4 MODELAGEM COM O FLAC

O FLAC é um programa bi-dimensional de diferenças finitas explícito para cálculos na engenharia. Este programa simula o comportamento de estruturas construídas de solo, rocha ou outros materiais que podem experimentar fluxo plástico quando o limite de escoamento é atingido. Os materiais são representados por elementos ou zonas, os quais formam uma malha que é ajustada pelo usuário para adequar à forma do objeto a ser modelado. Cada elemento se comporta de acordo com as leis de tensão-deformação linear ou não linear prescritas em resposta às forças aplicadas ou condições de contorno. O material pode escoar e fluir, e a malha pode deformar (no modo de grandes deformações) e mover-se com o material que é representado, o que a faz ideal para modelar liquefação em solos.

O método de cálculo Lagrangiano explícito e a técnica de zoneamento de discretização mista usados pelo FLAC, asseguram que o colapso plástico e o fluxo sejam modelados exatamente.

Apesar de que o FLAC ter sido desenvolvido originalmente para engenharia geotécnica e de mineração, o programa oferece uma ampla capacidade para solucionar problemas complexos em mecânica. Vários modelos constitutivos embutidos, que permitem a simulação de materiais altamente não lineares, resposta irreversível da geologia, são disponíveis. Além disso, o FLAC contém varias características especiais, incluindo:

- Elementos de interface para simular planos distintos ao longo do qual poderiam ocorrer deslizamentos e/ou separação;
- Modos de deformação plana, estado plano de tensões e geometria axissimétrica;
- Modelos para água subterrânea e adensamentos (totalmente acoplados) com cálculo da superfície freática;
- Modelo de elementos estruturais para simular suportes estruturais (ancoragem, estacas);

- Análise dinâmica opcional;
- Modelos viscoelástico e viscoplástico (creep) opcional;
- Modelagem termal opcional (e termal acoplado a modelo mecânico, tensões e poro-pressões);
- Modelo de fluxo de duas fases opcional, para simular o fluxo de dois fluidos que não se misturam (exemplo, água e gás) a través de um médio poroso; e
- Facilidade opcional para adicionar novos modelos constitutivos, definidos pelo usuário escritos em C++ e compilados como bibliotecas dinâmicas enlaçadas (DLLs) que possam ser carregadas quando necessárias.

Análises dinâmicas podem ser executadas com o FLAC, usando o módulo opcional de cálculo dinâmico. Aceleração, velocidade ou tensões de ondas, especificadas pelo usuário, podem ser ingressadas diretamente a um modelo qualquer, assim como condições de contorno externo ou uma excitação interna para o modelo. O FLAC contém condições de contorno silencioso, "free-field", para simular o efeito de um meio elástico infinito no contorno.

O cálculo, baseado no esquema de diferenças finitas explícita, soluciona a equação total de movimento, usando massas nos nós da malha derivadas da densidade real das zonas envolvente, no lugar de massas fictícias usadas para prover uma rápida convergência quando é requerida uma solução estática. A característica dinâmica permite acoplar modelos de elementos estruturais, para análise de interação solo-estrutura por movimento sísmico; e modelos de fluxo de água, que permite análises que envolvem mudanças da poropressão dependente do tempo associado com a liquefação.

4.1. Considerações da modelagem dinâmica

Para preparar um modelo FLAC para analises dinâmico, devem ser considerados três aspectos pelo usuário:

- 1. Carregamento dinâmico e condições de contorno;
- 2. Amortecimento mecânico; e

3. Transmissão da onda através do modelo.

4.1.1. Carregamento dinâmico e condições de contorno

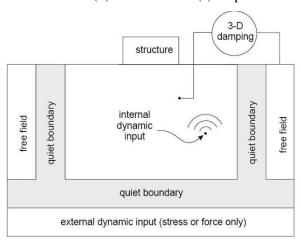
O carregamento dinâmico pode ser aplicado da seguinte forma:

- Uma historia de acelerações;
- Historia de velocidades;
- Historia de tensões; ou
- Uma historia de forças.

