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Abstract

Andrade, Bruno Cesar Cayres; Weber, Hans Ingo (Advisor). Non-
linear dynamic analysis of dry friction-induced torsional
vibration in a drill-string experimental set-up. Rio de Ja-
neiro, 2018. 101p. Tese de Doutorado - Departamento de Engenha-
ria Mecânica, Pontif́ıcia Universidade Católica do Rio de Janeiro.

The latter round bids of the pre-salt for exploration and production of

oil and natural gas in Brazil indicate the drilling operations will become

more intense in coming years. The rotational drilling process is largely

used to reach the oil reservoirs and because of diameter-to-length ratio

of the drilling system, torsional vibration mode is present in most all

drilling processes and may reach an undesired severe stage: the stick-slip

phenomenon. In order to address this problem, the torsional vibration

mode is isolated and the stick-slip is observed in a fully instrumented

drill-string experimental set-up in this work. During this phenomenon,

another torque may be applied on an intermediate position of the test

bench. The lumped parameter mathematical model is obtained and it is

compared to experimental data to validate whether the mathematical model

represents the experimental apparatus. A stability analysis is performed

using the validated mathematical model in order to identify stable solutions

of the system. Therewith, one observed that there is a range of the

bifurcation parameter in which stable equilibrium and periodic solutions

may coexist. For a given stick-slip situation in bi-stability range, two

mitigation strategies of torsional vibration were considered which consisted

of imposing perturbations in the system via torques on the intermediate

position of the test bench: (i) torques applied only against the direction

of motion of the system, and (ii) torques applied in both directions. The

strategies were tested numerically and presented efficiency so that the stick-

slip was completely mitigated: the energies of the system and the work

created by the intermediate torque were compared in order evaluate the

feasibility and reasonableness of the strategy. Experimentally, the system

continued to oscillate, however it presented a significant reduction of stick

phase even with limitations of torque applications.

Keywords
Drill-string dynamics; Stick-slip phenomenon; Nonlinear dynamics;

Stability analysis; Mitigation strategy.
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Resumo

Andrade, Bruno Cesar Cayres; Weber, Hans Ingo (Orientador).
Análise da dinâmica não linear de uma bancada experi-
mental de uma coluna de perfuração com vibração tor-
cional induzida por atrito. Rio de Janeiro, 2018. 101p. Tese
de Doutorado - Departamento de Engenharia Mecânica, Pontif́ıcia
Universidade Católica do Rio de Janeiro.

Os últimos leilões do pré-sal para exploração e produção de petróleo e gás

no Brasil indicam que as operações de perfuração se tornarão mais inten-

sas nos próximos anos. O processo de perfuração rotativo é amplamente

utilizado para alcançar os reservatórios de petróleo e devido à relação diâ-

metro/comprimento do sistema de perfuração, o modo de vibração torcional

está presente em quase todos os processos de perfuração, podendo chegar

a um estado cŕıtico indesejável: o fenômeno de stick-slip. Com o intuito de

abordar este problema, o modo torcional é isolado e o stick-slip é observado

em uma coluna de perfuração em escala reduzida completamente instrumen-

tada. Durante o stick-slip, outro torque pode ser aplicado em uma posição

intermediária da bancada de teste. O modelo matemático de parâmetros

concentrados é obtido e o modelo é comparado com dados experimentais

com o propósito de verificar se o modelo matemático representa o aparato

experimental. Uma análise de estabilidade é feita usando o modelo vali-

dado com o objetivo de identificar soluções estáveis do sistema. Com isso,

observou-se que existe uma faixa do parâmetro de bifurcação na qual solu-

ções de equiĺıbrio e periódicas estáveis coexistem. Para uma dada situação

de stick-slip na faixa de biestabilidade, duas estratégias de mitigação de

vibração torcional foram consideradas e consistiram em impor perturbações

no sistema por meio do torque na posição intermediária da bancada de teste:

(i) torques aplicados apenas contra a direção de movimento do sistema, e

(ii) torques aplicados em ambas as direções. As estratégias foram testadas

numericamente e apresentaram eficiência de tal modo que o stick-slip foi

completamente mitigado: as energias do sistema e o trabalho gerado pelo

torque intermediário aplicado foram comparados com o propósito de avaliar

a factibilidade e razoabilidade da estratégia. Experimentalmente, o sistema

continuou a oscilar, porém apresentou uma significante redução na fase de

stick mesmo com limitações de aplicações de torque.

Palavras–chave
Dinâmica de coluna de perfuração; Fenômeno de stick-slip; Dinâmica

não linear; Análise de estabilidade; Estratégia de mitigação.
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