4 Modelagem de fluxo

4.1. Modelo numérico

O modelo integrado de reservatório envolve fluxo, temperatura, geomecânica e sísmica, com influência das camadas de sobrecarga (*overburden*), em quatro dimensões (*time-lapse "geomechanics"*), conforme ilustra a Figura 4.1. A infuência da sobrecarga e camadas laterais foram consideradas em função das tensões que exercem no reservatório e não foram consideradas as variações de tensões que sofrem durante o processo de injeção de vapor, isto devido ao alto custo computacional que ocasionaria incluir tais camadas no modelo geomecânico.

Figura 4.1. Modelo geomecânico

Este modelo geomecânico considera esforços tectônicos, propriedades das rochas (i.e. Número de Poisson, Módulo de Young, Coeficiente de Biot), um critério de ruptura (Mohr-Coulumb) e um critério de endurecimento (Modelo Hiperbólico).

O modelo de fluxo foi construído no simulador ECLIPSE 300 (módulo geomecânico), o qual tem a seguintes limitações:

- Não permite dupla porosidade
- Não permite o refinamento local radial
- Não permite a construção de malhas não estruturadas (globais ou locais)
- Não permite a simulação paralela
- Não permite a construção de malhas radiais
- Não permite o refinamento de malha local definida por coordenadas (coordinates-defined local grid refinement)

4.2. Construção do modelo de fluxo-térmico-geomecânico

Foram construídos sete modelos geomecânicos do reservatório. Esses modelos possuem um arquivo de dados de entrada (*dataset*) completo das propriedades de fluxo montadas no simulador ECLIPSE 300. As propriedades das rochas, fluidos e as variáveis geomecânicas foram fornecidas Schlumberger (Relatório do Laboratório Terratek, 2006). A fim de avaliar a influência da plasticidade na produção acumulada de óleo foram simulados os mesmos casos com e sem um modelo *yield* (escoamento). Também foi simulado um caso com rotação de tensões *in-situ*. A Tabela 4.1 apresenta os parâmetros geomecânicos e de espaçamento vertical entre poços. Em todos os casos o valor da pressão de sobrecarga foi de 2500 psi (17,24 MPa) no topo do reservatório. O valor da tensão horizontal maior é de 1957,8 psi (13,50 MPa) e da tensão horizontal mínima de 1899,1 psi (13,09 MPa) (anistropia 3%), conforme ilustra a Figura 4.2.

Em referência ao Relatório Terratek, as seguintes observações:

No relatório é apresentado a campanha de laboratório (geomecânico, físico-químico e petrográfico) e a campanha de campo (perfis de poço e análise de imagens) para obter as propriedades das rochas, estimar as tensões *in-situ* e avaliar a pressão de poros e sobrecarga no campo localizado na Faja del Orinoco. Este tipo de estudo é crítico para uma simulação de reservatórios rigorosa considerando o impacto da geomecânica no processo térmico e suas mudanças no modelo de fluxo.

- A campanha de petrografia de laboratório inclui: caracterização mineralógica, densidade de grão, distribuição de tamanho de grão e análise microestrutural (difração por raios X, análise de peneira, higrometria, microscopia eletrônica de varredura (SEM) e espectroscopia por energia dispersiva (EDS). A campanha de ensaios geomecânicos e de física de rochas inclui: campanha de testes mecânicos e acústicos triaxiais, testes de compressibilidade uniaxial e testes de imersão. Foram também avaliadas a porosidade e a permeabilidade considerando as magnitudes das tensões efetivas e direção no campo. Os testes da campanha de campo foram usados para calcular a magnitude e a orientação das tensões *in-situ*, avaliar a anisotropia acústica e mecânica do meio poroso. Para calcular a pressão de poros foi usado o perfil de densidade, perfil sônico e imagens de resistividade.
- As amostras (representativas desta formação) analisadas são areias pobremente consolidadas (*poor packing*), muito fofas (inconsolidadas), com espaço poral primário bem desenvolvido, principalmente constituído por tamanho de grão de areia médio e fino, com baixo conteúdo de minerais de argila, e pobremente cimentadas. O reservatório apresenta alta porosidade e permeabilidade e baixa compressibilidade do volume poroso. A Formação Oficina é uma formação de rocha não consolidada com baixa coesão e baixo ângulo de atrito. O modelo geomecânico indicou pressão de poros normal. A análise de tensões de campo indicou um regime de falha normal e ausência de pressões anormais na área estudada, na qual a tensão horizontal máxima ocorre na direção NW45. Os testes de imersão indicaram um baixo potencial de reatividade entre os folhelhos (rocha capeadora) e arenitos com o fluido de minerais de argila expansíveis.
- Existe uma excelente concordância entre os resultados obtidos por perfis e os obtidos por dados de laboratório para as areias e não muito boa para os folhelhos, como esperado, pois as ondas ultrasônicas e as acústicas se propagam com maior facilidade em materiais de comportamento elástico do que em matériais ricos em argilominerais (comportamento plástico).

65

Foram escolhidas rochas mais resistentes e menos compressivas e menos resistentes e mais compressivas para conhecer as respostas destes tipos de rocha quando submetidas ao processo SAGD. O modulo de elasticidade pode variar com a tensão horizontal mínima efetiva (Li e Chalaturnyk, 2009).

O modelo de um par de poços tem um tamanho em (x,y,z) de 2175 ft x 665 ft x 98 ft (663x203x30 m). A vazão de injeção de vapor foi escolhida pela PDVSA (Petróleos de Venezuela S.A.) em função dos equipamentos disponíveis na Venezuela. O número e tamanho das células neste estudo foram escolhidos por convergência numérica (teste e erro). O intervalo de tempo de cálculo das simulações de fluxo-geomecânicas foi de um mês, um valor usual na simulação numérica de reservatórios.

O ECLIPSE 300 emprega o método AIM (Adaptive Implicit Method) ou Método Implícito Adaptativo para a solução do sistema de equações de pressão e saturação. O Método Implícito Adaptativo é uma abordagem entre o método completamente implícito e o método IMPES (Pressão Implícita e Saturação Explícita), permitindo que as células que se encontram em regiões de alta instabilidade sejam resolvidas de forma completamente implícita enquanto as células que se encontram em regiões de baixa instabilidade sejam resolvidas usando o método IMPES.

As perdas de calor são calculadas pelo método analítico (solução aproximada de Vinsome e Westerveld da equação de temperatura), Vinsome e Westerveld, 1980.

A pressão média do reservatório, FPR, é definida pela Equação 4.1:

$$FPR = \frac{\sum HCPV \cdot P}{\sum HCPV}$$
(4.1)

onde:

 $HCPV = PV(1 - S_w - S_g)$

 $HCPV \equiv$ volume poroso do hidrocarboneto

Análise de sensibilidade							
Variável	CASO 1	CASO 2	CASO 1A	CASO 2B	CASO 1C	CASO 2D	CASO 3
Módulo de Young (psi)	1,60E+06	8,00E+05	1,60E+06	8,00E+05	1,60E+06	8,00E+05	1,60E+06
Número de Poisson	0,27	0,30	0,27	0,30	0,27	0,30	0,27
Compressibilidade (1/psi)	3,00E-06	3,00E-05	3,00E-06	3,00E-05	3,00E-06	3,00E-05	3,00E-06
Cesão (psi)	0,001	0,001	0,001	0,001			0,001
<u> </u>	0	0	0	0			0
Ângulo de atrito (°)	35	30	35	30			35
Critério de ruptura(*)	M-C	M-C	M-C	M-C			M-C
Critério de endurecimento(**)	HYP	HYP	HYP	HYP			HYP
Parâmetro "a"	2,50E-08	2,50E-06	2,50E-08	2,50E-06			2,50E-06
	2,5*10-6		2,5*10-6				
Parâmetro "b"	1,00E-06	1,00E-04	1,00E-06	1,00E-04			1,00E-04
Separação vertical	14	14	14	14	14	14	
entre poços (ft)	28	28	28	28	28	28	
	42	42	42	42	42	42	42