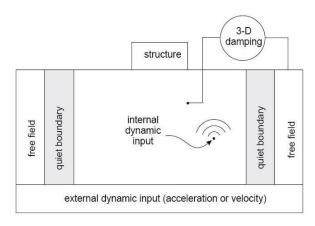
Estes dados são aplicados no contorno do modelo (comando *Apply*.) nos eixos *x* ou *y*. Acelerações, velocidades e forças também podem ser aplicadas nos nós interiores (comando *Interior*).

Quando a base do modelo é flexível, o registro do carregamento sísmico deve ser ingressado em historia de tensões ou força e ser aplicado um contorno silencioso. Para converter a velocidade de onda em tensões de onda se usa a seguinte fórmula:

$$\sigma_{n,s} = 2(\rho C_{p,s}) v_{n,s} \tag{4.1}$$


Onde

 $\sigma_{n,s}$ tensão normal (n) ou cisalhante (s) aplicada;


ρ peso específico da massa;

 $C_{p,s}$ velocidade da propagação de onda p ou s através do meio;

v_{n,s} velocidade normal (n) ou cisalhante (s) da partícula.

(a) Base Flexível

(b) Base Rígida

Figura 4.1 - Tipo de condições de contorno para carregamento sísmico disponível no FLAC

Em problemas dinâmicos as condições de contorno podem causar reflexão da propagação das ondas na saída do modelo e não permitir a radiação de energia necessária. O contorno viscoso desenvolvido por Lysmer e Kuhlemeyer (1969) é usado pelo FLAC (quiet), baseado no uso de molas independentes na direção normal e cisalhante no contorno do modelo.

Outro ponto a ser observado, é que os contornos laterais podem receber a ondas refletidas na estrutura colocada na superfície (exemplo, barragem) e refletilas. O FLAC tem incluído uma condição de contorno chamado "free field" que força os contornos laterais a absorver tais ondas.

Se um registro de aceleração ou velocidade é ingressado diretamente das medições de campo, o modelo FLAC pode exibir continuidade da velocidade o deslocamento residual depois que o movimento tenha finalizado. Isto é devido ao fato que a integral do registro completo tempo-historia não é zero, deverá então, ser realizado um processo de correção da linha base. A correção da linha base pode ser executada, determinando uma onda de baixa freqüência o qual, quando adicionado ao registro de historia real, produze um deslocamento final igual a zero. A onda de baixa freqüência poder ser uma função polinomial ou periódica, com parâmetros livres que são ajustados para dar os resultados desejados.

4.1.2. Amortecimento mecânico

Sistemas dinâmicos naturais contêm algum grau de amortecimento da energia de vibração dentro do sistema. Em solos e rochas, o amortecimento

natural e principalmente histerético, isto é, independente da frequência (Gemant e Jackson, 1973; e Wegel e Walther, 1935).

Este tipo de amortecimento é difícil para ser reproduzido numericamente (manual do Flac, 1995; Cundall, 1976), devido a dois problemas. Primeiro, muitas funções histeréticas simples não amortecem todos os componentes igualmente quando varias ondas são superpostas. Segundo, funções histeréticas levam a uma dependência da trajetória, o qual resulta difícil de interpretar.

O FLAC tem incorporado três funções de amortecimento:

- 1. Amortecimento Rayleigh;
- 2. Amortecimento local; e
- 3. Amortecimento histerético.

O amortecimento Rayleigh, comumente usado para definir amortecimentos que são aproximadamente independentes da freqüência numa faixa de freqüências. Este amortecimento é especificado no FLAC com os parâmetros de freqüência natural f_{min} em Hertz (ciclos por segundo) estimada do registro tempo historia de velocidade ou deslocamento; e a razão de amortecimento crítico, ξ_{min} , que para materiais geológicos comumente esta na faixa de 2 a 5%.

O amortecimento local trabalha adicionando ou subtraindo massas de um nó da malha ou nó estrutural num certo tempo durante um ciclo de oscilação, conservando a massa total. Incrementos de energia cinética são removidos, e essa quantidade ΔW é proporcional à máxima energia transiente de deformação W. A razão $\Delta W/W$ é independente da frequência e pode ser relacionada com a fração do amortecimento crítico D (Kolsky, 1963), obtendo o coeficiente de amortecimento local igual a $\alpha_L = \pi D$. Um valor de 5% de amortecimento crítico é usual para analises dinâmicos.

