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Abstract
Mendes, Carlos Raoni de Alencar; Aragão, Marcus Vinicius Soledade
Poggi de (advisor); Flach, Bruno da Costa (co-advisor). Effective
Resource Allocation for Planning and Control Project
Portfolios Under Uncertainty: A Robust Optimization
Approach. Rio de Janeiro, 2017. 112p. Tese de Doutorado —
Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

Planning and controlling complex project portfolios is a challenging task.
These portfolios are subject to a number of potential risk sources coupled
with resource constraints, intricate precedence relationships, and penalties for
project delays. For this reason, it is fundamental that optimal strategies for
the allocation of the available resources are constantly adopted by the decision
makers to ensure that their projects are completed within limits of time and
cost. Moreover, the uncertainty that affects these projects has to be taken
into account for effective resource allocation decisions. Within this context,
this work proposes a robust optimization-based methodology for planning and
controlling project portfolios under uncertainty. The method combines models
and algorithms for multiple resource allocation problems under the same robust
optimization framework. In this approach, the uncertainty environment is
modeled as an adversary that selects the worst-case combination of risks for
any decision maker’s actions. Subsequently, the main goal of the decision maker
is to determine optimal resource allocation plans for minimizing a particular
objective subject to the assumption that the adversary’s worst-combination
of risks will materialize. The approach also provides a way to control the
degree of conservatism of the solutions. For each studied problem, a solution
strategy is developed through a reformulation scheme from a compact min-max
formulation to a cut-generation algorithm. Several computational experiments
are conducted, providing key insights that drive the design of the referred
portfolio planning and control methodology. The ineffectiveness of traditional
critical path analysis under worst-case realizations of uncertain activities’
durations and the importance of taking integrated resource allocation decisions
in the context of project portfolios, are examples of the key findings of the
experiments. The application of the methodology is demonstrated in a case
study of a portfolio aimed at the construction of two refineries. This example
presents the capabilities of the developed techniques in a practical context.

Keywords
Project Portfolios; Resource Allocation; Stochastic Programming;

Robust Optimization; Decision-Dependent Uncertainty; Project Manage-
ment; Risk Analysis;
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Resumo
Mendes, Carlos Raoni de Alencar; Aragão, Marcus Vinicius Soledade
Poggi de; Flach, Bruno da Costa. Alocação Efetiva de Recursos
para Planejamento e Controle de Portfolios de Projetos sob
Incerteza: Uma Abordagem de Otimização Robusta. Rio de
Janeiro, 2017. 112p. Tese de Doutorado — Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

O planejamento e controle de portfolios de projeto é uma tarefa
desafiadora. Eles estão sujeitos a múltiplos riscos, restrições de recursos,
relações de precedências e penalidades por atrasos de projetos. É fundamental
desenvolver estratégias efetivas de alocação dos recursos disponíveis de forma
a garantir que estes projetos sejam concluídos dentro dos limites de tempo
e custo. Um fator crucial que deve ser levado em consideração ao tomar
estas decisões é o gerenciamento das incertezas associadas a execução dos
projetos. Neste contexto, este trabalho propõe uma metodologia baseada em
otimização robusta para planejamento e controle de portfolios de projeto
sob incerteza. Este método combina modelos e algoritmos desenvolvidos para
diferentes problemas de alocação de recursos para os quais foi aplicada a
mesma abordagem de otimização robusta. Nela, a incerteza é modelada como
um adversário capaz de materializar a combinação de riscos de pior caso
que maximiza o impacto no(s) projeto(s) para qualquer plano de alocação
de recursos. Nos problemas estudados o tomador de decisão tem então que
determinar a alocação ótima de recursos que minimiza um objetivo particular
assumindo que a combinação de riscos de pior caso irá se materializar.
A abordagem também provê um mecanismo para controle do grau de
conservadorismo das soluções robustas. Para cada problema modelado, uma
estratégia de solução é desenvolvida através de um esquema de reformulação
que parte de uma formulação Min-Max compacta e termina em um algoritmo
de geração de cortes. Diversos experimentos computacionais foram executados,
provendo importantes conclusões que direcionaram o desenvolvimento da
metodologia de controle e planejamento de portfolios. A importância de se
desenvolver planos de alocação de recursos de forma integrada no contexto de
tomada de decisão em portfolios de projetos e a falta de efetividade do método
tradicional de análise de caminhos críticos no contexto de cenários de pior
caso para as durações das atividades, são importantes exemplos das conclusões
obtidas pelos experimentos. A aplicação da metodologia foi demonstrada em
um caso de estudo que contempla um portfolio para construção de duas
refinarias. O referido exemplo demonstrou o potencial do uso prático dos
métodos propostos neste trabalho.

Palavras-chave
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1
Introduction

1.1
Motivation and Objective

Construction of oil platforms, refineries, mining storage facilities, and
thermal and hydroelectric power plants are examples of huge projects that are
often part of a company’s and government’s strategic plans. Planning, moni-
toring, and managing such complex projects or their portfolio is a challenging
task as it involves a number of potential risk sources coupled with resource
constraints, intricate precedence relationships, and penalties for delays of key
milestones.

In 2012, the consulting firm A.T. Kearney conducted a cross-industry
survey to evaluate the performance of key projects in industries such as oil and
gas, mining, chemicals, and telecommunications (Kearney, 2012). According to
the survey, 63% of the projects were over budget, with 14% having more than
10% of cost overrun. Kearney also found that 75% of them were behind schedule
(or delayed), with 21% having more than 10% of total delay. Figure 1.1 presents
the detailed results of budget and schedule performances by percentage levels of
overrun. In 2016, the company conducted a new survey that obtained similar
results, revealing that there were no performance improvements during the
four years interval (Kearney, 2016). In the context of projects costing over
US$1 billion, the reality is even worse, approximately nine out of ten have cost
overruns, with the same statistic holding for delays (Flyvbjerg, 2014). These
findings illustrate the difficulty of properly managing important projects of
different industries.

The economic feasibility of a company’s long-term strategic plan might
be strongly connected to a successful project (or portfolio) delivery; for
instance, delays could cause a late arrival on a potential strategic market and
cost overruns could damage its investment capacity. Hence, these cascading
impacts threaten a company’s financial stability and may seriously affect its
ability to honor commitments and engage in revenue-generating activities
(Flyvbjerg, 2014). Given the circumstances, it is fundamental that the staff
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Figure 1.1: Percentage of over-budget and delayed projects by level from
Kearney (2012).

responsible for managing these key projects are supported by decision-making
methods and tools that aid them to handle all the complexities involved in
the execution and, therefore, increase the chance of projects being delivered
within limits of time, cost, and scope (Öncü Hazır, 2015). As projects are
inherently uncertain (Hans et al., 2007), effective decision-making support
methods have to provide a way to properly represent and deal with this
uncertainty. Within this context, decision makers have to effectively manage
the mostly limited available resources to control the project (or portfolio)
execution under uncertain conditions. The term “resource allocation” is being
used here in a broad perspective – from the assignment of extra workers or
the use of more efficient machinery, to improve activity productivity, to the
implementation of mitigation plans to minimize potential impacts of uncertain
events (or risks).

Operations Research (OR) methods have been commonly applied to
model and solve various resource allocation problems in the context of pro-
ject (or portfolio) management under uncertainty. In Öncü Hazır (2015), au-
thors have reviewed several methods and concluded that there is a theory-
practice gap, while academic studies usually investigate closed and less com-
plex problems, managers face multi-dimensional dynamic and open systems.
For instance, a common trend is to have organizations managing several pro-
jects simultaneously that compete for the available resources. Furthermore,
the management of this portfolio of interdependent projects is frequently per-
formed by separating the decision-making process for each individual project,
resulting into suboptimal solutions with respect to the organization goals. In
this case, the resource allocation strategies should consider all projects in an
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integrated fashion. In Kearney (2016), the authors have advocated that focus-
ing on strengthening portfolio management and investment decision making is
one of the fundamental actions to improve project’s performance. Öncü Hazır
(2015) and Hans et al. (2007) have also highlighted the importance of devel-
oping multi-project or portfolio management methods. As detailed in Chapter
3, the important academic literature of multi-mode resource allocation and
project scheduling have almost no intersection with the works on practical risk
analysis or management. While both fields have their own importance, methods
that combine key elements of these theories are still scarce. Herroelen (2005)
has suggested the integration of scheduling theory and risk analysis tools into
the current project management practice as one of the research frontiers to fill
(or reduce) the referred theory-practice gap.

Within this context, the main objective of this work is to develop an
effective decision support method for planning and controlling a portfolio
of interdependent projects subject to uncertainty. Taking into account the
previous discussion, the following requirements are considered in the method
development:

– supporting an uncertainty model inspired on practical risk analysis
methods;

– supporting budget-constrained resource allocation distributed between
strategies to accelerate activities (mode selection or activity crashing)
and strategies to alleviate the potential impact of risks (risk mitigation);

– modeling projects’ due dates (or deadlines) and corresponding penalties
for delays;

– taking into account precedence constraints between activities of different
projects, creating an integrated portfolio network; and

– devising effective integrated resource allocation plans throughout the
execution of portfolio projects, protecting them against uncertainty
disruptions.

1.2
Methodology

In recent years, the robust optimization paradigm for decision under
uncertainty has been gaining the attention of the scientific community (Gabrel
et al., 2014). This paradigm contemplates a series of techniques that allow
decision makers to protect their decisions against parameter ambiguity and
stochastic uncertainty (Ben-Tal et al., 2009). Given these characteristics, it is
a well-suited paradigm for the development of the described decision support

DBD
PUC-Rio - Certificação Digital Nº 1221705/CA



Effective Resource Allocation for Planning and Control Project Portfolios Under
Uncertainty: A Robust Optimization Approach 16

method subject of this work. Therefore, we proposed a robust optimization
approach to handle the inherent uncertainty of projects’ executions. In this
approach, the uncertain environment is modeled as an adversary that selects
the worst-case (highest impact) combination of risks given the decision maker’s
actions. Then, the decision maker has to determine optimal resource allocation
plans for minimizing a particular objective subject to the assumption that the
adversary’s worst-case combination of risks will materialize. The worst-case
objective value minimization provides performance guarantees that are of great
value for project control. The chosen robust strategy is applied to two relevant
problems, mapping different decision-making challenges in the development
of our target portfolio control method. After proposing models and solution
strategies for these problems, we combined these techniques under a continuous
management and control framework that fulfills the designed requirements.

The first studied problem aimed to answer the question of determining
which activities should be the focus of uncertainty control measures to guar-
antee that a project finishes on time. This fundamental question is at the
heart of traditional and highly adopted project management techniques, such
as the critical path method (CPM) (Kelley & Walker, 1959) and the program
(or project) evaluation and review technique (PERT) (Fazar, 1959). The main
difference in our work is that we approached this problem under a robust op-
timization framework, developing a new criticality index for the activities. In
this problem, for easiness of representation and analysis, we assumed that the
uncertainty effects on activities’ durations are independent. This is a common
representation adopted in the literature (see Hulett (2009)). The conducted
computational experiments revealed that, for complex project networks, tra-
ditional critical path analysis is not effective under worst-case realizations of
the uncertainty, validating our proposed criterion.

The next problem subject of our work modeled the main dimensions of
the described method requirements. It studied the problem of determining ef-
fective resource allocation plans to minimize the total cost of a portfolio of
interdependent multi-mode projects, under the assumption that a worst-case
uncertainty set scenario will unfold. In this problem, each project is subject
to tardiness penalties, and we adopted a risk-based approach to model the
uncertainty; as such, risk events are the source of the uncertainty affecting
activities durations and costs. A particular risk could affect multiple activities
simultaneously, which provided a way to correlate uncertainty effects on them
(Hulett, 2009). We conducted a series of experiments that illustrate the impor-
tance of integrated resource allocation decisions when dealing with portfolios
of interdependent projects. These experiments also provided evidence of the
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effectiveness and computational feasibility of the proposed solution algorithm.
While the developed models and algorithms for the two previously

described problems have their applications and relevance on their own, we
proposed to combine them in a global continuous portfolio control method
that was based on robust optimization. In the present research, we present a
case study of the method applied to a portfolio aimed at the construction of
two twin refineries that were based on the example of Hulett (2009). This case
study highlights important capabilities of the developed techniques proposed in
this work, such as the models’ flexibility and capacity of devising cost-effective
resource allocation plans considering the interdependencies at the integrated
portfolio network.

1.3
Contributions

In general, the work provides a flexible framework to model complex
decision-making realities in the context of project scheduling and risk analysis.
In detail, the main contributions are as follows:

– a robust optimization criterion (or index) for criticality of activities.

– a cut-generation solution algorithm for determining the robust criticality
of the activities.

– a polynomial-time separation algorithm for the robust criticality cut-
generation procedure.

– a portfolio total cost model that jointly considers: (i) budget- constrained
resource allocation decisions regarding multiple activities’ modes (crash-
ing) and risk-mitigation plans; (ii) the adoption of a risk-based char-
acterization of uncertainty in duration and cost of the activities; (iii)
an uncertainty environment modeled as an adversary with a controlled
degree of conservatism; and (iv) a portfolio of interdependent projects
subject to tardiness penalties.

– a compact bi-level robust optimization formulation of the portfolio total
cost problem.

– a reformulation scheme and its resolution algorithm for the portfolio total
cost problem.

– a global methodology for portfolio planning and control based on robust
optimization.
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1.4
Outline

Chapter 2 presents the necessary background of robust optimization that
is applied in the proposed approach. Chapter 3 reviews the literature on related
problems. Chapter 4 is dedicated to the development of the new activity
criticality index based on robust optimization. In Chapter 5, we develop the
described robust approach to the problem of minimizing the total cost of a
portfolio of interdependent multi-mode projects with a risk-based model for the
uncertainty. The developed method has a fine-grained control of the solutions’
conservativeness and also accounts for the decision-dependent uncertainty
aspect of the problem. Chapter 6 discusses the final global portfolio planning
and control methodology. Finally, Chapter 7 presents concluding remarks and
future research directions.
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2
Robust Optimization

The robust optimization paradigm contemplates a series of techniques
that allow decision makers to protect their decisions against parameter am-
biguity and stochastic uncertainty (Ben-Tal et al., 2009). A solution of an
optimization problem subject to uncertainty is called robust if it provides a
guarantee that a pre-defined criterion would be satisfied for all realizations
of the uncertain parameters. A common criterion is the guarantee of solution
feasibility, which means that the solution remains feasible for any possible real-
ization of the parameters. Another important criterion is a guarantee that the
objective value of the solution is at least (or at most) a certain value in all
possible realizations. To provide objective value robustness, most techniques
adopt the strategy to evaluate the solution using the worst-case realization of
the uncertain parameters, that is, the scenario that results in the most unfa-
vorable objective value (Gabrel et al., 2014).

A fundamental question that arises in robust optimization is the over-
conservatism of the solutions. Most techniques provide a way of controlling
the degree of conservatism of their solutions. Instead of providing a robustness
guarantee for all possible scenario realizations, the guarantee is only limited
to scenarios contained in the so-called uncertainty set. In this work, the pro-
posed approach adopts a robust worst-case evaluation criterion for scenarios
contained in an uncertainty set that could be controlled by parameter calibra-
tion. The approach was inspired in the work of Bertsimas & Sim (2004). For
an extensive overview of robust optimization literature refer to (Gabrel et al.,
2014). Next, we briefly describe two seminal robust optimization methods and
then detail Bertsimas and Sim’s approach.

The three methods are described in the context of linear optimization.
Consider the nominal linear optimization problem:

Max cTx (2-1)

s.t. Ax ≤ b (2-2)

l ≤ x ≤ u (2-3)
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To model the uncertainty, consider a particular row i of the matrix A, Ji
represent the set of coefficients in row i that are subject to uncertainty. Each
element aij, j ∈ Ji is modeled as a symmetric and bounded random variable
ãij, j ∈ Ji that takes values in [aij − āij, aij + āij]. Without loss of generality,
the model assumes that the uncertainty only affects elements of the matrix A.
To handle the uncertainty in c, one could simply replace the objective function
to a maximization of a new variable z, and add the constraint z − cTx ≤ 0.

2.1
The Robust Formulation of Soyster

The work of Soyster (1973) has inaugurated the field of robust optimi-
zation. Under the previously detailed uncertainty model, the robust Soyster’s
formulation is as follows:

Max cTx (2-4)

s.t.
∑
j

aijxj +
∑
j∈Ji

āijyj ≤ bi ∀i (2-5)

− yj ≤ xj ≤ yj ∀j (2-6)

l ≤ x ≤ u (2-7)

y ≥ 0 (2-8)

The extra yj variables are equivalent to the module of corresponding xj vari-
ables at the optimal solution. In Soyster (1973), the authors have demonstrated
that this simple model guarantees solution feasibility for all realizations of the
uncertain parameters aij, j ∈ Ji. Yet, this guarantee comes at a price, com-
promising too much of objective value (Ben-Tal et al., 2009). Moreover, a
number of combinations of parameter realizations are unlikely to occur, so this
full feasibility guarantee could be too conservative in some contexts.

2.2
The Robust Formulation of Ben-Tal and Nemirovski

In the study of Ben-Tal & Nemirovski (2000), the authors have ap-
proached the over-conservatism of robust solutions by proposing a method
that ensures feasibility only for realizations in the so-called uncertainty set.
An input parameter was used to calibrate this uncertainty set controlling the
trade-off between feasibility and objective value. The proposed robust formu-
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lation of Ben-Tal & Nemirovski (2000) is as follows:

Max cTx (2-9)

s.t.
∑
j

aijxj +
∑
j∈Ji

āijyij + Ωi

√∑
j∈Ji

ā2ijz
2
ij ≤ bi ∀i (2-10)

− yij ≤ xj − zij ≤ yij ∀i, j ∈ Ji (2-11)

l ≤ x ≤ u (2-12)

y ≥ 0 (2-13)

The authors have demonstrated that the probability of a constraint i being
violated is at most exp(−Ω2

i /2). Thus, by adjusting Ω parameters, decision
makers could calibrate the level of conservatism of the robust solutions. This
model is a second-order cone problem, which may impose additional difficulty
in solving than the original linear optimization model and is not attractive to
robust discrete models (Bertsimas & Sim, 2004).

2.3
The Robust Formulation of Bertsimas and Sim

The work of Bertsimas & Sim (2004) has proposed a robust model that
preserves the linearity of the nominal problem and at the same time allows
the adjustment of the level of conservatism through parameter calibration.
Their method was successfully applied to several problems in different areas
(Bertsimas et al., 2011).

Given the described uncertainty model, consider the i-th constraint of the
nominal problem aTi x ≤ bi. For every i, a parameter Γi that takes values in the
interval [0, |Ji|] is defined. The role of Γi is to allow the control of the level of
conservatism of the method. Intuitively, it is unlikely that all parameters aij
will vary simultaneously due to the uncertainty. Then, the method proposes to
protect the solutions against all changes in up to bΓic of the coefficients and
one coefficient aij changing at most (Γi − bΓic)āij. To model this robustness
criterion, a protection function βi is defined for each constraint i. Given a
vector x∗, the protection function βi is defined as the following equivalent
optimization problem:
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βi(x
∗,Γi) = (2-14)

Max
∑
j∈Ji

āij|x∗j |zij (2-15)

s.t.
∑
j∈Ji

zij ≤ Γi (2-16)

0 ≤ zij ≤ 1 ∀j ∈ Ji (2-17)

To incorporate the proposed robustness criterion in a linear optimization
model, a first bi-level (nonlinear) formulation is determined as follows:

Max cTx (2-18)

s.t.
∑
j

aijxj + βi(x,Γi) ≤ bi ∀i (2-19)

l ≤ x ≤ u (2-20)

To reformulate as a linear optimization model, the authors have demonstrated
that it is sufficient to replace the function βi(x,Γi) by its dual equivalent.
Next, the dual equivalent formulation for the βi protection function is defined
as follows:

Min
∑
j∈Ji

pij + Γizi (2-21)

s.t. zi + pij ≥ āij|x∗j | ∀i, j ∈ Ji (2-22)

pij ≥ 0 ∀j ∈ Ji (2-23)

zi ≥ 0 ∀i (2-24)

The final linear optimization formulation with additional variables and
constraints is formulated as follows:

Max cTx (2-25)

s.t.
∑
j

aijxj + Γizi +
∑
j∈Ji

pij ≤ bi ∀i (2-26)

zi + pij ≥ āijyj ∀i, j ∈ Ji (2-27)

− yj ≤ xj ≤ yj ∀j (2-28)

lj ≤ xj ≤ uj ∀j (2-29)

pij ≥ 0 ∀i, j ∈ Ji (2-30)
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yj ≥ 0 ∀j (2-31)

zi ≥ 0 ∀i (2-32)

In the development of the mentioned robust criticality criterion for the
activities, subject of Chapter 4, we started with a non-linear formulation and
then proposed a path-enumeration strategy to achieve a mixed-integer linear
model where we could apply the Bertsimas and Sim’s method.