Tabela 4.1. Análise de sensibilidade

(*) M-C = Mohr-Coulomb

(**) HYP = Hiperbólico

CASO 1 = Rocha mais resistente e menos compressiva com modelo *yield* e variação da permeabilidade

CASO 2 = Rocha menos resistente e mais compressiva modelo yield e variação da permeabilidade

CASO 1A = Rocha mais resistente e menos compressiva com modelo yield (escoamento)

CASO 2B = Rocha menos resistente e mais compressiva com modelo yield (escoamento)

CASO 1C = Rocha mais resistente e menos compressiva sem modelo *yield* (escoamento) CASO 2D = Rocha menos resistente e mais compressiva sem modelo *yield* (escoamento)

CASO 3 = Com rotação de tensões in-situ

A permeabilidade absoluta pode ser atualizada através de relações empíricas simples (Samier e de Gennaro, 2007), neste caso com as tensões principais. A Tabela 4.2 apresenta os multiplicadores de permeabilidade em função das tensões principal máxima e mínima (foi mantida constante a vazão de injeção de vapor (1881 STBD) e a vazão de produção máxima (1200 STB/d) para poder comparar resultados).

Tabela 4.2. Multiplicadores de permeabilidade em função das tensões principal máxima e mínima.

	(*)Multiplicadores de permeabilidade					
	Tensão principal máxima (psi)					
	1000	2000	3000	4000		
Tensão principal mínima (psi)						
1000	1,0	1,0	1,1	1,2		
2000	1,0	1,1	1,2	1,4		
4000	1,0	1,3	1,4	1,5		

Para a construção do modelo de um par de SAGD no ECLIPSE300 foram utilizados os seguintes dados do fluido e da Formação Oficina, Tabela 4.3.

Tabela 4.3. Parâmetros do reservatório.

Profundidade	3000 ft (914,4 m) aprox.				
Espessura da formação	100 ft (30,5 m)				
Pressão inicial	1350 psi (9,31 MPa)				
Temperatura de referência (Tr)	212 °F (100°C)				
Temperatura do vapor	560 °F (293 °C)				
Pressão de injeção do vapor	1400 psi (9,65 Mpa)				
Qualidade do vapor	0,75				
Vazão de injeção de vapor	1881 (stb/day)				
Máxima vazão de produção	1200 STBD				
Capacidade calorífica volumétrica	30 BTU/°F-ft ³				
Viscosidade do óleo à Tr	4000 cP (aprox)				
RGO	150 SCF/STB				
Porosidade	0,32				
Permeabilidade	Ky: 5200 mD - Kx:4420 mD - Kz: 782 mD				
Soi	0,748				
Sgi	0,088				
Swi	0,164				
Tamanho da célula (x, y, z)	25 ft 35 ft 7 ft				
Número de células	87x19x14: 23142				
Tamanho do reservatório (X,Y,Z)	2175 ft x 665 ft x 98 ft				

RGO = razão gás/óleo

Soi = saturação incial de óloe

Sgi = saturação inicial de gás

Świ = saturação inicial de água

A Figura 4.2 apresenta as condições de contorno do modelo de reservatório com seu respectivo sistema de eixos e números de células em cada eixo.

Figura 4.2. Condições de contorno do modelo do reservatório e sistema de eixos e número de células em cada eixo

A Figura 4.3 apresenta o espaçamento vertical entre poços (14, 28 e 42 ft).

Vista superior do reservatório

Figura 4.3. Espaçamento vertical entre poços

A Figura 4.4 apresenta o fluxo de trabalho empregado. O tipo de acoplamento entre a simulação de fluxo e a simulação geomecânica é o explícito, sendo a porosidade o parâmetro de acoplamento (i.e. a porosidade de entrada do simulador de fluxo não é a mesma porosidade de saída calculada pelo simulador (o módulo) geomecânico). É implementado o modelo de conservação da massa da rocha, Equação 4.2:

$$\delta\phi = -\left(1 - \phi - \frac{C_r}{C_{bc}}\right) \left(\delta\varepsilon_b - C_r \delta P\right)$$
(4.2)

Onde:

 $C_r \equiv \text{compressibilidade da matriz da rocha}$

 $C_b \equiv \text{compressibilidade total}$

 $\mathcal{E}_b \equiv \operatorname{deformação} \operatorname{volumétrica}$

 $\delta A \equiv \text{variação do parâmetro } A \left(A^{n+1} - A^n \right)$

Figura 4.4. Fluxo de trabalho.

4.3. Resultados geomecânicos, propriedades dos fluidos, curvas de produção

A Figura 4.5, Figura 4.6 e Figura 4.7 apresentam os pontos de leitura das propriedades geomecânicas e dos fluidos para os espaçamentos verticais de poço de 14, 24 e 42 ft, respectivamente. Foram escolhidos esses pontos de leitura para efeitos de comparação, podendo ser escolhidos outros pontos na câmara de vapor e fora da câmara de vapor.

Na parte geomecânica e de propriedades de fluidos, para os dois tipos de rocha, isto é, a mais resistente e menos compressiva (caso 1) e a menos resistente e mais compressiva (caso 2) foram calculados os valores para a respectiva condição de máxima pressão do reservatório e condição de abandono ou fim do processo de injeção de vapor (9 anos de produção) (e separação vertical entre poços de 14, 28 e 42 ft): a variação de esforços no plano horizontal, variação da tensão cisalhante, pressão do reservatório, variação do deslocamento no eixo Z, saturação de óleo, saturação de gás, deformação cisalhante, deformação vertical, temperatura no reservatório e tensões principais mínima e máxima no final do processo. (Figura 4.8 até Figura 4.67). As tensões principais foram tomadas ao final do processo porque embora exista uma pressão um pouco maior no pico de pressão, ela dura pouco tempo (menos de

um ano), porém a pressão cai bruscamente e se mantem quase constante até ao final do processo.

Na parte de produção de fluidos após 9 anos de injeção contínua de vapor, foram calculados para os dois tipos de rocha (e separação vertical entre poços de 14, 28 e 42 ft): a produção acumulada de óleo (FOPT), pressão média do reservatório (FPR), (Figura 4.68 até a Figura 4.73).

Foi realizada uma simulação com rotação de tensões *in-situ* para a rocha mais resistente e menos compressiva e um espaçamento vertical entre poços de 42 ft., (Figura 4.74). A Figura 4.75 apresenta o comportamento da produção acumulada de óleo para os dois tipos de rocha em função da separação vertical entre poços.

Figura 4.5. Pontos de leitura para o espaçamento vertical entre poços de 14 ft

Figura 4.6. Pontos de leitura para o espaçamento vertical entre poços de 28 ft

Figura 4.7. Pontos de leitura para o espaçamento vertical entre poços de 42 ft

4.3.1.

Propriedades geomecânicas e de fluidos para a formação mais resistente e menos compressiva com espaçamento vertical entre poços de 14, 28 e 42 ft

4.3.1.1. Espaçamento vertical entre poços de 14 ft

A Figura 4.8 até Figura 4.17 apresentam os resultados para a condição de máxima pressão e condição de abandono para a rocha mais resistente e menos compressiva e um espaçamento vertical entre poços de 14 ft.

