
 91

6
Evaluation of Exploration Tools

The evaluation framework addresses two main aspects of the exploration.

The tactical aspect, which describes the most common atomic operations, and the

strategic aspect that describes composition patterns of tactics to solve complex

information problems.

The tactical analysis can help the designer in assessing what can be

accomplished in the scope of a single action. However, it lacks semantics for

describing exploration strategies, which requires the description of the possible

sequences of actions in time. Therefore, we characterize the possible exploration

strategies allowed by the tool using strategy analyzes. The following procedure

can be used to derive evaluations and comparisons of exploration tools:

1. For each Operation in the framework

1.1. Analyze how many are covered through the interface;

1.2. For each Parameter analyze the range of arguments that can be passed

according the established criteria;

1.3. List possible specializations

2. Build a context-free-grammar to analyze the possible expressions;

3. Derive assessments and possible improvements.

6.1.Tactical Analysis

We describe the tactical aspects in terms of the signatures of each operation,

comprising the description of parameters and result sets. Thus, we devised a set of

attributes to assess the extent of arguments that can be attributed to the parameters

of each operation, based on the formal description of the parameters. We

organized the tactical analysis as a decision tree containing questions and possible

answers for the operators. Figure 20 shows the decision tree for tactical analysis.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 92

Figure 20 - Tactical Analysis Tree

The tactical analysis tree allows the assessment of what operations are

available through the interface and which arguments they can receive, informing

how they can be used in the exploration. The rectangles represent questions for

each operation and the ellipses are the possible answers. The root of the tree is the

main question “What operations are available?” and the possible answers are the

framework operations. Next, there is a set of questions for each operation. As an

example, some operations receive relations as arguments, such as Pivot and

Refine. If the answer for the question “Admit relations?” is “yes”, this leads to

questions concerning both the relation structure, which can be a “single” relation

or a relation “path”, and the relation type, which can be a relation from the

“schema” or a “computed” relation generated along the exploration process. The

descriptions of the analysis questions and answers are as follows:

• “Cardinality?”: characterizes whether the operation is a mapping from

one item to another item (“One-to-One”), one item to many items

(“One-to-Many”), or many items to many items (“Many-to-Many”);

• “Which data Type?”: specifies whether the operation accepts “data” or

“metadata” as input. Our model makes no difference between data and

metadata, i.e., both types can be the input of exploration operations.

The relevance of this characteristic is due to schema learning. As an

example, consider a faceted search interface manipulating a dataset

with hundreds of facets. If the facets could be ranked and refined by

relevance, it could leverage learning for future steps.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 93

• “Which relation type?”: characterizes whether the operation accepts

“schema” relations or “computed” relations, or both;

• “Which relation structure?”: characterizes whether the operation

accepts relation “paths” or only “single” relations. In case of relation

paths, they can be Any or Fixed, where the former means that the user

can use any property path of the dataset, while the latter informs that

only fixed and preconfigured paths can be used.

• “Admit matching functions?”: the refine operation receives matching

predicates for items’ comparisons that can be of two types: “exact” or

“approximate”;

• “Which mappings?”: This question characterizes the types of mapping

functions available for Map operations. The possible types are

“aggregation”, which maps a whole set of items onto a single

aggregated value, “combination”, which combines two or more values,

and “transformation”, which maps a set of items onto another

equivalent set of items that are some kind of transformation of the

original items. As examples of the latter, consider date format

transformations and currency conversions.

As an example of tactical analysis, we choose gfacet. Figure 21 presents a

gfacet screen with two interrelated sets of items.

Figure 21 - pivot and refine in gfacet (HEIM; ZIEGLER; LOHMANN, 2008)

In gfacet the user starts with a keyword search and the result set is added to

the workspace. Then, the user can select a facet, i.e., a relation whose domain is

the items in the set, and pivot. The new set and a relation are also added to the

workspace. Once having obtained many interrelated sets, the user can select an

item from one set and gfacet filters the items that share the relation with the

The number of valid rows together with the number of all rows is shown within
brackets behind the type of information that is contained in a node, for example “Songs
(2/10)” in Figure 2. Deselecting the by default selected button “all” at the top of the
node reduces the visible rows in the list to only valid ones.