In Chapter 5, the modeling of the portfolio problem demands the
development of a new robust optimization approach. In this problem, we faced
challenges that were not approached by the Bertsimas and Sim’s method,
despite having inspired our work. Correlated uncertainty factors affecting
simultaneously rows and columns of the problem model and differentiated
decision-dependent uncertainty budget requirements per risk are some of the
features that motivated the development of this new robust optimization
method. This method could be applied in different contexts that share the
same characteristics. A research on its application to other problems is beyond
the scope of the present research. However, in Chapter 7, this topic is proposed
as a future research direction derived from this work.
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3
Related Literature

In this chapter, we describe the literature on project management and
control methods that are closely related with the research presented in this
work. We divide this literature into the following three main fields: critical path
analysis, multi-mode project scheduling, and project risk management. The
first one explores methods to rank activities in terms of importance according
with a pre-designed criterion. We call multi-mode project scheduling the field
that examines problems related to devising effective resource allocation plans,
given that activities could be executed under different conditions (or modes)
and each one has their own resource requirements and associated durations.
The latter concerns methods that study how to properly manage the risks
associated with projects, indicating how to effectively represent, monitor, and
mitigate them.

3.1
Critical Path Analysis

The community has early recognized the importance of using decision
support methods for helping project management. In 1959, the development
of the CPM (Kelley & Walker, 1959), and the PERT (Fazar, 1959) gave rise to
this research field. The key idea of both techniques is the identification of the
so-called project’s critical path. The project is represented by a set of activities
to be performed, with corresponding deterministic duration estimates and a
set of precedence constraints (or precedence relations). The zero-lag finish-
to-start relation is the most commonly used precedence constraint; it states
that an activity a cannot start until its predecessor activity b has finished. The
project’s critical path is defined as the longest sequence of activities, connected
by corresponding precedence relations that prevent the project from finishing
earlier (Kelley, 1961). Any delay in critical activities also causes a delay in the
project’s duration. For this reason, project managers should pay close attention
to the performance of these activities.

Figure 3.1 provides an example of the critical path of a project with five
activities. We use a Gantt Chart representation of the project schedule, each
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Figure 3.1: Gantt Chart with highlighted critical path.

activity is represented by a bar ranging from start to finish times, and each
precedence is denoted by a predecessor to successor’s arrow. In this example,
activities are scheduled to their earliest possible starting times, which are
constrained by finishing times of corresponding predecessors. The critical path
is highlighted in red and is formed by the sequence of activities A, C, and D.
We use this same project example in the next chapter.

An important limitation of the previously mentioned methods is the
assumption that activity durations are known with certainty, and as a con-
sequence, deterministic values are assumed for them. However, projects are
subject to multiple sources of uncertainty that could directly impact their ac-
tivities and potentially cause delays and cost overruns. Therefore, it is crucial
to properly represent and deal with the uncertainty in the project management
decision-making process. A common approach is to model the uncertainty in
an activity-based fashion, where the durations of the activities are assumed to
be uncertain and are represented by corresponding probability distributions.
Within this context, a project will likely not have a single deterministic critical
path, and the original concept of critical activities also needs to be revisited.
This has encouraged researchers to create other activity criticality measures
(Demeulemeester, 2002). Within this context, the path criticality index (PCI)
and the activity criticality index (ACI) were the first criticality measures to
project networks with activity durations modeled by probability distributions
(Williams, 1992). The PCI is defined as the probability that a path p is of
longest duration (i.e., the probability of p being a critical path) (Elmaghraby,
2000). The ACI concerns to the corresponding index for the activities, measu-
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ring the probability that each activity is part of a critical path (Williams, 1992).
Other indexes, such as the significance index (see Williams (1992)) and the
cruciality index (see Demeulemeester (2002)), attempt to capture the correla-
tion between the uncertain activity durations and the total project duration.
The calculation of these indexes is based on Monte-Carlo simulation meth-
ods, which require an enumeration of several uncertainty scenario realizations.
Another form of representing uncertain parameters is by using fuzzy theory.
Within this context, Chanas & Zieliński (2001) and Chen & Hsueh (2008) have
devised criticality measures to project networks with fuzzy activity durations.

In Chapter 4, we propose a new criticality measure aimed at dealing
with worst-case disruptions of the uncertainty. Based on robust optimization,
this criterion also provides an upper bound for projects’ durations under the
adopted uncertainty hypothesis.

3.2
Multi-Mode Project Scheduling

The research on project control methods has naturally evolved from
the critical path analysis to the study of more complex problems, modeling
different decision-making realities. A key example is the class of problems that
explore the time-cost trade-offs when activities could be executed in more
efficient modes by extra allocation of resources. A well-studied problem of this
class is the so-called discrete time-cost trade-off problem (DTCTP). In the
DTCTP, each activity has a set of different modes that it can be executed,
each one has a corresponding cost and duration, and the decision maker has
to choose the best combination of modes to minimize a particular objective
respecting a set of constraints. In the “deadline” variant of the DTCTP
(DTCTP-d), the objective is to minimize the total cost to attend a pre-specified
project deadline. In Akkan et al. (2005), they have proposed a decomposition
technique based on column generation to solve the DTCTP-d. In Vanhoucke
& Debels (2007), a set of different heuristic methods have been used to also
solve the deadline problem with additional time-switch and work-continuity
constraints. In DTCTP’s “budget” version (DTCTP-b), the objective is to
minimize the project’s duration given a budget constraint that limits the total
capacity investment on activity modes. In Öncü Hazır et al. (2010), they have
proposed an algorithm based on a Benders decomposition to solve the DCTCP-
b. A third version of the DTCTP is the so-called DTCTP-curve, the objective
in this version is to build a complete efficient curve, which determines for each
feasible project duration the minimum cost combination of activity modes
that guarantees this duration. The study of Demeulemeester et al. (1998) has
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presented an iterative procedure that uses a branch-and-bound algorithm to
determine every efficient solution of the DTCTP-curve. In addition, the works
of Demeulemeester et al. (1996) and Hadjiconstantinou & Klerides (2010)
have proposed flexible methods to solve all the three mentioned versions of
the DTCTP (deadline, budget, and curve), with the first using a dynamic
programming algorithm and the second developing a cut-generation solution
based on path-enumeration. There are a number of papers that have also
examined multi-mode trade-offs under the nomenclature of activity crashing
problems (see, e.g., Rahimi & Seifi (2009); Doerner et al. (2008); Haga &
O’keefe (2001)). Multi-mode problems are also studied under the variants of the
resource constrained project scheduling problem (RCPSP), when the project
has a limited number of resources to execute its activities and these activities
have hard resource requirements (refer to Hartmann & Briskorn (2010) for a
summary of works on the RCPSP and its variants). For an extensive list of
papers on multi-mode problems, refer to Węglarz et al. (2011).

In the literature that explores time-cost trade-off problems, stochastic
extensions to the DTCTP and its variants have also been proposed. For
instance, in Klerides & Hadjiconstantinou (2010), activity durations have
been assumed to be uncertain and have been represented by corresponding
probability distributions, then they approached three two-stage stochastic
extensions of the DTCTP: budget (SDTCTP-b), deadline (SDTCTP-d), and
curve (SDTCTP-curve). In the first stage, the activity modes are decided, and
in the second stage, after the uncertainty unfolds, the project scheduling is
determined. The resulting two-stage problems are solved by a decomposition-
based algorithm. In this stochastic literature, a number of papers have also used
the approach of representing the time-cost trade-off on a single objective aimed
at minimizing the project’s total cost, which is assumed to be composed by
activity costs and tardiness penalty costs (e.g., Gutjahr et al. (2000); Zhu et al.
(2007); Tereso et al. (2004); Godinho & Branco (2012); Said & Haouari (2015)).
Within this context, Gutjahr et al. (2000), Zhu et al. (2007), and Said &
Haouari (2015) have investigated two-stage stochastic problems, while Tereso
et al. (2004), Godinho & Branco (2012), and Klerides & Hadjiconstantinou
(2015) have proposed adaptive policies for multi-stage decisions. In Chapter 5,
we also represent the time-cost trade-off by a similar total cost minimization
in the context of a portfolio of multiple interdependent projects.

As mentioned in Chapter 2, the robust optimization paradigm to decision
under uncertainty is increasingly gaining attention, Gabrel et al. (2014). Its
main idea is to provide solutions that guarantee a feasibility or objective
criterion for all uncertainty scenarios comprised in the so-called uncertainty
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set. The robustness guarantees are achieved by a worst-case minimization or
maximization under the uncertainty set. Most of the robust techniques provide
the decision maker with a way to control the solution conservativeness by
the adjustment of parameters that define the uncertainty set. In Öncü Hazır
et al. (2011), the authors have proposed a robust variant for the DTCTP-
d by using Bertsimas and Sim’s approach (Bertsimas & Sim, 2004). As
such, the uncertainty has been assumed to be in the activity costs, and the
aim is to minimize the worst-case project’s cost while guaranteeing that the
deadline is attended. In Cohen et al. (2007), they have presented a multi-
stage robust approach to the deadline version of the continuous time-cost
trade-off problem (TCTP-d) with uncertainty regarding the activity durations.
In Gutjahr (2015), each objective has been approached separately in a bi-
objective method (time and cost), and they have used a strategy named
optimization under multivariate stochastic dominance constraints (Dentcheva
& Ruszczyński, 2009) to devise risk-averse solutions to an RCPSP multi-mode
variant with uncertain durations.

This extensive multi-mode project scheduling literature highlights the
importance of modeling different resource allocation strategies at the activ-
ity level. Therefore, we incorporate multi-mode activities in the methods de-
veloped in Chapters 5 and 6.

3.3
Project Risk Management

Project Risk Management (PRM) is the discipline that examines meth-
ods to identify, monitor, and control the effects of risks on a project (refer to
the PMBOK R© Guide, PMI, 2013). The identification is related with the pro-
cesses of risk mapping, quantification, and prioritization. A risk is an uncertain
event that, if materialized, affects multiple activities simultaneously, increas-
ing their durations and costs. The set of mapped, quantified, and prioritized
risks models the uncertainty environment of a project. An advantage of this
approach, which is adopted in our method, is to allow for modeling correlated
uncertainty impacts on activities (Hulett, 2009). In Creemers et al. (2014), the
authors have also advocated, through extensive computational experiments,
that representing the uncertainty by a risk-based approach is more effective
than using the activity-based one, which is the common approach found in the
previously detailed literature. The monitoring and control processes are related
with assessing the effects of prioritized risks on project’s objectives and provid-
ing effective response plans to minimize these effects. These risk management
processes are a common and recommend practice for project managers, and
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could be implemented in different levels of data details and method sophistica-
tion. Extensive literature on these methods exists; they vary from qualitative
analytics techniques (see Wang et al. (2004); Raz & Michael (2001); Raftery
(2003)) to quantitative strategies (see Pate-cornell & Elisabeth (1996); Kılıç
et al. (2008)). Some of these methods are well established in practice, and
have been incorporated in the decision-making toolbox of project managers
across different industries (e.g., Monte-Carlo Simulation, Hulett (2009)). In
Muriana & Vizzini (2017) and Nguyen et al. (2013), authors have reviewed the
PRM literature and reached the same conclusion that most of the methods
focuses only on risk identification and assessment processes, and few method-
ologies provide decision support (DS) tools to prevent and control risk effects
on project’s planning and execution, which is the focus of this work. Important
examples of methods in this class are RISKMAN (Carter et al., 1994), ARA-
MIS (Kirchsteiger et al., 1998), and PRAM (Chapman & Ward, 2003). Next,
we review in more detail the DS systems that closely relate to our proposed
methodology.

In Nguyen et al. (2013), authors have proposed a method called ProRisk.
This method maps the set of risks and their corresponding impacts on activities
and also the possible treatment (or mitigation) strategies to minimize these
impacts. The method enumerates all possible combinations of risk scenarios
and treatment strategies to predict the project performance under different
conditions, which the authors have called project scenarios. As such, the
decision-maker could analyze these project scenarios to determine the effective
treatment plan to be adopted. Yet, the number of possible project scenarios
grows exponentially with the number of risks and treatments strategies, which
limits the application of this methodology. In Gładysz et al. (2015), the model
maps a cost associated with the complete elimination of each risk. The authors
have proposed a mixed-integer linear programming model to determine the
minimum cost combination of risks selected for elimination to guarantee that
the project’s longest path, in terms of duration expected value, is less than a
pre-defined deadline. The impossibility of complete risk elimination in some
cases and ignoring possible penalties costs due to delays present some of the
limitations of this methodology. In Kılıç et al. (2008), a genetic algorithm has
been proposed to solve the bi-objective problem of minimizing simultaneously
the expected values of project cost and longest duration path. The project cost
is composed of the following four factors: overhead cost, activity execution cost,
tardiness penalties, and the cost of implementing the selected risk-reduction
strategies. These methodologies have been developed in the context of a single
project.
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As mentioned previously, given the increasing complexity of organiza-
tions, several authors (see Kearney (2016); Hans et al. (2007); Öncü Hazır
(2015)) have advocated for the necessity of developing DS methods to manage
portfolios of projects. For instance, Hans et al. (2007) have reviewed several
studies in hierarchical planning and have proposed a generic framework to com-
bine different existing techniques into a methodology for multi-project planning
and control under uncertainty. The combinations of techniques are dependent
on the projects’ complexity and interdependency. The methods developed in
the present work could be used as components applied by these hierarchical
frameworks.

The new methodology developed in this work combines elements of the
three described areas. The objective of this combination is to investigate the
potential of the robust optimization paradigm applied in the current project
(or portfolio) risk management practice.
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4
Robust Activity Criticality Criterion and Uncertainty Miti-
gation for Project Duration

In this chapter, we present the first application of the proposed robust
approach that models the uncertainty environment as an adversary that selects
the worst-case scenario for any decision maker’s actions. Given an activity-
based model for the uncertainty faced by a project, the proposed approach
attempts to capture the importance of the activities in a combined fashion
using a robust optimization framework.

The modeled problem aims at determining the activities of a project that
should be the focus of uncertainty mitigation measures – in the sense that
resource and effort should be put into place so as to ensure that their actual
durations equal their original nominal estimates – to control the project’s
execution. As described in Chapter 3, when considering uncertain activity
durations, the criticality indexes found in the literature are mostly obtained
through an extensive enumeration of scenarios under a Monte-Carlo simulation
framework. Instead of doing so, we adopted a robust optimization approach
that prioritizes activities to minimize the worst-case project’s duration over
the scenarios comprised in a controlled uncertainty set. As detailed ahead,
this approach avoids the referred extensive enumeration of the uncertainty
scenarios and provides a project’s duration guarantee over the uncertainty set
scenarios.

4.1
Problem Modeling

A project is composed of a set of activities that have to performed in order
to complete it. The execution of these activities is subject to multiple sources
of uncertainty, for instance, the productivity of the resources, problems with
required machinery or tools, and weather uncertainty. A common approach
to model this uncertainty is to provide optimistic, nominal, and pessimistic
estimates for the duration of each activity. These estimates are then used
as input to define probability distributions for the corresponding durations
(Hulett, 2009). Due to the difficulty and lack of information, these distributions
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are assumed to be independent, meaning that the correlation between them
is ignored. As pointed out in Chapter 3, in this context, the critical path of
the project is also uncertain and depends on the realization of the activity
durations. In this work, we propose a new criticality criterion that is based on
robust optimization and that could be determined by a cut-generation solution
algorithm. In the following sections, we detail the representation used for the
activity network and the corresponding problem statement.

4.1.1
Problem Statement

Given a project composed of a set of activities A and precedence relations
E, we used an Activity-on-Node AoN network representation G = (A,E). In
this network, nodes represent the activities and edges the precedence relations;
the next section provides an example of this network representation. For each
activity a, a nominal duration da and a potential increase in this duration due
to the uncertainty ∆a are defined. The value da + ∆a represents the worst-
case estimate for the duration of a. Each precedence relation is denoted by
predecessor and successor activities i and j respectively, which are represented
here as (i, j). A precedence (i, j) constrains j to only start its execution once
i is finished (i.e., finish-to-start zero-lag relation).

Our model attempts to answer the following basic question: given a pro-
ject represented by G = (A,E), what are the α most important activities that
one should guarantee to be performed within their nominal duration estimates
(for example, by allocating additional resources or implementing uncertainty-
mitigation measures) to minimize the project’s duration T , under the assump-
tion that, at most, β activities will assume their worst-case durations? As
detailed ahead, the β parameter relates to the pessimism about the overall
project’s execution performance, while worst-case duration estimates denote
a local performance assumption at the activity level. Under such hypothesis,
the model provides the optimal set of activities that should be the target of
uncertainty mitigation and an upper bound on the project’s total duration T
– which is arguably useful for project managers.

4.1.2
Example

We start by illustrating the AoN network representation and its corres-
ponding project’s duration (T ) calculation. In Table 4.1, we define the instance
parameters for each activity that composes our project example. In addition,
Figure 4.1 presents a representation of the AoN network in the case where α
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Activity, a da ∆a Predecessors Successors

A 5 2 - C, D
B 10 6 - E
C 3 3 A D
D 8 2 A, C -
E 5 3 B -

Table 4.1: Robust criticality example’s instance data.

Figure 4.1: AoN network of Table’s 4.1 instance with α = 0 and β = 0.

and β are zero, which entails that no activity is target of risk-mitigation mea-
sures or of uncertainty impacts. The activity durations are then represented on
top of their corresponding nodes, and each precedence (i, j) is assigned its pre-
decessor’s duration di as its corresponding weight, following the representation
proposed in Bartusch et al. (1988). The main objective of this representation is
to be able to apply standard network-flow models and algorithms to determine
activities’ early schedules and the resulting project duration (T ). To achieve
this objective, dummy (zero duration) source and sink activity nodes had to
be added to the network. The source activity, represented by node 0, is con-
nected by precedence relations to all activities that do not have predecessors,
allowing all nodes to be reachable from this source node. The sink dummy
activity, represented by node s, is added to the network and has all activi-
ties that do not have successors as predecessors. With this representation, the
early-start schedule of each activity a, is simply the weight of the longest path
from source node 0 to a, and the project duration T is given by the early-start
of the sink node s. In Figure 4.1, we highlight in bold the project’s critical
path, which is the longest path from source 0 to sink s. In this network, the
critical path is composed by activities A, C, and D, resulting in total duration
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T = 16. Given the fact that circular dependencies are not allowed, the network
G is a directed acyclic graph (DAG); hence, the problem of determining the
longest path from source to any other node admits a polynomial-time solution
algorithm (Cormen et al., 2001). This problem also has a network-flow in-
teger programming formulation with a totally unimodular constraint matrix,
which, consequently, has the same optimal solution of its corresponding linear
relaxation (Papadimitriou & Steiglitz, 1982).

Figure 4.2: AoN network of Table’s 4.1 instance with α = 0 and β = 2.

In Figure 4.2, we illustrate the same instance of Table 4.1 but with the
adversary having the option to set two activities to their worst-case duration
estimates (i.e., α = 0 and β = 2). The adversary decision that maximizes the
project’s duration is to impact activities B and E. This combination delays
the project to T = 24, as B is impacted with ∆B = 6 and E with ∆E = 3.
These impacts are represented in Figure 4.2 by summing nominal durations to
corresponding ∆ values. The representation also highlights the change in the
critical path, which is then formed by activities B and E.

