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Abstract 

Murad, Felipe Warwar; Sampaio, Luiz Eduardo Bittencout (Co-Advisor); 

Nieckele, Angela Ourivio (Advisor). Performance evaluation of nonlinear 

explicit algebraic Reynolds stress models to predict channel flows. Rio de 

Janeiro, 2018. 91p. Dissertação de Mestrado - Departamento de Engenharia 

Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

The most popular models to solve turbulent flows are based on the Reynolds 

Average Navier Stokes approach (RANS), which needs closure equations to relate 

the Reynolds stress tensor to the mean kinematic tensors. The classical approach is 

the Boussinesq approximation that assumes a linear relation between the deviatoric 

part of the Reynolds stress tensor, and the rate of strain tensor. Previous works have 

shown, that the non-linear dependence on the rate of strain tensor can improve the 

model predictions. At the present work, first an evaluation of linear models 

available in the literature is performed, followed by the analysis of three higher 

order methods, that expands the tensorial basis to include other objective orthogonal 

tensors. Two different nondimensionalization, one with the turbulent kinetic energy 

and dissipation rate and the other one with turbulent kinetic energy and the intensity 

of the rate of strain, had also been proposed for the models. The performance of the 

new models is assessed by comparing their numerical predictions to available 

channel flow and for a broad range of Reynolds Numbers. All models are 

implemented in the open source platform OpenFOAM. Reasonable predictions of 

the Reynolds shear component of all models were obtained when compared with 

the DNS data. However, the non-linear models proved superior in the prediction of 

the other components. It was also observed that the model which depends non-

linearly with the rate of strain and linearly with the non-persistence of strain was 

the one that best represented the DNS data field. 

Keywords 

Turbulence; Linear and Non-Linear RANS Models; Channel Flow; Eddy 

Viscosity Turbulence Model 

DBD
PUC-Rio - Certificação Digital Nº 1621757/CA



 

 

Resumo 

Murad, Felipe Warwar. Sampaio, Luiz Eduardo Bittencout; Nieckele, Angela 

Ourivio. Avaliação de desempenho de modelos explícitos  algébricos não 

lineares de tensões de Reynolds para previsão de escoamentos em canais. 

Rio de Janeiro, 2018. 91p. Dissertação de Mestrado - Departamento de 

Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

Os modelos mais populares para solucionar escoamentos turbulentos são 

baseados no esquema RANS (Reynolds Average Navier Stokes) que necessita de 

fechamento para relacionar o tensor de tensões de Reynolds com os tensores médios 

cinemáticos. A solução clássica é a aproximação por Bussinesq que assume uma 

relação linear entre a parte deviatórica do Tensor de Reynolds e o tensor das taxas 

de deformação. Trabalhos anteriores mostraram que uma relação não linear entre o 

tensor das taxas de deformação pode melhorar a predição do modelo. No presente 

trabalho, primeiramente é realizada uma avaliação entre modelos lineares presentes 

na literatura seguido de uma análise de três modelos de ordem elevada que 

expandem a base tensorial para incluir tensores ortogonais. Duas 

adimensionalizações, uma com a energia cinética turbulenta e taxa de dissipação e 

outra com energia cinética turbulenta e intensidade do tensor de deformação, 

haviam sido propostas. As previsões dos modelos são comparados com dados DNS 

para um canal e para uma gama variada de número de Reynolds. Todos os modelos 

são implementados na plataforma aberta OpenFoam. Predições razoáveis para a 

componente cisalhante de todos os modelos foram obtidas quando comparadas com 

os dados DNS. Entretanto, modelos não lineares provaram superioridade na 

predição das outras componentes. Também foi observado que o modelo não 

linearmente dependente do tensor taxa de deformação e o tensor não persistencia 

das deformações foi o que melhor representou os campos providos por DNS. 

Palavras-chave: 

Turbulência; Modelos RANS Lineares e Não Lineares; Escoamento em um 

Canal; Modelo de Viscosidade Turbulenta 
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1 Introduction 

Turbulence flows can be found in nature and in many engineering 

applications. Some examples are wake turbulence on aircraft wings, oil recovery 

and marine transportation, jet flows applications (for example to reduce noise or 

enhance mixing), dynamic scraped surface heat exchanger, combustion, gas 

turbines, meteorological predictions and marine currents path prediction. As it 

greatly affects different areas and industries, the correct comprehension and 

estimative of its dynamical and thermic behavior is of major importance.  

The criteria often used to identify if a flow is laminar or turbulent is the 

Reynolds Number: the ratio of inertia and viscous forces. When the viscous forces 

dominate (low Reynolds number), any perturbation that might appear is damped by 

the viscous force, and the flow is laminar. However, when the inertia forces 

dominate (high Reynolds numbers) flow perturbations are amplified, small eddies 

are formed, the diffusion is substantially increased, and the flow is  three-

dimensional (3D) and transient. The flow is then called turbulent. It is not possible 

to determine a unique Reynolds number value for the transition as stated by Trinh 

(2010), since the onset of turbulence can be offset by carefully controlling flow 

instabilities 

Great attention in the past years have been given not only to determine the 

point where the transition regime would occur but also what would be the main 

characteristics of the flow until the turbulence stage.  

To illustrate the flow’s behavior from a laminar state until the turbulence’s 

breakdown figure 1.1. shows a direct numerical simulation of the swept Hiemenz 

flow (present in swept wings for example) done by Michael et al. (2014). In this 

example, the perturbation is set as a pair of two counter vortices. At the first stage 

(inflow), the flow is laminar and no velocity instabilities are present. Moving along 

with it, the first instabilities (linear) in the velocity can be observed. They, later, 

develop into second order non-linear instabilities. After that, similar structures 

(coherent structures) and vortexes start to form until the turbulence breakdown.  
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Figure 1.1 - Laminar Transition and Turbulent Zones Source: (Michael et al., 2014) 

Several studies of the transition zone can be found in the literature for 

different geometries. He & Seddinghi (2015) have investigated different transition 

Reynolds numbers in a channel. Gloor et al, (2016) investigated the linear 

instability for a jet flow Hosseinverdi & Boroomand (2010) tried to predict the 

laminar, transition and turbulent flows in an airfoil using linear stability theory and 

k-ω turbulence model. 

Turbulence is also a diffusive phenomenon, therefore, mixing processes 

benefit from it. Also, this is the reason why streamline separations in an airfoil at 

high attack angle is prevented. Bilger (1992) addresses the mixing advantages 

brought by turbulent flows.  

Turbulent flows are also dissipative. This means that it needs an outside 

energy source provider or else it will cease. The energy is injected on bigger scales 

and it is transferred to small scales, where it is dissipated. This process is often 

called the energy cascade as described by Pope (2000). 

Turbulence only occurs in three dimensional rotational flows as it requires 

the presence of the vortex stretching phenomenon (Tennekes & Lumley, 1972), 

which is illustrated by Fig.1.2. in a wind-tunnel contraction. The contraction is 

responsible to stretch the vortex which produces a higher angular velocity. Without 

this, vorticity would fade out and turbulence would cease. Since the vortex 

stretching phenomena cannot occur in 2D or 1D geometries, turbulence is only 

present in 3D flows. 
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Figure 1.2 - Sketch of Vortex Stretching in a Wind Tunnel Source: (TENNEKES & LUMLEY, 
1972) 

Due to its complexity, turbulence flows are calculated using numerical 

methods. Kolmogorov showed that the characteristic length and time scales of the 

turbulent flow are inversely proportional to the flow Reynolds Number (Pope, 

2000). As a consequence, to be able to capture all flow relevant information, refined 

mesh and small time steps are necessary. Therefore, due to computing limitation, 

to allow prediction of the flow, different methodologies of turbulence simulation 

have been developed. The most popular methodologies, in a decreasing order of 

computational resources demand are: 

 DNS (Direct Numerical Simulation): all scales are solved using the 

3D transient momentum and continuity equations in a well-refined mesh 

with a small time step 

 LES (Large Eddy Simulation): large eddies are solved in 3D transient 

momentum and continuity equations, and the small eddies are modeled. 

 RANS (Reynolds-Averaged Navier-Stokes Simulation): all temporal 

scales are modeled and obtained by solving a time average momentum 

and continuity equations. 

DNS approach was impossible to be done until 1970 due to computational 

capability. It is the simplest of the approaches and the one with best accuracy.  From 

the given methodologies, DNS is the one which demands more computational 

power and it is still impractical to be employed from the industrial perspective. For 

this reason, this methodology is mostly employed for scientific purposes to 
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understand the turbulence phenomena as well as for model’s developing or 

calibration (usually for RANS models). For this purpose, several DNS databases 

for simple geometries, with different Reynolds numbers, are available in the 

literature. 

With RANS approach, only time average results are obtained, and all scales 

are modeled. RANS approach has low computing demand, both with regard to 

memory and time requirements. Although it presents reasonable results in several 

situations, there are several phenomena that this approach is not able to capture. 

Further, the majority of the models within this approach are tuned for a particular 

class of problems.  

LES approach requires an intermediary level of computational processing and 

presents an intermediate level of accuracy. This methodology is also transient and 

3D, but since its demand for mesh resolution is not as strict as with DNS, it has 

been used as an alternative for DNS for more difficult flows (more complex 

geometries and higher Reynolds number) and in situations where RANS cannot 

achieve good results. Although it is mainly applied for academic purposes, is 

beginning to be applied in some specific industrial problems. Because it also 

demands a high computing effort, LES methodology cannot and will not substitute 

RANS in the near future for industrial purposes (Zhiyin, 2014). 

RANS is currently the most used methodology in the industry. Despite its 

practical use, standard RANS simulations cannot predict secondary and tertiary 

flows for more complex geometries. This methodology is based on the concept that 

only the statistically steady state properties are relevant, leading to the definition of 

the Reynolds Stress tensor. Many different models arise from this methodology 

(Pope, 2000). The Reynolds Stress tensor can be directly modeled or the turbulent 

viscosity concept can be introduced. The turbulent viscosity models vary from 

algebraic (Prandtl Mixing Length Model) to differential models (such as κ-ε, κ-ε 

RNG, κ-ω, κ-ω SST, v2f for example). Each one of them is based in distinguished 

fields used to calculate parameters of the flow, for instance, the Reynolds Tensor 

and/or turbulent viscosity. 

