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Simulating Low and High-Frequency Energy
Demand Scenarios in a Unified Framework – Part

II: High-Frequency Simulation

Guilherme Bodin, Raphael Saavedra, Cristiano Fernandes,

Érica Telles, Alexandre Street

Abstract

The second of this two-part paper proposes a novel methodology to simulate
long-term, high-frequency scenarios for the power demand in each bus of
a distribution system. The proposed model generates high-frequency and
high-dimensional scenarios, on an hourly basis for each bus of the system,
as a function of the low-frequency and low-dimensional scenarios simulated
by the first part of this work. Hence, the proposed method relies on a
disaggregation procedure that is trained within observed data and applied to
long-run simulated scenarios. A case study with real data from the Brazilian
power system is presented and relevant conclusions are drawn. We highlight
that this method can be useful for a wide range of applications in power
systems.

Keywords— energy demand, disaggregation models, regularization, linear
programming

1 Introduction

In the first paper of this two-part series [9], we have motivated the need to correctly
simulate the maximum power imported from the transmission system to feed the
optimization framework that decided the optimal amount of usage of the trans-
mission system. One possible way to obtain accurate scenarios of imported power
from the transmission system is to model the power demand in all buses of the
distribution system (load/renewable energy injection buses) in hourly basis1. This
allows capturing the effect of network contingencies and topological changes by

1In this work we consider as load the net power extraction of each bus, i.e., demand minus
renewable generation injection.
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combining load with contingency scenarios in a joint high-dimensional and high-
frequency simulation. However, the characterization of such a high-frequency and
high-dimensional process is a challenging task, since many different seasonal cycles
and stylized facts are found in the many different time scales (hourly, daily, weekly,
monthly, and so on) for each bus.

To solve this problem we propose to split the problem in two steps. In the
first step we model the aggregated (low-dimension) energy/demand consumption
time series comprising components of the total system demand in a monthly basis
(low-frequency). This part has been addressed in the first part [9]. In this paper
we address the second step of the proposed methodology. More specifically, we
propose a disaggregation process that receives as input the low-dimensional and
low-frequency signal representing the total consumption series and outputs the the
hourly power demand for each load/injection bus.

Many approaches have been proposed in the literature to load prediction. [6]
proposes the use of normalized load curves to model different types of buses on a
distribution system and forecast load using daily time series such as hourly temper-
ature and brightness. [8] analyses Greek electric distribution system using artificial
neural networks, while [5] uses Knowledge Discovery in Databases techniques to
very short-term forecasting. [11] presents dynamic state techniques and [4] used a
periodic state-space model to forecast the hourly one-day-ahead French electricity
load. [2] extended this model with the addition of dynamic factors and later the
same authors presented in [3] a dynamic multivariate periodic regression model
with a similar goal. [12] proposed a two-level seasonal autoregressive model to
forecast hourly electricity load, with a Brazilian case study. Aggregate methods
such as clustering and multi-layer perceptron (MLP) in [10] and forecast-aided
state estimator/MLP [1] were also developed. However, all previously reported
works present methods to predict short-term bus load, forecasting only up to a
few weeks ahead. Notwithstanding, none of the previously reported works address
the problem of simulating high-frequency load scenarios for a long-term horizon.

The proposed methodology utilizes linear programming to perform a regular-
ized quantile regression between the monthly signal and a functional basis, defined
by a set of sigmoid functions, to fit typical power demand curves to observed data
of each bus in a distribution system. Such a framework can be used in both univari-
ate and multivariate contexts. Note that the desegregation methodology proposed
in this work applies to a wide range of power system applications. Other relevant
examples of applications are: i) day-ahead unit commitment or economic dispatch
applications, where aggregated power forecasts must be decomposed throughout
the buses in the system, and ii) transmission planning problems, where typically
economical studies determine a long-term aggregated load forecast for the system-
wide demand and a disaggregation process is needed. Thus, this framework can
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be used to predict any high-dimensional phenomenon that can take advantage of
low-dimensional explanatory forecasting.