The final network, presented in Figure 4.3, represents the case where
α = 2 and β = 2, that is, the decision maker now has the option to
avoid uncertainty impacts on two activities. The optimal decision would be
to mitigate the uncertainty for B and C, which is illustrated by filling their
corresponding nodes with gray. In this case, the worst-case scenario that could
be materialized by the adversary would be to impact activities A and D, which
results in a worst-case project duration of T = 20. By selecting activities B and
C, the decision maker is simultaneously protecting the two potential critical
paths, instead of just focusing the original one presented in Figure 4.1. Next,
we provide the corresponding mathematical models and solution strategy for
the proposed problem.
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Figure 4.3: AoN network of Table’s 4.1 instance with α = 2 and β = 2.

4.2
Mathematical Formulations and Cut-Generation Algorithm

4.2.1
Min-Max Model

We start by presenting a bi-level (nonlinear) optimization model which
is then reformulated into a robust linear model. The first level represents the
decisions regarding which α activities (x) should be target of risk-mitigation
measures. While the second level represents the adversary’s action, that is,
selection of the β activities (z) that were not target of risk-mitigation mea-
sures in first-level decisions, which assuming their worst-case durations, will
maximize the project’s total duration T . Subsequently, we provide parameters
and decision variables definitions followed by first and second-level models:

da nominal duration of activity a;
∆a potential increase in duration of activity a associated with the

uncertainty;
α maximum number of activities for which the uncertainty could

be mitigated;
xa binary decision variable that indicates if an uncertainty mit-

igation measure associated with activity a was implemented,
which in the positive case (xa = 1), guarantees a duration
equals to da;

β maximum number of activities that could assume worst-case
durations (i.e., da + ∆a);

za binary decision variable that indicates if activity a will assume
its worst-case duration da + ∆a;
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Π(x) adversary (or second-level) function that for a given first-level
decision x, returns the maximum project duration that could
be achieved when at most β non-mitigated activities (i.e.,
xa = 0, a ∈ A) assume their worst-case durations;

δ−a set of predecessors of activity a (δ−a = {i | (i, a) ∈ E});
δ+a set of successors of activity a (δ+a = {j | (a, j) ∈ E});
uij auxiliary network-flow variable that indicates if the precedence

arc (i, j) is part of the longest-path from source node (0) to
sink node (s).

Min
x

Π(x) (4-1)

s.t. ∑
a∈A

xa ≤ α (4-2)

xa ∈ {0, 1} ∀a ∈ A (4-3)

where:

Π(x) =

Max
z,u

∑
(i,j)∈E

(di · uij + (1− xi) ·∆i · zi) (4-4)

s.t. ∑
j∈δ+0

u0j = 1 (4-5)

∑
i∈δ−s

uis = 1 (4-6)

∑
i∈δ−a

uia −
∑
j∈δ+a

uaj = 0 ∀a ∈ A, a /∈ {0, s} (4-7)

∑
a∈A

za ≤ β (4-8)

za ≤
∑
j∈δ+a

uaj ∀a ∈ A (4-9)

uij ∈ {0, 1} ∀(i, j) ∈ E (4-10)

za ∈ {0, 1} ∀a ∈ A (4-11)

The objective function of the model 4-1 is simply to minimize, over x
decisions, the project’s total duration due to the adversary action, which is
represented by the function Π(x). Constraint 4-2 limits the number of activities
that are subject of uncertainty mitigation measures.
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In the adversary’s equivalent optimization model Π(x), we applied a
network-flow formulation, using the AoN representation to capture the longest
path from source to sink. Constraints 4-5, 4-7, and 4-6 guarantee, respectively,
that the network flow path (u) starts at the source node 0, flows through
intermediate nodes (or activities), and ends at the sink node s. Constraints
4-9 guarantee that only activities part of the longest path from source to sink
could assume their worst-case durations, while constraint 4-8 limits the total
number of these activities. The first term of the adversary’s objective function
4-4 reflects the size of the referred longest path, while the second one maps
the potential impact due to the uncertainty for the selected activities (i.e.,
za = 1, a ∈ A).

However, techniques that allows us to solve this bi-level (non-linear)
model in this current form are not readily available. To circumvent such
difficulty, we propose a reformulation based on the enumeration of all paths
from source 0 to sink s. This reformulation allows for the development of a
one-level linear model. In the subsequent section, we detail this reformulation
scheme.

4.2.2
Path Enumeration Model

Let q be a sequence of activities that forms a path from source 0 to sink
node s, Q the set of all possible paths, and tq the duration of path q, the model
can be reformulated as follows:

Min
x,T,t,z

T (4-12)

s.t.

T ≥ tq ∀q ∈ Q (4-13)

tq = Max
z∑
za≤β

∑
a∈q

(da + (1− xa) ·∆a · za) ∀q ∈ Q (4-14)∑
a∈A

xa ≤ α (4-15)

xa, za ∈ {0, 1} ∀a ∈ A (4-16)

Constraints 4-14 guarantee that tq is set to the worst-case duration of q,
given the uncertainty mitigation decisions x and allowing, at most, β activities
to assume their worst-case durations (i.e., da+∆a). The maximization problem
in the right-hand side (RHS) of constraints 4-14 models the adversary’s action
for a particular path q. Constraints 4-13 guarantee that T is set to the
maximum duration over all paths q ∈ Q.
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Although the model cannot yet be solved in a straightforward manner, it
now allows for the application of the techniques presented in (Bertsimas & Sim,
2004): the maximization problem on the RHS of each of the constraints defined
in (4-14) may be substituted by the objective function of its dual, while the dual
feasibility constraints are incorporated into the outer minimization problem.
Once this transformation is carried out, we are left with a mixed-integer linear
programming problem that can be solved by commercially available solvers.
Next, we detail this transformation.

The adversary’s problem for a particular path q is represented by the
following function:

Πq(x) =

Max
z

∑
a∈q

(da + (1− xa) ·∆a · za) (4-17)

s.t. ∑
a∈q

za ≤ β (4-18)

za ≤ 1 ∀a ∈ q (4-19)

za ≥ 0 ∀a ∈ q (4-20)

We use the linearly relaxed version, that is, constraints 4-19 and 4-20 instead
of za ∈ {0, 1}, ∀a ∈ q, due to the equivalence of both versions. According to
Papadimitriou & Steiglitz (1982), a linear optimization model with constraints
in the form Ax ≤ b, x ≥ 0, having b with integer elements and A being totally
unimodular (TUM), is equivalent to its integer version (i.e., the case where
elements of x are also required to be integers). The constraint matrix of Πq(x) is
TUM because of the following theorem presented in Papadimitriou & Steiglitz
(1982):

Theorem 1 An integer matrix A with aij = 0,+1,−1 is TUM if no more
than two nonzero entries appear in any column, and if the rows of A can be
partitioned into two sets I1 and I2 such that:

1. If a column has two entries of the same sign, their rows are in different
sets;

2. If a column has two entries of different signs, their rows are in the same
set.

The application of Theorem 1 to the constraint matrix of Πq(x) is straightfor-
ward, since the set of constraints 4-18 and 4-19 could be used as partitions I1
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and I2. As Πq(x) is a maximization problem, we could also ignore constraints
4-20.

The dual equivalent of the previous model is defined as follows:

πq dual decision variable of path q due to constraint 4-18;
γaq dual decision variable of path q, activity a due to constraints

4-19.

Πq(x) =

Min
z

∑
a∈q

da + β · πq +
∑
a∈q

γaq (4-21)

s.t.

γaq + πq + ∆a · xa ≥ ∆a ∀a ∈ q (4-22)

γaq ≥ 0 ∀a ∈ q (4-23)

πq ≥ 0 (4-24)

As previously mentioned, we can replace the maximization problem on
the RHS of constraints 4-14 to its dual equivalent formulation to achieve a
one-level mixed-integer programming (MIP) model:

Min
x,T,t,π,γ

T (4-25)

s.t.

T ≥ tq ∀q ∈ Q (4-26)

tq =
∑
a∈q

da + β · πq +
∑
a∈p

γaq ∀q ∈ Q (4-27)

γaq + πq + ∆a · xa ≥ ∆a ∀q ∈ Q, ∀a ∈ q (4-28)∑
a∈A

xa ≤ α (4-29)

x ∈ {0, 1} ∀a ∈ A (4-30)

γaq ≥ 0 ∀q ∈ Q,∀a ∈ q (4-31)

πq ≥ 0 ∀q ∈ Q (4-32)

This model could be solved directly by commercially available solvers.
Nonetheless, a difficulty that arises is the fact that the number of paths in
a DAG (|Q|) could grow exponentially with its number of nodes. Without
loss of generality, consider a DAG G∗ = (A,E) with node indexes labeled in
topological order, where, for all pair of nodes (i, j), i < j, there is an edge
connecting them (i.e., (i, j) ∈ E). For each subset of A, we could construct a
path sequence by simply sorting its elements according with their node indexes.
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Then, the total number of distinct paths in G∗ is 2|A|, which is the number of
subsets in A. To overcome this difficulty, we propose a cut-generation algorithm
that is presented in the next section.

4.2.3
Cut-Generation Algorithm

The idea of the algorithm is to maintain only a subset of paths (SQ ⊆ Q)
in the master problem. A separation procedure is called at each iteration to
identify whether a path, which is not in SQ, should be considered. In this
case, the path is included in the master problem and the algorithm proceeds.
Otherwise, the set of activities that should be target of uncertainty mitigation
measures x obtained by solving the master problem is optimal. The separation
problem is exactly the optimization problem equivalent to the function Π(x)

(see Section 4.2.1). The solution of this problem will return the longest path
that could be achieved by setting at most β non-mitigated activities (i.e.,
a|xa = 0) to their worst-case durations. The path itself is recovered from the
values of network-flow variables uij and the value of the objective function is
its corresponding duration. Algorithm 1 outlines the cut-generation solution
strategy in greater detail.

Given the first-level decisions x, the separation problem Π(x) turns into
an MIP model that could be solved by commercially available solvers. In what
follows, we illustrate that this problem could also be solved directly by a
polynomial-time solution algorithm.

Solving Separation in Polynomial-Time

We start by defining a recurrence function ES(j, x, b), equations 4-33
and 4-34, which is equivalent to the worst-case (longest) early-start schedule
of activity j, given first-level decisions x and with at most b activities assuming
worst-case durations (dj+∆j). With this definition, the separation (adversary)
function Π(x) is equivalent to ES(s, x, β), that is, the worst-case early start
of sink node s with at most β activities assuming worst-case durations.

ES(0, x, b) = 0 (4-33)

ES(j, x, b) = Max
i∈δ−j

{
ES(i, x, b) + di;

ES(i, x, b− 1) + di + ∆i, if xi = 0 and b ≥ 1.

(4-34)

Equation 4-33 defines the recurrence base case, for which the source node
(0) early-start is set to zero for any x and b. Equation 4-34 describes the
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Algorithm 1 Robust Critical Activities Cut-Generation
1: SQ← ∅ . SQ initialization
2: q ← [0, s] . Dummy path
3: LB ← 0 . Lower Bound initialization
4: UB ←∞ . Upper Bound initialization
5: BestSol← ∅ . Optimal Solution initialization
6: MP ← Create master problem from the final model of section 4.2.2
7: while LB < UB and ElapsedT ime < TimeLimit do
8: Add q to SQ and its corresponding cut to MP (variables and con-

straints related to q from the final model of section 4.2.2)
9: MPSol← Solve MP to obtain its current solution

10: LB ←MPSol.obj . LB is updated with the objective value of
MPSol

11: if LB = UB then
12: break
13: end if
14: x←MPSol.x . Get x decisions from MPSol
15: SP ← Create separation problem for current x according with the

model of Π(x)
16: SPSol ← Solve SP to obtain its current solution
17: q ← Recover path from SPSol.u
18: T ← SPSol.obj
19: if T < UB then
20: BestSol← x
21: UB ← T
22: end if
23: end while
24: return BestSol

general case, which is based on the fact that in a project network with finish-
to-start precedences, the early-start of an activity j is defined by the maximum
early-finish between their predecessors i ∈ δ−j . The RHS of the brackets define
possibly two cases for the worst-case early-finish of a particular predecessor i.
The first one maps the case where i assumes its nominal duration di, which
does not require a decrease in b, so the considered early-start of i is simply
ES(i, x, b). The second one represents the case where i assumes its worst-case
duration di + ∆i. This case is only considered when i is not target of risk
mitigation measures (i.e., xi = 0) and the maximum number of worst-case
duration activities was not reached (i.e., b ≥ 1). The fact that i is assuming its
worst-case duration requires b to be decreased; hence, the early-start of i in this
case should consider this requirement, which is then mapped to ES(i, x, b−1).
Next, we present a dynamic programming polynomial-time algorithm to solve
the referred recurrence.

Given the network G(A,E) with n = |A| and m = |E|, and without

DBD
PUC-Rio - Certificação Digital Nº 1221705/CA



Effective Resource Allocation for Planning and Control Project Portfolios Under
Uncertainty: A Robust Optimization Approach 42

Algorithm 2 Robust Critical Activities Polynomial-Time Separation
1: var ES[n+ 2][β]
2: var Pred[n+ 2][β]
3: var PredImp[n+ 2][β]
4: for b = 0 to β do:
5: for j = 0 to n+ 1 do:
6: ES[j][b]← 0
7: Pred[j][b]← 0
8: PredImp[j][b]← False
9: end for

10: end for
11: for b = 0 to β do:
12: for j = 1 to n+ 1 do:
13: for i ∈ δ−j do:
14: EFiNoImp← ES[i][b] + di
15: if EFiNoImp > ES[j][b] then:
16: ES[j][b]← EFiNoImp
17: Pred[j][b]← i
18: PredImp[j][b]← False
19: end if
20: if xi = 0 and b ≥ 1 then:
21: EFiImp← ES[i][b− 1] + di + ∆i

22: if EFiImp > ES[j][b] then:
23: ES[j][b]← EFiImp
24: Pred[j][b]← i
25: PredImp[j][b]← True
26: end if
27: end if
28: end for
29: end for
30: end for
31: T ← ES[n+ 1][β]
32: q ← ∅
33: z ← ∅
34: CurrAct← n+ 1
35: CurrB ← β
36: while Pred[CurrAct][CurrB] <> 0 do:
37: CurrPredImp← PredImp[CurrAct][CurrB]
38: CurrAct← Pred[CurrAct][CurrB]
39: q ← CurrAct ∪ q
40: if CurrPredImp = True then:
41: z ← CurrAct ∪ z
42: CurrB ← CurrB − 1
43: end if
44: end while
45: return T, q, z
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loss of generality, Algorithm 2 assumes that the activity nodes are indexed
in topological order; as such, if (i, j) ∈ E then j > i, with source and
sink nodes indexed by 0 and n + 1 respectively. The algorithm works by
fulfilling three n + 2 × β matrices: ES, Pred and PredImp. The element
ES[j][b] stores the actual recurrence value ES(j, x, b), while Pred[j][b] stores
which predecessor of j constrained its early start and PredImp[j][b] indicates
whether the corresponding predecessor was impacted by the uncertainty and
then assumed its worst-case duration. From lines 4 to 10, the refereed matrices
are initialized to implement the recurrence base case. From lines 11 to 30, the
algorithm implements the general case by iterating over increasing values of
b, from 0 to β, and, in topological order of activities, from 1 to n + 1. This
iteration order is essential to guarantee that when a predecessor recurrence
value is used (i.e., ES[i][b] and ES[i][b − 1] at lines 14 and 21 respectively),
it has already been correctly determined. From lines 13 to 28, the algorithm
iterates over the predecessors of j and analyzes the recurrence cases of equation
4-34, the first one being implemented from lines 14 to 19 and the second one
from lines 20 to 27. The final part of the algorithm, lines 31 to 45, implements
the retrieval of the recurrence solution itself, recovering the longest-path q, its
total duration T and the set of activities that assumed worst-case durations z.

Given that β ≤ n, the initialization complexity is O(n2). The loop from
lines 12 to 29 takes, on aggregate, O(m) operations. Therefore, the main loop
complexity is O(n∗m), lines 11 to 30. The solution’s retrieval part, lines 31 to
45, only takes O(n) operations. Due to the edges that are included to connect
source and sink nodes (see 4.1.2), m is Ω(n), and consequently the algorithm’s
complexity is dominated by the main loop, which is O(n ∗m).

4.3
Computational Experiments

The main idea of the designed experiments was to assess the effectiveness
of traditional critical path analysis in the context of a combined worst-case
uncertainty effect on project activities. The proposed robust criterion was
designed to capture this worst-case uncertainty scenario.

We performed our experiments on project networks extracted from the
480 PSPLIB instances for the RCPSP with n = 30 jobs (or activities)
(Kolisch & Sprecher, 1997). From this set of instances, we used the information
about the activity durations da and precedence relationships. To assign worst-
case duration estimates, for each activity a, we first defined a Beta-PERT
distribution with parameters 0.8∗da, da and 1.4∗da as optimistic, most likely,
and pessimistic estimates (see Slyke & Richard (1963)). Then, we set the 0.95
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quantiles of corresponding distributions as worst-case durations (da + ∆a).
For every instance, we solved our model for each combination of α and

β where α ≥ 0, β ≥ 1 and α + β ≤ 30. Tests were performed on an Intel
Core i5-3360M PC with 4 cores of 2.80GHz and 8 GB of RAM. The model was
implemented using the programming language Python and solved by IBM(R)
ILOG(R) CPLEX(R) 12.5.0.0.

In Figure 4.4, we analyzed how the increase on the number of mitigated
activities α affects the delay relative to the original project duration, given
a fixed assumption on the number of activities that take on their worst-case
duration – in particular, the chart displays results for each combination of
(β, α) ∈ {(10, 2), (10, 4), (10, 6), (10, 8)}. Given that T represents the original
total project duration and Tr denotes the robust estimate of total project
duration (i.e., the total duration of the project as per the result of the
optimization model), the y-axis represents the delay expressed in percentage
points (D = 100 ∗ (Tr−T )

T
) for each of the instances represented on the x-axis

(sorted in ascending order of delay). Moreover, a significant decrease on delays
as α increases can be observed, which suggests how imperative it is to correctly
select the set of activities to have theirs risks mitigated.

Figure 4.4: Ordered total percent delay by instance for β = 10 and α =
{2, 4, 6, 8}.

Another key fact, evident in Figure 4.4, is that for the instances which
present higher values ofD, increasing α has a progressively lower impact on the
actual decrease of the delay. This is evidence that in complex project networks,
it becomes increasingly difficult to mitigate the impact of simultaneous delays
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in multiple activities. To analyze this fact and the quality of our approach, we
selected the following two representative instances: j3028_10.sm and j3025_-
9.sm. The first instance (j3028_10.sm) represents the instances in which it is
easier to determine the best combination of activities to mitigate, that is, the
instances where a traditional critical path analysis could successfully be used
to perform this task. On the other hand, instance j3025_9.sm represents the
case of complex networks where the traditional critical path analysis would be
expected to perform poorly.

Instance β α T Tr D Mitigated Activities

j3028_10.sm 10 2 59 68.12 15.45% [19, 26]
j3028_10.sm 10 4 59 64.69 9.64% [7, 19, 26, 28]
j3028_10.sm 10 6 59 61.50 4.23% [7, 9, 19, 23, 26, 28]
j3028_10.sm 10 8 59 59.45 0.76% [1, 7, 9, 19, 22, 23, 26, 28]
j3025_9.sm 10 2 50 59.11 18.22% [3, 26]
j3025_9.sm 10 4 50 57.20 14.40% [2, 3, 5, 26]
j3025_9.sm 10 6 50 56.52 13.04% [3, 5, 8, 10, 24, 26]
j3025_9.sm 10 8 50 54.92 9.84% [3, 5, 8, 10, 13, 16, 24, 26]

Table 4.2: Results for instances j3028_10.sm and j3025_9.sm with β = 10 and
α = {2, 4, 6, 8}.