Aiming to apply RANS approach in industrial application, there is a large 

effort from the scientific community to improve the prediction accuracy of RANS 

models. Recently, non-linear RANS models have been proposed, based on an 

orthogonal tensor decomposition of the Reynolds Stress on mean kinematic 
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quantities, aiming to capture accurately not only the time average velocity profile, 

but also the Reynolds stress tensor (Nieckele et al., 2016). The models were 

developed applying noble available experimental and DNS data, and they were 

nondimensionalized applying the turbulent kinetic energy  and its dissipation rate 

. The authors presented a priori analysis of the models’ performance indicating the 

superiority of the non-linear models. Here, a priori analysis means that the noble 

data was directly inserted into the models to evaluate the prediction of the Reynolds 

stress tensor.  

1.1 Objetive 

The main objective of the present work is to perform a posteriori analysis of 

the performance of the proposed models of Nieckele et al. (2016) to predict the flow 

field between two parallel plates. The posteriori analysis means that the mass and 

momentum equations are numerically solved coupled with turbulent quantities 

transport equations to determine the mean velocity field and the Reynolds stress 

tensor. To evaluate the models, the predictions are compared with the DNS data 

and different available linear and non-linear models.  

At the present work, the coefficients nondimensionalization of the non-linear 

models proposed by Nieckele et al. (2016) are also evaluated, and new 

nondimensionalizations are proposed based on the turbulent kinetic energy  and 

the intensity of the rate of strain tensor 𝛾́ (Alves et al., 2014). Each set of models’ 

results are analyzed together in order to estipulate which is the best combination of 

nondimensionalization parameters.  

1.2 Manuscript Organization 

This work is divided in six chapters. The first one is dedicated to state the 

objective, motivation and problem which is debated through this document.  

In the second one, major advance in the turbulence modeling field is 

discussed. This chapter majorly focus on the RANS methodology, discussing about 

the major advances in linear and non-linear models, but also in DNS. 

The third one presents the mathematical and numerical modeling that were 

used in the simulations. The RANS framework is overviewed as well as κ-ε model 

equations. Existing Low Reynolds models (linear and non-linear) are also discussed 
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in detail. The models used in the simulations, moreover, are presented. Finally, 

numerical details used in the simulations are shown. 

In the fourth, the simulation’s results are discussed. Each model is compared 

with existing models mentioned on Chapter 2. Result’s analysis and further 

considerations of the proposed models are, furthermore, discussed. 

Fifth Chapter summarizes the work’s contributions for the turbulence 

modeling area as well as suggests possible advances for future works. 

Appendixes A and B comment about the coefficients adjustments required in 

both κ-ε and κ-γ models. Appendix C discusses the mesh influence in the results 

while appendix D explains the influence of κ and ε fields into the κ-ε models results. 
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2 Literature Review 

This chapter presents a literature review related to development of the present 

work. As mentioned in Chapter 1, the main objective of this work is to access the 

performance of RANS models by comparing the prediction with high quality data. 

This type of data can be obtained by physical experimentation or with high quality 

numerical simulating employing DNS. 

Three types of flow often analyzed with DNS that can be found in the 

literature are channel flow, free boundary and backstep flow. At the present work, 

the channel flow was selected. For the channel flow, a broad number of different 

Reynolds DNS simulations databases can be found.  In this work databases from 

Lee & Moser, (2015), who carried the same study for higher fiction Reynolds up to 

5186 and Thais et al. (2012), who performed simulations of low friction Reynolds 

(180 to 1000) for Newtonian and viscoelastic fluids. 

Other DNS simulations for the channel are reported by Bernardini et al. 

(2014) and Lozano-Durán & Jiménez, (2014). Bernardini et al. (2014) executed 

simulations for low, moderate and moderate-high friction Reynolds (from 595 to 

4079) in order to observe the logarithm behavior of the mean velocity profile. 

Meanwhile, Lozano-Durán & Jiménez, (2014) studied the effect of the domain size 

in the DNS simulation for a friction Reynolds up to 4179.  

Thompson et al. (2016) also analyzed a great number of channel DNS 

databases by comparing the DNS velocity field with the velocity field obtained from 

the averaged momentum equation using the DNS Reynolds Tensor and found out 

that, for some cases, these velocity profiles could not be correctly matched, 

especially for high friction Reynolds. 

The RANS scheme is the most commonly used method in the industry due to 

its low computational cost. In this methodology, the time averaged Navier Stokes 

equation is taken into consideration. This allows to solve 3D flows such as jets or 

Channel/duct flows using 2D domains or even in steady state formulation. 

However, with the time average process, new unknown terms appear needing 

additional closure. Linear models follow the Boussinesq hypothesis which express
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the Reynolds stress tensor as a linear function of the rate of strain. The coefficient 

of this relation is called eddy viscosity. 

Channel flow is often employed to evaluate the prediction capacity of a 

turbulent flow. In the text book of Wilcox, (2006) a comparison of the prediction 

of two algebraic turbulent models developed by Baldwin-Lomax (Baldwin & 

Lomax, 1978) and Cebeci-Smith (Smith & Cebeci, 1967) for a channel flow is 

presented for a Reynolds Number equal to 13750. It was shown that both models 

presented a close agreement to the DNS data. The Baldwin-Lomax model’s result, 

however, performs better than Cebeci-Smith - 8% of relative error for Cebeci-Smith 

and 5% for Baldwin-Lomax, when compared to the DNS. For all other quantities, 

the models agreed well. 

The κ-ε models are the most popular two-equation models in the RANS 

methodology and are available in most CFD softwares such as ANSYS Fluent and 

OpenFoam. The formulation of the model was first idealized by Harlow & 

Nakayama (1968) while the main contribution was done by Jones & Launder, 

(1972). The biggest problem, of these models is the derivation of the dissipation 

rate ε equation, which has several terms that need closure, therefore, they are 

modeled with the addition of several empirical terms, see Rodi & Mansour, (1993) 

for instance.  

Another type of κ-ε models (called Realizable κ-ε) was developed by Shih et 

al., (1994) by redefining the eddy viscosity and consequently the dissipation 

equation. The major advantage of this formulation was to avoid negative values of 

the Reynolds stress tensor when shear rate was high. As a result, spreading rate of 

round jets and reattachment points of a backward facing step could be better 

predicted. 

One more κ-ε variant (κ-ε RNG) introduced by Yakhot et al., (1992) 

determine a similar model with different coefficients. The model is derived with the 

usage of the Renormalization Group Theory.  

Normally two equations models do not perform well near walls. To help the 

correct prediction in the whole domain, since the near wall region is critical to the 

flow, a possible alternative is the use of wall laws. These laws impose the log law 

to the closest mesh point to the surface. Care must be taken, however, for special 

conditions of the flow or the surface (pressure gradient, surface roughness and 
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surface mass injection for example). For these situations the law of wall will need 

to be reformulated (Schlichting, 1979). 

Another solution for this problem is the use of damping functions in the eddy 

viscosity and ε equation. It requires that the near wall mesh is fine enough to capture 

the peak in the κ field, or in other words, that the grid size, based Reynolds number, 

is low near the wall. For this reason, the formulation is referred to as a low Reynolds 

model, even when simulating a flow with a large Reynolds number – this one, based 

on a physical rather than grid related quantity. 

The standard κ-ω model is the second most popular model, and it can be 

classified as low Reynolds number model. It can predict well boundary-layer flows 

and flows with adverse pressure gradient in streamwise direction since the region 

near the wall is well modeled. The formulation, however, imposes a sensible non-

physical fixed boundary condition at the wall.  

To correct this problem, Menter, (1994) inserted a mixing function to the 

model. The idea behind its application was to switch between κ-ω (near the wall) 

and κ-ε (away from the wall) so the benefits of these two models would be fully 

applicable in the simulation. The mixing function is formulated such that its value is 

one near the wall (so the behavior tends to κ-ω) and zero away from the wall 

(tending to κ-ε). This formulation is known as κ-ω SST. 

Another example of low Reynolds number models is the Launder-Sharma 

(Launder et al., 1977) model, which was first developed for spinning disc flow, but 

it is highly used for other geometries. Lien & Leschziner, (1993) also evaluated a 

model with simulations for shock in a channel and nozzle geometries. Lam & 

Bremhorst, (1981) proposed a low Reynolds model which shown good results for 

both turbulence and laminar flows. Furthermore, Rodi & Mansour, (1993) 

formulated new damping functions based on DNS data to model the eddy viscosity. 

The authors also proposed new expressions to evaluate the terms of the ε equation. 

Michelassi et al. (1993) proposed modifications of some parameters in the 

Rodi Mansour's (Rodi & Mansour, 1993) ε equation, and, thus, formulated a similar 

model denominated Rodi Mansour Modified. The model was, then, simulated for a 

fully developed channel flow and boundary layer flow. The results were, 

furthermore, compared with other low Reynolds methods for a friction Reynolds of 

395. 

Figure 2.1 shows the results of Michelassi et al. (1993) in which their 
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proposed model was compared with Launder Sharma (LS), Lam Bremhorst (LB) 

and Michelassi and Shin (MS) along with DNS data. It is possible to observe that 

the Rodi Mansour modified model could better predict the behavior of 

dimensionless dissipation ε+ near the wall relatively to other models, when 

compared with DNS data. For the dimensionless kinetic energy κ+ the Launder 

Sharma's result was the worst compared with the other models. The Lam Bremhorst 

and Michelassi and Shin underestimates this quantity while the Rodi Mansour 

Modified overestimates it. 

 

Figure 2.1 - κ+ and ε+ Comparison of low Reynolds Models Source: Michelassi et al. 
(1993) 

One possible way to further enhance the RANS prediction methodology is to 

work directly with the Reynolds Stress Tensor, developing transport equations for 

each component. This approach requires additional closures, and a significant 

increase in cost, since besides the six Reynolds Stress components equations, the 

dissipation equation must also be solved. 

A further step toward more complex and complete models, first introduced 

by Lumley, (1970) and Pope, (1975), is to relax the linearity constraint to 

implement non- linear eddy viscosity model (NLEVM). In this class of models, 

non-linear terms are added to the Boussinesq Hypothesis aiming at better predicting 

all components of the Reynolds Tensor. These terms are written based on a set of 

elected tensors to compound a more complete tensor basis. It is not desirable that 

this base choice compromises the frame-invariance of the model. The selected 

tensor should also carry the vorticity influence since it is well observed in all 
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turbulence flows. Because of that, the vorticity tensor is often used to generate this 

tensor basis. 

