

Adriana Forero Ballesteros

Avaliação da Resistência de Juntas Soldadas Circunferenciais de Aço API 5L X-80 à Corrosão sob Tensão na presença de sulfetos e Susceptibilidade à Fragilização por Hidrogênio

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia de Materiais e de Processo Químicos e Metalúrgicos da PUC-Rio, como requisito parcial para obtenção do título de Doutor em Engenharia de Materiais e de Processos Químicos e Metalúrgicos.

> Orientador: Ivani de Souza Bott Co-orientador: José A. da Cunha Ponciano

> > Rio de Janeiro Abril de 2009

Adriana Forero Ballesteros

Avaliação da Resistência de Juntas Soldadas Circunferenciais de Aço API 5L X-80 à Corrosão sob Tensão na presença de sulfetos e Susceptibilidade à Fragilização por Hidrogênio

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia de Materiais e de Processo Químicos e Metalúrgicos da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Ivani de Souza Bott Orientadora Departamento de Engenharia de Materiais – PUC-Rio

Prof. José Antônio da Cunha Ponciano Co-orientador Programa de Engenharia Metalúrgica e Materiais – COPPE/UFRJ

> **DSc. Annelise Zeemann do Pinho** TECMETAL – Consultoria em Materiais Ltda

> > PhD. Denise Souza de Freitas INT-RJ

DSc. Hermano Cezar Medaber Jambo PETROBRAS

> DSc. Eduardo Hippert Jr CENPES PETROBRAS

Prof. Jose Eugenio Leal Coordenador Setorial do Centro Técnico Científico-PUC-Rio

Rio de Janeiro, 27 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Adriana Forero Ballesteros

Graduou-se em Engenharia Metalúrgica na Universidade Industrial de Santander - UIS (Bucaramanga, Colômbia) em 2000.

Ficha Catalográfica

Ballesteros, Adriana Forero

Avaliação da resistência de juntas soldadas circunferenciais de aço API 5L X-80 à corrosão sob tensão na presença de sulfetos e susceptibilidade à fragilização por hidrogênio / Adriana Forero Ballesteros ; orientadora: Ivani de Souza Bott ; co-orientador: José Antônio da Cunha Ponciano. – 2009.

290 f. : il. (color.) ; 30 cm

Tese (Doutorado em Engenharia de Materiais)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia de materiais – Teses. 2. Soldagem circunferencial. 3. API 5L X80. 4. Corrosão sob tensão. 5. Fragilização por hidrogênio. 6. Susceptibilidade. I. Bott, Ivani de Souza. II. Ponciano, José Antônio da Cunha. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia de Materiais. IV. Título.

CDD: 620.11

PUC-Rio - Certificação Digital Nº 0511137/CA

A Deus, minha mãe meus irmãos, meus sobrinhos, meu namorado e todos meus amigos, pelo apoio, estímulo e confiança em todo momento, e pelo amor incondicional na distância.

Agradecimentos

A Deus por tornar possível esta conquista e sempre fazer parte e ser guia em cada decisão na minha vida.

A minha mãe quem sempre me apóia, anima e aconselha em todo momento.

À minha orientadora e amiga, Professora Ivani de S. Bott, pelo estímulo, ensinamentos, paciência e parceria durante a realização deste trabalho.

Ao meu Co-orientador, Professor José A. da Cunha Ponciano, pelos ensinamentos, e orientação durante a realização dos experimentos.

À Empresa USIMINAS e ao Eng. Odair Santos, pelo apoio e contribuição técnica e científica, interesse demonstrado e facilidades oferecidas na realização dos ensaios NACE.

Aos Técnicos e amigos Moreira e Altair do Laboratório de Corrosão da USIMINAS pelo apoio oferecido, realização e acompanhamento dos ensaios NACE.

Ao DSc. Walter Cravo e a Carla, do Laboratório de Biocorrosão-PUC-Rio, pela contribuição técnica e auxílio nos ensaios.

Aos Técnicos do Laboratório de Corrosão da COPPE-UFRJ, Alecir e Flavio, e Professores Lucio e Miranda, pela contribuição técnica e científica na realização dos ensaios.

Ao Professor Marcos Henrique e Eng. Mauricio, pelo auxílio nos ensaios experimentais.

Ao Técnico do Laboratório de Metalurgia Heitor Nuss Guimarães e Eng. Richard e Rafael, a Ana Paula e Ana Luiza, pelo apoio, estímulo e auxílio na realização deste trabalho.

Ao Técnico de laboratório Ronaldo, pelo auxílio nos ensaios de Difração de Raios – X.

À Capes, CNPq, FAPERJ e Petrobras, pelo apoio financeiro.

A todos os professores do DCMM, pelos ensinamentos.

Aos meus amigos Sully, Johanna, Jesús, José, Lina, Ana, Percy, Sônia, Patrícia, Renato, Milagros, Fanny, Lilia, Claudia, Mauricio, Gabriel, Carlos, Alex, Freddy, Javier, e a meu namorado Marco, pela parceria e convívio durante a realização do presente trabalho. E a todas as pessoas, que me apoiaram e estimularam.

Resumo

Adriana Forero Ballesteros; Ivani de Souza Bott. Avaliação da Resistência de Juntas Soldadas Circunferenciais de Aço API 5L X-80 à Corrosão sob Tensão na presença de sulfetos e Susceptibilidade à Fragilização por Hidrogênio. Rio de Janeiro, 2009. 290 p. Tese de Doutorado – Departamento de Engenharia de Materiais, Pontifícia Universidade Católica do Rio de Janeiro.