Table 4.2 details the results of the above mentioned selected instances.
In the final column, Mitigated Activities, we provide the set of activities (or
jobs), which were selected as part of the optimal solution obtained by our
model for the corresponding instance and values of β and α. The activities in
bold are those that are part of a critical path (i.e., the activities that would
traditionally be defined as critical). We first noticed that, as α increases,
decreases in delay for j3028_10.sm are higher than those for j3025_9.sm.
Second, all the activities on the solutions for j3028_10.sm are critical activities,
while for j3025_9.sm less than half of them are. These results indicate that in
complex cases, the traditional critical path analysis cannot adequately capture
the combined effects of worst-case durations, highlighting the main advantage
of our approach.

We subsequently analyzed all the results obtained for each tested com-
bination of α and β for both instances. To accomplish this, we built three
different charts to summarize the results of all combinations for which we
solved the model. Figures 4.5 and 4.6 present the charts for j3028_10.sm and
j3025_9.sm, respectively:
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1. The duration heat map chart captures the duration result of our
model for each tested combination of α and β. The x-axis represents the
number of impacted activities (β), while the y-axis denotes the number of
mitigated activities (α). Colors are assigned based on the corresponding
duration in each point (combination of α and β) following a heat-scale
ranging from dark-blue (no delay) to dark-red (maximum delay).

2. Themitigation frequency chart displays the number of times that each
activity (job) is on the optimal solution of the tested combinations, that
is, the frequency that the activity was selected to be mitigated. On the
x-axis, we have the activity numbers ordered by frequency, while on the
y-axis, we have the corresponding frequencies. Red bars indicate critical
activities, whereas blue bars are used for the non-critical ones. This is
somewhat analogous to the evaluation performed in the calculation of
an activity’s criticality index but aims to provide evidence as to how the
traditional analysis could be expected to perform.

3. Gantt chart illustrates the original schedule of the activities, respecting
the precedence relations and with their durations represented by the
bar sizes. The critical activities are highlighted with borders in bold.
The redness of each activity is assigned proportionally to its mitigation
frequency.

The duration heat map of j3028_10.sm (Figure 4.5(a)) demonstrates
that, on a large portion of the tested combinations, the mitigation was capable
of avoiding any delay. In fact, for all combinations with α ≥ 9, it was
possible to maintain the original project duration. As we could expect, 9 is
the exact number of critical activities. Another important fact is revealed by
the mitigation frequency graphic 4.5(b): all critical activities have a higher
mitigation frequency than any non-critical activity.

By examining the graphs for instance j3025_9.sm in Figure 4.6, the
same behavior that was exhibited in Table 4.1 for this particular instance
can be observed. The color variation, demonstrated in its duration heat map
(Figure 4.6(a)) as α increases, is smoother than the one for the j3028_10.sm,
which entails that the impact of increasing the number of mitigated activities
in j3025_9.sm is not as effective as in j3028_10.sm. In fact, in j3025_9.sm,
only for α ≥ 18 it is possible to guarantee that the project will not be delayed –
which is surprising since that there are only 7 critical activities. The mitigation
frequency graphic (Figure 4.6(b)) also provides evidence of the complexity of
this particular instance; many of the non-critical activities have mitigation
frequencies that are comparable – and often higher – than those of critical
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4.5(a): Duration Heat Map 4.5(b): Mitigation Frequency

4.5(c): Gantt Chart

Figure 4.5: Result graphics for the j3028_10.sm instance.

ones. In this case, focusing mitigation measures to avoid delays exclusively
on critical activities would not be an effective strategy to ensure shortest
project duration. Finally, it is noteworthy that the comparison of the two
project networks offers no evidence as to which project is more complex, which
again suggests that our proposed approach might prove useful across projects
with diverse characteristics. In fact, both instances have the same network
complexity index as defined in Kolisch & Sprecher (1997).
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4.6(a): Duration Heat Map 4.6(b): Mitigation Frequency

4.6(c): Gantt Chart

Figure 4.6: Result graphics for the j3025_9.sm instance.
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5
Robust Optimization for Investment-Cost Tradeoff of a
Portfolio of Interdependent Multi-Mode Projects Under
Uncertainty

In this chapter, we consider the problem of determining a cost-effective
resource allocation on strategies to accelerate activities (mode selection or
activity crashing) and strategies to alleviate the potential impact of risks (risk
mitigation) to minimize the total cost of a portfolio of interdependent projects.
We also adopt a risk-based approach to model the uncertainty that affects
the portfolio, with risk events impacting activity durations and costs. Each
portfolio project is also subject to tardiness penalties for delayed completions.
Within this context, we follow the proposed robust methodology by modeling
the uncertain environment as an adversary that selects a worst-case (highest
impact) combination of risks given the decision maker’s actions. The solution
strategy is also developed by following a reformulation scheme that commences
from a bi-level (nonlinear) formulation and results in a cut-generation solution
algorithm. The next two sections are dedicated to present the problem and the
corresponding solution strategy.

5.1
Problem Modeling

5.1.1
Projects, Activities, and the AoN Network

Given a set of interdependent projects P , we represent all project
activities (A) and their corresponding precedence relations (E) in an AoN
network G = (A,E). Nodes represent the activities and the edges precedence
relations. Each activity a is part of a project p ∈ P , with the set Ap representing
the activities of the project p. For each activity a is also defined a set
of execution modes Ma, with each mode m ∈ Ma having a corresponding
duration dma and cost cma . A precedence relation is defined by predecessor and
successor activities i and j respectively, and it is represented here as (i, j).
These activities could be part of the same or different projects. For ease
of presentation, we only use the previously described zero-lag finish-to-start
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precedences; however, our models could be easily adapted to handle generalized
precedence relations with minimal time-lags by applying the transformations
proposed in Bartusch et al. (1988). Each project p has also a due date (τp) and
an associated tardiness penalty factor by delayed time unit (ρp). Given fp, as
the finishing (or completion) time of the project p, the total tardiness penalty
for p is determined by the following equation: max{0, ρp ∗ (fp − τp)}.

In the AoN representation G = (A,E), fp is equivalent to the longest
path from a source dummy activity to the sink dummy activity of project p.
As discussed in the previous chapter, the network G is a DAG, so the prob-
lem of determining the longest path from source to any other node admits
a polynomial-time solution algorithm and a network-flow integer formulation
with a totally unimodular constraint matrix (TUM). As Section 5.2 demon-
strates, our models take advantage of this TUM formulation. In Section 5.1.4,
we provide a detailed example of the AoN network for representing the port-
folio.

5.1.2
Risks, Mitigations and the Robust Approach

The uncertainty faced by the projects is represented by a set of discrete
risk events (R). The materialization of a risk will affect activity costs and
durations. The magnitude of these impacts will depend on the actions taken
by the decision maker to minimize them. These actions correspond to the
implementation of risk-mitigation plans. Then, we assumed that, for each risk
r, the decision maker could implement one of the mitigation plans defined in
the set Lr. Given the set of impacted activities by r (Ir), for each mitigation
plan l, is defined corresponding duration (∆l

ar), and cost (θlar) impacts for
each a ∈ Ir, and its implementation cost (hlr). For ease of presentation, we also
assumed that Lr contains the zero-cost plan of taking no action to minimize
the risk impacts. The decision of which mitigation plan to implement for a
particular risk could be interpreted as a resource allocation decision to define
the risk “impact mode” to which the activities will be subject to. Furthermore,
we defined an investment budget α, which limits the total resource allocation
on activity modes and risk-mitigation plans.

To account for the uncertainty, we used a robust optimization approach
inspired in the work of Bertsimas & Sim (2004). In our approach, the environ-
ment acts like an adversary, which selects the worst-case feasible combination
of risks that maximizes the impact on the total cost of the portfolio for any
given action plan. The feasibility criteria for the combination of risks (risk-
scenarios) entails the user conservatism over the environment and defines the
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search space for the adversary (i.e., the uncertainty set). Let σlr define the cost
that the adversary incurs for materializing a risk r when this risk is in impact
mode l (i.e., given that risk mitigation plan l was implemented). The total
uncertainty budget for the adversary is β. Moreover, the values for σlr should
be such that they are higher for relative low-probability risks and lower for
the relative high-probability ones. Thus, the adversary is limited to choosing
a combination of risks for which the sum of the corresponding σlr does not
exceed β. An increase on β also means an increase on the user’s conservatism
over the environment, as the adversary will expand its capacity of risk materi-
alization. In our model, the amount deducted from the uncertainty budget for
the adversary to materialize a particular risk depends on the chosen mitigation
action. This approach accounts for the decision-dependent uncertainty aspect
of the problem, where a mitigation plan may not only minimize risk impacts
but may also decrease its chance of materializing.

5.1.3
Problem Statement

The problem is stated as follows: given a set of interdependent projects
P , with corresponding multi-mode activities A and precedence relations E,
and a set of uncertain risk events R faced by P , with corresponding mitigation
options L, find the best combination of activities’ modes and mitigation plans
to be implemented (not exceeding α) that minimizes P ’s total cost (i.e., sum of
activities’ costs, mitigations’ costs, and tardiness penalties) of the worst-case
feasible risk scenario that could be materialized by the adversary.

5.1.4
Example

A hypothetical energy company decided to install a new thermal power
plant. To manage this objective, the company developed two projects: a
construction (CP) and an environmental project (EP). The CP controls
the activities related to engineering, construction, and operations startup,
while the EP manages all activities related to environmental licenses and
requirements. Furthermore, the CP has an associated penalty for delays
in delivering the committed energy with their contractors. Its due date is
τCP = 20 and the penalty is ρCP = 10. The EP also has an associated penalty
for delays in fulfilling the environmental compensations committed with the
governmental agency (τEP = 17 and ρEP = 3).

In Table 5.1, we detail the activities and their associated data. Each
activity has a baseline mode that maps the lowest cost longest duration
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Proj. Activity, a Description d1a c1a d2a c2a Pred.

CP Engineering, E Engineering Phase 5 5 - - -
CP Construction, C Construction Phase 10 10 7 20 {E, IL}
CP Operations, O Commissioning and start of op-

erations
3 3 - - {C, OL}

EP Installation Li-
censing, IL

Process of obtaining the envir-
onmental license to start the
construction phase

1 1 - - -

EP Implementation
of Environ-
mental Com-
pensation, IEC

Execute the required environ-
mental compensation projects
(e.g., improve infrastructure of
nearby cities)

7 7 5 14 {IL}

EP Operations
Licensing, OL

Process of obtaining the opera-
ting license to start operations

2 2 - - {IEC}

Table 5.1: Activities data.

mode, which is referred to as mode 1 in Table 5.1. The activities related to
construction (C and IEC) have a crashing mode that reflects the use of extra
workers to decrease their durations. This is called mode 2 in Table 5.1. In
Table 5.2, we describe the main risks and their mitigation plans identified by
the company. Each risk r has two impact modes Lr = {1, 2}. Mode 1 maps
the uncertainty impacts of the decision of not implementing the associated
mitigation plan (i.e., h1r = 0), while mode 2 maps the impacts in the case of
implementing the mitigation. In Table 5.3, the associated uncertainty impacts
are provided.

Risk, r Description Mitigation Plan,
l=2

Ir h2r σ1
r σ2

r

New Environ-
mental Regu-
lations, R1

Chance of ap-
proval of a new
environmental law

Implement in ad-
vance the require-
ments of the pos-
sible new law

{IL, IEC,
OL}

10 40 70

Strike, R2 Chance of strike
of construction
workers

Negotiate a bo-
nus for a success-
ful project deliv-
ery

{C, IEC} 15 50 70

Critical
Equipment
Failure, R3

Chance of failure
in critical equip-
ments (e.g., gener-
ators) during com-
missioning

Buy high quality
equipments

{O} 18 60 90

Table 5.2: Risks data.

The company has a total investment budget of α = 68 and is adopting
a limited uncertainty budget for the adversary of β = 110. Given these
definitions, we present two scenarios of decisions. In the scenario illustrated
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Risk, r Imp. Act.,
a

∆1
ar θ1ar ∆2

ar θ2ar

R1 IL 1 1 0 0
R1 IEC 4 4 2 2
R1 OL 2 2 0 0
R2 C 5 5 2 2
R2 IEC 3 3 1 1
R3 O 6 6 6 6

Table 5.3: Uncertainty impacts data.

in Figure 5.1, the decision maker decided to maintain the original plan of
all activities in their baseline modes and to not implement mitigations. The
second scenario, detailed in Figure 5.2, illustrates the optimal investment
decision. The figures detail the associated worst-case scenario determined by
the adversary along with all the costs that compose the total portfolio cost. The
AoN network is also represented to demonstrate the penalties calculations. In
the network, we present the source dummy activity 0 that is connected with
all activities with no predecessors, while the project dummy sink nodes (sCP
and sEP ) are connected with the corresponding project activities that have
no successors. The edges represent the precedence relations, and their weights
are equivalent to their corresponding predecessors’ durations. In a number of
edges, the weights are presented as sums; this representation reflects the mode
duration summed with the duration impact of a materialized risk. In the first
scenario, the portfolio’s total cost is 167, while in the optimal scenario it is 99,
emphasizing the importance of an effective resource allocation decision in the
proposed problem.

Figure 5.1: Baseline investment scenario.
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Figure 5.2: Optimal investment scenario.

5.2
Mathematical Formulations and Cut-Generation Algorithm

5.2.1
Min-Max Model

We present a min-max bi-level formulation that assumes non-negativity
of all parameters. The first level models the decision maker’s actions, i.e. the
selection of activity modes (x) and risk-mitigation plans (y). The second level
models the adversary’s actions, i.e. the selection of the worst-case feasible risk
scenario (z) for the corresponding first-level decisions x and y. Considering the
definitions presented below, the model follows:

xma binary decision variable that indicates the selection of mode m
for the activity a by the decision maker.

ylr binary decision variable that indicates the implementation of
the mitigation plan l for the risk r by the decision maker.

Π(x, y) function that given x and y decisions, returns the value of the
maximum cost impact of a feasible risk-scenario. This function
represents the objective value of the adversary’s action (i.e.,
the second level objective).

α investment budget.

Min
x,y

∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l + Π(x, y) (5-1)

s.t. ∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l ≤ α (5-2)
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∑
m∈Ma

xma = 1 ∀a ∈ A (5-3)∑
l∈Lr

ylr = 1 ∀r ∈ R (5-4)

xma ∈ {0, 1} ∀a ∈ A,m ∈Ma (5-5)

ylr ∈ {0, 1} ∀r ∈ R, l ∈ Lr (5-6)

The model’s objective is to decide the best combination of activity modes
(x) and risk-mitigation plans (y), which minimizes the total cost of the portfolio
P under the assumption that the feasible risk scenario with maximum cost
impact will unfold. The first and second terms of the objective function (5-1)
account for the costs of activity modes and risk-mitigation plans respectively,
whereas the last term accounts for the cost impact due to the uncertainty,
that is, the cost impact of the adversary’s decision. Constraint (5-2) limits
the resource (or investment) that could be allocated to activity modes and
mitigation plans. This constraint is removed in the case of an unlimited
budget α, then the resulting model will represent the optimal trade-off between
investment and total cost. Constraints (5-3) guarantee that one activity mode
is selected for each activity, while constraints (5-4) ensure that one mitigation
plan is implemented for each risk. To complete our min-max model definition,
we present an optimization model that is equivalent to the second-level decision
represented by adversary’s function Π(x, y). Given first-level decisions x and y,
the model aims at selecting the best combination of risks (z), not exceeding the
uncertainty budget, that maximizes the cost impact due to tardiness penalties
and risk impacts on the activity costs. To account for the tardiness penalties,
the model has to determine projects’ completion times, which is achieved by
using extra network-flow variables and constraints. Next, the required extra
definitions are presented along with the equivalent optimization model Π(x, y):

zlr binary decision variable that indicates the selection (or ma-
terialization) of the risk r on the “impact mode” due to the
mitigation l.

op decision variable that accounts for the time overrun (delay) of
project p.

fp decision variable that accounts for the finishing (or completion)
time of project p.

vp binary decision variable that indicates a due date violation for
the project p.
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upij decision variable that indicates if the precedence arc (i, j) is
part of the longest path from the artificial source node to the
project’s p dummy sink node sp.

zuijprl decision variable that represents the product zlr · u
p
ij.

Ra set of risks that impact activity a (i.e., if a ∈ Ir, then r ∈ Ra)
MDO constant that accounts for the maximum possible due date

overrun, which plays the role of a big-M or “infinity” constant.
The sum of all activity durations and corresponding risk im-
pacts is an example of a possible loose setting for MDO (i.e.,∑

a∈A[
∑

m∈Ma
dma +

∑
r∈Ra

∑
l∈Lr

∆l
ar]).

δ−a set of predecessors of activity a (δ−a = {i | (i, a) ∈ E}).
δ+a set of successors of activity a (δ+a = {j | (a, j) ∈ E}).

Π(x, y) =

Max
z,u,zu,f,o,v

∑
p∈P

ρpop +
∑
a∈A

∑
r∈Ra

∑
l∈Lr

θlarz
l
r (5-7)

s.t.

zlr ≤ ylr ∀r ∈ R, l ∈ Lr (5-8)∑
r∈R

∑
l∈Lr

σlrz
l
r ≤ β (5-9)

fp =
∑

(i,j)∈E

[ ∑
m∈Mi

dmi x
m
i u

p
ij +

∑
r∈Ri

∑
l∈Lr

∆l
irzu

ijp
rl

]
∀p ∈ P (5-10)

∑
j∈δ+i

upij = 1 ∀p ∈ P, i = 0 (5-11)

∑
i∈δ−j

upij = 1 ∀p ∈ P, j = sp (5-12)

∑
i∈δ−a

upia −
∑
j∈δ+a

upaj = 0 ∀p ∈ P, a ∈ A, a /∈ {0, sp} (5-13)

op ≤ fp − τpvp ∀p ∈ P (5-14)

op ≤MDO · vp ∀p ∈ P (5-15)

zuijprl ≤ zlr ∀p ∈ P, (i, j) ∈ E, r ∈ Ri, l ∈ Lr (5-16)

zuijprl ≤ upij ∀p ∈ P, (i, j) ∈ E, r ∈ Ri, l ∈ Lr (5-17)

zuijprl ≥ zlr + upij − 1 ∀p ∈ P, (i, j) ∈ E, r ∈ Ri, l ∈ Lr (5-18)

zlr ∈ {0, 1} ∀r ∈ R, l ∈ Lr (5-19)

upij ∈ {0, 1} ∀(i, j) ∈ E, p ∈ P (5-20)
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vp ∈ {0, 1} ∀p ∈ P (5-21)

fp ≥ 0 ∀p ∈ P (5-22)

op ≥ 0 ∀p ∈ P (5-23)

The first term of the objective function (5-7) accounts for the tardiness
penalties for each project, while the second accounts for the activity cost
impacts due to the materialized risks. Constraints (5-8) ensure that the
corresponding risk impacts will take into account the mitigation plan selected
on the first-level decision, while constraint (5-9) guarantees that the selected
risks do not exceed the uncertainty budget.

Constraints (5-10), (5-11), (5-12), and (5-13) are responsible for the calcu-
lation of project’s finishing times (f) through a multi-commodity network-flow
strategy that determines the longest paths from source node (0) to milestone
sink nodes (sp,∀p ∈ P ). Each project p has its own commodity flow (or path),
which starts at the source node (0), due to constraints (5-11), flows through
the network edges and nodes, due to flow-conservation constraints (5-13), and
arrives at the corresponding sink nodes (sp), due to constraints (5-12). The
path sizes (or project’s finishing times) from source to sink nodes are deter-
mined by constraints (5-10), they are equivalent to the sum of edge weights
that are part of the longest path. As detailed on Section 5.1.4, the weight of
an edge (i, j) is equal to the duration of its predecessor activity (i), which,
in our problem, is dependent of its mode duration and the materialized risk
duration impacts. Moreover, the risk impact on the activity duration is only
accounted for when the risk r, under the mitigation l, is materialized by the
adversary (zlr = 1), which forces the use of the linearization variable zuijprl on
the edge’s weight expression. The linearization zuijprl = zlr ·u

p
ij is guaranteed by

constraints (5-16), (5-17), and (5-18).
Constraints (5-14) and (5-15) are responsible for projects’ delays calcu-

lations (i.e., op = max{0, fp−τp}). The binary variable vp indicates a due date
violation for the project p, given that op is being maximized on (5-7), when
fp < τp, the best choice, on the objective function perspective, is to set vp = 0,
allowing also op to be zero. In the opposite case, when fp ≥ τp, the best choice
is to set vp = 1, allowing op to be set with the proper delay fp − τp.

