both m and d are fixed, the problem
can be solved in O(nmd+1) time (17), which may be very time-consuming.
However, the hardness of MSSC is not measured only by the number of points
(samples), dimensions and clusters, it also depends on the distribution of points
(3).

2.3.2
Solution techniques

Many solution techniques have been developed in recent years to solve the
MSSC problem. These techniques can be separated into different categories,
based on their exact or heuristic nature, whether they are deterministic or
probabilistic, whether they process complete solutions or construct solutions
during the search, and finally whether they maintain a single candidate
solution or have a population of solutions (8). This range of methods includes
construction methods and local searches, which aims to repeatedly seek
for better solutions according to some fitness; meta-heuristic algorithms;
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Chapter 2. Problem Statement and Literature Review 18

and mathematical programming techniques. In this section, we review some
techniques and previous works that have been designed for the resolution of
the MSSC problem.

Hansen (15) proposed a local search called J-MEANS for the MSSC prob-
lem. The neighbourhood of a current solution is defined by all possible centroid-
to-object relocations followed by corresponding changes of assignments. Thus,
a move in J-MEANS corresponds to replacing an existing centroid xi by a data
point xj. The move is done by selecting the pair of indices (i, j) that brings the
highest gain in the objective function. After the replacement of xi by xj, the
corresponding assignment updates are done. Moves are made in these neigh-
bourhoods whenever the value of a neighbour’s objective function is better
than the current solution, until a local optimum is reached. As the J-MEANS
is a general local search, it is also applied to fit into meta-heuristics as the
Variable Neighbourhood Search (VNS). The J-MEANS local search seems to
work well in some problem instances where the number of clusters is large, so
that data points could be the centroids of some clusters in the current solution.

Recently, different incremental algorithms have been developed to ad-
dress the choice of initial solutions in the K-means algorithm. Incremental
clustering algorithms start from an initial solution with k − 1 centers for the
(k − 1)-clustering problem and attempt to optimally add one new cluster by
placing the k−th center in an appropriate position. The global K-means (23)
is an incremental algorithm that solves the MSSC problem by considering each
data point as a candidate for the k−th cluster center.

A modified version of the global K-means (MGKM) proposed by (5)
tackles the MSSC by producing initial solutions through the resolution of an
auxiliary clustering problem, rather then testing all data points as candidate
centers. Experimental results demonstrate that MGKM is able to find better
solutions than the global K-means, although it requires more computational
effort.

The work of Ordin and Bagirov (26) considered the MSSC as a global
optimization problem and introduced a multi-start modified global K-means
(MS-MGKM) algorithm to improve the accuracy of MGKM. The MS-MGKM
is an adaptation of MGKM that produces a set of initial solutions that undergo
K-means, rather than considering only one initial solution at each K-means
stage. The proposed method was applied on 16 real-world data sets and
experiments show that it is more accurate than MGKM.

More recently, (6) presented an incremental algorithm based on the
difference of convex representations for solving the MSSC problem, where
a method is designed to solve non-smooth optimization problems at each
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iteration of the incremental algorithm. Large data sets ranging from tens
to hundreds of thousands data points are used, and results show that this
approach is efficient for solving large data sets when compared to previous
incremental algorithms like MGKM and global K-means.

Many authors proposed some hybrid methods, that combine both clas-
sical algorithms with meta-heuristics. (21) and (25) uses K-means as a search
operator inside a genetic algorithm (GA) on the MSSC problem, in such a
way that each GA candidate solution is used as a starting point for K-means.
Thus, K-means assumes the role of a local search inside a broader optimization
process guided by the GA.

The work of Festa (10) has also treated the MSSC problem with emphasis
on combinatorial optimization perspective. The proposed approach considers
a biased random-key genetic algorithm (BRKGA), which was applied to bio-
logical data clustering. In random-key genetic algorithms (RKGA), candidate
solutions are represented as vectors of randomly generated real numbers in the
interval (0, 1]. Each vector can thus be associated to a solution in the com-
binatorial optimization problem, for which an objective value or fitness can
be computed. To evolve the population of solutions, additional individuals are
produced in order to complete the new population. This is done by crossing
parent solutions. The fundamental difference between BRKGA and RKGA
resides in the way parents are selected for crossing. RKGA uses any two solu-
tions to produce a child individual, once BRKGA crosses a elite solution (good
regarding fitness) with a non-elite to produce a child.
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3
Proposed Methodology

This chapter describes the proposed meta-heuristic to solve the MSSC
problem. The designed method is based on a genetic algorithm (GA) with local
improvements combined with mechanisms that allow the diversification of the
population (local minima escape) and the propagation of good solutions. In this
method, the local improvement procedure is performed via the running of the
K-means algorithm, which takes one candidate solution in the GA population
as a starting point. In other words, the method may be defined as a multi-
start K-means inside a GA framework, which in turn is guided by the MSSC
objective.

3.1
General structure

The GA here proposed works through the following simple cycle of stages:

1. Creation of an initial population of individuals (candidate solutions);

2. Selection of parents;

3. Genetic manipulation to create new individuals (crossover and muta-
tion);

4. Enhancement of the produced individual (local improvement);

5. Selection of survivors individuals for propagation.

This general scheme of the meta-heuristic is described in more details
by Algorithm 1. Initially, the method generates a random population of
individuals (see 3.3). A population is a set of solutions, where each individual
represents a point in a search space of the optimization problem. Then, it
applies successively a number of operators to evolve this population. Firstly, it
selects two parent individuals (see 3.4.1) from the population and combines
them by a crossover procedure (see 3.4.2), yielding to a new individual
(offspring) that is added to the population. Secondly, the offspring is mutated
(see 3.4.3) and enhanced by a local improvement (see 3.4.4), generating a new
individual solution that is also added to the population. These two steps –
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Chapter 3. Proposed Methodology 21

crossover and mutation with enhancement – are performed many times until
a termination criteria is reached.

In addition to the genetic operators mentioned above, a mechanism
to select the survivor individuals is applied when a pre-defined criteria is
reached (see 3.5). This mechanism allows the method to propagate the best
individuals and keep the diversity of the population. The following sub-sections
describe how these operators and mechanisms work to manage the population
of solutions.

Algorithm 1 Genetic algorithm framework
1: Initialize population
2: while number of iterations without improvement < IS and Imax not

reached do
3: Select parents p1 and p2
4: Generate an offspring θ from p1 and p2 (crossover)
5: Generate an individual θ′ by mutating θ (mutation)
6: Apply local improvement on θ′
7: Add θ and θ′ to the population
8: if population size is equal to the maximum size Π of population then
9: Select survivors

10: end if
11: end while
12: Return best solution

3.2
Solution representation

A solution (clustering partition) is represented by two direct encodings:
(i) the point-cluster assignment and (ii) the centroids description. The idea of
the point-cluster assignment is to use a genetic encoding that allocates directly
n data points to m clusters, such that each candidate solution consists of a
n-vector (n genes) with integer values in the interval [1, m]. Thus, for n =
4 and m = 3, the encoding (1,1,3,2) allocates the first and the second data
points to cluster 1; the third data point to cluster 3 and the fourth data point
to cluster 2, generating the partition ({1,2}, {4}, {3}).