Fig. 2. Information can be filtered by selecting elements in a node.

In order to facilitate users’ understanding of how the elements in the nodes are
filtered by certain selections, changes are highlighted by different colors (see Figure 2).
Whenever a certain selection causes a decrease of valid rows in at least one node, this
is reported by a specific color. The color depends on the node where the selection takes
place and provides three different kinds of information:
1. Selections: Selected rows are highlighted in the distinct color of their nodes (see

“Weezer (Blue Album)” in Figure 2).
2. Restrictions: Nodes that are restricted by a selection get surrounded by a ring in the

corresponding color. If they are restricted by several selections from different nodes
they get surrounded by several rings in different colors.

3. Distributions: Labeled edges that connect restricted nodes with the source of their
restriction are colored correspondingly (see “partOf” in Figure 2).

The user can click on an already selected row to deselect it and thereby remove the
restrictions and the corresponding coloring that were caused by this selection.

Hierarchical Facets
Our graph-based approach is particularly suitable for the presentation of relationships.
Even nested relationships can be easily represented by nodes and labeled edges. In
order to access information from distant perspectives, the graph can be gradually
expanded by adding new nodes along the available relations.

Such indirectly related nodes can be used for filtering in the same way as directly
related nodes. If the user selects certain rows to filter directly connected nodes as
described above, the filtering of these nodes automatically leads to an update of again
all directly related nodes and so on. The changes are iteratively propagated through the
graph structure until no further reduction is caused and the elements in the nodes reach
a stable status. A detailed description of this propagation algorithm is beyond the scope
of this paper.

gFacet: A Browser for the Web of Data

54

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 94

selected item. In Figure 21 the user filters all items that are part of the album

“Weezer (Blue Album)”. The main feature in gfacet is the ability to filter sets

separated by two or more relations. Figure 22 shows the tactical map of gfacet.

Figure 22 – gfacet tactical map

From the tactical tree we can draw some conclusions:

• Only two operators are available: Pivot and Refine;

• Pivot’s cardinality is “Many-to-Many”, hence, it is possible to navigate

from multiple items to multiple related items;

• Since the relation structure of the Pivot is “single”, there is no

possibility of pivoting through relation paths;

• Since the relation structure of the refine operation is a “path”, it is

possible to filter items separated by two or more relations, i.e.,

indirectly related;

• It is not possible to refine using similarity measures, such as string

distance, since the value of the match type attribute is “exact”, for the

Refine operation;

• gfacet does not allow manipulation of metadata, which may hinder

schema learning.

Now we can use the same framework to compare gfacet against other tools.

As an example, we analyze the tactical map of the Search Computing tool (SeCo)

(BOZZON, A et al., 2013).

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 95

The search computing tool (SeCo) is an exploration tool based on formal

specifications. Two aspects make SeCo an interesting case of analysis. First, SeCo

design was guided by Kuhlthau's cognitive model (KUHLTHAU, 1991), which is

a well-known episodic model for describing exploration behaviors from the

cognitive point of view. Second, SeCo presents a formal model of exploration

operations, represented as the exploration query language SeCoQL. Figure 23

shows screenshots of SeCo.

(A)

(B)

8 Alessandro Bozzon et al.

(a)

(b)

Fig. 3: Exploratory Process: selection of the entity Movie from the list of available objects, with submission of
relevant search parameters (a); and tabular visualisation of Movie results produced by the system (b).

5 Exploratory Query Language and Protocol

The exploratory process described in the previous sec-
tion is supported by SeCoQL , a SQL-like language and
protocol. SeCoQL sessions consist of consecutive query
steps, where each step builds upon the previous one;

queries operate on access patterns, logical data repre-
sentation which are equivalent to relational tables; each
access pattern is mapped to a specific service inter-
face, providing a physical service implementation. Each
step can be associated with input parameters which
are acquired in the client environment and used by the

8 Alessandro Bozzon et al.

(a)

(b)

Fig. 3: Exploratory Process: selection of the entity Movie from the list of available objects, with submission of
relevant search parameters (a); and tabular visualisation of Movie results produced by the system (b).

