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Abstract

Foiny, Damien; Sampaio Filho, Rubens (Advisor); de Queiroz
Lima, Roberta (Co-Advisor). Coupled Systems in Mechanics :
Fluid Structure Interactions. Rio de Janeiro, 2017. 141p. Dis-
sertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro.

Fluid-structure interactions are very common in mechanical and civil
engineering because many structures, as bridges, offshore risers, transmis-
sion lines or wind turbines are directly in contact with a fluid, which can
be air, which will be source of wind, or water, which will perturb the struc-
ture through waves. An important role of the engineer is to prevent struc-
ture failure due to instabilities created by the fluid-structure interactions.
This work will first present all the basic concepts needed for the study of
fluid-structure interaction problems. Thus, a dimensional analysis of those
problems is performed and also all the equations governing such cases are
presented. Then, thanks to the dimensional analysis made, a classification of
problems, namely based on the reduced velocity, can be done and some con-
clusions concerning the consequences of the fluid-structure interactions can
be drawn in terms of stability or, which is more interesting, instability. In-
deed, using simplified models one can show static and dynamic flow-induced
instabilities that may be critical for the structure. The final parts of the work
will present a specific non-linear structure, a suspension bridge. First the
formulation of a simplified one-dimensional model is explained and then, th-
rough a finite element discretization, a dynamical study is performed. Also,
some conclusions are made concerning the dynamic of suspension bridges.
The last part of this work presents a method that was an important source
of publication for us, the Smooth Decomposition method.

Keywords
Fluid-Structure Interactions; Smooth Decomposition; Coupled Systems;

Suspension Bridge;
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Resumo

Foiny, Damien; Sampaio Filho, Rubens; de Queiroz Lima, Ro-
berta. Sistemas Acoplados emMecânica : Interações Fluido-
Estrutura. Rio de Janeiro, 2017. 141p. Dissertação de Mestrado
– Departamento de Engenharia Mecânica, Pontifícia Universidade
Católica do Rio de Janeiro.

As interações fluido-estrutura são muito comuns na engenharia mecâ-
nica e civil porque muitas estruturas, como pontes, plataformas de petróleo,
linhas de transmissão ou turbinas eólicas, estão diretamente em contato com
um fluido, que pode ser o ar, no caso de vento, ou água, que irá perturbar a
estrutura através de ondas. Um papel importante do engenheiro é prevenir
a falha da estrutura devido às instabilidades criadas pelas interações fluido-
estrutura. Este trabalho apresentará em primeiro lugar todos os conceitos
básicos necessários para o estudo de problemas de interação fluido-estrutura.
Assim, é realizada uma análise dimensional visando classificar os proble-
mas de fluido-estrutura. A classificação é baseada na velocidade reduzida,
e algumas conclusões sobre as conseqüências das interações fluido-estrutura
podem ser feitas em termos de estabilidade ou, o que é mais interessante,
de instabilidade. De fato, usando modelos simplificados, pode-se mostrar
instabilidades estáticas e dinâmicas, induzidas por fluxo, que podem ser
críticas para a estrutura. As partes finais do trabalho apresentarão uma
estrutura não-linear específica, uma ponte suspensa. Primeiro, a formula-
ção de um modelo simplificado unidimensional é explicada e, em seguida,
através de uma discretização por elementos finitos, é realizado um estudo
dinâmico. Além disso, algumas conclusões são apresentadas sobre a dinâ-
mica das pontes suspensas. A última parte deste trabalho apresenta um
método que foi uma importante fonte de publicação para nós, o método de
decomposição regular.

Palavras-chave
Interações Fluido-Estrutura; Decomposição Regular; Sistemas Acopla-

dos; Ponte suspensa;

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Table of contents

1 Introduction 13

2 Fluid-structure interactions 16
2.1 Dimensional analysis 16
2.1.1 Buckingham’s Pi-theorem 17
2.1.2 Dimensions and dimensional homogeneity 18
2.1.3 Some common dimensionless numbers 23
2.1.4 Dimensionless variables in the fluid domain 25
2.1.5 Dimensionless variables in the solid domain 27
2.1.6 Dimensionless variables for the coupled fluid-solid system 29
2.2 Standard equations for the fluid, the solid domains and the interface 30
2.2.1 Fluid equations 30
2.2.2 Solid equations 33
2.2.3 Interface equations 34

3 Classification of fluid-structure interaction problems 37
3.1 Small reduced velocity: still fluid 37
3.1.1 Added stiffness 41
3.1.2 High Stokes number: the added mass effect 42
3.1.3 Low Stokes number: the added damping effect 43
3.1.4 Intermediate Stokes number: the memory effect 45
3.2 High reduced velocity: fixed solid 45
3.2.1 Flow-induced static instability with single mode approximation 47
3.2.2 Flow-induced dynamic instability with two modes approximation 49
3.3 Intermediate reduced velocity: a flow-induced dynamic instability 54
3.4 Conclusions on the fluid-structure interaction consequences 56

4 Numerical models for suspension bridges 59
4.1 Introduction 59
4.2 One-dimensional models 60
4.2.1 Linear beam equation 61
4.2.2 Cable under vertical loads 62
4.2.3 Model of suspension bridge using beam and cable 63
4.2.4 Additional tension in the cable 65
4.2.5 Dynamic equation 67
4.2.6 Restriction on the additional tension in the cable 68
4.2.7 General stiffness factor 68
4.3 Fish-bone beam model 69
4.4 Models with interacting oscillators 70
4.5 Plate models 70

5 Finite element method and dynamic response analysis 71
5.1 Weak formulation 71
5.2 Weighted residual methods: Galerkin method 72

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



5.3 Weak formulation of the equation of the one-dimensional model 73
5.4 Elementary functions 75
5.5 Change of coordinates, from global to local 77
5.6 Integration using the Gaussian quadrature 78
5.7 Modal analysis 78
5.8 Dynamic response analysis through normal modes 79
5.9 Dynamic response analysis through the Newmark-beta method 80
5.10 Algorithm used for the simulations 83
5.11 Validation of the Matlab routine 84
5.11.1 Linear case of a hinged-hinged beam 84
5.11.2 Linear case of a hinged-hinged beam with axial tension 87
5.11.3 Non-linear case, one-dimensional model for suspension bridge 89

6 Simulations of the non-linear model with added stiffness 94
6.1 Definition of the excitation 94
6.2 Simulation of a hinged-hinged beam with added stiffness 95
6.3 Simulation of the non-linear model with added stiffness 97

7 Energy partition with the Smooth Orthogonal Decomposition 100
7.1 Introduction 100
7.2 Description of the Smooth Decomposition 101
7.2.1 Decomposition principle 101
7.2.2 Expansion Principle 103
7.2.3 Energetic point of view 104
7.3 Smooth Decomposition for modal analysis 105
7.4 Application of Smooth Decomposition on a non-linear model 107

8 Conclusions 110

Bibliography 112

A Dynamical Systems Identification with Smooth Decomposition - Article
published for DINAME2017 117

B Operational modal analysis under wind load using stochastic sub-space
identification - Article published for DINAME2017 119

C The Robust Smooth Orthogonal Decomposition Method for Operational
Modal Analysis - Article published for IOMAC2017 121

D Dynamical System Identification and Modal Analysis using Smooth
Decomposition - Article submitted to Scientist Review 123

E Comparison of the modal identification of a test rig of a suspension
bridge using ouput-only methods - Abstract written for COBEM 2017 125

F Matlab Codes 127

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



List of figures

Figure 1.1 Diagram of the principle of fluid-solid interactions. 14

Figure 2.1 Simple 1-dof mass spring forced system. 20
Figure 2.2 Cylinder in a cross flow. 22
Figure 2.3 Evolution of the fluid topology in relation to the

Reynolds number. 24

Figure 3.1 Left: Simple mass-spring system in a cross-flow / Right:
Evolution of the frequency of the system with respect to the
upstream velocity 49

Figure 3.2 Time evolution of q1 and q2 and phase diagram in the
q1q2-plane for the stable case, ε = 0.1. 53

Figure 3.3 Time evolution of q1 and q2 and phase diagram in the
q1q2-plane for the unstable case, ε = 0.1. 53

Figure 4.1 Classical view of suspension bridge. 59
Figure 4.2 Schematic view of a one-dimensional model of suspension

bridge 61
Figure 4.3 Beam sustained by a cable through parallel hangers. 63
Figure 4.4 Schematic view of a fish-bone model of suspension bridge 69
Figure 4.5 Schematic view of a plate model of suspension bridge 70

Figure 5.1 Local coordinate system. 76
Figure 5.2 Hermite functions on the elementary domain. 77
Figure 5.3 Algorithm used for the simulations. 83
Figure 5.4 Power Spectral Density on a hinged-hinged beam using

the routine. 85
Figure 5.5 Evolution of w(x) along the time (captured at 2µ),

µ = 4.5776Hz. 86
Figure 5.6 Evolution of w(x) along the time (captured at 5µ),

µ = 18.3106Hz. 86
Figure 5.7 Power Spectral Density on a hinged-hinged beam with

axial tension using the routine. 88
Figure 5.8 Evolution of w(x) along the time (captured at 2µ),

µ = 6.7097Hz. 88
Figure 5.9 Evolution of w(x) along the time (captured at 5µ),

µ = 20.7734Hz. 89
Figure 5.10 Normalized max. disp. dmax against µ and λ for C1/C2 =

1.0. 90
Figure 5.11 Normalized max. disp. dmax against µ and λ for C1/C2 = .1. 91
Figure 5.12 Normalized max. disp. dmax against µ and λ for C1/C2 =

.01. 91
Figure 5.13 Normalized max. disp. dmax against µ and λ for C1/C2 =

.01. 92

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Figure 6.1 Case with C1 = 0.5, C2 = 0.5, C3 = 0, C4 = 0. Left-top:
p% = 0,1% / Right-top: p% = 0,2% / Left-bottom: p% = 0,4%
/ Right-bottom: p% = 1,0% 96

Figure 6.2 Case with C1 = 0.05, C2 = 0.5, C3 = 1, C4 = 1. Left-top:
p% = 0% / Right-top: p% = 0,1% / Left-bottom: p% = 0,4% /
Right-bottom: p% = 1,0% 98

Figure 6.3 Case with C1 = 0.005, C2 = 0.5, C3 = 1, C4 = 1. Left-
top: p% = 0% / Right-top: p% = 0,1% / Left-bottom: p% =
0,4% / Right-bottom: p% = 1,0% 98

Figure 7.1 Case with C1 = 0.5, C2 = 0.5, C3 = 1, C4 = 1. Left:
Evolution of the modal energy (%) of each identified mode with
respect to s0 / Right: Evolution of the identified frequencies
with respect to s0. 108

Figure 7.2 Case with C1 = 0.05, C2 = 0.5, C3 = 1, C4 = 1. Left:
Evolution of the modal energy (%) of each identified mode with
respect to s0 / Right: Evolution of the identified frequencies
with respect to s0. 108

Figure 7.3 Case with C1 = 0.005, C2 = 0.5, C3 = 1, C4 = 1. Left:
Evolution of the modal energy (%) of each identified mode with
respect to s0 / Right: Evolution of the identified frequencies
with respect to s0. 109

Figure 7.4 Case with C1 = 0.0005, C2 = 0.5, C3 = 1, C4 = 1. Left:
Evolution of the modal energy (%) of each identified mode with
respect to s0 / Right: Evolution of the identified frequencies
with respect to s0. 109

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



List of tables

Table 2.1 Dimension table of class Length-Mass-Time. 19
Table 2.2 Dimension table of class LMT for the mass-spring system. 20
Table 2.3 Dimension table of class LMT for a flow around a cylinder. 22
Table 2.4 Dimension table of LMT -class for the fluid domain. 26
Table 2.5 Dimension table of class LMT for the solid domain. 28

Table 5.1 Table for the Gaussian quadrature method with four points. 78
Table 5.2 Natural frequencies of a hinged-hinged beam. 85
Table 5.3 Natural frequencies of a hinged-hinged beam with axial

tension. 87

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



1
Introduction

Solid structures as bridges, buildings, offshore risers, transmissions lines,
wind or marine current turbines and so on, are directly in contact with fluid,
which could be water, air or both of them. These fluids are generally in
motion and create fluid flows such as waves or wind. Those flows can then
generate forces called flow-induced forces and also vibrations (as said in[38] or
in [49]), flow-induced vibrations. One can generalize these phenomena under
the terminology flow-induced instabilities. As for any mechanical system, these
forces and vibrations may be of small or large amplitude which can be source
of different type of damage [15], from fatigue and fretting wear (in the case
of small amplitude forces and vibrations), which will occur in the long term,
to other consequences in a much shorter term in the case of large forces and
vibrations. In both cases, these damages can lead to dramatic consequences
for the structure and the most radical one is the collapse of the structure.

In many cases, before the collapse of the structure one has observed
a brutal and sudden change in the behavior of the structure dynamic. This
phenomena can be explained if one considers self-excited vibrations. Indeed, on
one side of the flow velocity threshold, the structure dissipates the instabilities
and its dynamic is not really impacted, when, on the other side of this
threshold, these instabilities may grow and the dynamic of the structure is
completely different. Thus, understand how this kind of phenomena appears
is really important considering the damage they can cause.

The main source of flow-induced instabilities is related to cross-flow, when
the flow is normal to the long axis of the structure. The particularity of cross-
flow-induced instabilities is that they occur in natural conditions (e.g. wind
for flexible bridges, waves for offshore risers) and not necessary for extreme
natural conditions such as strong winds, hurricanes or huge waves. Indeed, if
the structure was not well designed, standard conditions of wind and waves
can create cross-flow-induced instabilities. This is the reason why engineers
and designers involved in such projects need to know all the concepts behind
fluid-structure interactions.
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Figure 1.1: Diagram of the principle of fluid-solid interactions.

First of all, one should remind how fluid-solid or fluid-structure interac-
tions occur in coupled systems (as said in [53]). Usually, this kind of interac-
tions is represented as an infinite circle (see Fig.1.1) made of four main parts:
the solid domain, the fluid domain, the fluid forces acting on the solid and
the solid forces acting on the fluid through the motion of the solid. To better
explain this process, one can take a simple example. Considering for instance a
garden hose with water flow inside, the different steps can be identified. First
the fluid flow will create a force on the tube of the hose. Due to this fluid force,
the hose will be deformed and thus the dynamic of the solid domain will be
impacted. This deformation will thus affect the fluid-solid interface which will
be different. This modification of the interface will finally perturb the fluid
flow and so on. This is a simple example of the whole process of fluid-solid
interaction problems.

All this problem is governed by differential equations and some sets of
boundary conditions which are presented later in this discussion. The objective
of this dissertation is, for the first part, to present some basic concepts of
fluid-structure interactions in terms of dimensional analysis which will lead to
dimensionless variables and some dimensionless numbers. Also, in this part, one
will find the equations governing general fluid-structure interactions problems.

Then, in the second chapter, for different situations and conditions
of fluid-structure interactions systems, some consequences and characteristic
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Chapter 1. Introduction 15

phenomena will be presented. Thus, several cross-flow-induced instabilities
will appear and their causes are going to be explained. The influence of
some characteristic dimensionless numbers is taken as comparison base and
a classification of fluid-solid interaction problems can be done.

Usually, fluid-structure interactions can be classified into different types
depending on various characteristic non-dimensional numbers of the system.
This will be better explained in the second chapter, but, basically, according
to the common classification, the characteristic non-dimensional numbers of
the system will define if the coupling between the fluid and structure is weak
or strong. Depending on this consideration, several assumptions can be made.

After describing in detail the basic concepts of fluid-structure interac-
tions, one will focus on a numerical case. The fourth chapter of the dissertation
will present a numerical model of a suspension bridge which is a structure that
can suffer from fluid-structure interactions. This type of mechanical system
is quite interesting because it can be modeled in a relatively simple way and
because some non-linearities should be considered. One of the objectives of
this dissertation is to observe the influence of the non-linearities on the mo-
tion of the structure. The fifth chapter will remind some basic concepts of the
finite element formulation that will be used to solved the mechanical system
presented in the fourth chapter. Then the sixth chapter will focus on some
simulations and some conclusions will be drawn, namely concerning the non-
linearity of the system. Also, a representation of a fluid-structure interaction
phenomenon will be investigated for several conditions of the non-linearity in
the system. Finally, the last chapter will focus on the energy partition during
the simulations. To do this, a modal analysis tool that works for non-linear
systems may be used. Thus, one proposes to use the Smooth Decomposition
method. This method was an important topic of our research during the last
past years at the Laboratory.

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



2
Fluid-structure interactions

In order to start on solid basis the study of fluid-structure interactions,
one should start with a fundamental tool for this kind of problem, the dimen-
sional analysis. After this, the equations relative to fluid-structure interactions
problem are discussed. For this chapter the theory is based namely on [3] and
[61].

2.1
Dimensional analysis

In order to better understand and investigate the interactions between
fluid and structure or fluid and solid, one could be interested in simplify
the problems. Dimensional analysis (presented in [35]) is a powerful tool to
classify problems. It is very helpful for such classifications according to some
dimensionless numbers. This part will explain and present the dimensional
analysis and its application for several problems. The discussion is based on
[19] and [61] for the theory of the method and also for its application on the
specific case of fluid-structure interaction problems.

The objective of this method is to simplify the formulation of the problem
and its equations. This method consists of reducing the number of variables in
the problem taking care of the dependence between them. This is very common
in fluid mechanics problems.

To apply this method one can follow some basic steps. To begin, one
needs to identify the variables which are relevant for describing the problem
and then relate them to the physical laws that govern the system. Of course,
one important step of the procedure consists of identifying the variables or
parameters that will be the most relevant to observe the results, discuss and
interpret the solutions of the problem.

One important and essential tool for this method is the Pi-Theorem (also
called π-Theorem or Buckingham’s Pi-Theorem). This formulation will lead to
dimensionless numbers, that will allow a classification of problems. With this
classification it is possible to identify some characteristic phenomena and thus
do some simplifications.

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Chapter 2. Fluid-structure interactions 17

2.1.1
Buckingham’s Pi-theorem

This method and this theorem state the number of π-quantities remaining
after the dimensional analysis. This number is equal to the difference between
the number of quantities involved in the problem and the maximum number of
them that are dimensionally independent. It is quite obvious that the number
of π-quantities is smaller or equal to the number of fundamental dimensions
needed to write dimensional equations. This statement can be express as:

P = N −R, (2-1)

where N is the number of physical variables involved in the problem written
with R fundamental units. The number of π-quantities P corresponds to the
number of dimensionless variables expressed from the original ones. The way
to choose the variables taken into account in the dimensionless analysis is
presented later on, but first let’s state the Pi-Theorem.

Pi-theorem statement: Let R be the number of fundamental di-
mensions required to describe the physical variables and x1, x2, ...,
xN represent N physical variables in the relation:

f(x1, x2, ..., xN) = 0. (2-2)

The physical relation f may be also expressed as a relation of P
dimensionless products (called π-products) such as:

F (X1, X2, ..., XP ) = 0, (2-3)

where P = N −R. Each π-product Xk is a dimensionless product of
a set of (k + 1) physical variables. Calling p1, p2, ..., pN the selected
sets of k physical variables which leads to:

X1 = F1(p1, p2, ..., pk, pk+1)
X2 = F2(p1, p2, ..., pk, pk+2)

...
XP = FP (p1, p2, ..., pk, pN)

(2-4)

The choice of the repeating variables p1, p2, ..., pk should be such that
they include all the k dimensions used in the problem. The dependent
variables should appear in only one of the π-products.

Basically, the dimensional analysis is based on the fact that for a
given equation, both sides of the equal-sign have the same dimension. Then,
the different terms involved in the equation have the same dimension too.
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Chapter 2. Fluid-structure interactions 18

Considering this, one can then express a dimensionless equation. For example,
let’s consider three different quantities called x1, x2 and x3 related as following:

x1 + x2 = x3 (2-5)
Then, dividing the entire equation (2-5) by x3 leads to a dimensionless equation
equivalent to the previous one:

x1

x3
+ x2

x3
= 1. (2-6)

This simple illustration of the method of dimensional analysis shows that
manipulating the terms respecting their dimensions, one can find dimensionless
terms and expressions. At this step, it is important to discuss more about
dimensions and dimensional homogeneity.

2.1.2
Dimensions and dimensional homogeneity

First one should introduce the concept of dimension of a given quantity.
According to the Maxwell convention, if x is a physical quantity, then its
dimension is written [x]. Thus, for simple variables, one can easily define a table
with the dimension of common physical variables such as length, mass or time
(this part only focuses on the variables involved in fluid-structure interaction
problems but this discussion can be realized for any kind of problem such as
electrical or magnetic systems). Doing this, one defines a dimension table of
a given class. For each problem type one can limit the class according to the
variables involved.

The mathematical model of fluid-structure interaction usually deals with
dimensions of length, mass, time, frequency, velocity, acceleration, force, etc.
All these physical quantities are written in Table 2.1. As it is quite obvious,
each physical variable can be written as a combination of the units of the
class. One says that physical variables are power law monomials. Thus, for
any physical variable x, its dimension can be expressed thanks to the following
expression called dimension homogeneity:

[x] = CLαMβT γ, (2-7)

where C, α, β and γ are constants (directly linked to the involved system
of units). This expression is the central point of dimensional analysis. All
the following dimensionless variables and equations of this section are written
thanks to this formulation.
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Quantity Physical meaning Dimension
l, x Length L

m Mass M

t Time T

v, u Velocity LT−1

a Acceleration LT−2

F Force MLT−2

ρ Mass density ML−3

p Pressure ML−1T−2

k Stiffness ML2T−2

f, ω Frequency T−1

Table 2.1: Dimension table of class Length-Mass-Time.

Knowing this, one can express the dimension matrix of any system. For
example, let’s consider the physical system involving the physical variables
x1, x2, ..., xN . As seen before, each dimension of each variable can be expressed
as a combination of the LMT -class dimensions such as :

[xi] = LαiMβiT γi . (2-8)

Then the dimension matrix can be written as :

MD =


α1 α2 · · · αN

β1 β2 · · · βN

γ1 γ2 · · · γN

 . (2-9)

From this matrix one can deduce the number of dimensionless variables P
necessary to describe the problem such as P = N −R where:

R = rank(MD). (2-10)

At this step one knows exactly the number of dimensionless variables necessary
to describe the problem but does not know what they are. The Pi-Theorem
does not give this information. How to choose the dimensionless variables is
presented later in this section. One can only determine the exponents of each
physical variable involved to describe the dimensionless quantities with the
kernel of the dimension matrix, called Ke, such as:[

[X1] [X2] ... [XP ]
]

= Ke

[
x1 x2 ... xN

]
. (2-11)

Doing this does not mean that the dimensionless numbers obtained from this
expression are the most convenient for the problem. Actually this result does
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Chapter 2. Fluid-structure interactions 20

only permit to get a linear expression for all the exponents. To illustrate the
method of Pi-Theorem, let’s present two simple examples.

Example 1 - Dimensional analysis of a static 1dof-mass-spring system:
This is a really simple case but it permits to understand how to apply this
theorem. Let’s assume that the displacement of the mass is the unknown of
the problem. The system is described with its mass m, the stiffness of the
spring k, the external constant force F and the constant displacement x.

k

m
F

x

Figure 2.1: Simple 1-dof mass spring forced system.

Quantity Physical meaning Dimension
m Mass M

k Stiffness MT−2

F Force LMT−2

x Displacement L

Table 2.2: Dimension table of class LMT for the mass-spring system.

Thus, this system has four physical quantities that define it (cf. Table
2.2), thus N = 4. The equation governing the displacement of the system can
be written as:

g(m, k, F, x) = 0. (2-12)
One can build up the dimension matrix MD thanks to the constant α, β and
γ of each variable and get:

MD =


0 0 1 1
1 1 1 0
0 −2 −2 0

 , (2-13)

where the rows represent the three independent dimensions of the system and
the columns represent the four parameters involved to describe the problem.
Then one can determine how many dimensionless variable are necessary to
describe the problem. Let’s first calculate the rank of this matrix:
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R = rank(MD) = 3. (2-14)

Thus, the number of dimensionless variables needed is:

P = N −R = 1. (2-15)

That means that this problem can be expressed only with one dimensionless
variable. Now, calculating the kernel of the MD called Ke, one finds the
exponents of each physical variables that lead to a dimensionless number. In
this case,

Ke =
[

0 −1 1 1
]T
, (2-16)

then,
[X] = [m]0[k]−1[F ]1[x]1 ⇒ X = Fx

k
(2-17)

As it is well known, the equation governing such a problem is F = −kx which
is coherent with (2-17). Considering the dimension of each physical quantity,
one can deduce the dimension of X and verify that it is well dimensionless:

[X] = MLT−2 × L
ML2T−2 = 1. (2-18)

At this step, the dimensional analysis gives the relation between the four phys-
ical variables involved in the problem. The dimensionless equation governing
the system is:

G(X) = 0, (2-19)
and thanks to (2-17) one can affirm that the displacement is not a function of
the mass since the exponent relative to the mass is zero. But it is important
to note that this method does not tell which variable we should use later in
the problem, it only gives a relation between all the physical variables. It is
important to verify the physical meaning of each dimensionless variable before
doing further calculations. Also, this method does not give the system of units
that should be used.

Example 2 - Dimensional analysis of a flow around a cylinder: Let’s con-
sider a cylinder in a fluid flow as presented in Fig.2.2. In this example, several
physical variables (dimensional quantities) such as the upstream velocity U ,
the density of the fluid ρ, its viscosity µ and the diameter of the cylinder L are
present. Now, considering the drag Dr (force exerted by the flow on the solid),
five physical variables (N = 5) should be taken into account. The governing
equation for the drag is then:

g(Dr, U, ρ, µ, L) = 0, (2-20)
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ρ, μ

L

U

Dr

Figure 2.2: Cylinder in a cross flow.