In its current form, it might be difficult to solving the above-mentioned
problem. To circumvent this difficulty, we performed a series of transformations
and present a cut-generation solution algorithm.
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5.2.2
Risk Scenarios Enumeration Model

The first step toward the solution algorithm is to transform the model
into a one-level model that directly incorporates the adversary’s decision. The
main idea of this transformation is to enumerate all possible feasible risk
scenarios and to directly account for their corresponding objective values in
the model. We considered a feasible risk scenario (ξ), an assignment of values
for the adversary’s decision variables zlr, which respects constraints (5-9), (5-
19) and

∑
l∈Lr

zlr ≤ 1,∀r ∈ R. Next, we extended our definitions to present the
one-level formulation in sequence:

RS set of all feasible risk scenarios.
ξ a feasible risk scenario (i.e., ξ ∈ RS).
T auxiliary variable to account for the maximum cost impact over

all ξ ∈ RS, which is equivalent to the value of the function
Π(x, y).

zξrl constant with the value of zlr in the risk scenario ξ ∈ RS.
LP or LP (x, y, ξ, p), a function that, given the decision maker’s

decisions x and y, and a risk scenario ξ (i.e., adversary’s
decision), returns the corresponding size of the longest path
from the source node (0) to the project’s sink node sp.

f ξp auxiliary variable that accounts for project’s p finishing (or
completion) time in the risk scenario ξ.

oξp auxiliary variable that accounts for project’s p total time
overrun (delay) in the risk scenario ξ.

Min
x,y,o,f

∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l + T (5-24)

s.t.

T ≥
∑
p∈P

ρpo
ξ
p +

∑
a∈A

∑
r∈Ra

∑
l∈Lr

θlarz
ξ
rly

l
r ∀ξ ∈ RS (5-25)

f ξp = LP (x, y, ξ, p) ∀ξ ∈ RS, p ∈ P (5-26)

oξp ≥ f ξp − τp ∀ξ ∈ RS, p ∈ P (5-27)

oξp ≥ 0 ∀ξ ∈ RS, p ∈ P (5-28)

(5− 2), (5− 3), (5− 4),(5− 5) and (5− 6)

Constraints (5-25) are equivalent to a maximum between risk scenario
cost impacts (given x and y). The cost impact of a risk scenario (ξ) is composed
by the penalties due to the project delays and the cost impact on activities. The
cost impact on activities is only considered for the risks under the mitigation
selected by the decision maker (i.e., ylr = 1). The project delays for each
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risk scenario (oξp) are determined by the constraints (5-26) and (5-27). Given
the materialized risks of a scenario (zξrl = 1) and the x (activity modes)
and y (mitigation plans) decisions, we completely define the activities’ final
durations. As such, the function LP uses these durations to assign network’s
final edge weights and, subsequently, calculate the corresponding longest path
from source to the project’s sink node sp. We replaced this function during
next steps, yet, for now, it is enough to understand its role. With projects’
finishing times by scenario (f ξp ), we use constraints (5-27) to properly determine
their corresponding delays (oξp). Using the fact that this new formulation is
a minimization and oξp is also being minimized, when f ξp < τp, the greater
than zero constraint (5-28) will force oξp = 0, while in the case that f ξp ≥ τp,
constraint (5-27) will force oξp = f ξp − τp.

5.2.3
Risk Scenarios Enumeration Model with Network-Flow Dual Constraints

We used a network-flow formulation to define the optimization model
that is equivalent to the function LP . It is a longest-path model with a
proper objective function that assigns the network’s edge weights depending
on activity modes (x), implemented risk mitigations (y), and the risk scenario
(ξ). Given uξijp as the network-flow variable for the arc (i, j), project p, and
risk-scenario ξ, we formulated the equivalent network-flow model for the LP
function as follows:

LP (x, y, ξ, p) =

Max
u

∑
(i,j)∈E

[ ∑
m∈Mi

dmi x
m
i +

∑
r∈Ri

∑
l∈Lr

∆l
irz

ξ
rly

l
r

]
uξijp (5-29)

s.t. ∑
j∈δ+i

uξijp = 1 i = 0 (5-30)

∑
i∈δ−j

uξijp = 1 j = sp (5-31)

∑
i∈δ−a

uξiap −
∑
j∈δ+a

uξajp = 0 ∀a ∈ A, a /∈ {0, sp} (5-32)

0 ≤ uξijp ≤ 1 ∀(i, j) ∈ E (5-33)

As already mentioned, in our AoN network representation, in the ob-
jective function, the weight of an edge (i, j) ∈ E is equal to the duration
of its predecessor activity i. In our approach, the final duration of an activ-
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ity depended on its mode duration and the materialized risks that affect it.
The expression, which is multiplying variables uξijp, on the objective function
(5-29), reflects exactly the final duration of the predecessor activity i as the
edge’s weight of (i, j) ∈ E. Taking advantage of the total unimodularity of the
network-flow constraint matrix, we use a linear model, since its optimal solu-
tion is equivalent to its binary version (Papadimitriou & Steiglitz, 1982). By
the strong-duality property of the linear programming models, the objective
of the optimal dual solution is equal to the objective of the optimal primal
solution (see Papadimitriou & Steiglitz (1982)); therefore, we could also use
the dual version of the presented model as the model to represent the function
LP . The dual version of the longest-path problem has also been used in Ar-
tigues et al. (2013) for a robust version of the RCPSP. Next, we present this
dual version:

πξap decision variable due to the primal network-flow constraint
on activity a, for project p and risk scenario ξ.

γξijp decision variable due to primal greater than zero constraint
on network arc (i, j), for project p and risk scenario ξ.

LP (x, y, ξ, p) =

Min
π,µ

πξ0p + πξspp +
∑

(i,j)∈E

γξijp (5-34)

s.t.

πξjp − π
ξ
ip + γξijp ≥

∑
m∈Mi

dmi x
m
i +

∑
r∈Ri

∑
l∈Lr

∆l
irz

ξ
rly

l
r

∀(i, j) ∈ E, i 6= 0 (5-35)

πξjp + πξ0p+γ
ξ
0jp ≥ 0 ∀j ∈ δ+0 (5-36)

γξijp ≥ 0 ∀(i, j) ∈ E (5-37)

Constraints (5-36) relate to the outgoing arcs from the source node, and
constraints (5-35) relate to the other network arcs.

Using the approach in Bertsimas & Sim (2004), we incorporated this
dual model, which is equivalent to the LP function, directly into the previous
problem model:

Min
x,y,o,f,π,γ

∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l + T (5-38)

s.t.

T ≥
∑
p∈P

ρpo
ξ
p +

∑
a∈A

∑
r∈Ra

∑
l∈Lr

θlarz
ξ
rly

l
r ∀ξ ∈ RS (5-39)
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f ξp = πξ0p + πξspp +
∑

(i,j)∈E

γξijp ∀ξ ∈ RS, p ∈ P (5-40)

πξjp − π
ξ
ip + γξijp ≥

∑
m∈Mi

dmi x
m
i +

∑
r∈Ri

∑
l∈Lr

∆l
irz

ξ
rly

l
r

∀(i, j) ∈ E, i 6= 0, ξ ∈ RS, p ∈ P (5-41)

πξjp + πξ0p + γξ0jp ≥ 0 ∀j ∈ δ+0 ,

∀ξ ∈ RS, p ∈ P (5-42)

oξp ≥ f ξp − τp ∀ξ ∈ RS, p ∈ P (5-43)

oξp ≥ 0 ∀ξ ∈ RS, p ∈ P (5-44)

γξijp ≥ 0 ∀(i, j) ∈ E,

∀ξ ∈ RS, p ∈ P (5-45)

(5− 2), (5− 3), (5− 4),(5− 5) and (5− 6)

This is an MIP model that could be solved directly by commercially
available solvers. A difficulty that arises here stems from the fact that the
model’s size grows exponentially with the number of risks (|R|). Hence, a cut-
generation algorithm, similar to the one presented in the Chapter 4, is proposed
to deal with this characteristic of the model.

5.2.4
Cut-Generation Algorithm

The idea of the algorithm is to only maintain a subset of the risk-scenarios
(SRS ⊆ RS) in the master problem. A separation procedure is called at each
iteration to identify whether a risk scenario not in SRS should be considered.
In this case, the scenario is included in the master problem and the algorithm
proceeds. Otherwise, the x and y obtained by solving the master problem are
optimal. The separation problem is the optimization problem equivalent to the
function Π(x, y). The solution of this problem will return the worst-case risk
scenario represented by the values of variables zlr. The Algorithm 3 outlines
the cut-generation solution strategy in greater detail.
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Algorithm 3 Robust Risk-Mitigation Cut-Generation
1: SRS ← ∅ . SRS initialization
2: ξ ← ∅ . No Risk Scenario
3: LB ← 0 . Lower Bound initialization
4: UB ←∞ . Upper Bound initialization
5: OptSol← ∅ . Optimal Solution initialization
6: MP ← Create master problem from the model of Section 5.2.3
7: while LB < UB and ElapsedT ime < TimeLimit do
8: Add ξ to SRS and its corresponding cut to MP (variables and constraints

related to ξ of the model of Section 5.2.3)
9: MPSol← Solve MP to obtain its current solution

10: LB ←MPSol.obj . LB is updated with the objective value of MPSol
11: if LB = UB then
12: break
13: end if
14: x←MPSol.x . Get x decisions from MPSol
15: y ←MPSol.y . Get y decisions from MPSol
16: SP ← Create separation problem for current x and y according with the

model of Π(x, y)
17: SPSol← Solve SP to obtain its current solution
18: ξ ← SPSol.z . Get current worst-case risk scenario from SPSol
19: Investment←

∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l . Total investment

of x and y decisions
20: UncCostImpact← SPSol.obj . Uncertainty cost impact (i.e., Π(x, y))
21: TotalPortCost← Investment+ UncCostImpact . Total portfolio cost
22: if TotalPortCost < UB then
23: OptSol← x, y
24: UB ← TotalPortCost
25: end if
26: end while
27: return OptSol

5.3
Computational Experiments

Managing a portfolio of interdependent projects is a complex task. Due
to this complexity, these projects are often managed independently by, for
instance, different staff, divisions, or even companies. As a result, decisions
are often taken for each project separately, ignoring the interdependencies
between them. Relying on this fact, we designed a set of experiments, detailed
in Section 5.3.2, to highlight the importance of an integrated decision making
for effective risk mitigation for a portfolio of interdependent projects. A second
set of experiments, elucidated in Section 5.3.2, was designed to assess the
performance of the proposed solution strategy when subject to variations of the
problem’s main dimensions, which are the number of activities and risks. These
experiments also aimed at evaluating the computational feasibility, robustness
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and quality of the proposed approach. In Section 5.3.1, we describe the
methodology applied to generate the set of instances used on the computational
experiments.

5.3.1
Instances

The project portfolios of the experiments’ instances were formed by ran-
domly selecting (without repetition) 4 projects that were generated based on
instances of the multi-mode resource constrained project scheduling problem
(MRCPSP) from PSPLIB (Kolisch & Sprecher, 1997). Each of these projects
is generated by combining activities, precedence relations, and tardiness cost
(ρp) from a particular MRCPSP instance with additional input data required
by our model. Next, we present the generation of this required data for each
project and explain how these projects were integrated in different ways in
each portfolio.

Activity Modes

For each non-dummy activity (a) we defined two different modes. The
first mode, which has lower cost and longer duration, is defined to map the
baseline planning of the activity. Its duration (d1a) is equal to the longest
duration from the corresponding activity modes defined in the MRCPSP
instance. Its cost is set to be equal to its duration (i.e., c1a = d1a), which reflects
the assumption that the cost of the resource performing the activity is one
unit per time unit. The second mode maps the assumption where the decision
maker doubles the resources when performing the activity. Then, this mode
costs the double of the first mode (i.e., c2a = 2 · c1a) and its duration is sampled
from a discrete uniform distribution. Given DU(a, d), as the representation of
a discrete uniform distribution in the interval [a, b], the second mode duration
d2a was sampled from DU(bd

1
a

2
c, d1a − 1), that is, from a maximum resource

effectiveness that is half of first mode duration to a minimum one that is only
one time unit less than first mode duration.

Risks and Mitigations

For each project, risks were generated having two “modes” (i.e., Lr =

{1, 2}) . The first mode (risk mode) represents the case in which no mitigation
action is taken to reduce risk impacts, while the second mode (mitigation
mode) maps a version of the risk when a particular mitigation plan is
implemented. The set of impacted activities by a risk r (Ir) was generated
by randomly selecting 3 activities of the same project. This was adopted only
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to facilitate our analysis, the proposed method does not have this limitation,
the same risk may impact multiple activities from different projects. In what
follows, we describe how each impact mode was generated.

As expected, the cost of the first impact mode was set to zero (i.e.,
h1r = 0). Despite not using risk probabilities directly in our method, we used
this concept here to help describe the rationale applied to generate model in-
put parameters associated with risks. We started by first generating a risk
probability Probr value by sampling from a uniform continuous distribution
(U(a, b)). Its minimum (a) and maximum (b) parameters were defined accord-
ing to a randomly selected “probability category” as detailed in Table 5.4. As
σlr values reflect the difficulty of the “adversary” to materialize a risk, it has
an inverse relation with the risk probability. Then, to map this relation, we
employed the following equation to generate the corresponding value for the
first mode: σ1

r = 100 · (1.0−Probr). To generate duration impacts for each im-
pacted activity (i.e., ∆1

ar, where a ∈ Ir), we first randomly selected an “impact
category” for the risk, and then sampled for each activity a value from the
corresponding discrete uniform distribution (see Table 5.5). The cost impact
for each activity a (i.e., θ1ar, where a ∈ Ir) was generated by multiplying the
corresponding duration impact ∆1

ar with a random resource allocation cost by
time unit sampled from DU( c

1
a

d1a
= 1, d c

2
a

d2a
e). These limits are simply the cost by

time unit of the two activity modes.

Prob. Cat. Min Prob. (a) Max Prob. (b)

Low 0.05 0.35
Medium 0.2 0.4
High 0.4 0.7

Table 5.4: Risk probability distribution parameters for risk mode.

Imp. Cat. Min Imp. (a) Max Imp. (b)

Low 1 3
Medium 3 7
High 6 10

Table 5.5: Duration impact distribution parameters for risk mode.

To generate the second (or mitigation) mode of a risk r, we first
randomly selected, with equal probability, an effectiveness factor for reducing
risk probability (Fprobr) and an effectiveness factor for reducing risk impacts
(Fimpr). These factors were sampled with equal probability from the set
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{0.1, 0.5, 0.7}. The Fprobr factor was applied to reflect a reduction in the risk
probability Probr after the mitigation is implemented (i.e., ProbAfterMitr =

Fprobr · Probr). This reduction was mapped in a higher σ value for the
mitigation mode determined by the following equation: σ2

r = 100 · (1.0 −
ProbAfterMitr). The Fimpr factor was also applied as a reduction factor, in
this case, for the risk impacts in duration and cost of the activities in Ir (i.e.,
∆2
ar = Fimpr ·∆1

ar and θ2ar = Fimpr ·θ1ar, ∀a ∈ Ir). The implementation cost of
the mitigation mode h2r was generated by multiplying the expected value of cost
impact reduction (i.e., EcostImpRedr = Probr ·

∑
a∈Ir θ

1
ar − ProbAfterMitr ·∑

a∈Ir θ
2
ar) with a randomly selected cost factor (Fcostr) sampled from the set

{2.0, 2.5, 3.5} (i.e., h2r = Fcostr · EcostImpRedr).

Portfolio Topologies and Project Deadlines

As mentioned in the beginning of this section, we formed project portfo-
lios by grouping four different projects generated according to the previously
described methodology. To integrate these projects at a particular portfolio, we
used four different topologies of interdependencies between them. Figure 5.3
presents these topologies, where each node represents a project from the port-
folio and each edge from a project p1 to a project p2 represents a finish-to-start
constraint between those projects. This constraint was achieved by adding a
finish-to-start precedence relation from p1’s sink activity to p2’s source activ-
ity. These topologies were proposed to analyze how decisions are influenced by
the degree of interdependency between the projects of the portfolio. We refer
to the interdependency in the sense of the range of direct or indirect impact
effect of a risk. For instance, if a risk of the project A materializes, while in the
Full-Parallel (FP) topology it will only impact itself, in the Sequential (SQ)
topology, it will also potentially impact projects B, C, and D. In that sense,
the degree of interdependency increases in the following sequence: Full-Parallel
(FP), Half-Parallel (HP), Diamond (DD) and Sequential (SQ).

The only missing parameters to be described are the project due dates.
These parameters were set to the baseline durations of each project at each
portfolio and topology. Hence, for each combination of portfolio and topology,
we first calculated the earliest schedule of the activities in the corresponding
portfolio network, assuming all activities in their baseline modes. Then, for
each project p, we assigned the earliest-finish of its sink activity (sp) as due date
τp, which is essentially the project baseline finish at that particular portfolio
and topology.
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Figure 5.3: Portfolio topologies.

5.3.2
Experiments and Results

All tests were performed on a PC with an Intel(R) Xeon(R) E5-2643
CPU with 2 cores of 3.3GHz, 251 GB of RAM and running Fedora 21 (Twenty
One) OS. The code was implemented using Python 2.7.8 and the mathematical
models were solved by IBM(R) ILOG(R) CPLEX(R) 12.5.0.0. We also set the
TimeLimit of Algorithm 3 to one hour for all experiments.

Effectiveness of Integrated Decisions

For this set of experiments, the projects that compose the portfolios were
generated from the MRCPSP instances of the j10.mm set. This set contains
instances with projects having 10 activities (or jobs), each one also having
extra source and sink dummy activities (Section 5.1.4 details the role of these
activities). For each project a set of 3 risks was generated. A total of 100
portfolios were formed by combining these projects, and each of these portfolios
had a total of 40 non-dummy activities and 12 risks. In these experiments, the
adversary uncertainty budget (β) varied between four different levels, with
corresponding values equal to 40%, 60%, 80% and 100% of

∑
r∈R σ

2
r . For each

portfolio, topology and uncertainty budget, three different solution strategies
were tested.

The first strategy was to solve the corresponding global portfolio problem
with the proposed cut-generation algorithm. In this strategy, the investment
budget (α) was unlimited, so its corresponding solution represented the optimal
trade-off between investments and the portfolio total cost, that is, the optimal
integrated global decision. In the results, we refer to this strategy as min-max.
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The second strategy was implemented to emulate the scenario where
decisions are taken independently regarding each project of the portfolio. In
this strategy, the investment budget (α) was also unlimited. For each project,
we created an individual separate problem that was solved to optimality
with the proposed cut-generation algorithm. In the context of each separate
project problem, the uncertainty budget level was defined as a percentage
of the sum

∑
r∈R σ

2
r considering only the subset of risks of the corresponding

project. In addition, projects’ due dates were defined as their baseline durations
(i.e., project duration considering all activities in their baseline modes and
ignoring inter-project precedences). After separately solving the problems of
each project, we combined all the activity modes (x) and risk mitigation
decisions (y) in a portfolio solution. The portfolio total cost (or objective
value) for this solution was determined by summing the objective of the
adversary problem in the integrated network (Π(x, y)) with the investment
in activity modes and risk mitigations. For ease of presentation, we represent
this objective function calculation as follows:

Obj(x, y) =
∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l + Π(x, y) (5-46)

Notice that in this strategy, the portfolio solution (combined x and y of
individual project solutions) is the same for all topologies, as it ignores the
inter-project precedences, while the objective Obj(x, y) is topology dependent,
as Π(x, y) is the determined in the integrated portfolio network. Another
important fact is that even in the FP topology, the integrated objective
evaluation is different from summing the individual objectives of the problems
of each project, as the adversary has a limited uncertainty budget in all
cases. In the integrated evaluation, the adversary could freely distribute its
uncertainty budget for the corresponding level across the risks of all projects
to maximize the global impact. In the case where the problems are solved
individually by each project, the allocation of the uncertainty budget across
projects was fixed and defined by the corresponding level. As this strategy
maps a limitation on how companies often take their decisions, it is also a
comparison baseline for our proposed method. We refer to this strategy as
independent decisions.

