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Abstract

Power plants that utilize renewable resources to produce electrical energy, such as hydroelectric power plants,
comprehend the majority of the Brazilian energy matrix. However, their generations have underlying uncer-
tainties associated with hydrological factors, such as precipitation. An adequate description of these future
uncertainties is necessary for a thorough analysis of the risks that are inherent to the production of hydro power
plants. Among these uncertainties, we highlight the possibility that large scale climatic phenomena, specifically
the El Niño Southern Oscillation (ENSO), might considerably affect hydro power generation. Motivated by this
hypothesis, we utilize Generalized Autoregressive Score (GAS) models in order to estimate the impact of ENSO
on the Affluent Natural Energy (ANE), which serves as an indicator of monthly hydro power generation in each
one of Brazil’s main regions. Based on simulations, our model indicates an up to 11% ENSO effect on the ANE,
depending on the analyzed Brazilian region.

Keywords: El Niño Southern Oscillation, Dynamic Score Models, Hydro Power Generation, Affluent
Natural Energy
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ESTUDO DO IMPACTO DO EL NIÑO OSCILAÇÃO SUL NA GERA-
ÇÃO HÍDRICA NO BRASIL

Resumo

Usinas que utilizam recursos renováveis para produzir energia elétrica, como as grandes centrais hídricas e
pequenas centrais hidrelétricas (PCHs), compreendem a maior parte da matriz elétrica brasileira, mas suas
gerações possuem incertezas associadas a fatores hidrológicos. A descrição adequada dessas incertezas futuras
é de fundamental importância para uma análise criteriosa dos riscos inerentes à produção de fontes renováveis.
Dentre essas incertezas, destacamos a possibilidade de que fenômenos climáticos de larga escala, em especial
o El Niño Oscilação Sul (ENOS), afetem consideravelmente a geração hídrica. Motivados por essa hipótese,
utilizamos modelos GAS (Generalized Autoregressive Score) com o objetivo de estimar o impacto do ENOS na
Energia Natural Afluente, que serve como indicador da capacidade de geração hídrica mensal em cada uma
das regiões do Brasil. Baseado em simulações, nosso modelo indica um efeito de até 11% do ENSO nas ENAs,
dependendo da região brasileira analisada.

Palavras-chave: El Niño Oscilação Sul, Modelos de Score Dinâmico, Geração Hídrica, Energia Natu-
ral Afluente
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1 Introduction

Power plants that utilize renewable resources to produce electrical energy, such as hydroelectric power plants,
comprehend the majority of the Brazilian energy matrix. However, their generations have underlying uncer-
tainties associated with hydrological factors, such as precipitation. The benefits related to these resources are
numerous and include the diversification of the energy matrix and the reduction of the emission of greenhouse
gases emitted by thermal power plants. Nonetheless, the insertion of this kind of energy in the electrical system
must be done with caution due to its intermittent nature.

From a commercial standpoint, the generation uncertainty creates a financial risk for generation companies,
especially if the contract is set on produced energy, which is a common practice in the Free Trading Environment
(FTE) [2, 3]. From a strategic planning standpoint, this uncertainty also creates challenges, ranging from its
incorporation in the operation planning to the daily prediction which is essential for real time operation. Even
though we possess a long term history for conventional hydro power generation, we are not immune to upsets,
as seen in 2014 and 2015, when water inflow models systematically failed [4,5].

All these factors make it clear that an adequate description of the uncertainties that are inherent to the pro-
duction of hydro power plants is necessary for a thorough analysis of the risks and benefits this kind of energy
offers. Among these uncertainties, we highlight the possibility that large scale climatic phenomena, specifically
the El Niño Southern Oscillation (ENSO), might considerably affect hydro power generation. The impact of these
phenomena has not yet been thoroughly studied in Brazil. The pioneer work of Nascimento et al. [6] investi-
gated the effect of ENSO on wind speed in Northeastern Brazil, using non-Gaussian time series models. Among
the results, the Gamma GAS model pointed a change of 3.98% in wind speed for a 1°C change in sea surface
temperature.