Another way to find a non-linear expression for the Reynolds Stress tensor is 

by using the weak equilibrium hypothesis (Sharath, 1996) that leads to an algebraic 

approximation of the equation that can be used. This class of model is called 

Explicit Algebraic Reynolds stress model (EARSM). More complex cases of 

EARMS models can be seen in Lazeroms et al. (2013) (stratified flow in a channel) 

and Grigoriev et al. (2015) (density influence in a turbulent flow in a subsonic and 

supersonic nozzle) 

One challenge that both NLEVM and EARMS models face is due to the lack 

of frame invariance. Frame invariance is desirable property of a model which 

determines that its predictions are not affected by the chosen frame of coordinates. 

There is no agreement in which way the weak equilibrium hypothesis should be 

adapted in order to account for it. This question is further investigated by Hamba 

(2006), who showed a weak equilibrium condition which is frame-invariant. Many 

similarities and differences on NLEVM and EARMS models can be seen in Gatski 

& Jongen, (2000). 

Following this non-linear route, Lien et al. (1991) chose the vorticity and the 

rate of strain tensors as a basis for the Reynolds Tensor and created a low Reynolds 

NLEVM.  Zhang et al. (2012) also used the same tensor bases and realizable 

conditions to analyze the result’s difference of their NLEVM when compared to 

linear models for flows over a bluff body. As a result, they found that the developed 

non-linear model could better predict the flow. 

Abe et al. (2003) proposed two κ-ε NLEVM models (with different 

coefficients) and a variant κ-ω model which were tested and compared for a 

channel flow (Re=6875), a periodic channel with an obstacle (Re=21200) and a 

jet (Re=6000). Figure 2.2 through 2.4 shows the results (velocity profile and 

Reynolds Tensor) of the three proposed models for the channel flow case. Good 

agreement can be observed when compared to the DNS. For the κ-ω based model 

figure 2.4), the maximum velocity is a little underestimated. Also, for all cases, 

some difference can be noticed in the 𝑢𝑢+ component away from the wall and in 

the 𝑣𝑣+  component along all the domain. In this latter case, the prediction is 

consistently over estimated. 
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Park et al. (2003) also proposed a non-linear near-wall model in which 

damping functions were used to express the linear and non-linear terms near the 

wall (similar to the low Reynolds Models). This damping function is derived, in 

part, from the Reynolds transport equation with homogeneous flow and local 

equilibrium state. The model’s results are compared with DNS data from a channel 

and a backstep.   

 

Figure 2.2 - Velocity and Reynolds Components of the Abe et al. (2003) model I for a 
channel flow of Re=6875 Source: Abe et al. (2003) 

 

Figure 2.3 - Velocity and Reynolds Components of the Abe et al. (2003) model I for a 
channel flow of Re=6875 Source: Abe et al. (2003) 
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Figure 2. 4 – Velocity and Reynolds Components of the Abe et al. (2003) model III for a 
channel flow of Re=6875 Source: Abe et al. (2003) 

Thompson et al. (2010) proposed to quantify Reynolds stress tensor by 

decomposing it into two orthogonal tensors: the rate of strain and the non-

persistence of straining tensors. The rate of strain is commonly used in non-linear 

models. The non-persistence of strain is believed to have a deeper physical 

meaning, for two reasons. First, it incorporates the vorticity tensor, which should 

have major impact in turbulence. Secondly, one can show that it is frame-invariant, 

which is not the case with the vorticity tensor used in many non-linear models. The 

author proposed six models: 

 Model I - linear model following the Boussinesq hypothesis. 

 Model II – non-linear model written only as a function of the rate of 

strain.  

 Model III - follows the same pattern of model II with the addition of 

a non-persistence of strain’s linear term.  

 Model IV- sum of the same linear rate of strain term as model I with 

the linear non-persistence of strain term. 

 Model V - has non-linear terms of the non-persistence of strain and a 

linear one of the rate of strain 

 Model VI - has non-linear terms of both rate of strain and non-

persistence of strain tensors. 

Nieckele et al. (2016) performed a priori analysis of the models proposed by 

Thompson et al. (2010) (figure 2.5) in which DNS data from Thais et al. (2012) 

was used in order to evaluate the models’ predictability.  This data was also used to 

formulate the expressions for damping functions for the nondimensionalized non-

linear terms. 
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From Figure 2.5 models III, V and VI are the best models which correctly 

predicts the Reynolds Stress Tensor. Model I cannot predict any value for any of 

the components except 𝑎𝑥𝑦 (which is a characteristic of linear methods). Model II 

is able to predict all normal tensions but underestimate 𝑎𝑥𝑥 and 𝑎𝑦𝑦. Model IV, 

meanwhile, underestimates 𝑎𝑥𝑥 and overestimates 𝑎𝑦𝑦.  

The coefficient of the terms proposed by Thompson et al. (2010) models 

were nondimensionalized following the turbulent kinetic energy and turbulent 

dissipation rate fields. Alves et al. (2014), however, proposed a new set of 

nondimensionalization fields by excluding the turbulent dissipation rate and adding 

the strain tensor intensity.  The new set of coefficients’ presents a more universal 

behavior for the Reynolds Numbers tested. Furthermore, the dissipation rate 

influence, which is obtained by an empirical transport equation, can be reduced. 

 

Figure 2.5 - A priori analysis of the six models proposed by (Nieckele et al., 2016) in a 

Channel Flow with 𝑅𝑒𝜏=1000 
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3 Mathematical and Numerical Modeling 

In this chapter, the concepts and equations required to develop this work are 

presented. First, the time average conservation equations are presented, followed 

by the introduction of the Boussinesq hypothesis. Then, the traditional  models 

as well as their version for low Reynolds number are described. Aiming to identify 

and recommend RANS models with improved prediction capabilities, several non-

linear models are investigated in this work. Here, descriptions of those models are 

presented in the sequence.  

To solve the mathematical model, the open source OpenFoam platform was 

employed to implement the selected models. The final section of this chapter presents 

some numerical information. After a brief description of the OpenFoam software, the 

additional contribution to the software is mentioned. Finally, a few details of 

numerical parameters selected to the solution of the equations is given. 

3.1 Mathematical Modeling: RANS Methodology 

To determine the flow field, one must solve the mass and momentum 

equations for a given geometry. Considering a flow of a Newtonian fluid, with 

constant density and viscosity, the Navier-Stokes equations can be written as 

 𝜕 𝑢𝑖
∗

𝜕𝑥𝑖
= 0 (3.1) 

 𝜕 ( 𝜌 𝑢𝑖
∗ )

𝜕 𝑡
+
𝜕 ( 𝜌 𝑢𝑗

∗ 𝑢𝑖
∗)

𝜕𝑥𝑗
= −

𝜕 𝑝∗

𝜕 𝑥𝑖
+ 𝜌  𝑔𝑖 +

𝜕 (2 𝜇  𝐷𝑖𝑗
∗

𝜕 𝑥𝑗
 (3.2) 

where 𝑢𝑖
∗ is the velocity component, 𝑝∗ is the pressure, 𝑔𝑖 the gravity acceleration 

component, 𝑥𝑖  is the coordinate system, 𝜌  is the density,  𝜇  is the molecular 

viscosity and 𝐷𝑖𝑗
∗  is the rate of strain.  

 
𝐷𝑖𝑗
∗ =

1

2
(
𝜕 𝑢𝑗

∗

𝜕𝑥𝑖
+
𝜕 𝑢𝑖

∗

𝜕𝑥𝑗
) (3.3) 
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The RANS (Reynolds Average Navier Stokes) methodology is based on the 

concept that all variable can be written as a Reynolds time average term 𝜙̅ and a 

fluctuation 𝜙′ around it, as Eq. (3.4). It should also be mentioned here, that the time 

average of the product of correlated variables, as the velocity fluctuations, is not 

zero. 

 𝜙∗ = 𝜙̅ + 𝜙′                  ;      𝜙̅ =
1

Δ𝑡
 ∫  𝜙 𝑑𝑡 
Δ 𝑡

          ;      𝜙′̅̅ ̅ = 0    (3.4) 

 𝜙′ 𝜑′̅̅ ̅̅ ̅̅ ̅ ≠ 0    (3.5) 

The RANS equations can then be obtained, by substituting the velocity field 

written as the sum of the mean velocity 𝑈𝑖 with a velocity fluctuation 𝑢𝑖
′: 

 𝑢𝑖
∗ = 𝑈𝑖 + 𝑢𝑖

′ (3.6) 

Combining the continuity and Navier Stokes equation (3.1 and 3.2), and taking the 

time average of the resulting expression, the following equation is obtained: 

 𝜕 𝑈𝑗  𝑈𝑖 

𝜕𝑥𝑗
= −

1

𝜌
 
𝜕 𝑝∗̅̅ ̅

𝜕 𝑥𝑖
+ 𝑔𝑖 +

2𝜇

𝜌

𝜕𝐷𝑖𝑗

𝜕𝑥𝑗
−
𝜕 𝑢𝑖′ 𝑢𝑗′̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
 (3.7) 

where the new term (− 𝜌   𝑢𝑖′ 𝑢𝑗′̅̅ ̅̅ ̅̅ ) that appears in the time average expression is 

called the Reynolds Stress Tensor. Equation (3.7) can also be rewritten as 

 𝜕 𝑈𝑗  𝑈𝑖

𝜕𝑥𝑗
= −

𝜕 𝑝

𝜕 𝑥𝑖
+ 𝜈

𝜕2𝑈𝑖

𝜕𝑥𝑗
2 +

𝜕 𝑎𝑖𝑗

𝜕𝑥𝑗
 (3.8) 

where 𝜈 = 𝜇 \ 𝜌  is the kinematic viscosity; 𝑎𝑖𝑗  is the deviatoric part of the 

Reynolds stress tensor 

 
𝑎𝑖𝑗 = −𝑢𝑖′ 𝑢𝑗′̅̅ ̅̅ ̅̅ +

2

3
𝜅 𝛿𝑖𝑗 (3.9) 

 
𝜅 =

1

2
  𝑢𝑘

′  𝑢𝑘
′̅̅ ̅̅ ̅̅ ̅ (3.10) 

and 𝜅  as the turbulence kinetic energy. 𝑝  is a modified pressure term that 

incorporates the gravitational term and the turbulent dynamic pressure, defined as: 
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𝑝 =

𝑝∗

𝜌

̅̅̅
−  𝑔  𝑥𝑖   𝒆𝒊   ∙ 𝒆𝑧  +

2

3
 𝜅 (3.11) 

The equations can be nondimensionalized with a characteristic dimension 𝐻 

and with the friction velocity 𝑢𝜏, defined as 

 

𝑢𝜏 = √
𝜏𝑤
𝜌

 (3.12) 

where 𝜏𝑤 is the shear tension at the wall. The dimensionless variables are 

  
𝑈𝑖
+ =

𝑈𝑖
𝑢𝜏
    ;    𝑥𝑖

+ =
𝜌 𝑢𝜏 𝑥𝑖
𝜇

   ;     𝑃+ =
𝑝

𝑢𝜏2
     ;       𝑎𝑖𝑗

+ =
𝑎𝑖𝑗

𝑢𝜏2
   (3.13) 

Resulting in the following conservation equations are 

 𝜕 𝑈𝑗
+

𝜕 𝑥𝑗
+ = 0    ;    

𝜕 𝑈𝑗
+ 𝑈𝑖

+

𝜕 𝑥𝑗
+ = −

𝜕 𝑝+

𝜕 𝑥𝑖
+ +

1

𝑅𝑒𝜏

𝜕2 𝑈𝑖
+

𝜕𝑥𝑗
+2 +

𝜕 𝑎𝑖𝑗
+

𝜕 𝑥𝑗
+ (3.14) 

Indicating that the flow field is greatly influenced by the Reynolds number 

𝑅𝑒𝜏 

 
𝑅𝑒𝜏 =

𝜌 𝑢𝜏 𝐻

𝜇
 (3.15) 

Since the Reynolds stress tensor is unknown, this model still needs closure 

expressions. Hence, different models, that were investigated in the present work to 

determine it, will be discussed in the next subsection. 