O amortecimento histerético permite funções de módulos e amortecimentos dependentes da deformação com código totalmente não linear. O FLAC tem incluído quatro funções para representar a variação de G/G_{max} com a deformação cíclica (dada em porcentagem), para a areia os parâmetros adotados para se ajustar aos dados de Seed Idriss (Método de equivalente linear) são os seguintes:

Default	Sig3	Sig4	Hardin
	a = 1.014	a = 0.9762	
$L_1 = -3.325$	a = 1.014 b = -0.4792	b = -0.4393	w -0.06
$L_2 = 0.823$		$x_0 = -1.285$	$\gamma_{\rm ref} = 0.06$
	$x_0 = -1.249$	$v_0 = 0.03154$	

Tabela 4.1 - Parâmetros do amortecimento histerético, ajustados para a linha superior da areia de Seed Idriss, 1970

O amortecimento histerético implementado no FLAC, provê quase nenhuma dissipação da energia a baixos níveis de deformação cíclica (Figura 4.2). Também, como pode ser notado nas curvas da Figura 4.3, o módulo de redução chega a ser zero para 10% da deformação cíclica, o que pode ocasionar um problema matemático durante o carregamento dinâmico.

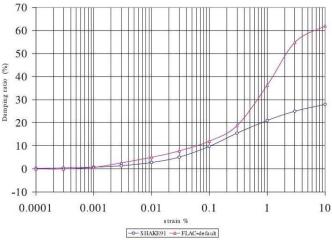


Figura 4.2 - Curva de valores de amortecimento versus deformação cíclica - Modelo default do histerético do FLAC e de Seed Idriss para uma areia.

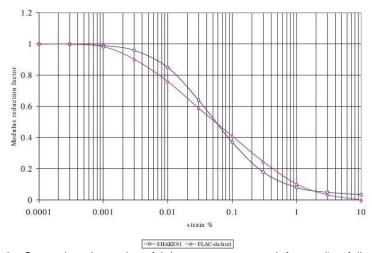


Figura 4.3 - Curva de valores do módulo secante versus deformação cíclica - Modelo default do histerético do FLAC e de Seed Idriss para uma areia.

4.1.3. Transmissão da onda a través do modelo

Numa análise dinâmica, distorções numéricas podem ocorrer em função das condições de modelagem. As freqüências das ondas de ingresso e as características do sistema poderiam afetar a precisão da transmissão de onda. Kuhlemeyer e Lysmer (1973) mostraram que para uma representação mais precisa da transmissão de onda dentro do modelo, o tamanho do elemento, Δl, deve ser menor que aproximadamente um décimo a um oitavo do comprimento de onda.

$$\Delta l \le \frac{\lambda}{10} \tag{4.2a}$$

Onde

$$\lambda = \frac{C_s}{f} \tag{4.2b}$$

C_s velocidade de cisalhamento da onda

f componente da frequência maior

Para sismos que alcancem uma velocidade de pico alta alcançada em pouco tempo, os requerimentos de Kuhlemeyer e Lismer podem necessitar uma malha espacial muito fina e passos de tempo pequenos, e conseqüentemente um consumo de memória e tempo extensos. Para tal efeito, o registro tempo historia é filtrado.

4.2. Considerações da modelagem para análises de estabilidade

O Flac ou o Flac/Slope (uma mini-versão do Flac projetada especificamente para o cálculo do fator de segurança para análises de estabilidade de taludes) provêm uma alternativa aos tradicionais programas de equilíbrio limite para determinar o fator de segurança. Códigos de equilíbrio limite usam um esquema aproximado, tipicamente baseado nos métodos das fatias, nas quais um número de assunções, são feitas (isto é, o ângulo e a localização das forças interfatias). Várias superfícies de rupturas são assumidas e testadas, e a que fornece o menor fator de segurança é escolhida. O equilíbrio é somente satisfeito num grupo de superfícies idealizadas.

Em contraste, o Flac provê uma solução total acoplada de tensão-deslocamento, equilíbrio e equações constitutivas. Dado um grupo de propriedades, o sistema é determinado para ser estável ou instável. Por desempenho automático uma serie de simulações, entanto as propriedades de resistência vão mudando (técnica de redução de resistência cisalhante), o fator de segurança pode ser encontrado para um correspondente ponto de estabilidade, e a superfície de ruptura crítica por ser localizado.

