

Rogerio do Nascimento Rebello Filho

Transmissão Óptica de Dados a 50 Gbit/s e eficiência espectral de 1 bit/s/Hz

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: Jean Pierre von der Weid Co-orientador: Giancarlo Vilela de Faria

Rogerio do Nascimento Rebello Filho

Transmissão Óptica de Dados a 50 Gbit/s e eficiência espectral de 1 bit/s/Hz

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Jean Pierre von der Weid

Orientador

Pontifícia Universidade Católica do Rio de Janeiro

Prof. Giancarlo Vilela de Faria

Co-orientador

Pontifícia Universidade Católica do Rio de Janeiro

Prof. Rodolfo Araújo de Azevedo Lima

IPqM - Instituto de Pesquisa da Marinha

Prof. Evandro Conforti

UNICAMP – Faculdade de Engenharia Elétrica e Computação

Prof. Guilherme Penello Temporão

Pontifícia Universidade Católica do Rio de Janeiro

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico PUC-Rio

Rio de Janeiro, 11 de julho de 2013

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rogerio do Nascimento Rebello Filho

Graduou-se na Pontifícia Universidade Católica do Rio de Janeiro no segundo semestre de 2010. Seus atuais interesses de pesquisa são na área de comunicação óptica.

Ficha Catalográfica

Rebello Filho, Rogerio do Nascimento

Transmissão Óptica de Dados a 50 Gbit/s e eficiência espectral de 1 bit/s/Hz / Rogerio do Nascimento Rebello Filho ; orientador: Jean Pierre von der Weid ; co-orientador: Giancarlo Vilela de Faria—2013.

67 f.: il. (color.); 30 cm

Dissertação (mestrado)-Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica, 2013.

Inclui bibliografia

1. Engenharia elétrica Teses. 2. Comunicação Óptica. 3. Multiplexação por Divisão do 4. Comprimento de Onda. Multiplexação Polarização. 5. Modulação ASK. 6. Modulação DQPSK 7. Eficiência Espectral. I. von der Weid, Jean Pierre. II. de Faria, Giancarlo Vilela. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. IV. Título.

CDD: 621.3

Agradecimentos

Ao prof. Jean Pierre von der Weid pela oportunidade que me foi concedida.

Ao meu co-orientador que sempre esteve presente em todos os casos disposto a fornecer auxílio, que além de um respeito profissional, tenho uma admiração na forma de companheirismo demonstrado em todos os momentos. Muito obrigado, Giancarlo Vilela de Faria.

Ao doutor Rodolfo Lima pelo apoio na fase final.

Ao doutor Tiago Ferreira pela sua simplicidade e competência nas discussões sobre o meu trabalho.

À minha irmã e irmão pelo apoio e amparo em diversas situações.

Aos meus pais que me ajudaram a chegar até aqui.

À minha bisavó pelo apoio durante meu período da faculdade.

Aos demais amigos da PUC-Rio pelo companheirismo nesses anos.

A todos os funcionários e professores do CETUC, pelos ensinamentos adquiridos durante este período.

Ao CNPq, pelo apoio financeiro.

E a todos aqueles que de alguma maneira tenham contribuído para a realização deste trabalho.

Resumo

Rebello Filho, Rogerio do Nascimento; von der Weid, Jean Pierre (Orientador); de Faria, Giancarlo Vilela (Co-orientador). **Transmissão Óptica de Dados a 50 Gbit/s e eficiência espectral de 1 bit/s/Hz.** Rio de Janeiro, 2013. 67p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho realizamos uma prova da viabilidade de um sistema de comunicação óptica com capacidade de transmissão de 50 Gbit/s em uma largura de banda de 50 GHz utilizando o legado dos sistemas com taxas de 10 Gbit/s. Uma série de configurações experimentais foi testada em uma ordem de complexidade crescente para verificar separadamente as etapas e as técnicas aplicadas para o aumento da capacidade de transmissão de dados e a eficiência espectral. Em alguns casos, a curva característica resultante da configuração *backto-back* do analisador de taxa de erro de bit média foi utilizada como referência para comparação das configurações experimentais realizadas durante o trabalho.

Palavras-Chave

Comunicação Óptica; Multiplexação por Divisão do Comprimento de Onda; Multiplexação em Polarização; Modulação ASK; Modulação DQPSK; Eficiência Espectral.