Motivated by these preliminary results, in this work we investigate with further details the impact of climatic
phenomena, specifically ENSO, on hydro power generation in Brazil. We use Generalized Autoregressive Score
(GAS) models, proposed by Creal et al. [7,8], adjusted to historical time series of Affluent Natural Energy (ANE),
which serve as an indicator of monthly hydro power generation in each one of Brazil’s main regions. We include
in the model exogenous variables associated with ENSO historical data in order to estimate its effects and
relevance.
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2 El Niño Southern Oscillation

a The ENSO phenomenon

The term "teleconnection" is used in meteorology to designate a causal connection or correlation between
meteorological or other environmental phenomena that occur a long distance apart. The Southern Oscillation
was one of the first teleconnections to be documented, having been discovered in 1932 by Bliss & Walker [9]. It
was observed that an increase of atmospheric pressure in the Pacific Ocean would occur paired with a decrease
of atmospheric pressure in the Indian Ocean.

The El Niño phenomenon is one of the most widely known teleconnections in the world and impacts the pressure,
the wind and the sea surface temperature of different places around the globe. One of El Niño’s main symptoms
is the unusual warming of the sea surface in a known region in the middle of the Pacific [1]. The La Niña
phenomenon can be defined as the cold phase of El Niño, with the sea surface temperature of the same region
becoming cooler than its historic average. Later on, the El Niño started to be analyzed paired with the Southern
Oscillation, originating the name ENSO.

Figure 1: The Niño region in the Pacific Ocean.

The Niño region is divided in subregions such as Niño 3 and Niño 4. Each one has its particular properties,
which go beyond the scope of this work. Meteorology institutes such as the National Oceanic and Atmospheric
Administration (NOAA) [1] have developed methods for identifying and indicating the nature and intensity of
ENSO episodes. These methods result in several indicators, such as the Oceanic Niño Index (ONI), Southern
Oscillation Index (SOI) and Multivariate ENSO Index (MEI) [10].
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Figure 2: Average surface temperature in the central tropical Pacific. Source: NOAA website [1] and the author.

b Utilized data

In order to consistently estimate the effect of ENSO in hydro power generation, we need long term historical
data related to both.

To represent ENSO, there are several different indicators, most of them publicly available at the NOAA website
[1]. The main ENSO indicators are: Oceanic Niño Index (ONI), Southern Oscillation Index (SOI), Multivariate ENSO
Index (MEI) and Sea Surface Temperature anomalies (SST), with ONI being the index we utilized in this study.
ONI is a monthly index related to the Niño 3.4 region (see Figure 1). It takes into account a 30-year sea surface
temperature average and verifies deviations from that average, in such a way that long term temperature
changes are computed (see Figure 2). ONI values are positive for El Niño (warmer water) and negative for La
Niña (cooler water), and can be classified in intensity as weak (absolute values between 0.5 and 0.9), moderate
(absolute values between 1.0 and 1.4) and strong (absolute values above 1.5). Values between -0.5 and 0.5 are
considered neutral. At the time of this study, ONI was available from 1950 to 2016.

To represent hydro power generation, we utilize Affluent Natural Energy (ANE) data, publicly available at the
National Electrical System Operator (ONS) website [11]. ANE is the energy that can be produced from natural
affluent water inflows in reservoirs, in average Mega Watt (aMW). It is also split into four different time series,
one for each region in Brazil’s electrical system: Southeast, South, Northeast and North. At the time of this
study, the ANE series were available from 1931 to 2015. It is important to highlight that ANE has a different
behavior in every region and therefore our case studies are done individually for each region. The ANE historical
behavior for each region can be seen in Figure 3.
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Figure 3: Historical ANE data for each one of Brazil’s four regions, for years 1951-2015.
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3 GAS models

We now provide a detailed explanation of GAS models, the class of time series models that will be used in this
study.