A susceptibilidade à corrosão sob tensão em aços para dutos é dependente de uma série de eventos que vão desde a manufatura do aço, fabricação do tubo, montagem dos dutos e tipo de substância transportada pelo duto. O procedimento de soldagem envolvido na montagem dos dutos pode modificar as propriedades mecânicas do metal de base na região da zona termicamente afetada (ZTA), assim como as propriedades metalúrgicas e de resistência à corrosão, tornando potencialmente a região da junta soldada com maior probabilidade de incidência de corrosão sob tensão.Este trabalho tem como objetivo estudar a resistência à corrosão sob tensão em presença de sulfeto e fragilização pelo hidrogênio, em soldas circunferenciais de tubo API 5L X80. Foram realizados: -Ensaios de acordo com norma NACE TM0177/96, Método A -Ensaios de Baixa Taxa de Deformação (BTD) de acordo com a norma ASTM G129-00/2006, em solução contendo Tiossulfato de Sódio. Os resultados mostraram que o metal base foi considerado aprovado segundo os requisitos dos testes NACE TM0177/96. Porém as juntas soldadas originadas nos diferentes processos de soldagem estudados apresentaram susceptibilidade à corrosão sob tensão em presença de sulfeto e fragilização pelo hidrogênio, segundo o mesmo critério, fraturando em um período inferior a 720h. Esta susceptibilidade foi comprovada com os resultados dos ensaios de tração BTD, tendo sido constatada uma queda significativa no limite de resistência, alongamento e tempo de ruptura, em comparação aos ensaios realizados ao ar na mesma taxa de deformação. O mecanismo de fratura predominante nos ensaios foi fratura transgranular.

Palavras- chave

Soldagem circunferencial; API 5L X80; Corrosão sob Tensão; Fragilização por hidrogênio, susceptibilidade.

Abstract

Adriana Forero Ballesteros; Ivani de Souza Bott.(Advisor) **Evaluation of the Resistance To Sulphide Stress Corrosion Cracking And Hydrogen Embrittlement of API 5L -X80 Girth Welds.** Rio de Janeiro, 2009. 290p. DCs. Thesis — Departamento Engenharia de Materiais,, Pontifícia Universidade Católica do Rio de Janeiro.

The susceptibility of pipeline steels to stress corrosion cracking (SCC) depends on a series of factors ranging from the manufacture of the steel, the pipe fabrication, the assembly of the pipeline and the type of substances to be transported. Additionally, the welding procedures adopted during the production of the tubes and for construction of the pipelines (field welding), can modify the properties of the base metal in the heat affected zone (HAZ), potentially rendering this region susceptible to sulphide stress corrosion cracking and hydrogen embrittlement. This study evaluates the resistance of girth welds in API 5LX80 pipes to hydrogen embrittlement and also to stress corrosion cracking in the presence of sulphides. The evaluation was performed according to NACE TM0177/96, Method A, applying the criterion of fracture/no fracture, and slow strain rate tensile tests (SSRT) were undertaken using a sodium thiosulphate solution according to the ASTM G29 standard. According to the requirements of the NACE TM0177/96 test, the base metal was considered approved. The weld metal exhibited susceptibility to SCC in the presence of sulphides, failling in a period of less than 720h. The susceptibility of the welded joint to SCC in the presence of sulphides was confirmed by the results obtained with SSRT tensile tests, where a significant decrease in the ultimate tensile strength, elongation and time to fracture were observed. The mechanism of fracture for the tests was predominantly transgranular.

Keywords

Girth welding; API 5L X80; Stress Corrosion Cracking; Hydrogen Embrittlement; Susceptibility.

SUMÁRIO

1 . INTRODUÇÃO	29
2 . REVISÃO BIBLIOGRÁFICA.	33
2.1. AÇOS	33
2.1.1. Classificação dos Aços	33
2.1.2. Aços Microligados	35
2.1.2.1. Aços API	35
2.1.2.2. Aços ARBL (Alta Resistência Baixa Liga)	36
2.1.3. Processos de fabricação de tubos API	39
2.1.4. Processos de Conformação das Chapas	40
2.1.5. Influência da Composição Química nas Propriedades dos Aços	42
2.1.5.1. Carbono	43
2.1.5.2. Manganês	44
2.1.5.3. Silício	45
2.1.5.4. Enxofre	45
2.1.5.5. Fósforo	47
2.1.5.6. Cobre, Níquel, Cromo e Molibdênio.	47
2.1.5.7. Alumínio	49
2.1.5.8. Nióbio, Titânio e Vanádio	49
3. CORROSÃO	51
3.1. FORMAS DE CORROSÃO	51
3.2. CORROSÃO SOB TENSÃO (CST)	53
3.2.1. Características da corrosão sob tensão	54
3.2.2. Mecanismos de Corrosão Sob Tensão	55
3.2.3. Seqüência do processo de Corrosão sob tensão	57
3.2.4. Fatores que Influenciam a Corrosão Sob Tensão	
3.2.4.1. Fatores mecânicos	61
3.2.4.2. Fatores Metalúrgicos	62
3.2.4.3. Fatores Ambientais	66

3.3. FRAGILIZAÇÃO PELO HIDROGÊNIO	70
3.3.1. Efeito de Hidrogênio nos metais	71
3.3.1.1. Mecanismos de Fragilização	71
3.3.1.2. Solubilidade do Hidrogênio nos aços.	73
3.3.1.3. Difusibilidade do Hidrogênio no aço	74
3.3.1.4. Aprisionamento do hidrogênio no material e teorias de	
fragilização pelo hidrogênio.	75
3.4. EFEITO DOS MEIOS AQUOSOS CONTENDO H ₂ S	77
3.5. PERMEAÇÃO DE HIDROGÊNIO	80
3.5.1. Fatores que influenciam a permeação de hidrogênio	80
4. SOLDAGEM	82
4.1. A SOLDAGEM POR FUSÃO	82
4.2. SOLDAGEM DE DUTOS	82
4.2.1. Soldagem mecanizada e semi-automática	83
4.3. A SOLDABILIDADE DO AÇO DE ALTA RESISTÊNCIA	
E BAIXA LIGA (ARBL).	83
4.3.1. Cálculo de carbono equivalente (CE)	84
4.3.2. Processos de soldagem por arco elétrico	85
4.3.2.1. Soldagem com eletrodo revestido (SMAW) ^[69]	85
4.3.2.2. Processo de soldagem MIG/MAG	86
4.3.2.3. Processo de soldagem STT ®	87
4.3.2.4. Soldagem com Arame Tubular (Flux Cored Arc Welding FCAW)	89
4.4. METAL DE SOLDA	90
4.4.1. Zona Termicamente Afetada	92
4.4.2. Propriedades Mecânicas da Junta Soldada	95
4.4.3. Mudanças Microestruturais pelo Processo de Soldagem.	96
5 . METODOLOGIA E MÉTODOS DE ENSAIO	98
5.1. MATERIAIS	98
5.1.1. Amostragem – Codificação / Posição	101
5.1.2. Composição Química	102
5.1.3. Propriedades Mecânicas	104
5.1.3.1. Ensaios de Tração Metal Base	104
5.1.3.2. Ensaios de Tração das Juntas Soldadas.	106
5.1.3.3. Perfil de Microdureza e ensaios de Dobramento Lateral.	107