Figura 4.8. Variação de esforços no plano horizontal para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.9. Variação da tensão cisalhante para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.11. Variação do deslocamento no eixo Z para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.12. Variação da saturação de óleo para a rocha mais resistente e um espaçamento vertical entre poços de 14 ft

espaçamento vertical entre poços de 14 ft

4.3.1.2. Espaçamento vertical entre poços de 28 ft

A Figura 4.18 até Figura 4.27 apresentam os resultados para a condição de máxima pressão e condição de abandono para a rocha mais resistente e menos compressiva e um espaçamento vertical entre poços de 28 ft.

(a) Máxima pressão

Figura 4.20. Variação da pressão para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

espaçamento vertical entre poços de 28 ft

Figura 4.24. Variação da deformação cisalhante para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

Figura 4.25. Variação da deformação vertical para a rocha mais resistente e um espaçamento vertical entre poços de 28 ft

4.3.1.3. Espaçamento vertical entre poços de 42 ft

A Figura 4.28 até Figura 4.37 apresentam os resultados para a condição de máxima pressão e condição de abandono para a rocha mais resistente e menos compressiva e um espaçamento vertical entre poços de 42 ft.

Figura 4.28. Variação de esforços no plano horizontal para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

Figura 4.31. Variação do deslocamento no eixo Z para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

espaçamento vertical entre poços de 42 ft

Figura 4.35. Variação da deformação vertical para a rocha mais resistente e um espaçamento vertical entre poços de 42 ft

4.3.2.

Propriedades geomecânicas e de fluidos para a formação menos resistente e mais compressiva com espaçamento vertical entre poços de 14, 28 e 42 ft

4.3.2.1. Espaçamento vertical entre poços de 14 ft

A Figura 4.38 até a Figura 4.47 apresentam os resultados para a condição de máxima pressão e condição de abandono para a rocha menos resistente e mais compressiva e um espaçamento vertical entre poços de 14 ft.

Figura 4.38. Variação de esforços no plano horizontal para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.39. Variação da tensão cisalhante para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.40. Variação da pressão para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.42. Variação da saturação de óleo para a rocha menos resistente e un espaçamento vertical entre poços de 14 ft

Figura 4.44. Variação da deformação cisalhante para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

Figura 4.45. Variação da deformação vertical para a rocha menos resistente e um espaçamento vertical entre poços de 14 ft

4.3.2.2. Espaçamento vertical entre poços de 28 ft

A Figura 4.48 até a Figura 4.57 apresentam os resultados para a condição de máxima pressão e condição de abandono para a rocha menos resistente e mais compressiva e um espaçamento vertical entre poços de 28 ft.

Figura 4.48. Variação de esforços no plano horizontal para a rocha menos resistente e um espaçamento vertical entre poços de 28 ft

Figura 4.49. Variação da tensão cisalhante para a rocha menos resistente e un espaçamento vertical entre poços de 28 ft

104

espaçamento vertical entre poços de 28 ft

espaçamento vertical entre poços de 28 ft

vertical entre poços de 28 ft

Figura 4.57. Tensão principal máxima (a) e mínima (b) para o abandono

4.3.2.3. Espaçamento vertical entre poços de 42 ft

A Figura 4.58 até a Figura 4.67 apresentam os resultados para a condição de máxima pressão e condição de abandono para a rocha menos resistente e mais compressiva e um espaçamento vertical entre poços de 42 ft.

(a) Máxima pressão

Figura 4.58. Variação de esforços no plano horizontal para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 4.61. Variação do deslocamento no eixo Z para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 4.62. Variação da saturação de óleo para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 4.64. Variação da deformação cisalhante para a rocha menos resistente e um espaçamento vertical entre poços de 42 ft

Figura 4.65. Variação da deformação vertical para a rocha menos resistente e u espaçamento vertical entre poços de 42 ft

A Tabela 4.4 apresenta os resultados da Figura 4.8 até a Figura 4.37.

Tabela 4.4. Resultados de diferentes parâmetros geomecânicos e de fluido para a rocha mais resistente e menos compressiva e um espaçamento vertical entre poços de 14, 28 e 42 ft

	CAS	SE1_D	IR1_14 (I	Mais	resis	tente)				
			T₁(1 m	ês)						
$\Delta \sigma' y y$	Δσyz	Р	Uz	So	Sg	εyz	εzz	Τ		
(psi)	(psi)	(psi)	(ft)	(%)	(%)	(%)	(%)	(°F)		
-										
-1	63	1302	0,08571	64	10	0,00	0,12	238		
70	97	1320	0,04764	23	14	0,00	0,53	579		
	-									
-1	19	1305	0,02861	75	9	0,00	0,05	212		
-1	19	1305 CAS	0,02861 SE1 DIR	75	9 (Mais	0,00 s resis	0,05 stente	212		
-1	19	1305 CAS	0,02861 SE1_DIR [*] T	75 1_14 2 (9 a	9 (Mais anos)	0,00 s resis	0,05 stente	212)		
	19 Δσyz	1305 CAS	0,02861 SE1_DIR [*] <i>T</i> 2 <i>Uz</i>	75 1_14 2 (9 a So	9 (Mais anos) Sg	0,00 s resis εyz	0,05 stente ɛzz	212) T	σ1	σ3
-1 Δσ'yy (psi)	19 Δσyz (psi)	1305 CAS <i>P</i> (psi)	0,02861 SE1_DIR1 Tz (ft)	75 1_14 2 (9 a <i>So</i> (%)	9 (Mais anos) Sg (%)	0,00 s resis <i>ɛyz</i> (%)	0,05 stente <i>εzz</i> (%)	212) (°F)	σ1 (psi)	σ3 (psi)
	19 Δσyz (psi)	1305 CAS <i>P</i> (psi)	0,02861 SE1_DIR [*] T: <i>Uz</i> (ft)	75 1_14 2 (9 a <i>So</i> (%)	9 (Mais anos) Sg (%)	0,00 s resis <i>ɛyz</i> (%)	0,05 stente <i>ɛzz</i> (%)	212) (°F)	σ1 (psi)	σ3 (psi)
-1 Δσ'yy (psi) 85	19 Δσyz (psi) 64	1305 CAS (psi) 1252	0,02861 SE1_DIR ² Tz Uz (ft) 0,10489	75 1_14 2 (9 a <i>So</i> (%) 27	9 (Mais anos) Sg (%) 27	0,00 s resis <i>ɛyz</i> (%) 0,00	0,05 stente <i>εzz</i> (%) 0,59	212) (°F) 572	σ1 (psi) 1340	σ3 (psi) 1185
-1 Δσ'yy (psi) 85 98	19 Δσyz (psi) 64 97	1305 CAS (psi) 1252 1253	0,02861 SE1_DIR ⁷ <i>Uz</i> (ft) 0,10489 0,13714	75 1_14 2 (9 a <i>So</i> (%) 27 17	9 (Mais anos) <i>Sg</i> (%) 27 43	0,00 s resis <i>ɛyz</i> (%) 0,00 0,00	0,05 stente <i>εzz</i> (%) 0,59 0,67	212) (°F) 572 572	σ1 (psi) 1340 1360	σ3 (psi) 1185 1197