Figure 1: Assignment encoding for n = 4 and m = 3

The encoding based on the centroids description defines a solution
through the feature vectors existing in each centroid. A solution is represented
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by a matrix C of size m× d, where m is the number of centroids (clusters), d
is the number of features and an entry cij of C is the value of the j-th feature
of the i-th centroid (i = 1 ... m; j = 1 ... d) (see Figure 2).

Figure 2: Encoding based on centroids features

3.3
Initial population

The first step in a GA is the generation of an initial population. It has
been recognized that if the initial population of the GA is good, then the
algorithm has a greater possibility of finding a good solution (7, 33). In this
work, the initial population is randomly generated, by assigning each data
point to a cluster according to a discrete uniform distribution, i.e., where each
outcome is equally likely to happen. To compose the initial population, 100
individuals are created. Then, each initial individual is submitted to the local
improvement. Some factors can influence the initial population or should be
taken into account when an initial population is generated randomly: the search
space, the fitness function, the diversity, and the number of individuals (9).

3.4
Individuals management

In order to increase the population and propagate good solutions, the
algorithm needs to keep introducing new individuals. The generation of a
new individual (offspring) begins with the random selection of two parents,
p1 and p2, which are submitted to a crossover procedure that generates a child
individual θ. Then, θ is added to the population. As highly fit solutions have
more chances to be selected for reproduction, the offspring – which combines
characteristics from each parent – is likely to have a good fitness. In addition
to the crossover, the method also considers the mutation operator, which
generates a new individual θ′ that is similar to θ and tends to be good regarding
the fitness.

DBD
PUC-Rio - Certificação Digital Nº 1512333/CA



Chapter 3. Proposed Methodology 23

3.4.1
Selection

The selection is the stage where individuals from the population are
chosen to mate and generate a new individual. Due to the evolutionary
behaviour of GA, the most likely individuals to be chosen for selection are
the ones with good fitness. That way, good fragments of solutions can be
propagated to generate good children solutions. In the proposed method, the
parent selection is done through a w-tournament, which randomly selects w
individuals (in a discrete uniform distribution) from the population and keeps
the one with the best fitness among the w individuals to set the first parent.
The fitness here considered is the value of the objective function (cost) of a
solution. Then, the same selection scheme is performed for the second parent.
The value of w was chosen according to a calibration process described in
Section 4.2.

3.4.2
Crossover

After selecting two parents p1 and p2, these solutions are submitted to
a crossover procedure in order to produce an offspring (child) solution. The
crossover operator works as follows:

1. Firstly, a solution for the minimum weighted bipartite matching between
centroids of p1 and p2 is found (Figure 3 (b)). Finding such a matching
is known as the assignment problem. Let G = (V,E) be a complete
bipartite graph whose node set can be partitioned as V = X ∪ Y , with
the property that every edge e ∈ E has one end in X and the other
in Y , and every node of X is connected to every node of Y . Consider
also that |X| = |Y | = m. An assignment M in G is the subset of edges
M ⊆ E of minimum cost, such that each node appears in exactly one
edge in M (20). In our case, the nodes in X and Y correspond to the
centroids of p1 and p2, respectively. The cost of an edge e ∈ E is the
Euclidean distance between two centroids c′ ∈ X and c′′ ∈ Y . Thus,
the objective is to produce the one-to-one assignment of centroids, in
such a way that the sum of all distances considered in the assignment
is minimized. In other words, the goal of this step is to join the similar
centroids of different individuals. We solve this matching problem with
the Hungarian algorithm (22), using the specific implementation of dlib
C++ library (King, 2011), which works with a complexity of O(m3)
and leads to m pairs of centroids, where m is the number of clusters
(centroids).
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2. For each pair of centroids resulted from the assignment solution, one of
them is randomly selected (Figure 3 (c)) and set as a centroid of the
offspring, resulting in a solution with m centroids, each coming from p1

or p2 (Figure 3 (d)).

3. Finally, data points are assigned to the closest offspring centroid.

3(a): Parents p1 and
p2

3(b): Assignment 3(c): Random selec-
tion

3(d): New solution

Figure 3: Crossover based on centroids matching: (a) two parent solutions; (b)
the assignment between centroids of p1 and p2; (c) random selection of matched
centroids and (d) the produced offspring

3.4.3
Mutation

The use of mutation is typically motivated by the possible permanent
loss of genetic material during the execution of a GA. It is possible that
after several generations performing the selection followed by crossover, the
same value is applied to a specific genetic material (fragment) in all solutions
of the population. If this happens, selection and crossover will not be able
to restore the lost genetic material, leading the algorithm to a premature
convergence (29). In this context, mutation plays the role of recovering the lost
genetic materials by modifying one or more portions of a solution. If crossover
is supposed to combine existing solutions to find better ones, mutation is
supposed to explore different regions of the search space (1), being useful on
maintaining the genetic diversity from one generation of a GA population to
the next.

In the proposed method, the mutation of a solution is performed by a
biased relocation of a centroid, which is done by randomly selecting a centroid
and relocating it to a position of a data point, where data points far from their
centroids are more likely to be chosen. Then the respective re-assignments are
performed. The proposed mutation can be described as follows:
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1. Randomly select a centroid c∗ and remove it from the solution (Figure 4
(a)).

2. Re-assign each data point to the closest centroid among the m − 1
remaining centroids (Figure 4 (b)). In this step, the centroids remain
in their current positions.

3. Randomly select a data point xu and re-insert c∗ in the position of xu

(Figure 4 (c)). This position is selected as in a roulette wheel, such that
data points far from their current centroids are more likely to be chosen.

Consider that C(xj) is the centroid of the cluster where a data point xj

is assigned to. Let P (xj) be the probability that xj is selected as the new
centroid.

P (xj) = d(xj, C(xj))∑n
i=1 d(xi, C(xi))

(3-1)

As we can easily observe, data points far from their centroids are more
likely to be chosen, as their probabilities are higher. Thus, we select
the data point xu to be the new centroid by randomly choosing a value
according to the probabilities distribution, coming back to a solution
with m centroids.

4. Among the m resulting centroids, re-assign each data point to the closest
centroid and update the position of centroids (Figure 4 (d)).

This relocation proved to be effective as it promotes the introduction of
a large move in the position of a centroid, allowing substantial changes in the
structure of the overall solution that are not achieved by the local improvement.
Thus, the mutation, in addition to generating a solution that is similar to the
offspring – which is typically a good solution due to elitism in parental selection
– also contributes significantly to the population diversity through the biased
relocation of a centroid.
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4(a): Selection of the centroid to be relocated 4(b): Re-assignments among the remaining
centroids

4(c): Selection of the data point where the
removed centroid will be placed

4(d): Final re-assignments and the new so-
lution

Figure 4: Mutation based on centroid relocation

3.4.4
Local improvement

After the generation process in crossover and mutation, θ′ is enhanced by
means of a local improvement procedure. The local improvement aims to find
a local optimum by applying local changes to the current solution. Here, the
adopted local improvement is one run of the K-means algorithm. The K-means
starts with the initial solution θ′ with m centroids c1, c2, ..., cm, and proceeds
by alternating between two steps:

1. Assignment step: Assign each data point xi to the closest cluster.

cluster(xi) = minj d(xi, cj), j = 1, ...,m (3-2)
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2. Update step: Calculate the new centroids cj to be the mean (average)
point of the data points in the new clusters.

cj =
∑

x∈Sj
x

|Sj|
, j = 1, ...,m (3-3)

Then the algorithm keeps repeating these two steps until the assignments
no longer change, converging to a local optimum.