3.2 The Boussinesq Hypothesis 

For a Newtonian fluid, in the laminar regime, the shear tensor is linearly 

proportional to twice the rate of strain tensor (2 𝐷𝑖𝑗 ). Further, it is observed that 

turbulence increases the flow’s diffusion. Therefore, Boussineq postulated that the 

Reynolds Tensor should have the same behavior as the shear tension for a 

Newtonian fluid  (Pope, 2000). Hence, it could be modelled analogously as: 

 𝜌 𝑎𝑖𝑗 = 𝜇𝑡 2 𝐷𝑖𝑗 (3.16) 
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where 𝜇𝑡 is the turbulent viscosity, 𝐷𝑖𝑗 is the rate of strain of the time average flow. 

This property, however is not attributed to the fluid as in molecular viscosity 𝜇. It 

is a characteristic of the flow. 

Even with the additional relation, Eq. (3.16), to determine the flow field, 

closure expressions are still required since the turbulent viscosity is not defined. 

There are many models to predict the turbulent viscosity, and the majority is based 

on the assumption that it can be determined in an analogous form as the molecular 

viscosity, i.e., based on a characteristic velocity 𝑉𝑐 and characteristic length  𝑙𝑐 of 

an eddy. 

 𝜇𝑡~ 𝜌 𝑉𝑐 𝑙𝑐 (3.17) 

The several RANS models differ in the identification of these characteristics 

terms. The characteristic velocity is often considered as being proportional to the 

turbulent kinetic energy.  

 𝑉𝑐 = √𝜅 (3.18) 

This seems to be a good choice and it is employed in a vast number of models. The 

selection of the characteristic length is not straight forward, therefore it is more 

difficult to define, and it is the mayor difference between the models.  

One of the most popular models in the academia and industry is the 𝜅 − 𝜀 

model. Therefore, it was selected to be investigated in the present work. 

3.2.1 The 𝜿 − 𝜺 Model 

The characteristic length of a 𝜅 − 𝜀  models is based on the rate of dissipation 

of the turbulent kinetic energy 𝜀 (specific power dissipated by an eddy) 

 
 𝜀 =

𝐹 𝑉𝑐

𝜌 𝑙𝑐
3 ≈

𝐶𝑑 𝜌 𝑉𝑐
2 𝑙𝑐
2  𝑉𝑐

𝜌 𝑙𝑐
3  ≈

𝜅3/2

𝑙𝑐
 (3.19) 

In the previous equation 𝐹 is the drag force and 𝐶𝑑 is a drag coefficient. 

As a result, the turbulent viscosity can be obtained by 

  
 𝜇𝑡 =

𝐶𝜇 𝜌 𝜅
2

𝜀
 (3.20) 
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where 𝐶𝜇 is an empirical constant typically equal to 0.09. The turbulent viscosity 

is, therefore, expressed as a function of κ and ε though these two entities still 

requires to be modeled. The derivation of the standard κ-ε model’s κ and ε equations 

can be found in (Pope, 2000) and they have the following form for a permanent 

incompressible flow: 

 
𝜕 (𝜌 𝜅 𝑈𝑗  )

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜅
) 
𝜕𝜅

𝜕𝑥𝑗
] + 𝐺𝜅  − 𝜌𝜀 (3.21) 

 
𝜕 (𝜌 𝜀 𝑈𝑗  )

𝜕 𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜀
) 
𝜕𝜀

𝜕𝑥𝑗
 ] + 𝐶𝜀1 𝐺𝜅

𝜀

𝜅
 − 𝐶𝜀2 𝜌

𝜀2

𝜅
 (3.22) 

where  𝜎𝜅 , 𝜎𝜀 , 𝐶𝜀1and 𝐶𝜀2are empirical constants equal to 1, 1.3 ,1.44 and 1.93 

respectively.  𝐺𝜅 is the production of turbulent kinetic energy and it is given by 

 𝐺𝜅 = − 𝜌  𝑢𝑖′ 𝑢𝑗′̅̅ ̅̅ ̅̅ ̅  
𝜕𝑈𝑖
𝜕 𝑥𝑗

  (3.23) 

By neglecting compressibility effects, it can be written as 

 𝐺𝜅 =  𝜌  𝑎𝑖𝑗   
𝜕𝑈𝑖
𝜕 𝑥𝑗

  (3.24) 

The  equations must only be applied in regions far from the wall. Near the 

wall, different viscous regions can be found, as it is illustrated in Fig. 3.1. To 

correctly predict the Reynolds Tensor inside this region, laws of wall (Bradshaw & 

Huang, 1995) must be used instead of the main equations. 

Depending on the Reynolds number 𝑅𝑒𝜏, for the same dimensional distance 

to the wall, the resulting dimensionless wall distance 𝑦+ is different and distinct 

near wall treatment must be applied.  

The standard wall law, is based on the log-wall. Therefore, it is valid for  

𝑦+ > 30, however, frequently the buffer layer is neglected and the standard law is 

applied for 𝑦+ > 11.5. In this case, the following expressions are composed 

 𝑢+ =
1

𝑘
 lny++ 5.5  (3.25) 

where 𝑢+is the velocity component parallel to the wall, and 𝑘 ≈ 0.4  is the von 

Kármán constant (Pope, 2000). To guarantee mass conservation the gradient of the 
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normal velocity component is neglected, i.e., 𝜕𝑢𝑛/𝜕𝑥𝑛 = 0.  The boundary 

condition for 𝜅  and 𝜀  are defined considering that there is equilibrium between 

production and destruction of 𝜅, resulting in 

 
𝜕 𝜅

𝜕 𝑛
= 0    since  

𝜏𝑤
𝜌
= 𝐶𝜇

1
2 𝜅 ≈ constant      and     𝜀 =

𝐶𝜇
3/4
 𝜅3/2

𝑘 𝑦 
   (3.26) 

To model the viscous sublayer, 𝑦+ < 5 , one option is to use a variant of the 

κ-ε model called low Reynolds κ-ε Model which will be explained in the next 

subsection. 

 

Figure 3.1 - Near wall classification regions.  Adapted from (Pope, 2000) 

3.2.2 Linear Low Reynolds κ-ε Models 

The Low Reynolds κ-ε Models (Wilcox, 2006) do not apply wall functions 

near the walls. Instead, a damping function 𝑓𝜇 is applied at near wall regions to 

evaluate the turbulent viscosity.  

𝜇𝑡 =
𝑓𝜇 𝐶𝜇 𝜌 𝜅

2

𝜀̃
 (3.27) 

At the wall, considering non-slip condition, all velocity components are null, as 

well as the turbulent Kinect energy (𝜅𝑤 = 0). To evaluate the dissipation value at 
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the wall, asymptotic analyses can be carried out and different expressions can be 

employed, such as 𝜀𝑤 = 2𝜇 (𝜕√𝜅 /  𝜕𝑦)
2 (Wilcox, 2006).  

The dissipation can be rewritten relative to its value at the wall, aiming to 

improve or facilitate the definition of dissipation boundary condition so that 𝜀̃ = 0 

at the wall. 

𝜀 = 𝜀̃ − 𝐸0  (3.28) 

Damping functions 𝑓1 and 𝑓2 are also introduced in the dissipation equation to 

damp the production and destruction of 𝜀 at the near wall region. The resulting 

equation can be written as 

𝜕 (𝜌 𝜀̃ 𝑈𝑗 )

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜀
)
𝜕𝜀̃

𝜕𝑥𝑗
] = 𝑓1𝐶𝜀1 𝐺𝜅  

𝜀̃

𝜅
− 𝑓2𝐶𝜀2 𝜌

𝜀̃2

𝜅
+ 𝐸 (3.29) 

These damping functions (𝑓𝜇 , 𝑓1  and 𝑓2) and the parameters 𝐸  and 𝐸0  vary 

depending on the chosen model, while the κ equation stays the same as Eq. (3.21).  

Table 3.1 shows the damping functions, parameters and constants of four 

linear Low-Reynolds Models selected to be investigated in this work: The Lam 

Bremhorst (Lam & Bremhorst, 1981), Launder Sharma (Launder et al., 1977), Lien 

Leschziner (Lien & Leschziner, 1993) and Modified Rodi Mansour (Michelassi et 

al. 1993) models.  

3.3 Non-Linear Models 

Non-Linear κ-ε models extend the basis of the Boussinesq hypothesis Eq. 

(3.16) with non-linear terms, as: 

𝜌 𝑎𝑖𝑗 = 𝜇𝑡 2 𝐷𝑖𝑗 + 𝑁𝐿𝑆𝑖𝑗 (3.30) 

where 𝑁𝐿𝑆𝑖𝑗  represents the non-linear stress tensor whose definition differ from 

each non-linear model.  

