

Paul Richard Ramírez Perdomo

Estudo integrado de Sísmica 4D, Geomecânica e Simulação de Reservatórios Aplicado a Processos de Recuperação Térmica SAGD

Tese de Doutorado

Tese de Doutorado apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio.

> Orientador: Sérgio Arturo Barreto. da Fontoura Co-Orientador: Cláudio Rabe

Rio de Janeiro, 26 de junho de 2009

Paul Richard Ramírez Perdomo

Estudo integrado de Sísmica 4D, Geomecânica e Simulação de Reservatórios Aplicado a Processos de Recuperação Térmica SAGD

Tese de Doutorado apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Sérgio Arturo Barreto da Fontoura Orientador Departamento de Engenharia Civil - PUC-Rio

Prof. Osvair Vidal Trevisan Departamento de Engenharia de Petróleo - UNICAMP

> Dr. Adalberto José Rosa PETROBRAS

Prof. Celso Romanel Departamento de Engenharia Civil - PUC-Rio

Prof. Marcos Sebastião de Paula Gomes Departamento de Engenharia Mecânica - PUC-Rio

Prof. José Eugénio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 26 de junho de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Paul Richard Ramírez Perdomo

Graduou-se em Engenharia de Petróleos na USCO – Universidad Surcolombiana – Colômbia em 1997. Trabalhou com a HALLIBURTON (1998) como Engenheiro de Completação e na PRIDE como Engenheiro de Segurança Operacional (2001). Mestre em Engenharia de Petróleos pela UNICAMP em 2003

Ramírez Perdomo, Paul Richard

Estudo integrado de sísmica 4D, geomecânica e simulação de reservatórios aplicados a processos de recuperação térmica SAGD / Paul Richard Ramírez Perdomo ; orientador: Sérgio Arturo Barreto da Fontoura ; co-orientador: Cláudio Rabe. – 2009.

176 f. : il.(color.) ; 30 cm

Tese (Doutorado em Engenharia Civil)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

 Engenharia civil – Teses. 2. Simulação de reservatórios. 3. Recuperação térmica de óleo.
 Drenagem gravitacional assistida por vapor (SAGD). 5. Geomecânica. 6. Física de rochas.
 Substituição de fluidos pela Equação de Gassmann. 8. Modelagem sísmica. I. Fontoura, Sérgio Arturo Barreto da. II. Rabe, Cláudio. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título. PUC-Rio - Certificação Digital Nº 0510770/CA

Agradecimentos

Ao meu orientador, o Prof. Dr. Sérgio Arturo Barreto da Fontoura pela orientação e apoio concedido durante o doutorado.

Ao meu co-orientador, o Dr. Cláudio Rabe e a Schlumberger pela oportunidade de trabalhar na área de recuperação térmica de óleos pesados e pelo apoio na parte geomecânica de reservatório de óleos pesados.

Ao geofísico, o Dr. Fredy Alex Villaorduña Artola pela sua valiosa contribuição na parte geofísica.

À minha família pelo apoio que sempre me brindaram.

Aos professores do Departamento de Engenharia Civil.

À secretária do Departamento da Engenharia Civil, Rita de Cássia pela ajuda na parte administrativa.

Aos meus colegas do GTEP: Olga Garcia, Julio Laredo, Lênin Guerrero, Noelia Valderrama, Vivian Marchesi e os funcionários de informática.

Aos meus companheiros da posgraduação do Departamento de Engenharia Civil.

À Agência Nacional do Petróleo (ANP) pelo apoio financeiro.

Resumo

Perdomo, Paul Richard Ramírez Perdomo; Fontoura, Sérgio. **Estudo Integrado de Sísmica 4D, Geomecânica e Simulação de Reservatórios Aplicado a Processos de Recuperação Térmica SAGD**. Rio de Janeiro, 2009. 175p. Tese de Doutorado – Departamento de Engenharia Civil, Pontifícia Universidade Católica de Rio de Janeiro.