In our experiments, we use the K-means implementation of Hamerly
(13), which gives the same answer of the standard Lloyd’s K-means (24) but
is much faster in practice. This implementation avoids distance computations
by using the triangle inequality and lower bounds on distances. The time per
K-means iteration of the algorithm is O(nmd+md2), where n is the number
of data points, m is the number of clusters and d is the number of data
dimensions (features). However, the calculated lower bounds allow to eliminate
the innermost K-means loop in around 80% of the time, which in practise is
much faster than the standard K-means.

3.4.5
Treatment of incomplete solutions

When generating new individuals, it is possible that a cluster is left
empty, i.e., no data point is allocated to it. This can happen in two situations:

– when generating a solution in crossover or mutation, one or more
centroids could not be the closest centroid to any data point;

– when generating a solution in the population initialization, it could
happen that some numbers in the interval [1, ..., m] are not chosen for
the assignment, as it is a random selection.

To work around this issue and deal only with solutions with exactly
m clusters, the following procedure is adopted just after the execution of
crossover, mutation and population initialization if a solution with less than
m clusters is generated: while there is an empty cluster, select the data point
farthest from its current centroid (that belongs to a cluster with more than
one element) and allocate it to an empty cluster.
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3.5
Population management

One of the main challenges in population-based algorithms is avoiding
premature convergence of the population. The selection of parents based on
elitism favors good individuals, reducing the diversity of the genetic material in
the coming generations of the population. To overcome this issue, we propose a
mechanism that propagates good solutions while ensuring diversity. Thus, the
search procedure can be led to unexplored regions of the search space without
losing promising individuals. We call Survivors selection as this mechanism to
complement the selection, crossover and local improvement operators.

3.5.1
Survivors selection

The Survivors selection aims to select the best individuals to propagate
when the maximum population size Π is reached. This procedure determines
the µ individuals that will go on to the next generation, by discarding λ

individuals (λ = Π − µ) that are either clones (identical to other solution)
or bad regarding the fitness, according to Algorithm 2.

The detection of clones is done by a hash table that uses the following
hash function:

H(s) =
m∑

i=1
i · g(i) (3-4)

where s is a solution for the MSSC, and g(i) denotes the cardinality of the i-th
least populated cluster of s. To detect if a solution s′ with a hash functionH(s′)
and ordered cardinalities g′(i) is a clone of a given solution s, the following
conditions must hold:

i) H(s) = H(s′)

ii) g(i) = g′(i), ∀i = 1...m

iii) f(s′)− ε < f(s) < f(s′) + ε

where f(s) is the objective function value (cost) of a solution s and ε is a
small error. Therefore, if the three conditions above are satisfied, then there is
a collision in the hash table and the clone is identified.

This characteristic of eliminating clones and poor solutions reveals two
aspects of the Survivors selection mechanism. The first one is that population
diversity is maintained, as we favor the removal of clones first. The second is
related to elitism, as the individuals with good fitness are preserved.
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Algorithm 2 Survivors selection
1: for i = 1...λ do
2: X ← all individuals having a clone
3: if X 6= ∅ then
4: Remove p ∈ X with minimum fitness
5: else
6: Remove p in the population with minimum fitness
7: end if
8: end for

3.6
Computational complexity

As stated in previous sections, after the initialization of the population,
the proposed meta-heuristic operates in an external loop that calls some
internal operators. Among these operators, the main bottleneck is the local
improvement phase, where the K-means is performed to improve the newly
mutated solution. As the computational complexity of K-means is O(nmd +
md2) (13), the overall complexity of the proposed algorithm is O(Imax(nmd+
md2)), as the local improvement is applied after the mutation in each iteration
(the maximum number of iterations in the external loop is Imax). Thus,
although the proposed meta-heuristic is of the same asymptotic complexity
of K-means, it is in practice slower than K-means due to the constant Imax set
in the external loop and to other internal operators, like crossover, mutation,
survivors selection and diversification. In the following, the computational
complexity of each internal operator:

– Selection: O(w) (w constant)

– Crossover: O(nmd+m3)

– Mutation: O(nmd)

– Local improvement (K-means): O(nmd+md2)

In addition to the above internal operators, a mechanism to select the
best individuals for propagation is also performed in the general loop. However,
unlike the other operators, the Survivors selection is not performed on each
iteration, but only when the population reaches Π individuals. Therefore, its
contribution to the computational time of the algorithm is small in practice,
being O(n Imax

Π ).
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4
Computational Experiments and Analysis

In this chapter, we discuss the computational experiments and the
analysis that emerge from them. From now on, all results regarding the
proposed algorithm will be identified as HG-means (for Hybrid Genetic K-
Means). The results are presented in terms of objective function value and time,
and are compared to current state-of-the-art results in the MSSC literature.

The experiments were conducted on an Intel Core i5 2.6 GHz processor
machine with 8 GB of RAM memory. The source codes were written in C++,
using the UNIX g++ compiler on a Linux Ubuntu 14.04 LTS 64-bit operating
system.

Three different analysis are presented in this chapter. The first one
analyses the general performance of the proposed algorithm in terms of
objective function value and computational time, where we compare our results
with the current literature. The second one analyses the impact of instances
characteristics, where the objective is to verify if the proposed algorithm is
affected by the number of clusters and the size of instances. Finally, we analyse
the contribution of crossover and mutation components in the performance of
the method.

In the coming result tables, the following notation is used:

– n is the size of the instance (number of data points);

– m is the number of clusters;

– d is the number of features;

– fbest is the best known value for the MSSC objective found so far;

– E is the error from the best known solution, calculated as:

E = f−fbest

fbest
× 100

where f is the value of the MSSC objective found by an algorithm. For
HG-means, Emed and Eavg report the error from the median and average
values, respectively;

– t is the CPU time in seconds;
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4.1
Instances

The selection of instances was done in order to cover different types of
real data, considering both the instance size and the number of features as
important indicators to describe the nature of data. Table 1 summarizes the
characteristics of the adopted instances, which correspond to 24 important
benchmarks in recent clustering literature, as reported in (26) and (6). For all
considered instances, every feature value is a real or integer number and there
is no missing values. The number of data points (instances size) ranges from
59 (smallest) to 434,874 (largest); and the number of features ranges from 2
(smallest) to 128 (largest).

In order to elucidate the coming analysis, we propose the discrimination
of these instances according to their sizes, that from now on will by identified
as Group A1, Group A2, Group B and Group C of instances.