		CAS	SE1_D	IR1_28 (I	Mais	resis	tente)			l		
				T ₁ (2 me	ses)		,					
	<i>∆σ'yy</i>	Δσyz	<i>P</i>	Uz	So	Sg	εyz	εzz	T			
	(psi)	(psi)	(psi)	(ft)	(%)	(%)	(%)	(%)	(°F)			
P _{1 (10.8)}	18	16	1310	0,08362	65	10	0,00	0,04	226			
P _{2 (10,5)}	59	108	1341	0,11039	43	13	0,00	0,21	419			
P _{3 (10,3)}	86	104	1343	0,11291	21	34	0,00	0,60	581			
P _{4 (4,4)}	0	8	1325	0,05443	76	9	0,00	0,05	210			
			CAS	SE1_DIR	1_28	(Mais	s resis	stente)			
			_	T	2 (9 a	inos)					
	Δσ'yy (nsi)	Δσyz (nsi)	P (nsi)	Uz (ft)	So (%)	Sg (%)	εyz (%)	εzz	7 (°F)	σ1 (nsi)	σ3 (nsi)	
	(por)	(poi)	(poi)	(11)	(70)	(70)	(70)	(70)	(')	(poi)	(poi)	
P _{1(10,8)}	101	22	1252	0,08034	29	25	0,00	0,47	571	1350	1240	
P _{2(10,5)}	113	107	1253	0,11720	18	43	0,00	0,50	572	1357	1249	
P _{3(10,3)}	111	103	1253	0,13710	17	43	0,00	0,65	572	1378	1251	
P _{4 (4,4)}	-9	197	1253	0,05198	76	9	0,03	0,03	196	1261	1122	
	 	CASE	1 DIR	1 42 (Ma	is res	sister	nte)			ľ		
		CASE	1_DIR	1_42 (Ma T ₁ (4 me	is res ses)	sister	nte)					
	Δσ'уу	CASE Δσyz	1_DIR P	1_42 (Ma T₁ (4 me <i>Uz</i>	is res ses) So	sister Sg	nte) εyz	εzz	Т			
	<i>Δσ'yy</i> (psi)	CASE Δσyz (psi)	1_DIR <i>P</i> (psi)	1_42 (Ma T ₁ (4 me <i>Uz</i> (ft)	is res ses) So (%)	sister Sg (%)	εyz (%)	εzz (%)	7 (°F)	, , ,		
	<i>Δσ'yy</i> (psi)	CASE Δσyz (psi)	1_DIR <i>P</i> (psi)	1_42 (Ma T ₁ (4 me <i>Uz</i> (ft)	is res ses) <i>So</i> (%)	Sg (%)	εyz (%)	εzz (%)	7 (°F)			
P _{1 (10,10)}	Δσ'yy (psi)	CASE Δσyz (psi)	1_DIR <i>P</i> (psi) 1348	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818	is res ses) So (%) 65	Sig (%)	εyz (%)	εzz (%) 0,04	7 (°F) 230			
P ₁ (10,10) P ₂ (10,6) P ₃ (10,6)	Δσ'yy (psi) 26 64	CASE Δσyz (psi) 19 63	1_DIR (psi) 1348 1381	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794	is res ses) <i>So</i> (%) 65 41	Sg (%) 10 14	εyz (%) 0,00 0,00	εzz (%) 0,04 0,02	7 (°F) 230 436			
P ₁ (10,10) P ₂ (10,6) P ₃ (10,3) P ₄ (14)	Δσ'yy (psi) 26 64 104	CASE Δσyz (psi) 19 63 96	1_DIR (psi) 1348 1381 1382	1_42 (Ma T₁ (4 me <i>Uz</i> (ft) 0,05818 0,09794 0,12011 0,05422	is res ses) So (%) 65 41 20 77	sister Sg (%) 10 14 36	te) εyz (%) 0,00 0,00 0,00	εzz (%) 0,04 0,02 0,65	τ (°F) 230 436 585 207			
P ₁ (10,10) P ₂ (10,6) P ₃ (10,3) P ₄ (4,4)	Δσ'yy (psi) 26 64 104 -1	CASE Δσyz (psi) 19 63 96 4	1_DIR (psi) 1348 1381 1382 1371	1_42 (Ma T₁ (4 me <i>Uz</i> (ft) 0,05818 0,09794 0,12011 0,05422	is res ses) <i>So</i> (%) 65 41 20 77	Sg (%) 10 14 36 8	te) εyz (%) 0,00 0,00 0,00 0,00	εzz (%) 0,04 0,02 0,65 0,04	7 (°F) 230 436 585 207			
P ₁ (10,10) P ₂ (10,6) P ₃ (10,3) P ₄ (4,4)	Δσ'γγ (psi) 26 64 104 -1	CASE Δσyz (psi) 19 63 96 4	1_DIR <i>P</i> (psi) 1348 1381 1382 1371 CAS	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 SE1_DIR	is res ses) So (%) 65 41 20 77	Sg (%) 10 14 36 8 (Mais	te) εyz (%) 0,00 0,00 0,00 0,00 0,00	<i>εzz</i> (%) 0,04 0,02 0,65 0,04	7 (°F) 230 436 585 207			I
P _{1 (10,10)} P _{2 (10,6)} P _{3 (10,3)} P _{4 (4,4)}	Δσ'γγ (psi) 26 64 104 -1	CASE Δσyz (psi) 19 63 96 4	1_DIR (psi) 1348 1381 1382 1371 CAS	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 SE1_DIR ² T:	is res ses) So (%) 65 41 20 77 1_42 2 (9 a	sister Sg (%) 10 14 36 8 (Mais	εyz (%) 0,00 0,00 0,00 0,00 s resis	<i>εzz</i> (%) 0,04 0,02 0,65 0,04 stente	7 (°F) 230 436 585 207)			
P1 (10,10) P2 (10,6) P3 (10,3) P4 (4,4)	Δσ'yy (psi) 26 64 104 -1	CASE Δσyz (psi) 19 63 96 4 Δσyz (psi)	1_DIR (psi) 1348 1381 1382 1371 CAS P (psi)	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 SE1_DIR ² T: Uz (ft)	is ress ses) So (%) 65 41 20 77 1_42 2 (9 a So (%)	Sg (%) 10 14 36 8 (Mais nos Sg (%)	εyz (%) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 (%)	εzz (%) 0,04 0,02 0,65 0,04 stente	7 (°F) 230 436 585 207) 7 (°F)	σ1 (psi)	σ3 (psi)	
P _{1 (10,10)} P _{2 (10,6)} P _{3 (10,3)} P _{4 (4,4)}	Δσ'γγ (psi) 26 64 104 -1 Δσ'γγ (psi)	CASE Δσyz (psi) 19 63 96 4 Δσyz (psi)	1_DIR (psi) 1348 1381 1382 1371 CAS P (psi)	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 SE1_DIR ⁺ T: Uz (ft)	is ress) So (%) 65 41 20 77 1_42 2 (9 a So (%)	Sg (%) 10 14 36 8 (Maisi Sg (%)	εyz (%) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 s resis εyz (%)	εzz (%) 0,04 0,02 0,65 0,04 etente εzz (%)	7 (°F) 230 436 585 207) 7 (°F)	σ1 (psi)	σ3 (psi)	
P ₁ (10,10) P ₂ (10,6) P ₃ (10,3) P ₄ (4,4) P ₁ (10,10)	Δσ'yy (psi) 26 64 104 -1 Δσ'yy (psi)	CASE Δσyz (psi) 19 63 96 4 Δσyz (psi) 19	1_DIR (psi) 1348 1381 1382 1371 CAS P (psi) 1252	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 SE1_DIR ⁻ T; Uz (ft) 0,05554	is ress) So (%) 65 41 20 77 1_42 2 (9 a So (%) 31	Sg (%) 10 14 36 8 (Mais 8 (Mais 9 (%) 22	tte) <i>Eyz</i> (%) 0,00 0,00 0,00 0,00 <i>s</i> resis <i>Eyz</i> (%) 0,00	εzz (%) 0,04 0,02 0,65 0,04 stente εzz (%) 0,04	7 (°F) 2300 436 585 207) 7 (°F) 569	σ1 (psi) 1372	σ3 (psi) 1254	
$\begin{array}{c} P_{1} (10,10) \\ P_{2} (10,6) \\ P_{3} (10,3) \\ P_{4} (4,4) \end{array}$ $\begin{array}{c} P_{1} (10,10) \\ P_{2} (10,6) \end{array}$	Δσ'γγ (psi) 26 64 104 -1 Δσ'γγ (psi) 107 109	CASE Δσyz (psi) 19 63 96 4 Δσyz (psi) 19 62	1_DIR P (psi) 1348 1381 1382 1371 CAS P (psi) 1252 1253	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 SE1_DIR ² T: Uz (ft) 0,05554 0,10471	is res ses) So (%) 65 41 20 77 1_42 2 (9 z So (%) 31 18	Sg (%) 10 14 36 8 (Maisis 8 (Maisis 8 (%) 22 42 42	tte) <i>Eyz</i> (%) 0,00 0,00 0,00 0,00 <i>Eyz</i> (%) 0,00 0,00	εzz (%) 0,04 0,02 0,65 0,04 tente εzz (%) 0,41 0,47	7 (°F) 230 436 585 207) 7 (°F) 569 572	σ1 (psi) 1372 1381	σ3 (psi) 1254 1273	
$\begin{array}{c} P_{1} (10,10) \\ P_{2} (10,6) \\ P_{3} (10,3) \\ P_{4} (4,4) \end{array}$ $\begin{array}{c} P_{1} (10,10) \\ P_{2} (10,6) \\ P_{3} (10,3) \end{array}$		CASE Δσyz (psi) 19 63 96 4 Δσyz (psi) 19 62 97	1_DIR P (psi) 1348 1381 1382 1371 CA3 P (psi) 1252 1253 1253	1_42 (Ma T ₁ (4 me Uz (ft) 0,05818 0,09794 0,12011 0,05422 3E1_DIR ⁻ T: Uz (ft) 0,05554 0,10471 0,13698	is res ses) S 0 (%) 65 41 20 77 1_42 2 (9 z S 0 (%) 31 18 17	Sg (%) 10 14 36 8 (Maissian os) Sg (%) 22 42 43	Eyz (%) 0,00 0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	εzz (%) 0,04 0,02 0,65 0,04 stente εzz (%) 0,41 0,42 0,41 0,42	7 (°F) 230 436 585 207) 7 (°F) 569 572 572	σ1 (psi) 1372 1381 1389	σ3 (psi) 1254 1273 1279	