Quantity Physical meaning Dimension
Dr Drag Force LMT−2

U Velocity LT−1

ρ Density ML−3

µ Viscosity ML−1T−1

L Length L

Table 2.3: Dimension table of class LMT for a flow around a cylinder.

which is dimensional. The dimension table (Cf. Table 2.3) can be built as in the
previous example. Now, thanks to this table one can build up the dimension
matrixMD with all the constant α, β and γ of each physical variable. Therefore,
the rank of this matrix can be calculated and gives R. Then,

MD =


1 1 −3 −1 1
1 0 1 1 0
−2 −1 0 −1 0

 , (2-21)

R = rank(MD) = 3. (2-22)
Finally, the number of dimensionless variables needed to define the

problem is calculated as
P = N −R = 2. (2-23)

At this step, one knows that two dimensional variables are needed to define the
problem but does not know them. Calculating the kernel Ke of the dimension
matrix will lead to:

Ke =
 −1 2 1 0 2
−1 0 −1 2 0

T . (2-24)

Using the properties of the kernel (cf. the box called “Property of the kernel”),
one can use other exponents more suitable and more comfortable which will
lead to dimensionless variables with physical meaning only multiplying by a
given constant.
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Property of the kernel: Let’s consider a linear application f of a
vector space A into a vector space B. The kernel Ke of f is defined
as:

Ke = {x ∈ A|f(x) = 0}

One can also write that if Ke is a kernel of f then αKe will also verify
this property for ∀α ∈ R.

Indeed, for this problem, the drag function can be written thanks to the
drag coefficient CD and the Reynolds number RE. With the first column of
the kernel of the dimension matrix one can write the dimension of the first
dimensionless variable X1 as (using the property of the kernel and multiplying
this column by -1):

[X1] = [Dr]1[U ]−2[ρ]−1[µ]0[L]−2 ⇒ X1 = Dr

ρU2L2 , (2-25)

as it is well known, this quantity is the drag coefficient CD. With the second
column of the kernel, one can write the dimension of the second dimensionless
variable X2 as:

[X2] = [Dr]−1[U ]0[ρ]−1[µ]2[L]0 ⇒ X2 = µ2

Drρ
, (2-26)

but this quantity does not have any physical meaning. Reorganizing things in
a different way:

[X2] = [ρ][U ][L]
[µ] × [µ]3

[Dr][ρ]2[U ][L] , (2-27)

after verifying that the second term of the expression is equal to 1, one can
simplify it which leads to:

X2 = ρUL

µ
, (2-28)

here one recognizes the Reynolds number. Thus, the problem with five di-
mensional variables can be written with two dimensionless variables only as:

G(CD, RE) = 0. (2-29)

2.1.3
Some common dimensionless numbers

Now the basic concepts of dimensional analysis were stand out, let’s focus
on some common dimensionless numbers usually found in fluid dynamics and,
therefore, in fluid-structure interactions in mechanical systems. Later, using
these numbers, one will be able to classify problems and then to do some
simplifications that will be useful. Indeed, those considerations will permit to
identify some physical phenomena.
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2.1.3.1
Reynolds number

A very common dimensionless number in fluid mechanics is the Reynolds
number noted here as RE. Considering a cylinder with a diameter L in a fluid
flow of reference velocity U0, the Reynolds number can be written as:

RE = ρU0L

µ
, (2-30)

where ρ represents the density and µ the viscosity of the fluid involved. This
number indicates the regime of the flow from laminar to turbulent and allows
to classify the topology of the fluid around the cylinder. Depending on the
value of the Reynolds number, for instance, one can easily determine if the
flow will creep (for small RE) or if it will be detached (for high RE) from the
cylinder as presented in Figure 2.3.

Figure 2.3: Evolution of the fluid topology in relation to the Reynolds number.
Source: http://www.et4u.org/Toy_information/Cylinder_flow.html,

consulted July, 3rd of 2017

2.1.3.2
Cauchy number

The Cauchy number is also a very common dimensionless number gener-
ally used for compressible flows. Usually noted CA, this number can be written
as the ratio between the inertial and elastic forces:

CA = ρU2
0

K
, (2-31)

where ρ represents the density of the fluid, U0 the reference flow velocity and
K is the bulk modulus of elasticity. It is quite interesting to note that for
isentropic processes, the Cauchy number is equal to another dimensionless
number, the Mach number.
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2.1.3.3
Froude number

An other common dimensionless number is the Froude number represent-
ing the ratio of the flow inertia and an external field, for instance the gravity
field. Usually noted FR, this number can be written as:

FR = U0√
gL
, (2-32)

where U0 is the reference flow velocity, g the gravity field and L the character-
istic length.

2.1.4
Dimensionless variables in the fluid domain

In order to define the variables of the system, let’s consider the fluid-solid
system as two separated systems which means that there is no mass transfer
between them. Thus, one considers the decoupled problem first. Then for each
domain, one needs to specify the physical quantities involved in the system.

The quantities are all related through the physical laws and differential
equations presented later in the next chapters. These quantities are specific for
the problems studied here. It is clear that for other problems, this list could be
much longer and could include, for the fluid domain, temperature or pressure
for instance.

An important point is to understand how to pass from the physical
quantities defined before to the dimensionless variables. Once again, this step
can be done separately for both domains, the fluid and the solid and then
associate them to form the complete system.

Let’s start with the fluid domain. Table 2.4 shows the physical variables
that will be considered. All of them are related with physical laws (which means
by differential equations) which can be written as the following dimensional
equation:

gF (x, t, U, µ, L, g, ρF , U0) = 0. (2-33)
Observe that this law represents a pure fluid system since no variables

from the solid are involved yet. Then, the objective is to perform the dimen-
sional analysis of this law (made of eight physical variables, NF = 8). First
the LMT -class dimension table is built for this pure fluid system. Then the
dimension matrix and the quantity of dimensionless variables are computed as
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Quantity Physical meaning Dimension
x Coordinates L

t Time T

U Velocity field LT−1

µ Viscosity L−1MT−1

L Length L

g Gravity LT−2

ρF Density L−3M

U0 Velocity LT−1

Table 2.4: Dimension table of LMT -class for the fluid domain.

MDF =


1 0 1 −1 1 1 −3 1
0 0 0 1 0 0 1 0
0 1 −1 −1 0 −2 0 −1

 , (2-34)

RF = rank(MDF ) = 3. (2-35)
Thus, the number of dimensionless variables needed to describe the fluid
domain PF can be calculated as:

PF = NF −RF = 5. (2-36)

The physical law presented in (2-33) can now be written in its dimen-
sionless form as:

GF (X1, X2, X3, X4, X5) = 0, (2-37)
where the Xi’s are dimensionless variables. Now the Xi’s should be found and
defined. The objective of this step is to give to the dimensionless variables
a physical meaning in order to turn the interpretation of the results easier.
Having two different velocities and two length involved in the problem,
respectively (U,U0) and (x, L), two dimensionless variables can be written as:

X1 = U

U0
, X2 = x

L
. (2-38)

For the third dimensionless variable, one can consider the dimensionless
time ratio t

Tfluid
, where Tfluid is the convection time in the fluid, which is a

relevant information, written as:

Tfluid = L

U0
=⇒ t

Tfluid
= U0t

L
. (2-39)
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The third dimensionless variable which is a time ratio for the fluid can be
written as a function of velocity and time as:

X3 = U0t

L
. (2-40)

Concerning the two remaining dimensionless variables, one should keep
in mind that all the physical variables of the law (2-33) have to be used to
write the Xi’s. Then one of them can be the Reynolds number RE:

X4 = RE = ρFU0L

µ
, (2-41)

and the last one can be the Froude number FR for instance:

X5 = FR = U0√
gL
. (2-42)

Finally, all the physical variables presented in the Table 2.4 are used and
the following dimensionless law can be written and represents the pure fluid
system:

GF

(
U

U0
,
x

L
,
U0t

L
,
ρFU0L

µ
,
U0√
gL

)
= 0. (2-43)

2.1.5
Dimensionless variables in the solid domain

Considering only the solid domain, the typical physical variables involved
in mechanical systems are presented in Table 2.5. These variables are related
by physical laws (differential equations) which can be written as the following
dimensional equation:

gS(x, t, ξ, E, L, g, ρS, ξ0) = 0. (2-44)

Here, one can consider that for continuous systems, the stiffness term is
the Young modulus of the material for instance and the density term is the
mass per volume unit of it. Indeed, considering a simple 1-dof mass-spring
system for instance, the stiffness is E = k

l
, where k is the stiffness of the spring

and l its length, and the density is ρS = m
l3
, where m is the mass.

This law (2-44) represents a pure solid or structure system since no
variables from the fluid are involved. To perform the dimensional analysis
of this law (made of eight physical variables, NS = 8), first the LMT -class
dimension table is built and then, the dimension matrix and the quantity of
dimensionless variables are computed. The results found are

MDS =


1 0 1 −1 1 1 −3 1
0 0 0 1 0 0 1 0
0 1 0 −2 0 −2 0 0

 , (2-45)
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Quantity Physical meaning Dimension
x Coordinates L
t Time T
ξ Displacement field L
E Stiffness L−1MT−2

L Length L
g Gravity LT−2

ρS Density L−3M
ξ0 Displacement data L

Table 2.5: Dimension table of class LMT for the solid domain.

RS = rank(MDF ) = 3. (2-46)
The number of dimensionless variables needed to describe the fluid domain PS
can be calculated as:

PS = NS −RS = 5. (2-47)
The physical law presented in Eq.(2-44) can now be written in its

dimensionless form as:

GS(Y1, Y2, Y3, Y4, Y5) = 0, (2-48)

where the Yi’s are dimensionless variables. Now the Yi’s should be found
and defined. Since several terms are expressed as length, two dimensionless
variables can be written as:

Y1 = ξ

L
, Y2 = x

L
. (2-49)

For the third dimensionless variable, as done before for the fluid, one can
consider the dimensionless time ratio t

Tsolid
, where Tsolid is the time needed to

an elastic wave to cross the solid, with the velocity c =
√

E
ρs
. This term is

written as:
Tsolid = L

c
=⇒ t

Tsolid
=
t
√

E
ρs

L
. (2-50)

Then, a third dimensionless variable which is a time ratio for the solid can be
written as a function of stiffness and time as:

Y3 =
t
√

E
ρS

L
. (2-51)

The ratio between the displacement data and the length scale of the
system called by D (displacement number) will be used to define the fourth
dimensionless variable. It is written as:
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Y4 = D = ξ0

L
. (2-52)

The fifth dimensionless variable wil be called the elastogravity number GE and
it is written as:

Y5 = GE = ρSgL

E
. (2-53)

All the physical variables presented in the Table 2.5 are used and the following
dimensionless law can be written and represents the pure fluid system:

GS

 ξ
L
,
x

L
,
t
√
E/ρS

L
,
ξ0

L
,
ρSgL

E

 = 0. (2-54)

2.1.6
Dimensionless variables for the coupled fluid-solid system

Combining both domains (fluid and solid), one can find a set of twelve
different dimensional quantities. Five of them come from the fluid domain and
other five come from the solid domain. The two remaining are related with the
coupling. They are the variables of greater interest of the couped system (the
fluid velocity field and the displacement of the solid). Then for each of those
two, one can write the physical law. For the fluid velocity field U :

g(U, x, t, µ, ρF , U0, L, g, E, ρS, ξ0) = 0. (2-55)

To perform the dimensional analysis, first one needs to find the number
of dimensionless quantities needed using the dimension matrix (calculating
the rank of the matrix). Here, eight quantities are necessary to write the
dimensionless law. Then one can write, with the dimensionless numbers used
before:

G

(
U

U0
,
x

L
,
U0t

L
,
ρSU0L

µ
,
U0√
gL
,
ξ0

L
,
ρSgL

E
,A

)
= 0, (2-56)

where the five first quantities are dimensionless numbers related to the fluid
domain, then two related to the solid domain and the last one, A, linked to the
interface, which is related to both the fluid and the solid (it has to be related
simultaneously to the fluid and the solid otherwise it would have appeared
before).

This last dimensionless quantity can take several forms that should be
chosen on its relevance in relation to the physical system. Thus, A can be:

– the mass number M , which is the ratio between the two densities.
Observe that M will vary directly on the fluid (air, water, ...). One can
write it as:

M = ρF
ρS
. (2-57)
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This dimensionless number shows, for instance, that it is different to
move in water than to move in air.

– the reduced velocity UR, which is the ratio between the reference fluid
velocity U0 and the velocity of elastic wave in the solid:

UR = U0√
E/ρS

= U0

c
. (2-58)

The reduced velocity contains the information between the two dynamics
(the fluid and the solid ones) and thus how they are related. Of course,
using the length scale L, one can write the reduced velocity as:

UR = Tsolid
Tfluid

, (2-59)

which is an important form using the two time scales.

– the Cauchy number CA presented before as the ratio between the fluid
load and the stiffness of the solid:

CA = ρFU
2
0

E
. (2-60)

The dimensionless numbers enable a classification of problems. One ex-
ample already presented is the Reynolds number (Figure 2.3) which anticipates
the behavior of the fluid. The classification of physical problems will permit to
use simplified models to represent the systems.

2.2
Standard equations for the fluid, the solid domains and the interface

In this part, the equations involved in fluid-structure interaction problems
will be presented using [19] and [27]. As this kind of problem is composed of
three main domains: the fluid domain, the solid or structure and, the interface
between them, three types of equation can be distinguished. This part will
focus on the equations for some specific problems treated in this context.

2.2.1
Fluid equations

The fluid domain is governed by several conservation equations. In this
present document, an homogeneous fluid is considered and its temperature is
not taken into account. Thus, the main governing equations for this specific
domain are:

– the mass balance, also called continuity equation (considered here for
an incompressible fluid);
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– the momentum balance, also called Cauchy equation (which relates
the inertia with the local loads).

Both together form the well known Navier-Stokes equations. To have a
more complete mathematical model, boundary conditions should be taken into
account. In this work, neither the energy conservation equation nor the species
balance equation will be considered.

Mass balance: Considering a volume V of a fluid bounded by the surface S.
The mass of the fluid is mF and can be written as:

mF =
∫
V
ρFdV, (2-61)

where ρF represents the volumetric mass (i.e. the mass per unit volume). Then
the variation in time of mass inside the volume, called δmF , can be express as:

δmF = ± d

dt

∫
V
ρFdV = ±

∫
V

dρF
dt

dV. (2-62)
The sign of this expression depends on the variation of the fluid mass,

increasing or decreasing. The fluid mass involved in the problem may be
constant then, the variation of fluid mass inside the given volume must be
equal to the mass flux Φm passing through the surface S:

Φm = ±
∫
S
ρFUdS = ±

∫
V
∇ (ρFU) dV, (2-63)

where U represents the velocity of fluid particles. To pass from the integral on
the surface to one on the volume, one uses the Green’s formula. Note that if
the total mass is decreasing, δmF ≤ 0 then Φm ≥ 0. If the mass is increasing,
δmF ≥ 0 and Φm ≤ 0. At this step, saying that the mass is conserved, leads
to the following sequence:

δmF = Φm ⇒
∫
V

dρF
dt

dV = −
∫
V
∇ (ρFU) dV. (2-64)

This expression can be written without the integrals which leads to:
dρF
dt

+∇ (ρFU) = 0. (2-65)

In this document, it will be considered that the fluids involved are not
compressible, i.e. ρF is constant, then dρF

dt
= 0. The final form for the mass

conversation is:
∇U = div(U) = 0. (2-66)
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Dimensionless formulation of the mass conservation: consider-
ing that Ũ notes the dimensionless velocity field such as:

Ũ = U

U0
,

where U0 is a reference velocity field (it can be the initial field) one can
write:

div
(
Ũ
)

= 0. (2-67)
This equation will be used later on and all along the fluid-structure
interactions sections to describe the mass conservation. Note that
the tilde notation �̃ denotes the dimensionless quantities in the fluid
domain. For the quantities of the solid domain, it will be used the bar
notation �̄.

Momentum balance: Let’s consider a volume V of a fluid element bounded
by the surface S characterized by the flow U . The momentum MF of this fluid
is written as:

MF =
∫
V
ρFUdV. (2-68)

The variation in time of MF can be written thanks to the notation δ and the
volumetric mass density of the fluid ρF :

δMF = d

dt

∫
V
ρFUdV =

∫
V
ρF
dU

dt
dV. (2-69)

It will be considered that this variation of momentum is equal to the
acting forces on this element which are of two different types: the external
ones and the internal ones. In the problems addressed here, the unique external
force acting on this element is linked to the gravity g and it is written as:

fE = −
∫
V
ρFgezdV. (2-70)

Concerning the internal forces, only one will be taken into account. It is acting
directly on the surface S of the fluid element and can be expressed with the
stress tensor Π as:

fI =
∫
S

ΠdS =
∫
V
∇ΠdV. (2-71)

Then, the total force acting on the element can be found as the sum of
the external and the internal forces. Rewriting the surface integral as a volume
integral using the operator ∇ one get:

F =
∫
V

(−ρFgez +∇Π) dV. (2-72)

Finally, combining Eqs. (2-68) and (2-72) one can obtain:

ρF
dU

dt
= −ρFgez +∇Π. (2-73)
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From literature [19], one can easily find the expression of the stress tensor for
fluid element for an incompressible fluid with constant viscosity. The results
is:

∇Π = −∇P + µ∆U, (2-74)
where P is the pressure and µ the dynamic viscosity. Finally, the momentum
conservation equation is:

ρF
dU

dt
= −ρFgez −∇P + µ∆U. (2-75)

Dimensionless formulation of the momentum balance: consid-
ering the equation (2-75), one can replace the physical quantities by
the following dimensionless ratios:

Ũ = U

U0
, P̃ = P

ρFU2
0
, t̄ = t

L/c
, x̃ = x

L
.

Then the dimensionless form of the momentum balance equation is:

ρF
d
(
ŨU0

)
d
(
t̄L
c

) = −ρFgez −
1
L
∇
(
P̃ ρFU

2
0

)
+ µ

L2 ∆
(
ŨU0

)
. (2-76)

Note that here, for no major reason, the characteristic time of the
solid is considered to scale the equations. After some simplifications
and variable changes, one gets:

c

U0

dŨ

dt̄
= −gL

U2
0
ez −∇P̃ + µ

ρFU0L
∆Ũ . (2-77)

This expression can then be rewritten as a function of the characteristic
dimensionless numbers such as:

1
UR

dŨ

dt̄
= − 1

F 2
R

ez −∇P̃ + 1
RE

∆Ũ , (2-78)

where one recognizes the reduced velocity, the Froude and the Reynolds
numbers.

2.2.2
Solid equations

This section presents the equations for the solid domain, using [21].
Several approximations will be made. One example is that instead of using the
continuous mechanics equations that would combine perfectly with the fluid
equations, modal approximations will be used. The objective is to simplify
the mathematical model and speed up computational experiments. The first
modal approximation that will be presented is the simplest one, the single
mode approximation.
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Single mode approximation: In the single mode approximation, that can
be found in [29] or [41], the displacement of the solid ξ (function of the
position x and the time in dynamic problems) is written as function of modal
displacement q and modal shape ϕ (which is a function of the position x).
Then:

ξ(x, t) = q(t)ϕ(x). (2-79)
The dynamics of the solid is described by the equation of motion:

m
d2q

dt2
+ kq = f, (2-80)

wherem is the modal mass, k the modal stiffness and f the modal force written
as:

f =
∫
Fϕdx. (2-81)

Note that the modal shape is usually known from experiments or from
numerical simulations.

Dimensionless formulation of the solid equations: considering
the following dimensionless variables linked to the solid domain,

q̄ = q

ξ0
, f̄ = f

kξ0
, t̄ = t

Tsolid
,

where, Tsolid =
√

m
k
, one can write the equation of motion as:

m

√ k

m

2

ξ0
d2q̄

dt̄2
+ kξ0q̄ = kξ0f̄ . (2-82)

Simplifying, the oscillator equation in terms of dimensionless modal
displacement;

d2q̄

dt̄2
+ q̄ = f̄ . (2-83)

Of course, one could think in using more than one mode for the approx-
imation. This will be done to explain one type of instability later on.

2.2.3
Interface equations

At the interface between the fluid and the solid, one shall define the
continuity equations that will link the dynamic of the fluid and solid. Two
different conditions are used, one kinematic and other dynamic.

Kinematic condition: The kinematic condition connects directly the veloci-
ties (the fluid velocity at the interface and the solid interface velocity). In this
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region, these two velocities must be equal. Then, saying that there is no mixing
possible between the two domains and also there is no sliding of one on the
other. This condition is simply a velocity equality:

U = dξ

dt
. (2-84)

Using the single mode approximation this equality can be written as:

U = dq

dt
ϕ, (2-85)

where q is the modal displacement, function of time t and ϕ is the modal shape,
function of the position x.

Dimensionless formulation of the kinematic condition: consid-
ering the following dimensionless variables:

Ũ = U

U0
, t̄ = t

L/c
, q̄ = q

ξ0
,

one can find the dimensionless form on the kinematic condition equa-
tion at the interface as:

ŨU0 = d (q̄ξ0)
d
(
t̄L
c

)ϕ. (2-86)

Simplifying, one can write the dimensionless form of the kinematic
condition as: U0

c
Ũ = ξ0

L

dq̄

dt̄
ϕ, (2-87)

which is equivalent to:

URŨ = D
dq̄

dt̄
ϕ. (2-88)

Observe that the reduced velocity and the displacement number appear
in this formulation.

Dynamic condition: This condition states an equilibrium between forces at
the interface region. Then one needs the forces from the fluid acting on the
solid fF and the solid force induced by the displacement of the interface. In
the fluid domain, the force acting on the interface is composed of pressure and
viscosity forces. Then:

fF =
[
−PI + µ

(
∇U +∇TU

)]
n, (2-89)

where n is the normal to the interface. On the solid domain, one shall consider
the modal force f only. The equation consists of equalizing the sum, on the
whole interface called ΓS, of all the fluid forces projected on the modal shape
ϕ with the modal force. We get:
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∫
ΓS

([
−PI + µ

(
∇U +∇TU

)]
n
)
ϕdS = f. (2-90)

Dimensionless formulation of the dynamic condition: consid-
ering the following dimensionless variables,

Ũ = U

U0
, P̃ = P

ρFU2
0
, x̄ = x

L
, f̄ = f

kξ0
,

one can write, taking care of the integral over the interface (which leads
to scaled term on this variable and an extra L-term):∫

Γ̄S

([
−P̃ ρFU2

0 I + µ
( 1
L
∇
(
ŨU0

)
+ 1
L
∇T

(
ŨU0

))]
n
)
ϕLdS̄ = f̄kξ0.

(2-91)
Simplifying, one obtains:∫

Γ̄S

(
ρFU

2
0

k

[
−P̃ I + µ

ρFU0L

(
∇Ũ +∇T Ũ

)]
n

)
ϕdS̄ = ξ0

L
f̄, (2-92)

and finally, using the characteristic dimensionless numbers (Cauchy,
Reynolds and displacement numbers):∫

Γ̄S

(
CA

[
−P̃ I + 1

RE

(
∇Ũ +∇T Ũ

)]
n
)
ϕdS̄ = Df̄. (2-93)

In this chapter, the main equations involved in fluid-solid interaction
problems have been presented in their classical form and in their dimensionless
form. The dimensionless numbers that appear in the fomulations can be used
to classify problems. These numbers are often the variables of interest in
sensistivity studies and varying them one can observe their influence on the
dynamic of the system.

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



3
Classification of fluid-structure interaction problems

The previous chapter presented the basic concepts of fluid-structure
interactions and some dimensionless numbers used to classify problems. This
chapter shows how such classification can be done using the reduced velocity.
It will be investigated the influence of this dimensionless parameter in the
stability of the solid motion.

3.1
Small reduced velocity: still fluid

As seen before, the reduced velocity is an important dimensionless
number that can be used to classify problems since it compares the time scales
of the solid and the fluid. Recall that it is written as:

UR = Tsolid
Tfluid

= U0

c
, (3-1)

where U0 is the reference upstream velocity and, c is the velocity of elastic
waves in the solid. First, let’s consider the simplest case to study the influence
of the reduced velocity to fluid-solid interaction systems, the case where the
motion of the fluid is so slow compared to the dynamic of the solid. One can
say that the fluid appears to be not moving in comparison to the motion of
the solid.

In relation to the solid dynamic, it can be considered that the displace-
ment ξ and the reference displacement ξ0 have the same order of magnitude,
i.e. ξ = o (ξ0), where the notation o (�) indicates the order of magnitude. A
similar hypothesis can be considered for the dynamic of the fluid, in a wat
that U = o (U0). The kinematic condition at the interface, that relates both of
them, leads to:

U = o (U0) = o

(
ξ0

Tsolid

)
. (3-2)

To consider that the reduced velocity is small means that the time
evolution of the fluid, called Tfluid, is much longer than the time evolution
of the solid Tsolid. Then, one can define a limit case where the fluid can be
considered as a still fluid (it is moving but this occurs so slowly). Thus the
dynamic of the fluid in this case is only related and due to the dynamic of the
solid. Thus:
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U0 <<
ξ0

Tsolid
. (3-3)

Reorganizing the equation, one gets:

UR << D. (3-4)

Finally, one can neglect the proper dynamic of the fluid and consider
that only the interaction with the solid governs the fluid domain. This leads to
an uncoupled fluid dynamics and thus to new equations. Those new equations
will be simplified thanks to this new consideration.

