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Abstract

Andrade, Bruno Cesar Cayres; Weber, Hans Ingo (Advisor);
Aguiar, Romulo Reis (Co-adivisor). Numerical and
experimental analysis of nonlinear torsional dynamics of a
drilling system. Rio de Janeiro, 2013. 88p. MSc. Dissertation —
Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

A successful oil and gas prospecting requires many efforts to overcome the

encountered challenges, some of these challenges include drill string axial,

lateral and torsional vibrations. These phenomena may cause premature

component failures of the drilling system, dysfunction of measurement

equipments, and increase time and costs of the prospecting process.

Torsional vibrations are present in most drilling processes and may reach

a severe state: stick-slip. An improved understanding about the stick-slip

phenomenon provides tools to avoid the increase of prospecting time and

costs, assuring the investment and success of the drilling process. Firstly, a

numerical analysis of the drill string is performed with different friction

models. These models are proposed in order to get familiar with the

drill string dynamics. Also, it is described the experimental procedure

with a nonlinear friction aiming to induce stick-slip and is performed a

simple analytical modeling of the problem. The friction model is based

on dry friction imposed by a break device. The nonlinear behavior of the

experimental apparatus is analyzed and the numerical model is validated

comparing experimental and numerical bifurcation diagrams.

Keywords
Oil well drilling; torsional vibration; dynamic drill string; stick-slip

phenomenon; nonlinear dynamics.
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Resumo

Andrade, Bruno Cesar Cayres; Weber, Hans Ingo; Aguiar, Romulo
Reis. Análise Numérica e experimental da dinânica não
linear torsional de um sistema de perfuração. Rio de
Janeiro, 2013. 88p. Dissertação de Mestrado — Departamento de
Engenharia Mecânica, Pontif́ıcia Universidade Católica do Rio de
Janeiro.

Uma prospecção bem sucedida de petróleo e gás requer muitos esforços

para se sobrepor os desafios encontrados, tais como vibrações axiais,

laterais e torcionais. Estes fenômenos podem causar a falha prematura

de componentes do sistema de perfuração, disfunção nos equipamentos

de medição e aumento no tempo e custo no processo de perfuração.

Em particular, vibrações torcionais estão presentes em grande parte dos

processos de perfuração e podem alcançar um estado cŕıtico: stick-slip.

Um melhor entendimento sobre este fenômeno proporciona ferramentas

para evitar o aumento do tempo e do custo da prospecção, assegurando o

investimento e sucesso do processo de perfuração. Neste trabalho, é descrito

um procedimento experimental com um atrito não linear objetivando induzir

stick-slip e é feito uma modelagem anaĺıtica simples do problema. O modelo

de atrito é baseado em um atrito seco imposto por um dispositivo de

freio desenvolvido. O comportamento não linear da bancada experimental

é analisada e o modelo numérico é validado comparando diagramas de

bifurcações numérica e experimentais.

Palavras–chave

Poços de perfuração; dinâmica de coluna de perfuração; vibração

torcional; fenômeno de stick-slip; dinâmica não linear .
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Try not to become a man of success but rather
to become a man of value.

Albert Einstein, .
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