A Tabela 4.5 apresenta os resultados da Figura 4.38 até a Figura 4.67.

Tabela 4.5. Resultados de diferentes parâmetros geomecânicos e de fluido para a rocha menos resistente e mais compressiva e um espaçamento vertical entre poços de 14, 28 e 42 ft

		CAS	E2_DI	R1_14 (N	lenos	s resi	stente	e)				
			-	T₁(1 m	iês)				-			
	<i>∆σ'yy</i> (psi)	<i>∆σyz</i> (psi)	P (psi)	Uz (ft)	So (%)	Sg (%)	εyz (%)	εzz (%)	7 (°F)			
P		0	4007	0.00040	64	40	0.04	0.44	004	- 		
P1 (10,6) D	8	10	1307	0,33012	04 24	20	0,01	0,41	231			
P4 (4 4)	-1	10	1320	0,23321	24 76	30 Q	0,00	2,75	212			
4 (4,4)		5	1500	0,00034	70	9	0,02	0,47	212			
			CAS	E2_DIR1	_14 (Men	os res	istent	e)			
	<i>∆σ'yy</i> (psi)	<i>∆σyz</i> (psi)	P (psi)	Uz (ft)	So (%)	Sg (%)	εyz (%)	εzz (%)	<i>Т</i> (°F)	σ1 (psi)	σ3 (psi)	
-			4050	0.50400		-	0.00	0.04	574	4054	40.44	
P _{1 (10,6)}	57	3	1252	0,50483	0	0	0,00	0,04	571	1351	1241	
Pa (4 4)	33	82	1204	0,07000	1	0	0,00	0,05	177	1263	1249	
4 (4,4)	-0	02	1200	0,30707	1	0	0,00	0,01	177	1205	1143	
		CAS	E2 DI	R1 28 (N	lenos	s resi	stente	e)		Ì		
				T ₁ (2 me	eses)							
	$\Delta \sigma' y y$	$\Delta \sigma yz$	P	Uz (ft)	So	Sg	εyz	EZZ	Т (°Е)			
	(psi)	(psi)	(psi)	(11)	(%)	(70)	(70)	(70)	(г)			
P _{1 (10,8)}	11	1	1305	0,40605	65	10	0,01	0,28	226			
P _{2 (10,5)}	27	9	1335	0,52209	43	14	0,01	1,32	421			
P _{3 (10,3)}	41	10	1337	0,49475	21	34	0,05	3,65	581			
4 (4,4)	2	4	1320	0,39402	70	9	0,01	0,51	210	l		
			CAS	E2_DIR1	_28 (Men	os res	istent	e)			
	Λσίνα	A'\/ 7	D	//7	2 (9 8	anos) SV7	677	τ	σ1	σ3	
			'	02	(%)	(04)	(0/.)	(%)	, (°F)	(nsi)	(nei)	
	(psi)	(psi)	(psi)	(ft)	(/-/	(70)	(70)	(/0)	. ,	(poi)	(psi)	
P _{1 (10,8)}	(psi)	(psi) 0	(psi) 1253	(ft) 0,38580	31	(<i>1</i> 0) 24	0,01	2,53	570	1349	1235	
P _{1 (10,8)} P _{2 (10,5)}	(psi)	(psi) 0 8	(psi) 1253 1254	(ft) 0,38580 0,56397	31 17	(76) 24 42	0,01 0,07	2,53 4,28	570 573	1349 1355	(psi) 1235 1242	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)}	(psi) 58 62 47	(psi) 0 8 3	(psi) 1253 1254 1255	(ft) 0,38580 0,56397 0,67864	31 17 17	(76) 24 42 41	0,01 0,07 0,10	2,53 4,28 4,66	570 573 573	1349 1355 1367	(psi) 1235 1242 1248	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)} P _{4 (4,4)}	(psi) (psi) 58 62 47 560	(psi) 0 8 3 39	(psi) 1253 1254 1255 1255	(ft) 0,38580 0,56397 0,67864 0,38740	31 17 17 77	(78) 24 42 41 8	0,01 0,07 0,10 0,05	2,53 4,28 4,66 0,73	570 573 573 184	1349 1355 1367 1251	1235 1242 1248 1150	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)} P _{4 (4,4)}	(psi) 58 62 47 560	(psi) 0 8 33 39 CAS	(psi) 1253 1254 1255 1255 E2 DI	(ft) 0,38580 0,56397 0,67864 0,38740 R1 42 (M	31 17 17 77	24 42 41 8	0,01 0,07 0,10 0,05	2,53 4,28 4,66 0,73	570 573 573 184	1349 1355 1367 1251	1235 1242 1248 1150	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)} P _{4 (4,4)}	13 yy (psi) 58 62 47 560	(psi) 0 8 3 3 9 CAS	(psi) 1253 1254 1255 1255 E2_DI	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a	31 17 17 77 Ienos	(70) 24 42 41 8 s resi	0,01 0,07 0,10 0,05 stente	2,53 4,28 4,66 0,73	570 573 573 184	1349 1355 1367 1251	1235 1242 1248 1150	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)} P _{4 (4,4)}	10 yy (psi) 58 62 47 560	(psi) 0 8 3 3 9 CAS Δσyz (psi)	(psi) 1253 1254 1255 1255 E2_DI P (psi)	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a <i>Uz</i> (ft)	31 17 17 77 17 77 1enos nos) So (%)	(%) 24 42 41 8 s resi Sg (%)	0,01 0,07 0,10 0,05 stente	2,53 4,28 4,66 0,73 2) <i>EZZ</i> (%)	570 573 573 184 <i>T</i> (°F)	1349 1355 1367 1251	1235 1242 1248 1150	
$P_{1 (10,8)} \\ P_{2 (10,5)} \\ P_{3 (10,3)} \\ P_{4 (4,4)} $	13 33 (psi) 58 62 47 560	(psi) 0 8 3 39 CAS Δσyz (psi) 3	(psi) 1253 1254 1255 1255 E2_DI P (psi) 1352	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a <i>Uz</i> (ft) 0,28509	31 17 17 77 18 10 17 77 19 10 10 10 10 10 10 10 10 10 10 10 10 10	24 42 41 8 s resi (%)	0,01 0,07 0,10 0,05 stente εyz (%)	2,53 4,28 4,66 0,73 2) <i>ɛzz</i> (%)	570 573 573 184 <i>T</i> (°F) 269	1349 1355 1367 1251	1235 1242 1248 1150	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)} P _{4 (4,4)} P _{1 (10,10)} P _{2 (10,6)}	13 37 (psi) 58 62 47 560 Δσ'yy (psi) 22 40	(psi) 0 8 3 39 CAS Δσyz (psi) 3 -9	(psi) 1253 1254 1255 1255 1255 E2_DI P (psi) 1352 1371	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a <i>Uz</i> (ft) 0,28509 0,47381	31 17 17 77 Menos So (%) 61 33	24 42 41 8 <i>Sg</i> (%) 10 18	0,01 0,07 0,10 0,05 stente εyz (%) 0,02 0,01	2,53 4,28 4,66 0,73 2) 2) 22 (%) 0,10 1,85	570 573 573 184 7 (°F) 269 532	1349 1355 1367 1251	1235 1242 1248 1150	
P _{1 (10,8)} P _{2 (10,5)} P _{3 (10,3)} P _{4 (4,4)} P _{1 (10,10)} P _{2 (10,6)} P _{3 (10,3)}	$ \begin{array}{c} 13.5 \\ (psi) \\ \hline 58 \\ 62 \\ 47 \\ 560 \\ \hline 260 \\ \hline 27 \\ 40 \\ 60 \\ \hline \end{array} $	(psi) 0 8 3 3 9 CAS Δσyz (psi) 3 -9 -4	(psi) 1253 1254 1255 1255 E2_DI <i>P</i> (psi) 1352 1371 1372	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a <i>Uz</i> (ft) 0,28509 0,47381 0,61552	31 17 17 77 17 77 17 77 10 (%) 61 33 19	24 42 41 8 5 resi Sg (%) 10 18 37	0,01 0,07 0,10 0,05 stente εyz (%) 0,02 0,01 0,01	2,53 4,28 4,66 0,73 ε) ε) ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε	570 573 573 184 7 (°F) 269 532 584	1349 1355 1367 1251	1235 1242 1248 1150	