Generalized Autoregressive Score models, or simply GAS models, represent a class of observation driven time
series models with time-varying parameters proposed in [7] and further detailed in [8]. GAS models have the
scaled score of the likelihood function as their driving mechanism, which allows for a consistent framework for
introducing time-varying parameters in a wide class of non-linear models. The GAS model has some well-known
models as particular cases, such as the GARCH model.

The GAS formulation introduces a function that relates the time-varying parameters of the series’ conditional
distribution to lagged values of themselves and of the conditional score, as well as exogenous variables. The
GAS model framework is presented in the sequel.

Let n× 1 vector yt denote the dependent variable of interest, ft the time-varying parameter vector, xt a vector
of exogenous variables and θ a vector of static parameters. Define Y t = {y1, . . . , yt}, F t = {f0, f1, . . . , ft} and
Xt = {x1, . . . , xt}. The available information set at time t consists of {ft,Ft}, where

Ft = {Y t−1, F t−1, Xt}, t = 1, ..., n (1)

We assume that yt is generated by the observation density

yt ∼ p(yt|ft,Ft; θ) (2)

Furthermore, we assume that the mechanism for updating the time-varying parameter ft is given by the follow-
ing autoregressive updating equation, known as a GAS(p,q) mechanism:

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bift−j+1 (3)

where ω is a vector of constants, coefficient matrices Ai and Bj have appropriate dimensions for i = 1, ..., p and
j = 1, ..., q. The unknown coefficients in Eq. (3) are functions of θ: ω = ω(θ), Ai = Ai(θ) and Bj = Bj(θ) for
i = 1, ..., p and j = 1, ..., q. Finally, st is the scaled score function and is defined as:

st = St.∇t, ∇t =
∂ ln p(yt|ft,Ft; θ)

∂ft
, St = S(t, ft,Ft; θ) (4)

where S(·) is an arbitrary scaling function, generally defined as a function of Fisher information:

St = I−dt|t−1, It|t−1 = Et−1[∇t∇′t] (5)

where d = 0, 1
2

or 1 and Et−1 denotes an expectation with respect to p(yt|ft,Ft; θ).

The advantages of GAS models include: the ability to model non-linearity, non-stationarity and non-Gaussianity;
the fact that the evaluation of the likelihood function has a closed form; and the fact that it outputs a complete
conditional probability density, which facilitates probabilistic interpretations and simulations.

Nevertheless, the likelihood function is generally non-linear and in many cases non-convex, which means opti-
mality is not always guaranteed. In the study presented here, the likelihood function is not only non-convex, but
also extremely ill-behaved, which forced us to develop a methodology involving multiple iterations and numeri-
cal methods such as BFGS and Nelder-Mead in order to estimate the maxima as consistently as possible.

5



 

 

 

 
4 Lognormal GAS model with time-varying location parameter

We utilize the Lognormal distribution because it is an adequate way of modeling water inflow time series, as
done in the NEWAVE model [12] and seen in [13, 14]. The Lognormal probability density function for different
values of the scale parameter σ can be seen in Figure 4.

Figure 4: Lognormal density function for different values of the scale parameter σ.

The Lognormal conditional probability density, expectation and variance are as follows:

p(yt|ft,Ft; θ) =
1

ytσ
√
2π

exp
(−(ln yt − µt)2

2σ2

)
(6)

E[yt|ft,Ft; θ] = exp
(
µt +

σ2

2

)
(7)

V [yt|ft,Ft; θ] = exp(σ2 − 1) · exp(2µt + σ2) (8)

We consider the location parameter (µ) as our time-varying parameter because of the seasonal and uncertain
nature of the series. The parametrization of our choice and the derivation of the score are as follows:

f
(1)
t = µt (9)

∇t =
∂

∂µt

(
− ln(ytσ

√
2π)− (ln yt − µt)2

2σ2

)
=

∂

∂µt

(
− (ln yt)