Groups A1 and A2 correspond to small instances reported in the work
of (26). The difference between them is that A1 is composed by really small
instances with up to 150 data points, whereas instances in A2 have some
hundreds of data points. This distinction is useful to choose a reasonable
number of clusters to be tested in each group. For instances A1, tests are
performed considering up to 10 clusters, whereas in A2 the number of clusters is
extended. Group B of instances correspond to medium/large instances reported
also by (26), comprising data where the number of points ranges from 1,060
to 20,000. Group C of instances are the same reported in (6), where instance
sizes ranges from 13,910 to 434,874 data points. This last group is especially
relevant as it consider large real world instances, which allows a deeper analysis
in the scaling of algorithms.
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Instances n d

Group A1 German towns 59 2
Bavaria postal 1 89 3
Bavaria postal 2 89 4
Fisher’s Iris Plant 150 4

Group A2 Heart Disease 297 13
Liver Disorders 345 6
Ionosphere 351 34
Congressional Voting 435 16
Breast Cancer 683 9
Pima Indians Diabetes 768 8

Group B TSPLIB1060 1060 2
Image Segmentation 2310 19
TSPLIB3038 3038 2
Page Blocks 5473 10
Pendigit 10992 16
Letters 20000 16

Group C Gas sensor 13910 128
EEG eye state 14980 14
D15112 15112 2
KEGG metabolic relation 53413 20
Shuttle control 58000 9
Pla85900 85900 2
Skin Segmentation 245057 3
3D road network 434874 3

Table 1: Instances description

4.2
Parameters calibration

As in most meta-heuristics, the values chosen for parameters directly
affect the results. In this work, we consider five main parameters: w (the
tournament size for selection), µ (the population size), Π (the maximum
size of population), Imax (the maximum number of iterations) and IS (the
number of iterations without improvement that causes the algorithm stop).
For the parameters related to the management of individuals in the population
(w, µ and Π) we performed a calibration to choose the best configuration
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for the experiments. For the parameters related to the number of iterations
the algorithm takes (Imax and IS), we directly set their values to 4000 and
2500, respectively. These values were set in order to obtain results in a time
comparable to previous authors.

In preliminary experiments, we started with the following configuration
for the free variables, as they produced good and stable results after an initial
and manually exploration: w = 3, µ = 80 and Π = 300. From this baseline,
we expanded the range of these values by an one-factor-at-a-time (OFAT)
approach. Table 2 presents the ranges of tested values for each parameter and
the final values achieved after increasing/decreasing each parameter value at
a time.

Parameter Range of values Final value

w Tournament size for selection {2, 3, 4} 3
µ Population size {60, 70, 80, 90, 100} 80
Π Maximum size of population {200, 250, 300, 350, 400} 200

Table 2: Parameters calibration

We considered a subset of five instances for calibration, that were chosen
based on their sizes and number of features (Liver disorders, Ionosphere,
Breast cancer, Pima Indians diabetes and TSPLIB1060). Small instances were
not considered because in almost all of them the different configurations for
calibration achieved the best known result (possibly the global optimal), so
they are not so informative. As we consider 3 parameters independently, the
combination of parameters resulted in 11 possible configurations, as shown in
Table 3. For this reason, large instances were also not considered. We chose
medium-sized instances and tested 4 different number of clusters (20, 30, 40,
50) for each instance. After measuring the offset between the average error and
the execution time for each configuration, we took the best one among the 11
options.

In Table 3, the first three columns report the values of parameters w,
µ and Π, whereas the remaining columns report, in turn, the errors from the
best, worst, median and average solution, and finally the average time taken
to run the considered instances for calibration.
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w µ Π Ebst Ewst Emed Eavg tavg (s)

3 80 300 -4.70 0.28 -0.88 -1.24 188.13
2 80 300 -4.83 0.27 -0.81 -1.25 200.58
4 80 300 -4.53 0.19 -0.90 -1.22 170.92
3 60 300 -4.86 0.34 -0.93 -1.21 177.14
3 70 300 -4.85 0.25 -0.95 -1.23 183.56
3 90 300 -4.77 0.61 -0.81 -1.23 191.54
3 100 300 -4.80 0.34 -0.73 -1.23 195.69
3 80 200 -4.80 0.19 -0.88 -1.23 175.04
3 80 250 -4.87 0.40 -0.78 -1.24 200.25
3 80 350 -4.85 0.41 -0.79 -1.25 203.47
3 80 400 -4.91 0.32 -0.76 -1.26 199.84

Table 3: Results of calibration

4.3
Experimental results

4.3.1
General performance and computational time

The results of numerical experiments regarding solution performance and
computational time for groups A1, A2, B and C of instances are presented in
Tables 4, 5, 6 and 7, respectively. Due to the stochastic nature of the proposed
meta-heuristic, the results of HG-means correspond to the average of 10 runs,
where a run is the execution of an instance with a specific m.

For comparison purposes, we analyse the results considering the best
known solutions found so far and the results of global K-means (GKM) (23),
the modified global K-means (MGKM) (5), the multi-start modified global
K-means (MS-MGKM) (26) and the difference of convex clustering (DCClust
and MS-DCA) (6) algorithms, which are recent works in MSSC literature,
corresponding to the state-of-the-art for this problem. For Tables 4, 5, 6, the
computational time of MS-MGKM, MGKM and GKM algorithms correspond
to the measurements performed by an Intel Core 2 Dual 2.50 GHz processor
machine with 3 GB of RAM memory, as reported in (26). For Table 7, an Intel
Core i5 2.90 GHz processor machine with 8 GB of RAM was used to measure
DCClust and MS-DCA algorithms, according to (6).

Tables 4 and 5 presents the results for instances of group A1 and A2.
As we can observe, HG-means finds the new best solution or achieves the
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current best one in all instances for most of m values. In some cases, as in
Ionosphere instance, HG-means results reach more than 4% of the error, a
significant improvement. On the other hand, the proposed algorithm requires
more computational effort than MS-MGKM, MGKM and GKM algorithms
for most of these small instances – in many cases the computational time of
HG-means is similar to MS-MGKM. It is also important to note that in some
instances like Bavaria postal 2, Liver disorders, Ionosphere and Pima Indians
diabetes, the gap of HG-means results to the best known solutions increases
for large m.

Table 6 presents the results for instances of group B. As in results for
small instances, HG-means finds the new best solution or achieves the current
best one in all instances for most of m values, outperforming MS-MGKM,
MGKM and GKM algorithms in terms of solution quality. Regarding compu-
tational time, HG-means is faster than MS-MGKM and GKM in TSPLIB3038,
faster than MS-MGKM in TSPLIB1060 and has nearly the same time of MS-
MGKM and MGKM in Pendigit. For Image segmentation and Page Block –
the latter, only for large m – HG-means requires more computational effort.

Table 7 presents the results for instances of group C – the group with
the largest instances. As in the previous results, HG-means finds the new best
solution or achieves the current best one in all instances for most of m values.
Regarding computational time, HG-means is faster than DCClust for almost
all instances, except for EEG eye state and D15112.

