4

Resultados e Discussões

4.1

Resultados e Discussões

Para cada um dos modelos descridos no capitulo anterior foram realizadas as estimativas dos seus respectivos parâmetros, bem como o teste necessário a sua aderência ao modelo utilizado. Para as estimativas dos parâmetros foi utilizado o programa *solver* do Excel e alguns testes foram realizados nos programas *Gretl* e *Minitab*.

4.2

Modelo Gaussiano puro (MRM puro)

Na tabela 4.1 podemos encontrar os resultados da estimação dos parâmetros para o modelo de reversão à média, ou o modelo Gaussiano puro.

Tabela 4.1: Parâmetros estimados do modelo Gaussiano Puro.

Parâmetros estimados

Velocidade de reversão	η	0,125
Média de Longo Prazo	θ	4,047
Volatilidade do Preço	ν	0,055

Fonte: Excel.

Os resultados apresentados na estimação dos parâmetros do modelo de reversão à média simples mostram um comportamento interessante, pois embora as curvas obtidas com os dados da pesquisa e a curva obtida com os dados estimados pelos parâmetros desse modelo estejam praticamente sobre postas, conforme podemos observar na figura 4.1, a média de longo prazo obtida pela modelagem empregada apresenta-se um pouco acima do que se imaginava, em

torno de 4,047, contra uma expectativa de média de 3,27, conforme podemos ver na Tabela 4.2.

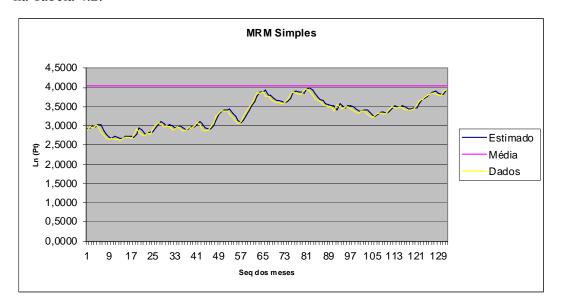


Figura 4.1: Gráfico dos Dados da pesquisa x Dados obtidos pelos parâmetros do modelo Gaussiano Puro.

Fonte: Excel

Por isso vamos propor uma simulação gráfica com a troca desse dado do modelo de reversão à média simples. Trocaremos a média obtida como parâmetro pela média dos dados obtida a partir da simulação de preços, fornecida pela equação do modelo.

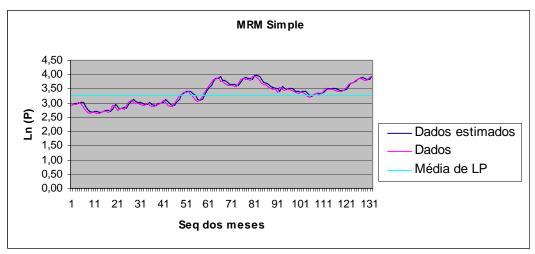


Figura 4.2: Gráfico dos Dados da pesquisa x Dados obtidos pelos parâmetros do modelo Gaussiano Puro.

Fonte: Excel

Tabela 4.2: Tabela Anova Ln(P) x MRM Puro

Anova:						
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
LN(P)	120	391,20	3,26	0,13		
MRM	120	394,68	3,28897	0,13		
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,05	1	0,05	0,37	0,53	3,88
Dentro dos grupos	31,66	238	0,13			
Total	31,71	239				

Fonte: Excel

Outro ponto de destaque é com relação ao resultado de 54% no valor-p da Tabela 4.2. Esse resultado testa a aderência dos modelos de reversão a média simples ao comportamento dos preços da soja do mercado brasileiro, o que não era esperado, dado que a revisão bibliográfica mostra que tal modelo costuma ter grande compatibilidade com o comportamento dos preços das commodities em geral.

4.3 Modelo de Poisson –Gaussiano (MRM com saltos)

Na tabela 4.3 podemos encontrar os resultados da estimação dos parâmetros para modelo Poisson-Gaussiano.