2 − 2µt ln yt + µ2
t

2σ2

)
= − 1

2σ2

∂

∂µt
(−2µt ln yt + µ2

t ) (10)

= − 1

2σ2
(−2 ln yt + 2µt)

=
ln yt − µt

σ2

We can thus derive the Fisher information from the score:
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 It|t−1 = −Et−1[∇t∇′t]

= −Et−1

[∂2 ln p(yt|ft,Ft; θ)
∂f2

t1

]
= −Et−1

[ ∂

∂µt

(
− ln yt − µt

σ2

)]
(11)

= Et−1

[ 1

σ2

]
(12)

=
1

σ2

In this study, we utilize a GAS model with lags 1, 2, 3, 11 and 12, as well as an exogenous variable associated
with ENSO. Lags 1, 2 and 3 intend to capture the short-term autoregressive nature of the series, while lags 11
and 12 intend to capture its seasonal behavior.

The underlying scale parameter σ is one of the constant parameters that are estimated through the method
presented in Section 5. Using the derivations presented above and d = 1, we have the following score and
updating mechanism for the time-varying parameter:

st = I−1
t|t−1∇t

=
( 1

σ2

)−1

· ln yt − µt
σ2

(13)

= ln yt − µt

ft+1 = ω+A1st+A2st−1 +A3st−2 +A4st−10 +A5st−11 +B1ft+B2ft−1 +B3ft−2 +B4ft−10 +B5ft−11 +φxt−` (14)

where xt is the ENSO indicator at time t (in our case study, we use ONI) and l is the lag applied to the exogenous
variable (in our case study, we use ` = 0).
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5 Methodology

a Parameter estimation

The GAS constant parameters – in our case, Ai’s, Bi’s, ω and φ – are estimated via maximum likelihood estima-
tion (MLE). The likelihood function is given by

L(θ; y1, ..., yn) = p(y1, ..., yn; θ) =

n∏
i=t

p(yt|ft,Ft; θ) (15)

where p denotes the probability density function. Given that dealing with a sum is more convenient than dealing
with a product, we utilize the log-likelihood:

`(θ; y1, ..., yn) = lnL(θ; y1, ..., yn) =
n∑
t=1

ln p(yt|ft,Ft; θ) (16)

Therefore, our MLE problem is

θ∗ = argmax `(θ; y1, ..., yn) (17)

Non-linear optimization methods such as BFGS and Nelder-Mead can be employed to solve this problem. How-
ever, as mentioned in Section 3, in our particular case this function is not only non-convex but also extremely
ill-behaved, which means optimality cannot be guaranteed. Even though this is certainly an imperfection of the
model and should be addressed, our main goal is to accurately estimate a model for our time series and use it
to simulate future scenarios. Global optimality, though desired, is not necessary as long as we verify adequate
in-sample and out-of-sample results.

In order to estimate the maxima as consistently as possible, we utilize a simple algorithm that runs an arbitrary
number of rounds with random initial conditions in each round and returns the parameters with highest likeli-
hood. This allows us to inspect a wider range of results and discard solutions that are local maxima with lower
likelihood values. The second part of the algorithm consists of checking if the covariance matrix of the parame-
ters is positive semi-definite. If not, that solution is discarded and the round with the next highest likelihood is
checked. The algorithm is as follows:

Algorithm 1 Maximum likelihood parameters estimation

Let r be the arbitrary number of rounds for the algorithm and p the number of parameters;
Let BFGS(`, θ, y) be the BFGS function call that maximizes log-likelihood function ` with initial parameters θ for
series y and returns the maximum log-likelihood and its associated parameters;
Let Hi be the numerically differentiated Hessian matrix returned by the BFGS function and Wi be the covariance
matrix of the parameters for round i;
for i = 1 to r do
θ(i) ← p× 1 random vector with elements xj ∼ N(0, 0.5), j = 1, ..., p
(`(i), θ̂