DBD
PUC-Rio - Certificação Digital Nº 1512333/CA



Chapter 4. Computational Experiments and Analysis 36

m fbest MS-MGKM MGKM GKM HG-means
E t E t E t Emed Eavg t

German towns
2 121430 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
3 77009 0.00 0.02 1.45 0.00 1.45 0.00 0.00 0.00 0.07
4 49601 0.24 0.02 0.72 0.00 0.72 0.00 0.00 0.00 0.08
5 38716 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08
6 30536 0.00 0.02 0.27 0.00 0.00 0.00 0.00 0.00 0.08
7 24433 0.08 0.02 0.00 0.00 0.09 0.00 0.00 0.00 0.09
8 21631 0.00 0.02 0.54 0.00 0.64 0.00 -0.68 -0.68 0.10
9 18550 2.13 0.02 4.46 0.00 2.13 0.00 0.00 0.00 0.10
10 16307 1.81 0.02 1.52 0.00 1.81 0.00 0.01 0.01 0.11
Bavaria postals 1
2 6.0255E+11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07
3 2.9451E+11 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.08
4 1.0447E+11 0.05 0.00 0.05 0.00 0.05 0.00 0.00 0.00 0.09
5 5.9762E+10 0.06 0.00 0.54 0.00 0.54 0.00 0.00 0.00 0.10
6 3.5909E+10 0.07 0.00 1.44 0.00 1.44 0.00 0.00 0.00 0.11
7 2.1983E+10 0.01 0.00 3.17 0.02 3.17 0.00 0.00 0.00 0.13
8 1.3385E+10 0.25 0.02 1.71 0.02 1.71 0.00 0.00 0.00 0.13
9 8.4237E+9 0.28 0.02 2.85 0.02 2.85 0.00 0.00 0.00 0.14
10 6.4465E+9 0.07 0.02 3.55 0.02 3.55 0.00 0.00 0.00 0.15
Bavaria postals 2
2 4.8631E+10 0.00 0.00 0.00 0.00 7.75 0.00 0.00 0.00 0.08
3 1.7399E+10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
4 7.5591E+9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
5 5.3429E+9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12
6 3.1876E+9 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.12
7 2.2159E+9 0.61 0.00 1.50 0.02 1.50 0.00 -0.04 -0.04 0.14
8 1.7045E+9 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.16
9 1.4030E+9 0.00 0.02 0.00 0.02 0.00 0.00 -0.14 -0.14 0.18
10 1.1841E+9 0.00 0.02 0.00 0.02 0.00 0.00 -0.26 -0.26 0.20
Fisher Iris
2 152.348 0.00 0.02 7.32 0.00 7.32 0.00 0.00 0.00 0.11
3 78.851 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.18
4 57.228 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.20
5 46.446 0.00 0.03 1.86 0.02 1.86 0.02 0.00 0.00 0.21
6 39.040 0.00 0.03 1.21 0.02 1.21 0.02 0.00 0.00 0.28
7 34.298 0.00 0.05 0.51 0.02 0.51 0.02 0.00 0.00 0.28
8 29.989 0.18 0.06 0.73 0.02 0.73 0.02 0.00 0.00 0.31
9 27.786 1.07 0.08 0.00 0.02 0.00 0.02 0.00 0.00 0.38
10 25.834 0.00 0.09 0.73 0.02 0.73 0.02 0.00 0.00 0.44

Table 4: Objective value and computational time of algorithms (Instances A1)
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m fbest MS-MGKM MGKM GKM HG-means
E t E t E t Emed Eavg t

Heart disease
2 598900 0.00 0.05 93.96 0.02 93.96 0.02 0.00 0.00 0.48
5 327970 0.01 0.27 0.08 0.05 0.08 0.02 0.00 0.00 1.01
10 200650 0.00 0.94 6.96 0.09 6.93 0.03 -0.06 -0.06 1.91
15 147650 0.00 1.47 0.06 0.17 1.69 0.06 -0.55 -0.55 2.45
20 117780 0.00 1.94 0.77 0.23 1.07 0.09 -0.86 -0.86 3.15
25 99292 0.00 2.47 1.74 0.33 1.98 0.11 -0.82 -0.78 3.66
30 86216 0.00 3.08 1.36 0.44 1.57 0.14 -0.54 -0.48 4.38
40 67701 0.00 4.05 1.05 0.69 4.68 0.20 -1.69 -1.44 5.15
50 54878 0.00 5.20 3.33 1.03 9.01 0.27 -1.06 -1.01 6.18
Liver disorders
2 423980 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.27
5 218260 0.06 0.13 0.18 0.03 0.07 0.03 0.00 0.00 0.65
10 119400 0.00 0.63 0.64 0.08 2.38 0.05 6.71 6.71 1.46
15 97405 0.00 1.20 0.81 0.13 5.16 0.08 -0.67 -0.67 1.84
20 81192 0.00 1.77 1.52 0.19 7.33 0.11 -1.41 -1.40 2.72
25 69212 0.00 2.61 0.68 0.28 7.49 0.13 -1.90 -1.74 3.30
30 60325 0.00 3.28 0.37 0.39 7.77 0.16 -2.25 -2.11 3.66
40 47336 0.87 4.67 0.00 0.66 7.82 0.23 -1.13 -1.04 4.55
50 38305 0.28 6.06 0.00 0.97 6.63 0.28 -1.55 -1.50 5.20
Ionosphere
2 2419.4 0.00 0.08 0.00 0.05 0.00 0.03 0.00 0.00 1.12
5 1891.5 0.00 0.39 1.86 0.13 2.28 0.05 -0.09 -0.09 2.76
10 1559.4 0.00 0.81 0.13 0.27 0.11 0.08 -0.60 -0.58 3.97
15 1390.1 0.00 1.39 0.92 0.42 0.88 0.11 -2.18 -2.16 5.54
20 1252.4 0.00 1.86 1.17 0.77 2.99 0.13 -2.75 -2.69 7.04
25 1140.8 0.00 2.42 0.31 1.39 4.45 0.16 -3.34 -3.28 8.38
30 1043.0 0.00 3.09 1.28 2.20 4.75 0.20 -4.44 -4.39 9.88
40 856.6 0.00 4.98 2.36 4.77 6.14 0.30 -3.58 -3.46 13.11
50 702.6 0.00 6.89 3.68 8.39 8.05 0.38 -3.72 -3.51 16.79
Congressional vote
2 1640.9 0.00 0.11 0.00 0.03 0.00 0.02 0.00 0.00 0.72
5 1335.8 0.03 0.56 0.14 0.11 0.14 0.05 0.00 0.00 2.28
10 1123.3 0.00 1.50 1.86 0.20 1.86 0.08 -0.32 -0.31 4.28
15 992.07 0.00 2.25 0.36 0.31 0.33 0.13 -0.84 -0.75 5.31
20 906.47 0.00 3.28 0.71 0.44 0.34 0.17 -1.51 -1.47 5.62
25 839.75 0.00 4.36 0.92 0.58 0.37 0.22 -2.28 -2.22 6.57
30 776.77 0.00 5.61 0.98 0.73 2.83 0.27 -1.45 -1.48 6.93
40 689.35 0.00 7.75 1.81 1.16 1.28 0.38 -2.88 -2.84 8.48
50 617.5 0.00 10.19 1.73 1.84 1.98 0.48 -3.39 -3.32 10.18
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Breast cancer
2 19323 0.00 0.09 0.00 0.06 0.00 0.05 0.00 0.00 0.58
5 13705 0.00 0.58 0.52 0.17 0.52 0.09 0.00 0.00 1.64
10 10205 0.00 1.06 2.70 0.33 0.75 0.17 -0.14 -0.14 3.02
15 8704.7 0.00 1.72 0.72 0.48 0.04 0.23 -0.80 -0.74 4.74
20 7695.2 0.39 2.48 1.34 0.66 0.00 0.31 -1.19 -1.13 6.79
25 6946.4 0.00 3.38 2.86 0.83 3.35 0.38 -0.88 -0.81 7.55
30 6360.3 0.00 4.27 3.31 0.98 2.99 0.45 -0.40 -0.32 8.79
40 5487.8 0.00 5.59 1.39 1.39 3.13 0.61 -0.62 -0.64 9.87
50 4812.3 0.00 6.75 1.85 1.83 3.95 0.77 -1.21 -1.21 11.60
Pima Indians diabetes
2 5.1424E+6 0.00 0.13 0.12 0.09 0.12 0.06 0.00 0.00 0.73
5 1.7369E+6 0.00 0.38 1.02 0.22 1.02 0.13 0.00 0.00 1.45
10 9.3046E+5 0.00 0.91 0.70 0.41 2.04 0.20 -0.01 -0.01 3.47
15 6.9499E+5 0.00 1.73 1.87 0.59 1.69 0.30 -0.04 -0.04 6.43
20 5.7241E+5 0.00 2.98 0.88 0.80 2.29 0.39 -0.01 -0.01 8.53
25 4.8869E+5 0.00 4.97 1.26 0.98 3.31 0.52 -0.08 -0.08 10.16
30 4.3219E+5 0.00 8.75 0.69 1.22 3.44 0.59 -0.29 -0.28 11.92
40 3.5656E+5 0.00 12.61 0.69 1.70 4.03 0.83 -0.39 -0.40 13.38
50 3.0903E+5 0.00 15.17 1.14 2.28 5.53 1.06 -0.14 -0.12 17.91