5.1.4. Análise Metalográfica	109
5.1.4.1. Metal base	109
5.1.4.2. Juntas soldadas	110
5.2. CARACTERIZAÇÃO DE MEIOS CORROSIVOS	115
5.2.1. Caracterização colorimétrica e potenciométrica dos meios com	
Tiossulfato para ensaios BTD e Soluções para ensaios NACE.	115
5.3. ENSAIOS ELETROQUÍMICOS.	120
5.3.1. Curvas de Polarização	120
5.3.2. Condições de ensaio das curvas de polarização.	123
5.4. MÉTODOS PARA AVALIAÇÃO DA RESISTÊNCIA À CST E	
FRAGILIZAÇÃO	124
5.4.1. Ensaio NACE TM 0177/96 – Método A (Standart Tensile Test)	124
5.4.1.1. Condições de Ensaios NACE	125
5.4.2. Ensaio de tração com baixa taxa de deformação (BTD)	128
5.4.2.1. Condições de Ensaios BTD	129
5.5. CARACTERIZAÇÃO FRACTOGRÁFICA	131
5.6. ANÁLISE DE DIFRAÇÃO DE RAIOS X	132
5.7. ENSAIOS DE PERMEAÇÃO	133
6 . RESULTADOS	136
6.1. PROPRIEDADES MECÂNICAS	136
6.1.1. Ensaios de Tração	136
6.1.2. Ensaios de Microdureza	139
6.1.3. Ensaios de Dobramento Lateral	140
6.2. DETERMINAÇÃO DA CONCENTRAÇÃO DE H ₂ S EM MEIOS	
CORROSIVOS COM TIOSSULFATO E SOLUÇÃO NACE.	141
6.3. CURVAS DE POLARIZAÇÃO	149
6.4. ENSAIOS BTD	155
6.5. ENSAIOS NACE	163
6.5.1. Metal de Base	163
6.5.2. Juntas Soldadas	164
6.6. CARACTERIZAÇÃO FRACTOGRÁFICA.	175
6.6.1. Ensaios de tração	175
6.6.2. Ensaios BTD	178
6.6.2.1. Metal Base ensaiado ao ar	179

6.6.2.2. Metal de Base ensaiado em solução	184
6.6.2.3. Juntas Soldadas ensaiadas ao ar	189
6.6.2.4. Juntas Soldadas ensaiadas em Solução	194
6.6.3. Ensaios NACE	211
6.6.3.1. Metal de Base	213
6.6.3.2. Juntas Soldadas	213
6.7. ANÁLISE DE CAMADA DE PRODUTOS DE CORROSÃO	224
6.8. ENSAIOS DE PERMEAÇÃO DE HIDROGÊNIO.	240
7 . DISCUSSÃO	246
7.1. PROPRIEDADES MECÂNICAS	246
7.2. DETERMINAÇÃO DA CONCENTRAÇÃO DE H ₂ S EM MEIOS	
CORROSIVOS COM TIOSSULFATO E SOLUÇÃO NACE.	249
7.3. ENSAIOS DE POLARIZAÇÃO ELETROQUÍMICA	252
7.4. ENSAIOS BTD	256
7.5. ENSAIOS NACE	264
7.6. ANÁLISE DE CAMADA DE PRODUTOS DE CORROSÃO	
FORMADA.	269
7.7. ENSAIOS DE PERMEAÇÃO DE HIDROGÊNIO	275
8 . CONCLUSÕES	278
8.1. SUGESTÕES PARA TRABALHOS FUTUROS	281
9 . BIBLIOGRAFIA	282

Lista de figuras

Figura 1. Classificação de aços. Fonte: D.M. Stefanescu, Alabama,	
University of Tuscaloosa. Metals Handbook. ASTM.	34
Figura 2. Evolução dos aços utilizados na fabricação de tubos .	36
Figura 3. Transformações de fase que ocorrem durante a	
laminação controlada na fabricação de aços para tubos.	38
Figura 4. Processo UOE de fabricação de tubos.	
(Confab Industrial S.A).	39
Figura 5. Representação esquemática do comportamento do	
limite de escoamento durante os processos de conformação	43
Figura 6. Efeito do teor de carbono nas curvas de temperatura	
de transição de aços.	43
Figura 7. Influência do Carbono e o Manganês na resistência a	
trincamento pelo hidrogênio .	45
Figura 8. Otimização do controle da forma das inclusões de enxofre	
como uma função da formação de óxidos-sulfetos de Cálcio.	46
Figura 9. Influência do conteúdo de Fósforo na segregação de	
aços ARBL produzidos por lingotamento contínuo.	47
Figura 10. Influência do conteúdo de elementos ligantes na taxa de	
absorção de Hidrogênio, para aço de alta resistência e baixa liga.	48
Figura 11. Esquema das formas de corrosão pela aparência da	
superfície mais comuns.	52
Figura 12. Condições para corrosão sob tensão.	54
Figura 13. Esquema generalista do processo de Corrosão sob	
Tensão.	55
Figura 14. Esquema da seqüência dos fenômenos típicos da CST.	58
Figura 15. Etapas da corrosão sob tensão.	59
Figura 16. Curva típica tensão versus deformação.	61
Figura 17. Correlação entre a resistência à CST e a resistência a	
escoamento de aços microligados.	62
Figura 18. Correlação entre a resistência a polarização e dureza.	65
Figura 19. Correlação entre a resistência a polarização e resistência	