Since small reduced velocity is being considered (meaning that the
variable U0 is not relevant), the dimensionless numbers should be rewritten.
Indeed, instead of using the reference velocity field of the fluid, one should
use the characteristic velocity in the solid domain c or also L

Tsolid
. Then, the

following new dimensionless number can be defined:

RE =⇒ ST = ρF cL

µ
= ρFL

2

Tsolidµ
, (3-5)

FR =⇒ FD = c√
gL

= L

Tsolid
√
gL
, (3-6)

CA =⇒M = ρF c
2

E
= ρF
ρS
. (3-7)

Those numbers are respectively, the Stokes number, the dynamic Froude
number and, the mass number. The fluid dimensionless variables must be
rewritten taking into account the consideration about U0. Thus one gets:

Ū = U

c
, (3-8)

P̄ = P

ρF c2 , (3-9)

x̄ = x

L
. (3-10)

Note that the notation �̃ is no more used since the quantities are scaled with
the reference velocity in the solid domain. Only �̄ appears. To obtain the
uncoupled fluid dynamics, it will be considered small motion of the solid which
means little change in the solid shape and consequently D << 1.

Besides of this, the three variables P , U and ξ will be expanded as
an asymptotic expansion thanks to the displacement number D. Indeed, the
asymptotic expansion of a function y gives:

y(x, ε) ≈ y0(x) + εy1(x) + ε2y2(x) + ... (3-11)

For the pressure field the asymptotic expansion in D << 1 is:
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P = P0 +Dp+D2..., (3-12)

for the velocity field one can write

U = 0 +Du+D2..., (3-13)

Specific set of equation for small reduced velocity: using the
new dimensionless variables defined before, one can express the mass
balance and the momentum balance for the fluid domain as:

div
(
Ū
)

= 0, (3-14)

dŪ

dt̄
= − 1

F 2
D

ez −∇P̄ + 1
ST

∆Ū . (3-15)

At the interface, one can rewrite the kinematic condition and the
dynamic condition as:

Ū = D
dq̄

dt̄
ϕ, (3-16)∫

Γ̄S
M
(
−P̄ I + 1

ST

(
∇Ū +∇T Ū

))
nϕdS̄ = Df̄. (3-17)

Finally, the equation for the solid is:

d2q̄

dt̄2
+ q̄ = f̄ . (3-18)

Note: from now until the end of the section concerning small reduced
velocity, the notation �̄ will not appear in order to simplify the
notation. But the equations are still dimensionless.

and finally the expansion of the displacement of the solid is:

ξ = 0 +Dqϕ+D2... (3-19)

Considering only the term of zero order in the three expansions, the
momentum balance equation becomes:

0 = − 1
F 2
D

ez −∇P0 + 0. (3-20)

Now, the equations at the 1st-order should be written. To write the mass
balance, the momentum equations and the kinematic condition at the interface,
there is no major difficulty and one gets for the mass balance:

div (u) = 0, (3-21)

for the momentum balance at the 1st-order in D one has:
du

dt
= −∇p+ 1

ST
∆u (3-22)

and finally, for the kinematic condition at the 1st-order in D is:
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u = dq

dt
ϕ (3-23)

For the dynamic condition, as it involves the description of the interface
one should be careful. The pression and the velocity have to be written at
the new position of the interface. To find this expression, one can linearize
(considering the simplest form of the interface deformation, as a simple
translation) the pressure field and the velocity field as:

P (x+Dqϕ) w P0 (x+Dqϕ) +Dp (x+Dqϕ) +D2...

w P0(x) +Dqϕ∇P0(x) +Dp(x) + ...
(3-24)

U (x+Dqϕ) w 0 +Du (x+Dqϕ) +D2...

w 0 +Du(x) + ...
(3-25)

Then, at the first order expansion one gets the following equation for the
dynamic condition at the interface:

M
∫

ΓS

(
−pI + 1

ST

(
∇u+∇Tu

))
nϕdS −Mqϕ

∫
ΓS

(∇P0)nϕdS = f, (3-26)

the equation for the solid domain still unchanged:

d2q

dt2
+ q = f. (3-27)

Concerning the dynamic condition equation (3-26), one can distinguish
two different terms in the left hand side. The first one is the first integral
which represents the projection of the fluid force on the modal shape resulting
from the viscous stress. Note that with the considerations made in this part,
the pression field p and the velocity field u are only due to the motion of the
solid (recall that here a still fluid is considered). Thus, this term represents the
response of the fluid to the solid motion.

The second term is the second integral which depends on P0. Observe
that it does not depend on the dynamic of the fluid due to the solid motion
but it is linked to the motion of the solid due to a pre-stressed fluid. This
term has been calculated in the simplest case of the translation in the fluid,
by expanding only the fluid stress in term of the position of the interface. A
more general formulation can be found in the literature [19] considering a more
general deformation of the body:

Mqϕ
∫

ΓS
(∇P0)nϕdS =⇒Mq

∫
ΓS

(∇P0ϕ) (ϕn) dS. (3-28)

Thus the dynamic condition equation at the 1st-order can be re-written
combining (3-26) and (3-28) as:
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M
∫

ΓS

(
−pI + 1

ST

(
∇u+∇Tu

))
nϕdS−Mq

∫
ΓS

(∇P0ϕ) (ϕn) dS = f. (3-29)

Recall that this equation represents the force made by the fluid on the solid.
The two terms on the left hand side of this equation will be investigated in the
next section.

The equations are simpler, and thus easier to solve. Moreover, they are
linear as the hypothesis of small motion was used. The 0-order approximation
is given by equation (3-20) and at the 1st-order by (3-21), (3-22), (3-23),
(3-27) and (3-29). Those equations present a complete set of equations for
small reduced velocity considering small motion of the solid. The dynamic
condition at the 1st-order (3-29), presents some interesting phenomena that
will be explained in the next sections.

3.1.1
Added stiffness

In (3-29), one can verify that the second term of the left-hand side does
not depend on the dynamic of the fluid domain. Thus, it can be calculated
without any fluid mechanics. This term represents a force since the right hand
side of the equation is a force. Writing the force f as the sum two terms f1

and f2, one can write:

−Mq
∫

ΓS
(∇P0ϕ) (ϕn) dS = f1. (3-30)

Using (3-20), one can substitute P0 and then write:

q
M

F 2
D

∫
ΓS

(ϕez) (ϕn) dS = f1. (3-31)

Here, one can see that the left hand side term involves the modal displacement
q, then the integral with the dimensionless numbers ratio can be written as a
stiffness, the added stiffness:

kA = −M
F 2
D

∫
ΓS

(ϕez) (ϕn) dS, (3-32)

that can be easily computed since everything is know. Thus, from the solid
point of view, moving in a fluid with a pressure gradient can be interpreted as
being connected to an elastic spring. This is very useful since it simplifies a lot
the equations and since this term should be calculated only once for a given
problem.
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3.1.2
High Stokes number: the added mass effect

The analysis of the remaining term of (3-29), called f2, will reveal another
interesting phenomenon. To calculate this term, one needs to solve a linearized
fluid mechanics system that involves the pressure responsible for the pressure
loading and, the velocity of the fluid responsible for the viscous shear loading.
Recalling the equations of the fluid domain, the mass balance (3-21), the
momentum balance (3-22) and, the equations at the interface, the kinematic
condition (3-23), it is possible to write f2 as:

M
∫

ΓS

−pI +
�
�
���
0

1
ST

(
∇u+∇Tu

)nϕdS = f2. (3-33)

In this part, the focus will be only on high Stokes numbers, ST , which is
the case of many fluid-solid interaction problems. Considering that ST is large,
it is possible to rewrite the equation of momentum balance (3-22) neglecting
the term that involves 1

ST
. Then, one gets:

du

dt
= −∇p. (3-34)

Recalling that ST relates the density of the fluid ρF with the viscous
coefficient µ, neglecting the term that involves the Stokes number means that
the viscous effects are neglected. This consideration will impact the other
equations. The term f2 becomes:

M
∫

ΓS
−pnϕdS = f2. (3-35)

Here, as no viscous effects are considered (assumption of high Stokes
number), no tangential force are taken into account. Then, the kinematic
condition has to be a bit modified which leads to:

un = dq

dt
ϕn. (3-36)

Remark that equations (3-20), (3-34), (3-35) and (3-36), model linearized
fluid mechanics problems with small reduced velocity, small motion of the solid
and high Stokes number.

Using the separation of variables for u, the velocity field and p, the
pressure field, it is possible to write each one of those functions as the product
of two functions, one that depends only of space and other that depends
only of time. The velocity field u can be written taking into account the
original kinematic condition equation (3-23) which was stated for a single mode
approximation of the solid dynamic, at the interface. But one can state the

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Chapter 3. Classification of fluid-structure interaction problems 43

velocity field in the same way in all the fluid as:

u(x, t) = d

dt
q(t)ϕu(x) = q̇(t)ϕu(x), (3-37)

where ϕu is unknown. For the pressure field p, as it is related to acceleration
(as presented in (3-34)), one gets:

p(x, t) = d2

dt2
q(t)ϕp(x) = q̈(t)ϕp(x). (3-38)

Then the equations on the fluid domain, respectively the mass balance
and the momentum balance, can be simplified as:

div (u) = 0 =⇒ div (ϕu) = 0, (3-39)

du

dt
= −∇p =⇒ ϕu = −∇ϕp. (3-40)

The equations at the interface can also be simplified. The kinematic condition
and the fluid induced force equation (through the dynamic condition) become
respectively:

un = dq

dt
ϕn =⇒ ϕun = ϕn, (3-41)

M
∫

ΓS
−pnϕdS = f2 =⇒ −q̈M

∫
ΓS
ϕpnϕdS = f2. (3-42)

Equation (3-42) is very interesting since it shows that the fluid induced
force is written as function of the acceleration. As consequence, the term M

times the integral over the interface can be seen as a mass (it multiplies an
acceleration to give a force). It will be considered an added mass and it is given
by:

mA = M
∫

ΓS
ϕpnϕdS. (3-43)

The pressure force of the fluid on the solid can simply be seen as an added
mass, see [17] and [43], on the solid. This simplifies a lot the equations.

3.1.3
Low Stokes number: the added damping effect

This section focuses only on systems with small Stokes number. Usually,
this hypothesis of small Stokes number is valid for small systems, like vibrations
inside a bearing involved by a very viscous fluid. In systems like that,
the viscous effects are dominant in comparison to the acceleration in the
momentum balance equation. Thus, it can be simplified and written as:

0 = −∇p+ 1
ST

∆u. (3-44)

The equation for the mass balance and kinematic condition are not
modified with the hypothesis of small Stokes number. They remain (3-21)

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Chapter 3. Classification of fluid-structure interaction problems 44

and (3-23). For the momentum balance and the dynamic condition at the
interface, the pressure has to be rescaled, as p ←− pST , for compatibility.
Then the simplified momentum balance can be rewritten as:

−∇p+ ∆u = 0. (3-45)

The fluid induced force of the fluid on the solid (the term similar to a stiffness
is not written here) is:

M

ST

∫
ΓS

(
−pI +∇u+∇Tu

)
nϕdS = f2. (3-46)

Using separation of variables for the velocity field and the pressure field,
it is possible to write:

u(x, t) = q̇(t)ϕu(x), (3-47)

p(x, t) = q̇(t)ϕp(x). (3-48)
This procedure is the same that was done in the previous section, however

the pressure field is related to the velocity, not to the acceleration as before.
It should be noted that the functions ϕu and ϕp will be different from the
previous ones. Using the separation of variables, the equations on the fluid
domain, respectively the mass balance and the momentum balance, can be
simplified as:

div (u) = 0 =⇒ div (ϕu) = 0, (3-49)

0 = −∇p+ ∆u =⇒ 0 = −∇ϕp −∆ϕu. (3-50)
The equations at the interface can also be simplified, respectively the kinematic
condition and the fluid induced force equation, as:

u = dq

dt
ϕ =⇒ ϕu = ϕ, (3-51)

(3-46) =⇒ q̇
M

ST

∫
ΓS

(
−ϕpI +∇ϕu +∇Tϕu

)
nϕdS = f2 (3-52)

Equation (3-52) shows that the fluid induced force is written as function of the
velocity. Thus the term M

ST
times the integral over the interface can be seen as

a damping (it multiplies a velocity to give a damping force). It is written as:

cA = M

ST

∫
ΓS

(
−ϕpI +∇ϕu +∇Tϕu

)
nϕdS, (3-53)

and it behaves as an added damping, presented in [17], in a way that the
pressure force of the fluid on the solid can simply be seen as an added damper
on the solid.
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3.1.4
Intermediate Stokes number: the memory effect

In this section, intermediate Stokes number will be briefly treated. Here
neither the effects of viscosity are dominant nor they are small enough to
be neglected. Indeed, the discussion was based on the momentum balance
equation. For small Stokes number, the effect of the fluid acceleration was
neglected whereas for high Stokes number, the viscous effects were neglected.

In this case nothing is neglected in the momentum balance equation
(3-22). Thus the two terms involving velocity are present. One involves the
spacial derivative of the velocity and the other its time derivative. In this
region of intermediate Stokes number, the effects of added mass and added
damping are in competition.

Indeed, here both time scales are present and none of them can be
neglected. Then any motion of the solid will create perturbation in the fluid
domain. This perturbation will occur respecting the characteristic fluid time,
which means that it is not instantaneous. Then this perturbation in the fluid
domain will create a variation of the flow induced force on the solid. The motion
of the solid due to this force will occur respecting the characteristic solid time.
Thus, as both time scales are present in this case, there is a time delay between
the two dynamics. This means that what occurs in one domain is related to
what happened previously in the other domain. This is called memory effect.

3.2
High reduced velocity: fixed solid

Now that the cases with small reduced velocity have been explored, one
can try to do the same procedure for high reduced velocity. Recall that the
reduced velocity is written as:

UR = Tsolid
Tfluid

. (3-54)

To consider that the reduced velocity is high means that the characteristic
time of the solid is much longer than the characteristic time of the fluid. A
limit case can be investigated when the dynamic of the fluid occurs with a
fixed solid. Observe that this does not mean that the solid will not move, this
just means that the motion of the solid is very slow in comparison to the one
of the fluid.

With this hypothesis, as done in the previous section for low reduced
velocity, the system can be seen as uncoupled since the velocity of the solid
domain will not influence the fluid dynamic. Before starting the analysis,
let’s have a look on the dimensionless numbers involved in such cases. In the
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standard fluid-solid interaction equations stated in (2-67), (2-78), (2-83), (2-88)
and (2-93), it is possible to identify the Reynolds, the Cauchy and the Froude
numbers. Observe that all those three dimensionless numbers are function of
the fluid velocity U0, which is convenient since, here, the solid motion will be
neglected.

With this negligence, the time scale has to be changed. Then, one will
scale the time using Tfluid. This leads to new dimensionless variables:

t̃ = t

Tfluid
, (3-55)

Ũ = U

U0
, (3-56)

P̃ = P

ρFU2
0
. (3-57)

The specific set of equations for high reduced velocity will be written
in terms of these new dimensionless variables. As before, one can use the
boundary conditions of the fluid domain to express the order of magnitude of
the fluid velocity at the fluid domain boundary, and at the interface. Then, at
the fluid boundary, the velocity U can be written as:

U = o(U0), (3-58)

which leads to the following relation for the dimensionless formulation of the
velocity field:

Ũ = o
(
U0

U0

)
= o(1). (3-59)

At the interface, the same thing can be done using the kinematic condition
equation. Recalling that Ũ = dξ̄

dt̃
, it is possible to write

Ũ = o
(
D

UR

)
. (3-60)

Consider a high reduced velocity, which means UR >> D, the velocity at
the interface can be neglected. Then, in the kinematic condition, the solid is
considered fixed from the point of view of the fluid dynamic. Consequently:

Ũ = dξ̄

dt̃
≈ 0. (3-61)

Since the velocity of the interface is neglected and it does not interfere
that much in the fluid domain, it is possible to consider a solid fixed in time
in comparison with the fluid dynamics. This is a quasi-static aeroelasticity
approximation.

Finally, although the system is coupled, two dynamics can be computed
separately. As the motion of the solid is very small in comparison to the fluid
motion, the interface can be considered fixed in time. This hypothesis could
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be used thanks to the difference of the time scales in the two domains.

Specific set of equation for high reduced velocity: using the
new dimensionless variables, the mass balance and the momentum bal-
ance for the fluid domain become:

div
(
Ũ
)

= 0, (3-62)

dŨ

dt̃
= − 1

F 2
R

ez −∇P̃ + 1
RE

∆Ũ . (3-63)

At the interface, one can rewrite the kinematic condition and the
dynamic condition as:

Ũ = dq̄

dt̃
ϕ, (3-64)∫

Γ̄S
CA

(
−P̃ I + 1

RE

(
∇Ũ +∇T Ũ

))
nϕdS̄ = DFFS. (3-65)

Finally, the equation for the solid is:

U2
R

d2q̄

dt̃2
+ q̄ = FFS, (3-66)

where FFS expresses the fluid-induced force on the solid. It will be
called fluid load.

3.2.1
Flow-induced static instability with single mode approximation

As explained previously, with the consideration of a large reduced veloc-
ity, the velocity of the interface can be neglected in the fluid dynamic. Using
once again the first-order approximation of the expansion (3-19) in the single
mode approximation gives:

ξ(x, t) = Dq(t)ϕ(x). (3-67)

One can find the expression of the fluid load and some consequences on the
solid dynamics. As the interface is considered fixed at the position defined by
the modal displacement q, the fluid variables are going to be functions of the
quantity q. Thus the pressure field is defined as P̃ (Dq) and the velocity field
as Ũ(Dq). Then, the fluid load FFS is defined through those quantities as:∫

Γ̄S
CA

(
−P̃ I + 1

RE

(
∇Ũ +∇T Ũ

))
nϕdS̄ = FFS(RE, Dq, ...). (3-68)

The fluid load, FFS, at a given time depends of the position of the
interface, through the quantity q. Rewriting the equation (3-68), the force
can be expressed as the product:

FFS(RE, Dq, ...) = CAF (RE, Dq, ...). (3-69)
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Considering small motion of the solid which means small D, it is possible to
use the asymptotic expansion of the function F with respect to D:

FFS = CAF0 +DfFS + ... =⇒ FFS = CAF0 +DqCA

(
dF

d(Dq)

)
+ ... (3-70)

The first term corresponds to the fluid force with the original position of the
interface and the second depends on the variation of the interface position.
This second term is function of the modal displacement q which means that
the flow induced force is a flow induced stiffness force, where:

fFS = −kF q =⇒ kF = −CA
(

dF

d(Dq)

)
. (3-71)

Thus, from the solid dynamic point of view, the flow induced force is equivalent
to a stiffness force of a spring. This stiffness depends on the flow velocity
through the Cauchy number, which varies with U2

0 . It can be negative or
positive depending on the motion of the interface, which depends only on
the fluid dynamics.

Now that the flow induced force has been expressed, let’s analyze the
influence of such force on the dynamic of the solid. As now the dynamic of the
solid is the focus, it will be used the scaled time t̄ instead of t̃. Thus, the solid
dynamic equation can be re-written from (3-66), considering the characteristic
solid time, as:

d2q

dt̄2
+ q = fFS. (3-72)

Then, using (3-71) one can write:

q̈ + (1 + kF )q = 0 =⇒ q̈ +
(

1− CA
(

dF

d(Dq)

))
q = 0. (3-73)

Observing (3-73), it is possible to verify that the total stiffness of the
solid system depends on the fluid characteristics. Indeed, in this expression,
when the fluid velocity is increasing (so the Cauchy number increases too), the
total stiffness term of the system is decreasing. As one can remark, there is
a limit case where the system has no more stiffness. This specific condition,
where CA dF

d(Dq) = 1, means that the frequency of the system will have an
imaginary part. This is called static instability since only stiffness terms are
involved in this specific condition. In Fig. 3.2.1 the evolution of the frequency
with respect to the normalized flow velocity looks like a parabola. This is
completely normal since a linear variation of the flow velocity will produce a
variation as a parabola of the normalized flow velocity presented in Fig. 3.2.1
due to the expression of CA.
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Figure 3.1: Left: Simple mass-spring system in a cross-flow / Right: Evolution
of the frequency of the system with respect to the upstream velocity

Example of flow-induced static instability of a simple mass-spring system:
Consider the system presented in Fig. 3.2.1. The dynamic equation of this
system is written as (3-72). The scaled natural frequency of the free system is
one. Then considering (3-73), one can plot the evolution of the frequency of
the system Fig. 3.2.1.

The evolution of the flow velocity is normalized with respect to the flow-
induced force to simplify the representation. Without flow, the frequency of
the system is one (as expected) but when the flow velocity increases the global
stiffness of the system descreases and thus the frequency decreases too. The
limit case is when the global stiffness becomes negative then the frequency
starts to be imaginary.

This type of instability is an example of a phenomena that can occur
in very flexible footbridges (studied in [39]) under the action of high velocity
wind. Indeed, depending on the lift coefficient of the airfoil’s section or of the
footbridge’s one, there will exist a critical fluid velocity (and thus a associated
Cauchy number) which will cause the instability. At this point, the stiffness
vanishes and, the amplitude of the solid displacement increases exponentially.

3.2.2
Flow-induced dynamic instability with two modes approximation

To observe more complex instabilities in the system response, a more
complex formulation should be used. In this section, this will be explained
considering two modes in the approximation of the displacement ξ. Indeed, the
single mode approximation is not sufficient for some solid dynamics. Examples
of such situations are the collapse of the Narrow Tacoma Bridge and the
oscillation of a plane empennage under flutter effects [20]. One can easily see
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that a combination of modes, bending ones in two different directions or even
bending and torsional ones could better characterize the dynamic of the solid
domain.

Thus, let’s start with the two modes approximation to define the dis-
placement ξ. The displacement is written as function of the projection of the
modal displacements into two functions of space, the modes ϕ1 and ϕ2. Then:

ξ(x, t) = Dq1(t)ϕ1(x) +Dq2(t)ϕ2(x). (3-74)
Using this approximation, the equation of motion of the solid should

be written in term of both modal displacements q1 and q2 which leads to a
system of two equations. The fluid load may also be projected in both modes.
The approximation made before (the motion of solid is much slower than the
motion of the fluid) is still valid which means that it remains in the quasi-
static aeroelasticity approximation. The variables of the fluid domain must be
written through the two modal displacements as made before for the single
mode approximation. Thus:

P̃ (Dq) =⇒ P̃ (Dq1, Dq2), (3-75)

Ũ(Dq) =⇒ Ũ(Dq1, Dq2). (3-76)
For the single mode approximation, the flow induced force was calculated

projecting on the single mode, as shown in (3-69). This time, the flow induced
force will be calculated projecting on the two modes which leads to:

F i
FS = CAFi (RE, Dq1, Dq2, ...) , i = 1, 2. (3-77)

Using once again the asymptotic expansion as used for the single mode
approximation (3-70), one can find:

F i
FS = CAF

i
0 +Dq1CA

(
dFi

d(Dq1)

)
+Dq2CA

(
dFi

d(Dq2)

)
+ ... (3-78)

Once again, the first term is linked to the original force, and the other terms
are related to the modal displacements qi’s. One can then define a stiffness
operator Kij such as:

Kij = dFi
dqj

. (3-79)

Thus, as the single mode approximation led to a unique equation of
motion, the two modes approximation leads to a system of two equations
of motion. Usually, the term presented in (3-79) comes from experiments or
numerical computations. m1q̈1 + k1q1 = f 1

FS = CAK11q1 + CAK12q2

m2q̈2 + k2q2 = f 2
FS = CAK21q1 + CAK22q2

(3-80)
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Note that here the modal mass and the modal stiffness are not necessary
equal to unit. This just happens for the single mode approximation. The
equations presented in (3-80) are coupled since each of them contains both
modal displacements. There is coupling through the flow induced stiffness
forces. Then, depending on the variation of the fluid velocity value, the off-
diagonal terms (Kij for i 6= j) become closer and closer or more and more
distant. Thus, the natural frequencies vary in a way that a coincidence between
frequencies may occur. Let’s have a look on what happens when the fluid
velocity causes this coincidence of the two frequencies. Writing (3-80) as: m1q̈1 + (k1 − CAK11) q1 = CAK12q2

m2q̈2 + (k2 − CAK22) q2 = CAK21q1
, (3-81)

one can write:  q̈1 + ω2
1q1 = CAK12

m1
q2

q̈2 + ω2
2q2 = CAK21

m2
q1

. (3-82)

To simplify the equations, the frequencies are scaled to unity, then
ω = ω1 = ω2 = 1, and, it is considered that the coupling stiffness terms
(off diagonal terms of Kij) are much smaller than the stiffness of the modes
(the diagonal of Kij). Thus, the off diagonal terms can be neglected and noted
as ε.

Next, two cases will be analyzed. The symmetric case where the coupling
stiffnesses are equal and the antisymmetric case where the stiffnesses have
opposite sign. For each case, the natural frequencies and modes will be
computed.

3.2.2.1
Symmetric case: equal coupling stiffnesses

In this case, the system of equations can be written as following with
ε << 1:  q̈1 + q1 = εq2

q̈2 + q2 = εq1
. (3-83)

Stating that the modal displacements can be written as:

qj = Re

[
qje

iwt
]
, (3-84)

where Re [�] is the real part of the quantity, one can write: −ω
2q1 + q1 = εq2

−ω2q2 + q2 = εq1
. (3-85)

The frequency of this system is the value ω that turns the determinant:∣∣∣∣∣∣ 1− ω2 −ε
−ε 1− ω2

∣∣∣∣∣∣ = 0. (3-86)
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Using the approximation ε −→ 0, which gives
√

1 + ε ≈ 1 + ε
2 , the natural

frequencies are:
ω ≈ 1± ε

2 . (3-87)
Finally one can define the two frequency-mode couples as:

A =
〈

1 + ε

2 ,
 1
−1

〉 , (3-88) B =
〈

1− ε

2 ,
 1

1

〉 . (3-89)

These modes have real frequencies and are combinations of the original
modes. Thus, there is a small coupling of the modes which makes the system
a bit different compared to the original one. The modes here are qualified as
neutral modes.