Table 5: Objective value and computational time of algorithms (Instances A2)

m fbest MS-MGKM MGKM GKM HG-means
E t E t E t Emed Eavg t

TSPLIB1060
2 9.8319E+9 0.00 0.06 0.00 0.08 0.00 0.08 0.00 0.00 0.54
10 1.7548E+9 0.22 1.14 0.05 0.34 0.23 0.36 0.00 0.00 2.96
20 7.9179E+8 0.14 3.19 1.88 0.66 1.88 0.69 0.00 0.00 4.52
30 4.8125E+8 0.24 5.39 3.37 0.97 3.34 1.03 0.00 0.00 5.11
40 3.4342E+8 0.00 8.28 2.82 1.30 4.00 1.38 -0.60 -0.58 6.84
50 2.5551E+8 1.16 10.20 2.53 1.69 3.10 1.73 0.11 0.11 7.03
60 1.9960E+8 0.00 13.95 2.42 2.06 3.16 2.08 -1.06 -0.98 9.12
80 1.2967E+8 0.00 18.17 4.44 2.89 4.38 2.80 -0.57 -0.44 11.82
100 9.7019E+7 0.00 23.61 3.50 3.75 3.60 3.53 -0.16 -0.13 15.08
Image segmentation
2 3.5606E+7 0.00 0.52 0.00 1.39 0.00 1.06 0.00 0.00 5.27
10 9.7952E+6 0.64 6.00 1.76 6.75 1.76 3.97 0.00 0.00 20.41
20 5.1283E+6 0.77 14.41 1.49 13.11 0.09 7.58 0.00 0.00 37.22
30 3.5074E+6 0.00 27.98 0.07 20.89 0.07 11.36 -0.01 -0.01 45.18
40 2.7398E+6 0.18 46.63 1.24 28.92 1.25 16.67 0.10 0.07 62.52
50 2.2249E+6 0.55 61.17 2.41 37.72 2.41 18.73 -0.02 -0.01 76.21
60 1.8818E+6 0.00 77.19 2.34 46.91 1.47 22.50 -0.39 -0.42 92.88
80 1.4207E+6 0.00 97.61 1.64 68.81 2.59 30.19 -0.35 -0.32 120.04
100 1.1419E+6 0.00 122.92 0.81 93.69 1.74 38.00 -0.66 -0.63 154.15
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TSPLIB3038
2 3.1688E+9 0.00 0.56 0.00 0.86 0.00 1.38 0.00 0.00 1.72
10 5.6025E+8 0.57 4.92 0.58 3.30 2.78 8.41 0.00 0.00 5.75
20 2.6681E+8 0.20 11.89 0.48 5.77 2.00 16.63 0.00 0.00 12.31
30 1.7557E+8 0.39 29.17 0.67 8.25 1.45 25.00 -0.02 -0.02 16.02
40 1.2548E+8 0.33 43.59 1.35 10.70 1.35 33.23 -0.41 -0.41 19.49
50 9.8400E+7 0.57 61.75 1.41 13.23 1.19 41.52 -0.08 -0.09 25.92
60 8.1180E+7 0.00 85.42 2.01 15.75 1.02 49.75 -0.78 -0.77 30.85
80 6.0642E+7 0.00 147.11 1.58 20.94 0.95 66.42 -0.25 -0.22 45.54
100 4.8182E+7 0.00 211.00 1.52 26.11 2.11 83.16 -0.86 -0.82 56.92
Page blocks
2 5.7937E+10 0.00 1.88 0.00 6.92 0.24 8.19 0.00 0.00 3.84
10 4.5662E+9 0.00 12.08 0.00 34.09 0.80 49.62 -0.73 -0.73 10.46
20 1.6742E+9 0.00 20.75 2.57 62.09 2.37 92.30 -0.26 -0.25 30.50
30 9.3523E+8 0.00 29.83 0.62 89.42 1.38 132.41 -1.55 -1.55 71.93
40 6.2570E+8 0.67 37.14 0.00 118.55 0.17 172.13 -2.49 -2.41 117.52
50 4.2024E+8 0.00 43.42 2.17 149.77 2.21 212.27 -0.93 -0.92 168.89
60 3.0850E+8 0.00 57.25 1.42 184.06 1.09 254.88 0.00 0.00 233.99
80 2.0436E+8 0.00 90.89 0.69 258.69 2.16 334.36 -1.33 -1.30 427.42
100 1.4428E+8 0.00 114.59 0.91 346.94 0.81 415.19 -0.58 -0.56 589.40
Pendigit
2 1.2812E+8 0.00 6.94 0.00 16.73 0.39 9.42 0.00 0.00 25.58
10 4.9302E+7 0.00 58.58 0.00 137.17 0.00 81.94 0.00 0.00 71.49
20 3.4123E+7 0.22 144.13 0.39 281.33 0.22 168.36 -0.30 -0.30 182.63
30 2.7157E+7 0.13 254.30 0.00 425.77 0.00 255.52 -0.25 -0.25 305.88
40 2.3446E+7 0.00 387.47 0.00 570.50 0.11 343.11 -0.03 -0.03 490.22
50 2.1090E+7 0.00 523.19 0.20 713.95 0.56 430.71 -0.18 -0.18 671.02
60 1.9357E+7 0.00 678.02 0.36 858.09 0.22 518.97 -0.21 -0.20 823.97
80 1.6961E+7 0.00 1021.52 0.11 1148.34 0.25 696.94 -0.48 -0.48 1163.43
100 1.5258E+7 0.00 1456.25 0.35 1438.78 0.45 876.94 -0.18 -0.18 1591.32
Letter
2 1.3819E+6 0.00 14.48 0.00 72.89 0.00 40.17 0.00 0.00 67.89
10 8.5752E+5 0.00 180.42 0.00 583.36 0.00 363.78 0.00 0.00 423.15
20 6.7263E+5 0.00 463.38 0.53 1202.36 0.72 732.23 -0.01 -0.01 819.44
30 5.7977E+5 0.08 741.50 0.00 1811.45 0.08 1094.59 -0.19 -0.19 1145.33
40 5.1925E+5 0.00 1057.08 0.00 2457.58 0.78 1453.70 -0.15 -0.15 1582.46
50 4.7727E+5 0.00 1384.72 0.23 3065.69 0.29 1812.06 -0.42 -0.43 1880.03
60 4.4166E+5 0.00 1781.64 0.12 3678.17 0.37 2173.91 -0.24 -0.24 2124.35
80 3.9129E+5 0.00 2594.13 0.25 4907.64 0.64 2892.00 -0.25 -0.25 2626.61
100 3.5644E+5 0.00 3465.92 0.04 6130.53 0.29 3611.05 -0.47 -0.46 3230.49