5 Exploratory Query Language and Protocol

The exploratory process described in the previous sec-
tion is supported by SeCoQL , a SQL-like language and
protocol. SeCoQL sessions consist of consecutive query
steps, where each step builds upon the previous one;

queries operate on access patterns, logical data repre-
sentation which are equivalent to relational tables; each
access pattern is mapped to a specific service inter-
face, providing a physical service implementation. Each
step can be associated with input parameters which
are acquired in the client environment and used by the

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 96

Figure 23 - (A) Refinement of items by type and relations (movies by Title, Year, Director,

or Genre). (B) Refined movies and relations presented in a tabular format.

In SeCo, the user can start by refining the items s/he wants to explore. The

results are presented as a table that can be further processed by exploration

operations. The user can add related items by selecting relations through the

expansion mechanism. In Figure 24 the user selects related theaters and

restaurants to expand the current table. Moreover, the rows can also be ranked and

grouped.

Figure 24 - Movies table expanded with theaters and restaurants

Figure 25 shows the tactical map of the search computing.

Figure 25 - Tactical map of SeCo

Exploratory Search Framework for Web Data Sources 11

Fig. 6: Exploratory process: combinations of Movies, Theatres and Restaurants visualized in the Table View.

global ranking (which is also represented by sort-
ing combinations in ranking order.) Weights must be
specified for all services, identified by their aliases,
and must sum up to 1.

Listing 1: Example of exploratory interaction in
SeCoQL .

1 1 . DEFINE QUERY NightPlan ($X : Str ing ,
2 $Y : In t eg e r) AS
3 SELECT M.⇤
4 FROM Movie (iGenre : $X , iYear : $Y) AS M
5 USING IMDB MOVIES,
6 LIMIT 5
7

8 2 . TAKE NightPlan GET 1 ,2
9

10 3 . AUGMENT QUERY NightPlan ($U : Str ing ,
11 $V : Str ing , $W: St r ing) AS
12 SELECT M.⇤ , T.⇤
13 FROM (NightPlan JOIN Theatre (iAddress :

$U , iC i ty :
14 $V , iCountry : $W) AS T
15 USING GOOGLE DISPLAYING ON M. T i t l e=
16 T. T i t l e)
17 RANK BY (T 0 . 5)
18 LIMIT 10
19

20 4 . BACKTRACK NightPlan
21

22 5 . BACKTRACK NightPlan
23

24 6 . MOREONE NightPlan ON M
25

26 7 . TAKE NightPlan GET 6 ,7 ,9
27

28 8 . AUGMENT QUERY NightPlan ($U : Str ing ,
29 $V : Str ing , $W: St r ing) AS

30 SELECT M.⇤ , T.⇤
31 FROM (NightPlan JOIN Theatre (iAddress :

$U , iC i ty :
32 $V , iCountry : $W) AS T
33 USING MRMOVIETIMES ON M. T i t l e=
34 T. T i t l e)
35 RANK BY (T=0.5)
36 LIMIT 20
37

38 9 . AUGMENT QUERY NightPlan ($W: St r ing) AS
39 SELECT M.⇤ , T.⇤ , R.⇤ , Tota lPr i ce=
40 T. Pr i ce + R. AvgPrice
41 FROM (NightPlan JOIN Restaurant (
42 iCountry : $W,
43 iCategory : ‘ ‘ Vietnamese ’ ’) AS R
44 USING YQL LOCAL ON T. Address=R.

Address AND
45 T. City=R. City)
46 WHERE R. Rating>4
47 RANK BY (R=0.2)
48 LIMIT 40 TUPLES
49

50 10 . RERANK NightPlan (M=0.3 , T=0.2 , R=0.5)

6 Architecture

The exploratory search framework is deployed as part
of the Search Computing system, which supports also a
conventional query interface for SeCoQL and an inter-
preter of natural language queries. The system includes
a number of software components whose detailed de-
scription is outside of the scope of this paper [15]; in
this section we briefly describe the software architec-

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 97

The conclusions we can draw from the map are the following:

• SeCo has a more complete set of operations than gfacet: Pivot, Refine,

Group, Rank, and Map, noting that Map is uncommon among

exploration tools.