à CST.	66
Figura 20. Regiões de domínio em função da pressão de H_2S	
e pH do meio.	67
Figura 21. CST Intergranular	68
Figura 22. CST Transgranular.	68
Figura 23. Estabilidade do H_2S em função do pH.	78
Figura 24. Esquema básico do processo de solda por eletrodo	
revestido (SMAW).	86
Figura 25. Esquema básico processo de Soldagem MIG/MAG.	87
Figura 26. Relação entre a Tensão – Corrente em função do	
tempo para o processo STT®.	88
Figura 27. Soldagem arco elétrico com Arame Tubular	
Autoprotegido.	89
Figura 28. Fatores que controlam o modo de crescimento	
durante a solidificação de metais líquidos.	91
Figura 29.Zonas ou regiões da Zona Termicamente afetada.	93
Figura 30. Parâmetros de Soldagem para as juntas X80-1	
e X80-2, dimensões em milímetros.	100
Figura 31. Parâmetros de Soldagem para a junta X80-3,	
dimensões em milímetros.	100
Figura 32. Parâmetros de Soldagem para a junta X80-4,	
dimensões em milímetros.	101
Figura 33. Distribuição de corpos de prova para ensaios de	
corrosão e metalografia ao longo da Junta Soldada X80-1.	101
Figura 34. Esquema da Codificação adotada para ensaios.	102
Figura 35. Dimensões dos corpos de prova longitudinais para	
ensaios de tração.	104
Figura 36. Dimensões dos corpos de prova transversais para	
ensaios de tração.	105
Figura 37. Máquina universal de ensaios e corpos de prova	
longitudinais para ensaios de tração.	105
Figura 38. Dimensões do corpo-de-prova para ensaio de tração	
segundo a norma API 1104.	105
Figura 39. Máquina do ensaio de Tração e posicionamento do	

corpo-de-prova	107
Figura 40.(a) Perfil de dureza segundo a Norma NACE MR0175	
em uma junta em V com ângulo de 60°. (b) Características	
dimensionais do Corpo de prova para ensaios de dobramento	
segundo a Norma API 1104	109
Figura 41. Aço API X80 matriz ferrítica com microconstituinte	
AM – Aço API X56 matriz ferrítica com perlita.	109
Figura 42. Caracterização microestrutural das juntas soldadas	
dos EPS X80-1 e X80-2.	110
Figura 43. Caracterização microestrutural das juntas soldadas	
dos EPS X80-3 e X80-4.	110
Figura 44. Caracterização microestrutural da zona termicamente	
afetada das juntas soldadas dos EPS X80-1 e X80-2.	111
Figura 45. Caracterização microestrutural da zona termicamente	
afetada das juntas soldadas dos EPS X80-3 e X80-4.	112
Figura 46. Corpo de prova para determinação da concentração	
de H_2S no sistema, antes do início do ensaio.	115
Figura 47. Montagens dos ensaios em meio corrosivo de Tiossulfato,	
para determinar o teor de H_2S produzido aa reação do meio com o	
material.	115
Figura 48. Amostras das soluções NACE tratadas e armazenadas	
para determinação de H ₂ S.	117
Figura 49. Montagem do procedimento de determinação de H_2S	
pelo método colorimétrico de azul de metileno.	118
Figura 50. Curvas de Titulação potenciométrica segundo a Norma	
da Petrobras.	119
Figura 51. (a) Potencial anódico e catódico. (b) Curvas de	
Polarização anódica e catódica.	121
Figura 52. Curvas de polarização de um aço para duto (API) em	
meio corrosivo com pH alto.	122
Figura 53. Curvas de polarização de um aço de duto (API) em	
meio corrosivo com pH baixo.	122
Figura 54. (a) Esquema do corte dos Cps para ensaios	
eletroquímicos. (b) Cp preparado para ensaio eletroquímico.	123

Figura 55. Arranjo experimental para ensaios eletroquímicos.	124
Figura 56. Dimensões (mm.) dos corpos de prova utilizados no	
ensaio NACE.	125
Figura 57. Anéis de tração utilizados nos ensaios NACE.	126
Figura 58. Dimensões (mm) dos corpos de prova para os	
ensaios BTD.	129
Figura 59. Montagem de ensaio na maquina BTD.	131
Figura 60. Desenho esquemático do CP para análise fractográfico.	132
Figura 61. CP para ensaios de permeação de Hidrogênio.	133
Figura 62. Montagem utilizada nos ensaios de Permeação de	
Hidrogênio.	134
Figura 63. Esquema de aquisição de dados do ensaio de	
permeação de Hidrogênio.	135
Figura 64. Defeito de solda apresentado nos ensaios de tração	
da junta X80-1	137
Figura 65. Comparação dos valores de resistência a tração	
obtidos para o processo com ER, junta X80-1 e os materiais	
base X80-A e X80-B.	138
Figura 66. Comparação dos resultados obtidos para o processo	
com ER (Junta dissimilar) X80-2 e MB X56 (na direção transversal e	
longitudinal a direção de laminação).	139
Figura 67. Aspecto visual do corpo de prova (a) 0 Horas de ensaio	
(b) depois de 5 horas de ensaio.	141
Figura 68. Condição dos corpos de prova (a) depois de 30 horas de	
ensaio. (b) depois de 45 horas de ensaio. Avaliação da camada de	
produtos de corrosão formada.	142
Figura 69. Condição dos corpos de prova depois de tirar a	
camada de produtos de corrosão.	142
Figura 70. Condição do corpo de prova depois do decapagem.	142
Figura 71. Imagem do MEV, (a) Zonas atacada preferencialmente	
no ensaio com pH=3.4 e 10^{-3} mol de tiossulfato de sódio. (b)	
Zona atacada preferencialmente no ensaio com pH=4.4 e	
10 ⁻³ mol de tiossulfato.	143
Figura 72. Imagem da cavidade (pite) e o espectro obtido no	