As reservas de óleos pesados têm obtido grande importância devido à diminuição das reservas de óleos leves e ao aumento dos preços do petróleo. Porém, precisa-se de aumentar a viscosidades destes óleos pesados para que possam fluir até superfície. Para reduzir a viscosidade foi escolhada a técnica de recueração térmica SAGD (Steam Assisted Gravity Drainage) pelos seus altos valores de recobro. A redução da viscosidade é atingida pela transmisão de calor ao óleo pela injeção de vapor, porém uma parte deste calor é transmitida à rocha. Esta transmisão de calor junto com a produção de óleo geram uma varição no estado de tensões no reservatório o que por sua vez geram fenômenos geomecânicos. Os simuladores convencionais avaliam de uma forma muito simplificada estes fenômenos geomecânicos, o que faz necessários uma abordagem mais apropriada que acople o escoamento dos hidrocarbonetos e a transmissão de calor com a deformação da rocha. As mudanças no reservatório, especialmente a variação da saturação, afetam as propriedades sísmicas da rocha, as quais podem ser monitoradas para acompanhar o avanço da frente de vapor. A simulação fluxo-térmica-composicional-geomecânica é integrada à sísmica de monitoramento 4D da injeção de vapor (a través da física de rochas). Existe uma grande base de dados, integrada por propriedades dos fluidos do reservatório (PVT) (usado no arquivo de entrada de simulação de fluxo) e uma campanha de mecânica das rochas. Foram simulados vários cenários geomecânicos considerando a plasticidade e variação da permeabilidade. Foram avaliadas várias repostas geomecânicas e de propriedades de fluidos no pico de pressão e final do processo SAGD. A resposta geomecânica pode ser observada, porém foi minimizada devido à baixa pressão de injeção, sendo o mecanismo de transmissão de calor um fator importante na produção de óleo (pela redução da viscosidade) e a separação vertical entre poços. Foi também significativa a contribuição da plasticidade no aumento da produção de hidrocarbonetos. A impedância acústica foi calculada usando a Equação de substituição de fluidos de Gassmann. Os sismogramas sintéticos de incidência normal (para monitorar o avanço da frente o câmara de vapor) mostraram a área afetada pela injecão de vapor, porém com pouca variação devida principalmente à rigidez da rocha.

Palavras chaves

Simulação de reservatórios, recuperação térmica de óleo, drenagem gravitacional assistida por vapor (SAGD), geomecânica, física de rochas, substituição de fluidos pela Equação de Gassmann, modelagem sísmica.

Abstract

Perdomo, Paul Richard Ramírez; Fontoura, Sérgio (Advisor). **4D Seismic, Geomechanics and Reservoir Simulation Integrated Study Applied to SAGD Thermal Recovery**. Rio de Janeiro, 2009. 175p. DSc. Thesis – Departamento de Engenharia Civil, Pontifícia Universidade Católica de Rio de Janeiro.

The heavy oil reserves have gained importance due to the decreasing of the present light oil reserves. Although it is necessary to reduce the oil viscosity and makes it flows to surface. For its high recovery factor the SAGD (Steam Assited Gravity Drainage) thermal process was selected. The viscosity reduction is achieved by heat transfer from steam to oil, but some some part of this heat goes to rock frame. This heat transfer together with oil production change the initial in-situ stress field what creates geomechanical effects. The conventional flux simulators have a very simplified approach of geomechanical effects, so it is necessary to consider a more suitable approach that considers the coupling between oil flux and heat transfer with rock deformation. The changes within the reservoir, specially the saturation change, affect the seismical rock properties which can be used to monitor the steam chamber growth. The flux-thermalgeomechanics is integrated to steam chamber monitoring 4D seismic (through the rock physics). There is a great data base, integrated by reservoir fluid properties (PVT) (used in reservoir simulation dataset) and a rock mechanics campaign. Several scenaries were simulated considering the plasticity and permeability variation. Several geomechanical responses and flux properties at peak pressure and end of SAGD process were evaluated. The geomechanical response can be observed, but was minimized due to low steam injection pressure, being the heat transfer an important in oil production (for the viscosity reduction) and the vertical well separation, too. The plasticity has a significant contribution in the increment of oil production. Acoustic impedance was calculated by using Gassmann fluid substitution approach. 2D Synthetic seismograms, normal incidence (to monitor the steam camera front advance), showed the area affected by steam injection, but with little variation due principally to rock stiffness.