• Despite the big difference in result set presentation between SeCo and

gfacet (tabular vs graph based), the Pivot operation has the same

characteristics in both - it does not admit relation paths and are

restricted to schema relations.

• There is a difference in the relation type of the Refine operation. In

SeCo, Refine accepts, not only schema, but also computed relations.

This is due to the possibility of creating new columns, not provided by

the schema, and using their values in filtering actions.

• SeCo allows mappings to combined fields based on two or more fields,

such as "TotalPrice = Theatre.Price + Restaurant.AvgPrice" (BOZZON,

A et al., 2013). However, as far as we could determine, it is not

possible to map using aggregation functions.

Faceted search interfaces all share many tactical aspects. Figure 26 presents

a unified tactical tree of the faceted search interfaces analyzed, i.e., each interface

is a subtree of Figure 26.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 98

Figure 26 - Tactical map of faceted search tools

The first tool featuring the faceted search paradigm was Flamenco

(HEARST et al., 2002). Flamenco was restricted to Refine operations.

Refinements were possible only through single relations and fixed paths,

described by the branch “Which relation structure?→Path→Which path

type? →Fixed” in the tactical tree. Many refinements could be nested, hence

forming the conjunction of filters. Since Pivot was not available, the focus of the

exploration was restricted to sequences of refinements over single type of item

e.g. architectural images or Nobel Prize winners.

Later tools augmented the expressivity of Refine by allowing refinements

over any relation path, described by the branch “Path→Which path type? →Any”.

As an example, BrowseRDF allows the user to filter items based on properties of

related items, such as, filtering “publications by venue’s release year”. A

shortcoming of those tools is the impossibility of filtering different sets of items,

such as changing from the set of publications to the set of venues and filter by

release year and areas of interest, or change to the set of authors and filter by

name. Therefore, tasks requiring manipulation of different types of items, carried

out on heterogeneous datasets, were not possible in these tools under the same

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 99

configuration. Therefore, the Pivot operation was introduced to allow the user to

change the filtering focus, for example, from a set of publications to a set of

authors or publication venues. BrowseRDF, /facet, gfacet, and Rhizomer are

examples allowing the coexistence of Pivot and Refine in faceted search. These

tools only allow pivoting over single relations, described by the branch “Which

Relation Structure?→Single”. More recent faceted tools, such as SemFacets and

Sewelis, have included pivoting over relation path, captured in the branch “Which

Relation Structure→Path→Which path type?→Any”.

Due to the increasing size and heterogeneity of public datasets available,

Rank and Refine over metadata were introduced in some faceted interfaces, thus

allowing the user to better organize big amounts of data types and dimensions.

Facets could be ranked by some relevance measure, such as popularity or entropy

(COHEN; SCHWABE, 2012), and also be the target of a keyword refinement

(branch “Rank→Which data type?→Metadata”).

The Unite operation was also included to allow the expression of disjunctive

filters. Henceforth, queries such as “authors whose birthplace is UK or USA”

became possible.

The tactical map is helpful to analyze the operations set and their individual

applications. However, it lacks expressivity for capturing the interactions between

the operators and the possible compositions that can be formed during the

exploration. We fill this gap with the strategic analysis of the operators.

6.2.Strategic Analysis

The strategic analysis step aims at assessing the expressiveness of the tool

from the point of view of the range of strategies the user can employ to solve

exploration problems. The range of different functional compositions that is

allowed by the tool when we abstract interface and interaction details defines the

possible strategies. Once the operations framework is defined, we represent the

dependencies between the operations using context free grammars, enabling

analyses such as which operations can be the input of another.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 100

6.2.1.Notational Conventions

• Nonterminal symbols: we use capital letters for non-terminal symbols: S,

R, O, etc.