interior desta cavidade. Ensaio com pH= 3,4 e 10-3 mol de	
tiossulfato. 500x.	143
Figura 73. Imagem de produto de corrosão depositado em um	
pite e o espectro obtido neste ponto. Ensaio com pH= 3,4 e	
10 ⁻³ mol de tiossulfato. 200x.	144
Figura 74. Imagem da superfície corroída e o espectro obtido na	
superfície sem dano. Ensaio com pH= 3,4 e 10^{-3} mol de tiossulfato.	145
Figura 75. Gráfico comparativo da concentração de H_2S em meios	
corrosivos com diferente pH e diferentes quantidades de tiossulfato.	146
Figura 76. Gráfico comparativo da concentração de H ₂ S medido	
por dos diferentes técnicas em meios corrosivos NACE com	
diferente pH e diferentes razões de vazão.	147
Figura 77. Curvas de Polarização Catódica na Solução 1.	150
Figura 78. Curvas de Polarização Catódica na Solução 2.	150
Figura 79. Curvas de Polarização Catódica na Solução 3.	151
Figura 80. Curvas de Polarização na Solução 4.	151
Figura 81. Curvas de Polarização anódica na Solução 1.	152
Figura 82. Curvas de Polarização anódica na Solução 2.	152
Figura 83. Curvas de Polarização anódica na Solução 3.	153
Figura 84. Curvas de Polarização anódica na Solução 4.	153
Figura 85. Superfícies dos Cps para ensaios eletroquímicos. (a)	
Superfície da junta X80-1 após ensaio. (b) Superfície junta X80-2	
após ensaio. (c) Superfície da junta X80-3 após ensaio. (d)	
Superfície d Junta X80-4 após ensaio.	154
Figura 86. Curva Tensão- Deformação Metal de Base X80 no Ar.	155
Figura 87. Curva Tensão-Deformação Metal de Base X56 no Ar	155
Figura 88. Curva tensão-Deformação Junta X80-1 em solução 1	155
Figura 89. Curva Tensão-Deformação Junta X80-2 em solução 2	155
Figura 90. Curva Tensão-Deformação Junta X80-3 em solução 3	156
Figura 91. Curva Tensão-Deformação Junta X80-4 em solução 4	156
Figura 92. Curvas Tensão-Deformação para a junta soldada	
X80-1 em todos os meios ensaiados, mostrando as superfícies	
de fratura obtidas.	156
Figura 93. Curvas Tensão-deformação para a junta soldada X80-2	

nas diferentes soluções, com as superfícies de fratura obtidas de	
cada ensaio.	157
Figura 94. Curvas Tensão-deformação para a junta soldada	
X80-3 nas diferentes soluções de ensaio.	157
Figura 95. Curvas Tensão-deformação para a junta soldada	
X80-4 em todas as soluções de ensaio BTD.	158
Figura 96. Gráfico comparativo da redução de área dos Cps	
testados nos diferentes ambientes.	161
Figura 97. Gráfico comparativo da Redução de área para as	
juntas soldadas ensaiadas em diferentes meios.	162
Figura 98. Cps ensaiados nos Ensaios NACE. (a) Cps Metal Base	
X80 em solução I (pH =3,4 razão de vazão rápida). (b) Cps Metal de	
base X56 solução I. (c) Cps de Metal de base X80 solução IV (pH =	
4,4 razão de vazão lenta). (d) Cps de Metal de base X56 solução IV.	163
Figura 99. Ensaio de líquido penetrante nos Cps dos ensaios	
NACE. (a). MB X80 em solução I (pH = 3,4 e razão de vazão	
rápida) (b) MB X56 em solução I. (c) MB X80 em solução IV (pH =	
4,4 e razão de vazão lenta) (d) MB X56 em solução IV.	164
Figura 100. Corpos de prova NACE fraturados. (a) Junta X80-1	
Solução I (pH = 3,4 razão de vazão rápida). (b) Junta X80-1	
Solução II (pH = 3,4 razão de vazão lenta). (c) Junta X80-1 Sol	
III (pH = 4,4 razão de vazão rápida). (d) Junta X80-1 Solução IV	
(pH = 4,4 razão de vazão lenta).	166
Figura 101. Gráfico comparativo de tempo de falha e condição de	
saturação de H ₂ S para Ensaios NACE com 85%LE de tensão	
aplicada e pH= 3,4.	166
Figura 102. Gráfico comparativo de tempo de falha e % de	
Tensão aplicada para Ensaios NACE com pH= 3,4 e condição	
de H ₂ S rápida.	167
Figura 103. Gráfico comparativo de tempo de falha e pH para	
Ensaios NACE com solução rápida de H₂S e 85%LE de tensão	
aplicada.	167
Figura 104. Corpos de prova NACE fraturados. (a) Junta X80-2	
Solução I (pH=3,4 rápida). (b) Junta X80-2 Solução II. (c) Junta	