At the present work, the Lien Cubic model Lien et al. (1991) was selected to 

be investigated. However, the main focus of the present work is to evaluate the 

family of non-linear models, developed based on the orthogonal decomposition by 

Thompson (2008). An analysis a priori of the performance of these models for a 

channel and boundary layer flow, was presented by Nieckele et al. (2016) 
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Table 3.1 - Low Reynolds damping functions, parameters and constants 

Model Lam BremHorst Launder Sharma Lien Leschziner Modified Rodi Mansour 

𝑓𝜇 

(1 +
20.5

𝑅𝑡
) (1 + 𝑒−0.165 𝑅𝑦)

2
 1/ exp(

3.4

1 +
𝑅𝑡
50
 
) 

1 + 𝑒−𝐴𝜇𝑦
∗

1 + 𝑒−𝐴𝜀𝑦
∗  1 − 𝑒−2𝑥10

−4𝑦+−6𝑥10−4𝑦+
2
+2.5𝑥10−7𝑦+

3

 

𝑓1 
1 + (

0.05

𝑓𝜇
)

3

 1 1 1 

𝑓2 

1 − 1/ exp√𝑅𝑡 1 − 0.3𝑒−min(50,(𝑅𝑡)
2)  1 − 0.3/ exp√𝑅𝑡 

𝑓2
2𝑓2
1 + 𝑓3 − 1  

𝑓2
2 = 1 − 0.22𝑒−0.3357√𝑅𝑡;             

𝑓2
1 =

𝜀̃

𝜀
   ;   𝑓3 = 𝑒

1.8 (𝑅𝑝)
3

 

𝐸 
0 2 𝜇 𝜇𝑡(|∇

2𝑈̅|)2 𝐶𝜀2(𝐶𝜇)
0.75 𝑓2𝜀√𝜅

𝑙𝑒
𝑒−𝐴𝜀√𝑦

∗
 1.2𝜐𝜐𝑡 (

𝜕2𝑈

𝜕𝑦2
)

2

+
0.0075𝜐𝜅

𝜀

𝜕𝜅

𝜕𝑦

𝜕𝑈

𝜕𝑦

𝜕2𝑈̅

𝜕𝑦2
 

𝐸0 0 2 𝜇(|∇√𝜅|)
2

 0 𝜀 𝑒−0.095𝑅𝑦 

Constants 
𝐶𝜇: 0.09 ; 𝐶𝜀1: 1.44; 

𝐶𝜀2: 1.92; 𝜎𝜅: 1.0; 𝜎𝜀: 1.3 

𝐶𝜇: 0.09 ; 𝐶𝜀1: 1.44; 

𝐶𝜀2: 1.92; 𝜎𝜅: 1.0; 𝜎𝜀: 1.3 

𝐶𝜇: 0.09 ; 𝐶𝜀1: 1.44; 𝐶𝜀2: 1.92     

𝐴𝜇: 0.016;  𝐴𝜀: 0.0022 

𝜎𝜅: 1.0;   𝜎𝜀: 1.3 

𝐶𝜇: 0.09 ; 𝐶𝜀1: 1.44; 𝐶𝜀2: 1.92; 

𝜎𝜅: 1.3; 𝜎𝜀: 1.3 

Parameters 𝑅𝑡 =
𝜅2

𝜐 𝜀
    ;      𝑅𝑦 =

𝑦  √𝜅

𝜐
    ;     𝑅𝑝 =

𝐺𝜅

𝜅√
𝐶𝜇𝜀

𝜐

 ;      𝑙𝑒 = 𝐾𝑦(1 − 𝑒
−𝐴𝜀𝑦

+
);   𝑦∗ =

 √𝜅  𝑦

𝜐
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3.3.1 The κ-ε Lien Cubic Model 

The Lien Cubic model (Lien et al., 1991) is a Non-Linear Low Reynolds 

model which combines the extended Boussinesq basis Eq. (3.30) with Eq. (3.21) 

and Eq. (3.29). This model was already implemented in numerical platforms such 

as OpenFOAM. For this model the non- linear terms, constants and parameters are 

specified in Table 3.2. 

Table 3.2 - Lien Cubic Parameters and Constants 

𝑵𝑳𝑺𝒊𝒋 

𝐟𝛍𝛋

(

 
 

(

 
√
𝛋
𝛆

𝐂𝛃 + 𝐃̅
𝟑

)

 

𝟐

𝐀𝟏 − (
𝐂𝐧𝐮𝛋

𝛆
)
𝟑

𝐀𝟐

)

 
 

 

𝐀𝟏 = (𝐂𝛃𝟏(𝐃
𝟐)
𝐝𝐞𝐯
+ 𝟐𝐂𝛃𝟐(𝐃  𝐖)𝐬𝐲𝐦𝐦 + 𝐂𝛃𝟑(𝐖

𝟐)
𝐝𝐞𝐯
) 

𝐀𝟐 = (𝐂𝛄𝟏|𝐃|
𝟐 − 𝐂𝛄𝟐|𝐖|

𝟐 )𝐃 + 𝟐𝐂𝛄𝟒(𝐃
𝟐  𝐖)

𝐬𝐲𝐦𝐦
 

𝒇𝛍 
(1 − 𝑒−𝐴𝜇𝑦

∗
)

𝑙𝑒
𝐾𝑦 

𝒇𝟏 1 

𝒇𝟐 1 − 0.3𝑒−√𝑅𝑡 

𝑬 𝐶𝜀2(𝐶𝜇)
0.75 𝑓2𝜀√𝜅

𝑙𝑒
𝑒−𝐴𝜀√𝑦

∗
 

𝑬𝟎 0 

Constants 

𝐶𝜇: 0.09 ; 𝐶𝜀1: 1.44;𝐴𝜀: 0.0022𝐴𝜇: 0.016; 𝐶𝜀2: 1.92; 𝜎𝜅: 1.0; 𝜎𝜀: 1.3; 

𝐶𝜇1: 1.25; 𝐶𝜇2: 0.9   

𝐶𝛽: 1000; 𝐶𝛽1: 3 ; 𝐶𝛽2: 15; 𝐶𝛽3:−19; 𝐶𝛾1: 16; 𝐶𝛾2: 16; 𝐶𝛾4: 80  

Parameters 

𝑅𝑡 =
𝜅2

𝜐 𝜀
 ;  𝑙𝑒 =

𝐾𝑦

(1+
2𝐾

(𝐶𝜇)
0.75

𝑦+
)

 𝑦∗ =
√𝜅𝑦

𝜐 
;  

𝐶𝑛𝑢 =
2

3

1

𝐶𝜇1 + 𝐷̅ + 𝐶𝜇2𝑊̅
  

𝐷̅ =
𝜅

𝜀
√2 |𝐷| ; 𝑊̅ =

𝜅

𝜀
√2 |𝑊| 

3.3.2 Non-Linear Models Based on Orthogonal Decomposition 

The non-linear models selected to be investigated here, were developed based 

on the mathematical concept of tensor decomposition in an orthogonal tensor basis 

first introduced by Thompson, (2008) and adapted into a turbulence model by 

Thompson et al., (2010). There are two types of orthogonal decomposition. In the 
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first one, the tensor 𝐴𝑖𝑗 is written as the sum of a linear component 𝛼𝐵𝑖𝑗 plus an 

orthogonal component 𝐵𝑖𝑗
⊥

, hence:    

 𝐴𝑖𝑗 = 𝛼𝐵𝑖𝑗 + 𝐵𝑖𝑗
⊥  (3.31) 

In the second decomposition, the tensor is divided into in-phase and out-phase 

parts. The in-phase part is composed of a tensor 𝐵𝑖𝑗𝐴
𝐻 (H denotes that the term is 

written in the base of 𝐻𝑖𝑗  eigenvalues) that has the same eigenvectors as 𝐴𝑖𝑗 . 

Because of that, the 𝐵𝑖𝑗𝐴
𝐻 component is able to sweep a broader tensor field than the 

linear term of the first decomposition (𝛼𝐵𝑖𝑗 ). However, the out-phase 𝐵̃𝑖𝑗𝐴
𝐻

 has 

different eigenvectors than 𝐴𝑖𝑗, therefore: 

 𝐴𝑖𝑗 = 𝐵𝑖𝑗𝐴
𝐻 + 𝐵̃𝑖𝑗𝐴

𝐻
 (3.32) 

Using Cayley – Hamilton theorem, the in-phase term can be rewritten as: 

 𝐵𝑖𝑗𝐴
𝐻 = 𝛼0𝐼 + 𝛼ℎ𝐻 + 𝛼ℎ2𝐻

2 (3.33) 

Thompson et al. (2010) proposed a family of turbulent model, based on 

projecting the Reynolds stress tensor into different sets of tensor basis based on 

mean kinematic quantities: the rate of strain tensor 𝐷𝑖𝑗  (Eq. 3.3) and the non-

persistence of straining tensor 𝑃𝑖𝑗 

 𝑃𝑖𝑗 = 𝐷𝑖𝑗𝑊𝑖𝑗
∗ −𝑊𝑖𝑗

∗𝐷𝑖𝑗 (3.34) 

where 𝑊∗ is the relative rate of rotation defined as 𝑊𝑖𝑗
∗ = 𝑊𝑖𝑗 − 𝛺𝑖𝑗

𝐷 ,  𝑊 is the skew 

symmetric of the velocity gradient 

 
𝑊𝑖𝑗 =

1

2
(
𝜕𝑈𝑗

𝜕𝑥𝑖
−
𝜕𝑈𝑖
𝜕𝑥𝑗
) (3.35) 

𝛺𝐷 is the rate of rotation tensor of the eigenvalues of the flow (𝛺𝐷 = 𝑒̇𝑘
𝐷𝑒𝑘

𝐷), 𝑒𝑘
𝐷 is 

the unit eigenvector of 𝐷𝑖𝑗  and 𝑒̇𝑘
𝐷 is its material derivation. 

Six models were evaluated by Nieckele et al. (2016) employing a priori 

analysis by comparing the models’ prediction with experimental and DNS data for 
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boundary layer and channel flow. From this set, four models were selected to be 

analyzed here through a posterior analysis: 

  𝑀𝐼 ∶        𝑎𝑖𝑗  = 𝑎𝐷1 2 𝐷𝑖𝑗  
 

(3.36) 

 𝑀𝐼𝐼 ∶       𝑎𝑖𝑗 = 𝑎𝐷0  𝐼 +  𝑎𝐷1 2 𝐷𝑖𝑗 + 𝑎𝐷2 𝐷𝑖𝑗
2  (3.37) 

 𝑀𝐼𝐼𝐼 ∶       𝑎𝑖𝑗  = 𝑎𝐷0 𝐼 +  𝑎𝐷1 2 𝐷𝑖𝑗 + 𝑎𝐷2𝐷ij
2 + 𝑎𝛽 𝑃𝑖𝑗 (3.38) 

 𝑀𝐼𝑉 ∶       𝑎𝑖𝑗 = 𝑎𝐷1 2 𝐷𝑖𝑗 + 𝑎𝛽 𝑃𝑖𝑗 (3.39) 

Model I is a linear model, with the Reynolds Tensor directly proportional to 

𝐷𝑖𝑗. Model II is an in-phase/out-phase decomposition of the same tensor, therefore, 

the error associated to it is, by definition, lower than model I. In Model III the same 

in-phase/out-phase decomposition occurs, but now with the orthogonal tensor being 

modeled by a linear decomposition using 𝑃𝑖𝑗, hence, its error is inferior than model 

II and IV. Finally, Model IV is the same linear decomposition as model I and the 

orthogonal tensor is modeled by another linear decomposition, moreover, its error 

is lower than model I but higher than model III.  