• Terminal symbols: terminal symbols are operation names represented in

lowercase and Italic: intersect(), unite(), refine(). Let “s0” be a terminal

representing the starting point or a dataset reference.

• Production rules: defined as non-terminal-symbol replacements.

Consider the following examples and some possible derivations (sentences

in the grammar), respectively:

o R → refine(R) | s0

§ refine(refine(s0))

o S → refine(S) | pivot(S) | s0

§ refine(pivot(s0))

§ refine(pivot(pivot(s0)))

• Operation arguments: even though we use filters and relations to

leverage the understanding of the examples, for the sake of simplicity, the

grammars are described only in terms of the input arguments of the

operations. Other types of arguments, such as refine filters or pivot

relations are abstracted.

• Refinements through compositions: some faceted systems allow the user

to pivot multiple times, using schema relations, and apply a restriction at

some point. This restriction is also applied to the previous sets. Let s0 be a

set of publications. The following composition illustrates this case:

refine(pivot(pivot(s0, :Author), :BirthPlace), equals(:PartOf, “Brazil”))

The composition above expresses a user navigating from s0 to the set of

authors, and then, to their birthplaces. The birthplaces are restricted to those being

a location in Brazil. In order to also restrict the set of authors born in the filtered

birthplaces and, by propagation, the initial set of papers, we use the symbol “!”

appended to the refine operation. Therefore, the following notation represents a

back propagation of the birthplace restriction to all intermediary sets:

refine(pivot(pivot(s0, :Author), :BirthPlace), equals(:PartOf, “Brazil”))!

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 101

• Branching: some tools, such as gfacet and Parallel Faceted Browser,

allow repeated applications of exploration operations over the same set of

items, where the results of an application does not interfere in the results

of the next, i.e., the applications are independent from each other.

Consider the case of a user applying two independent refinements to a

hypothetical set of publications P in our framework:

o P1 ← P.Refine(equals(:Author, a1))

o P2 ← P.Refine(equals(:Author, a2))

Figure 27 shows a graphical view of the applications.

Figure 27 – Independent refinement executions.

The set P1 contains publications of the author a1 and the set P2 contains the

publications of the author a2. The application of the second refinement is

independent of the application of the first refinement since both refinements have

the set P as input. Moreover, both P1 and P2 are accessible through the interface

for further analyzes. We introduce the operator branch(inputExp Exp1, Exp2) in

the grammar to cover these cases. branch(InputExp, Exp1, Exp2) receives an input

expression InputExp and two expressions Exp1 and Exp2, and returns two

independent results. The input of both Exp1 and Exp2 is the result set of InputExp.

Let the terminal irs denotes the result set of the input expression. The refinements

of Figure 27 can be expressed in the following way:

branch(P, refine(irs), refine(irs))

The branching operator should not be confused with the set operators unite,

intersect, and diff. The set operators receives two input expressions and return a

single result set that is a combination of the two inputs.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 102

6.2.2.Evaluation

In order to test our evaluation method, we choose a set of 13 faceted search

systems and show how we can categorize them in terms of their strategy

grammars. We organize them in increasing order of expressiveness.

For each grammar we present task examples and an assessment. Consider

the following hypothetical dataset for the examples:

Let s0 be a dataset of publications having the relations :Author = {<p1,

a1>, <p1, a2>, <p2, a3>}, :Year = {<p1, 2002>, <p2, 2005>, <p3, 2007>},

:Venue = {<p1, ISWC>, <p2, ISWC>, <p3, WWW>}. The description of the

grammars and the examples are as follows:

Grammar: faceted search version 1

The following grammar is shared by Flamenco, mspace, and most of the e-

commerce websites:

S → refine(S | s0)

o Example: find papers authored by author a1 that were published in

ISWC in 2002:

refine(

refine(

refine(s0, equals(:Year, 2002)),

equals(:Venue, ISWC)

),

equals(:Author, a1)

)

o Assessments: The grammar of the most traditional faceted tools is

restricted to sequences of applications of the refine operation.