X80-2 Sol III. (d) Junta X80-2 Solução IV.	168
Figura 105. (a) Junta X80-2 Cp 2C12 em solução I (pH=3,4 e	
razão de vazão rápida). (b) Trincas transversais na superfície	
após ensaio de líquidos penetrantes. (c) Junta X80-2 Cp 2C31	
em solução II (pH = 3.4 razão de vazão lenta). (d) Trincas	
longitudinais na superfície após ensaio de líquidos penetrantes.	170
Figura 106. (a) Junta X80-3 Cp 3C21 Solução III (pH = 4,4 razão	
de vazão rápida). fratura na LF. (b) Junta X80-3 Cp 3C42 em	
Solução III, fratura na LF. (c) Junta X80 3 Cp 3C33 Solução I	
(pH = 3,4 razão de vazão rápida) , fratura na ZTA. (d) Junta X80-3	
Cp 3C23 Solução II (pH = 3,4 razão de vazão lenta), fratura no MS.	171
Figura 107. Cps Junta X80-3. (a) Cp 3C12 em solução I. (b)	
Cortes transversais do Cp para Análise da camada. (c) Cp 3C38	
em solução III. (c) Cp 3C38 após líquido penetrante	171
Figura 108. (a) Junta X80-4 Cp 4C11 em Solução I (pH = 3,4	
razão de vazão rápida), 90%LE. (b) Junta X80-4 Cp 4C21 em	
Solução III (pH = 4,4 razão de vazão rápida), 100%LE. (c) Junta	
X80-4 Cp 4C30 em Solução I (pH = 3,4 razão de vazão rápida),	
85%LE . (d) Junta X80-4 Cp 4C32 em Solução II (pH = 3,4 razão	
de vazão lenta), 85%LE.	172
Figura 109. Junta X80-4. (a). Cp 4C39 (pH = 4,4 razão de vazão	
rápida), com camada de produtos de corrosão. (b) Cp 4C39	
ensaio de líquido penetrante evidenciando ausência de trincas.	
(c). Cp 4C33 (pH = 3,4 razão de vazão rápida),com camada	
formada. (d) Cp 4C33 ensaio de líquidos penetrantes evidenciando	
a presença de trincas na elipse vermelha.	173
Figura 110. Curva de % de Tensão aplicada VS Log. Tempo de	
fratura para Solução I (equivalente à Solução NACE B com pH =	
3,4 e razão de vazão rápida) para todos os materiais estudados.	174
Figura 111. Curva de % de Tensão Aplicada VS Log. de Tempo	
de Fratura para Solução III (pH = 4,4 razão de vazão rápida)	
para metais base e juntas soldadas.	174
Figura 112. Análise macroscópica de corpos de prova de	
ensaios de tração.	176

Figura 113. Superfície de fratura do Cp de tração T3B1	
(Metal Base X80-B), aço API X-80 apresentando todas as	
zonas características de fratura dúctil.	177
Figura 114. Superfícies de fratura dos ensaios de tração mecânica	
no MEV, (500x e 2000x), apresentando fratura dúctil e impurezas.	178
Figura 115. Aspecto macrográfico de Cps BTD testados em	
diferentes médios.	179
Figura 116. Microscopia ótica da superfície de fratura típica do	
MB X80 após o ensaio BTD ao ar.	179
Figura 117. Microscopia ótica da superfície de fratura típica do	
MB X56 após o ensaio BTD ao ar.	180
Figura 118. Vista da superfície de fratura do metal de base	
X80 no MEV.Ensaio BTD ao ar.	180
Figura 119. Aspecto das inclusões achadas no metal base X80	
e espectro EDS de uma das inclusões analisadas.	181
Figura 120. Detalhes Macros e microscópicos de superfície	
delaminada no metal de base X80.	182
Figura 121. (a) MB X56 superfície de fratura vista no MO. (b)	
Detalhe da microestrutura bandeada após o ensaio BTD. (c)	
MB X80 superfície de fratura vista MO. (d) Detalhe da	
microestrutura ferrítica após o ensaio BTD.	183
Figura 122. Microscopia ótica da superfície de fratura corpo	
de prova MB X80 após o ensaio BTD na solução 1, com pH=	
3.4 e 10 ⁻³ mol de tiossulfato.	184
Figura 123. Microscopia ótica da superfície de fratura corpo de	
prova MB X56 após o ensaio BTD na solução 1, com pH=3.4 e	
10 ⁻³ mol de tiossulfato.	184
Figura 124. Vista da superfície de Fratura do MB X80 Cp 1CB7	
no MEV. Ensaio BTD em solução1.	185
Figura 125. MB X80 ensaio BTD em solução 1. (a) Superfície	
lateral com trinca. (b) Espectros EDS de diferentes pontos da	
camada de produtos de corrosão. (c) Presença de trincas no	
interior e no contorno de grão (círculos vermelhos) e	
microestrutura após o ensaio.	186

Figura 126. Vista da superfície lateral e superfície de fratura	
do MB X56 do ensaio BTD em solução 1 (pH = 3,4 e 10 ⁻³ mol	
de tiossulfato).	187
Figura 127. MB X56 ensaio BTD em solução 1. (a) Superfície	
lateral com pites. (b) Trincamento secundário e Espectros EDS dos	
diferentes pontos analisados. (c) Iniciação e propagação da trinca.	188
Figura 128. Micrografias dos Cps BTD das juntas soldadas	
testados ao ar evidenciando a localização da fratura.	189
Figura 129. Detalhes Macrográficos das superfícies de fratura	
das juntas soldadas dos ensaios BTD ao ar.	190
Figura 130. Fractografia das superfícies de fratura das juntas	
soldadas dos ensaios BTD ao ar, vistas no MEV.	191
Figura 131. Junta X80-1 Espectros EDS em diferentes zonas	
da trinca na superfície de fratura do material.	192
Figura 132. Junta X80-4 Espectros EDS em diferentes zonas	
da trinca na superfície de fratura do material.	193
Figura 133. Superfícies de fratura transversal e visão lateral	
das diferentes juntas após ensaios BTD em solução 1.	195
Figura 134. Junta X80-1, ensaio BTD em solução 1. (a) Superfície	
de fratura transversal e características morfológicas antes e após	
remoção de produtos de corrosão. (b) Inclusão e espectro EDS. (c)	
Espectro EDS da superfície de fratura metálica da junta.	196
Figura 135. Junta X80-2(a) Superfície de fratura transversal. (b)	
Trincas secundárias na superfície de fratura longitudinal. (c)	
Aparência da camada de produtos de corrosão. (d) Aparência	
da superfície transversal após remoção dos produtos de corrosão.	
(e) Zona de fratura dúctil. (f) Zona de fratura frágil.	197
Figura 136. Junta X80-3 (a) Superfícies de fratura transversal. (b)	
trincas secundárias na superfície de fratura longitudinal. (c) Aspecto	
da camada de produtos de corrosão. (d) Superfície de fratura	
escalonada. (e) Zona de fratura dúctil (dimples). (f) Zona de fratura	
frágil (quase clivagem).	198
Figura 137. Aspecto da superfície de fratura da junta X80-3 Cp	
3C25. (a) Vista Lateral no MO mostrando as características das	