The remaining sections of this paper are organized as follows. Section 2 contains
the problem description and the utilized notation. Section 3 presents the model
employed in this paper. Section 4 describes the process of estimation. A case
study with real data from the Brazilian system is presented in Section 5. Lastly,
Section 6 presents the conclusion and raises some ideas being developed for future
work.

2 Problem description

In this section we explain the problem context and the main notation used through-
out this work.

Nomenclature

Functions

d(t) Day of instant t

h(t) Hour of instant t

m(t) Month of instant t

Other Symbols

λw Regularization parameter

wd(t),h(t),s,i Regression coefficient of day d(t), hour h(t), low frequency serie s and
bus i

Sets

B Set of low-level buses

D Set of days of the week D = {Sun,Mon, ..., Sat}

H Set of hours of the day H = {1, 2, ..., 24}

S Set of explanatory low-frequency series

Thist Set of high-frequency instants of time (hours or 15 minutes intervals) of the
in-sample power demand history
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Tsim Set of high-frequency instants of time (hours or 15 minutes intervals) of the
simulation horizon

Ω Set of low-frequency scenarios

Time Series

p̂i,t Estimated power demand at instant t on bus i

Es,m(t) Low frequency serie s at intant t

pi,t Power demand at instant t on bus i

Consider the power system illustrated in Figure 1. The problem is to simulate
multiple scenarios of bus power demand pi,t ∀t ∈ Tsim,∀i ∈ B. To do so we
dispose of pi,t ∀t ∈ Thist,∀i ∈ B, Es,m(t) ∀t ∈ Thist and multiple scenarios of
Es,m(t)(ω) ∀t ∈ Tsim, ω ∈ Ω (generated on Part I of this work).

Figure 1: Power system

The objective is to build an estimator for pi,t for any instant of time t only
using available information. Furthermore it is necessary that the single input to
the estimator is a scenario of Es,m(t), t ∈ Tsim. Methodology to approach this
problem is fully described in the next section.
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3 Disaggregation model

We propose a model that estimates parameters so that with any given Es,m(t)

prediction made in [9] we can get all hourly bus power demand curves for that
given month m(t).

The model consists on estimating coeficients to multiple quantile regressions
made on historical power demand, more specifically one for each hour and day of
the week 24× 7 = 168 on each one of the system buses.

To explain the power demand history let‘s assume there are S explanatory
series E1,m(t)...ES,m(t) at instant t.

Each one of the power demand estimated for a given hour and day of the week
will calculated by the estimator:

p̂t = w0 + E1,m(t)w1 + ...+ ES,m(t)wS

where w1...wS are regressors.
In order to estimate these regressors we can write a Linear Programming Prob-

lem that minimizes the absolute error of the estimation (for one hour, one day of
the week and one bus):

min
ε,w

1

|Thist|
∑
t∈Thist

|εt|+ λw
1

|S|
∑
s∈S

|ws| (1)

subject to:

εt = pt −
p̂t︷ ︸︸ ︷

w0 + E1,m(t)w1 + ...+ ES,m(t)wS ∀t ∈ Thist (2)

Note that the additional term λw
1
|S|

∑S
i=1 |wi| is there to regularize the model,

in other words it prevents that parameters over-fit the historical data and perform
poorly when simulating the future.

Now that the base methodology for one hour and one day of the week is pre-
sented we must write a problem that can perform all quantile regressions at once
to give the estimation of one bus of the system. To do so we need to build param-
eters that depend on hours, days of the week and low frequency series wd(t),h(t),s.
The linear programming problem becomes (for one bus of the system):

min
ε,w

1

|Thist|
∑
t∈Thist

|εt|+
λw

|Thist||S|
∑
s∈S

t∈Thist

|wd(t),h(t),s| (3)

subject to:

εt = pt −
p̂t︷ ︸︸ ︷

(wd(t),h(t),0 + E1,m(t)wd(t),h(t),1 + ...+ ES,m(t)wd(t),h(t),S) ∀t ∈ Thist (4)
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Once the problem is solved we get the optimum parameters w∗d(t),h(t),0, w
∗
d(t),h(t),1,