Table 6: Objective value and computational time of algorithms (Instances B)
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m fbest MS-MGKM GKM MS-DCA DCClust HG-means
E E E E t Emed Eavg t

Gas sensor
2 7.9119E+14 0.00 0.00 0.00 0.00 42.73 -90.00 -90.00 121.37
3 5.0241E+13 0.00 0.00 0.00 0.00 111.29 0.00 0.00 151.02
5 3.2273E+13 0.00 0.00 0.00 0.00 286.45 -0.10 -0.10 275.17
10 1.6552E+13 0.00 0.00 0.00 0.00 951.37 -0.18 -0.18 641.13
12 1.4066E+13 0.01 0.00 0.01 0.00 1279.65 -0.20 -0.20 784.63
15 1.1380E+13 0.00 0.36 0.00 0.35 1847.30 -0.94 -0.94 790.37
20 8.7916E+12 0.00 0.62 0.16 0.62 2810.51 -0.21 -0.21 1396.77
25 7.2348E+12 0.00 0.16 0.00 0.47 3783.46 -0.28 -0.28 1588.62
EEG eye state
2 8.1781E+11 0.00 0.00 0.00 0.00 0.62 -4.07 -4.07 13.32
3 1.8339E+11 0.00 0.00 0.00 0.00 1.23 0.00 0.00 13.92
5 1.3386E+8 0.00 0.00 0.00 0.00 4.34 0.00 0.00 20.89
10 4.5669E+7 0.00 0.00 0.00 0.00 40.39 -0.80 -0.80 171.96
12 4.0251E+7 0.00 0.00 0.00 0.01 60.65 -1.43 -1.43 269.36
15 3.4653E+7 0.05 0.00 0.05 0.26 105.16 0.00 0.00 360.76
20 2.8987E+7 0.00 0.00 0.03 0.96 187.72 -0.01 -0.01 647.22
25 2.5995E+7 0.12 0.63 0.12 0.00 285.23 -0.18 -0.18 891.46
D15112
2 3.6840E+11 0.00 0.00 0.00 0.00 2.53 0.00 0.00 10.52
3 2.5324E+11 0.00 0.00 0.00 0.00 5.02 0.00 0.00 18.82
5 1.3271E+11 0.00 0.00 0.00 0.00 8.53 0.00 0.00 15.95
10 6.4892E+10 0.00 0.78 0.00 0.00 19.56 -0.62 -0.62 45.31
12 5.4500E+10 0.01 0.02 0.92 0.00 27.47 0.00 0.00 45.13
15 4.3138E+10 0.00 0.02 0.00 0.24 39.47 0.00 0.00 70.13
20 3.2177E+10 0.25 0.01 0.25 0.00 65.38 0.00 0.00 74.85
25 2.5309E+10 0.00 0.49 0.00 0.00 98.69 -0.04 -0.04 123.21
KEGG metabolic
2 1.1385E+9 0.00 0.00 0.00 0.00 21.40 0.00 0.00 76.26
3 4.9006E+8 0.00 0.00 0.00 0.00 56.68 0.00 0.00 73.83
5 1.8837E+8 0.00 0.00 0.00 0.00 216.12 0.00 0.00 111.56
10 6.3515E+7 0.00 0.00 0.00 0.09 1049.09 -4.73 -4.73 244.11
12 4.7825E+7 0.00 0.00 0.41 0.49 1432.95 -0.95 -0.95 356.62
15 3.5484E+7 3.28 3.28 0.00 0.01 2148.77 -1.54 -1.54 487.20
20 2.5430E+7 0.00 1.26 0.29 0.47 3254.46 -2.83 -2.83 976.88
25 1.9289E+7 0.51 0.67 0.00 0.37 4544.48 -1.03 -1.02 1389.41
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Shuttle control
2 2.1343E+9 0.00 0.00 0.00 0.00 2.85 0.00 0.00 42.26
3 1.0854E+9 0.00 0.00 0.00 0.00 9.14 0.00 0.00 46.07
5 7.2448E+8 0.00 0.00 0.01 0.28 58.19 0.00 0.00 59.82
10 2.8322E+8 0.32 0.00 0.32 0.20 224.92 -0.02 -0.02 126.55
12 2.1414E+8 0.44 0.00 0.45 4.04 442.96 0.00 0.00 161.36
15 1.5315E+8 0.00 0.00 0.01 0.72 760.13 0.00 0.00 238.19
20 1.0601E+8 0.00 0.00 0.02 0.58 1405.66 -3.67 -3.67 529.78
25 7.8727E+7 1.50 1.50 1.54 0.00 2164.50 -3.60 -3.60 880.90
Pla85900
2 3.7491E+15 0.00 0.00 0.00 0.00 83.51 0.00 0.00 72.39
3 2.2806E+15 0.00 0.00 0.00 0.00 159.76 0.00 0.00 101.53
5 1.3397E+15 0.00 0.00 0.00 0.00 318.26 0.00 0.00 119.61
10 6.8294E+14 0.00 0.00 0.00 0.00 731.32 0.00 0.00 290.93
12 5.7504E+14 0.19 0.00 0.19 0.00 911.50 0.00 0.00 311.70
15 4.6249E+14 0.00 0.03 0.00 0.00 1211.55 -0.47 -0.47 457.37
20 3.4988E+14 0.00 0.29 0.00 0.52 1715.45 -0.02 -0.02 614.96
25 2.8265E+14 0.11 0.94 0.11 0.00 2293.84 -0.15 -0.15 819.37
Skin segmentation
2 1.3224E+9 0.00 0.00 0.00 0.00 705.36 0.00 0.00 143.78
3 8.9362E+8 0.00 0.00 0.00 0.00 1320.25 0.00 0.00 211.71
5 5.0203E+8 0.00 0.00 0.00 0.00 2401.20 0.00 0.00 218.41
10 2.5122E+8 0.00 0.00 0.00 0.00 5109.63 0.00 0.00 321.14
12 2.1416E+8 0.55 0.00 0.55 0.00 6090.59 -0.41 -0.41 447.09
15 1.6964E+8 0.18 0.00 0.19 0.18 7733.34 -1.63 -1.63 481.07
20 1.2770E+8 0.17 0.00 0.17 0.14 10309.53 -2.09 -2.09 677.60
25 1.0299E+8 0.00 0.00 0.00 0.00 12959.91 -1.07 -1.07 935.14
3D road network
2 4.9133E+7 0.00 0.00 0.00 0.00 1672.56 0.00 0.00 383.45
3 2.2778E+7 0.00 0.00 0.00 0.00 3811.46 0.00 0.00 544.78
5 8.8257E+6 0.00 0.00 0.01 0.00 7701.69 0.00 0.00 708.47
10 2.5671E+6 - - 0.21 0.00 17506.87 -0.02 -0.02 3658.75
12 1.8498E+6 - - 0.05 0.00 21534.91 -0.07 -0.07 4196.57
15 1.2707E+6 - - 0.26 0.00 27696.03 0.00 0.00 5122.38
20 8.0872E+5 - - 0.73 0.00 38245.56 -0.01 -0.01 6878.53
25 6.0334E+5 - - 0.00 1.93 49311.45 -1.78 -1.78 10768.587

Table 7: Objective value and computational time of algorithms (Instances C)
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4.3.2
Impact of the number of clusters

From the performance observed in the results of HG-means algorithm
in both solution quality and computational time, we sought to verify if the
algorithm works well by increasing the number of clusters. This analysis is
very important to confirm the robustness of the method, since we are dealing
with a larger combinatorial problem when m is large.