3.2.2.2
Antisymmetric case: opposite coupling stiffnesses

Doing exactly the same procedure for the case where the coupling
stiffnesses have opposite sign, the system of equations can be written as
following with ε << 1:  q̈1 + q1 = εq2

q̈2 + q2 = −εq1
. (3-90)

Stating that the modal displacements can be written as before, one looks for
the following determinant to be zero:∣∣∣∣∣∣ 1− ω2 −ε

+ε 1− ω2

∣∣∣∣∣∣ = 0. (3-91)

Then one can find the natural frequencies which have a complex part this time.
Using the same approximation as before, it is possible to define the two couples
frequency-mode as following.

A =
〈

1 + i
ε

2 ,
 1
−i

〉 , (3-92) B =
〈

1− i ε2 ,
 1
i

〉 . (3-93)

Observe that the frequencies are complex and so are the modes. As it
is well known, complex frequencies and complex modes are usually related
to non-conservative modes. Taking for instance the first couple (3-92) defined
before, one can, using (3-84), find the expression of the modal displacements
as:  q1

q2


A

=
 cos t

sin t

 e− ε2 t. (3-94)
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Plotting the phase diagram in the q1q2-plane, one can see that the dynamic is
stable Fig. 3.2 and that the system is naturally damped.
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Figure 3.2: Time evolution of q1 and q2 and phase diagram in the q1q2-plane
for the stable case, ε = 0.1.
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Figure 3.3: Time evolution of q1 and q2 and phase diagram in the q1q2-plane
for the unstable case, ε = 0.1.

Taking now the second couple (3-93), one can do exactly the same thing.
This time, the modal displacements are: q1

q2


B

=
 cos t
− sin t

 e ε2 t. (3-95)
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Observing Fig. 3.3, one can see that the oscillations are growing expo-
nentially, this mode is an unstable mode. To conclude, for the antisymmetric
case, the system has a damped mode and an unstable mode which leads to a
dynamic instability (with an exponential growth and oscillations).

Coming back to (3-82), one can notice that there is no reason for the
coupling stiffnesses being equal or opposite. Considering that the coupling
stiffness can vary in time, it is possible that there is an instant when they
are equal and another when they are opposite. This way, an instability can
occur. This dynamic instability is called the couple mode flutter. To occur it is
required a coincidence of frequencies and a non-symmetric coupling stiffness.

3.3
Intermediate reduced velocity: a flow-induced dynamic instability

After the analysis of the two limit cases (low and high reduced velocity),
one can investigate an intermediate case where the reduced velocity is neither
very high nor very low. This case occurs when both time scales, the solid
and the fluid have the same order of magnitude. Then, Tsolid is not that
large anymore and may change during the characteristic fluid time Tfluid. To
simplify, one can consider that this change occurs at a constant rate. This time,
neither the fluid velocity at the interface nor the velocity of the interface will
be neglected. Let’s note the rate of this change as γ which, using dimensionless
variables, can be written as:

γ̃ = dŨ

dt̃
. (3-96)

Combining it with the kinematic condition equation (2-84) and the order of
magnitude of Ũ at the interface, one can easily find the order of magnitude of
γ̃ (recall that t̃ = o( t

Tfluid
) = o(UR)) as :

γ̃ = o

(
D

U2
R

)
. (3-97)

Then considering relative high flow velocity, which means U2
R >> D, one

can say that γ̃ is negligible. This is equivalent to consider that the velocity of
the interface is fixed in time. Thus, from the point of view of the fluid, the
solid moves so slowly that it has a low deformation and its velocity is constant
in time. This is the pseudo-static aeroelasticity approximation:

∆Ũ = 0. (3-98)

As seen before for the quasi-static aeroelasticity approximation, the two
dynamics are coupled but, as the time scales are still different, they can be
solved separately.
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Let’s have a look now on the consequences of such approximation on the
dynamic of the solid. First, one can use here the single mode approximation
defined before in (2-79). The difference here, is that the dimensionless variables
of the fluid domain are dependent on the velocity of the interface. Thus, the
pressure field and the velocity field can be written as:

P̃ (Dq,Dq̇), (3-99)

Ũ(Dq,Dq̇). (3-100)
Then, as made before for the previous single mode approximation for

high reduced velocity, the flow induced force is calculated projecting on the
single mode. One obtains the following expression:∫

Γ̄S
CA

(
−P̃ I + 1

RE

(
∇Ũ +∇T Ũ

))
nϕdS̄ = FFS(RE, Dq,Dq̇, ...). (3-101)

As before, the flow induced force can be written as:

FFS = CAF (RE, Dq,Dq̇, ...), (3-102)

and then, using the asymptotic expansion in D as made several times before,
FFS = CAF0 +DfFS + ..., one can find the expression of the non-constant flow
induced force:

fFS = CA

(
dF

d(Dq)

)
q + CA

(
dF

d(Dq̇)

)
q̇. (3-103)

The first term is the flow induced stiffness force, which leads to flow
induced static instability, and the second term is then a flow induced damping
force since it is a function of q̇. Knowing the flow induced force, one can study
the dynamic of the solid through:

U2
R

d2q

dt̃2
+ q = fFS. (3-104)

As the focus is on the dynamic of the solid, this equation can be rewritten
using the solid time scale:

q̈ + q = CA

(
dF

d(Dq)

)
q + CA

UR

(
dF

d(Dq̇)

)
q̇. (3-105)

A simpler form of this equation is:

q̈ + cF q̇ + (1 + kF )q = 0, (3-106)

where:
cF = −CA

UR

(
dF

d(Dq̇)

)
. (3-107)

As explained before in the case of the dynamic instability considering
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high reduced velocity (using the two modes approximation), there is no reason
for the damping force to be positive or negative. This force is function of the
fluid dynamics. Finally, two cases are possible, one where cF > 0 which will
lead to damped mode and one, more critical, where cF < 0 which leads to an
unstable mode. In this case, the amplitude of the solid motion will increase
exponentially in time.

Indeed, when there is damping in a mechanical system, one can say that
the system is not conservative. If the damping is positive, the system will
dissipate the energy brought by the force but when the damping is negative,
the system will accumulate a part of the energy brought by the force and this
will lead to an exponential increase of the motion.

This instability is also called flow induced dynamic instability and it
is much more critical than the previous one since it can occur with only
a single mode, and since no coincidence in frequency is required as in the
previous case (the couple mode flutter). Besides of this, observe that the flow
induced dynamic instability can occur with different reduced velocities. Every
reduced velocity that turns the total damping of the system negative causes the
instability. Remark that to compute these critical velocities, it is necessary to
consider the total damping of the system, i.e. the sum of the damping coming
from the solid and the fluid domain. Indeed, in (3-106) just the damping related
with the fluid domain is taken into account.

3.4
Conclusions on the fluid-structure interaction consequences

As said in the introduction of this chapter, one of the objectives is to
classify problems of fluid-structure interaction according to the value of the
reduced velocity UR. Three cases were investigated, the cases of small, high
and intermediate reduced velocity.

For small reduced velocity, one has seen that the fluid could be considered
as a still fluid. Using the approximation of small motion of the solid, several
phenomena could be identified. The first one is the added stiffness effect which
is linked to the original pressure field of the system. Others phenomena are
related to the Stokes number.

– For high Stokes number, the fluid induced force behaves as an added
mass effect.

– For low Stokes number, the fluid induced force behaves as an added
damping effect.

– The case of intermediate Stokes number was briefly treated and the
memory effect was quickly described.
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For high reduced velocity, the solid can be considered fixed in relation to
time which simplifies a lot the equations. This approximation was called the
quasi-static approximation which means that the position of the interface is
fixed at each time step. Then, using first the single mode approximation, one
was able to determine a flow induced static instability which may occur with
the diminution of the global stiffness of the solid domain.

Using the two modes approximation, an other interesting type of insta-
bility was identified. With these two modes, it exists a coupling between the
modes related to the stiffness term. Also, this coupling may lead to a coin-
cidence of the natural frequencies. In relation to the coincidence, two cases
where investigated, the symmetric case where the coupling stiffness terms are
equal and the case where they have opposite sign.

The symmetric case does not lead to an instability, it just leads to a small
coupling between the modes which makes the response of the system slightly
different than the original one. In the antisymmetric case, the coupling stiffness
terms are opposite in sign which leads to two different modes, a damped
one and an unstable one. The unstable mode causes flow induced dynamic
instability. Note that, this instability occurs only if there is a coincidence of
frequencies and also antisymmetry in the coupling stiffness terms.

Finally, the case of intermediate reduced velocity was investigated. In
this case, the motion of the solid cannot be neglected and the velocity of
the interface is considered constant. It has be shown that this instability is a
result of negative flow induced damping force. Different from the other cases,
this instability does not require a coincidence of frequencies.

Other types of instabilities were not treated here like vortex induced
vibrations, as in [24]. This work gives an overview of what can occur for several
values of reduced velocity. For each situation, the limit case was investigated
with its dominant effect(s). In the real life, there is a transition between all
these cases and, all these effects. According to the reduced velocity, for instance,
some of them are dominant and others can be neglected.

Fluid-structure interaction problems have been presented, namely how
to formulate them, and some of their consequences on the structure were also
shown. Now, let’s observe a structure that can suffer fluid-structure interactions
and thus some instabilities. One proposes to study suspension bridges and
namely their dynamic which is known for being very non-linear and quite
particular.
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Indeed, several examples of suspension bridges suffering fluid-structure
interactions can be cited such as the case of the Tacoma Narrows Bridge which
has collapsed in 1940. In all those cases, a common phenomenon was observed,
as said in [32]: suspension bridges may suffer large oscillations that can appear
suddenly.

In the next chapters, one will first present numerical models and one
of them will be used to illustrate later this particular dynamic of suspension
bridges. Also, the mathematical tools used to observe such dynamical behavior
are given.
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4
Numerical models for suspension bridges

4.1
Introduction

Before starting the description of the different simple numerical models
used for suspension bridges, let’s describe how a suspension bridge is usually
made. The main elements and a global vision of such a structure are presented
in Fig. 4.1. Usually the global structure of modern suspension bridges has a
roadway (which does not have any structural function) which is supported by
an element called the girder (usually made of stiffening trusses). Four towers
sustain the two parallel sustaining cables. These two cables sustain the roadway
and the girder through the hangers (usually smaller cables).

towers

cable

girder

roadway

hangers

Figure 4.1: Classical view of suspension bridge.

The proper structure of suspension bridges makes them very vulnerable
to fluid-structure interactions (which can interfere their sustainability that is
studied in [2] and also explored in [28]) and quite hard to describe for dynamical
studies through simple models. Moreover, because of the complex structure
of suspension bridges, one may consider some non-linearities in the model
which turns it more complex. As said in [32], non-linearities will allow to show
some very interesting phenomena and mainly uncontrolled vibrations of the
structure. Those vibrations are directly linked to the mechanical properties of
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the bridge in a way that even common conditions (in the sense of non extreme
conditions) of flow-induced excitation can create such instabilities.

As said before, the principal source of these instabilities are generally the
fluid-structure interactions, but in some cases, the instability can be reached
with other sources of excitation, for instance the case of the Millennium
Bridge in London (excited by pedestrians through a coupling between the
force generated by their steps and the dynamic of the bridge, as it shown in
[1], [48] or [57]). As seen in the first chapters, fluid-structure interactions can
act in different ways on the dynamic of the structure and large oscillations of
the bridge may be expected due to negative damping effect or even due to the
couple mode flutter effect for instance.

In the literature [32], one has shown that very large vertical oscillations
can produce torsional oscillations in suspension bridges which are very critical
for the sustainability of the structure. Indeed, as soon as a critical level of
energy is brought to the structure, such instabilities can be observed. This
energy can be brought by the wind through the lift effect or by more complex
effect in the case of vortex induced instabilities. The objective of the following
chapters is to build a simple model representing a suspension bridge and to
observe large oscillations and non-linear behaviors.

As shown in [32] and [37] several types of model can represent suspension
bridges. The simplest ones are one-dimensional models. Examples of more
complex models are the ones that use fish-bone beam, the ones that use
interacting oscillators or even use plate representation.

4.2
One-dimensional models

The simplest way to model suspension bridges is to consider the roadway
and the girder as a unidimensional beam. Indeed, the length of the suspension
bridge is much bigger than its width, then the approximation of considering
the bridge deck as a beam is reasonable. But, as any consideration and
simplification, some aspects of the real situation will be ruled out. In this
specific case (Fig. 4.2), the torsion of the bridge cannot be observed, thus
torsional vibrations will not be shown. But, once again as said in [32] and [45]
large vertical oscillations are usually source of more complex torsional ones
which are very critical for the structure. Vertical ones can also be very critical
if their amplitude is important. From history, it was observed that it exists an
instant where vertical oscillations suddenly change to torsional ones or more
complex ones.

First, a brief presentation of the beam equations and also cable equations
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Figure 4.2: Schematic view of a one-dimensional model of suspension bridge

will be performed and then one will investigate one of the most known
equations for suspension bridges using a one dimensional representation, the
Meylan equation [31]. This representation combines cable and beam equations
and a non linear formulation of the problem. From this formulation, a nonlinear
nonlocal term appears due to the additional tension in the cable. This term can
be approximated through different ways. This will be presented and explained
in the next sections.

4.2.1
Linear beam equation

As defined in the literature, namely in [41], a beam as a prismatic body
which is resistant to bending and twisting. During all this section one will
consider that the x-axis and the beam axis are coincident and that the cross
section of the beam is orthogonal to the x-axis. One will call w the deflection
of the beam with respect to the z-direction from the horizontal equilibrium.

One can then define the elastic energy stored in the beam through the
bending and the stretching energies (if the beam is not fixed at both endpoints,
no stretching energy is expected). Finally,

considering small deformations w of the beam (4-1)

(in order to linearize the equations) one gets, as it is well known, the classical
static equation for beams, the Euler-Lagrange equation that contains both,
second and fourth order terms as following:

EI
d4w(x)
dx4 − T d

2w(x)
dx2 = f(x). (4-2)

In this equation, E is the Young modulus (considered constant along the x-
axis) and, I is the moment of inertia of the cross section of the beam (also
considered constant all along the length of the beam). The term f represents
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here the static vertical force on the beam. The term T represents the constant
tension in the beam. Observe that T = 0 if the beam can move freely at, at
least, one of the endpoints. Thus one gets a simpler form of the Euler-Lagrange
equation:

EI
d4w(x)
dx4 = f(x). (4-3)

The equations (4-2) and (4-3) are the classical ones to represent the static
deformation of a beam and may be combined to equations of the sustaining
cable to build a complete model.

4.2.2
Cable under vertical loads

As found in the literature, for instance in [32] or [36], the sustaining cables
are one of the main components of suspension bridges. Indeed, this element
interacts with all the others of the bridge (towers, hangers and bridge deck)
and also, because of the effect of the cables, the bridge deck may be designed
considering the induced compression.

This section focuses on the deflection of cable (considered as a perfect
flexible string) under vertical load. With this consideration, the cable has no
resistance to bending and the only internal force is the tension called F . The
tension acts tangentially to the position of the cable y. Let’s call θ the angle
between the horizontal x-direction and the curve of the cable then one can
easily write: d

dx
y(x) = tan θ(x). (4-4)

If the cable only suffers a vertical distributed load q, the horizontal component
of the tension is constant along the cable:

F (x) cos θ(x) = H. (4-5)

One considers that the load is distributed per horizontal unit which
is exactly the case when a beam is suspended to a cable (see the following
section). Neglecting the mass of the cable and considering that the space
between the hangers is quite small (to really have a distributed load and
not concentrated ones), the model is much simpler. One can then write the
variation of the vertical component of the tension as:

d

dx
[F (x) sin θ(x)] = −q(x). (4-6)

Then, writing F in a different way thanks to (4-5), one gets, considering the
positive vertical axis oriented downwards:

H
d

dx
[tan θ(x)] = −q(x), (4-7)
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and, finally, using (4-4) one obtains :

H
d2

dx2y(x) = −q(x). (4-8)

From (4-8) one can find the position of the cable y as a function of the vertical
load q, the horizontal tension H and the length L between its two endpoints.
Also, considering that both extremities of the cable are at the same height,
one obtains:

y(x) = q

2Hx(L− x). (4-9)

4.2.3
Model of suspension bridge using beam and cable

The complete model consists of a combination of the sustaining cable and
the roadway (modeled as a beam), see Figure 4.3. This is the topic of [44]. In
this model, let us consider the orthogonal coordinate system (O, x, w) with the
four characteristic points (O, O′,M andM ′). Note that the positive deflection
of the beam is oriented downwards. The roadway, represented as a beam, is the

O M

O' M'y(x)+w(x)

w(x)w

x

Figure 4.3: Beam sustained by a cable through parallel hangers.

segment connecting the points O andM . The cable is then suspended between
the points O′ and M ′ which are respectively the fixation points of the cable
on the two towers OO′ and MM ′. In this initial position, the bridge deck is
considered at the equilibrium position and no bending forces are present in
the beam which means that the dead load of the bridge deck is all sustained
by the cable itself (note that the dead load of the cable and the hangers is not
considered here). From all these considerations, one can write the variables of
the problem:

– L length of the beam;

– x position on the beam, x ∈ [0, L];

– q dead load per unit length applied on the beam;

– p live load per unit length applied on the beam;
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– y downwards displacement of the cable due to q;

– w downwards displacement of the beam due to the live load p;

– H horizontal tension in the cable due to the dead load only;

– h additional tension in the cable due to the live load p.

Here, it is necessary to mention that w will represent both vertical displace-
ments of the cable and of the beam due to the live load since

the deformation of the hangers is neglected. (4-10)

As shown in the literature (namely by Gazzola in [32]), this assumption
is quite common as long as the response of the bridge is contained in the lower
modes and weakly stiffened bridges are involved. However, for more complex
models, as the effect of the hangers is important, this assumption is removed
because of the influence of the hangers on higher frequencies. This assumption
is also removed for high stiffened bridges.

Then, reorganizing (4-8) and considering the dead load constant (since
there is no mass variation), one can calculate the downwards displacement of
the cable due to the dead load as:

d2y(x)
dx2 = − q

H
. (4-11)

Thus, when a live load is added, a part of it, pc is carried by the cable
which leads to an additional tension h in the cable. The rest of the live
load, called pb, is carried by the bending stiffness of the beam. Due to this
phenomena, the beam suffers a deflection w. The same deflection is added to
the position of the cable y because the hangers are considered inextensible.
Finally one can write the following equation:

(H + h(w(x)))
(
d2y(x)
dx2 + d2w(x)

dx2

)
= −q − pc(x). (4-12)

As seen before, the remaining part of the live load pb is carried by the
bending stiffness of the beam which leads to:

EI
d4w(x)
dx4 = pb(x). (4-13)

Finally, combining (4-12) and (4-13), one gets the following expression for this
complete model presented by Fig. 4.3:

EI
d4w(x)
dx4 − (H + h(w)) d

2w(x)
dx2 + q

H
h(w) = p(x), (4-14)

then the boundary conditions can be written as following when the beam is
assumed to be hinged at the endpoints:
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w(0) = w(L) = 0, (4-15)

d2w(0)
dx2 = d2w(L)

dx2 = 0. (4-16)
The equation, obtained considering (4-1) and (4-10), is a nonlinear

fourth order equation (4-14) which is not that simple to integrate. Another
simplification could be done considering h as a small constant. To by pass this
simplification which would turn the problem linear, one needs to explain how
to compute the additional tension in the cable due to the live load.

At this point, one can make some assumptions concerning the main cable
of the bridge (which is extensible). Usually, the maximum deflection of the
cable due to the dead load q is around 1

10 of the total length L of the bridge.
With this assumption, one can estimate the total length of the cable Lc and
later estimate the additional tension h due to the live load p.

4.2.4
Additional tension in the cable

This section will present several ways to compute the additional tension
h in the cable which is a function of the displacement w. First let’s remind
how to calculate the length of the cable, Lc. In [31] or [32], one can find that
this length can be written as:

Lc =
∫ L

0

√
1 + y′(x)2dx. (4-17)

Then, the additional tension in the cable is directly linked to the variation
of the length ∆Lc from the initial position, due only to the dead load, to the
new one, adding the live load. This can be written as:

∆Lc =
∫ L

0

(√
1 + [y′(x) + w′(x)]2 −

√
1 + y′(x)2

)
dx. (4-18)

Finally, the tension is computed thanks to the mechanical properties of the
cable as:

h(w) = EcAc
Lc

∆Lc, (4-19)

where Ec is the Young modulus of the cable material and Ac is the cross section
area of the cable. Now, let’s see some approximations used in the literature to
compute this term which may be included in the equation (4-14).

First approximation: considering the following asymptotic expansion for any
γ 6= 0 and applying it to (4-18),√

1 + (γ + ε)2 −
√

1 + γ2 ≈ γε√
1 + γ2 , (4-20)

for ε −→ 0, one can write the variation of the cable length as:

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Chapter 4. Numerical models for suspension bridges 66

∆Lc ≈
∫ L

0

y′(x)w′(x)√
1 + y′(x)2

dx. (4-21)

In the literature, a consideration is also made on the square of the first
derivative of y. Neglecting this term and, integrating by parts one gets a first
approximation. Then using (4-11) one can write:

∆Lc ≈ −
∫ L

0
y(x)w′′(x) ≈ q

H

∫ L

0
w(x)dx. (4-22)

Second approximation: from (4-18) one can reorganize the equation multi-
plying by the conjugate expression and to get:

∆Lc =
∫ L

0

2w′(x)y′(x) + w′(x)2√
1 + [y′(x) + w′(x)]2 +

√
1 + y′(x)2

dx. (4-23)

Neglecting the derivatives in the denominator and then integrating by parts
leads to:

∆Lc ≈
∫ L

0

(
w′(x)y′(x) + w′(x)2

2

)
dx ≈ q

H

∫ L

0
w(x)dx− 1

2

∫ L

0
w(x)w′′(x)dx.

(4-24)

Third approximation: another approximation can be done from (4-21).
Integrating this equation by parts one can get:

∆Lc ≈ −
∫ L

0

y′′(x)w(x)
(1 + y′(x)2)3/2dx. (4-25)

Finally, using (4-11), the final expression of the variation of the cable length
is:

∆Lc ≈
∫ L

0

w(x)[
1 + q2

H2

(
x− L

2

)]3/2dx. (4-26)

For further considerations, the first approximation (4-22), which is the
simplest one, is taken into account. Indeed, the difference between the addi-
tional tensions computed with each of the three approximations is not that
important according to [32]. The first approximation leads to a good enough
estimation of the additional tension. Finally, modeling a suspension bridge
with this one dimensional model using a beam suspended to a cable, one gets
the following equation:

EIw′′′′(x) + (H + h(w))w′′(x) + q

H
h(w) = p(x), (4-27)

where,
h(w) = EcAc

Lc

q

H

∫ L

0
w(x), (4-28)

with some boundary conditions. Here one considers the beam hinged at the
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boundaries, then:

w(0) = w(L) = w′′(0) = w′′(L) = 0. (4-29)

4.2.5
Dynamic equation

To describe the dynamic of the beam, the kinetic energy should be
considered. Usually, dynamic of beams can be studied will two well known
models, the Euler-Bernoulli one and the Timoshenko one. In the first model,
shear stress and rotation of cross sections are neglected whereas in the
Timoshenko model they are not. In this section the Euler-Bernoulli model
is used.

The characteristics of the beam are as following, L is the length, ρ the
mass per unit length (considered constant), A the area of the cross section
(considered constant), the term f is the dynamic vertical force acting on the
beam. The equation of motion of the beam, the Euler-Bernoulli equation, can
then be written as:

EI
d4w(x, t)
dx4 + ρA

d2w(x, t)
dx2 = f(x, t). (4-30)

The initial conditions can bean initial deflection, velocity or acceleration.
Then, to form the complete dynamic equation related to the static one (4-27),
one neglected the kinetic energy from the cable (and from the hangers as said
before). Indeed, the inertia and the mass of the cable are very small compared
to the ones of the beam representing the bridge deck. Thus, the dynamic
equation of this one dimensional model is:

ρAẅ(x, t) + EIw′′′′(x, t) + (H + h(w))w′′(x, t) + q

H
h(w) = p(x, t), (4-31)

where, the notation �̇ represents the time derivative, then �̈ is the second
order time derivative and the notation �′ is the space derivative. Also:

h(w) = EcAc
Lc

q

H

∫ L

0
w(x, t), (4-32)

represents the additional tension due to the live load. The equation may be
considered with the boundary conditions:

w(0, t) = w(L, t) = w′′(0, t) = w′′(L, t) = 0, (4-33)

and the initial conditions:

w(x, 0) = w0, ẇ(x, 0) = ẇ0, ẅ(x, 0) = ẅ0, (4-34)
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4.2.6
Restriction on the additional tension in the cable

Considering only static models, for instance considering only (4-27) to
(4-29), and applying a downwards load as traffic for instance, the additional
tension will always be positive since the deformation of the bridge deck will
be positive too. The formulation presented in the dynamics equations (4-31) -
(4-34) can be used for any general cases of the live load (positive or negative).
However, a correct interpretation of the additional tension and also of the load
carried by the cable should be done.

Due to the considerations made on the hangers, which are considered as
string or cable inextensible, they can only transmit vertical load to the main
cable in one direction, the downwards one. Then, how to interpret h < 0 ? This
should be interpreted as a diminution of the total tension in the sustaining
cable. Of course the total tension in the cable cannot be negative, the cable
cannot suffer compression. Thus an extra condition has to be added.