(i), H(i))← BFGS(`, θ(i), y)
end for
i∗ ← argmax{`(i)}
W(i∗) ← H−1

(i∗)
while W(i∗) is not positive semi-definite do
i∗ ← The next i with the highest likelihood;
W(i∗) ← H−1

(i∗)
end while
θ̂ ← θ(i

∗)

return θ̂
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b Goodness-of-fit statistics and model diagnostics

After estimating the parameters through Algorithm 1, we generate a time series using our GAS model defined
in Section 4. This is done by running the GAS model and obtaining a series of ft and st, for t = 1, ..., n, and then
using these values to construct the conditional expectation series by using Eq. (7). Finally, we utilize the original
series and the generated series to run diagnostics and calculate goodness-of-fit statistics.

The following goodness-of-fit statistics were employed: coefficient of determination (Pseudo-R2), mean average
error (MAE) and symmetric mean absolute percentage error (sMAPE) [15,16].

Pseudo-R2 =
[
corr(ŷt, yt)

]2
=
[
corr

(
E[yt|ft,Ft; θ], yt

)]2
(18)

MAE =
1

n

n∑
t=1

|ŷt − yt| =
1

n

n∑
t=1

|E[yt|ft,Ft; θ]− yt| (19)

sMAPE =
100%

n

n∑
t=1

|ŷt − yt|
ŷt + yt

=
100%

n

n∑
t=1

|E[yt|ft,Ft; θ]− yt|
E[yt|ft,Ft; θ] + yt

(20)

The autocorrelation function (ACF), partial autocorrelation function (PACF) and Jarque-Bera test [17, 18] were
also estimated to investigate the behavior of the quantile residuals, which under correct model specification,
should show no serial correlation and be normally distributed [19].

c Monte Carlo simulation

After estimating the parameters and generating the GAS time series, we now have a series ft that are actually
location parameters for the Lognormal distribution. Given that σ is a constant parameter estimated through
Algorithm 1, we have the necessary tools to perform Monte Carlo simulation [20]. In order to do that, we just
need to input the ENSO variables for the desired period of time.

This is a powerful tool for measuring ENSO effect, since we can conduct conditional simulations by utilizing
arbitrary ENSO values, assuming strong El Niño or La Niña periods, and compare both results. This methodology
is further discussed in Section 5.d.

d Confidence bands

Given that we estimated θ̂, the MLE estimator of θ, we can obtain values of ft, t = 1, ..., n by using Eq. (14).
However, ft has sources of uncertainty that should be taken into account, namely parameter uncertainty –
since we do not know the true parameter vector θ, just the MLE estimate θ̂ –, filtering uncertainty – since we
consider Eq. (14) as the updating equation, but we do not know the true time-varying parameter process – and
model uncertainty – since we consider p(·) in Eq. (2) but we do not know the true data generation process for
yt.

We are going to focus on parameter uncertainty and model it by generating confidence bands, as described
in [21]. These confidence bands can be constructed by using the cumulative delta method or by Monte Carlo
simulation. Given that the GAS model outputs probability distributions, it is more convenient to construct
simulation-based bands.

Let Ŵ be the covariance matrix of the parameters. By operating under the assumption of asymptotic distribution
for the MLE estimates

θ̂(i) ∼ N(θ̂,Ŵ), i = 1, ...,m (21)

and by using Monte Carlo simulation, we draw parameter values θ(i) from the distribution of θ̂ for i = 1, ...,m,
where m represents the number of simulated scenarios. Then, for each θ(i), we can determine the sequence
f̂
(i)
t through Eq. (14). With a collection f̂ (i)

t , we can construct our time series for each realization, and therefore
have m scenarios. Finally, by choosing a significance level α, we have the α/2 and 1 − α/2 quantile series as our
inferior and superior confidence bands, respectively.
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The confidence bands, in addition to modeling parameter uncertainty, also act as a tool that can be used to verify
the statistical significance of the ENSO effect, by utilizing the previously mentioned conditional simulations. If
the El Niño-conditioned and La Niña-conditioned confidence bands are completely disjointed, i.e. the inferior
band of one simulation is above the superior band of the other, this indicates a significant ENSO effect in the
generation.
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6 Results

For the case study, the following data was utilized:

• Historical ANE monthly series for each one of Brazil’s four regions, used as our dependent variable of
interest;

• Historical ONI monthly series, serving as an ENSO indicator, used as an exogenous explanatory variable.