Table 8 presents how HG-means performs for different numbers of
clusters. For each group of instances, it reports the average error (Eavg) to the
best known solution when varying the number of clusters (m). For instances
A1, A2 and B, HG-means has the most significant improvements – compared
to the best known solution – in cases where m is large. For instances of group
C, HG-means increased the gap to the best known solution when m = (2, 20,
25), confirming the robustness of the method.

Instances A1
m 2 3 4 5 6 7 8 9 10
Eavg 0.00 0.00 0.00 0.00 0.00 -0.01 -0.17 -0.03 -0.06
Instances A2
m 2 5 10 15 20 25 30 40 50
Eavg 0.00 -0.02 0.94 -0.82 -1.26 -1.48 -1.51 -1.64 -1.78
Instances B
m 2 10 20 30 40 50 60 80 100
Eavg 0.00 -0.12 -0.09 -0.33 -0.59 -0.25 -0.43 -0.50 -0.46
Instances C
m 2 3 5 10 12 15 20 25
Eavg -11.76 0.00 -0.01 -0.79 -0.38 -0.57 -1.11 -1.02

Table 8: HG-means average performance for different numbers of clusters

Figures 5 to 8 display the percentage gap of the methods when consid-
ering different number of clusters. In these figures, results are shown for each
instance, rather than the aggregated values of Table 8.
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Figure 5: Algorithms performance for different number of clusters (Instances
A1)
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Figure 6: Algorithms performance for different number of clusters (Instances
A2)
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Figure 7: Algorithms performance for different number of clusters (Instances
B)
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Figure 8: Algorithms performance for different number of clusters (Instances
C)
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4.3.3
Impact of instances size

Section 4.3.1 shows that the objective value of solutions produced by
HG-means outperformed the compared algorithms in most experiments. This
section presents some analysis regarding the HG-means scaling, i.e., how much
computational time does the algorithm require in large data. Figures 9 and 10
compare HG-means with MS-MGKM, MGKM, GKM and DCClust in terms
of CPU time as a function of the number of clusters m. The elapsed time
was measured in seconds and the results are presented for groups B and
C of instances. For small instances, there is a very small difference in the
computational time of the considered algorithms. Therefore, the results for
groups A1 and A2 are not presented in this analysis.

For group B of instances, HG-means takes a similar amount of time when
compared to other algorithms, and has its most competitive performance when
m is increased. For instances of group C, HG-means is faster than the other
algorithms exactly in the largest instances (Pla85900, Skin segmentation and
3D road), having a similar computational time for the remaining instances in
this group.

Therefore, HG-means is very promising regarding scalability, as it pro-
duces better solutions and requires less computational time than the compared
algorithms on large instances. In addition, there is room to adjust the number
of iterations the algorithm takes and to use more efficient data structures that
can improve runtime.
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Figure 9: The CPU time of algorithms (Instances B)
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10(b): EEG eye state (n = 14980)
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10(f): Pla85900 (n = 85900)
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10(g): Skin segmentation (n = 245057)
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Figure 10: The CPU time of algorithms (Instances C)
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4.3.4
Contribution of components

In order to understand the contribution of components in the perfor-
mance of HG-means, we performed some experiments by removing two impor-
tant operators at a time: crossover and mutation. For comparison purposes,
Table 9 reports the average error with respect to the best known solution in
three scenarios: (i) complete HG-means with all components (Eavg), (ii) HG-
means without mutation (Eavg -M) and (iii) HG-means without crossover (Eavg

-C).

Instances A1
m 2 3 4 5 6 7 8 9 10
Eavg 0.00 0.00 0.00 0.00 0.00 -0.01 -0.17 -0.03 -0.06
Eavg -M 1.94 32.57 117.64 118.07 158.28 34.66 54.85 80.79 95.18
Eavg -C 0.00 0.00 0.00 0.00 0.00 -0.01 -0.17 -0.03 -0.06
Instances A2
m 2 5 10 15 20 25 30 40 50
Eavg 0.00 -0.02 0.94 -0.82 -1.26 -1.48 -1.51 -1.64 -1.78
Eavg -M 0.00 0.45 3.67 3.75 5.20 6.21 6.03 4.80 3.93
Eavg -C 0.00 -0.02 0.95 -0.61 -0.85 -0.82 -0.59 -0.26 0.26
Instances B
m 2 10 20 30 40 50 60 80 100
Eavg 0.00 -0.18 -0.06 -0.39 -0.83 -0.23 -0.54 -0.57 -0.54
Eavg -M 0.06 53.51 125.25 47.97 115.16 39.70 36.84 44.20 51.91
Eavg -C 0.00 -0.18 -0.06 -0.39 -0.78 -0.08 -0.24 0.13 0.59

Table 9: HG-means performance in different scenarios: with all components,
without mutation and without crossover

Mutation and crossover are both essential to find high-quality solutions.
For the case where we have HG-means without mutation, it does not find
(in average) a solution better than the best known so far, while in the two
other scenarios (complete HG-means and HG-means without crossover), it
has a significantly better performance. Additionally, the complete HG-means
algorithm performs better than the HG-means without crossover, especially
when m increases, indicating that the crossover is an essential operator when
dealing with more complex clustering tasks.
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5
Conclusions and Future work

In this work, we have addressed the clustering task as an optimization
problem, where the Minimum sum-of-squares (MSSC) formulation is inves-
tigated. Among the many existing formulations of clustering problems, the
MSSC in the Euclidean space is the most treated one.

In order to solve the Euclidean MSSC problem, we proposed a hybrid
genetic algorithm (HG-means) that combines the K-means local improvement
with diversification strategies. The proposed method allows to efficiently escape
from local minima and reach high quality solutions, outperforming the best
current literature results for all considered sets of benchmark instances in
terms of solution quality. In terms of computational time, the proposed method
outperformed some of state-of-the-art algorithms in large instances.

The effectiveness of the proposed method resides in the crossover, mu-
tation and local improvement components, that contribute with elitism and
diversification, favoring the propagation of good solutions and making possi-
ble the exploration of new regions of the search space. As the proposed meta-
heuristic is based on a general genetic framework – with classical components
as crossover and mutation – the algorithm is easy to understand and imple-
ment.

For future work, we will investigate some efficient data structures and
speed up techniques to improve the computational time of HG-means. We also
aim to solve different objectives in data clustering with the proposed method.
As we tackle the clustering problem from an optimization perspective through
a meta-heuristic, we can elaborate a neighbourhood structure that is general
enough to deal with different models, where the evaluation cost of a solution
varies according to the objective. Thus, with this algorithmic framework we
can easily extend the scope of this research to verify the suitability of different
clustering models when considering different types of data.
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