The coefficients 𝑎𝐷𝑖 and 𝑎𝛽𝑖  were determined by Nieckele et al. (2016) 

employing noble (experimental and DNS) data. Aiming to propose a general model 

these coefficients should be nondimensionalized by the field data.   

3.3.3 Non-linear 𝜿 − 𝜺 Models 

Inspired by the popular 𝜅 −  𝜀  models, Nieckele et al. (2016) 

nondimensionalized the coefficients 𝑎𝐷0𝑖, 𝑎𝐷1𝑖, 𝑎𝐷2𝑖  and 𝑎𝛽𝑖  using 𝜅  and 𝜀 

parameters.  

The coefficient 𝑎𝐷1 is the turbulent viscosity, and it is nondimensionalized 

employing a damping function 𝑓𝜇 , similarly to existing Low-Reynolds 𝜅 −  𝜀 

models 

 
 𝑎𝐷1 = 𝑓𝜇𝐶𝜇  

𝜅2

𝜀
  

 

(3.40) 

After performing a comparison of several available damping function 𝑓𝜇 

expressions with the DNS data, Nieckele et al. (2016) recommended the modified 
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Rodi and Mansur damping function 𝑓𝜇 (Michelassi et al. 1993), showed in Section 

3.2.2, and repeated here 

  𝑓𝜇 = 1.0 −  exp (3. −0.0002 𝑦
+ − 0.00065 𝑦+2)  

 

(3.41) 

It should be mentioned here that, to apply Rodi and Mansur damping function, 

it is recommended to also consider their recommendation of damping coefficients 

𝑓1 and 𝑓2 in the dissipation conservation equation, as shown in Table 3.1. 

The coefficients of the nonlinear 𝐷𝑖𝑗
2  and 𝑃𝑖𝑗 terms were nondimensionalized 

with 𝜅3/ 𝜀2 and employed damping functions 

 
𝑎𝐷2 = 𝑓𝜇2𝐶𝜇2

𝜅3

𝜀2
            ;       𝑎𝛽 = 𝑓𝛽  𝐶𝛽  

𝜅3

𝜀2
 (3.42) 

The coefficient 𝑎𝐷0 is determined from 𝑎𝐷2  coefficient in order to guarantee 

that the tensor 𝑎𝑖𝑗 is traceless. Further, it is nondimensionalized with the turbulent 

kinetic energy 

 
𝑎𝐷0 = 𝜅 𝐶𝐷0         ;       𝑎𝐷0 = −

2

3
 𝑎𝐷2 𝛾̇

2 (3.43) 

where 𝛾̇2 is the trace of  𝐷𝑖𝑗
2 , and 𝛾̇ is the intensity of the rate of strain tensor 

 

 𝛾̇ = √
1

2
 𝐷𝑖𝑗𝐷𝑗𝑖  

 

(3.44) 

Nieckele et al. (2016) verified that the parameter 𝐶𝜇  presented a small 

dependence on Reynolds number and they recommend to define 𝐶𝜇 =0.07, while 

the recommended value of Rodi & Mansur is 0.09. Here, an investigation of the 

impact of the 𝐶𝜇 parameter in the flow field was conducted for 𝑅𝑒𝜏 = 1000, and it 

is shown in Appendix A.1. Based on the tests performed, at the present work, the 

variable was set as 𝐶𝜇 = 0.075. 

Nieckele et al. (2016) defined the others two parameters  𝐶𝜇2 and 𝐶𝛽 as  0.05 

and 0.055 respectively. They also proposed expression for the damping functions 

𝑓𝜇2 and 𝑓𝛽. However, at the present work, after investigating the performance of the 

models with the damping recommended by the reference, a better adjustment of 

them with the DNS data was performed and the derivation is presented at Appendix 

A.2. The resulting functions are 
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𝑓𝜇2 =
tanh(6.15 × 10−4( 𝑦+)2.135)

tanh(10−5( 𝑦+)5.8)
+ 6.1 × 10−2𝑒

(−
𝑦+

300
)
2

 (3.45) 

𝑓𝛽 =
tanh(2.56 ∗ 10−4( 𝑦+)2.305)

tanh(1.3 ∗ 10−5( 𝑦+)6.5)
+ 1.818 ∗ 10−2𝑒

(−
𝑦+

300
)

2

+
60.6

(𝑦+)4
+ 0.02727 (3.46) 

3.3.4 Non-linear 𝜿 − 𝜸̇ Models 

Since the greatest limitation of 𝜅 −  𝜀 models is the prediction of 𝜀, Alves et 

al. (2014) have proposed to nondimensionalize these coefficients employing the 

turbulent kinetic energy 𝜅, and the intensity of the rate of strain tensor 𝛾̇. This would 

reduce the influence of the 𝜀  field in the overall model, however, it is still necessary 

to be calculate the destruction term in the kinetic energy equation. Thus, the ε 

equation is still not fully eliminated from the model. The proposed 

nondimensionalization is: 

 
 𝑎𝐷1 = 𝐶𝜇

𝛾
 
𝜅

𝛾̇
  

 

(3.47) 

 𝑎𝐷2 = 𝐶𝜇2
𝛾
 
𝜅

𝛾̇2
            ;       𝑎𝛽 = 𝐶𝛽

𝛾
 
𝜅

𝛾̇2
  (3.48) 

 
𝑎𝐷0 = 𝜅 𝐶𝐷0

𝛾
         ;       𝑎𝐷0 = −

2

3
 𝑎𝐷2 𝛾̇

2 (3.49) 

In a similar way as employed in subsection 3.3.3, and as most Low Reynolds 

methods, the coefficients 𝐶𝜇
𝛾

, 𝐶𝜇2
𝛾

 and 𝐶𝛽
𝛾

 were calibrated using DNS data, 

(Appendix B). The functions which best describe 𝐶𝜇
𝛾
are 

𝐶𝜇−𝛾 = 0.0054𝑦
+;  𝑦+ < 3 

𝐶𝜇−𝛾 =
−0.007 + 0.0086𝑦+

1 + 0.056𝑦+ + 1.5𝑥10−5(𝑦+)2
;  3 < 𝑦+ ≤ 𝑦̂+ 

𝐶𝜇−𝛾 = 5.6𝑥10
−10 (𝑦

𝑒𝑓𝑓
+ )

3

  + 9𝑥10−8 (𝑦
𝑒𝑓𝑓
+ )

2

+ 𝐶𝜇
𝛾
(𝑦
𝑒𝑓𝑓
+ ); 𝑦̂+ < 𝑦

+
 

(3.50) 

where  𝑦𝑒𝑓𝑓
+  is written as the following difference  𝑦𝑒𝑓𝑓

+ = 𝑦+ − 𝑦̂+ and 𝑦̂+ is the 

𝑦+ value of maximum 𝐶𝜇−𝛾which can be defined as a function of the Reynolds 

Number:  𝑦̂+ = 0.2734𝑅𝑒 + 44.745. 

The coefficient of 𝐶𝜇2
𝛾

 of the non-linear term 𝐷𝒊𝒋
𝟐 is 
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𝐶𝜇2−𝛾 = 0.2277; 𝑦
+ < 1 

𝐶𝜇2−𝛾 = 0.5622(𝑦𝑙𝑜𝑔
+ )

4
− 2.0685(𝑦𝑙𝑜𝑔

+ )
3
+ 1.948(𝑦𝑙𝑜𝑔

+ )
2

− 0.1167(𝑦𝑙𝑜𝑔
+ ) + 0.2277; 1 < 𝑦+ ≤ 69 

𝐶𝜇2−𝛾 = 𝐶𝜇2−𝛾(𝑦
+ = 69); 69 < 𝑦+ 

(3.51) 

where 𝑦𝑙𝑜𝑔
+ = 𝑙𝑜𝑔10(𝑦

+). 

Finally the coefficient 𝐶𝛽
𝛾
 is 

𝐶𝛽−𝛾 = 0.3716; 𝑦
+ < 1 

𝐶𝛽−𝛾 = 0.04835 (𝑦𝑙𝑜𝑔
+ )

5

− 0.0859 (𝑦
𝑙𝑜𝑔
+ )

4

− 0.1759 (𝑦
𝑙𝑜𝑔
+ )

3

+ 0.2784 (𝑦
𝑙𝑜𝑔
+ )

2

− 0.0269 (𝑦
𝑙𝑜𝑔
+ ) + 0.3716;  1 < 𝑦+ ≤ 95 

𝐶𝛽−𝛾 = 2.38𝑥10
−10(𝑦+)3 + 2.38𝑥10−7(𝑦+)2 + 1.117𝑥10−4 𝑦+

+ 0.1993;  95 < 𝑦+ 

(3.52) 

3.4 Numerical Model 

As already mentioned the OpenFoam software was chosen to implement the 

turbulent models selected and to simulate the flow. It is an open source platform 

based on the finite volume methodology (Patankar, 1980) to solve many continuum 

phenomena problems, such as turbulence. OpenFoam is written in C++ 

computational language and can be downloaded for Linux or windows for free in 

(openFOAM, 2018) (used version: 4.1). 

The non-linear models developed by Thompson (2008) and the Modified 

Rodi-Mansur Michelassi et al. (1993) were not available in the software, so they 

were implemented in the platform. However, the following models were already 

implemented in the version 4.1 of the code OpenFoam: Lam-BremHorst, Launder-

Sharma and Lien_Leschziner, as well as the non-linear model  Lien Cubic 

Model. 