$P_{1 (10,8)} \\ P_{2 (10,5)} \\ P_{3 (10,3)} \\ P_{4 (4,4)} \\ \\ P_{1 (10,10)} \\ P_{2 (10,6)} \\ P_{3 (10,3)} \\ P_{4 (4,4)} \\ \\ \\ \\ P_{4 (4,4)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	13 33 (psi) 58 62 47 560	(psi) 0 8 3 3 9 -4 47	(psi) 1253 1254 1255 1255 E2_DI P (psi) 1352 1371 1372 1368	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T₁ (2,5 a <i>Uz</i> (ft) 0,28509 0,47381 0,61552 0,38927	31 17 17 77 Menos So (%) 61 33 19 77	24 42 41 8 5 resi (%) 10 18 37 8	0,01 0,07 0,10 0,05 stente εyz (%) 0,02 0,01 0,02 0,01 0,02 0,01 0,03	2,53 4,28 4,66 0,73 ϵ_{zzz} (%) 0,10 1,85 4,00 0,50	570 573 573 184 7 (°F) 269 532 584 206	1349 1355 1367 1251	1235 1242 1248 1150	
$P_{1 (10,8)}$ $P_{2 (10,5)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$	10 yy (psi) 58 62 47 560 Δσ'yy (psi) 22 40 60 -3	(psi) 0 8 3 3 9 -9 -4 47	(psi) 1253 1254 1255 1255 E2_DI E2_DI 1352 1352 1371 1372 1368 CAS	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a <i>Uz</i> (ft) 0,28509 0,47381 0,61552 0,38927 E2_DIR1	31 17 17 77 Nenoss <i>So</i> (%) 61 33 19 77 42 (2 (9 :	24 42 41 8 5 resi (%) 10 18 37 8 Mennos	0,01 0,07 0,10 0,05 stente (%) 0,02 0,01 0,03 0,03 res res	2,53 4,28 4,66 0,73 (%) (%) 0,10 1,85 4,00 0,50 istent	570 573 573 184 7 (°F) 269 532 584 206 e)	1349 1355 1367 1251	1235 1242 1248 1150	
$P_{1 (10,8)}$ $P_{2 (10,5)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$	10 yy (psi) 58 62 47 560 Δσ'yy (psi) 22 40 60 -3 Δσ'yy (psi)	(psi) 0 8 3 3 9 -4 47 Δσyz (psi) Δσyz (psi)	(psi) 1253 1254 1255 1255 E2_DI P (psi) 1352 1371 1372 1368 CAS P (psi)	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T1 (2,5 a Uz (ft) 0,28509 0,47381 0,61552 0,38927 E2_DIR1 Uz (ft)	31 17 17 77 nos) So (%) 61 33 19 77 42 ((2 (9 : So (%)	24 42 41 8 5 resi (%) 10 18 37 8 Meno 8 8 Meno 8 5 9 (%)	(78) 0,01 0,07 0,10 0,05 stente (%) 0,05 0,01 0,01 0,01 0,03 0,01 0,03 0,05 res) <i>Eyz</i> (%)	2,53 4,28 4,66 0,73 2; (%) 0,10 1,85 4,00 0,50 istentt \$zzz (%)	570 573 573 184 7 (°F) 269 532 584 206 e) 7 (°F)	1349 1355 1367 1251	1235 1242 1248 1150 σ3 (psi)	
$P_{1 (10,8)}$ $P_{2 (10,5)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$	10 yy (psi) 58 62 47 560 Δσ'yy (psi) 22 40 60 -3 Δσ'yy (psi)	(psi) 0 8 3 3 9 -4 47 Δσyz (psi) 2	(psi) 1253 1254 1255 1255 E2_DI P (psi) 1352 1371 1372 1368 CAS P (psi) 1255 125	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T1(2,5 a Uz (ft) 0,28509 0,47381 0,61552 0,38927 E2_DIR1 Uz (ft) 0,26650	31 17 17 17 77 17 77 17 77 17 77 (%) 61 33 19 77 77 2(9): \$0 (%)	24 42 41 8 5 resi (%) 10 18 37 8 Menos Sg (%) 23	0,01 0,07 0,10 0,05 stente εyz (%) 0,02 0,01 0,02 0,01 0,02 0,01 0,03 cyz (%) (%) 0,02 0,01 0,03 cyz (%) 0,01	2,53 4,28 4,66 0,73 (%) (%) 0,10 1,85 4,00 0,50 istentt <i>Ezz</i> (%)	570 573 573 184 7 (°F) 269 532 584 206 e) 7 (°F)	1349 1355 1367 1251 1251 σ1 (psi)	(psi) 1235 1242 1248 1150 σ3 (psi)	
$P_{1 (10,8)}$ $P_{2 (10,5)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$	$ \begin{array}{c} 1379\\(\text{(psi)}\\58\\62\\47\\560\\\hline\\ \Delta \sigma' y \\(\text{(psi)}\\\hline\\ 22\\40\\60\\\hline\\ -3\\\hline\\ \Delta \sigma' y \\(\text{(psi)}\\\hline\\ 58\\\hline\\ 63\\\hline\\ 63\\\hline\end{array} $	(psi) 0 8 3 3 9 CAS Δσyz (psi) 3 -9 -4 47 Δσyz (psi) 2 3	(psi) 1253 1254 1255 1255 E2_DI P (psi) 1352 1371 1368 CAS P (psi) 1253 1254	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T ₁ (2,5 a <i>Uz</i> (ft) 0,28509 0,47381 0,61552 0,38927 E2_DIR1 T <i>Uz</i> (ft) 0,26659 0,50620	31 17 17 77 77 17 77 77 61 33 19 77 42 ((%) 2 (9 : \$So (%) 32 17	24 42 41 8 5 resi 5 (%) 10 18 37 8 8 Mennos Sg (%) 23 42	0,011 0,07 0,100 0,055 stente εyz (%) 0,021 0,011 0,033 ps ress eyz (%) 0,021 0,033 ps ress 0,031 0,033 eyz (%) 0,011 0,011 0,011 0,011	2,53 4,28 4,66 0,73 (%) (%) 0,10 1,85 4,00 0,50 0,50 0,50 1,33 4,07	570 573 573 184 7 (°F) 269 532 584 206 e) 7 (°F) 570 573	σ1 σ1 1355 1367 1251 1355 1367 1355 1367 1355	1235 1242 1248 1150	
$P_{1 (10,8)}$ $P_{2 (10,5)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$ $P_{3 (10,3)}$ $P_{4 (4,4)}$ $P_{1 (10,10)}$ $P_{2 (10,6)}$ $P_{3 (10,3)}$	10 yy (psi) 58 62 47 560 Δσ'yy (psi) 22 40 60 -3 Δσ'yy (psi) 58 63 50	(psi) 0 8 3 3 9 CAS Δσyz (psi) 3 -9 -4 47 Δσyz (psi) 2 3 4	(psi) 1253 1254 1255 1255 E2_DI P (psi) 1352 1371 1372 1368 CAS P (psi) 1253 1254 1253 1254 1253	(ft) 0,38580 0,56397 0,67864 0,38740 R1_42 (M T1 (2,5 a Uz (ft) 0,28509 0,47381 0,61552 0,38927 E2_DIR1 T Uz (ft) 0,26659 0,50620 0,68059	31 17 17 17 77 nos) So (%) 61 33 19 77 61 33 19 77 2(9): \$ \$ (%) 32 17 17	24 42 41 8 5 resi 5 resi 5 g (%) 10 18 37 8 8 Men 8 8 (%) 23 42 41	0,01 0,07 0,10 0,05 stente εyz (%) 0,01 0,02 0,01 0,01 0,02 0,01 0,02 0,01 0,03 εyz (%) 0,01 0,01 0,01 0,03	2,53 4,28 4,66 0,73 2 2 2 2 2 2 2 2 2 2 3 3 4,00 0,50 0 3 5 5 3 4,00 0,50 0 1,33 4,07 4,60	570 573 573 184 7 (°F) 269 532 584 206 e) 7 (°F) 570 573 573	1349 1355 1367 1251 1251	(psi) 1235 1242 1248 1150 σ3 (psi) 1236 1241 1252	