Key words

Reservoir simulation, thermal oil recovery, steam assisted gravity drainage (SAGD), geomechanics, rock physics, Gassmann's fluid substitution, seismic modeling

Sumário

1 Introdução	22
1.1. Definição do problema	22
1.2. Importância do problema	23
1.3. Objetivo geral	23
1.4. Contribuição	24
1.5. Pacotes numéricos a serem usados	25
1.6. Descrição	25
2 Revisão bibliográfica	27
2.1. Processo de recuperação térmica SAGD	27
2.2. Revisão sobre modelos geomecânicos aplicados ao SAGD usados em	
simuladores	30
2.2.1. Acoplamento fluxo-térmico-geomecânico em modelos de reservatórios	30
2.2.2. Modelos constitutivos para reservatórios deformáveis de óleos pesados	43
2.2.3. Modelagem sísmica	46
3 Estudo Geológico da Faja del Orinoco	52
3.1. Projeto Orinoco	52
3.1.1. Caracterização geológica da Faja del Orinoco	53
4 Modelagem de fluxo	63
4 1 Modelo numérico	63
4.2. Construção do modelo de fluxo-térmico-geomecânico	64
4.3 Resultados deomecânicos propriedades dos fluidos curvas de produção	71
4.3.1. Propriedades geomecânicas e de fluidos para a formação mais resisten	ite
e menos compressiva com espacamento vertical entre pocos de 14, 28 e 42 fi	10 1 7 3
4 3 2 Propriedades geomecânicas e de fluidos para a formação menos	. 70
resistente e mais compressiva com espacamento vertical entre pocos de 14	28
e 42 ft	.u
4.3.3 Interpretação dos resultados geomecânicos e propriedades dos fluidos	118
4.3.4 Curvas de produção e pressão do reservatório	122

5.1. Variação da impedância acústica	138
5.1.1. Variação absoluta da impedância acústica para a rocha mais resistente	эe
menos compressiva	138
5.1.2. Variação absoluta da impedância acústica para a rocha menos resister	nte
e mais compressiva	142
5.1.3. Variação porcentual da impedância acústica para a rocha mais resister	nte
e menos compressiva	145
5.1.4. Variação porcentual da impedância acústica para a rocha menos	
resistente e mais compressiva	149
5.1.5. Variação absoluta da impedância acústica entre a rocha mais resistent	e e
menos compressiva e a menos resistente e mais compressiva	152
5.2. Sismogramas sintéticos	156
5.2.1. Sismogramas sintéticos para a rocha mais resistente e menos	
compressiva	157
5.2.2. Sismogramas sintéticos para a rocha menos resistente e mais	
compressiva	160
6 . Conclusões	164
7 Recomendações	166
8 Bibliografia referenciada	167
	470
Apendice A Arquivo de entrada para o calculo da substituição de fluidos	172

Lista de figuras

Figura 2.1. Desenho do processo SAGD. (www.encana.com)28
Figura 2.2. Esquema de Drenagem Gravitacional Assistida por Vapor (SAGD)
(Butler <i>et al.</i> 1981)29
Figura 2.3. Possíveis trajetórias de tensões no reservatório durante o processo
SAGD (Li and Chalaturnyk, 2004)32
Figura 2.4. Comparação entre as envoltórias para todas as amostras de areia a
duas temperaturas diferentes. (Vásquez et al. 1999)
Figura 2.5 Unidade de compactação vs pressão de poro (Vasquez et al. 1999) 37
Figura 2.6. Medição do coeficiente de expansão térmica com diminuição da
temperatura. (Vasquez <i>et al.</i> 1999)
Figura 2.7. Medição do coeficiente de expansão térmica com aumento da
temperatura. (Vasquez <i>et al</i> . 1999)
Figura 2.8. Velocidade da onda cisalhante como uma função da tensão normal
octaédrica para uma porosidade entre 0,4 e 0,44 (Vasquez et al. 1999)39
Figura 2.9. Incremento da permeabilidade com a dilatância (Collins, 2002)40
Figura 2.10. Acoplamento explícito. (Minkoff et al. 2004)42
Figura 2.11. Acoplamento iterativo. (Tran D. et al., 2002)43
Figura 2.12. Curva de tensão-deformação hiperbólica (Ibañez, 2003)46
Figura 2.13. Efeito do fluido de saturação em rochas nas velocidades de onda
compressional e cisalhante (Wang e Nur, 1998)47
Figura 2.14. Velocidades compressionais em função da temperatura (Eastwood,
1993)48
Figura 2.15. Mapa de diferenças de amplitudes entre 2001 e 2004 (a) e 2001 e
2005 (b) (Zang <i>et al.</i> 2007)50
Figura 2.16. Sísmica 4D entre 2001 e 2005 no final dos poços A1, A2, A3 e A4
(Zang <i>et al.</i> 2007)51
Figura 2.17. Variação no time-shift devida à compactação do reservatório (Røste,
2007)51
Figura 3.1. Óleo original in-situ e reservas provadas na Faja del Orinoco.
(www.pdvsa.com)52
Figura 3.2. Localização geográfica da Faja del Orinoco. (www.slb.com)54
Figura 3.3. Carta de correlação estratigráfica das formações do Terciário na Faja
del Orinoco (Fiorillo, 1983)56