Before presenting a few numerical details employed in the discretization of 

the conservation equation, the general conservation equation is shown below. It 

represents a net convective-diffusive flux equal to a source term.  
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 ∇. (𝜌 𝑼 𝛷) − ∇. ( Γ  ∇ 𝛷) = 𝑆𝑐 + 𝑆𝑝𝛷 (3.53) 

The Finite Volume method consists of dividing the domain of interest in 

control volumes and integrating the conservation equation in each control volume, 

resulting on a global conservation equation. To integrate the conservation equations 

in the volume, OpenFOAM employs the Gauss divergence theorem, transforming 

the volume integral into a surface integral. The convective flux and diffusive flux 

terms become 

 

∫ ∇. (𝜌 𝑼 𝛷)

∀𝑃

 𝑑 ∀ = ∮ 𝒏 . (𝜌 𝑼 𝛷) 𝑑 𝐴 

𝜕∀𝑃

= ∑𝑛𝑓  . (𝜌 𝑼 𝛷)𝑓 𝐴𝑓
𝑓

 (3.54) 

 

∫ ∇. ( Γ  ∇ 𝛷)

∀𝑃

 𝑑 ∀ = ∮ Γ  𝒏 . ∇ 𝛷 𝑑 𝐴 

𝜕∀𝑃

= ∑Γ𝑓 𝑛𝑓 . (∇ 𝛷)𝑓  𝐴𝑓
𝑓

 (3.55) 

OpenFOAM employs co-located variables and the convective flux of the 

momentum equation at the control volume faces 𝑓 were approximated with the 

upwind scheme with weight factors based on the local gradient, while for the κ and 

ε, linear scheme with limiter factor was employed. The diffusive flux were 

determined based on linear approximation to determine the gradient at the control 

volume faces.  

As recommended by (Patankar, 1980), the source term of each conservation 

equation was linearized in such a way as to guarantee 𝑆𝑝 ≤ 0. Table 3.3 presents 

for each variable 𝛷 solved, the corresponding diffusion coefficient Γ and source 

term ( 𝑆𝑐  and 𝑆𝑃 ). The new contribution for the software are the non-linear 

contribution of the Reynolds stress tensor, which were treated explicitly. In the 

present work, the additional source term E of  conservation equation was also 

added to the software. In Table 3.3, the contribution for all non-linear models is 

considered, with 𝑎𝛽 = 0 for Model II and 𝑎𝐷2 = 0 for Model IV.   

The velocity and pressure coupling was solved by the SIMPLE (Semi implicit 

method of Pressure linked equation) (Patankar, 1980) algorithm.  

To solve the system of equations the GAMG (Geometric Algebraic Multi-

Grid) algorithm was set. 
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Sub relaxation factors were applied to all transport equations. Very small 

values were applied at the beginning of the simulations to control the convergence 

evolution and were slowly increased up to 0.9. 

The solution was considered converged when variation of the wall shear 

stress was inferior to 1%, and the residue of all conservation equations was inferior 

10-5. 
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Table 3.3 - Conservation Equations Terms, 𝜿 − 𝜺  Models 

Equation 𝜱̅ 𝜞 𝑺𝒄 𝑺𝒑 

   Linear model terms Non-linear models terms  

mass 1 0 0 0 0 

momentum 𝑈𝑖 𝜇𝑒𝑓 = 𝜇 + 𝜇𝑡 ∇. (𝜇𝑒𝑓 ∇
𝑇 𝐔) − ∇ 𝑃̂ 

𝑃̂ = 𝑃 − 𝑎𝐷0 

∇ .  ( 𝑎𝐷2 𝐃
2) + ∇ .  (𝑎𝛽 𝐏 ) 0 

turbulent 

kinetic energy 

𝜅 (𝜇 +
𝜇𝑡
𝜎𝜅
) 𝐺𝑘 

 

𝐺𝜅 = (∇ 𝐔 + ∇
𝑇 𝐔 ): ∇ 𝐔 

 

(𝑎𝐷2𝐃
2 + 𝑎𝛽 𝐏) ∶ ∇ 𝑼 

 

−
𝜀̃

𝜅
 

rate of 

dissipation of  

𝜿 

𝜀̃ (𝜇 +
𝜇𝑡
𝜎𝜀
) 𝐶𝜀1  

𝜀̃

𝜅
𝐺𝑘 +𝐸 𝐶𝜀1  

𝜀̃

𝜅
(𝑎𝐷2 𝐃

2 + 𝑎𝛽   𝐏) ∶ ∇ 𝐔 −𝑓2𝐶𝜀2  
𝜀̃

𝜅
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4 Results 

To evaluate the different linear and non-linear RANS models, the classical 

plane channel flow problem was selected, as high-quality DNS databases are 

available in the literature. Here the DNS data of Thais et al. (2012), and of Lee and 

Moser (2015) were selected.  

The problem of interest is a fully developed 2D turbulent flow in a horizontal 

plane channel, with a separation equal to  2 𝐻 between the plates, and length 𝐿. Due 

to the symmetry, it is sufficient to solve the problem in one half domain, as shown 

in Fig. 4.1. The main flow direction is referred to as 𝑥 while the normal direction is 

𝑦. The lower boundary is the wall (with no-slip condition) while the upper boundary 

is the symmetry plane.  

 

Figure 4.1 - Simulation's Geometry 

Since the flow is fully developed, there is no variation of the velocity field in 

the axial direction, resulting in null acceleration. Therefore, there is a force balance 

equilibrium, i.e., the pressure force is equal to the viscous force 

 𝜕 𝑝

𝜕 𝑥
 𝐻 = 𝜏𝑤 

(4.56) 

The problem was solved as 2D, with a periodic boundary condition in the x-

direction, i.e, all variables at the outlet are equal to the inlet quantities, and the 

pressure is defined as:  

 𝑝 = − 𝛽 𝑥 + 𝑝̂ (4.57) 

where  𝛽 = 𝜏𝑤 / 𝐻  is constant coefficient to account for the pressure drive. This 
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constant forcing is added at the 𝑥 -momentum equation, and the periodic boundary 

is imposed to 𝑝̂.  

The flow is governed by the friction Reynolds number 

 
𝑅𝑒𝜏 =

𝜌 𝑢𝜏 𝐻

𝜇
 (4.58) 

Table 4.1 shows the different Reynolds number, domain size, number of grid 

points, mesh resolution of the DNS data base of Thais et al. (2012), and of Lee and 

Moser (2015). 

Table 4.1 – Parameters of the DNS data base of Thais et al. (2012), and                              

Lee and Moser (2015) 

 𝑅𝑒𝜏 𝐿𝑥 × 𝐿𝑧/𝐻 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 Δ x+  Δy𝑚𝑎𝑥
2  Δ 𝑧+ 

Thais et 

al. 

(2012) 

395 8 𝜋 × 1.5 𝜋 1014 × 257 × 256 9.6 7.9 7.2 

590 8 𝜋 × 1.5 𝜋 1536 × 257 × 512 9.6 0.4 5.4 

1000 8 𝜋 × 1.5 𝜋 1536 × 513 × 768 12.3 8.4 6.1 

Lee and 

Moser 

(2015) 

1994 8 𝜋 × 3 𝜋 4096 × 768 × 3072 12.3 0.191 6.2 

5186 8 𝜋 × 3 𝜋 10240 × 1536 × 7680 12.7 0.498 6.4 

 

To discretize the problem, a non-uniform grid was defined in the normal 

direction. Since the flow is periodic in the x-direction, a small domain with length 

𝐿 = 𝐻 was defined with only 4 nodal points. Although, only one point could have 

been imposed, 4 points were defined just to facilitate handling the data. As shown 

in Appendix C, a grid with 257 points in the normal direction was sufficient to 

guarantee mesh independent results.  

The main variables examined in this work are the mean axial velocity and all 

Reynolds stress components. The turbulent quantities 𝜅 and 𝜀 were also compared 

with the DNS data. Initially, a comparison of performance of available linear 𝜅 − 𝜀 

models is performed. The best model is selected and it is employed to be compared 

with the non-linear models. 

Before presenting the comparison between the models, it is important to 

mention that the turbulent quantities are assessed through a direct comparison with 

the DNS data. However, for the mean axial velocity field, a reference DNS data was 
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obtained by solving the momentum equations, imposing the DNS Reynolds stress. 

4.1 Reference Velocity Field 

Thompson et al., (2016) have presented a careful evaluation of statistical errors 

in DNS data of plane channel flow. It was shown that depending on the convergence 

criteria employed, different variables are better represented. Based on their work, the 

DNS reference velocity field was created, obtained by solving the 2D momentum 

equation imposing the turbulent shear stress from the DNS data instead of modeling 

it with Eqs. 3.16 or 3.30. 

 With this approach, the reference velocity field (entitled ‘DNS’- reference for 

short) corresponds to the best velocity profile that can be obtained in a 2D solution 

that target the DNS Reynolds tensor. 

To impose the DNS Reynolds stress data to solve the momentum equation, 

the same number of grid points as the DNS simulation is desired. However, due to 

implementation details of the OpenFOAM nodes and the nodes position of the DNS 

data, two additional points (one near the wall and the other near the symmetry 

plane) were added. Details of the procedure employed here are given in Appendix 

C. 

Figure 4.2 shows the comparison of the DNS velocity profile with the velocity 

reference field obtained for Reτ=1000. From the plot it can be noticed that the 

reference field presents a very slight deviation from the DNS data.  
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Figure 4.2 - Comparison of Velocity Profile from the DNS data with Reference field for 
𝑹𝒆𝝉=1000 

4.2 Κ-ε Linear Models Results 

An evaluation of the selected linear models is presented here. The selected 

models were: Lam Bremhorst (Lam & Bremhorst, 1981), Launder Sharma 

(Launder et al., 1977), Lien Leschziner (Lien & Leschziner, 1993) and Modified 

Rodi Mansour (Michelassi et al., 1993).  

At the present work, the modified Rodi Mansour model was implemented 

in OpenFoam, since Nieckele et al. (2016) have recommended that a damping 

viscosity coefficient 𝑓𝜇 (shown in Table 3.1) be applied to the linear term of the 

Reynolds stress, for all models they have evaluated employing an analysis a 

priori of the models. They also recommend that the coefficient 𝐶𝜇 should be set 

as 0.07, when they compared its distribution with Thais et al (2012) DNS data 

for different Reynolds number. In the present work, a new evaluation of this 

coefficient was performed, and it is shown in Appendix A.1. The value 𝐶𝜇 =

0.075 was considered the best value for the model and was applied in all analysis 

that follow. 