Tabela 4.3: Parâmetros estimados do modelo Poisson - Gaussiano

Velocidade de reversão	η	0,125
Média de Longo Prazo	θ	3,444
Volatilidade do Preço	v^2	0,049
Valor esperado do Salto	μ	0,006
Variância da amplitude do Salto	γ^2	0,001
Probabilidade de ocorrência de salto	q	0,030

Parâmetros estimados

Fonte: Excel.

Podemos observar, através dos resultados obtidos na tabela 4.3, uma baixa probabilidade de ocorrência de saltos, q = 0,03 ou 3%. Conforme, acreditávamos, dado a análise da estatística descritiva dos dados da pesquisa, tabela 3.1.

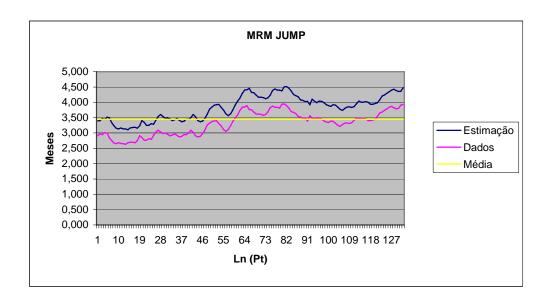


Figura 4.3: Gráfico dos Dados da pesquisa x Dados obtidos pelos parâmetros do modelo Poisson –Gaussiano:

Fonte: Excel

Através do gráfico da figura 4.3, podemos observar que o não há a presença de picos na figura que identifique a presença de saltos.

Tabela 4.4: Tabela Anova Ln(P) x Poisson Gaussiano:

Anova:						
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
LN(P)	120	391,20	3,26	0,13		
MRM JUMP	120	454,05	3,78	0,15		
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	16,46	1	16,46	115,03	3,76E-22	3,88
Dentro dos grupos	34,05	238	0,14			
Total	50,50	239				

Fonte: Excel

O resultado do modelo de reversão a média com saltos mostrou um baixo desempenho quando comparado os dados brutos e os estimados, conforme podemos constatar através do resultado do valor-p apresentado na tabela 4.4.

4.4 Modelo Gaussiano puro ARCH

Os resultados dos parâmetros do modelo Gaussiano puro ARCH estão expostos na tabela 4.5. Trata-se da estimação de parâmetros para o modelo de reversão à media, onde a volatilidade não é tratado como uma constante, mas como um parâmetro que varia conforme um modelo ARCH.

Tabela 4.5: Parâmetros estimados do modelo Gaussiano puro (ARCH)

Parâmetros a serem estimados					
Velocidade de reversão	n	0,193			
Média de Longo Prazo	θ	3,577			
	\mathbf{a}_0	0,038			
	$\mathbf{a_1}$	3,839			

Fonte: Excel.

O gráfico da figura 4.4 mostra que o comportamento da série de preços obtidos com os parâmetros do modelo Gaussiano puro ARCH, é muito semelhante ao comportamento da série histórica dos preços utilizada como dados para a pesquisa.

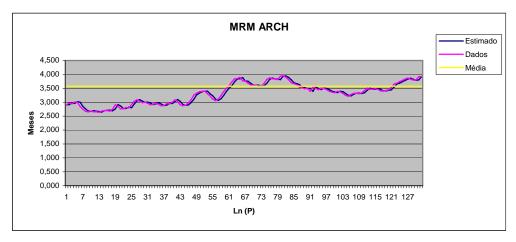


Figura 4.4: Gráfico dos Dados da pesquisa x Dados obtidos pelos parâmetros do modelo Gaussiano puro (ARCH).

Tabela 4.6: Tabela Anova Ln(P) x Gaussiano puro (ARCH)

Anova:						
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
LN(P)	120	391,20	3,26	0,13		
MRM ARCH	120	391,27	3,26	0,13		
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	1,95E-05	1	1,95E-05	0,0001	0,99	3,88
Dentro dos grupos	31,24	238	0,13			
Total	31,24	239				

Fonte: Excel.

O resultado do modelo de reversão à média ARCH foi o que proporcionou melhor desempenho a série, conforme podemos verificar, na tabela 4.6, através do resultado do valor-p de 99%.