Figura 3.4. Desenho dos elementos paleoestratigráficos que controlaram a sedimentação das Unidades I, II e III da seqüência Oligoceno-Mioceno. (Fiorillo, 1983)......57 Figura 3.5. Mapa paleográfico da distribuição deltaica da Unidade Oligoceno-Mioceno. Ao sul existe uma área positiva atravessada por rios fluindo de norte ao sul. (Fiorillo, 1983)58 Figura 3.6. Bacias petrolíferas venezuelanas com base na suas províncias sedimentes. E.B.L. El Baul Linement, limite das bacias Este e Barinas-Apure. (Well Evaluation Conference, 1997)......59 Figura 3.7. Definições estratigráficas gerais para a Faja del Orinoco. (Dusseault, Figura 4.1. Modelo geomecânico63 Figura 4.2. Condições de contorno do modelo do reservatório e sistema de eixos e número de células em cada eixo69 Figura 4.3. Espaçamento vertical entre poços70 Figura 4.4. Fluxo de trabalho.....71 Figura 4.5. Pontos de leitura para o espaçamento vertical entre poços de 14 ft.72 Figura 4.6. Pontos de leitura para o espaçamento vertical entre poços de 28 ft.72 Figura 4.7. Pontos de leitura para o espaçamento vertical entre poços de 42 ft.73 Figura 4.8. Variação de esforços no plano horizontal para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft74 Figura 4.9. Variação da tensão cisalhante para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft74 Figura 4.10. Variação da pressão para a rocha mais resistente e um Figura 4.11. Variação do deslocamento no eixo Z para a rocha mais resistente e Figura 4.12. Variação da saturação de óleo para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft76 Figura 4.13. Variação da saturação de gás para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft77 Figura 4.14. Variação da deformação cisalhante para a rocha mais resistente e Figura 4.15. Variação da deformação vertical para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft78 Figura 4.16. Variação da temperatura para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft79

Figura 4.17. Tensão principal máxima (a) e mínima (b) para o abandono........80 Figura 4.18. Variação de esforços no plano horizontal para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft......81 Figura 4.19. Variação da tensão cisalhante para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft81 Figura 4.20. Variação da pressão para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft82 Figura 4.21. Variação do deslocamento no eixo Z para a rocha mais resistente e Figura 4.22. Variação da saturação de óleo para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft83 Figura 4.23. Variação da saturação de gás para a rocha mais resistente e um Figura 4.24. Variação da deformação cisalhante para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft85 Figura 4.25. Variação da deformação vertical para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft85 Figura 4.26. Variação da temperatura para a rocha mais resistente e um Figura 4.27. Tensão principal máxima (a) e mínima (b) para o abandono..........87 Figura 4.28. Variação de esforços no plano horizontal para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft......88 Figura 4.29. Variação da tensão cisalhante para a rocha mais resistente e um Figura 4.30. Variação da pressão para a rocha mais resistente e um Figura 4.31. Variação do deslocamento no eixo Z para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft90 Figura 4.32. Variação da saturação de óleo para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft90 Figura 4.33. Variação da saturação de gás para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft91 Figura 4.34. Variação da deformação cisalhante para a rocha mais resistente e Figura 4.35. Variação da deformação vertical para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft92