Trincas Chevron. (b) Microestrutura, iniciação e propagação	
de trinca, trincamento interno (setas vermelhas).	198
Figura 138. Aspecto da superfície de fratura na vista lateral,	
microestrutura, modo de propagação da trinca e espectros EDS	
de diferentes regiões da junta X80-3 no MEV.	199
Figura 139. Junta X80-4 ensaios BTD em solução 1. (a)	
Trincamento secundário Cp 4C25. (b) Trincamento secundário Cp	
4C24. (c) Trincamento interno na superfície transversal. (d)	
Aparência da superfície de fratura transversal do Cp 4C25. (e)	
zona de fratura dúctil Cp 4C25. (f) Zona frágil apresentando quase	
clivagem. (g) Aparência da superfície de fratura transversal do Cp	
4C24. (h, i) Zona de fratura mista (dimples e quase clivagem).	200
Figura 140. Superfícies de fratura lateral e transversal das	
diferentes juntas testadas para os ensaios BTD em solução 2.	201
Figura 141. Caracterização fractográfica Junta X80-1 Cp 1C34	
(pH=4,4 e 10 ⁻³ mol de tiossulfato). (a) Detalhes macros e micros da	
superfície de fratura evidenciando a presença de defeito de solda	
(falta de fusão). (b) Aspecto da superfície transversal apresentando	
mecanismo de fratura mista. (c) Espectro de EDS do defeito	
encontrado, evidenciando a presença de CI e O, provenientes	
possivelmente da solução de ensaio.	202
Figura 142. Junta X80-2. (a) Superfície de fratura transversal	
apresentando trincas de delaminação. (b) Detalhe de trincas	
de delaminação. (c) Fratura dúctil (dimples).	203
Figura 143. Superfícies de fratura lateral e transversal das diferentes	
juntas testadas para os testes BTD na solução de ensaio3.	204
Figura 144. Detalhes da superfície de fratura da junta X80-1	
Cp 1C39 ensaio BTD em solução 3. (a) Superfície transversal com	
defeitos de solda. (b) Defeito de Solda (porosidade alinhada). (c)	
Defeito de Solda (inclusão). (d) Espectro EDS da inclusão.	205
Figura 145. Junta X80-1 Cp 1C30 ensaio BTD em solução 3. (a)	
Superfície transversal com defeitos de solda. (b) Detalhe da	
superfície transversal sem defeitos evidenciando mecanismo de	
fratura dúctil. (c) Defeito de solda (falta de fusão e inclusões). (d)	

Espectro EDS de inclusão. (e) Detalhe de defeito (falta de	
fusão). (f) Espectro EDS da falta de fusão.	206
Figura 146. Junta X80-2 ensaios BTD Solução 3. (a) Caracterização	
fractográfica Cp 2C45. (b) Caracterização fractográfica do Cp 2C18.	207
Figura 147. Superfícies de fratura lateral e transversal das juntas	
soldadas ensaiados nos testes BTD em solução 4.	209
Figura 148. Detalhes da superfície de fratura da junta X80-1 Cp	
1C38. Caracterização do defeito de solda (inclusão de escória).	210
Figura 149. Detalhes das juntas soldadas, ensaio BTD em solução	
4 (pH=4.4 e 10^{-4} mol de tiossulfato). (a) Junta X80-2 Cp 2C26.	
Aparência da superfície lateral e transversal e mecanismo de	
fratura dúctil. (b) Junta X80-3 Cp 3C20. Aparência da superfície	
transversal, superfície delaminada e mecanismo de fratura dúctil. (c)	
Junta X80-4 Cp 4C16. Aparência da superfície transversal e	
longitudinal (trinca secundária) e mecanismo de fratura dúctil.	211
Figura 150. Macrografias e Micrografias obtidas de alguns dos	
testes NACE em diferentes condições de ensaio, representando	
os resultados mais significativos.	212
Figura 151. Junta X80-2 NACE condição 1. (a) Superfície de	
fratura longitudinal. (b) Superfície de fratura transversal (fratura	
mista). (c) Detalhe de zona frágil (quase clivagem). (d,e) Trincas	
secundárias. (f) Propagação da trinca transgranular.	214
Figura 152. Junta X80-3 NACE condição 1. (a) Superfície de fratura	
longitudinal. (b) Superfície de fratura transversal (fratura mista). (c)	
Detalhe de zona frágil (quase clivagem). (d) Trincas secundárias na	
superfície longitudinal. (e) Trincas internas (f) Propagação da trinca	
transgranular.	215
Figura 153. Junta X80-4 NACE condição 1. (a) Superfície de fratura	
longitudinal. (b) Superfície de fratura transversal (fratura mista). (c)	
Detalhe de zona frágil (quase clivagem). (d,e) Trincas secundárias.	
(f) Modo de propagação da trinca transgranular.	216
Figura 154. Junta X80-1 em condição de ensaio 1. Corpo de prova	
1C11. (a) Macros da superfície longitudinal e transversal. (b) Trincas	
secundárias na superfície longitudinal e cavidades de corrosão	

Figura 166. Imagens da camada de produtos de corrosão	
formada na superfície de corpo de prova da junta X80-3 para	
ensaios NACE.	229
Figura 167. Morfologia da camada de produtos de corrosão	
formada na superfície longitudinal do corpo de prova da junta	
X80-3, pH=4.4, $H_2S = rápida.$	230
Figura 168. Camada da Interface Metal-Solda.	230
Figura 169. Camada do metal de base.	231
Figura 170. Macros da junta X80-2 (cp 2C32). Vistas laterais da	
camada de produtos de corrosão formada sobre a superfície	
longitudinal.	231
Figura 171. Micrografias por MEV das diferentes morfologias da	
camada de produtos de corrosão formada na junta X80-2.	232
Figura 172. Micrografias do MEV da camada uniforme mais	
próxima a superfície metálica e dos cristais formados de produtos	
de corrosão da junta X80-2.	233
Figura 173. Espectros EDS de cristais e da camada próxima	
aos cristais no ensaio NACE da junta X80-2 (cp 2C32).	234
Figura 174. Espectros EDS de cristais e da camada uniforme	
afastada aos cristais no ensaio NACE da Junta X80-2 (cp 2C32).	235
Figura 175. Micrografias e espectros EDS da camada de	
produtos de corrosão formada na Junta X80-2 (cp 2C26) dos	
ensaios BTD em solução com pH=4.4 e 10 ⁻⁴ mol de tiossulfato.	236
Figura 176. Difractograma Raios X para camada de produtos	
de corrosão de ensaios NACE. Junta X80-3 (cp 3C12) em	
solução com pH = 3,4, razão de vazão de H_2S rápida.	237
Figura 177. Difractograma Raios X da camada de produtos	
de corrosão de Ensaios NACE. Junta X80-4 (cp 4C26) em	
solução com pH=4,4, razão de vazão H2S rápida.	236
Figura 178. Difractograma Raios X da camada de produtos	
de corrosão de Ensaios NACE. Junta X80-4 (cp 4C39) em	
solução com pH=4,4, razão de vazão H2S rápida.	238
Figura 179. Difractograma Raios X da camada de produtos	
de corrosão de Ensaios NACE. Metal Base X56 (cp 2CB6)	