The utilized data spans from 1951 to 2015, comprehending 65 years or 780 monthly observations.

a Estimation

Below are the results for each one of the studied regions, following the methodology presented in Section 5, with
Algorithm 1 running 100 rounds. The values for the Jarque-Bera and Ljung-Box tests represent the correspondent
p-values, and (r) indicates the test is done on the quantile residuals while (r2) indicates it is done on the squared
quantile residuals.

SE S NE N

Parameter estimate φ̂ 0.005968 0.1357 0.0009361 -0.01236

Goodness-of-fit statistics

Pseudo-R2 0.8382 0.3661 0.7537 0.8803

MAE (aMW) 5773 3914 1700 1288

sMAPE 6.74% 19.78% 9.50% 6.93%

Model diagnostics

Jarque-Bera (r) 0.0846 0.0360 < 10−15 < 10−15

Ljung-Box (r) 0.169 0.723 0.0155 3.31 · 10−4

Ljung-Box (r2) 0.00112 0.139 < 10−15 10−14

Table 1: Model’s result summary.

b Simulation

The simulation was conducted with 10,000 scenarios. In order to compare the El Niño and La Niña outcomes,
we arbitrarily considered the final 18 months of the series as either strong El Niño, with ONI values equal to +2,
or strong La Niña, with ONI values equal to −2.

In the simulation graphs, the vertical line indicates the starting point of the artificial El Niño and La Niña periods,
which is why the confidence bands are become distinct after it. The bands represent the 5% and 95% quantiles
for the El Niño and La Niña conditional simulations. The results can be seen in the following pages.
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Figure 5: ANE simulation conditioned to El Niño and La Niña for the Southeast region.

Figure 6: ANE simulation conditioned to El Niño and La Niña for the South region.
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Figure 7: ANE simulation conditioned to El Niño and La Niña for the Northeast region.

Figure 8: ANE simulation conditioned to El Niño and La Niña for the North region.

c Result summary

As evidenced by Figure 3 and by the results, the ANEs of each region have very distinct natures. The model
diagnostics were mostly appropriate for the Southeast and South regions, while the Jarque-Bera and Ljung-Box
tests were rejected for the Northeast and North regions. The ACF and PACF were acceptable for every region
(see Appendix), which indicates the lags successfully captured the behavior of the series. On the other hand,
Gaussianity was rejected for the residuals of South, Northeast and North regions at the 95% significance level
through the Jarque-Bera test. This is probably due to outliers that should be treated through dummies. Figures
9 through 20, available in the Appendix, include the autocorrelation function, partial autocorrelation function
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and QQ-plot results for each region. It is also evident by the goodness-of-fit statistics that the model fitting had
different levels of success among regions.

For the Southeast region, a Pseudo-R2 of 0.83 and sMAPE of 6.74% indicate a good in-sample fitting. That, allied
to the good residuals results, suggests that our Lognormal GAS model is adequate for modeling the ANE of this
region. The parameter simulation indicates a considerable ENSO effect, with the El Niño lower band being very
close to the La Niña upper band.

For the South region, we had a very high parameter estimate, with φ = 0.1357, indicating a strong ENSO effect.
However, it was the region with the worst goodness-of-fit statistics by far, which is to be expected since Southern
Brazil ANEs have a very different pattern when compared to the other regions, with less seasonality and a more
random behavior. Due to this irregular behavior, it is the hardest region to adequately model. Since the in-
sample fitting was not good, the ENSO effect estimate cannot be considered meaningful.