Figura 4.36. Variação da temperatura para a rocha mais resistente e um
espaçamento vertical entre poços de 42 ft93
Figura 4.37. Tensão principal máxima (a) e mínima (b) para o abandono94
Figura 4.38. Variação de esforços no plano horizontal para a rocha menos
resistente e um espaçamento vertical entre poços de 14 ft95
Figura 4.39. Variação da tensão cisalhante para a rocha menos resistente e um
espaçamento vertical entre poços de 14 ft95
Figura 4.40. Variação da pressão para a rocha menos resistente e um
espaçamento vertical entre poços de 14 ft96
Figura 4.41. Variação do deslocamento no eixo Z para a rocha menos resistente
e um espaçamento vertical entre poços de 14 ft97
Figura 4.42. Variação da saturação de óleo para a rocha menos resistente e um
espaçamento vertical entre poços de 14 ft97
Figura 4.43. Variação da saturação de gás para a rocha menos resistente e um
espaçamento vertical entre poços de 14 ft98
Figura 4.44. Variação da deformação cisalhante para a rocha menos resistente e
um espaçamento vertical entre poços de 14 ft99
Figura 4.45. Variação da deformação vertical para a rocha menos resistente e
um espaçamento vertical entre poços de 14 ft
Figura 4.46. Variação da temperatura para a rocha menos resistente e um
espaçamento vertical entre poços de 14 ft100
Figura 4.47. Tensão principal máxima (a) e mínima (b) para o abandono 101
Figura 4.48. Variação de esforços no plano horizontal para a rocha menos
resistente e um espaçamento vertical entre poços de 28 ft102
Figura 4.49. Variação da tensão cisalhante para a rocha menos resistente e um
espaçamento vertical entre poços de 28 ft102
Figura 4.50. Variação da pressão para a rocha menos resistente e um
espaçamento vertical entre poços de 28 ft103
Figura 4.51. Variação do deslocamento no eixo Z para a rocha menos resistente
e um espaçamento vertical entre poços de 28 ft104
Figura 4.52. Variação da saturação de óleo para a rocha menos resistente e um
espaçamento vertical entre poços de 28 ft104
Figura 4.53. Variação da saturação de gás para a rocha menos resistente e um
espaçamento vertical entre poços de 28 ft105
Figura 4.54. Variação da deformação cisalhante para a rocha menos resistente e

Figura 4.55. Variação da deformação vertical para a rocha menos resistente e
um espaçamento vertical entre poços de 28 ft106
Figura 4.56. Variação da temperatura para a rocha menos resistente e um
espaçamento vertical entre poços de 28 ft107
Figura 4.57. Tensão principal máxima (a) e mínima (b) para o abandono 108
Figura 4.58. Variação de esforços no plano horizontal para a rocha menos
resistente e um espaçamento vertical entre poços de 42 ft109
Figura 4.59. Variação da tensão cisalhante para a rocha menos resistente e um
espaçamento vertical entre poços de 42 ft109
Figura 4.60. Variação da pressão para a rocha menos resistente e um
espaçamento vertical entre poços de 42 ft110
Figura 4.61. Variação do deslocamento no eixo Z para a rocha menos resistente
e um espaçamento vertical entre poços de 42 ft111
Figura 4.62. Variação da saturação de óleo para a rocha menos resistente e um
espaçamento vertical entre poços de 42 ft111
Figura 4.63. Variação da saturação de gás para a rocha menos resistente e um
espaçamento vertical entre poços de 42 ft112
Figura 4.64. Variação da deformação cisalhante para a rocha menos resistente e
um espaçamento vertical entre poços de 42 ft113
Figura 4.65. Variação da deformação vertical para a rocha menos resistente e
um espaçamento vertical entre poços de 42 ft113
Figura 4.66. Variação da temperatura para a rocha menos resistente e um
espaçamento vertical entre poços de 42 ft114
Figura 4.67. Tensão principal máxima (a) e mínima (b) para o abandono 115
Figura 4.68. Efeito do modelo yield (escoamento) e da variação da
permeabilidade na produção acumulada de óleo para a rocha mais
resistente124
Figura 4.69. Efeito do modelo yield (escoamento) e da variação da
permeabilidade na pressão do reservatório para a rocha mais resistente 126
Figura 4.70. Efeito do modelo yield (escoamento) e da variação da
permeabilidade na produção acumulada de óleo para a rocha menos
resistente128
Figura 4.71. Efeito do modelo yield (escoamento) e da variação da
permeabilidade na pressão do reservatório para a rocha menos resistente