As companies have budget limitations to invest in their projects, the
final strategy was to solve the integrated portfolio problem, which was also
done with the cut-generation algorithm, but limiting the investment budget
(α) to the total investment of the corresponding solution obtained by the
independent decisions strategy. This strategy evaluates the performance of our
method when limited to invest at most the same amount of budget that would
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be used if optimal independent decisions were taken for each project. We call
this a min-max limited strategy.

For this set of experiments, all problems of each solution strategy were
solved to optimality within the adopted TimeLimit of one hour. In Table
5.6, we summarize the results of the experiments. The rows of the table refer
to the experiments for a particular uncertainty budget level and topology,
while the columns are divided into strategy and the chosen metrics to be
evaluated. Therefore, each cell of the table summarizes the results across all
100 different portfolios associated with 100 instances with the same topology
and uncertainty budget. The idea is to compare the values of the solutions
obtained by the tested independent decisions and min-max limited strategies
with respect to the optimal integrated solutions obtained by the min-max
strategy. Given x∗ and y∗ as decisions of the optimal trade-off integrated
solution obtained by min-max strategy and x and y decisions of a feasible
solution, we refer to the relative objective difference between those solutions
as Gap, which is determined by the following function:

Gap(x∗, y∗, x, y) =
Obj(x, y)−Obj(x∗, y∗)

Obj(x∗, y∗)
(5-47)

In Table 5.6, columns are defined as follows:

– UBL: uncertainty budget level;

– Top.: topology;

– Avg. Total ET (s): average of total execution times for corresponding
experiments;

– Avg. Gap: average of Gap values for corresponding experiments; and

– Max. Gap: maximum among Gap values for corresponding experiments.
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For the min-max strategy, which is the most time consuming one, all
average running times were under five minutes. This provides evidence of the
computational feasibility of our approach for instances of equivalent or lower
dimensions. Analyzing the results for the independent decisions strategy, the
average and maximum gaps were large for almost all experiments. This result
illustrates the importance of taking integrated resource allocation decisions in
the context of risk management of multiple interdependent projects. It also
indicates that even when taking optimal decisions at the project level, the
effectiveness of these decisions is far from the optimal decisions at the portfolio
level. The results reveal, moreover, that when topology increases its degree of
interdependency, average gaps also increase. Furthermore, the maximum gaps
follow a similar pattern, with DD and FP presenting similar gap values.

Figure 5.4: Gap x Uncertainty Budget x Topology for independent decisions
strategy.

Figure 5.4 illustrates in detail how gap values are distributed by topology
and uncertainty budget level. Each shape in the figure represents the gap
of each of the 100 portfolios of the corresponding strategy. For a particular
topology and uncertainty budget level, the boxes delimit first and third
quartiles, having inside them a horizontal stroke marking the median (i.e.,
second quartile). The thin lines delimit minimum and maximum gap values
that extend from the boxes to at most four times the interquartile range
(i.e., the difference between third and first quartiles). Additionally, gap values
outside this range are represented as dots and are considered outliers for
our analysis. The figure supports the conclusion that as interdependency
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increases, gap values also increase. Therefore, the ineffectiveness of taking
independent decisions at the project level, becomes more dangerous as the
degree of interdependency between projects enhances. We also noticed that
as the uncertainty budget level increases, gaps values tend to decrease. The
reason for this pattern is depicted in the following analysis of the results of the
min-max limited strategy.

Figure 5.5: Gap x Uncertainty Budget x Topology for min-max with limited
investment budget.

Figure 5.5 reflects how gap values were distributed for the min-max
limited strategy. The figure depicts a great decrease in gap values when
compared with the independent decisions strategy. This result is another
evidence of the effectiveness of our approach, by illustrating that with the
same amount of what would be invested by taking optimal decisions at the
project level, the method is capable of providing much more effective resource
allocation decisions. As the only difference between the analyzed strategy
and the optimal strategy is the investment constraint, a gap value higher
than zero means that the decisions taken independently at the project level
underestimated the total amount that should be invested to achieve an optimal
decision. This investment underestimation directly influences the gap results
reflected in Figure 5.5; therefore, gap values at lower uncertainty budget levels
are higher because the investment underestimation is also higher at these levels.

In Appendix A.1, we present detailed statistics for the experiments
described in this section.
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Solution Strategy Performance Assessment

For these experiments, the projects varied between 12, 16, and 20 non-
dummy activities and were generated, respectively, from the j12.mm, j16.mm,
and j20.mm instances of the MRCPSP. The number of risks generated for
each project varied from 3 to 5. For each combination of number of activities
and number of risks per project, we generated a set of 10 portfolios using the
“Diamond” topology. Then, the resulting portfolio instances had a total number
of activities equal to 48, 64, or 80 and number of risks equal to 12, 16, or 20. We
also fixed β (the adversary uncertainty budget) to 60% of

∑
r∈R σ

2
r . The chosen

fixed combination of topology and β is a standpoint from which we evaluated
the proposed method varying on the dimensions of number of activities and
risks. In these experiments, we also adopted an unlimited investment budget
α.

In this set of experiments, the TimeLimit of the cut-generation algorithm
was also set to one hour. In Table 5.7, we summarize the results. Each row of
the table provides the results of the 10 portfolios of a particular combination
of number of activities and risks. The table columns map the chosen metrics
evaluated during the experiments and are defined as follows:

– NR: number of risks of the portfolio;

– NA: number of activities of the portfolio;

– Algorithm Gap (%): the relative distance in percentage between the
upper (UB) and lower bound (LB) of the cut-generation algorithm
(i.e.,100 · (UB−LB)

LB
). An algorithm gap value higher than zero means

that the instance was not solved to the optimality within the imposed
TimeLimit;

– NNO: number of portfolio instances that were not solved to optimality;

– Total ET (s): total execution time of the cut-generation algorithm in
seconds;

– Master ET (s): portion of the total execution time dedicated to solving
the master problem; and

– Separation ET (s): portion of the total execution time dedicated to
solving the separation (or adversary) problem.
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Analyzing the results for the experiments with at most 16 risks, the
method solved to optimality 54 out of 60 instances, and the maximum al-
gorithm gap was only 2.52%. This provides another evidence of the compu-
tational feasibility of the approach. For the experiments with 20 risks, we
noticed similar good performances for 48 and 64 activities, with low average
algorithm gaps, whereas the performance deteriorated for 80 activities. Over-
all, the method was sensitive to both number of activities and number of risks,
but the influence of the number of risks appeared to be stronger. This influ-
ence was clearly observed when analyzing the increase on the total number
of instances not solved to optimality when the number of risks was increased,
that is, for the experiments with 12, 16, and 20 risks, we had, respectively,
a total of 1, 5, and 25 instances that were not solved to optimality. For the
experiments with 48, 64, and 80 activities, we had, respectively, a total of 7,
11, and 13 instances not solved to optimality. Analyzing the execution times,
we noticed that solving the master problem completely dominated the total
execution time of the cut-generation algorithm, with the time spent on solving
the adversary problem only occupying a small portion of the total. These re-
sults provide directions for future research on improvements of the solution ap-
proach. Focus on strengthening the master problem formulation and exploring
decomposition techniques are examples of promising research directions. For
detailed statistics on the experiments of this section, refer to Appendix A.2.

The models and algorithms developed in this chapter tackled a complex
problem that handles several decision dimensions in the context of resource
allocation for project (or portfolio) management. The main idea of approaching
this problem was to develop a general and flexible approach that could be
easily adapted to handle different decision-making settings. For instance, one
could adapt the model to minimize the worst-case sum of project durations
subject to the investment budget constraint. Another adaptation could be
implementing a different model for the uncertainty set that is more suitable
to the decision context. For example, in qualitative risk analysis, risks are
classified into probability categories (e.g., low, medium and high), a possible
uncertainty set modeling approach would be to limit the number of risks that
could be materialized (by the adversary) at each risk category. These two
extensions are presented in Appendix B.
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6
Robust Optimization Based Methodology for Project Port-
folios Planning and Control

In this chapter, we explore how to combine the developed techniques in
a global portfolio planning and control methodology. The main objective is
to propose a method that supports the forecast, prevention, and correction of
negative uncertainty effects in project objectives. The dynamic nature of the
complex environment, which most projects are subject to, is the main factor
driving the design of the referred methodology. In Section 6.1, we present
the portfolio planning and control method itself, and Section 6.2 is dedicated
to a case study of the methodology applied to a hypothetical case of the
construction of two refineries, which were adapted from the example found
in Hulett (2009).

6.1
Methodology

In the development of the methodology, we refer as a project to a subset
of activities which execution is managed by a particular entity. In other
words, it defines a decision-making frontier in the execution’s operational
level. Moreover, a portfolio is simply a set of interdependent projects. This
interdependency may arise from various reasons such as the sharing of resources
or activity precedence constraints. The portfolio is a higher-level decision
instance often connected with companies’ strategic objectives. The complexity
involved in the execution of the work required to achieve these objectives drives
companies to assign projects to different staff, divisions, or even companies.
For instance, as in the example of Section 5.1.4, an EPC (Engineering,
Procurement and Construction) company could create a division that is
responsible for managing the environmental licensing process across all its
portfolio of construction projects. In this division, detailed schedules (or
sub-projects) of the licensing processes are managed separately from their
corresponding construction projects. Despite this specialized division being
effective in the execution of its activities, it is fundamental that the company
properly distributes its resources in a way that maximizes the chance of success
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of the entire portfolio. Integrated resource allocation decisions are fundamental
to effectively plan and control the portfolio’s execution (see Chapter 5). These
integrated decisions are also key aspects of the proposed methodology.

A common strategy of tracking the progress of a project is to establish
periodic control points, namely work progress status (WPS, see Muriana &
Vizzini (2017)). At each control point, the staff managing the project collects
the progress of each activity, changing the amount of remaining work to be
performed and, as a consequence, the project scheduling itself. In the context
of a portfolio, our methodology proposes to have synchronized control points
for all projects that compose the portfolio. At each of them, the WPS of each
project is collected and the integrated resource allocation optimization model
is created and solved to establish a new execution plan.

The effectiveness of the resource allocation model is directly connected
to the quality of mapping and quantification of the uncertainty (i.e., risks and
corresponding impacts) and the subset of actions that could be implemented
to minimize these impacts (i.e., different execution modes for activities and
risk mitigation-plans). Due to the dynamic nature of the referred complex
portfolios, the prior mapping of all possible risks and resource allocation
actions is impractical. Most practical risk management techniques propose
ways to prioritize risks and possible actions (see Hulett (2009)). In our
methodology, we proposed a process, at each control point, to map risks and
actions associated with the most critical activities in terms of the new robust
criterion described in Chapter 4. This process is used to dynamically define
the relevant input parameters for the integrated resource allocation model.
Furthermore, the robust criticality analysis only depends on nominal and
worst-case duration estimates for each activity, which we qualified as a raw
(low-level) quantification of the uncertainty. The proposed mapping of risks
and corresponding impacts on activities is qualified as a high-level estimation
of the uncertainty, as it is used at the portfolio level.

The methodology was also divided into the following two phases: planning
and execution. Both phases have processes occurring at the project or portfolio
levels. In the planning phase, the objective is to devise the initial execution
plan, which may define deadlines and resource constraints. In the execution
phase, the aim is to continuously distribute the available resources to effectively
control the execution of the portfolio. Given these different objectives, the
constructed integrated models for each phase may also differ. Despite this
difference, the models and techniques described in Chapter 5 could be adapted
to implement these different objectives. In the case study presented in Section
6.2, we applied one of these extensions. The following section elucidates the
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workflow of the methodology.

6.1.1
Workflow

Figure 6.1 presents the workflow of the proposed methodology. It contains
rectangles, which represent processes, and arrows that connect inputs and
outputs between them. Next, we provide descriptions of each one of these
processes.

Figure 6.1: Portfolio’s Planning and Control Robust Methodology.

The planning processes that should run for each project are:

– Mapping of activities and precedences: define the set of activities
that should be performed in the context of a project and design the
precedence relations between them. This process generates the project
network (PN);

– Low-level uncertainty estimation: estimate nominal and worst-case
durations for each activity. These estimations could be obtained by the
analysis of historical data or interviewing activity-related specialists as
described in Hulett (2009). They reflect a raw and simple quantification
of the uncertainty affecting the project’s execution and is the basis of the
robust criticality analysis process; and
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– Robust criticality analysis: solve the robust criticality model, pro-
posed in Chapter 4, for different values of α and β in the mapped PN with
corresponding duration estimates. As demonstrated, traditional critical
path analysis fails to capture worst-case disruptions of the uncertainty,
which justifies the use of the robust criterion. The results provide project
duration estimations under different uncertainty conditions (see duration
heat map in Section 4.3) and also rank activities in terms of robust criti-
cality (see mitigation frequency in Section 4.3). This ranking of activities
supports decision makers to decide which activities require focus to ef-
fectively control the project’s execution.

The planning phase at the portfolio level start by collecting all projects’
networks and corresponding criticality analysis results. With this data, the
following processes are executed:

– High-level uncertainty estimation: map the risks affecting the crit-
ical activities in terms of the robust criterion. Some risks may affect
multiple activities at the same or different projects. Corresponding im-
pacts should also be estimated. This estimation could also be obtained
by historical data analysis or interviews with domain specialists. In the
risk management practice, this process is often referred as risk register
(see Hulett (2009)). In this work, it has the role of mapping and quan-
tifying the uncertainty environment at the portfolio level, which is used
as input for the integrated robust optimization model;

– Mapping of resource allocation actions: given mapped risks and
ranked critical activities, this process is responsible for mapping resource
allocation actions that could be performed to minimize uncertainty
impacts. At the activity level, one could map different execution modes
that may decrease corresponding durations. At the risk level, mitigation
plans could be designed to potentially alleviate corresponding impacts.
Each of these actions have their own resource requirements; and

– Robust integrated portfolio planning: precedence relations between
activities at different projects are established to construct an integrated
portfolio network. Considering the objective of the planning phase, re-
source constraints, mapped risks and actions, apply the techniques de-
veloped in Chapter 5 to construct and solve the resource allocation plan-
ning model, over the integrated portfolio network, determining the best
combination of mitigation actions and activity modes, minimizing the
worst-case uncertainty impacts on the portfolio’s objective. The selected
mitigation actions are implemented and the resources are distributed
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across projects in line with the corresponding activity execution modes.
To reflect these decisions, a new scheduling plan is defined for each pro-
ject, which may also establish their deadlines. We call the final output
of this process the baseline execution plan.

The execution phase is triggered after the creation or revision of the
execution plan. As in the planning phase, the initial processes are executed at
the project level, we define them as follows:

– Project’s execution until next control point: following the defined
scheduling and modes of activities, which are specified in the execution
plan, the project is executed until the next control point. Short-term
decisions during this period could be driven by a new robust criticality
analysis. At the end of the control point, the progress of the activities
should be collected, reflecting the project’s execution performance and
the materialization of the uncertainty in the referred period. The result
of this process is a residual project network (RPN), which represents the
remaining work to be performed;

– Low-level uncertainty estimation revision: given the progress of the
activities and the uncertainty realization, new estimates for remaining
nominal and worst-case durations should be defined; and

– Robust criticality analysis: this is the same process as defined in
the planning phase, but with the analysis being performed in the RPN
with revised estimates for activity durations and worst-case uncertainty
impacts.

The execution phase at the portfolio level also starts by collecting all
residual projects’ networks and corresponding criticality analysis results. The
processes that follow are similar to the ones of the planning phase, they are
defined as follows:

– High-level uncertainty revision: given the dynamic nature of the
execution of complex portfolios, a new risk-based uncertainty quantific-
ation should be performed considering the RPN and the new ranking of
criticality for the activities. This process follows the same methodology
previously described in the planning phase;

– Revision of resource allocation actions: the resource allocation ac-
tions should also be revised to reflect the new quantification of the uncer-
tainty and the current progress of activities. This process also follows the
same methodology of the corresponding process of the planning phase;
and

DBD
PUC-Rio - Certificação Digital Nº 1221705/CA



Effective Resource Allocation for Planning and Control Project Portfolios Under
Uncertainty: A Robust Optimization Approach 80

– Robust integrated portfolio control: in this process, the integrated
portfolio network is assembled from the RPNs and corresponding inter-
dependencies. With this integrated network and the current mapping of
risks and resource allocation actions, the robust optimization model, de-
veloped in Chapter 5, is constructed and solved to obtain an effective
resource allocation on activities modes and mitigation plans, that min-
imizes the portfolio’s total cost of the worst-case uncertainty set scenario.
As in the planning phase, the selected mitigation actions are implemen-
ted and the resources are distributed across projects according with the
corresponding activity execution modes. The scheduling of each project
is revised to reflect the new execution plan. The methodology processes
of the execution phase are then re-started to implement this current plan.

In the next section, we provide an example of the application of this
proposed methodology.

6.2
Case Study

The case study described in this section was based on a simplified
refinery construction project extracted from Hulett (2009). We exercised
the methodology on a portfolio for the construction of two twin refineries,
hypothesizing the case where each one would be installed in different regions
of the same construction site. Then, two projects were created, namely north
refinery construction and south refinery construction. These projects share the
same resources and are interdependent, as we detail later. The set of activities
to be performed at each project was also the same. Next, we discuss each phase
of the methodology until the robust integrated portfolio control process for the
first execution control point.

Activity, a d1a d1a + ∆a Predecessors

Preliminary Authorization - North, PA-N 30 42
FEED Design - North, FD-N 350 489 PA-N
Authorization - North, A-N 30 42 FD-N
Balance of Procurement - North, BP-N 650 909 A-N
Vendor Data Available - North, VDA-N 500 700 A-N
Detailed Design - North, DD-N 570 798 A-N
Procurement of LLE - North, PL-N 775 1085 FD-N
Site Work - North, SW-N 100 140 A-N
Construction Before LLE - North, CBL-N 600 840 SW-N
Construction After LLE - North, CAL-N 230 322 CBL-N, PL-N
Commissioning - North, C-N 110 154 CAL-N

Table 6.1: Activities and Precedences for North Refinery Construction.
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The first processes of the planning phase are executed at the project
level. Given the equivalence of both portfolio projects, at this stage, it is
sufficient to analyze only one of them. In Table 6.1, we provide the result
of the first two planning processes: mapping of activities and precedences and
low-level uncertainty estimation. The table specifies for each activity of the
north refinery project: name, code, nominal duration (d1a), worst-case duration
(d1a+∆a), and predecessors. The activities also have name and code suffixes to
specify which project they belong to, which is a necessary differentiation when
analyzing results in the integrated portfolio network.

Figure 6.2: Robust Criticality Analysis Gantt Chart for North Refinery Con-
struction.

The next process of the methodology was to perform a robust critica-
lity analysis on the mapped PN with the corresponding duration estimates. In
Figure 6.2, we provide the Gantt Chart mitigation frequency heat map for the
north refinery project. As detailed in Chapter 4, to build this graph, several
models were solved for different values of α (i.e., number of activities to have
uncertainty mitigated) and β (i.e., maximum number of activities assuming
their worst-case durations) parameters. The redness of each activity is propor-
tional to the number of times it was chosen as part of the optimal mitigation
solution. This indicate which activities are the most essential and on which
one should focus the effort of minimizing the impact of the uncertainty. In
this case, with respect to the robust criterion, the following five activities were
clearly more critical: front-end engineering design (FEED) (FD), procurement
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of long lead equipment (LLE) (PL), construction before LLE (CBL), construc-
tion after LLE (CAL), and Commissioning (C ). The FEED phase focuses on
technical requirements and basic engineering design. PL, CBL, CAL are ac-
tivities involved with the process of acquisition and installation of LLE such
as heat exchangers and heavy-walled vessels. Commissioning is the process of
testing and validating the refinery equipments and processes before starting
client operations. The result of this analysis was used as input for the next
process of the planning phase. Notice that the activity CBL is not part of
the critical path, as we have demonstrated in Chapter 4, traditional critical
path analysis is not always effective to select the best activities to mitigate un-
certainty impacts in the advent of simultaneous worst-case realizations. This
process of filtering activities to focusing on would be more relevant in huge pro-
jects, where it is almost impossible to map all risks and corresponding impacts
for every activity.