O Flac gasta mais tempo para determinar o fator de segurança do que um programa de equilíbrio limite. Porém, com o desenvolvimento de processadores de cálculo mais rápidos, as soluções podem ser obtidas num tempo razoável. Isto faz do Flac uma alternativa prática ao programa de equilíbrio limite, e provê vantagens sobre a solução de equilíbrio limite (Dawson e Roth (1999), e Cala e Flisiak (2001)):

- Qualquer modo de falha pode ser desenvolvido naturalmente, não tem necessidade de especificar um intervalo de superfícies de teste antecipado.
- Nenhum parâmetro artificial (como por exemplo, funções para ângulos de forças inter-fatias) é necessário ser fornecido como dado de ingresso.
- Múltiplas superfícies de rupturas (ou escoamentos complexos internos)
 são desenvolvidas naturalmente, se as condições dão para isso.
- Interação estrutural (tirantes, solos grampeados geomalhas, etc.) é modelada realisticamente como elementos se deformando totalmente acoplados, não como simples forças equivalentes.
- A solução consiste em mecanismos que são cinematicamente possíveis. (Note que o método de equilíbrio limite só considera forças, não cinemática).

No nosso projeto, se utilizou o Flac e não o Flac/Slope, devido à maior versatilidade de programar as condições reais do projeto.

4.2.1. Determinação do fator de segurança no FLAC

O fator de segurança pode ser determinado no Flac para qualquer parâmetro selecionado tomando a razão do valor calculado sob condições dadas sobre o valor na qual resulta em falha. Por exemplo:

$$F_{\rm w} = \frac{\text{nível da àgua que causa colapso}}{\text{nível da àgua atual}}$$

$$F_L = \frac{c \operatorname{arga aplicada que causa ruptura}}{c \operatorname{arga do projeto}}$$

$$F_{\phi} = \frac{\tan(\hat{a}ngulo\,de\,atrito\,atual)}{\tan(\hat{a}ngulo\,de\,atrito\,na\,falha)}$$

Note que o maior valor é sempre dividido pelo menor valor (assumindo que o sistema não falha sob as condições atuais). A definição de ruptura deverá ser estabelecida pelo usuário: uma comparação desta aproximação, baseada na redução da resistência para determinação do fator de segurança foi dado por Dawson e Roth (1999) e Dawson et al. (1999).

O método de redução da resistência para determinação do fator de segurança é implementado no Flac através do comando SOLVE fos. Nesta aproximação, a resistência do material é reduzida até ocorrer a falha do talude, ambos, ângulo de atrito e coesão são reduzidos simultaneamente por um fator constante, e as rodadas do Flac são automaticamente feitas com cada novo par de parâmetros da resistência até que o fator de segurança seja encontrado.

O ângulo de atrito reduzido é $\phi_r = \arctan(\tan\phi/f_s)$ e a coesão reduzida é $c_r = c/f_s$.

O procedimento usado pelo Flac durante a execução do SOLVE fos é: Primeiro o código encontra um "número representativo de passo" (denotado por Nr), com a qual caracteriza o tempo de resposta do sistema. N_r é encontrado ajustando a coesão para um grande valor, fazendo uma grande mudança nas tensões internas, e encontrando quantos passos forem necessários para que o

sistema retorne ao equilíbrio. Então um fator de segurança é dado, fs, e N_r passos são executados. Se a razão da força desbalanceada é menor que 10^{-3} , então o sistema esta em equilíbrio. Se a razão da força desbalanceada é maior que 10^{-3} , então outro N_r passos são executados, saindo do loop se a razão da força é inferior a 10^{-3} . O valor médio da razão da força, média calculada no intervalo atual de passos N_r, é comparado com a razão da força média dos passos prévios N_r. Se a diferença é menor que 10%, o sistema esta em não equilíbrio, e sai do loop com o novo fs. Se a diferença mencionada acima é maior que 10%, blocos de passos de N_r são continuados até: (1) a diferença ser menor que 10%, (2) quando são executados 6 de tais blocos, (3) a razão da força ser menor que 10^{-3} . A justificativa para o caso (1) é que a meia da razão da força é convergente para o valor constante que é maior que o correspondente ao equilíbrio, o sistema devera estar em movimento continuo.