Thus, the task is described in terms of multiple intersections of

refinements. The exploration language, therefore, is very limited

since disjunctive restrictions are not allowed. Moreover, it is

impossible to employ any kind of browsing due to the absence of

pivoting.

o Difficult tasks to Solve:

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 103

§ Disjunctive Filtering: e.g. find papers published in ISWC

or ESWC;

§ Comparisons: e.g. trace similarities and differences of the

publication venues of two researchers;

§ Browsing hierarchies of concepts: e.g. discover and

describe all knowledge areas that are sub-areas of

“Semantic Web” area.

Some variations of this grammar include branching, which allows the user

to apply independent restrictions on a set of items for comparison purposes, as it

happens, for example in Parallel Faceted Browser:

S → branch(s0, S, S) | R

R → refine(R | s0)

With the branch operation, we can apply two independent restrictions and

draw comparisons more easily since the two sets will be available through the

interface. Discovering similarities and differences between two sets of items can

be very difficult without set operations. However, for small sets, if the tool allows

branching, the user could generate two sets and draw the comparisons by

visualizing the sets.

For example, let s0={ISWC, ESWC, WWW, KESW} be a set of venues,

:VenueOf = {<ISWC, p1>, <ESWC, p2>, <WWW, p3>, <KESW, p4>} be a

relation between venues and papers, and the relation :Author = {<p1, a1>, <p2,

a1>, <p2, a2>, <p3, a2>, <p4, a2>} be a relation between the publications and

their respective authors. The task of comparing the publication venues of two

researchers, without set operations, can be solved more easily in the following

way:

branch(s0,

refine(irs, equals(:VenueOf:Author, a1)),

refine(irs, equals(:VenueOf:Author, a2))

)

Since the two result sets of venues (venues of a1 and venues of a2) are

small and will be accessible through the interface, the user could draw the

comparison more easily. Without branching, this task becomes more complicated

since the user should: 1- apply the first restriction to obtain venues of a1; 2 - use

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 104

an external tool to record the venues; 3 - remove the restriction for a1; 4 - apply a

new restriction to obtain the venues of a2, and finally draw the comparisons with

the recorded venues of a1.

Grammar: faceted search version 2

The following grammar describes the possible strategies in /facet, tfacet,

gfacet, and Rhizomer.

S → P | R | branch(S, P, P)

R → refine(R | P | s0)!

P → pivot(R | s0 | P)

Consider the following task examples that illustrate the grammar

derivations:

o Task 1: find authors of papers published in ISWC in 2002:

pivot(

refine(

refine(s0, equals(:Year, 2002)),

equals(:Venue, ISWC)

),

:Author

)

o Task 2: find papers whose authors’ affiliations are PUC-Rio. Let

:Abbr be the relation between affiliations and their abbreviated names:

refine(

pivot(

pivot(s0, :Author),

:Affiliation

),

equals(:Abbr, “PUC-Rio”)

)!

o Assessment:

The possibility of combining Pivot with Refine augmented considerably the

expressivity of the tools. Now, we can browse through different data types and

relations and apply restrictions to more than one type of item. In the task example

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 105

2, the user changed the focus from papers to authors, and then to affiliations

(pivot(pivot(s0, :Author), :Affiliation)). Next, the set of affiliations was filtered to

the one having “PUC-Rio” as abbreviated name, and the restriction was

propagated to the intermediary sets as a result of the operator “!” described in the

previous section.

Although the same result could be achieved through a single step just by

restricting the property path :Author:Affiliation:Abbr to “PUC-Rio”, pivot is

strongly related to browsing and schema learning. Consider a user that does not

know the data schema. His/Her strategy can be to start by browsing through the

data types and relations and, once the connection between papers and affiliations

is learned, a refinement over the relation path can be applied. In exploration tasks,

the user is less likely to take the shortest strategy due to the inherent uncertainty

and lack of knowledge.

o Difficult Tasks:

1. Disjunctive filtering

2. Comparisons between large sets of items due to the absence of

set operations.