..., w∗d(t),h(t),S that will allow us to evaluate the estimator for future power demand.
Note that in order to evaluate the estimator for the entire system we need to

solve this linear problem for each bus i ∈ B.
Performing this regression model multiple times will output 4-dimensional co-

efficients w∗d(t),h(t),s,i
The load/injection scenarios for a given bus i consist in taking all the scenarios

E1,m(t)(ω)...ES,m(t)(ω) generated by the first part of this work [9] and evaluate the
value of p̂i,t(ω) for all wished instants t and all wished scenarios ω:

p̂i,t(ω) = w∗d(t),h(t),0,i +
S∑
s=1

Es,m(t)(ω)w∗d(t),h(t),s,i ∀t ∈ Tsim, ω ∈ Ω, i ∈ B (5)

4 Estimation

Now it is clear that solving the LP problem is a key factor in this work, unfortu-
nately, due to the absolute value terms in the objective function (Equation (3)),
we will need to linearize them to be able to solve for optimal wd(t),h(t),s. Absolute
value linearization is a well-known result so we can write it directly:

min
ε+,ε−,w+,w−

1

|Thist|
∑
t∈Thist

(ε+t + ε−t ) +
λw

|Thist||S|
∑
s∈S

t∈Thist

(w+
d(t),h(t),s + w−d(t),h(t),s) (6)

subject to:

ε+t − ε−t = pt − wd(t),h(t),0 +
S∑
s=1

Es,m(t)(w
+
d(t),h(t),s + w−d(t),h(t),s) ∀t ∈ Thist (7)

ε+, ε−, w+, w− ≥ 0 (8)

With the LP problem defined as shown in equations (6), (7) and (8) we can
solve it with any known method to obtain optimal parameters w∗.

The last thing to fully train the model is that we need to adjust the regulariza-
tion parameter λw. Choosing the right regularization parameter can be done via
Bayesian principles [7], here we chose to perform a n-fold cross-validation method,
we estimate the optimal parameters in randomly choosed k−1

k
of the database and

evaluate the R2 coefficient for the prediction of the other 1
k
. We need to perform the

estimation for a list of candidates to λw. The one that gives better R2 coefficient is
the chosen one. This process occurs on every bus parameters estimation. Usually
k = 5 is a good number in the trade-off speed and good model specification.
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5 Case study

An implementation of the disaggregation model was done in Julia with data from
a Brazilian energy distribution company (Energisa S.A.). To illustrate results each
plot in this section refers to one unique low-level bus that we’ll assume is bus i = 1.
To give a better context of what is the model objective, here is the power demand
of the low level-bus p1,t that we are trying to estimate:

Figure 2: Power demand on low-level bus, p1,t

On the left side of the dashed line on Figure 2 is the in-sample data that we
will use to to train the model via solving the LP problem. On the right side is the
out-of-sample data that will be used to evaluate prediction quality.

We will use only one explanatory series, the monthly energy consumed by the
system. On the left side of the Figure 3 is the data that we’ll use to fit the
model and on the right side we have the scenarios that will allow high-frequency
simulation.

Figure 3: Power demand on low-level bus, p1,t
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Following methodology in Section 3 we get all the optimal estimators w∗d(t),h(t),s,1
that allow us to evaluate p̂1,t on equation

Figure 4: Power demand on low-level bus, p1,t

The out-of-sample goodness-of-fit statistics indicate a positive result, with a
mean absolute error (MAE) of 1.28 MW and consequent symmetric mean abso-
lute percentage error (SMAPE) of 3.34%.The in-sample predictive estimates show
similar results, with a MAE of 1.19 MW and SMAPE of 2.90%. The R2 coefficient
is 0.66 in-sample and 0.69 out-of-sample. Figure 4 show these results.

6 Conclusions and future work

This paper proposes a methodology to simulate future long-term bus load sce-
narios based on a novel framework. The out-of-sample goodness-of-fit results and
diagnostics indicate that the model is well-specified. The disaggregation model
gives a reasonable prediction of the high-frequency bus power demand with very
low future information.

Future work consists in improving methodology to choose the regularization
parameter and developing new features for the model itself.
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