
5
Playing Back the Animation

Because our algorithm does not store the animation’s keyframes, the

character’s pose1 needs to be be generated for each frame of animation. We

chose to do this on-the-fly, calculating the pose before each frame is displayed

on the screen.

The calculations that determine the pose depend on a solid physics

simulation system. However, physics simulation systems are notoriously fickle

when it comes to accuracy and consistency. It is often the case that running

the same simulation several times will result in different outcomes.

Numeric methods (such as those used in real-time physics simulation)

are inherently inaccurate, but we can at least ensure they are consistent

by employing what [Valente et al. 2005] describe as the “fixed-frequency

deterministic game loop.” This technique is based on the fact that if we

always update the game state at a fixed number of times per second (with

the same delta-time, or dt), then the simulation will consistently produce the

same result. See Algorithm 1, where the function GameStateStep contains

the time-dependent logic that updates the character’s pose. We will see

two different implementations of this function, which correspond to the two

animation representations discussed in Chapter 4.

Algorithm 1 This game loop ensures consistent results, even if the time
between frames is variable. The value FIXED DT is a constant number that
represents the time interval between updates.
accumDT ← 0
function GameTick()
dt← time elapsed since last frame
accumDT ← accumDT + dt
while accumDT > FIXED DT do

GameStateStep(FIXED DT )
accumDT ← accumDT − FIXED DT

end while
end function

1Pose: The position and orientation of the character’s bones.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA



Motion Synthesis for Non-Humanoid Virtual Characters 33

5.1
Playing Back a Sequence of Commands

To play back the animation, one must define a time interval between op-

code executions (OPCODE DT ), and then run the animation program side-

by-side with the physics simulation (see Algorithm 2). If the constant value

OPCODE DT is equal to FIXED DT , then the animation will advance one

op-code per frame.

Algorithm 2 The following algorithm advances one frame of the animation
using an op-code sequence representation.
accumOpDT ← 0
function GameStateStep(dt)
{Run animation program:}
accumOpDT ← accumOpDT + dt
while accumOpDT > OPCODE DT do

Take next op-code from the program.
Interpret its command.
Modify active body components according to the command.
accumOpDT ← accumOpDT −OPCODE DT

end while
{Run physics simulation:}
PhysicsStep(dt)

end function

5.2
Playing Back an Expression Tree

This representation is more sophisticated, simulating the character’s

sense of touch and proprioception2. We decided to evaluate the controllers’

expression trees every frame, as if the character’s response to external stimuli

were immediate. Algorithm 3 is the resulting implementation.

Algorithm 3 The following algorithm advances one frame of the animation
using an expression tree representation.

function GameStateStep(dt)
{Run animation program:}
for each controller do

Evaluate the controller’s expression tree.
Modify active body components according to the evaluation results.

end for
{Run physics simulation:}
PhysicsStep(dt)

end function

2Proprioception: A person’s awareness of their own limbs’ position relative to each other.

DBD
PUC-Rio - Certificação Digital Nº 0721341/CA