Este resultado nos dá fortes indícios de que devemos dar maior atenção ao tratamento da volatilidade no processo de modelagem do comportamento dos preços da *commodity* estudada.

4.5 Modelo Gaussiano puro GARCH

Os resultados dos parâmetros do modelo Gaussiano puro GARCH estão expostos na tabela 4.7. Assim como no modelo anterior, trata-se da estimação de parâmetros para o modelo de reversão à media, onde a volatilidade não é tratado como uma constante, mas como um parâmetro que varia conforme um modelo GARCH.

Tabela 4.7: Parâmetros estimados do modelo Gaussiano puro (GARCH)

Parâmetros a serem estimados				
Velocidade de reversão	η	0,144		
Média de Longo Prazo	θ	3,860		
	$\mathbf{a_0}$	0,048		
	$\mathbf{a_1}$	1,000		
	$ \mathbf{a}_2 $	0,000		

Conforme podemos observar no gráfico da figura 4.5, a curva obtida pelos parâmetros obtidos no modelo Gaussiano puro GARCH também oferecem um comportamento muito semelhante a série de dados utilizado na pesquisa.

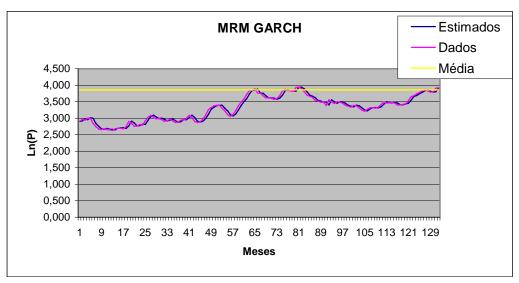


Figura 4.5: Gráfico dos Dados da pesquisa x Dados obtidos pelos parâmetros do modelo Gaussiano puro (GARCH).

Conforme podemos verificar na tabela 4.8, a aderência desse modelo aos resultados obtidos é muito alto, com 96% de resultado do valor-p.

Tabela 4.8: Tabela Anova Ln(P) x Gaussiano puro (GARCH).

Anova:						
RESUMO						
Grupo	Contagem	Soma	Média	Variância		
LN(P)	120	391,20	3,26	0,13		
MRM GARCH	120	391,50	3,26	0,13		
ANOVA						
Fonte da variação	SQ	gl	MQ	F	valor-P	F crítico
Entre grupos	0,0003	1	0,0003	0,002	0,96	3,88
Dentro dos grupos	31,35	238	0,13			
Total	31,36	239				

O modelo de reversão à média GARCH também mostrou um excelente resultado com relação aos dados utilizados na pesquisa. No entanto, seus resultados não superaram os obtidos pelo modelo de reversão à média ARCH.

Para o teste comparativo de aderência dos modelos foram realizados alguns cálculos de medida de erro, como: a média dos erros quadráticos (*Root Mean Squared Error – RMSE*) e o teste da média dos desvios absolutos (*Mean Absolute Deviation – MAD*).

Tabela 4.9: Tabela de Aderência dos Testes.

MRM	JUMP	ARCH	GARCH
0,32	5,73	<mark>0,006</mark>	0,03
0,023	0,52	0,00057	0,002

Fonte: Tabela calculada no Excel com os resultados obtido da estimação dos parâmetros.

Pelos resultados do *valor–p* obtidos nas tabelas 4.2, 4.4, 4.6 e 4.8, o modelo que apresentou o melhor desempenho foi o modelo Gaussiano puro (ARCH), com 99% ¹²de probabilidade de a hipótese nula está correta, conforme pode ser comprovado no teste de aderência realizado, cujo melhor resultado também foi o modelo ARCH.

 $Root\ Mean\ Squared\ Error\ (RMSE) = \sqrt{\sum_{i=1}^{T}(s\acute{e}rie_{i} - previs\~ae_{i})^{2}}$

¹¹Mean Absolute Deviation (MAD) = $\frac{\sum_{t=1}^{T} \left| (s\acute{e}rie_t - previs\~ao_t) \right|}{T}$

¹² Resultado obtido na tabela 4.6