A relevant fact to notice about the task 2 is that, although some tools feature

the same grammar of operations, the refine operation cannot be propagated to the

intermediary sets i.e. the operator “!” is not present, which makes this strategy

unfeasible. This is the case of Parallax and Humboldt.

Some faceted interfaces also feature a union operation, allowing disjunctive

filters. The grammar with the Unite operation is as follows:

S → P | R | branch(S, P, P)

R → refine(R | P | s0)! | unite(R, R)

P → pivot(R | P | s0)

Consider the following examples of tasks using the Unite operation.

o Task: find ISWC papers published on 2002 or 2005 by PUC-Rio

authors:

refine(

pivot(

pivot(

union(

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 106

refine(s0, equals(:Year, 2002)),

refine(s0, equals(:Year, 2005))

),

:Author),

:Affiliation),

equals(:Abbr, “PUC-Rio”)

)!

Grammar: faceted search version 3

The most expressive faceted search environments, to the best of our

knowledge, are Sewelis and SemFacet. They extended the grammar by including

the set operations Intersect and Unite and allowing complex expression on both

inputs of the branch, unite and intersect operations:

S → branch(S, S, S) | O| R |R! | P

O → intersect(S, S) | unite(S, S)

R → refine(O| R | P | s0)

P → pivot(O| R |P | s0)

Consider the following example of a complex intersection:

o Task: find papers published in ISWC or ESWC whose authors’

affiliations are PUC-Rio or UFRJ:

intersect(

union(

refine(s0, equals(:Venue, ISWC)),

refine(s0, equals(:Venue, ESWC))

),

union(

refine(s0, equals(:Author:Affiliation, PUC-Rio)),

refine(s0, equals(:Author:Affiliation, UFRJ))

)

)

o Assessment:

Considering faceted search environments, the version 3 grammar is the most

expressive, allowing any combinations of the operators and branching. The

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 107

limitations of this grammar are related to the tactical aspects, since operations

such as, Rank, Correlate, Map, and Group, are missing. Table 1 presents the

summary of strategies allowed by faceted search environments.

Table 1 – Summary of tools’ exploration grammars.

Tool Grammar

Flamenco, Mspace, Faceted Wikipedia

Search

S → refine(S | s0)

Parallel Faceted Browser S → branch(s0, S, S) | R

R → refine(R | s0)

Humboldt, Parallax S → P | R

R → refine(P | s0) | intersect(R , R)

P → pivot(R | s0 | P)

/facet, gfacet, tfacet, Rhizomer,

BrowseRDF

S → P | R | branch(S, P, P)

R → refine(R | P | s0)!

P → pivot(R | P | s0)

Sewellis, SemFacet S → branch(S, S, S) | O| R |R! | P

O → intersect(S, S) | unite(S, S)

R → refine(O| R | P | s0)

P → pivot(O| R |P | s0)

6.3.Evaluating Business Intelligence and Visualization tools

Our evaluation is not only useful to analyze faceted search systems but also

visualization and business intelligence tools. In order to demonstrate this

possibility we evaluate Tableau12, which is a leading reference in the commercial

business intelligence and data exploration tool market. It presents a rich set of

operators, covering the majority of the exploration tactics that we defined in our

framework.

12 http://www.tableau.com/

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 108

Tableau is a visual processing tool, where data can be combined,

aggregated, and refined among multiple dimensions. Figure 28 shows an example

of the amount of sales aggregated by country and customers’ type (“Corporate” or

“Personal”).

Figure 28 – Tableau’s main screen

Tableau basically allows visual data analysis by dragging and dropping

dimensions and measures to visualization panels. In Tableau “Dimensions” are

literal data attributes and “Measures” are numerical fields that can be the input of

aggregation functions, such as sum, mean, count, etc. When the user drags a

measure to the row or column position of the visualization panel, the values are

aggregated over the chosen dimensions. We interpret this feature as a

composition of Group and Map exploration operations.

In Tableau, the user starts the exploration by loading the data from a data

source and dragging a table to the view, such as the one presented in Figure 29A.