Risk, r Prob. σ1
r List of r Impacts in Duration or Cost

= {(a,∆1
ar = θ1ar),∀a ∈ Ir}

Design Productivity may
be lower than expected, R1

0.9 10 (FD-N, 85), (DD-N, 114), (FD-S,
85), (DD-S, 114)

Construction logistics may
be harder than expected,
R2

0.9 10 (SW-N, 15), (CBL-N, 90), (CAL-
N, 34.5), (SW-S, 15), (CBL-S, 90),
(CAL-S, 34.5)

Construction supervision
may be scarce, R3

0.5 50 (SW-N, 25), (CBL-N, 150), (CAL-
N, 57.5), (SW-S, 25), (CBL-S, 150),
(CAL-S, 57.5)

Vendor reps may be scarce
for commissioning, R4

0.35 65 (C-N, 44), (C-S, 44)

LLE suppliers may be busy,
R5

0.7 30 (PL-N, 180), (PL-S, 180)

Table 6.2: Portfolio Risks in the Planning Phase.

At the portfolio level, the first process of the planning phase is to
map and quantify the uncertainty affecting the most critical activities of all
projects. As mentioned, this can be done by analyzing historical data on
similar projects or through interviews with specialists. In our case, the process
was performed for the five previously selected activities and its results are
presented in Table 6.2. Five main risks were identified, and, for each one of
them, a probability of materialization and the set of affected activities with
corresponding impact magnitudes in duration and cost were estimated. The
probability estimation was used as a proxy for establishing the values of the
uncertainty budget requirement parameters σr. In this case, we applied a simple
inversely proportional function σr = (1.0−Probabilityr)∗100. Other functions
may be used to implement the property that as chances of materialization
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increase, σr values should decrease (see Chapter 5). For ease of presentation,
we assumed that impacts in duration were of the same magnitude as the ones
in cost (i.e., ∆1

ar = θ1ar). R1 is a risk connected with design activities (FD
and DD), while R2 and R3 are associated with the construction ones (SW,
CBL and CAL). These risks affect activities of both north and south projects,
which is the same for R4 and R5. This highlights the fact that this process is
performed at the portfolio level. R4 and R5 are related to commissioning (C )
and procurement of LLE (PL) activities.

r Mitigation h2r Prob.
After
Mit.

σ2
r List of r Impacts in Dura-

tion or Cost After Mit. =
{(a,∆2

ar = θ2ar),∀a ∈ Ir}

R1 Extra investment to
guarantee dedicated
high-skilled engineers

588 0.35 65 (FD-N, 35), (DD-N, 57),
(FD-S, 35), (DD-S, 57)

R2 Contract a benchmark lo-
gistics company

446.4 0.1 90 (SW-N, 5), (CBL-N, 30),
(CAL-N, 11.5), (SW-S, 5),
(CBL-S, 30), (CAL-S, 11.5)

R3 Extra investment to
guarantee dedicated
high-skilled supervisors

139.5 0.2 80 (SW-N, 15), (CBL-N, 90),
(CAL-N, 34.5), (SW-S, 15),
(CBL-S, 90), (CAL-S, 34.5)

R4 Allocate extra budget for
vendors exclusivity agree-
ments

26.4 0.2 80 (C-N, 11), (C-S, 11)

Table 6.3: Mitigation Actions for Portfolio’s Planning.

Activity, a d1a c1a d2a c2a

FEED Design - North, FD-N 350 350 270 590
Procurement of LLE - North, PL-N 775 775 650 1108
Construction Before LLE - North, CBL-N 600 600 540 780
Construction After LLE - North, CAL-N 230 230 200 320
FEED Design - South, FD-S 350 350 270 590
Procurement of LLE - South, PL-S 775 775 650 1108
Construction Before LLE - South, CBL-S 600 600 540 780
Construction After LLE - South, CAL-S 230 230 200 320

Table 6.4: Crashing Actions for Portfolio’s Planning.

After the risks mapping comes the process of designing the resource
allocation actions (mitigation plans and activity crashing modes) that could
minimize or absorb uncertainty impacts. A mitigation plan is an action that
could simultaneously alleviate the multiple impacts of a particular risk, while a
crashing action is an extra resource allocation for the execution of an activity
to potentially decrease its duration. In Table 6.3, we present the designed
mitigation actions; the corresponding mitigated risk (r), an implementation
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cost (h2r), probability, uncertainty budget requirement parameter (σ2
r) and

risk impacts in the case of mitigation implementation are specified for each
one. Regarding the execution modes, we considered the baseline modes for the
activities to have equal durations and costs (i.e., d1a = c1a). In Table 6.4, we
provide the activities that could have their durations decreased to d2a by extra
resource allocation resulting in a cost of c2a, which we referred to as crashing
modes. In our case, they reflect the action of increasing the number of workers
performing the corresponding activity, that is, extra engineers (for FD-N or
FD-S ), procurement specialists (for PL-N or PL-S ), or construction workers
(for CBL-N, CBL-S, CAL-N, or CAL-S ).

Given the mapping of risks, mitigations, and crashing actions, the next
process of the methodology is build and solve the robust integrated portfolio
planning model. First, precedence relations between activities of different
projects are identified to create the integrated portfolio network. In our case,
the company identified that commissioning activities of both projects could
not be executed simultaneously, due to the highly specialized and limited team
required to execute them. Then, managers decided that commissioning at the
north refinery would be executed prior to the one at the south, creating a
precedence relation with C-N as predecessor and C-S as successor.

At this planning phase, the company’s objective was to devise a portfolio
execution plan that is robust against uncertainty disruptions and that, simul-
taneously, minimizes the durations of both projects. This initial plan defines
the deadline commitments with clients to start refineries’ operations. Not at-
tending these deadlines will result in penalty charges for the company, so the
robustness of the plan is a critical factor. It is also important to start opera-
tions as soon as possible, which motivates the objective of minimizing project
durations. Within this context, we adapted the portfolio optimization model,
presented in Chapter 5, to determine the best combination of activity modes
and risk-mitigation actions that minimizes the sum of project durations of
the worst-case uncertainty set scenario subject to the investment budget con-
straint. This adaptation is detailed in Appendix B. The adversary uncertainty
budget was set to β = 82.5, which was half of the sum

∑
r∈R σ

1
r . Given that the

baseline cost is
∑

a∈A c
1
a = 7890, we set the investment budget one thousand

monetary units higher than the baseline, that is, α = 8890. The model was
then solved with these parameters.
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The optimal obtained resource allocation solution involved implementing
the mitigation plan of risk R1 (extra investment to guarantee dedicated high-
skilled engineers), execute activities FD-N, FD-S, and PL-N on their crashing
modes, and the others on their baseline modes. In Figure 6.3, we present the
scheduling of the portfolio activities for the optimal planning solution in the
worst-case uncertainty scenario. The projects’ deadlines were set according to
this schedule, providing the necessary protection against the uncertainty. The
north refinery is finishing at time unit (TU ) 1595, while the one at the south
is finishing at TU 1715. The red part of the activity bars represents the risk
impacts of the worst-case scenario. In this case, the materialization of risks
R1, R2, and R5. The blue part of the bars denotes activity durations at the
selected modes, while purple regions signify the difference between baseline
and crashing durations. From the analysis of this schedule, we notice that
crashing activity “Procurement of LLE - North” (PL-N ) prevents both projects
to finish later, given the precedence relation between the final commissioning
activities. This is a clear evidence of the importance of taking integrated
resource allocation decisions for portfolios of interdependent projects.

The final objective of the planning phase is to devise the baseline
execution plan considering the implementation of the resource allocation
decisions of the optimal solution. Figure 6.4 depicts the baseline plan for our
case study. The vertical red lines indicate the deadlines of each project, while
the black ones mark corresponding planned finishes. The differences between
these references are the protection against the uncertainty to which we referred
earlier. The next step was then to follow the devised plan and execute projects
until the next control point, starting the execution phase of the methodology.

Activity, a Progr. da Start Finish Rem.
Dur.

Preliminary Authorization - North, PA-N 1.00 30 0 30 0
FEED Design - North, FD-N 1.00 270 30 360 0
Authorization - North, A-N 1.00 30 360 390 0
Balance of Procurement - North, BP-N 0.17 650 390 540
Vendor Data Available - North, VDA-N 0.22 500 390 390
Detailed Design - North, DD-N 0.19 570 390 460
Procurement of LLE - North, PL-N 0.22 650 358 508
Site Work - North, SW-N 0.00 100 100
Construction Before LLE - North, CBL-N 0.00 600 600
Construction After LLE - North, CAL-N 0.00 230 230
Commissioning - North, C-N 0.00 110 110
Preliminary Authorization - South, PA-S 1.00 30 0 30 0
FEED Design - South, FD-S 1.00 270 30 360 0
Authorization - South, A-S 1.00 60 360 420 0
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Activity, a Progr. da Start Finish Rem.
Dur.

Balance of Procurement - South, BP-S 0.12 650 420 570
Vendor Data Available - South, VDA-S 0.16 500 420 420
Detailed Design - South, DD-S 0.14 570 420 490
Procurement of LLE - South, PL-S 0.18 775 358 633
Site Work - South, SW-S 0.00 100 100
Construction Before LLE - South, CBL-S 0.00 600 600
Construction After LLE - South, CAL-S 0.00 230 230
Commissioning - South, C-S 0.00 110 110

Table 6.5: Progress for Portfolio’s Activities at First Control Point.

At the end of a control point, the progress of each activity is measured,
reflecting the materialization of the uncertainty in the period. The output of
the first process of the execution phase is a progress report, which results in
revised networks for each project mapping the remaining work to be performed.
In Table 6.5, we present the progress report of portfolio activities for our
case study after the first control point at TU 500. For each activity, its
current progress, the planned total duration (da), the actual start and finish
instants, and remaining duration were specified. Figure 6.5 depicts the revised
scheduling mapping the current progress. The green part of activity bars
represents the work performed. By analyzing this schedule, we noticed that risk
R1 materialized and affected design activities. Hence, although the portfolio
was delayed from its baseline plan, both projects still have a slack for their
respective deadlines.

The next processes of the methodology, prior to the “robust integrated
portfolio control”, are dedicated to revise the uncertainty mapping and resource
allocation actions. We excluded their details, since they are similar to corres-
ponding processes at the planning phase. The revision results are demonstrated
in Tables 6.6, 6.7, and 6.8. As we can be observed, the set of risks have changed;
R1 was materialized, while R2 and R3 were discarded. A new unpredicted risk
also appeared (R6 ), mapping the threat of strike of construction workers due
to a bad working environment at the site. Moreover, the employees’ demands
were mapped in the mitigation action to improve the work infrastructure.
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Risk, r Prob. σ1
r List of r Impacts in Duration or Cost

= {(a,∆1
ar = θ1ar),∀a ∈ Ir}

Vendor reps may be scarce
for commissioning, R4

0.35 65 (C-N, 44), (C-S, 44)

LLE suppliers may be busy,
R5

0.7 30 (PL-N, 180), (PL-S, 180)

Strike of construction work-
ers, R6

0.9 10 (SW-N, 60), (CBL-N, 60), (CAL-N,
60), (SW-S, 60), (CBL-S, 60), (CAL-
S, 60)

Table 6.6: Portfolio Risks in the Execution Phase First Control Point.

r Mitigation h2r Prob.
After
Mit.

σ2
r List of r Impacts in Dura-

tion or Cost After Mit. =
{(a,∆2

ar = θ2ar),∀a ∈ Ir}

R4 Allocate extra budget for
vendors exclusivity agree-
ments

26.4 0.2 80 (C-N, 11), (C-S, 11)

R6 Improve construction
work infrastructure

200 0.1 90 (SW-N, 10), (CBL-N, 10),
(CAL-N, 10), (SW-S, 10),
(CBL-S, 10), (CAL-S, 10)

Table 6.7: Mitigation Actions for Portfolio’s Control.

Activity, a d1a c1a d2a c2a

Procurement of LLE - South, PL-S 775 775 675 1078
Construction Before LLE - South, CBL-S 600 600 540 780
Construction After LLE - South, CAL-S 230 230 200 320

Table 6.8: Crashing Actions for Portfolio’s Control.

At this phase, the main objective is to devise a cost-effective execution
plan for the remaining work, taking into account the possible penalties for
delays. This is exactly the problem modeled and solved in Chapter 5. Sub-
sequently, we solved the referred model for the current mapped risks and re-
source allocation actions, adopting the same β value of the planning phase
(82.5), and without the investment constraint, as we wanted to obtain the best
investment-cost trade-off plan. The optimal resource allocation plan obtained
involved implementing mitigation actions for risks R4 and R6. This means
that, at the adopted uncertainty hypothesis, it is cost-effective to improve the
infrastructure at the construction site and to establish exclusivity agreements
with commissioning vendors at the expense of extra fees. The schedule at
the worst-case scenario of the optimal control resource allocation solution is
presented in Figure 6.6.
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Overall, this case study demonstrated important capabilities of the
proposed planning and control portfolio methodology and the developed
techniques of Chapters 4 and 5. The capacity of identifying key activities that
are not part of the traditional critical path and the flexibility of the proposed
robust integrated portfolio model are examples of the show-cased features of
the methods developed in this work.
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7
Conclusions

In this work, we have developed a robust optimization based methodo-
logy for planning and control project portfolios under uncertainty. The method
combines models and algorithms for multiple resource allocation problems in
project (or portfolio) management under a robust optimization perspective.
The common proposed framework applied to these problems models the un-
certainty environment as an adversary that selects the worst-case combination
of risks for any decision maker’s actions. Within this context, the main goal of
the decision marker is to determine optimal resource allocation plans for min-
imizing a particular objective subject to the assumption that the adversary’s
worst-combination of risks will materialize. The approach also provides a way
to control the degree of conservatism of the solutions. For each problem, a solu-
tion strategy was developed through a reformulation scheme from a compact
min-max formulation to a cut-generation algorithm. Several computational
experiments were conducted for each problem. These experiments highlighted
important insights that driven the design of the referred portfolio planning
and control methodology. These experiments also provided evidence of the ef-
fectiveness and computational feasibility of the proposed solution strategies.
The application of the methodology was demonstrated in a case study of a
simplified representation of a portfolio aimed at the construction of two twin
refineries in different regions of the same site. This example illustrated import-
ant capabilities of the proposed methods in a practical context. In general, the
work provides a flexible framework to model complex decision-making reali-
ties in the context of project scheduling and risk analysis. Next, we detail the
concluding remarks for the chapters containing the main contributions.

In Chapter 4, we have developed a new robust optimization based
criticality criterion that accounts for the combined effects of delays in multiple
project activities. The modeled problem aims at determining the activities of
a project that should be the focus of uncertainty mitigation measures – in the
sense that resource and effort should be put into place so as to ensure that
their actual durations equal their original nominal estimates. The proposed
model also provides an upper bound on the project’s total duration under the
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assumed worst-case hypothesis. The developed solution strategy resulted in a
cut-generation procedure with a polynomial-time separation algorithm, while
most criticality indexes, for projects with uncertain durations, demand Monte-
Carlo simulations to be determined. The computational experiments provided
evidence of the relevance for the new criterion by revealing that traditional
critical path analysis fails to capture the combined worst-case effects of the
uncertainty.

In Chapter 5, we have applied the proposed robust optimization approach
to a cost-investment trade-off problem aimed at determining optimal activity
execution modes and risk-mitigation plans for a portfolio of interdependent
projects subject to multiple risks and tardiness penalties for delays. The
computational experiments highlighted the importance of taking integrated
resource allocation decisions in the context of uncertainty mitigation for a
portfolio of interdependent projects. The degree of interdependency between
the projects is a crucial factor in this context. The experiments also provided
evidence of the effectiveness and computational feasibility of the approach.

In Chapter 6, we have detailed the final global portfolio planning and
control methodology. We have proposed a general workflow and described its
main processes and interfaces connecting them. The methodology was designed
to consider the following main principles:

– complex project portfolios are inherently uncertain and dynamic, so it is
impractical to map and quantify all the risks that they may be subject
to in advance;

– focusing uncertainty mitigation measures only on the activities of the
critical path may not be effective under simultaneous worst-case realiza-
tions of activity durations; and

– for portfolios of interdependent projects, it is crucial to devise resource
allocation plans in an integrated context.

The models and algorithms proposed in Chapters 4 and 5 have formed the main
building blocks for implementing the methodology’s processes. The presented
case study demonstrated the application of the methodology, highlighting the
importance of the adopted main principles in a practical context.

7.1
Future Work and Extensions

From the perspective of the robust integrated portfolio model, a future re-
search effort could investigate different approaches for modeling the adversary
uncertainty set. For instance, in a context of qualitative risk analysis, risks
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are classified in probability categories (e.g., low, medium, and high), a pos-
sible uncertainty set modeling approach would be to limit the number of risks
that could be materialized (by the adversary) at each risk category. The ex-
pansion of the modeled constraints, such as to incorporate renewable resource
requirements as in the RCPSP model, and the study of variants in terms of the
portfolio objectives, such as the minimization of the sum of project durations
presented in Appendix B, are also valuable research directions. Furthermore,
the robust optimization model could also be explored in different problems,
which have the same characteristics found in the portfolio resource allocation
problem such as the decision-dependent uncertainty aspect and the simultan-
eous effect of an uncertain parameter on rows and columns of the problem
model.

From the perspective of the solution methods, heuristic procedures could
be developed to determine initial solutions to the cut-generation algorithms.
The objective value of a heuristic solution would initialize the upper bound
(UB) variable, providing a closer initial gap to the lower bound (LB) and po-
tentially decreasing the number of iterations required for convergence. Finally,
focusing on strengthening the master problem formulations and exploring de-
composition techniques are also suggestions for future research.
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A
Summary Statistics of Experiments for the Investment-
Cost Tradeoff Portfolio Problem

A.1
Effectiveness of Integrated Decisions

A.1.1
Instance Parameters

In Table A.1, we present minimum, maximum and average values of
model parameters, that are independent from the uncertainty budget levels
(UBL) and topologies (Top.), of all generated instances of Section 5.3.2. We
omitted c1a, c2a and h1r, as described in Section 5.3.1 c1a = d1a, c2a = 2 · c1a and
h1r = 0. In Table A.2, we present statistics for the due date parameter τp that
is topology dependent.

Param. Min. Max. Avg.

ρp 1 9 4.65
d1a 1 10 7.94
d2a 1 8.0 5.51
σ1r 30 95 64.80
σ2r 51 99 84.69

∆1
ar 1 10 5.13

∆2
ar 0 7 1.89
θ1ar 1 36 10.59
θ2ar 0 25 4.33
h2r 2 147 25.90

Table A.1: Summary statistics of
instance parameters independent
from UBL and topology.

Top. Min. Max. Avg.

FP 19 53 34.92
HP 19 99 52.52
DD 24 141 70.80
SQ 24 185 87.37

Table A.2: Summary Statistics
of τp parameter for each topo-
logy (Top.).

In Table A.3, we present the statistics for the instance parameters that
depend on the UBL, they are the β itself and the investment limit α that is
used by the Min-Max Limited strategy, the other strategies have unlimited α.
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UBL α (Min-Max Lim.) β

Min. Max. Avg. Min. Max. Avg.

40% 342.0 603.0 446.73 366.8 446.0 406.508
60% 415.0 822.0 546.5 550.2 669.0 609.762
80% 405.0 745.0 541.43 733.6 892.0 813.016
100% 394.0 754.0 554.9 917.0 1115.0 1016.27

Table A.3: Summary Statistics of parameters dependent from the uncertainty
budget level (UBL): α used in the tests of Min-Max Limited strategy and β.