Abstract

Rebello Filho, Rogerio do Nascimento; von der Weid, Jean Pierre (Advisor); de Faria, Giancarlo Vilela (Co-Advisor). **Optical Data Transmission at 50 Gbit/s and spectral efficiency of 1 bit/s/Hz.** Rio de Janeiro, 2013. 67p. Msc. Dissertation - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

In this work we perform a proof of feasibility of 50 Gbit/s transmission within a 50 GHz optical bandwidth exploring the 10 Gbit/s legacy. A series of experimental configurations were tested in an order of increasing complexity to verify separately the steps and applied techniques for increasing data transmission capacity and spectral efficiency. In some cases, the comparison of experimental configuration was made using the back-to-back configuration of the Bit Error Rate Tester.

Keywords

Optical Communication; Wavelength Division Multiplexing; Polarization Multiplexing; ASK Modulation; DQPSK Modulation; Spectral Efficient.

Sumário

1 Introdução	14
1.1. Sistema Básico de Comunicação Óptica utilizando	
Fibra Óptica	15
1.2. Motivação da utilização de Sistemas de Comunicação	
Óptica	17
2 Comunicação Óptica: Apresentação e Análise das	
Tecnologias mais Relevantes na Atualidade	19
2.1. O Transmissor Óptico e Métodos para	
Incremento da Capacidade e/ou Eficiência Espectral	19
2.1.1. Discussão sobre os Principais Formatos de	
Modulação Empregados	19
2.1.2. Discussão sobre os Principais Métodos de	
Multiplexação Empregados	21
2.2. O Receptor Óptico	22
3 Descrição das Técnicas Implementadas nas Configurações	
Experimentais	24
3.1. Multiplexação por Divisão de Comprimento de Onda (WDM)	24
3.2. Multiplexação em Polarização (PolMUX)	28
3.3. O Modulador	30
3.3.1. Modulador Mach-Zehnder	30
3.3.2. Modulação NRZ-ASK e VSB NRZ-ASK	33
4 Experimentos e Resultados	34
4.1. Curva de Referência: Configuração Back-to-back	34
4.2. Análise do Desempenho do Sistema sob Filtragem em DWDM	36
4.2.1. Análise de desempenho com o centro do filtro	
deslocado da frequência da portadora óptica	41
= = = = =	

4.5. Avanação do efeito da Muniplexação Densa por Divisão	
de Comprimento de Onda	44
4.4. Avaliação do Efeito da Multiplexação em Polarização	49
4.5. Multiplexação Densa por Divisão em Comprimento de Onda	
e em conjunto com Multiplexação em Polarização	52
4.6. Geração de Múltiplas Portadoras	56
5 Conclusões	64
6 Referências Bibliográficas	66

Lista de Figuras

Figura 1 - Diagrama em biocos dos elementos basicos de um	
Sistema de Comunicação Óptica	16
Figura 2 - (a) Esquema de um sistema de comunicação com canal único	
ponto a ponto (b) Implementação de um sistema WDM	25
Figura 3 - Atenuação de uma fibra monomodo simples em função	
do comprimento de onda	27
Figura 4 - Esquema básico de multiplexação em polarização	28
Figura 5 - Diagrama em blocos do Controlador Automático de Polarização	29
Figura 6 - Diagrama Funcional do modulador Mach-Zehnder	31
Figura 7 - Estrutura de um modulador Mach-Zehnder	32
Figura 8 - Modulação no formato NRZ, (a) sinal modulante (b) sinal	
com modulação ASK	33
Figura 9 - Configuração Experimental para determinação da Curva de	
Referência	35
Figura 10 - Curva BER x Potência de entrada do receptor [dBm] na	
configuração back-to-back	36
Figura 11 - Configuração Experimental para análise da filtragem para	
técnica DWDM	37
Figura 12 - Penalidade [dB] x Espaçamento entre canais [GHz] com	
filtro centrado na portadora	38
Figura 13 - Diagrama de Olho para espaçamento entre Canais de 25 GHz	
na configuração apresentada na Figura 11	39
Figura 14 - Digrama de Olho para espaçamento entre canais de 15 GHz	40
Figura 15 - Diversos espectros do sinal na entrada do receptor para uma	
taxa de erro de bit de 1E-9 deslocando a portadora em relação ao centro	
do filtro	42
Figura 16 - Resultado da simulação da penalidade em função do	
deslocamento da frequência da portadora para uma BER =1E-9	43