3
9
9
)
1
1
2
3
4
5
)

em junta soldada e material base	251
Figura 191. Comparação de curvas de Polarização catódica	
para meios com pH diferentes.	253
Figura 192. Diagrama de Pourbaix modificado para CST	255
Figura 193. Curva Tensão-deformação para Metal de base X80	
e para a Junta soldada X80-4 em solução 1.	256
Figura 194. Gráfico comparativo dos tempos de ruptura para as	
diferentes juntas em diferentes meios nos Ensaios BTD.	257
Figura 195. Comparação dos resultados da razão de redução	
de áreas para as juntas soldadas em cada solução de teste.	258
Figura 196. Diagrama de Domínio pH VS P _{H2S} determinando a	
agressividade dos meios utilizados nos diferentes testes BTD	
e NACE.	268
Figura 197. Diagrama de Pourbaix para o sistema Fe-S-H $_2$ O	
a 25 ⁰ C.	270
Figura 198. Macros das diferentes morfologias e espessuras	
obtidas para os Cps submetidos as mesmas condições de	
ensaio em testes NACE. (direita) Junta X80-2 em ambiente com	
pH=3,4, P _{H2S} = 0, 5763 e 85%LE. (esquerda) MB X80 em	
ambiente com pH=3,4, $P_{H2S} = 0,688 e 90\%$ LE.	271
Figura 199. Gráfico comparativo dos espectros DRX obtidos	
das diferentes camadas de produtos de corrosão analisados.	272
Figura 200. Micrografia da morfologia camada de produtos de	
corrosão formada em ensaio NACE para O MB X80.	273
Figura 201. Esquema de modelo de corrosão em meios	
aquosos contendo H_2S sugerido por Ramanarayanan.	274

Lista de tabelas

Tabela 1 Classificação dos aços para dutos	35
Tabela 2. Resultados de Ensaios HIC para aço X70 desenhado por	
Hillenbrand.	50
Tabela 3. Efeito da morfologia dos carbetos no comportamento	
a CST.	63
Tabela 4. Resumo dos processos de soldagem utilizados por EPS.	99
Tabela 5– Composição Química do Metal de Base X80 e X56	
em %Wt.	102
Tabela 6. Cálculo do CE dos tubos dos metais base.	103
Tabela 7. Composição química dos arames usados na EPS 1-2	
segundo o fabricante	103
Tabela 8. Composição química dos arames usados na EPS-3,	
segundo o fabricante	103
Tabela 9. Composição química dos arames usados na EPS-4,	
segundo o fabricante	103
Tabela 10. Composição Química média das juntas soldadas	104
Tabela 11- Identificação dos Corpos de Prova para ensaios	
de Tração	106
Tabela 12 Composição química dos meios com Tiossulfato	
de Sódio	116
Tabela 13. Amostras recolhidas das soluções dos Ensaios	
NACE para determinação de H₂S.	116
Tabela 14. Composição química da solução utilizada no ensaio	
NACE.	126
Tabela 15. Matriz Experimental para Ensaios NACE TM0177/96	127
Tabela 16. Matriz de Experimentos para Ensaios BTD	130
Tabela 17. Propriedades Mecânicas do Metal de Base	136
Tabela 18. Propriedades Mecânicas dos Consumíveis	137
Tabela 19. Valores médios dos ensaios de tração das juntas	
soldadas.	137
Tabela 20. Média dos valores de microdureza Vickers obtidos	

para as diferentes juntas	140
Tabela 21. Resumo dos resultados obtidos nos ensaios de	
dobramento lateral.	140
Tabela 22. Resultados obtidos da determinação de H ₂ S pela	
técnica colorimétrica de azul de metileno para soluções com	
Tiossulfato.	146
Tabela 23. Resultados obtidos da determinação de H ₂ S pelo	
Método colorimétrico de azul de metileno e o Método	
potenciométrico, para soluções NACE.	147
Tabela 24. Tabela da média dos valores obtidos para diferentes	
parâmetros dos ensaios BTD	159
Tabela 25– Mapeamento da região de ocorrência de fratura e	
presença de trincas secundárias nos ensaios BTD para as	
diferentes juntas nos diferentes ambientes.	160
Tabela 26. Resultados de Tempo e condição de fratura dos	
ensaios NACE	165
Tabela 27. Mapeamento da região de ocorrência e a presença	
de trincas secundárias obtidas nos ensaios NACE para as	
diferentes Juntas nos diferentes ambientes.	169
Tabela 28. Resumo das respostas das juntas soldadas na	
condição de ensaio 1.	213
Tabela 29. Resumo das respostas das juntas soldadas na	
condição de ensaio 2.	221
Tabela 30. Resumo das respostas das juntas soldadas na	
condição de ensaio 3.	223
Tabela 31. Resumo das respostas das juntas soldadas na	
condição de ensaio 4.	223
Tabela 32. Mapeamento da região de fratura, trincas secundárias	
e trincas internas nos ensaios BTD.	262
Tabela 33. Mapeamento da região de ocorrência e a presença	
de trincas secundárias obtidas nos ensaios NACE para as	
diferentes juntas nos diferentes ambientes.	265