- Figura 5.8. Secções horizontais da (a) Impedância acústica e (b) Variação da impedância acústica após 9 anos de injeção de vapor para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft......142

Figura 5.9. Variação da impedância (gm/cm ³ ·m/s) acústica e temperatura (°F)
após 9 anos de injeção de vapor para a rocha menos resistente e um
espaçamento vertical entre poços de 28 ft143
Figura 5.10. Secções horizontais da (a) Impedância acústica e (b) Variação da
impedância acústica após 9 anos de injeção de vapor para a rocha menos
resistente e um espaçamento vertical entre poços de 28 ft143
Figura 5.11. Variação da impedância acústica (gm/cm ³ ·m/s) e temperatura (°F)
após 9 anos de injeção de vapor para a rocha menos resistente e um
espaçamento vertical entre poços de 42 ft144
Figura 5.12. Secções horizontais da (a) Impedância acústica e (b) Variação da
impedância acústica após 9 anos de injeção de vapor para a rocha menos
resistente e um espaçamento vertical entre poços de 42 ft144
Figura 5.13. Variação porcentual da impedância acústica (gm/cm ³ ·m/s) após 9
anos de injeção de vapor para a rocha mais resistente e um espaçamento
vertical entre poços de 14 ft145
Figura 5.14. Variação porcentual da impedância acústica (gm/cm ³ ·m/s) após 9
anos de injeção de vapor para a rocha mais resistente e um espaçamento
vertical entre poços de 28 ft146
Figura 5.15. Variação porcentual da impedância acústica (gm/cm ³ ·m/s) após 9
anos de injeção de vapor para a rocha mais resistente e um espaçamento
vertical entre poços de 42 ft147
Figura 5.16. Histogramas da variação porcentual da impedância acústica para a
rocha mais resistente e um espaçamento vertical de (a) 14 ft, (b) 28 e (c) 42
ft148
Figura 5.17. Variação porcentual da impedância acústica (gm/cm ³ ·m/s) após 9
anos de injeção de vapor para a rocha menos resistente e um espaçamento
vertical entre poços de 14 ft149
Figura 5.18. Variação porcentual da impedância acústica (gm/cm ³ ·m/s) após 9
anos de injeção de vapor para a rocha menos resistente e um espaçamento
vertical entre poços de 28 ft150
Figura 5.19. Variação porcentual da impedância acústica (gm/cm ³ ·m/s) após 9
anos de injeção de vapor para a rocha menos resistente e um espaçamento
vertical entre poços de 42 ft151
Figura 5.20. Histogramas da variação porcentual da impedância acústica para a
rocha menos resistente e um espaçamento vertical de (a) 14 ft, (b) 28 e (c)
42 ft

Figura 5.21. Variação da impedância acústica (gm/cm ³ ·m/s) após 9 anos de
injeção de vapor entre a rocha mais resistente e menos resistente e um
espaçamento vertical entre poços de 14 ft153
Figura 5.22. Variação da impedância acústica (gm/cm ³ ·m/s) após 9 anos de
injeção de vapor entre a rocha mais resistente e menos resistente e um
espaçamento vertical entre poços de 28 ft154
Figura 5.23. Variação da impedância acústica (gm/cm ³ ·m/s) após 9 anos de
injeção de vapor entre a rocha mais resistente e menos resistente e um
espaçamento vertical entre poços de 42 ft155
Figura 5.24. Histogramas dos valores de diferenças na impedância acústica
absoluta entre a rocha mais resistente e a menos resistente para
espaçamento vertical entre poços: (a) 14 ft, (b) 28 e (c) 42 ft155
Figura 5.25. Representação da sobrecarga, reservatório e underburden156
Figura 5.26. Sismogramas sintéticos para a Base e Monitor após a injeção vapor
por 9 anos para a rocha mais resistente e um espaçamento vertical entre
poços de 14 ft157
Figura 5.27. Sismogramas sintéticos para a Base e Monitor após a injeção vapor
por 9 anos para a rocha mais resistente e um espaçamento vertical entre
poços de 28 ft158
Figura 5.28. Sismogramas sintéticos para a Base e Monitor após a injeção vapor
por 9 anos para a rocha mais resistente e um espaçamento vertical entre
poços de 42 ft159
Figura 5.29. Sismogramas sintéticos para a Base e Monitor após a injeção vapor
por 9 anos para a rocha menos resistente e um espaçamento vertical entre
poços de 14 ft160
Figura 5.30. Sismogramas sintéticos para a Base e Monitor após a injeção vapor
por 9 anos para a rocha menos resistente e um espaçamento vertical entre
poços de 28 ft161
Figura 5.31. Sismogramas sintéticos para a Base e Monitor após a injeção vapor
por 9 anos para a rocha menos resistente e um espaçamento vertical entre
poços de 42 ft162