Then, at it was done in [52], one can define a function which will cancel
the contribution of the cable when its computed total tension is negative. When
this occurs, the total model is only a beam suffering vertical bending forces.
To do this adds an other non-linearity to the equations presented before. Now,
the problem can be written, considering the following function:

X+ =

 X, X ≥ 0,
0, X < 0.

(4-35)

as:

ρAẅ + EIw′′′′ −H
(

1 + h

H

)+

w′′ + q

(1 + h

H

)+

− 1
 = p. (4-36)

The equation for the additional tension (4-32), the boundary conditions (4-33)
and the initial conditions (4-34) remain the same.

4.2.7
General stiffness factor

At this step, the complete equation governing the one dimensional model
using a beam and a cable to represent a suspension bridge is formulated. In
[52], a different organization of (4-36) is presented and permits to group the
mechanical parameters. Indeed, rescaling the space interval to [0, 1] instead of
[0, L], one can write (4-36) as:

ẅ+C1w
′′′′−C2

(
1 + C3

∫ 1

0
wdx

)+
w′′+C4

(
1 + C3

∫ 1

0
wdx

)+
= p+C4. (4-37)

In (4-37), one can easily find the constants Ci’s:
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C1 = gEI

qL4 , C2 = Hg

qL2 , C3 = EcAcqL

H2L2 , C4 = g, (4-38)

where g represents the gravitational constant. An interesting parameter can
thus be defined, the general stiffness factor. Indeed the ratio C1/C2 can be
seen as a stiffness ratio between the bridge deck (in bending) and the cable (in
traction), then the general stiffness factor Kind can be written as:

Kind =
√
C1

C2
. (4-39)

Just to have an idea of the expected value for this parameter, in [52] the
example of the George Washington Bridge between the New Jersey and the
State of New York is given and its general stiffness factor is estimated at
0.029. Another example given in [32] with EI = 57.106kN.m2, L = 460m,
H = 97.75.103kN and q = 170kN/m, considering a classical g = 9.81m/s2,
the general stiffness factor of this bridge is estimated as 0.052. Other examples
can be found in [51].

4.3
Fish-bone beam model

Here, one will briefly present a two dimension model used for modeling
suspension bridges. The bridge deck can be modeled through a fish-bone beam
suspended to a cable on both sides, as done in [36] (Fig. 4.4). This custom
beam is composed of a main central beam and several transversal perpendicular
beams considered rigid. Thus, thanks to this representation, now the torsion
is observable.

Figure 4.4: Schematic view of a fish-bone model of suspension bridge

Also, with this more complex model, it is possible to analyze the transfer
of energy from vertical oscillations to torsional ones. Thus more complex effects
like couple modeflutter for instance can be better understood and observed.
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As shown in [32] for instance, the sudden change from vertical oscillations to
torsional ones occurs when enough energy is present in the model. Then this
model can allow to estimate this level of energy that will be the threshold of
instability.

4.4
Models with interacting oscillators

Also, it is possible to model the suspension bridge using interacting
oscillators. To do this, one investigates a single cross section of the bridge deck
and then models it through a nonlinear double oscillator. In this configuration,
both, vertical and torsional oscillations can be observed. Here, once again a
transfer of energy from the vertical oscillations of the section to torsional ones
is reached when a sufficient level of energy is present in the model. Then,
instabilities such as couple mode flutter effect can be observed and better
understood. Of course, a complete model of a bridge is made with several
oscillators of this type.

4.5
Plate models

Finally, one can find plate models to represent suspension bridges (Fig.
4.5). These models use non linear plate equations and allow to show well
some instabilities and large oscillations. Once again, with this type of model,
instabilities such as couple mode flutter effects or/and torsionnal instabilities
can be shown. Using this type of model, it is possible to verify that there is
a critical level of energy that transforms vertical oscillations into torsionnal
ones. This is coherent with what was presented in the two dimension models
presented before.

Figure 4.5: Schematic view of a plate model of suspension bridge
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5
Finite element method and dynamic response analysis

5.1
Weak formulation

According to [4] and [40], the Finite Element Method (FEM) was
first introduced in the 50’s and 60’s as a structural analysis tool. This
method consists of a discretization technique of a given problem from its
weak formulation or variational formulation [55] and, from its discretization, a
approached solution can be obtained. To briefly explain the weak formulation,
one will consider a uni-dimensional boundary value problem characterized by
the equation defined for x ∈ D, where D = [0, 1]. This kind of problem is
known as a Sturm-Liouville one. The classical formulation of such problem is:

− d

dx

(
p(x)du(x)

dx

)
+ q(x)u(x) = f(x). (5-1)

The functions u, p, q and f are also defined on the same domain D and the
boundary conditions are defined as:

u(0) = 0, du

dx
(1) = 0. (5-2)

For this example one will consider the simplest expression of (5-1) which
is for p(x) = 1 and q(x) = 0. This leads to:

d2u

dx2 + f = 0. (5-3)

The equation (5-3) and the associated boundary conditions (5-2) are the strong
formulation of the problem. To find the weak formulation of it, one needs to
calculate the inner product of (5-3) with a weight function W such as:〈

d2u

dx2 + f,W

〉
= 0, (5-4)

which is, developing, equivalent to:〈
d2u

dx2 ,W

〉
+ 〈f,W 〉 = 0. (5-5)

Given the definition of the inner product, (5-5) can be written as:
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∫
D

d2u

dx2Wdx+
∫
D
fWdx = 0. (5-6)

Integrating by parts (5-6), such as
∫
D udv = uv|D −

∫
D vdu, one gets:∫

D

du

dx

dW

dx
dx− W

du

dx

∣∣∣∣∣
D

=
∫
D
fWdx. (5-7)

The second term of the difference is directly linked to the boundary conditions
of the problem. Indeed, in (5-2), it was defined a natural boundary condition
and an essential one. It is important to notice that the weight function W has
to respect the essential boundary conditions which is u(0) = 0 in this case
but does not need to respect the natural ones. From these restrictions, one can
define the space V of admissible weight functions. Finally, after reductions, the
weak formulation of the problem is defined with W ∈ V as:∫

D

du

dx

dW

dx
dx =

∫
D
fWdx. (5-8)

5.2
Weighted residual methods: Galerkin method

Given the weak formulation (i.e. (5-8)) of a problem, the finite element
method, as a variational method, will lead to an approximation of the solution
u of the problem initially described as (5-3). This approximated solution uN
will be calculated on the N discrete points of the domain D such as:

uN(x) =
N∑
j=1

cjφj(x). (5-9)

In (5-9), the cj’s are the coefficients to be determined and the φj’s are the base
functions that are linearly independent and previously defined on D.

Of course, one wants this approximated solution such as it respects the
weak formulation. The weight function W is also approximated by WN which
will be described with the ψi’s functions (i = 1, ..., N) defined on D. Thus (5-7)
becomes: ∫

D

duN
dx

dWN

dx
dx =

∫
D
fWNdx, (5-10)

which, replacing by (5-9) and considering the expression of the weight function,
leads to: N∑

j=1
cj

∫
D

dφj
dx

dψi
dx

dx =
∫
D
fψidx. (5-11)

Simplifying one gets:
aij =

∫
D

dφj
dx

dψi
dx

dx, (5-12)

bi =
∫
D
fψidx, (5-13)

and finally the expression is:
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N∑
j=1

aijcj = bi. (5-14)

Using the matrix form one obtains the following expression:

[a] {c} = {b} , (5-15)

where the coefficients {c}(necessary to compute the approximated solution)
are calculated by:

{c} = [a]−1 {b} . (5-16)
The solution presented here is valid for a linear static problem. For

dynamic problems the resolution might be done differently and for non-linear
problems, an iterative process should be used.

5.3
Weak formulation of the equation of the one-dimensional model

In this part one will present the application of FEM to solve the non-
linear equation of the one-dimensional model presented in the previous chapter
(this was made by [33] for the static case), the equation (4-36) with (4-32),
(4-33), (4-34) and (4-35). Just to remind the expression:

ρAẅ + EIw′′′′ −H
(

1 + h

H

)+

w′′ + q

(1 + h

H

)+

− 1
 = p. (4-36)

Then, calculating the inner product of the equation with the test functions ψi
one obtains:〈

ρAẅ + EIw′′′′ −H
(

1 + h

H

)+

w′′ + q

(1 + h

H

)+

− 1
− p, ψi

〉
= 0,

(5-17)
which can be written as:∫ L

0

ρAẅ + EIw′′′′ −H
(

1 + h

H

)+

w′′ + q

(1 + h

H

)+

− 1
− p

ψidx = 0.

(5-18)
Then, integrating twice by parts and considering the hinged-hinged boundary
conditions (4-33), one gets:

ρA
∫ L

0
ẅψidx+ EI

∫ L

0
w′′ψ′′i dx−H

∫ L

0

(
1 + h

H

)+

w′′ψidx+

q
∫ L

0

(1 + h

H

)+

− 1
ψidx− ∫ L

0
pψidx = 0. (5-19)
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Then, using the Galerkin method (ψk = φk) and (5-9), it is possible to write:

ρA
N∑
j=1

ẅj

∫ L

0
φiφjdx+

N∑
j=1

wj

EI ∫ L

0
φ′′i φ

′′
jdx−H

∫ L

0

(
1 + h

H

)+

φiφ
′′
jdx

+

q
∫ L

0

(1 + h

H

)+

− 1
φidx− ∫ L

0
pφidx = 0. (5-20)

One can write this expression as a non-linear dynamic equation, which, using
the matrix form, gives:

[m] {ẅ}+ [k] {w}+
[
kNL(w)

]
{w}+

{
fNL(w)

}
= {f} , (5-21)

where,
mij = ρA

∫ L

0
φiφjdx, (5-22)

kij = EI
∫ L

0
φ′′i φ

′′
jdx, (5-23)

kNLij = −H
∫ L

0

(
1 + h

H

)+

φiφ
′′
jdx, (5-24)

fNLi = q
∫ L

0

(1 + h

H

)+

− 1
φidx, (5-25)

fi =
∫ L

0
fφidx. (5-26)

The matrices [m] and [k] are the global mass and stiffness matrices of the
problem and {f} is the global force vector. These three entities are the same
as the ones that one could have found deriving all the equations and the weak
formulation for a classical dynamic problem of a beam.

On the other hand, the matrix
[
kNL

]
represents a non-linear stiffness

matrix, since it multiplies directly the displacement function w, which depends
on the unknown of the problem itself through the function h. This term is
directly linked to the extra stiffness coming from the cable (remember the
additional tension in the cable) due to the displacement. Also, the term

{
fNL

}
is non-linear term since it also depends on the displacement through the
function h. This is linked to the force of the cable on the beam. To solve
such a non-linear dynamic equation, one will need to find the expression of the
non-linear matrices at each time step.

The weak formulation of the problem is written using (4-37). Let’s remind
the equation:

ẅ+C1w
′′′′−C2

(
1 + C3

∫ 1

0
wdx

)+
w′′+C4

(
1 + C3

∫ 1

0
wdx

)+
= p+C4, (4-37)
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with,
C1 = gEI

qL4 , C2 = Hg

qL2 , C3 = EcAcqL

H2L2 , C4 = g. (4-38)

The weak form of this expression is:

N∑
j=1

ẅj

∫ L

0
φiφjdx+

N∑
j=1

wj

[
C1

∫ L

0
φ′′i φ

′′
jdx− C2

(
1 + C3

∫ 1

0
wdx

)+ ∫ L

0
φiφ

′′
jdx

]
+

C4

(
1 + C3

∫ 1

0
wdx

)+ ∫ L

0
φidx =

∫ L

0
(p+ C4)φidx. (5-27)

This forms the weak formulation of the problem and, it is written as:

[m] {ẅ}+ C1 [k] {w} − C2

(
1 + C3

∫ 1

0
wdx

)+ [
kNL

]
{w}+

C4

(
1 + C3

∫ 1

0
wdx

)+ {
fNL

}
= {f} , (5-28)

where,
mij =

∫ L

0
φiφjdx, (5-29)

kij =
∫ L

0
φ′′i φ

′′
jdx, (5-30)

kNLij =
∫ L

0
φiφ

′′
jdx, (5-31)

fNLi =
∫ L

0
φidx, (5-32)

fi =
∫ L

0
(p+ C4)φidx. (5-33)

The weak form presented in (5-27) (where the constants are defined by
(4-38)) with (5-29)-(5-33) was used in the simulation routine implemented with
the software Matlab. To check this simulation routine, the results obtained were
compared with the results presented by [52].

5.4
Elementary functions

Here, the elementary functions φi’s used to solve the problem are briefly
presented. These functions are defined in (5-34)-(5-35) and are used to build
the different matrices. To build these matrices, one needs to integrate the
elementary functions. This integration will be better explain later.

To chose these functions one may keep in mind that they have to respect
the boundary conditions of the problem. Also, to simplify the computation
and save computational cost, they may be as simple as possible. Then, having
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functions that are only different to zero in a small space of the domain will be
very efficient during the computation.

As it is well explained in different books [4] and [40] or in the specialized
literature concerning FEM, to build these functions, the domain should be
discretized in elements, delimited by nodes, which create a mesh. Each node
corresponds to one elementary function. Then, to be more efficient, the
computation of the matrices is made through an elementary construction
(thanks to the elementary functions). This means that elementary matrices
are built and then assembled to form the global matrices of the problem.

θ
1

θ2

ξ=0 ξ=+1

+1

ξ=-1

w
1 w

2

Figure 5.1: Local coordinate system.

Thus, instead of being defined in the whole domain, the functions are
defined on elements, and as they are equal for all elements, this procedure
is done only once. Then, an elementary description of the functions may be
done. Due to the form of the equation to solve and its boundary conditions,
Hermite functions will be used. Besides of this, the base functions are required
to be continue with second derivative different from zero on the domain.
Since it has been chosen to use linear elements with two nodes and the
Euler-Bernoulli model, each element contains four degrees of freedom. The
elementary functions used are preented in Fig 5.2 and are written as:

φ1(ξ) = 1
2 −

3
4ξ + 1

4ξ
3,

φ2(ξ) = 1
4 −

1
4ξ −

1
4ξ

2 + 1
4ξ

3,

φ3(ξ) = 1
2 + 3

4ξ −
1
4ξ

3,

φ4(ξ) = −1
4 −

1
4ξ + 1

4ξ
2 + 1

4ξ
3.

(5-34)

Their second derivative are:

φ′′1(ξ) = 3
2ξ,

φ′′2(ξ) = −1
2 + 3

2ξ,

φ′′3(ξ) = −3
2ξ,

φ′′4(ξ) = 1
2 + 3

2ξ.

(5-35)

With these functions, defined on the elementary domain ξ ∈ [−1; 1], it is
necessary to change the coordinates in order to write the elementary matrices
used to build the global ones.
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Hermite functions as elementary functions
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Figure 5.2: Hermite functions on the elementary domain.

5.5
Change of coordinates, from global to local

As explained previously, since the matrices will be computed for each
element, local coordinates should be introduced. With this local coordinate
system, the formulation of the matrices has to be modified since the size of the
element is equal to one on the local system and can be different on the global
one. Thus, the elementary matrices defined in (5-29)-(5-33) can be written as:

m
(e)
ij = l(e)

2

∫ 1

−1
φiφjdξ, (5-36)

k
(e)
ij =

( 2
l(e)

)3 ∫ 1

−1
φ′′i φ

′′
jdξ, (5-37)

k
NL(e)
ij = 2

l(e)

∫ 1

−1
φiφ

′′
jdξ, (5-38)

f
NL(e)
i = l(e)

2

∫ 1

−1
φidξ, (5-39)

f
(e)
i = l(e)

2

∫ 1

−1
(p+ C4)φidξ, (5-40)

where l(e) corresponds to the size between the two nodes of the element e. In
the local coordinate system, the size of the element is always equal to 2, thus
dξ = 2 which led to the different forms of the elementary matrices.
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5.6
Integration using the Gaussian quadrature

To build the elementary matrices, one needs to integrate quantities, on
the local domain, in an efficient way since it may be done many times for
refined meshes. A really common way to do this in FEM consists of using
the Gaussian quadratic method [30]. This method evaluates the values of the
fonction to integrate z at some points, called Gauss points, and then gives
weight W to these values before summing them as:∫ 1

−1
z(ξ)dξ =

NGP∑
i=1

z(ξi)Wi. (5-41)

Here, NGP represents the number of Gauss points used for the approx-
imation of the integral. Usually, NGP is, at least, twice the number of local
nodes for each element, which should be NGP = 4 here. Then, for these values
one can define the table used for the Gaussian quadrature method used in this
case, cf. Table 5.1

i ξi Wi

1 - 0.86113 0.347
2 - 0.33998 0.652
3 + 0.86113 0.652
4 + 0.33998 0.347

Table 5.1: Table for the Gaussian quadrature method with four points.

5.7
Modal analysis

For this section one will consider a linear problem in order to better
explain the modal analysis that can be done thanks to the finite element
discretization. Then, considering the classical equation of motion of a beam,
see (4-30), one can define the weak formulation of the problem thanks to the
boundary conditions. Here a hinged-hinged beam is considered for this section.
Then, the equation of motion can be written, as it has been done for the non-
linear equation (4-36), thanks to the mass and the stiffness matrices as:

[m] {ẅ}+ [k] {w} = {f} . (5-42)

From this formulation one can write the eigenvalue problem associated
to the free system and then, as it is well known, find when:

det(−ω2 [m] + [k]) = 0. (5-43)
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As the global mass and stiffness matrices are obtained through the finite
element discretization, bigger is the number of elements N , better will be
the approximation of the mode shapes and of the natural frequencies. Solving
equation (5-43) one can obtain the normal modes Φ organized in columns and
the associated natural frequencies Ω such as:

[Φ] =


| | |

Φ1 Φ2 . . . ΦN

| | |

 , [Ω] =


ω2

1 0 . . . 0
0 ω2

2 0
... . . . ...
0 0 . . . ω2

N

 . (5-44)

Note that all this section describes the modal analysis for linear problems.
For non-linear ones, this procedure can be done but the interpretation is
slightly different. Considering (5-21) and solving (5-43), the normal modes
related to the linear system associated to the non-linear one are found. For
non-linear systems, there is no constant mode shapes since everything depends
on the excitation level. However, when the non-linearity is small, the normal
modes can be used and a reduced order model built.

5.8
Dynamic response analysis through normal modes

Considering that the major contribution of the motion is contained in the
first natural modes, one can reduce the model through the number of normal
modes used to find the dynamic response of the beam. Thus, if one considers
the same case as in the previous section, from (5-42) one obtains (5-43) which
contains N normal modes. One can then reduce the problem to its n-first
normal modes from Φ1 to Φn (n < N) and then obtain:

[Φ]red =


| | |

Φ1 Φ2 . . . Φn

| | |

 , (5-45)

with the corresponding natural frequencies. Then the deflection of the beam
{w} can be represented through the modal coordinates {v} such as:

{w(t)} = [Φ]red {v(t)} . (5-46)

Using this expression in (5-42) one obtains:

[m] [Φ]red {v̈(t)}+ [k] [Φ]red {v(t)} = {f(t)} , (5-47)

and then multiplying by [Φ]Tred one gets:

[Φ]Tred [m] [Φ]red {v̈(t)}+ [Φ]Tred [k] [Φ]red {v(t)} = [Φ]Tred {f(t)} . (5-48)
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Reducing the equation (5-48), one can write the equation of motion as a system
of uncoupled differential equations as:

[md] {v̈(t)}+ [kd] {v(t)} = {q(t)} , (5-49)

where {q(t)} represents the force vector written with the modal coordinates.
One also notes that, due to the orthogonality of normal modes, the mass and
stiffness matrices are reduced to diagonal matrices respectively called [md] and
[kd]. Using this reduction, the initial problem that should be solved through
N coupled equations can be solved only with n uncoupled equations (5-50).

md1 v̈1(t) + kd1v1(t) = q1(t)
md2 v̈2(t) + kd2v2(t) = q2(t)

...
mdn v̈n(t) + kdnvn(t) = qn(t)

(5-50)

Computationally speaking, this is a great improvement especially for complex
cases which need more elements. Thus, solving (5-50), one gets the modal
coordinates and, from them, can calculate the global dynamic response of the
beam using (5-46).

5.9
Dynamic response analysis through the Newmark-beta method

In order to solve the non-linear problem described by (5-28), one can
use the Newmark-beta method. As said in [12], this implicit method permits
to compute non-linear terms quite easily and, depending on the characteristic
parameters β and γ, can be unconditionally stable. Also, with this method, one
can use relative important time increment without changing the solution for
low frequency systems. Note that an implementation using the 4th and 5th order
Runge-Kutta method (through the ode45 function in Matlab) was made but
the Newmark-beta method appeared to be more convenient for some specific
cases. From initial conditions of displacement, velocity and acceleration, one
can develop an implicit routine to solve the equation of motion.

Here, the characteristic parameters β and γ are defined by (5-51) which
are common values that correspond to the linear acceleration method. With
this combination of parameters, the method is stable and the time-step can be
quite important.

γ = 1
2 , β = 1

4 . (5-51)

According to [12] or [30], the method is unconditionally stable if γ > 1
2

and β > (2γ+1)2

4 . Also, a numerical positive damping is introduced when γ > 1
2

and a negative one if γ < 1
2 . The combination (5-51) leads to a unconditionally
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stable resolution at the second order without numerical damping.
Concerning the time-step ∆t used in the Newmark-beta method, it

should be defined according to the maximal frequency that one wants to
observe during the simulation. Indeed, as said in [30], the implicit methods
tend to increase the characteristic time period of the system. Thus, it is
recommended to respect (5-52), where fmax is the highest frequency that one
wants to observe:

∆t < 1
10fmax

to
1

100fmax
. (5-52)

Considering the dynamic equation (5-28) and introducing a damping
matrix (for instance a proportional damping matrix) to be more general in the
formulation, one can write the dynamic equation that will be solved with the
Newmark-beta method:

[m] {ẅ}+ [c] {ẇ}+ C1 [k] {w} − C2

(
1 + C3

∫ 1

0
wdx

)+ [
kNL

]
{w}+

C4

(
1 + C3

∫ 1

0
wdx

)+ {
fNL

}
= {f} . (5-53)

This expression is simplified as:

[m] {ẅ} + [c] {ẇ} + C1 [k] {w} + D1
[
kNL

]
{w} + D2

{
fNL

}
= {f} , (5-54)

where:
D1 = −C2

(
1 + C3

∫ 1

0
wdx

)+
, (5-55)

D2 = C4

(
1 + C3

∫ 1

0
wdx

)+
. (5-56)

From (5-54), one can write a form in term of the increments (noted with
δ�) of displacement, velocity, acceleration and non-linear terms for each time
increment i with a time-step ∆t as:

[m]
{
δẅ(i)

}
+ [c]

{
δẇ(i)

}
+ C1 [k]

{
δw(i)

}
+D

(i)
1

[
kNL

] {
δw(i)

}
+

D
(i)
2

{
fNL

}
=
{
δf (i)

}
. (5-57)

Here, the increment of each quantity is such as:

δ�(i) = �(i+1) −�(i). (5-58)

The increments of velocity and acceleration are defined as:

δẅ(i) = 1
β∆t2 δw

(i) − γ

β
ẇ(i) − 1

2β ẅ
(i), (5-59)
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δẇ(i) = γ

β∆tδw
(i) − γ

β
ẇ(i) + ∆t

(
1− γ

2β

)
ẅ(i). (5-60)

Using (5-59) and (5-60) in (5-57) gives:

K̄
{
δw(i)

}
= R̄, (5-61)

where:
K̄ =

[
[m] 1

β∆t2 + [c] γ

β∆t + C1 [k] +D
(i)
1

[
kNL

]]
, (5-62)

R̄ =
{
δf (i)

}
−D(i)

2

{
fNL

}
+
[
[m] 1

β∆t + [c] γ
β

] {
ẇ(i)

}
+[

[m] 1
2β − [c] ∆t

(
1− γ

2β

)]{
ẅ(i)

}
. (5-63)

Then, for each time step, one may solve the equation (5-61) to find the
variation of displacement and then velocity and acceleration. As the terms D(i)

1

and D(i)
2 are function of the unknown w(i), as shown in (5-55) and (5-56), the

equation is non-linear. Here, considering that the time-step is small enough,
it is possible to write D(i)

1 and D
(i)
2 as functions of w(i−1). This is a good

approximation that will be used in the simulation routine. Otherwise, one
should find D

(i)
1 and D

(i)
2 through an iterative process, as explained in [60],

for instance the Newton method, in order to find them as functions of w(i).
Note that this iterative process has been implemented but the results were very
similar. However, the computational cost was much more important which was
responsible of slowing down the simulations. At the end of the all procedure,{
δw(i)

}
is found and, to find w(i+1) it is used:{

w(i+1)
}

=
{
w(i)

}
+
{
δw(i)

}
. (5-64)

The velocities are found using (5-60):
{
ẇ(i+1)

}
= γ

β∆t
{
δw(i)

}
+
(

1− γ

β

){
ẇ(i)

}
+ ∆t

(
1− γ

2β

){
ẅ(i)

}
. (5-65)

The acceleration has to satisfy the equation of motion then, as the displacement
and the velocity are known, it is possible to compute the acceleration with:

{
ẅ(i+1)

}
= − [m]−1

[
C1 [k]

{
w(i+1)

}
+ [c]

{
ẇ(i+1)

}
+D

(i+1)
1

[
kNL

] {
w(i+1)

}
+

D
(i+1)
2

{
fNL

}
−
{
f (i+1)

}]
. (5-66)

Now it is possible solve the dynamic equation presented in (5-28). A routine
is developed using the software Matlab and presented in at the end of this
document.
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5.10
Algorithm used for the simulations

1	-	Preprocessing	!
• Physical	variables	and	geometry	(beam	&	cable)	

• Computation	of	the	Ci’s	

• Discretization	of	the	space	-	creation	of	the	mesh	

• De@inition	of	the	assembly	matrix	

• Build	the	elementary	matrices	M(e),	K(e),	KNL(e),	FNL(e)	

• Built	the	global	matrices	M,	K,	KNL,	FNL	

• Boundary	conditions,	reduction	of	matrices	for	modal	analysis	

• Modal	analysis	of	the	linear	system	

!
2	-	Dynamic	analysis	
	 	
• De@inition	of	the	time	vector	

• Creation	of	the	force	matrix	(function	of	time	and	space)	

• Build	the	elementary	matrix	F(e)	

• Build	the	global	matrix	F	

• Newmark-beta	method	

• Initial	conditions	

• Parameters	of	the	Newmark-beta	method	:	β	and	γ	

• Coef@icients	of	the	Newmark-beta	method	:	ai’s	

• Loop	on	time	ti	
Computation	of	the	non-linear	terms:	from	previous	or	actual	time	(iterative	process)	
Computation	of		Kbar	and	Fbar	
Computation	of	δw	
wi+1	=	wi	+	δw	
Computation	of	δ(dw/dt)	
(dw/dt)i+1	=	(dw/dt)i	+	δ(dw/dt)	
Computation	of	(d2w/dt2)	
end	

!
3	-	Post	treatment	!
• Plots	and	@igures	

	 	 	!
	 	