For the Northeast region, a Pseudo-R2 of 0.75 and sMAPE of 9.50% also indicate a good in-sample fitting. The
ENSO parameter estimate was φ = 0.0009361, indicating a minimal ENSO effect on ANE. This is visible in Figure
7, where the confidence bands for El Niño and La Niña are almost identical. Finally, the QQ-plot and Jarque-Bera
test indicate non-Gaussianity for the quantile residuals.

For the North region, we had very good in-sample fitting, with an Pseudo-R2 of 0.88 and sMAPE of 6.93%. Sim-
ilarly to the Northeast region, the QQ-plot and Jarque-Bera point towards non-Gaussianity. Interestingly, in the
North region, the ENSO effect is reversed when compared to the other regions, with La Niña positively affecting
ANE.

El Niño & La Niña comparison SE S NE N

Percentage difference +7.34% +32.40% +1.11% −11.63%

Absolute difference 43097 MW 70206 MW 710 MW −12625 MW

Table 2: Comparison between El Niño-conditioned and La Niña-conditioned scenarios.

Finally, Table 2 shows the percentage and absolute differences for the El Niño and La Niña-conditioned simulated
scenarios. Positive values indicate El Niño-conditioned ANEs are higher and negative values indicate La Niña-
conditioned ANEs are higher. The results indicate significant ENSO effect in every region except the Northeast,
though the unsatisfactory fitting for the South region discredits its results. Nonetheless, we have found the
Southeast and North regions to be affected by ENSO in non-negligible manner with acceptable goodness-of-fit
statistics and model diagnostics.
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7 Conclusions & future work

This work allowed us to conclude that the Lognormal GAS model is a viable and adequate method for modeling
ANE and possibly other water inflow-based metrics. However, since each one of Brazil’s four regions has a
different nature and seasonal behavior, the model should be adjusted accordingly. The inappropriate fitting for
the South region was to be expected by looking at the historical ANE series (see Figure 3), which has a very
distinct distribution from the other regions, having a more random behavior.

One strong assumption we made throughout this work was that ENSO effect is constant over time, since we
used only a constant parameter to model it. There are reasons to believe that the ENSO effect is time-variant, as
discussed in [22–24], which means a single constant parameter is not an adequate way to model ENSO. Further
studies should be done by using different time windows and different parameters for each season.

The biggest concern about our results is the fact that the optimality of the parameters is not guaranteed in our
maximum likelihood estimation. By using Algorithm 1 with a large number of rounds, we can filter out local
maxima results, but as the number of rounds gets very large, the computational time does the same.

Out-of-sample studies should be done to further investigate the goodness-of-fit of the model, since using only
in-sample metrics can be misleading at times.

Finally, in this study, we utilized a Lognormal GAS model with one time-varying parameter – the location param-
eter. That means we assumed a constant scale parameter σ. However, this simplification might hurt the model
since, in some regions, the variance is seasonal. It is visible in Figure 3 that the variance is consistently smaller
in the second semester when compared to the beginning of the year. Therefore, a Lognormal GAS model with
two time-varying parameters will probably be better suited to model time series such as these.
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A Appendix

a Southeast

Figure 9: Autocorrelation function for the Southeast region.

Figure 10: Partial autocorrelation function for the Southeast region.
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Figure 11: QQ-plot for the Southeast region.

b South

Figure 12: Autocorrelation function for the South region.

17



 

 

 

 

Figure 13: Partial autocorrelation function for the South region.

Figure 14: QQ-plot for the South region.
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c Northeast

Figure 15: Autocorrelation function for the Northeast region.

Figure 16: Partial autocorrelation function for the Northeast region.
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Figure 17: QQ-plot for the Northeast region.

d North

Figure 18: Autocorrelation function for the North region.
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Figure 19: Partial autocorrelation function for the North region.

Figure 20: QQ-plot for the North region.
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