Lista de tabelas

Tabela 2.1. Propriedades físicas dos reservatórios dos três modelos (Li e
Chalaturnyk, 2004)
Tabela 2.2. Parâmetros requeridos para a análise geomecânica (Li e
Chalaturnyk, 2004)
Tabela 4.1. Análise de sensibilidade67
Tabela 4.2. Multiplicadores de permeabilidade em função das tensões principal
máxima e mínima67
Tabela 4.3. Parâmetros do reservatório. 68
Tabela 4.4. Resultados de diferentes parâmetros geomecânicos e de fluido para
a rocha mais resistente e menos compressiva e um espaçamento vertical
entre poços de 14, 28 e 42 ft115
Tabela 4.5. Resultados de diferentes parâmetros geomecânicos e de fluido para
a rocha menos resistente e mais compressiva e um espaçamento vertical
entre poços de 14, 28 e 42 ft116
Tabela 5.1 Condições iniciais para a substituição de Fluidos pela Equação de
Gassmann

Lista de símbolos

a,b	Parâmetros de endurecimento da curva tensão-deformação
	hiperbólica
b_1	Coeficiente de ajuste linear da curva de tensão principal máxima e
	mínima
С	Coesão do material
C_{b}	Compressibilidade total
C_o	Resistência coesiva cisalhante
C_r	Compressibilidade da matriz da rocha
δA	Variação do parâmetro A
[D]	Matriz de acumulação
\mathcal{E}_b	Deformação volumétrica
${\cal E}^{p}_{ij}$	Vetor de deformação plástica
$\overline{\mathcal{E}}_p$	Deformação plástica generalizada
$\boldsymbol{\mathcal{E}}_{yz}$	Variação da deformação cisalhante
\mathcal{E}_{zz}	Variação da deformação vertical
F	Normal do tensor de tensões
F_{f}	Função fonte
FOPT	Produção total de óleo
FPR	Pressão média do reservatório
HCPV	Volume poroso do hidrocarboneto
IA	Impedância acústica
[K]	Matriz de rigidez
K _{clay}	Módulo de incompressibilidade da argila
K_{fl}	Módulo de incompressibilidade do fluido saturante
K frame	Módulo de incompressibilidade da matriz rochosa
K _{matrix}	Módulo de incompressibilidade dos grãos
K_{qtz}	Módulo de incompressibilidade do quartzo
K _{sat}	Módulo de incompressibilidade da rocha saturada

m	Coeficiente de ajuste linear
μ_{sat}	Módulo cisalhante da rocha saturada
ϕ	Ângulo de atrito interno da rocha
Р	Pressão
\vec{Q}	Vetor das condições de contorno
R	Refletividade
$ ho_{_{fl}}$	Densidade do fluido saturante
$ ho_{matrix}$	Densidade dos grãos
$ ho_{sat}$	Densidade da rocha saturada
σ	Tensão normal
$\sigma_{_{ij}}$	Tensor de tensões efetivas
σ_{yy}	Variação de esforços no plano horizontal
$\sigma_{_{yz}}$	Variação da tensão cisalhante
$\sigma_{_{ m l}}$	Tensão principal máxima
$\sigma_{_3}$	Tensão principal mínima
S_{gi}	Saturação de gás inicial
S _{oi}	Saturação de óleo inicial
S_{wi}	Saturação de água inicial
S_o	Variação da saturação de óleo
S_{g}	Variação da saturação de gás
τ	Tensão cisalhante normal
[T]	Matriz de transmissibilidade simétrica
Т	Temperatura
T_s	Traço sísmico
U_z	Variação do deslocamento no eixo Z
V_{clay}	Volume de folhelho
V_p	Velocidade da onda compressional
V_{qtz}	Volume de quartzo
V_s	Velocidade da onda cisalhante

Substituição de Fluidos

 ϕ Porosidade