Figure 5.3: Algorithm used for the simulations.
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5.11
Validation of the Matlab routine

5.11.1
Linear case of a hinged-hinged beam

A Matlab routine was developed, combining all the elements presented in
this chapter, to solve (5-20) or, in a more convenient form, (5-28). To check the
routine, one can verify that it works perfectly for the linear case. Considering
the deflection w of a hinged-hinged beam (without cable, only a beam) defined
with the following parameters:

L = 1m
E = 200GPa

I = 33.333.10−12m4

A = 1.10−4m2

ρ = 7850kg.m−3

(5-67)

The equation to solve is:

ρAẅ + EIw′′′′ = p. (5-68)

The boundary conditions and initial conditions are:

w(0, t) = w(L, t) = 0, w(x, 0) = ẇ(x, 0) = ẅ(x, 0) = 0. (5-69)

Considering the free system of (5-68) that can be written as:

ẅ + C1w
′′′′ = 0, (5-70)

which means that the other constants of (4-37) are then defined as:

C2 = 0, C3 = 0, C4 = 0, (5-71)

the natural frequencies can be found and compared to the analytical ones from
[34]. The analytical form is:

fi = 1
2π

(iπ)2

L2

√
EI

ρA
. (5-72)

The results are presented in Table 5.2. As another way to check the routine,
the Power Spectral Density (PSD) of the response is plotted for a random
excitation. The peaks of the PSD have to coincide with the natural frequencies
of Table 5.2. For this simulation the parameters are: the number of elements
Nele = 20, the acquisition frequency fs = 3000Hz, the time of simulation
T = 10s. The excitation is a random distributed load generated through the
random command of Matlab with the variance σp = 1 and the mean value
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analytical frequency numerical frequency (20 el.)
i (Hz) (Hz)
1 4.5776 4.5776
2 18.3105 18.3106
3 41.1985 41.2000
4 73.2419 73.2497
5 114.4404 114.4701

Table 5.2: Natural frequencies of a hinged-hinged beam.

p̂ = 0. Note that using this process to build the random excitation, due to
the Nyquist condition, only frequency until half the acquisition one will be
observable. After zooming on the region of interest, one can see that the PSD
of the response (Fig. 5.4) is coherent with the natural frequencies of the system
presented in Table 5.2.

One-sided Power Spectral Density G(f)
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Figure 5.4: Power Spectral Density on a hinged-hinged beam using the routine.

Also, the response of the system to a specific frequency can be observed.
Now the excitation as a unit distributed load only on the first half of the beam
(in order to not force specifically in the first mode) with a periodic evolution
in time of frequency µ, such as:

p(x, t) = P (x) sin(2πµt), (5-73)

where:
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P (x) =

 1, x 6 L
2

0, x > L
2
. (5-74)

Evolution of w(x) along the time captured at 2 Hz
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Figure 5.5: Evolution of w(x) along the time (captured at 2µ), µ = 4.5776Hz.

Figure 5.6: Evolution of w(x) along the time (captured at 5µ), µ = 18.3106Hz.
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The Fig. 5.5 and 5.6 show that resonance occurs at these specific
frequencies as expected. Thus, with all these considerations, the routine
satisfies the linear case of a hinged-hinged beam.

5.11.2
Linear case of a hinged-hinged beam with axial tension

Considering the deflection w of a hinged-hinged beam, but this time with
a axial tension H, defined with the same physical parameters as before (5-67)
with:

H = 96.26N, (5-75)
the equation to solve is:

ρAẅ + EIw′′′′ −Hw′′ = p. (5-76)

The boundary conditions and initial conditions are:

w(0, t) = w(L, t) = 0, w(x, 0) = ẇ(x, 0) = ẅ(x, 0) = 0. (5-77)

Considering the free system of (5-76) that can be written as:

ẅ + C1w
′′′′ − C2w

′′ = 0, (5-78)

the other constants of (4-37) are then defined as:

C3 = 0, C4 = 0. (5-79)

The natural frequencies can be found and compared to the analytical ones (cf.
Table 5.3) that are found, according to [11], with:

fi = 1
2π (iπ)2

√
C1 + C2

(iπ)2 . (5-80)

analytical frequency numerical frequency (20 el.)
i (Hz) (Hz)
1 6.7097 6.7097
2 20.7735 20.7734
3 43.7495 43.7482
4 75.8325 75.8249
5 117.0685 117.0395

Table 5.3: Natural frequencies of a hinged-hinged beam with axial tension.
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One-sided Power Spectral Density G(f)
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Figure 5.7: Power Spectral Density on a hinged-hinged beam with axial tension
using the routine.

The same study as before, using the PSD, can be performed (cf. Fig. 5.7)
and once again allows to validate the model for a hinged-hinged beam with
axial tension. Also, using the same excitation as before (5-73) and (5-74), one
can observe the resonance of the beam. Thus the routine can be validate for
the case of hinged-hinged beam with axial tension.

Figure 5.8: Evolution of w(x) along the time (captured at 2µ), µ = 6.7097Hz.
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Figure 5.9: Evolution of w(x) along the time (captured at 5µ), µ = 20.7734Hz.

5.11.3
Non-linear case, one-dimensional model for suspension bridge

To validate this routine, the comparison of the results is made with [52],
where another method is used to perform the dynamic analysis (the predictor-
corrector method). In this case, the complete formulation of (4-37) is used and
several combinations of the Ci’s are investigated. In this section, the excitation
is modeled with a vertical force defined with:

p(x, t) = λsin(πx)sin(µt), x ∈ [0, 1] . (5-81)

Note that given the space domain, the excitation will force the system
specifically in its first vibration mode. The boundary conditions and the initial
conditions are defined with (5-69). The simulation is made for a time T = 50s
with a time increment ∆t = 0.005s (ten times smaller than in [52]). The spatial
discretization is such that 21 nodes are used. The purpose of [52] is namely to
investigate the influence of the ratio C1

C2
(in term of induced displacement) for

C3 = C4 = 1.
Then, for each value of this ratio C1

C2
, a map of the maximum induced

displacement during the simulation, called wmax, can be plotted. The induced
displacement is normalized with respect to the magnitude of the excitation λ
as:

dmax = wmax
λ

. (5-82)

Thus, a map of the normalized induced displacement can be drawn for each
ratio C1

C2
as a function of the frequency and the magnitude of the excitation.
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Each point of the map represents the maximal displacement during the
simulation for a given combination of λ and µ. As said in [52], large amplitude
solution is considered when dmax > 1. The first case that will be investigated
is for C1 = C2 = 0.5, which means C1

C2
= 1, the results are plotted in Fig. 5.10.
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Figure 5.10: Normalized max. disp. dmax against µ and λ for C1/C2 = 1.0.

The peak observed in Fig. 5.10 corresponds exactly to the first natural
frequency of a linear hinged-hinged beam with axial tension. This frequency
can be approximated, as shown in [34], by:

µanalytic = π2

√
C1 + C2

π2 . (5-83)

The second case considers C1 = 0.05 and C2 = 0.5. Then the ratio
C1
C2

= 0.1. The third case corresponds to C1 = 0.005 and C2 = 0.5 which
means C1

C2
= 0.01. The results are presented in Fig. 5.11 and 5.12. Here, it is

interesting to note that decreasing the value of C1 increases the role of the
cable in the dynamic of the complete model. Also, the global stiffness of the
model decreases when C1

C2
decreases then the natural frequency will be smaller.

Therefore, the observation range of frequency is different.
For the second case, Fig. 5.11 , the main peak (µ = 3.1) corresponds

once again to the first natural frequency (5-83) of a linear hinged-hinged beam
with axial tension, but, a second peak can be observed (at µ ≈ 1.5) and
the frequency of this peak seems to vary according to the magnintude of the
excitation.
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Concerning the third case, Fig. 5.12, the results are even more interesting.
For really small magnitude of the excitation, for instance λ = 1, the peak
appears at µ = 2.3 which corresponds exactly to (5-83). However for higher
magnitude of the excitation, this peak seems to move to lower frequencies and
also smaller peaks appear. As it is well said in [45] and [52] it seems that
large amplitude oscillations may appear for any value of µ which is due to the
non-linear nature of the model.
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Figure 5.11: Normalized max. disp. dmax against µ and λ for C1/C2 = .1.
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Figure 5.12: Normalized max. disp. dmax against µ and λ for C1/C2 = .01.
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Note that for Fig. 5.10 to 5.12 the plots do not show very high values of
dmax. This was done in order to see better the variation of dmax on the whole
map. All the results presented here are perfectly equivalent to those presented
in [52] calculated with an other method. Thus, from this, one can conclude that
the routine developed for this work is perfectly working and can be validate.

Figure 5.13: Normalized max. disp. dmax against µ and λ for C1/C2 = .01.

Also, the experiment was made for higher frequencies and interesting
conclusions can be done. It seems that the second mode of the system is
responsible for smaller displacements than the first one. Once again, for low
level of excitation, the frequency of the peak in Fig. 5.13 corresponds to the
second natural frequency of the linear system (µ ≈ 4.9). Finally, it seems that
once again the frequency of the peak is changing with respect to the excitation
level. From, this map, it is possible to identify regions where any frequency
will produce large oscillation, once again this is due to the non-linear nature
of the model.

Now that a simulation routine was built and verified, let’s try to add
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the fluid-structure interactions through simple models as presented in the first
chapters. A discussion about the influence of the non-linearity will be done.
Also, some comments are made on the influence of the fluid-solid interaction
on the dynamic.
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6
Simulations of the non-linear model with added stiffness

In this chapter, the routine developed with the software Matlab for a one-
dimensional model of suspension bridges will be used to simulate a complete
model of suspension bridge under wind load with the interaction between the
fluid and the solid domains. The excitation will be modeled to represent the
wind. First, one should explain how to model this excitation and, then, the
interaction between the fluid and the solid domain will be defined using the
first chapters. Finally, simulations will be realized for several combinations of
the parameters governing the non-linearity of the model and also governing the
fluid-structure interaction. As said before, it seems that for flexible suspension
bridges or footbridges, the added stiffness is the effect that is the most likely
to occur and it can be an important source of instability. In the next parts,
an added stiffness term models the fluid-structure interaction. It will be added
to the formulation of first, a hinged-hinged beam, and then to the complete
non-linear model described before, for different combinations of parameters.

6.1
Definition of the excitation

There are many ways to model a wind excitation (as stochastic exci-
tations using [18] for instance), and complex models are described in [56] to
model wind in a three dimensional space with stochastic representation. Here
a simpler representation will be used. First, as the wind is a lateral force
(which may not be perfectly horizontal if different values of angle of attack are
considered), and the simplified model used in the routine is one-dimensional
representing the downwards coordinate, one needs to define a relation between
the lateral force (from the horizontal) and the vertical force. This relation is
the well known equation to compute the lift force:

Fz(x) = 1
2ρFU

2(x)SCL, (6-1)

where ρF is the fluid density, U is the fluid velocity field, S is the area of the
cross section, and CL is the lift coefficient. As said before, the fluid is considered
incompressible, then ρF is constant in time and space. As the model used in
the routine does not represent the torsion and the rotation of the cross section
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around the main axis, S is also considered constant in time and space. The
lift coefficient depends on the profile of the cross section and on the angle of
attack. As the angle of attack is considered fixed in time and space (no rotation
of the cross section and no variation of the wind direction), the lift coefficient
is constant. Here a qualitative study will be performed then the value of the
lift coefficient and the aera of the cross section (in contact with the fluid) will
be arbitrary defined. Thus, normalizing the lift force with respect to the lift
coefficient, the area of the cross section and the density of the fluid, one obtains
the normalized induced vertical force as a function of the fluid velocity field:

fz(x) = U(x)2. (6-2)

The fluid velocity field is modeled as:

U(x) = λUsin(πx), (6-3)

which is a similar approach to what was done in the previous chapters.
Considering a periodic evolution in time, the normalized vertical induced force
can be written as:

fz(x, t) = (λUsin(πx))2 sin(µU t), (6-4)

which is slightly different to [52]. It is the force that will enter in the routine
simulation.

6.2
Simulation of a hinged-hinged beam with added stiffness

First, in order to observe and to quantify the effect of the added stiffness
on the complete model, the simulation is made for an hinged-hinged beam
with axial tension. Then the coefficients used in the routine are C1 = 0.5,
C2 = 0.5 and C3 = C4 = 0. As shown in the first chapters of this document,
to model the added stiffness as in (3-73), one needs to compute the term
CA

dF
d(Dq) . Recall that CA is function of the square of the magnitude of the

flow velocity, here λU . This term, CA dF
d(Dq) , is homogeneous to a stiffness, as

seen before, and may be calculated from aerodynamics and fluid mechanics.
Here this term will be approximated as a small percentage of [k], presented in
(5-53). This approximation does not represent the real fluid-solid interaction
but may allow to observe some phenomena. Indeed, to compute the real fluid-
solid interaction effect, fluid mechanics are used in order to find the added
stiffness term CA

dF
d(Dq) . The deck shape, through its motion, will perturb the

fluid flow and thus the flow induced force, as shown in [47]. Thus, several values
of the percentage will be investigated and called, p% such as:
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dF

d(Dq) ≈ p%C1 [k] . (6-5)

The equation to solve can be written as:

[m] {ẅ}+[c] {ẇ}+(C1 − CAp%C1) [k] {w}+D1
[
kNL

]
{w}+D2

{
fNL

}
= {f} ,

(6-6)

where:
D1 = −C2

(
1 + C3

∫ 1

0
wdx

)+
, (6-7)

D2 = C4

(
1 + C3

∫ 1

0
wdx

)+
. (6-8)

Then the influence of the flow velocity and the frequency of the excitation
will be studied using the map representation as in the previous chapter. In
this part, this will allow to observe the influence of this approximation of the
added stiffness with respect to µU and λU in terms of normalized maximal
displacement as:

dmax2 = wmax
λ2
U

. (6-9)

The boundary conditions and the initial conditions are exactly the same
as in (5-60). The parameters of the simulation are: the time simulation T = 20s
and the time increment is ∆t = 0.005s. The space discretization is the same as

Figure 6.1: Case with C1 = 0.5, C2 = 0.5, C3 = 0, C4 = 0. Left-top: p% =
0,1% / Right-top: p% = 0,2% / Left-bottom: p% = 0,4% / Right-bottom: p%
= 1,0%
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before with 21 nodes. In the previous chapter, large oscillations were considered
when dmax was bigger than 1 for T = 50s. Here, as the simulation time is
shorter (for computation time issues) and considering a linear evolution of the
large oscillations in time, large oscillations are considered when dmax2 > 0.4.

Observing Fig. 6.1, representing several simulations for the hinged-hinged
beam with axial tension, the expected effect of the added stiffness can be
observed. Indeed, as shown in Fig. 3.2.1 and 3.2.1, increasing the flow velocity
tends to decrease the global stiffness of the structure, thus the frequency, that
generates large oscillations, will decrease. The same type of phenomena can be
observed in Fig. 6.1. Varying the effect of the fluid-solid interaction through
p%, it is possible to see how the decrease of the value of the large oscillation
frequency occurs with respect to the flow velocity. One can see that for high
p%, the peak frequency decreases relatively quickly when the flow velocity
increases. Observe that this variation seems to follow a parabolic shape similar
as Fig. 3.2.1. Now let’s see if the same conclusions can be made considering
the non-linear model.

6.3
Simulation of the non-linear model with added stiffness

In this section the entire non-linear model is used for the simulations.
Two combinations of the parameters Ci’s are studied and the influence of
the flow velocity and the frequency of the excitation can be observed for
different values of p%. Here, it is more difficult to draw the same conclusions
as previously done observing Fig. 6.1. Indeed, as the fluid-solid interaction
stiffness term is approximated as a percentage of the [k] matrix, its influence
is closely related to the ratio C1

C2
. Bigger is this ratio, bigger is the effect of the

fluid-solid interaction considering the approximation made here. Observe that
this may not be verified for real cases of fluid-structure interaction problems.

Thus, observing Fig. 6.2 and 6.3, it is possible to see a small variation of
the peak frequency according to the flow velocity. As said before, this variation
is small and not as important as in Fig. 6.1 because the added stiffness is
approximated with the beam stiffness term, which is decreasing comparing to
the cable stiffness term from Fig. 6.1 to Fig. 6.2 and from Fig. 6.2 to 6.3.

However, modeling this time the excitation using (6-4), one can see that
the range of large oscillations seems to be bigger than previously, in Fig. 5.11
and 5.12. This makes things even more difficult to visualize the effect of added
stiffness in this region.
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Figure 6.2: Case with C1 = 0.05, C2 = 0.5, C3 = 1, C4 = 1. Left-top: p% =
0% / Right-top: p% = 0,1% / Left-bottom: p% = 0,4% / Right-bottom: p% =
1,0%

Figure 6.3: Case with C1 = 0.005, C2 = 0.5, C3 = 1, C4 = 1. Left-top: p% =
0% / Right-top: p% = 0,1% / Left-bottom: p% = 0,4% / Right-bottom: p% =
1,0%
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Here, the influence of a fluid-solid interaction effect, the added stiffness,
was studied. As no fluid mechanics was used to quantify the added stiffness
term, a rude approximation was used. Due to the nature of this approximation,
the added stiffness effect was well observed for a high ratio C1

C2
. However for

smaller ones, the effect of the added stiffness was more difficult to observe. In
future works, one could find an other way to approximate the added stiffness
term to better suit the decreasing of the ratio C1

C2
. Although the added stiffness

effect is the most likely to occur for flexible suspension bridges or footbridges,
one could have observed the effect of other fluid-solid interaction model such
as the added damping for instance. This will be the purpose of future articles
and experiments in the laboratory.

Now that the fluid-solid interaction was briefly studied using the non-
linear model developed for this work, one will focus on the energy partition
between modes during the simulations. As the model is non-linear, its dynamic
is non-linear too. Thus, the tool used to study the energy partition may
be able to work for non-linear systems. This is the reason why the Smooth
Decomposition is presented and used to study the energy partition in the next
chapter.
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7
Energy partition with the Smooth Orthogonal Decomposition

As said before, this part will focus on the energy partition between modes
during simulations or experiments. Once again, it appears that the Smooth
Decompistion method is a suitable tool to make this kind of energy partition
study since it works for linear and non-linear systems. Also, this method was
a huge source of publication during the redaction of this work, the Smooth
Orthogonal Decomposition (firstly introduce by [14] and also studied by [25]).
Here, the base of the discussion is very similar to [26] and an application
of the method to the mechanical system presented in the previous chapters
is performed. The notation used here for the presentation of the method is
equivalent to the one used in [26] in order to be coherent with what was done
by the author on this subject. Thus it may be different from the notations used
in the rest of this document.

7.1
Introduction

As said in [6], [10] and [50], the Smooth Decomposition (SD) is a
multivariate data or statistical analysis method used to identify normal modes,
natural frequencies and energy partition of systems. The method requires the
knowledge of the system response (spatial data field) to a random excitation.
It should be noted that only the output data of the system is needed for the
identification. The excitation has to satisfy some properties, normally well met
by a white noise, but doesn’t need to be measured. This turns the method the
ideal way to deal with the identification of systems under ambient excitations
(considering Operational Modal Analysis as in [22], [58] or [59]), as wind or
waves for instance, which can be hard to compute or to describe. Also, this
family of methods can be used for damage detection such as in [23].

The output data of the system response is then projected into a basis and
an optimization problem is created. It consists of finding the basis that gives the
maximum variance of the displacement-projection and the minimum variance
of the velocity-projection. This optimization problem can then be written
as an eigenvalue problem with the covariance matrices of the displacement
field, and of the corresponding velocity field. Solving this problem the system
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is identified and no further considerations and approximations are needed.
From the eigenvalues, the “energy” participation of each normal mode in the
response during the simulation or the experimental test can be evaluated. Since
this information is crucial for non-linear systems identification, the Smooth
Decomposition method can be used to identify linear and non-linear systems.
This is the reason why this method was used to study the energy partition of
the non-linear model here. The method is a great tool for modal analysis as
explained in this chapter.

First a description of the method is presented and how to interpret the
results of the Smooth Decomposition, for linear systems, explained. Then,
an application of Smooth Decomposition on a simulation using the one-
dimensional model presented in the previous chapters is performed. Here the
influence of the non-linearity on the energy partition will be discussed. Thus
several combinations of parameters governing the non-linearity of the system
are investigated. Also, the influence of the excitation energy on the results is
discussed.

7.2
Description of the Smooth Decomposition

As the Karhunen-Loève Decomposition [7] or the Proper Orthogonal De-
composition (in [5], [16], [42] and [46]), the Smooth Decomposition, presented
namely in [8], is based on the projection of the data field such as the general-
ized displacement field has the maximum variance in order to be sure that all
the modes under interest are excited. Indeed, the bigger is the variance of the
displacement field, the higher is the probability of a mode to be excited. The
Smooth Decomposition method is a bit different because one also considers
the derivative of this generalized displacement field, the velocity field. The ob-
jective is to find the basis that gives the maximum variance for the generalized
displacement field and the minimum variance for the velocity field (in order to
keep the motion as smooth as possible in time).

7.2.1
Decomposition principle

First, let’s describe the data field used in this method. Recall that the
notation in this chapter is slightly different than the one used before, in order
to respect what was used in [26]. Let’s consider the sampled scalar field X(t)
formed of random values (in the matrix form) as a function of time t (t ∈ R).
This field is such as X(t) ∈ Rn×m where n represents the different instants
and m represents the spacial points where the information is measured. The
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displacement field is considered as a stationary second-order process with zero-
mean value that admits a time derivative which is also a stationary zero-mean
value process.

The central point of this method is to find a linear projections such as:

YX(t) = projφX(t) = X(t)φ, (7-1) YẊ(t) = projφẊ(t) = Ẋ(t)φ, (7-2)

where YX(t) ∈ Rn×m, YẊ(t) ∈ Rn×m and φ ∈ Rm×m (representing a
projection basis). Now, the objective of this method is to find this projection
basis such as it keeps the maximum variance for the projection of the original
field X(t) (the generalized displacement field) and the smallest projection of
the velocity field in order to keep the variation in time as smooth as possible.
The objective is to find max

φ
||YX(t)||2 and min

φ
||YẊ(t)||2 which is exactly as

maximizing f(φ) with:

f(φ) = ||YX(t)||2
||YẊ(t)||2 = ||X(t)φ||2

||Ẋ(t)φ||2
. (7-3)

Now let’s simplify this ratio using the auto-correlation matrices RXX and
RẊẊ (cf. [18] or [54] for more details on correlation matrices), respectively, for
the displacement field (X(t) ∈ Rn×m) and the velocity field (Ẋ(t) ∈ Rn×m).
Indeed, it is possible to write:

||Xφ||2 = (Xφ)T Xφ = φT
(
XTX

)
φ = nφTRXXφ, (7-4)

||Ẋφ||2 =
(
Ẋφ

)T
Ẋφ = φT

(
ẊT Ẋ

)
φ = nφTRẊẊφ. (7-5)

Finally one gets this new expression for f(φ) (keeping in mind that n is
the number of time samples, which is rather big, it can be simplified in the
ratio even if the derivative method used does not conserve the same number
of samples as in the original field). The objective is to find:

max
φ

{
f(φ) = φTRXXφ

φTRẊẊφ

}
. (7-6)

In order to find the maximum of f(φ) one can express its derivative with
respect to φ, called ∇f(φ), such as:

∇f(φ) = ∂f(φ)
∂φ

=
2
(
φTRẊẊφ

)
RXXφ− 2

(
φTRXXφ

)
RẊẊφ

(φTRẊẊφ)2 , (7-7)

and then find when ∇f(φ) vanishes. One can also find this maximum using
Lagrange multiples. In both cases one will find the following eigenvalue problem
as the expression of the two initial propositions. The problem is equivalent to
solve:
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RXXφk = λkRẊẊφk, k = 1, ...,m. (7-8)

Solving this eigenvalue problem gives the eigenvalues, the λk’s, and the
eigenvectors, the φk’s, such as the λk’s are in ascending order (λ1 > λ2 > ... >

λm). In the literature [13], there is a relation between the auto-correlation
of the velocity and the correlation of the acceleration and the displacement
such as RẊẊ = −RẌX. From this relation, the following eigenvalue problem
is written (7-9). This leads to the same results.