Onde:

 $\Delta \sigma' yy \equiv variação de esforços no plano horizontal$

 $\Delta \sigma yz \equiv$ variação da tensão cisalhante

 $P \equiv \text{pressão}$

 $U_Z \equiv$ variação do deslocamento no eixo Z

 $So \equiv$ variação da saturação de óleo

 $Sg \equiv$ variação da saturação de gás

 $\mathcal{E}yz \equiv$ variação da deformação cisalhante

 $\mathcal{EZZ} \equiv$ variação da deformação vertical

 $T \equiv temperatura$

- $\sigma 1 \equiv$ tensão principal maior
- $\sigma 3 \equiv$ tensão principal menor

4.3.3.

Interpretação dos resultados geomecânicos e propriedades dos fluidos

4.3.3.1.

Comparação entre o Caso 1 (rocha mais resistente e menos compressiva) e Caso 2 (rocha menos resistente e mais compressiva) para um espaçamento vertical entre poços de 14 ft

Variação dos esforços no plano horizontal.

Existe um maior incremento de esforços no plano horizontal na frente de vapor para o caso mais resistente após 9 anos de injeção de vapor (para 14 ft) quando comparado com o caso menos resistente. O incremento dos esforços no plano horizontal é devido principalmente à transferência de calor.

• Variação das tensões cisalhantes

O mesmo comportamento observa-se para a tensão cisalhante no plano YZ.

• Variação da pressão do reservatório

A pressão no reservatório muda muito pouco porque a pressão de injeção não seja muito alta quando comparada com a pressão média do reservatório.

Deslocamento no eixo Z

O caso 2 (menor resistência) apresenta um maior deslocamento vertical e abrange uma área maior (por tanto um maior volume). O valor é de até sete vezes maior quando comparado com o caso 1 (mais resistente), sendo um valor máximo da escala de variação de 0,827 ft e 0,155 para o caso 2 e 1, respectivamente.

• Saturação de óleo e gás

A variação das saturações de óleo e gás não é muito afetada pelas propriedades geomecânicas das rochas. Deve-se observar que embora exista uma variação de permeabilidade (através de multiplicadores de permeabilidade em função das tensões principais máxima e mínima) decidiu-se deixar a mesma vazão máxima de óleo (1200 STB/d) para poder comparar. No gráfico de pressão média do reservatório (FPR) o máximo valor de pressão está no inicio da injeção de vapor e toma aproximadamente três meses dos 9 anos de injeção contínua de vapor. Além disso, a pressão de injeção de vapor é baixa (*LPSAGD-Low Pressure Steam Assited Gravity Drainage*), o qual gera poucos efeitos geomecânicos (tais como incremento da deformação cisalhante) que melhorem as propriedades de fluxo da rocha (Collins 2004).

• Deformação cisalhante

Embora os valores de deformação cisalhante sejam maiores no caso 2 (rocha menos resistente) quando comparado com o caso 1 (rocha mais resistente), são valores baixos devidos à baixa pressão de injeção de vapor.

Deformação vertical

Embora os valores de deformação vertical sejam maiores no caso 2 (rocha menos resistente) quando comparado com o caso 1 (rocha mais resistente), são valores baixos devidos à baixa pressão de injeção de vapor.

• Temperatura

Não existem mudanças significativas da temperatura na frente e fora da frente de vapor. Esta variável depende principalmente da temperatura de injeção do vapor, da capacidade calorífica volumétrica e da condutividade térmica da rocha e dos fluidos contidos nos poros.

4.3.3.2.