Figura 1 / - Configuração Experimental para analise da tecnica de	
Multiplexação em Comprimento de Onda em sistema DWDM	44
Figura 18 - Espectro dos cinco canais na entrada do amplificador	
óptico EDFA	45
Figura 19 - BER x Potência na entrada do receptor [dBm]	47
Figura 20 - BER x OSNR [dB]	49
Figura 21 - Configuração Experimental para Avaliação da Multiplexação	
em Polarização	50
Figura 22 - Curva BER para uma transmissão com um único canal e para	
uma transmissão usando 2 canais de 10GBit/s utilizando a técnica	
de multiplexação em polarização	51
Figura 23 - 50 Gbit/s utilizando POLMUX em conjunto com um	
sistema UDWDM de 50GHz	52
Figura 24 - Espectros dos 3 canais polarizados verticalmente e espectro	
pontilhado dos dois canais restantes com polarização ortogonal	53
Figura 25 - Espectro dos cinco canais de comunicação aquisitados na saída	
do módulo transmissor	54
Figura 26 - (a) Espectro dos canais com centrados no máximo do filtro	
utilizado para e demultiplexação e (b) o mesmo espectro com a	
frequência deslocada em relação ao valor de máximo do filtro	55
Figura 27 - Sinal de realimentação utilizado para alimentar o	
controlador automático de polarização	56
Figura 28 - Geração de Múltiplas Portadoras	57
Figura 29 - Espectro do sinal na saída do modulador Mach-Zehnder	
simples de geração de múltiplas portadoras	58
Figura 30 - Configuração experimental para verificação do desempenho	
do gerador de multiportadoras	58
Figura 31 - Espectro dos sinais modulados utilizando a técnica de geração	
de multiportadoras	59
Figura 32 - Espectro do sinal antes do segundo demulplexador com o canal	
central desligado	60
Figura 33 - Espectro do canal central após a filtragem realizada pelo	
segundo demultiplexador	61
Figura 34 - Desempenho da configuração para geração de multiportadoras	62

Figura 35 - Taxa média de erro de bits média x OSNR [dB] correspondente ao canal central 63

Lista de Abreviações

ASE - Emissão Espontânea Amplificada (Amplified Spontaneous Emission)

ASK - Chaveamento de Amplitude (Amplitude Shift Keying)

BER - Taxa de Erro de Bits (*Bit Error Ratio*)

CETUC - Centro de Estudos em Telecomunicação da PUC-Rio

CD - Dispersão Cromática (Chromatic Dispersion)

CDM - Multiplexação por Divisão de Código (Code Division Multiplexing)

CW - Onda Contínua (Continuous Wave)

DEMUX - Demultiplexador (Demultiplexer)

DQPSK - Modulação diferencial por chaveamento de fase em quadratura (Differential Quadrature Phase Shift)

DWDM - Multiplexagem Densa por Divisão de Comprimento de Onda (Dense Wavelenght Division Multiplexing)

DSP - Processadores de Sinais Digitais (*Digital Signal Processsors*)

DBPSK - Modulação diferencial binária por chaveamento de fase (Differential Binary Phase Shift Keying)

EDFA - Amplificador a Fibra Dopada com Érbio (*Erbium Doped Fiber Amplifier*)

FEC - Códigos Corretores de Erros (Forward Error Control)

FPGA - (Field-Programmable Gate Array)

LED - Diodo Emissor de Luz (*Light Emitting Diode*)

LNA - Amplificador de Baixo Ruído (Low Noise Amplifier)

MZM - Modulador Mach-Zehnder (*Mach-Zehnder Modulator*)

MUX - Multiplexador (Multiplex)

NRZ - Não Retorna a Zero (Non-Return-to-Zero)

OOK - Chaveamento Liga-Desliga (*On-Off Keying*)

OSA - Analisador de Espectro Óptico (*Optical Spectrum Analyzer*)

OSNR - Relação Sinal-Ruído Óptico (Optical Signal-to-Noise Ratio)

PMD - Dispersão dos Modos de Polarização (*Polarization Mode Dispersion*)

PRBS - Sequência Binária Pseudo-Aleatória (*Pseudo-Random Binary Sequence*)

- RF Rádio Frequência (Radio Frequency)
- RX Receptor (Reception)
- RZ Retorno ao Zero (Return-to-Zero)
- SDM Multiplexação por Divisão do Espaço (Space Division Multiplexing)
- TX Transmissor (*Transmission*)
- TDM Multiplexação por Divisão do Tempo (Time Division Multiplexing)
- VSB Banda Lateral Vestigial (Vestigial Sideband)
- WDM Multiplexação por Divisão de Comprimento de Onda (*Wavelength Division Multiplex*)