RXXφk = −λkRẌXφk, k = 1, ...,m. (7-9)

Finally, using φk it is possible to write the ψk such as:

ψk = RẊẊφk. (7-10)

At this step several parameters from a displacement field of a mechanical
system can be found: the λk (the Smooth Value - SV), the φk (Smooth Mode -
SM) and the ψk (Dual Smooth Mode - DSM). Depending on the characteristics
of the system, one can interpret these parameters differently, as seen in [6], [8],
[10], [25], [26] and also in [50].

7.2.2
Expansion Principle

From this decomposition two different bases are available, the smooth
basis called Φ, formed with the φk’s, and the smooth dual basis, called Ψ,
formed with the ψk’s (for k = 1, ...,m with m as the number of measuring
points). Now it is possible to use these two bases to find the smooth expansion
of X(t) and its dual smooth expansion.

7.2.2.1
Expansion in the smooth basis

Considering the expansion of X(t) in the Φ-basis it is possible to write
X(t) = ∑m

k=1 ξk(t)φk, which can be simplified using the projection Π1 = ΦΨT

then one gets Π1X(t) = ∑m
k=1ψ

T
kX(t)φk. From these two expressions one can

find the Dual Smooth Components (DSC) ξk(t):

ξk(t) = ψT
kX(t). (7-11)

7.2.2.2
Expansion in the dual-smooth basis

Let’s consider the Ψ-basis to express X(t). The dual smooth expansion
of this field into this basis can be written as X(t) = ∑m

k=1 χk(t)ψk. Using the
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oblique projection Π2 = ΨΦT , one gets Π2X(t) = ∑m
k=1φ

T
kX(t)ψk. Then from

these equations the Smooth Components (SC) χk(t) is:

χk(t) = φTkX(t). (7-12)

One can notice an interesting property for the Smooth Components. Let’s
consider the square of it and develop in the following form:

χ2
k(t) =

(
φTkX(t)

)2
= φTkX(t)

(
φTkX(t)

)T
= φTkX(t)X(t)Tφk = φTkRXXφk.

(7-13)
Now considering the original eigenvalue problem formulated in Eq.(7-8) it is
possible to write:

φTkRXXφk = λkRẊẊ, (7-14)
then considering the mean value (recall that the mean value of a random
variable x is noted as E [x]) of each part one gets:

E
[
φTkRXXφk

]
= E [λkRẊẊ] . (7-15)

Considering (7-13) and the properties of the covariance matrices leads to:

E
[
χ2
k(t)

]
= E [λkRẊẊ]⇒ E

[
χ2
k(t)

]
= λk. (7-16)

7.2.3
Energetic point of view

An interesting thing with SD is the energetic study that can be made
with this method. Let’s call the “energy” of the field X(t) the expression
E
[
||X(t)||2

]
. From the dual smooth expansion one gets:

X(t) =
m∑
k=1

χk(t)ψk ⇒ ||X(t)||2 =
m∑
k=1
||χk(t)ψk||2 . (7-17)

The expression of the “energy” can then be simplified using the previous
formulation as:

E
[
||X(t)||2

]
= E

[
m∑
k=1
||χk(t)ψk||2

]
=

m∑
k=1

[
E
[
χ2
k(t)

]
E
[
||ψk||2

]]
. (7-18)

Simplifying using (7-16) it is possible to find the final expression for the
“energy” of X(t) as:

E
[
||X(t)||2

]
=

m∑
k=1

λk ||ψk||2 . (7-19)

Note that, from this formula it is quite easy to find the energy captured
in each mode (the identified mode with the SD which, sometimes, does not
correspond to a physical mode) during the simulation since the expression:
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Ei = λi ||ψi||2
m∑
k=1

λk ||ψk||2
, (7-20)

represents the fraction of energy captured by the mode i during the simulation.
This value can help to verify if a mode has been well excited during a simulation
(allows to judge the reliability of the results). This parameter is crucial for
identification of non-linear systems since knowing the energy is essential.

7.3
Smooth Decomposition for modal analysis

From the formulation of the initial projection (7-1), it is possible to
generalize this expression formmodes (with the Φ-matrix, such as Φ ∈ Rm×m)
and get the following equation in the matrix form with Q as the SC-matrix
(Q ∈ Rn×m):

X = QΦT . (7-21)
As shown in [26], the interpretation of the results from the Smooth

Decomposition is quite easy for linear systems a more complicated for non-
linear ones. First, let’s consider free linear undamped systems written in the
matrix form as:

MẌ + KX = 0, k = 1, ...,m, (7-22)
where M is the mass matrix, K is the stiffness, X and Ẍ represent respectively
the displacement and the acceleration fields. From (7-22), the acceleration of
the system (if the mass matrix M is not singular) can be written as:

Ẍ = −XKTM−T . (7-23)

To apply the Smooth Decomposition to this kind of mechanical system
means to maximize the function f(φ). Considering the original form of f(φ)
defined in (7-3) and using the same property of correlation matrices used to
write (7-9), one gets:

max
φ
{f(φ)} = max

φ

{
φTXTXφ

φTXTXKTM−Tφ

}
. (7-24)

As shown before, solving this maximization problem is equivalent to solve the
following eigenvalue problem (if the product XTX is invertible):

KΦ−T = MΦ−TΛ. (7-25)

Now, let’s consider the initial mechanical system defined with (7-22). The
associated eigenvalue problem is written with Ω which is a diagonal matrix
formed with the squares of the natural frequencies of the mechanical system
(the ω2

k’s) associated to each column of Ψ:
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KΨ = MΨΩ. (7-26)

Then the two expressions represent two equivalent eigenvalue problems
(7-25) and (7-26). As they represent they same mechanical system they have
to be equivalent, this leads to equivalences between the modal quantities, in
terms of natural frequencies and mode shapes:

Ψ = Φ−T , Ω = Λ. (7-27)

Let’s consider now general mechanical systems, the dynamic equation
can be written as:

MẌ + CẊ + KX + AX = F, (7-28)
where M, K e C are the mass, the stiffness and the damping matrices of the
system. F is the forcing vector which, in this specific case is not monitored
(unknown excitation, characteristic of the output only methods). The term
called A represents the nonlinearity of the mechanical system.

As shown in the literature [10], the interpretation for those cases is not
as simple as for the linear ones. Indeed, one cannot find the simple equivalence
shown with (7-27). These considerations come from the statistical linearization
method thus they give results for a linear system. To apply the equivalences
of (7-27) to non-linear systems gives the modal parameters for the linear
equivalent system but not for the non-linear one.

If one considers a damped system with the C-matrix as a linear combi-
nation of M and K (i.e. C = αC+βK) one can reach a similar interpretation
as it was done for undamped systems. From this method it is possible to access
the normal modes of the systems. For example, considering the C-matrix as
a combination of the M-matrix only, one observes that for an α rather small
(0 ≤ α ≤ 1) the results still acceptable. This shows that the theory works per-
fectly for undamped systems but for damped ones the interpretation should
be made carefully. Similar conclusions have been found [26].

Indeed, for damped systems, the modes have an imaginary part which
cannot be expressed with normal modes and thus which cannot be found with
SD (as the method was developed for undamped systems). It has be shown
namely in article presented in Appendix D that this method works perfectly
for continuous systems but one has to be careful with relation to the number
of excited modes and the number of modes that are observed, but here this is
not the focus of the discussion.

7.4

DBD
PUC-Rio - Certificação Digital Nº 1521986/CA



Chapter 7. Energy partition with the Smooth Orthogonal Decomposition 107

Application of Smooth Decomposition on a non-linear model

In this section, the Smooth Decomposition will be used to identify
modal parameters of the non-linear one-dimensional model of a suspension
bridge presented in the previous chapters. The equation (5-54) with (5-55)
and (5-56) will be solved with the routine developed with Matlab. The
boundary conditions are (5-69). Concerning the parameters of the Newmark-
beta method, they are the same as before, γ = 1

2 and β = 1
4 . With the

acquisition frequency fs = 1500Hz, the maximal frequency that can be
observed (according to (5-52)) is around 150Hz. As said before, the excitation
has to satisfy some properties. Here the excitation will be a matrix defined
with:

f(x, t) = s0N (x, t), (7-29)
where s0 is the excitation level or energy level and N is a Gaussian white-
noise process with intensity one and zero-mean value. Here, the influence of
the excitation level s0 will be investigated for several combinations of the
parameters Ci’s. Recall that varying the values of these parameters one can
control the non-linearity of the system. Observe that for time computing issues,
the simulation time is reduced to T = 10s. Then, the number of samples is also
reduced and may not be sufficient for a good approximation of the correlation
matrices. However, the experiments was performed several times and similar
results were observed. For this experiment, the excitation level s0 is defined as
a vector of equally spaced points between 0.0001 and 0.01. It has been verified
that this level of excitation produces a acceptable displacement of the structure
in this time interval (the order of magnitude of the maximum displacement
for the maximal excitation is L

100 , which is reasonable). The observation was
reduced to the ten first modes found with the Smooth Decomposition (in order
to respect (5-52) for all the combination cases).

Before starting the analysis, let’s mention that the line connecting
the markers always follows the mode with the major contribution for each
excitation level (left hand side plot) and its associated frequency on the right
hand side plot. Fig. 7.1, shows the results of the Smooth Decomposition in
terms of modal energy of each identified mode and identified frequency. It can
be observed that the first identified mode is dominant in the simulation (recall
that longer simulations would be better) and that it is always the one with the
major contribution. The energy is distributed only among the first mode.

Increasing the non linearity, in Fig. 7.2, one can see that now, that the
second and the third modes are dominating. On the right hand side plot, it is
possible to see the alternate domination of them. Also, one can see that the
identification of higher modes, for instance the eighth and tenth, may vary with
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Figure 7.1: Case with C1 = 0.5, C2 = 0.5, C3 = 1, C4 = 1. Left: Evolution
of the modal energy (%) of each identified mode with respect to s0 / Right:
Evolution of the identified frequencies with respect to s0.

the excitation level. The energy is distributed among the three first modes. The
same observations can be done concerning Fig. 7.3. Here it seems that the six
first modes are competing the domination. As before, higher frequencies may
vary with the excitation level.
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Figure 7.2: Case with C1 = 0.05, C2 = 0.5, C3 = 1, C4 = 1. Left: Evolution
of the modal energy (%) of each identified mode with respect to s0 / Right:
Evolution of the identified frequencies with respect to s0.

For Fig. 7.4, the conclusions are the same here, almost all the modes are
dominant at least for one excitation level but the energy seems to be shared
mostly between the modes 5 to 8.

These results are interesting and still have to be studied in future
work. But it was possible to see, thanks to the Smooth Decomposition, that
increasing the non-linearity of the system, higher modes may contribute to the
response.

Keeping in mind the Fig. 5.12, it was expected a variation of the first
frequency when increasing the excitation level. Zooming on the region of
interest, one see variations of the first identified frequency. However, due to
the number of samples used in the experiment, one cannot conclude on these
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Figure 7.3: Case with C1 = 0.005, C2 = 0.5, C3 = 1, C4 = 1. Left: Evolution
of the modal energy (%) of each identified mode with respect to s0 / Right:
Evolution of the identified frequencies with respect to s0.
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Figure 7.4: Case with C1 = 0.0005, C2 = 0.5, C3 = 1, C4 = 1. Left: Evolution
of the modal energy (%) of each identified mode with respect to s0 / Right:
Evolution of the identified frequencies with respect to s0.

variations. More work has to be done to understand better this point. However,
these results can be interesting if one considers to use Smooth Decomposition
for reduced order model [9]. Indeed, here, it has been shown that depending
on the non-linearity and on the excitation level, the modes contributing the
to response of the system may differ. Then, one may need to use a sufficient
number of modes for the reduced order model.
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8
Conclusions

As said in the introduction, fluid-solid interaction problems are very
common, specifically in mechanical or civil engineering. It is important for
the engineers to understand how such interactions occur and how they can
affect the structure in order to avoid structural damages or failure.

In this work, the fluid-solid interaction problems were studied and, first
the fundamentals of this type of problems were presented. In the first chapters,
basic concepts of fluid-structure interactions were shown. One of them, the
dimensional analysis, was performed for the fluid and the solid domains. Then,
the equations governing the fluid-solid interaction problems were presented and
a dimensionless formulation of them was written as a function of dimensionless
parameters.

Next, these parameters were used as a comparison base to classify the
fluid-solid interaction problems. The third chapter presented some approxima-
tions that can be made depending on several dimensionless numbers. Thus,
some phenomena such as the added mass effect, the added stiffness or added
damping and the memory effect were presented. These considerations permit
to simplify the fluid-solid interaction problems and simpler formulations can be
used. Also, in this chapter, some consequences of fluid-solid interactions were
presented in terms of stability or instability. Then, limit cases were studied
and some important flow induced instability were shown.

In the second part of this document, a structure that can suffer fluid-
solid interactions was considered: a suspension bridge. The fourth chapter
has presented the formulation of a non-linear one-dimensional model. A
formulation that allows to write the dynamic equation of this system as a
function of constant parameters was also presented. Later, these constants
were used to study the influence of the non-linearity on the dynamic of the
system.

Using this formulation, a routine (using the finite element discretization)
was developed with the software Matlab, to solve the dynamic equation of the
one-dimensional model presented before. After presenting some basic concepts
of the finite element discretization, the routine was checked through several
comparisons.
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Then, this routine was used and a simple model of fluid-solid interactions,
presented in the two first chapters, was added. A rude approximation of the
added stiffness term was implemented to the simulation routine. Due to the
nature of this approximation, the effect of the added stiffness term was quite
hard to observe when an increasing non-linearity was investigated. However,
for the linear case, a qualitative observation of the added stiffness effect was
possible. Recall that the approximation made to compute the added stiffness
does not represent at all the real formulation of the added stiffness term. For
future works, more relevant computations of the added stiffness term should
be presented in order to better observe the effect of the fluid-solid interaction.

The last part of this work presented a topic that was, as said before, an
important source of publications during these years, the Smooth Decomposi-
tion. Using the routine developed in the previous chapters, a modal analysis
was performed using the Smooth Decomposition. Some conclusions were made
regarding the influence of the excitation level for the identification of modal
parameters of this non-linear system. However, as said in this specific chapter,
more work has to be done to draw better conclusions on the influence of the
level excitation on the modal parameters identification. This is the subject of
future works and will lead to some new publications.

For this work, many different aspects of engineering were used, such as
fluid mechanics, solid mechanics, dynamic and modal analysis. The variety of
the bibliography used for this work is attractive and reinforces the interest
of the work. This document covers several types of discussions, from very
theoretical ones to some direct numerical applications.

Through this entire work, it was possible to understand better the fluid-
solid interactions and important elements were presented. For the future, this
work will form a solid knowledge to explore more complex cases. Also, some
conclusions were made on a specific non-linear structure: a suspension bridge.
These conclusions will be used for future works and experimental studies at the
laboratory where a suspension bridge test-rig was built. Indeed, now that some
elementary concepts of suspensions bridges were shown, the understanding of
the dynamic of the test-rig will be easier.
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Abstract: Smooth Decomposition (SD) is a multivariate data or statistical analysis method to find normal modes and
natural frequencies in an spatial data field. The projection used for this method is made such as it keeps the maximum
variance possible for the displacement vector and also as it keeps the smoothest motions along time. From this method
we can get the "energy" participation in the response of each normal mode during the simulation or the experimental
test which can be a relevant information to validate results concerning the identification process. This method of
identification can be used for linear and nonlinear systems and uses only output data given that the excitation satisfies
some properties normally met by a well chosen random excitation, as a white noise, for example. The objective of this
method is to identify systems from their displacement field under ambient excitation which, in many cases, can be hard
to compute or to describe. As the method is only based on the covariance matrices of the displacement field and the
corresponding velocity field, it is no needed further considerations and approximations. In this point the method is a
great tool for modal analysis and system identification. In this paper, the presentation of the method is firstly done which
will show us how we can interpret the results of SD for different systems and then the application of SD on simulated
multi-DoF damped and undamped systems is performed and discussed to understand how SD can be a great tool for
modal analysis. A discussion about the quality of the excitation is also performed.

Keywords: Smooth Decomposition (SD), System Identification, Operational Modal Analysis (OMA), Nonlinear Pa-
rameters Identification

INTRODUCTION

The Smooth Decomposition (SD) is a statistical analysis technique for finding structures in an ensemble of spatially
distributed data such that the vector displacement not only keeps the maximum possible variance but also the motion, as
the velocity field, is as smooth in time as possible. Closely related with the SD are the dual smooth modes used in the
framework of oblique projection to expand a random response of a system. The concept of dual mode with the associated
decomposition defines a tool that transforms the SD in an efficient modal analysis tool. This method of identification
can be used for linear and nonlinear systems and uses only output data as soon as the excitation satisfies some properties
normally met by a well chosen random excitation, as a white noise, for example.

The main properties of the SD are discussed and some optimality characteristics of the expansion are deduced. The
parameters of the SD (using the dual smooth modes and the smooth values) give access to a modal parameters of a
linear system in terms of mode shapes, resonance frequencies and modal energy participations. This part is a remarkable
improvement with respect to the standard modal analysis methods. This novel modal analysis of a linear system is
illustrated by examples.

One of the examples, to show the main features of the method, is a simple multi-DoF undamped system subject to
a random excitation that is identified from the output signal. Then, more complex examples of a multi-DoF system are
identified. A discussion concerning the difficulty to identify systems with high damping coefficient is made. We also
study a case which can be a first step before considering continuous systems with the partially observed case. Finally we
will discuss about the importance of the excitation quality for such a method.

It is interesting to say that this is a new method, not yet compared with the methods known in the literature as
Operational Modal Analysis (OMA). So far the only association between SD and OMA is the fact that both methods use
output signals for the identification and they require random excitation. However the theories are different. SD is a type of
Karhunen-Loève Decomposition, using correlations and projections in the modes whereas OMA uses the controllability
matrix and correlations of the measured signals that are not necessarily the state of the system.

DESCRIPTION OF THE SMOOTH DECOMPOSITION METHOD

First we will present the basis of this method and its main objective. There is already another well known method
called the "Karhunen-Loève Decomposition (KLD)" or the "Proper Orthogonal Decomposition (POD)" used to analyze
random data. This method is not presented in this article. The main objective of KLD or POD consists in finding the base
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- Brasil - 22451-900 , gustavo gbw@hotmail.com, damien.foiny@gmail.com, rsampaio@puc-rio.br, robertalima@puc-
rio.br

Abstract: The extraction of modal parameters from a real structure represents an important step in modal analysis.
When only the output signal is available in an experiment, the system identification process is referred as operation
modal analysis (OMA). Applications of those cases are fond for structures where the ambient excitation (wind, traffic,
waves, nearby systems, etc.) can not be removed or is the only possible one. Once the input signals can not be measured,
some assumptions in their random nature are needed together with a stochastic modeling of the system. Among several
methods, the stochastic subspace identification (SSI) has been shown to be a consistent one and, therefore, was chosen
to be used in this paper. Here, the modal analysis of a system under wind load is studied. The fluid-structure interaction
force is usually not easy to be represented and its whiteness (assumption made in most of OMA methods) can not be
easily conformed. In this way, a two floor building model is used for experimental validation, where different fluid-
structure interaction were created. The paper begins with a presentation of the discrete state space model followed by
the SSI theory. Two popular SSI algorithms are presented: covariance-driven and data-driven. A efficient way to select
the correct parameters for the method is discussed together with a procedure to analyze the results. To exemplify the
identification process, experimental results are shown and the identified parameters are listed. As conclusion, the wind
has been shown to be a good excitation source for OMA once the system has been correct identified.

Keywords: Operational modal analysis, System identification, Stochastic subspace methods, wind excitation, experi-
mental validation

INTRODUCTION

Operational Modal Analysis (OMA) consist in find the dynamic characteristic of a structure through its modal param-
eters using output-only signals. Differently from the classical approach of Experimental Modal Analysis (EMA), where
the input signal are also measured, OMA only uses the stochastic nature of the inputs, assumed to be random due the
ambient conditions. This fact allows system identification to be done under circumstances where EMA is limited, which
includes: large and heavy structures, where a controlled input is hard and expensive, and identification process of systems
under operational conditions, where interferences from the location can not be eliminated.

With its majors developments happening in the early 1990s, applications of OMA in the structural dynamic field is far
from reach its total potential. Nowadays, OMA has been used as tool in two main areas. The first is in the model vali-
dation of big structures such as bridges, tall buildings, stadiums and oil rigs (Rainieri and Fabbrocino, 2014)(Rodrigues,
2004)(Brincker and Ventura, 2015). These structures have in common the heavy weight and the acting ambient forces.
The excitation are done by wind, traffic, and waves which are difficult to model and measure. Therefore, OMA methods
for parameters estimations suits very well in those cases (Reynders et al.,2015) (Reynders et al.,2008a). Recent articles
have also focused on the variance estimation of the modal parameters. Mellinger et al.(2016), for example, measured
the uncertainties in the modal parameter of a aircraft during in-flight tests. Other main application where OMA has been
developed in the recent years is in the field of structural health monitoring (SHM)(Liu, 2011)(Farrar, 2013)(Deraemacker,
2010). It is done by a periodic modal identification, which evaluates a possible change in the modal parameters. Cracks,
corrosion, unfastened bolts and etc. usually reduces the system stiffness modifying natural frequencies and mode shapes.

The purpose of this article is to demonstrate a complete procedure of system identification in a real structure under
wind load using stochastic subspace method. Becoming popular in the 2000s, stochastic subspace identification (SSI)
consists in a collection of techniques that can be formulated in a consistent framework, where properties of the system
can be estimated through matrix subspaces. The two principal subspace algorithms found in the literature are covariance-
driven and data-driven, which consist in estimate the system controllability matrix using covariance matrices or orthogonal
projections of the output signal. For a clear understanding of such methods, the extension of the state space model are
done by the arrangement of the data in Hankel matrices. The methods performance heavily depends in the Hankel matrices
dimension, since they are direct related to the number of elements in the estimation of covariances, the system order and
the ratio between the interested frequency and the sampling frequency.
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2 Master’s student, Pontifı́cia Universidade Católica do Rio de Janeiro, Brazil, damien.foiny@gmail.com
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ABSTRACT
The smooth orthogonal decomposition (SOD) method has been studied in the last past years as an output-
only modal parameters identification technique for linear normal modes and natural frequencies extrac-
tion. Seen as a variant of the proper orthogonal decomposition (POD), the SOD method consists in the
identification of a projection base that not just maintain the maximum variance of a scalar field, but also
perform it in the smoothest possible way. In this paper a new implementation of the method is proposed
to overcame its noise sensitivity problem. This new implementation also allows the modal parameters
uncertainties to be quantified. With a numerical simulation and an experimental test, the method’s per-
formance is demonstrated and validated.

Keywords: smooth orthogonal decomposition, system identification, noise control

1. INTRODUCTION

In operational modal analysis (OMA), orthogonal decomposition methods are a recent family of identifi-
cation techniques based on a multivariate statistics method. They all have been developed as extension of
the proper orthogonal decomposition (POD) to overcome some of its limitations when applied to modal
analysis. For linear structures, POD requires a priori knowledge of the system’s inertial matrix to relate
the proper orthogonal modes (POMs) to the linear normal modes (LNMs), as presented in [1][2][3].
Another inherent limitation consists in the fact that the proper orthogonal values (POVs) contains only
informations about the energy of the POMs in the acquired data, and therefore are not uniquely related to
them. Those disadvantages were first overcome by the smooth orthogonal decomposition method (SOD)
in [4] and after by the state-variable modal decomposition method (SVMD) in [5][6].

The smooth orthogonal decomposition (SOD), also known as smooth Karhunen-Loève decomposition
[7], consists in the identification of a projection base that not just maintain the maximum variance of
a scalar field (in case of modal analysis, the structure displacement, velocity or acceleration), but also
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Abstract

Smooth Decomposition (SD) is a multivariate data or statistical analysis method

to find normal modes, natural frequencies and energy partition in a spatial data

field. The projection used for this method is chosen to keep the maximum

variance possible for the generalized displacement vector and also to keep the

smoothest motions along time. This method gives the “energy” participation

of each normal mode in the response during the simulation or the experimental

test which is a crucial information for identification of non-linear systems. This

method of identification can be used for linear and nonlinear systems (since

we do have access to the energy partition) and uses only output data provide

the excitation satisfies some properties normally met by a well chosen random

excitation, as a white noise, for example. The objective of this method is to

identify systems from their generalized displacement field under ambient exci-

tation which, in many cases, can be hard to compute or to describe. As the

method is only based on the covariance matrices of the generalized displace-

ment field and the corresponding velocity field, no further considerations and

approximations are needed. Due to this feature, the method is a great tool for

modal analysis and system identification. In this paper, the presentation of the
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Abstract: Using a test rig of a suspension bridge several methods of identification using
output-only data are compared. The methods compared stem from the Karhunen-Loève decom-
position. They use random signals and correlations of the system response to extract the signals
from noise. Their ability to deal with noise vary and the methods are compared on this basis.
Their sensitivity to noise is discussed as well as their similarities and differences using a test rig
of a suspension bridge that challenges the identification.

Keywords: Operational Modal Analysis, System Identification, Decomposition Methods, Iden-
tification, Suspension Bridge.

Introduction
The methods of identification used will be referred here as Proper Orthogonal Decompo-

sition (POD). The PODs will be described and how to use them in modal analysis explained.
All methods deal with stochastic signals and the main difference among them is how they treat
noisy signals.