Comparação entre o Caso 1 (rocha mais resistente e menos compressiva) e Caso 2 (rocha menos resistente e mais compressiva) para um espaçamento vertical entre poços de 28 ft

Variação dos esforços no plano horizontal

Apresenta um aumento no valor máximo do incremento de esforços no plano horizontal no caso 2 (menos resistente) da separação vertical de 28 ft para 14 ft (de 76 psi para 65 psi, respectivamente).

• Variação das tensões cisalhantes

Apresenta um aumento no valor mínimo e máximo do incremento da tensão cisalhante no caso 2 (menos resistente) da separação vertical de 28 ft para 14 ft. Isto se pode explicar devido ao fato de que quanto maior a separação vertical, maior o incremento do volume da câmara e, portanto maior o efeito do vapor na variação da tensão cisalhante na rocha.

• Diferencial de pressão do reservatório

A diferença no comportamento da pressão do reservatório é pouca já que a pressão de injeção é baixa.

Deslocamento no eixo Z

Não se apresentaram mudanças importantes quando comparados entre os casos mais e menos resistentes para o espaçamento vertical de 28 ft, e com os respectivos casos de menor espaçamento vertical entre poços (14 ft).

Saturação de óleo e gás

Não se apresentaram mudanças importantes quando comparados entre os casos mais e menos resistentes, e com o respectivo caso de menor espaçamento vertical entre poços (14 ft).

Deformação cisalhante

Embora os valores de deformação cisalhante sejam maiores no caso 2 (rocha menos resistente) quando comparado com o caso 1 (rocha mais resistente), são valores baixos devido à baixa pressão de injeção de vapor. Não existem grandes diferenças quando comparados com seus respectivos casos com espaçamento vertical entre poços (14 ft).

• Deformação vertical

Não se apresentaram mudanças importantes quando comparados entre os casos mais e menos resistentes, e com o respectivo caso de menor espaçamento vertical entre poços (14 ft).

• Temperatura

Não se apresentaram mudanças importantes quando comparados os casos mais e menos resistentes, e com o respectivo caso de menor espaçamento vertical entre poços (14 ft).

4.3.3.3.

Comparação entre o Caso 1 (rocha mais resistente e menos compressiva) e Caso 2 (rocha menos resistente e mais compressiva) para um espaçamento vertical entre poços de 42 ft

Variação dos esforços no plano horizontal

Existe um maior incremento de esforços no plano horizontal na frente de vapor para o caso mais resistente após 9 anos de injeção de vapor (para 42 ft) quando comparado com o caso menos resistente. O incremento dos esforços no plano horizontal é devido principalmente à transferência de calor. O valor mínimo e máximo da variação das tensões efetivas no plano horizontal são maiores quando comparados com os respectivos valores de 14 ft e 28 ft no seu respectivo caso.

Variação das tensões cisalhantes

Os valores de tensão cisalhante são maiores no caso mais competente ou resistente (caso 1) quando comparado com o caso menos competente o resistente (caso 2). Esperam-se esses resultados, pois a rocha mais competente apresenta uma maior resistência.

Variação da pressão do reservatório

Não existem diferenças importantes entre os valores de pressão no reservatório.

Deslocamento no eixo Z

Embora os valores de deslocamento vertical sejam maiores para a rocha menos resistente (caso 2) quando comparados com a rocha menos resistente (caso 1) (especialmente na frente de vapor), os valores são pequenos, não superando o valor de 1 ft.

Saturação de óleo e gás

Não existem diferenças significativas entre as saturações de óleo e gás entre as rochas mais e menos resistente.

Deformação cisalhante

Os valores de deformação cisalhante são maiores para a rocha menos resistente (como esperado) quando comparado com a rocha mais resistente, porém os valores são muito pequenos.

• Deformação vertical

Os valores de deformação vertical são maiores para a rocha menos resistente (especialmente na frente de vapor), o que é coerente, quando comparado com a rocha mais resistente, porém os valores são muito pequenos.

Temperatura

Não existem diferenças importantes na distribuição de temperatura entre o caso 1 (mais resistente) e o caso 2 (menos resistente).

4.3.4. Curvas de produção e pressão do reservatório

4.3.4.1.

Produção de fluidos e pressão do reservatório para a rocha mais resistente e menos compressível

Figura 4.68. Efeito do modelo *yield* (escoamento) e da variação da permeabilidade na produção acumulada de óleo para a rocha mais resistente

Figura 4.69. Efeito do modelo *yield* (escoamento) e da variação da permeabilidade na pressão do reservatório para a rocha mais resistente

Observa-se um maior incremento da produção acumulada de óleo devido ao modelo *yield* (escoamento), à variação da permeabilidade em função das tensões principais máxima e mínima, e ao maior espaçamento vertical entre poços. A vazão diária de produção máxima (1200 STBD) e a vazão de injeção de vapor (1881 STBD) foram mantidas constantes para poder comparar os resultados. A produção acumulada de óleo aumentou pouco porque os valores das tensões principais máxima e mínima (e por tanto os multiplicadores de permeabilidade) aumentaram pouco. A pressão média do reservatório não muda muito devido ao efeito da plasticidade porque a pressão de injeção é baixa e igual em todos os casos. Existe um pico de pressão média do reservatório maior quanto maior o espaçamento vertical entre poços, isto porque o vapor demora mais em chegar ao poço produtor quando o espaçamento entre poços é maior, o que é coerente.

4.3.4.2. Produção de fluidos e pressão do reservatório para a rocha menos resistente e mais compressiva

Figura 4.70. Efeito do modelo *yield* (escoamento) e da variação da permeabilidade na produção acumulada de óleo para a rocha menos resistente

Figura 4.71. Efeito do modelo *yield* (escoamento) e da variação da permeabilidade na pressão do reservatório para a rocha menos resistente

O comportamento da produção acumulada de óleo para a rocha menos resistente e mais compressiva apresenta-se um maior valor de óleo produzido no caso menos resistente devido ao fato de ser mais compressível. Já a pressão média do reservatório, a produção acumulada de óleo tem um comportamento

similar ao caso da rocha mais resistente e menos compressiva. Novamente, a produção acumulada de óleo aumentou pouco porque os valores das tensões principais máxima e minima (e por tanto os multiplicadores de permeabilidade) aumentaram pouco.

Figura 4.72. Efeito do modelo *yield* (escoamento) e da variação da permeabilidade na produção acumulada de óleo para a rocha mais e menos resistente

Figura 4.73. Efeito do modelo *yield* (escoamento) e da variação da permeabilidade na pressão média do reservatório para a rocha mais e menos resistente

Figura 4.74. Efeito da rotação de tensões *in-situ* na produção acumulada de óleo para a rocha mais resistente com modelo *yield* (escoamento) e separação vertical entre poços de 42 ft

Figura 4.75. Produção acumulada de óleo para diferentes espaçamentos verticais entre poços

Mantendo constante a separação vertical entre poços, quanto menos resistente a rocha, maior a produção de óleo (aproximadamente 30% de incremento da produção acumulada de óleo, conforme ilustra a Figura 4.72). Não existem diferenças importantes na pressão média do reservatório para um mesmo espaçamento vertical entre poços conforme ilustra a Figura 4.73.
O efeito da rotação das tensões *in-situ* iniciais é desprezível na produção acumulada de óleo, pois a anisotropia das tensões iniciais in-situ é só de 3% (Figura 4.74).

Quanto maior o espaçamento vertical entre poços, maior a produção acumulada de óleo, conforme ilustra a Figura 4.75, porque quanto maior o espaçamento, maior o crescimento da frente de vapor. Portanto, o avanço da frente de vapor drena mais óleo do reservatório.