A.1.2
Solution Statistics

In this section, we present summary solution statistics of Section’s
5.3.2 experiment for each strategy, uncertainty budget level and topology.
The following tables are related with the cost components of the solutions.
In Table A.4, we present statistics for the investment in activities modes
(
∑

a∈A
∑

m∈Ma
cma x

m
a ). In Table A.5, the presented statistics refer to the invest-

ment in mitigations (
∑

r∈R
∑

l∈Lr
hlry

r
l ), while in Table A.6, the presented val-

ues summarize the total investment (
∑

a∈A
∑

m∈Ma
cma x

m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l ).

In Table A.7, we present statistics for the total cost impact in activities due to
materialized risks (

∑
a∈A

∑
r∈Ra

∑
l∈Lr

θlarz
l
r), while in Table A.8, we summar-

ize the costs due to penalties for delays (
∑

p∈P ρpop). In Table A.9, we provide
statistics for the objective value of each solution, that is, the portfolio total
cost (

∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l + Π(x, y)).

UBL Top. Min-Max Indep. Dec. Min-Max Lim.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

40%

FP 296.0 457.0 369.35 304.0 457.0 370.65 296.0 451.0 357.91
HP 312.0 474.0 388.21 304.0 457.0 370.65 306.0 454.0 367.73
DD 321.0 473.0 398.87 304.0 457.0 370.65 308.0 455.0 371.08
SQ 323.0 519.0 410.09 304.0 457.0 370.65 307.0 455.0 372.18

60%

FP 304.0 467.0 374.83 304.0 434.0 364.66 304.0 458.0 369.3
HP 319.0 471.0 395.32 304.0 434.0 364.66 321.0 470.0 382.92
DD 327.0 481.0 404.03 304.0 434.0 364.66 323.0 470.0 387.09
SQ 327.0 514.0 415.71 304.0 434.0 364.66 315.0 502.0 394.73

80%

FP 313.0 475.0 378.35 304.0 462.0 376.67 313.0 466.0 372.92
HP 323.0 491.0 398.98 304.0 462.0 376.67 320.0 484.0 384.82
DD 325.0 487.0 407.63 304.0 462.0 376.67 323.0 462.0 388.17
SQ 327.0 514.0 420.96 304.0 462.0 376.67 322.0 467.0 394.41

100%

FP 304.0 467.0 378.59 304.0 467.0 378.4 304.0 467.0 377.82
HP 323.0 491.0 400.03 304.0 467.0 378.4 323.0 482.0 386.74
DD 328.0 487.0 407.86 304.0 467.0 378.4 322.0 457.0 390.39
SQ 327.0 528.0 421.98 304.0 467.0 378.4 321.0 477.0 396.4

Table A.4: Summary Statistics of activities modes investment for each
UBL, topology and solution strategy.
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UBL Top. Min-Max Indep. Dec. Min-Max Lim.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

40%

FP 20.0 332.0 136.21 0.0 207.0 76.08 0.0 205.0 80.76
HP 20.0 405.0 163.61 0.0 207.0 76.08 0.0 253.0 75.62
DD 20.0 372.0 173.96 0.0 207.0 76.08 0.0 212.0 73.02
SQ 42.0 391.0 183.35 0.0 207.0 76.08 0.0 230.0 73.12

60%

FP 52.0 332.0 174.43 64.0 405.0 181.84 52.0 332.0 155.7
HP 67.0 338.0 197.57 64.0 405.0 181.84 64.0 338.0 153.28
DD 73.0 405.0 211.09 64.0 405.0 181.84 31.0 360.0 150.6
SQ 64.0 475.0 220.39 64.0 405.0 181.84 31.0 399.0 145.36

80%

FP 36.0 340.0 178.69 32.0 332.0 164.76 36.0 340.0 158.44
HP 85.0 380.0 203.51 32.0 332.0 164.76 36.0 340.0 151.96
DD 100.0 413.0 218.65 32.0 332.0 164.76 20.0 327.0 149.11
SQ 86.0 430.0 225.11 32.0 332.0 164.76 20.0 313.0 144.66

100%

FP 36.0 340.0 176.55 36.0 340.0 176.5 36.0 340.0 175.62
HP 77.0 380.0 199.46 36.0 340.0 176.5 36.0 340.0 163.73
DD 77.0 380.0 215.33 36.0 340.0 176.5 31.0 327.0 160.64
SQ 77.0 430.0 223.2 36.0 340.0 176.5 31.0 313.0 155.79

Table A.5: Summary Statistics of mitigations investment for each UBL,
topology and solution strategy.

UBL Top. Min-Max Indep. Dec. Min-Max Lim.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

40%

FP 316.0 733.0 505.56 342.0 603.0 446.73 316.0 581.0 438.67
HP 332.0 842.0 551.82 342.0 603.0 446.73 332.0 601.0 443.35
DD 361.0 832.0 572.83 342.0 603.0 446.73 338.0 600.0 444.1
SQ 401.0 882.0 593.44 342.0 603.0 446.73 338.0 603.0 445.3

60%

FP 389.0 746.0 549.26 415.0 822.0 546.5 389.0 746.0 525.0
HP 426.0 803.0 592.89 415.0 822.0 546.5 412.0 803.0 536.2
DD 431.0 852.0 615.12 415.0 822.0 546.5 401.0 810.0 537.69
SQ 423.0 925.0 636.1 415.0 822.0 546.5 412.0 819.0 540.09

80%

FP 398.0 796.0 557.04 405.0 745.0 541.43 398.0 744.0 531.36
HP 429.0 811.0 602.49 405.0 745.0 541.43 405.0 743.0 536.78
DD 442.0 854.0 626.28 405.0 745.0 541.43 405.0 744.0 537.28
SQ 460.0 903.0 646.07 405.0 745.0 541.43 405.0 744.0 539.07

100%

FP 394.0 796.0 555.14 394.0 754.0 554.9 394.0 754.0 553.44
HP 429.0 806.0 599.49 394.0 754.0 554.9 394.0 753.0 550.47
DD 448.0 811.0 623.19 394.0 754.0 554.9 393.0 749.0 551.03
SQ 471.0 909.0 645.18 394.0 754.0 554.9 390.0 754.0 552.19

Table A.6: Summary Statistics of total investment for each UBL, topology
and solution strategy.
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UBL Top. Min-Max Indep. Dec. Min-Max Lim.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

40%

FP 87.0 314.0 179.56 122.0 326.0 218.49 106.0 326.0 212.08
HP 81.0 314.0 164.17 105.0 326.0 217.28 129.0 314.0 213.81
DD 76.0 314.0 160.41 105.0 326.0 214.13 132.0 314.0 213.87
SQ 76.0 247.0 155.93 105.0 326.0 209.53 115.0 314.0 215.55

60%

FP 87.0 345.0 198.57 95.0 383.0 208.64 96.0 345.0 211.2
HP 87.0 329.0 185.74 95.0 383.0 207.66 105.0 343.0 213.36
DD 95.0 320.0 178.38 95.0 383.0 206.83 100.0 361.0 215.95
SQ 87.0 320.0 173.71 95.0 364.0 206.41 107.0 361.0 218.74

80%

FP 96.0 369.0 209.68 96.0 353.0 226.59 96.0 369.0 223.13
HP 96.0 369.0 196.51 96.0 353.0 226.52 96.0 369.0 228.53
DD 96.0 346.0 189.6 96.0 353.0 226.39 96.0 351.0 232.32
SQ 94.0 346.0 186.32 96.0 353.0 226.01 103.0 357.0 235.71

100%

FP 102.0 373.0 212.98 102.0 373.0 212.85 102.0 373.0 213.44
HP 102.0 354.0 200.68 102.0 373.0 212.85 102.0 373.0 221.99
DD 102.0 350.0 194.1 102.0 373.0 212.85 102.0 373.0 226.35
SQ 94.0 350.0 189.86 102.0 373.0 212.85 109.0 387.0 231.01

Table A.7: Summary Statistics of activities costs due to risk impacts for
each UBL, topology and solution strategy.

UBL Top. Min-Max Indep. Dec. Min-Max Lim.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

40%

FP 0.0 194.0 72.99 40.0 328.0 156.13 36.0 257.0 126.54
HP 0.0 243.0 63.2 51.0 624.0 248.52 23.0 495.0 178.06
DD 0.0 327.0 47.08 96.0 904.0 386.85 16.0 698.0 229.47
SQ 0.0 225.0 34.06 96.0 984.0 458.88 7.0 738.0 284.96

60%

FP 0.0 186.0 69.93 12.0 236.0 104.91 8.0 186.0 85.13
HP 0.0 325.0 61.11 36.0 457.0 179.42 6.0 355.0 113.88
DD 0.0 408.0 51.13 54.0 676.0 272.8 0.0 498.0 136.59
SQ 0.0 287.0 43.62 54.0 894.0 329.29 0.0 598.0 170.09

80%

FP 0.0 183.0 70.53 4.0 250.0 90.32 4.0 239.0 87.11
HP 0.0 321.0 61.18 8.0 504.0 157.2 0.0 402.0 122.15
DD 0.0 401.0 51.31 8.0 734.0 237.93 0.0 566.0 148.6
SQ 0.0 382.0 45.18 8.0 864.0 288.91 0.0 623.0 185.94

100%

FP 0.0 183.0 71.53 0.0 183.0 71.9 0.0 183.0 72.77
HP 0.0 321.0 63.17 0.0 465.0 128.13 0.0 386.0 108.6
DD 0.0 399.0 53.36 0.0 645.0 202.05 0.0 554.0 131.78
SQ 0.0 362.0 46.54 0.0 707.0 246.29 0.0 570.0 165.67

Table A.8: Summary Statistics of penalties costs for each UBL, topology
and solution strategy.
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UBL Top. Min-Max Indep. Dec. Min-Max Lim.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

40%

FP 580.0 1039.0 758.11 591.0 1157.0 821.35 591.0 1095.0 777.29
HP 596.0 1114.0 779.19 652.0 1424.0 912.53 624.0 1224.0 835.22
DD 592.0 1192.0 780.32 660.0 1673.0 1047.71 605.0 1432.0 887.44
SQ 594.0 1145.0 783.43 660.0 1753.0 1115.14 625.0 1458.0 945.81

60%

FP 621.0 1146.0 817.76 641.0 1162.0 860.05 621.0 1146.0 821.33
HP 632.0 1244.0 839.74 681.0 1328.0 933.58 638.0 1244.0 863.44
DD 631.0 1344.0 844.63 689.0 1498.0 1026.13 638.0 1367.0 890.23
SQ 632.0 1311.0 853.43 691.0 1625.0 1082.2 638.0 1379.0 928.92

80%

FP 632.0 1170.0 837.25 641.0 1198.0 858.34 632.0 1172.0 841.6
HP 650.0 1272.0 860.18 657.0 1358.0 925.15 650.0 1284.0 887.46
DD 649.0 1371.0 867.19 657.0 1588.0 1005.75 650.0 1428.0 918.2
SQ 650.0 1332.0 877.57 661.0 1718.0 1056.35 652.0 1464.0 960.72

100%

FP 632.0 1172.0 839.65 632.0 1172.0 839.65 632.0 1172.0 839.65
HP 656.0 1274.0 863.34 656.0 1300.0 895.88 656.0 1281.0 881.06
DD 655.0 1371.0 870.65 656.0 1480.0 969.8 656.0 1412.0 909.16
SQ 656.0 1376.0 881.58 658.0 1490.0 1014.04 658.0 1432.0 948.87

Table A.9: Summary Statistics of total cost for each UBL, topology and
solution strategy.

A.2
Solution Strategy Performance Assessment

A.2.1
Instance Parameters

In Table A.10, we present minimum, maximum and average values of
model parameters from all generated instances of Section 5.3.2. As previously
mentioned, we omitted c1a, c2a and h1r, as c1a = d1a, c2a = 2 · c1a and h1r = 0.

Param. Min. Max. Avg.

τp 32 199 96.82
ρp 1 19 7.73
d1a 1 10 7.96
d2a 1 8.0 5.54
σ1r 30.0 95.0 64.76
σ2r 51.0 99.0 85.11

∆1
ar 1 10 5.05

∆2
ar 0 7 1.77
θ1ar 1 36 10.36
θ2ar 0 23 4.02
h2r 2 147 26.02
β 564.6 1069.8 817.06

Table A.10: Summary Statistics of instance parameters.

DBD
PUC-Rio - Certificação Digital Nº 1221705/CA



Effective Resource Allocation for Planning and Control Project Portfolios Under
Uncertainty: A Robust Optimization Approach 108

A.2.2
Solution Statistics

In Tables A.11 and A.12, we present solution statistics for the experi-
ments of Section 5.3.2. They show minimum, maximum and average values of
the selected metrics for instances having portfolios with the same number of
activities and risks. The tables’ columns are defined as:

– NR: number of risks of the portfolio;

– NA: number of activities of the portfolio;

– Act. Mod. Inv.: the investment on activities modes
(
∑

a∈A
∑

m∈Ma
cma x

m
a );

– Mit. Inv.: the investment in mitigations (
∑

r∈R
∑

l∈Lr
hlry

r
l );

– Tot. Inv.: the total investment (
∑

a∈A
∑

m∈Ma
cma x

m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l );

– Risk Imp. Cost: the total cost impact in activities due to materialized
risks (

∑
a∈A

∑
r∈Ra

∑
l∈Lr

θlarz
l
r);

– Pen. Cost: the total cost impact due to penalties for delays (
∑

p∈P ρpop);

– Tot. Cost: the portfolio total cost (
∑

a∈A
∑

m∈Ma
cma x

m
a +∑

r∈R
∑

l∈Lr
hlry

r
l + Π(x, y)).

NR NA Act. Mod. Inv. Mit. Inv. Tot. Inv.

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

12
48 409.0 554.0 483.3 86.0 288.0 174.2 495.0 819.0 657.5
64 533.0 655.0 599.3 80.0 265.0 198.0 613.0 879.0 797.3
80 655.0 800.0 719.4 81.0 258.0 160.8 790.0 980.0 880.2

16
48 425.0 542.0 481.9 194.0 362.0 266.0 653.0 855.0 747.9
64 553.0 721.0 654.6 176.0 401.0 298.8 794.0 1097.0 953.4
80 660.0 836.0 736.2 108.0 397.0 230.3 792.0 1233.0 966.5

20
48 410.0 564.0 492.2 303.0 523.0 412.6 728.0 1014.0 904.8
64 543.0 785.0 669.4 112.0 653.0 367.9 759.0 1438.0 1037.3
80 716.0 873.0 784.4 147.0 470.0 314.3 890.0 1265.0 1098.7

Table A.11: Summary Statistics of activities modes investment, mitiga-
tions investment and total investment.
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NR NA Risk Imp. Cost Pen. Cost Tot. Cost

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

12
48 125.0 275.0 180.9 0.0 73.0 20.8 712.0 1037.0 859.2
64 105.0 264.0 179.1 0.0 66.0 15.2 790.0 1103.0 991.6
80 103.0 312.0 185.9 0.0 188.0 21.3 935.0 1364.0 1087.4

16
48 125.0 253.0 197.0 0.0 270.0 74.6 845.0 1266.0 1019.5
64 156.0 324.0 236.0 0.0 81.0 32.7 1026.0 1408.0 1222.1
80 166.0 332.0 246.1 0.0 75.0 11.9 1046.0 1508.0 1224.5

20
48 180.0 421.0 299.9 0.0 414.0 180.5 922.0 1753.0 1385.2
64 230.0 366.0 290.9 0.0 513.0 148.7 1158.0 1890.0 1476.9
80 223.0 416.0 334.5 0.0 104.0 48.9 1215.0 1663.0 1482.1

Table A.12: Summary Statistics of risk impacts in cost, penalties cost and
total cost.
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B
Model Extensions

B.1
Minimizing Worst-Case Sum of Project Durations

This variant of the models presented in Chapter 5, was motivated by
the planning phase of the case study described in Chapter 6. The idea was
to develop a robust plan for the projects that compose the portfolio, while at
the same time aiming completions as earlier as possible. The solution of the
model was used to establish the initial execution plan and project deadlines,
providing the necessary protection against the uncertainty.

Given the models and definitions of Section 5.2, the necessary adaptation
needed, is to remove the cost factors from the objective functions of first
and second levels. Next, we present the resulting models after performing this
adaptation:

Min
x,y

Π(x, y) (B-1)

s.t. ∑
a∈A

∑
m∈Ma

cma x
m
a +

∑
r∈R

∑
l∈Lr

hlry
r
l ≤ α (B-2)

∑
m∈Ma

xma = 1 ∀a ∈ A (B-3)∑
l∈Lr

ylr = 1 ∀r ∈ R (B-4)

xma ∈ {0, 1} ∀a ∈ A,m ∈Ma (B-5)

ylr ∈ {0, 1} ∀r ∈ R, l ∈ Lr (B-6)
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Π(x, y) =

Max
z,u,zu

∑
p∈P

∑
(i,j)∈E

[ ∑
m∈Mi

dmi x
m
i u

p
ij +

∑
r∈Ri

∑
l∈Lr

∆l
irzu

ijp
rl

]
(B-7)

s.t.

zlr ≤ ylr ∀r ∈ R, l ∈ Lr (B-8)∑
r∈R

∑
l∈Lr

σlrz
l
r ≤ β (B-9)∑

j∈δ+i

upij = 1 ∀p ∈ P, i = 0 (B-10)

∑
i∈δ−j

upij = 1 ∀p ∈ P, j = sp (B-11)

∑
i∈δ−a

upia −
∑
j∈δ+a

upaj = 0 ∀p ∈ P, a ∈ A, a /∈ {0, sp} (B-12)

zuijprl ≤ zlr ∀p ∈ P, (i, j) ∈ E, r ∈ Ri, l ∈ Lr (B-13)

zuijprl ≤ upij ∀p ∈ P, (i, j) ∈ E, r ∈ Ri, l ∈ Lr (B-14)

zuijprl ≥ zlr + upij − 1 ∀p ∈ P, (i, j) ∈ E, r ∈ Ri, l ∈ Lr (B-15)

zlr ∈ {0, 1} ∀r ∈ R, l ∈ Lr (B-16)

upij ∈ {0, 1} ∀(i, j) ∈ E, p ∈ P (B-17)

For the risk-scenario enumeration model, the adaptation is to constrain
the values of variable T to the maximum sum of project durations between
all scenarios of RS. After carrying out this adaptation, the resulting model
follows:

Min
x,y,o,f

T (B-18)

s.t.

T ≥
∑
p∈P

f ξp ∀ξ ∈ RS (B-19)

f ξp = LP (x, y, ξ, p) ∀ξ ∈ RS, p ∈ P (B-20)

(B − 2), (B − 3), (B − 4),(B − 5) and (B − 6)

From this point, the function LP (x, y, ξ, p) can be replaced by its dual
and incorporated in the previous model to obtain the one-level mixed integer
programming final model. The dual of LP is detailed in Section 5.2. The
adaptation of the cut-generation algorithm of Section 5.2.4 is straightforward.
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B.2
Multi-Budget Uncertainty Set

The motivation of this extension is to model an uncertainty set for a
qualitative risk analysis mapping. In this context, each risk is assigned to a
probability category (e.g., low, medium and high), instead of given a numeric
probability estimate. Despite loosing precision in the quantification of risk
probabilities, it is easier to place them into categories and also communicate
results from possible analysis.

We propose to define an uncertainty set that limits the number of risks
that could be materialized by the adversary at each probability category. Given
the set of probability categories Ψ, for each impact mode l of a risk r, a binary
parameter σψrl that indicates if the risk r in impact mode l belongs to the
category ψ ∈ Ψ is defined. For each probability category ψ, an uncertainty
budget βψ is also defined. To model the referred uncertainty set, constraint 5-9
should be replaced by the following set of constraints:

∑
r∈R

∑
l∈Lr

σψrlz
l
r ≤ βψ ∀ψ ∈ Ψ (B-21)

Despite to model a qualitative mapping of risks be the motivation to the
proposal of this extension, it also represents a general multi-budget uncertainty
set, where values of σψrl and βψ may not be limited to belong to {0, 1} or Z
respectively.
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