To simplify the understanding of the methods, they are applied to a test rig representing a
suspension bridge. The methods need only output data, so the excitation (with a white noise for
the numerical examples and with a wind load for the experimental model) will be not monitored.
So the methods are in the class of Operational Modal Analysis (OMA).

Experimental Procedure or Computational Procedure
First, to better explain the similarities and differences among the methods, they will be

applied in some toy-problems designed to show how the PODs work. The problems may include
damping or not, may be linear or not. For our cases the non-linearity is constructed with a
cubic non-linear spring. The computational procedure necessary for the estimation of modal
parameters will be shown.

After dealing with the toy-problems, the same methods will be applied on a test rig rep-
resenting a suspension bridge under not-monitored wind load (Fig.1). This part is a real-life
experiment and some difficulties, as noisy signals, will appear.

Results and Discussion
Our results for the identification will be presented in terms of modal parameters. The

evaluation of our estimated modal parameters will be made through a comparison of the ones
we get from analytic solutions (for numerical examples) and from the numerical model for the
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!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% CODE FIG. 3.2!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
clear all!
clc!
close!!
u = 0:0.01:1;!
om = zeros(1,length(u));!
for i = 1:length(u)!
    om(i) = sqrt((1- u(i)^2));!
end!!
plot(u, om, '-')!
suptitle('Evolution of the frequency with relation to the normalized flow velocity');!
xlabel('$C_A\displaystyle\frac{dF}{d(Dq)}$','interpreter','latex');!
ylabel('Frequency');!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% CODE FIG. 3.3!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
clear all!
close all!
clc!!
t = 0:0.01:100;!!
eps = 10^(-1);!
q1 = cos(t).*exp(-eps/2.*t);!
q2 = sin(t).*exp(-eps/2.*t);!!
figure(),!
subplot(2,2,1)!
plot(t,q1)!
xlabel('Time');!
ylabel('q_1');!!
subplot(2,2,3)!
plot(t,q2)!
xlabel('Time');!
ylabel('q_2');!!
subplot(2,2,[2 4]),!
plot(q1(1),q2(1),'*','MarkerSize',10);!
hold on !
plot(q1,q2)!
suptitle('Time evolution of q_1 and q_2 and phase diagram in the q_1q_2-plane');!
legend('Starting point');!
xlabel('q_1');!
ylabel(‘q_2');!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% CODE FIG. 3.4!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
clear all!
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close all!
clc!!
t = 0:0.1:100;!!
eps = 10^(-1);!
q1 = cos(t).*exp(eps/2.*t);!
q2 = -sin(t).*exp(eps/2.*t);!!
figure(),!
subplot(2,2,1)!
plot(t,q1)!
xlabel('Time');!
ylabel('q_1');!!
subplot(2,2,3)!
plot(t,q2)!
xlabel('Time');!
ylabel('q_2');!!
subplot(2,2,[2 4]),!
plot(q1(1),q2(1),'b*','MarkerSize',10);!
hold on !
plot(q1,q2,'r')!
hold on!
plot(q1(1),q2(1),'b*','MarkerSize',10);!
suptitle('Time evolution of q_1 and q_2 and phase diagram in the q_1q_2-plane');!
legend('Starting point');!
xlabel('q_1');!
ylabel('q_2');!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% BASIC FUNCTIONS!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [PHI,DGradPHI] = BasicFunc (XI,h)!
        !
    PHI(1) =  (1/2) - (3/4)*XI + (1/4)*XI^3;!
    PHI(2) =  (1/4) - (1/4)*XI - (1/4)*XI^2 + (1/4)*XI^3;!
    PHI(3) =  (1/2) + (3/4)*XI - (1/4)*XI^3;!
    PHI(4) = -(1/4) - (1/4)*XI + (1/4)*XI^2 + (1/4)*XI^3;!
 !
    DGradPHI(1) =  (3/2)*XI;!
    DGradPHI(2) = -(1/2) + (3/2)*XI;!
    DGradPHI(3) = -(3/2)*XI;!
    DGradPHI(4) =  (1/2) + (3/2)*XI;!
    !
end!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% GLOBAL POINTERS!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [ASSMtrx, DomNodeID,NGDOF] = GlobalPointers(NELE)!!
DomNodeID = zeros(2,NELE);!
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ASSMtrx = zeros(4,NELE);!
for iele = 1:NELE!
    DomNodeID (1,iele) = iele;!
    DomNodeID (2,iele) = iele + 1;!
    !
    ASSMtrx (1,iele) = 2*iele - 1;!
    ASSMtrx (2,iele) = 2*iele;!
    ASSMtrx (3,iele) = 2*iele + 1;!
    ASSMtrx (4,iele) = 2*iele + 2;!
end!
NGDOF = max(max(ASSMtrx));!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% VARIABLES!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
L = 1;!!
B = 50e-3;!
h = 2e-3;!
E = 200e9;!
rho = 7850;!
grav = 9.81;!!
I = B*h^3/12;!
A = B*h;!!
q = rho*A*grav;!
H = 5/4*L*q;!!
Ec = 200e9;!
rc = 1.5e-3;!
Ac = pi*rc^2;!
Lc = 1.026*L;!!
w0 = .5;!
wc = @(x) -q/2/H .* x.*(L-x) + w0;!!
C1 = 0.5;!
C2 = 0.5;!
C3 = 1;!
C4 = 1;!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% GAUSS VALUES!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
NGP = 4;!
XIGP = [-0.86113631 -0.33998104 0.33998104 0.86113631];!
WGP = [0.34785485  0.65214515  0.65214515 0.34785485];!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% GET ELEM AB!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [M,K,Knl,Fnl] = GetElemAb(iele, NGP, XIGP, WGP)!
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!
global DX!!
M = zeros(4);!
K = zeros(4);!
Knl = zeros(4);!
Fnl = zeros(4,1);!!
for igp = 1:NGP!
    XI = XIGP(igp);!
    W = WGP(igp);!
    [Phi,DDPhi] = BasicFunc(XI,DX(iele));!
    for ilnode = 1:4!
        for jlnode = 1:4!
            M(ilnode, jlnode) = M(ilnode, jlnode) + ...!
                W*(Phi(ilnode) * Phi(jlnode)* (DX(iele)/2));!
            !
            K(ilnode, jlnode) = K(ilnode, jlnode) + ...!
                W*(DDPhi(ilnode) * DDPhi(jlnode)* (2/DX(iele))^3);!
            !
            Knl(ilnode, jlnode) = Knl(ilnode, jlnode) + ...!
                W*(Phi(ilnode) * DDPhi(jlnode)* 2/DX(iele));!
           !
        end!
        Fnl(ilnode) =  Fnl(ilnode) + ...!
            W*(Phi(ilnode)*DX(iele)/2);!
    end!
end!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% GET ELEM F!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [F] = GetElemF(iele, NGP, XIGP, WGP,f)!!
global DX!!
F = zeros(4,1);!!
for igp = 1:NGP!
    XI = XIGP(igp);!
    W = WGP(igp);!
    [Phi,~] = BasicFunc(XI,DX(iele));!
    for ilnode = 1:4!
        F(ilnode) =  F(ilnode) + W*(f(ilnode,:)*Phi(ilnode)*DX(iele)/2);!
    end!
end!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% GLOBAL MAT!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!!
function [M,K,Knl,Fnl] = GlobalMat(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP)!!
M = zeros(NGDOF);!
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K = zeros(NGDOF);!
Knl = zeros(NGDOF);!
Fnl = zeros(NGDOF, 1);!!
for iele = 1:NELE!
    [Me,Ke,Knle,Fnle] = GetElemAb(iele, NGP, XIGP, WGP);!
    for ildof = 1:4!
        igdof = ASSMtrx(ildof,iele);!
        for jldof = 1:4!
            jgdof = ASSMtrx(jldof,iele);!
            M(igdof,jgdof) = M(igdof,jgdof) + Me(ildof,jldof);!
            K(igdof,jgdof) = K(igdof,jgdof) + Ke(ildof,jldof);!
            Knl(igdof,jgdof) = Knl(igdof,jgdof) + Knle(ildof,jldof);!
        end!
        Fnl(igdof) = Fnl(igdof) + Fnle(ildof);!
    end!
end!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% GLOBAL F!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [F] = GlobalF(ASSMtrx,NDOF,NELE,NGP,XIGP,WGP,f)!!
F = zeros(NDOF, 1);!!
for iele = 1:NELE!
    [Fe] = GetElemF(iele, NGP, XIGP, WGP,f(ASSMtrx(:,iele),:));!
    for ildof = 1:4!
        igdof = ASSMtrx(ildof,iele);!
        F(igdof) = F(igdof) + Fe(ildof);!
    end!
end!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% NEWMARK ROUTINE!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [x,dx,ddx] = newmarkmodif(t,M,K,C,Knl,Fnl,dof,F)!!
global X!
variables!!
gamma = 1/2;!
beta = 1/4;!!
dt = t(2)-t(1);!
Nt = length(t);!!
% ALLOCATION!
x = zeros(dof,Nt); dx = zeros(dof,Nt); ddx = zeros(dof,Nt); tens = zeros(1,Nt);!!
% INITIAL CONDITIONS!
x(:,1) = zeros(dof,1); dx(:,1) = zeros(dof,1); ddx(:,1) = zeros(dof,1);!!
% NEWMARK COEFFICIENTS!
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a0 = 1/beta/dt/dt; a1 = gamma/beta/dt; a2 = 1/2/beta;  !
a3 = -dt*(1 - gamma/2/beta); a4 = 1/beta/dt; a5 = gamma/beta;!!
fac = 1;!
func = @(u) fac*trapz(X,u);!!
for i = 1:Nt-1!
    !
    dF = F(:,i+1) - F(:,i);!
    !
    testval1 = 1 + C3*func([0;x(2:2:end-1,i);0]);!
    if testval1 <= 0!
        g = 0;!
    else!
        g = testval1;!
    end!
        !
    Kbar = a0*M + a1*C + C1*K - C2*g*Knl;!
    Fbar = dF - C4*g*Fnl + (a2*M + a3*C)*ddx(:,i) + (a4*M + a5*C)*dx(:,i); !
    !
    Dx = Kbar\Fbar;!
    x(:,i+1) = x(:,i) + Dx;!
    !
    Ddx = a1*Dx - a5*dx(:,i) - a3*ddx(:,i);!
    dx(:,i+1) = dx(:,i) + Ddx;!
    !
    testval2 = 1 + C3*func([0;x(2:2:end-1,i+1);0]);!
    if testval2 <= 0!
        g = 0;!
    else!
        g = testval2;!
    end!
    !
    ddx(:,i+1) = - M\(C1*K*x(:,i+1) ... !
        - C2*g*Knl*x(:,i+1) ...!
        + C*dx(:,i+1) ...!
        + C4*g*Fnl ...!
        - F(:,i+1) ); !
end!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% MAIN CODE CHAP5!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
clear all!
close all!
clc!!
global X DX!!
%-------------------------------------------------------------------------%!
% PRE PROCESSING!
%-------------------------------------------------------------------------%!!
% GEOMETRY!
variables!
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!
% MESH!
NELE = 20;!
NODES = NELE+1;!
X = linspace(0,L,NODES);!
DX = diff(X);!
[ASSMtrx, DomNodeID,NGDOF] = GlobalPointers(NELE);!!
% GAUSS INT!
GaussVal!!
% GLOBAL MATRICES!
[M,K,Knl,Fnl] = GlobalMat(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP);!!
% BOUNDARY CONDITIONS!
fixedNodeU = [1 NGDOF-1]';!
fixedNodeV = []';!!
% REDUCED MATRICES!
prescribedDof = [fixedNodeU;fixedNodeV];!
activeDof = setdiff([1:NGDOF]', prescribedDof);!
M = M(activeDof,activeDof);!
K = K(activeDof,activeDof);!
Knl = Knl(activeDof,activeDof);!
Fnl = Fnl(activeDof,1);!!
% DAMPING!
aM = 0; aK = 0;!
C = aM*M + aK*K;!!
% MODAL ANALYSIS LINEAR!
[V,D] = eig(C1*K - C2*Knl,M);!
freqMAT = sqrt(sort(diag(D)))/2/pi;!!
%-------------------------------------------------------------------------%!
% DYNAMICAL ANALYSIS!
%-------------------------------------------------------------------------%!
% TIME!
fs = 200;!
tend = 50;!
t = linspace(0,tend,tend*fs);!
Nt = length(t);!!
% FORCE!
lambda = 1:0.1:5;!
mu = 5:0.1:9;!!
maxdefl = zeros(length(lambda),length(mu));!
pd = zeros(length(lambda),length(mu));!!
ind = 0;!
for ilam = 1:length(lambda)!
    for imu = 1:length(mu)!
    ind = ind + 1!
    f = zeros(NGDOF,Nt);!
    !
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    ii = 0;!
    for i = 1:2:NGDOF!
        ii = ii + 1;!
        for j = 1:Nt!
            f(i,j) = lambda(ilam) * sin(pi*X(ii)) * sin(mu(imu)*t(j)) + C4;!
        end!
    end!
    !
    F = zeros(NGDOF,Nt);!
    for i = 1:Nt!
        [F(:,i)] = GlobalF(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP,f(:,i));!
    end!
    F = F(activeDof,:);!
    !
    dof = length(activeDof);!
    % SOLVING VIA NEWMARK!
    [x,dx,ddx] = newmarkmodif(t,M,K,C,Knl,Fnl,dof,F);!
    disp = zeros(NGDOF,length(t));!
    disp(activeDof,:) = x;!
    !
    maxdefl(ilam,imu) = max(max(abs(disp)));!
    pd(ilam,imu) = maxdefl(ilam,imu)/lambda(ilam);!!
    end!
end!!
%-------------------------------------------------------------------------%!
% POST PROCESSING!
%-------------------------------------------------------------------------%!!
figure(),!
[xlam,ymu] = meshgrid(lambda,mu);!
Z = pd';!
hSurface = surf(xlam,ymu,Z);!
set(hSurface,'FaceColor',[0 0 1],'FaceAlpha',0);!
az = -70;!
el = 45;!
view(az, el);!
axis([lambda(1) lambda(end) mu(1) mu(end) 0 max(max(maxdefl))])!
xlabel('\lambda');!
ylabel('\mu');!
zlabel(‘pd’);!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% MAIN CODE CHAP6!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
clear all!
close all!
clc!!
global X DX!!
% GEOMETRY!
variablesBis!!
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% MESH!
NELE = 20;!
NODES = NELE+1;!
X = linspace(0,L,NODES);!
DX = diff(X);!
[ASSMtrx, DomNodeID,NGDOF] = GlobalPointers(NELE);!!
% GAUSS INT!
GaussVal!!
% GLOBAL MATRICES!
[M,K,Knl,Fnl] = GlobalMat(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP);!!
% BOUNDARY CONDITIONS!
fixedNodeU = [1 NGDOF-1]';!
fixedNodeV = []';!!
% REDUCED MATRICES!
prescribedDof = [fixedNodeU;fixedNodeV];!
activeDof = setdiff([1:NGDOF]', prescribedDof);!
M = M(activeDof,activeDof);!
K = K(activeDof,activeDof);!
Knl = Knl(activeDof,activeDof);!
Fnl = Fnl(activeDof,1);!!
% DAMPING!
aM = 0; aK = 0;!
C = aM*M + aK*K;!!
% MODAL ANALYSIS LINEAR!
[V,D] = eig(C1*K - C2*Knl,M);!!
% [V,D] = eig(K,M);!
freqMAT = sqrt(sort(diag(D)))/2/pi;!!
%-------------------------------------------------------------------------%!
% DYNAMICAL ANALYSIS!
%-------------------------------------------------------------------------%!
% TIME!
fs = 200;!
tend = 20;!
t = linspace(0,tend,tend*fs);!
Nt = length(t);!!
U = 1:.25:5;!
ptk = 0.001;!
mutab = 1:0.2:4;!
maxtab = zeros(length(U),length(mutab));!
ind = 0;!
for iu0 = 1:length(U)!
    U0 = U(iu0);!
    CL = 1;!
    S = 1;!
    rhof = 1;!
    for imu = 1:length(mutab) !
        ind = ind + 1!
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        mu = mutab(imu);!
        f = zeros(NGDOF,Nt);!
        ii = 0;!
        for i = 1:2:NGDOF!
            ii = ii + 1;!
            for j = 1:Nt!
                f(i,j) = 1/2*rhof*CL*(U0*sin(pi*X(ii)))^2 * sin(mu*t(j)) + C4;!
            end!
        end!
        !
        F = zeros(NGDOF,Nt);!
        for i = 1:Nt!
            [F(:,i)] = GlobalFBis(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP,f(:,i));!
        end!
        F = F(activeDof,:);!
        !
        dof = length(activeDof);!
        % SOLVING VIA NEWMARK!
        [x,dx,ddx] = newmarkmodifBis(t,M,K,C,Knl,Fnl,dof,F,U0,rhof,ptk);!
        disp = zeros(NGDOF,length(t));!
        disp(activeDof,:) = x;!
        !
        maxdisp = max(max(disp(1:2:NGDOF,:)));!
        maxdisp = maxdisp/U0^2;!
        maxtab(iu0,imu) = maxdisp;!
    end!
    !
end!!
figure(),!
[xU,ymu] = meshgrid(U,mutab);!
Z = maxtab';!
hSurface = surf(xU,ymu,Z);!
set(hSurface,'FaceColor',[0 0 1],'FaceAlpha',0);!
az = -70;!
el = 45;!
view(az, el);!
xlabel('\lambda_U');!
ylabel('\mu_U');!
zlabel('pd_2');!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% MAIN CODE CHAP7!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
clear all!
close all!
clc!!
global X DX!!
%-------------------------------------------------------------------------%!
% PRE PROCESSING!
%-------------------------------------------------------------------------%!!
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% GEOMETRY!
variables!!
% MESH!
NELE = 20;!
NODES = NELE+1;!
X = linspace(0,L,NODES);!
DX = diff(X);!
[ASSMtrx, DomNodeID,NGDOF] = GlobalPointers(NELE);!!
% GAUSS INT!
GaussVal!!
% GLOBAL MATRICES!
[M,K,Knl,Fnl] = GlobalMat(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP);!!
% BOUNDARY CONDITIONS!
fixedNodeU = [1 NGDOF-1]';!
fixedNodeV = []';!!
% REDUCED MATRICES!
prescribedDof = [fixedNodeU;fixedNodeV];!
activeDof = setdiff([1:NGDOF]', prescribedDof);!
M = M(activeDof,activeDof);!
K = K(activeDof,activeDof);!
Knl = Knl(activeDof,activeDof);!
Fnl = Fnl(activeDof,1);!!
% DAMPING!
aM = 0; aK = 0;!
C = aM*M + aK*K;!!
[V,D] = eig(C1*K - C2*Knl,M);!!
freqMAT = sqrt(sort(diag(D)))/2/pi;!!
%-------------------------------------------------------------------------%!
% DYNAMICAL ANALYSIS!
%-------------------------------------------------------------------------%!
% TIME!
fs = 1500;!
tend = 10;!
t = linspace(0,tend,tend*fs);!
Nt = length(t);!!
% FORCE!
factab = 0.0001:0.0002:0.01;!!
enertab = zeros(10,length(factab));!
freqtab = zeros(10,length(factab));!
for ifac = 1:length(factab)!
    ifac!
    fac = factab(ifac);!
    f = zeros(NGDOF,Nt);!
    !
    for i = 1:2:NGDOF!
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        for j = 1:Nt!
            f(i,j) = fac*(rand(1,1)-.5);!
        end!
    end!
    !
    F = zeros(NGDOF,Nt);!
    for i = 1:Nt!
        [F(:,i)] = GlobalF(ASSMtrx,NGDOF,NELE,NGP,XIGP,WGP,f(:,i));!
    end!
    F = F(activeDof,:);!
    !
    dof = length(activeDof);!
    !
    % SOLVING VIA NEWMARK!
    [x,dx,ddx] = newmarkmodif(t,M,K,C,Knl,Fnl,dof,F);!
    disp = zeros(NGDOF,length(t));!
    disp(activeDof,:) = x;!
    !
    %-------------------------------------------------------------------------%!
    % SMOOTH DECOMPOSITION!
    %-------------------------------------------------------------------------%!
    !
    ySD = disp(3:2:end-2,:)';!
    [Ns,n_dof] = size(ySD);!!
    for i = 1:n_dof!
        ySD(:,i) = ySD(:,i) - mean(ySD(:,i));!
    end!
    dy = timediff(ySD,fs,'Remez');!
    [ldy,cdy] = size(dy);!
    temp = ySD;!
    clear('y');!
    tronc = 20;!
    ySD = temp(tronc+1:end,:);!
    Ru = (1/Ns).*ySD'*ySD;!
    Rdu = (1/ldy).*dy'*dy;!
    [gamma_des,lambda_des] = eig(Ru,Rdu);!
    [lambda,ind] = sort(diag(lambda_des),'descend');!
    gamma = gamma_des(:,ind);!
    psi = Rdu*gamma;!
    xi = ySD(:,1:n_dof)*psi;!
    zeta = ySD(:,1:n_dof)*gamma;!
    !
    omega = zeros(n_dof,1);!
    freq = zeros(n_dof,1);!
    for i = 1:n_dof!
        omega(i,1) = sqrt(1/lambda(i,1));!
        freq(i,1) = omega(i,1)/(2*pi);!
    end!
    !
    E = zeros(1,n_dof);!
    for i = 1:n_dof!
        E(1,i) = lambda(i,1)*(norm(psi(:,i)))^2;!
    end!
    !
    fE = zeros(1,n_dof);!
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    for i = 1:n_dof!
        fE(1,i) = E(1,i)/sum(E);!
    end!
    !
    enertab(:,ifac) = fE(1:10);!
    freqtab(:,ifac) = freq(1:10);!
    !
end!!
%-------------------------------------------------------------------------%!
% POST PROCESSING!
%-------------------------------------------------------------------------%!!
[M,I] = max(enertab);!!
set(0,'DefaultAxesLineStyleOrder',{'+','o','*','x','s','d','^','v','>','<','p','h'});!
figure(),!
for j = 1:10!
    hold on!
    plot(factab,freqtab(j,:),'b','MarkerSize',10);!
end!
hold on!
maxfreq  = zeros(1,length(freqtab));!
for i = 1:length(freqtab)!
    maxfreq(1,i) = freqtab(I(i),i);!
end!
plot(factab,maxfreq,'r-','LineWidth',2);!
legend('1','2','3','4','5','6','7','8','9','10','Location','eastoutside')!
xlabel('Energy level s_0');!
ylabel('Frequencies');!
title({'Evolution of of frequencies with ',['C_1 = ',num2str(C1),', C_2 = ',num2str(C2),', C_3 = 
',num2str(C3),', C_4 = ',num2str(C4),]});!!
set(0,'DefaultAxesLineStyleOrder',{'+','o','*','x','s','d','^','v','>','<','p','h'});!
figure(),!
for j = 1:10!
    hold on!
    plot(factab,100*enertab(j,:),'b','MarkerSize',10);!
end!
hold on!
plot(factab,100*max(enertab),'r-','LineWidth',2);!
legend('1','2','3','4','5','6','7','8','9','10','Location','eastoutside')!
xlabel('Energy level s_0');!
ylabel('Modal energy (%)');!
title({'Evolution of modal energy with ',['C_1 = ',num2str(C1),', C_2 = ',num2str(C2),', C_3 = 
',num2str(C3),', C_4 = ‘,num2str(C4),]});!!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!
% NEWMARK ROUTINE MODIFIED FOR CHAP6!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%!!
function [x,dx,ddx] = newmarkmodifBis(t,M,K,C,Knl,Fnl,dof,F,U0,rhof,ptk)!!
global X!
variablesBis!
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!
gamma = 1/2;!
beta = 1/4;!!
dt = t(2)-t(1);!
Nt = length(t);!!
% ALLOCATION!
x = zeros(dof,Nt); dx = zeros(dof,Nt); ddx = zeros(dof,Nt); tens = zeros(1,Nt);!!
% INITIAL CONDITIONS!
x(:,1) = zeros(dof,1); dx(:,1) = zeros(dof,1); ddx(:,1) = zeros(dof,1);!!
% NEWMARK COEFFICIENTS!
a0 = 1/beta/dt/dt; a1 = gamma/beta/dt; a2 = 1/2/beta;  !
a3 = -dt*(1 - gamma/2/beta); a4 = 1/beta/dt; a5 = gamma/beta;!!
fac = 1;!
func = @(u) fac*trapz(X,u);!!
for i = 1:Nt-1!
    !
    dF = F(:,i+1) - F(:,i);!
    !
    testval1 = 1 + C3*func([0;x(2:2:end-1,i);0]);!
    if testval1 <= 0!
        g = 0;!
    else!
        g = testval1;!
    end!
    Kbar = a0*M + a1*C + C1*(K - rhof*U0^2*ptk*K) - C2*g*Knl;!
    Fbar = dF - C4*g*Fnl + (a2*M + a3*C)*ddx(:,i) + (a4*M + a5*C)*dx(:,i); !
    !
    Dx = Kbar\Fbar;!
    x(:,i+1) = x(:,i) + Dx;!
    !
    Ddx = a1*Dx - a5*dx(:,i) - a3*ddx(:,i);!
    dx(:,i+1) = dx(:,i) + Ddx;!
    !
    testval2 = 1 + C3*func([0;x(2:2:end-1,i+1);0]);!
    if testval2 <= 0!
        g = 0;!
    else!
        g = testval2;!
    end!
    ddx(:,i+1) = - M\(C1*(K - rhof*U0^2*ptk*K)*x(:,i+1) ... !
        - C2*g*Knl*x(:,i+1) ...!
        + C*dx(:,i+1) ...!
        + C4*g*Fnl ...!
        - F(:,i+1) ); !
end!
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