From the starting view, the user can filter rows and/or join the table with related

ones for browsing, as Figure 29B shows. The pivoting is carried when the user

drags a related table and Tableau adds the join results to the table view.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 109

Figure 29 - Tableau's initial table view presenting the table Person (A); A join between the

tables Person and OrgPerson.

It is also possible to refine the data by dimensions’ values, as Figure 30

shows. By dragging a dimension to the “Filter” panel, the user can select filtering

values and the visualization will be refined accordingly. Tableau also allows the

creation of computed fields as combinations or transformations of fields in the

original dataset. Computed fields can be used in the visualization and filtering

panels in the same way.

Figure 30 – Filters definition view in Tableau

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 110

The particularities on expressivity, though, are captured by a deeper analysis

on the available tactics. The tactical map of Tableau is presented in Figure 31.

Figure 31 – Tableau’s tactical map

The assessments that can be drawn from Tableau’s tactical map are as

follows:

• Group: although the grouping action in tableau is quite expressive

since it is possible to group by multiple relations, which can come

from the data model, be computed or a property path, it is not

possible to group by approximated relations, such as distance

relations for clustering;

• Refine: the matching predicates are only exact comparisons. Filtering

by some sort of similarity measure is not possible;

• Correlate: there is not a correlation operator in Tableau. Therefore,

discovering relationships between two sets of items is not possible.

This operation could be useful when the user needs, for example, to

discover join possibilities between two tables;

• The operations can only be applied to data items. Therefore, ranking

or filtering meta-data items, such as relations, is not possible.

From Tableau’s tactical map we can assess the tactical support to

exploration tasks but it says nothing about how the tactics can be composed in

order to form solution strategies. In order to do that we build a grammar that

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 111

precisely specifies the possible tactical compositions that can be achieved in

Tableau. Tableau’s exploration language is as follows:

S→ P | R | A

P→ pivot(P| R | s0)

R→ refine(P | R | s0)

A→group(A | s0) | map(A | s0) | rank(A) | branch(A, A, A) | refine(A) | T

T → U | I | D

U → unite(refine(A), refine(A))

I → intersect(refine(A), refine(A))

D → diff(refine(A), refine(A))

From Tableau’s grammar we can identify some particularities. Since “s0”

stands for the starting point, the user can start the exploration in four ways: by

pivoting rows to a related set of rows using join keys (Figure 29B); by grouping

items among dimensions, accomplished by dragging and dropping dimensions to

the visualization panel; by refining the data or combining the refinement results

with set operations; by mapping original fields onto computed fields.

The pivoting action in Tableau can only be carried out over the results of

another Pivot or a Refine operation. These sequences of Pivot and Refine are

carried out on the initial table view (Figure 29) as a data preparation step for the

remaining operations that would be carried out in the aggregation view (Figure

28). When the exploration achieves the rule A of the grammar, the pivoting

actions will not be available. Nonetheless, the user still can join tables for

aggregation purposes (combinations of Group and Map)

The branching operation in Tableau is possible by creating new sheets from

the actual state. By doing this, the user can apply new operations in the new sheets

without altering the previous one.

An expressivity limitation in Tableau concerns the set operations. The

union, intersection, and difference operations can only be applied to the results of

refinements. Therefore, computing intersections and differences between distinct

tables or groups for comparison purposes is not possible. Another restriction is the

impossibility of applying disjunctions of filters on different relations and

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

 112

conjunctions of filters over values of the same relation, such as the following

derivations:

intersect(

refine(equals(:Author, :Tim_Berners-Lee)),

refine(equals(:Author, :James_Hendler))

)

unite(

refine(equals(:fatherOf, :Albert_Einstein)),

refine(equals(:GrandfatherOf, :Albert_Einstein))

)

In order to validate our evaluation method, we discussed a previous version

in the work (NUNES; SCHWABE, 2016), where a comparison between Tableau

and SeCo was presented. Moreover we discussed the evaluation of SeCo with

their authors that confirmed the highlighted issues.

DBD
PUC-Rio - Certificação Digital Nº 1313520/CA