Figure 4.3 shows a comparison of the results for mean axial velocity obtained 

with the four selected linear models with the reference ‘DNS’ profile, for 𝑅𝑒𝜏 =

1000. It can be seen that Lauder Sharma, Lien Leschziner models have similar 

profiles that super estimates the DNS Reference velocity. The Lam Bremhorst was 

the one with worst velocity evaluation. Meanwhile the Rodi Mansour Modified 

shows great accuracy with the reference, although the maximum velocity at the 

channel center is under estimated.  

The mean axial velocity obtained with Modified Rodi Mansour model was 

also compared with the log law (Eq. 3.25) and linear profile (𝑢+ = 𝑦+) in the 

viscous layer in Figure 4.4. It can be seen once again, the excellent agreement of 

Rodi Mansor data with the DNS Reference data. It can be observed that the profile 

can be evaluated by the linear behavior when  𝑦+ < 5 and by the log law when 

𝑦+ > 30  just as discussed in Chapter 3. The region between these two zones 

(5 < 𝑦+ < 30) cannot be described by any of these formulations.  

Figure 4.5 presents the shear Reynolds stress, 𝑎𝑥𝑦,  predictions of the four 

linear models for 𝑅𝑒𝜏 = 1000, compared to the DNS data. Figure 4.6 compares the 
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turbulent kinetic energy 𝜅 and its dissipation 𝜀, for the same models and Reynolds 

number. 

 

Figure 4.3 - Comparison of the mean axial velocity. Linear Models. 𝑹𝒆𝝉=1000. 

 

Figure 4.4 - Rodi Mansour Comparison with Linear an logarithmic behavior. 
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From the 𝑎𝑥𝑦 plot in Fig. 4.5, it is possible to notice that all models present a 

region where the profile does not match the DNS data. For the Lam Bremhorst 

model, this region extends from 𝑦+ ≈ 2 to 𝑦+ ≈ 70, being the one with worst 

performance of all. The second worst model is the Launder Sharma with a region 

extending from 𝑦+ ≈ 2  to 𝑦+ ≈ 20 . Lien Leschziner, provided the second-best 

profile where the problematic region is located when 𝑦+values are between 2 and 

10. The Rodi Mansour Modified, proved to be the best model with a mismatch 

region of 𝑦+ ≈ 2 to 7 and even so, its values are much closer to the DNS profile 

than the other models. No linear model was able to evaluate the normal components 

of the Reynolds Stress Tensor.  

 
Figure 4.5 - Comparison of shear Reynolds stress. Linear Models. 𝑹𝒆𝝉=1000 

For the κ variable shown in Fig.4.6a, it can be seen that most models tend to 

underestimate its value except for the Modified Rodi Mansour, which presented the 

best prediction. In this case, the Launder Sharma showed the worst results followed 

by Lam Bremhorst and Lien Leschziner. It can also be seen in Fig. 4.6b that all 

models tend to disagree with each other with regards to the prediction ε. Each model 

predicts a different boundary ε values at the wall surface. Once again, Modified 

Rodi Mansour model presents the best prediction, when compared with the DNS 

data.  

Based on this analysis, the Modified Rodi Mansour linear model with 

𝐶𝜇=0.075 was chosen to be used as the best representative of the class in the 
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comparisons with the non-linear models that follows. Furthermore, the same κ and 

ε equations provided by this model (with its damping coefficients) were applied to 

obtain the needed 𝜅 and 𝜀 values for the other non-linear models. 

 
(a) Turbulent kinetic energy 

 

(b) Dissipation of turbulent kinetic energy 

Figure 4.6 - Comparison of turbulent kinetic energy and its dissipation. Linear Models. 
𝑹𝒆𝝉=1000 

4.3 Κ-ε Non- Linear Models’ Results 

This subsection presents the results obtained with the non-linear models II, 

III and IV, using the by κ-ε coefficients nondimensionalization, for 𝑅𝑒𝜏 = 1000. 

For this same Reynolds number, it is also shown a comparison between the best 
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model of the previous test with the Lien Cubic non-linear model (Lien et al., 1991). 

Finally, the performance of the models for different number of Reynolds is shown. 

4.3.1 Models II, III and IV Results 

In this subsection a posteriori results of models II through IV are presented. 

As mentioned in the previous subsection these models are coupled with Rodi 

Mansour  and ε equation. Figure 4.7 shows a comparison of the mean axial 

velocity of the different models with the reference DNS profile. Observing the 

velocity profile, all models present exactly the same velocity prediction, also 

agreeing with the linear Rodi Mansour model’s (Model I) prediction. This behavior 

was expected, since all have exactly the same linear contribution. Moreover, they 

all closely match the DNS Reference velocity. 

 

 

Figure 4.7 – Comparison of mean axial velocity. Non-Linear Models. 𝑹𝒆𝝉=1000. 

 

The Reynolds tensor components are shown in Fig. 4.8. Note that all models 

predict exactly the same shear component 𝑎𝑥𝑦. This behavior can be explained, by 

recalling that for the channel flow problem, 𝑈 = 𝑢(𝑦)𝑖 , all tensors shear 
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components in 𝐷𝑥𝑦
2  and 𝑃𝑥𝑦 are null, therefore, only the linear term contributes for 

the shear Reynolds component 𝑎𝑥𝑦.  

The non-linear terms, however, present a significant influence in the 

prediction of the normal Reynolds components as shown in Fig. 4.8. Analyzing the 

performance of Model II, which includes the 𝐷2 contribution, it can be seen that 

𝑎𝑥𝑥 is significantly underestimated. Further, examining the DNS data, 𝑎𝑦𝑦 should 

be positive, and Model II predicts a profile equal to 𝑎𝑥𝑥. This is expected because 

the 𝐷𝑖𝑗
2  tensor is composed of only two equal normal components in the xx and yy 

directions for the channel flow.  On the other hand, the prediction of 𝑎𝑧𝑧  is 

reasonable, slightly over-estimated.  

The non-linear contribution of Model IV is through the non-persistent tensor, 

which is related to the frame-invariant and objective version of the vorticity. This 

model’s prediction is significant better than Model II for 𝑎𝑥𝑥 and 𝑎𝑦𝑦, both of them 

present the correct behavior. The former is slightly underestimated while the latter 

is over-estimated. The 𝑎𝑧𝑧  component, however, could not be predicted by this 

model. 

Model III, which presents contribution from 𝐷2  and 𝑃 , shows the best 

agreement with the DNS data. The combination of the two tensors, one increasing 

the normal stress contribution and the other reducing it, produces the best prediction 

of the normal components of the Reynolds tensor. 

The prediction of the turbulent kinetic energy κ and its dissipation ε is shown 

in Fig.4.9. Very good agreement is obtained with all models, however, Model II 

overestimates the κ peak value. The dissipation rate, ε, prediction is also very 

accurate and significantly superior than the values obtained with several of the 

linear models. Comparing with Model I (modified Rodi-Mansour) the results are 

equal in terms of accuracy. It should be mentioned here that both kinetic energy and 

its dissipation rate play an import hole in the prediction of the flow, and 

consequently the Reynolds tensor components. The influence of these fields to the 

solution can be observed in Appendix D. 

One important conclusion is that all models’ results follow the same trends 

observed in the a priori analysis of Nieckele et al. (2016), shown in Fig. 4.10. This 

analysis uses only noble data from the DNS while, in a posteriori simulations, 

numerical errors as well as errors associated with κ and ε modeling are presented. 
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The simulations results, therefore, show that these errors are small enough so a 

posteriori analysis could have the same a priori behavior. 

 

 
                                        (a) 𝑎𝑥𝑦                                                         (b) 𝑎𝑥𝑥 

 
                                    (c) 𝑎𝑦𝑦                                                          (d) 𝑎𝑧𝑧 

Figure 4.8 – Reynolds tensor components. Non-Linear Models. 𝑹𝒆𝝉=1000 

 

 

         (a) 𝜅, turbulent kinetic energy                        (b) 𝜀, dissipation of 𝜅 

Figure 4.9 – Turbulent kinetic energy and its dissipation. Non-Linear Models. 𝑅𝑒𝜏=1000 
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Figure 4.10 - A priori analysis of the six models proposed by (Nieckele et al., 2016) in a 

Channel Flow with 𝑅𝑒𝜏=1000 

4.3.2 Comparison with Literature Non-Linear Model 

From the previous analysis, Model III has shown the best prediction of the 

Reynolds Stress Tensor. Thus, it was selected to be compared with a non-Linear 

model from the literature. The chosen model was the Lien Cubic model (Lien et al. 

1991) which is already implemented in OpenFoam 4.1 version. Figure 4.11 through 

Figure 4.13 show a comparison between these two models for the mean axial velocity 

profile, the Reynolds tensor components and the turbulent quantities κ and . fields. 

It is possible to observe that, for all computed fields, Model III has a better 

prediction capability. It can be seen in Fig. 4.11 that the mean axial velocity of 

Model III matches the DNS data, while Lien Cubic model overestimate it. Note 

also, in Fig. 4.12 and 4.13 that the Lien Cubic model not only underestimated 𝑎𝑥𝑥, 

𝑎𝑦𝑦 and 𝑎𝑧𝑧 and κ but also wrongly generates the ε profile decreasing near the wall.  

The 𝑎𝑥𝑦 component does not adhere to the DNS data in a large region (2 < 𝑦+ <

15)). As a result, the velocity profile is super estimated. 
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Figure 4.11 – Comparison of mean axial velocity. Model III versus Lien Cubic model. 
𝑹𝒆𝝉=1000. 

 

                                    (a) 𝑎𝑥𝑥                                                        (b) 𝑎𝑦𝑦 

 

                                   (a) 𝑎𝑧𝑧                                                         (b) 𝑦 

Figure 4.12 – Reynolds tensor components. Model III versus Lien Cubic model. 
𝑹𝒆𝝉=1000 
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                   (a) 𝜅, turbulent kinetic energy                              (b) 𝜀, dissipation of 𝜅 

Figure 4.13 – Turbulent kinetic energy and its dissipation. MODEL III VERSUS Lien Cubic 

model. 𝑅𝑒𝜏=1000 

4.3.3 Models’ Results for Different Reynolds Numbers 

To verify the influence of the friction Reynolds number in the model analysis 

predictions, four more Reynolds number were investigated. Two inferior Reynolds 

number from Thais et al. (2012) DNS data base, 𝑅𝑒𝜏 = 395 and 𝑅𝑒𝜏 = 590 were 

selected. The other two cases were selected from Lee and Moser (2015) DNS data 

base, corresponding to higher Reynolds numbers (𝑅𝑒𝜏 = 2000 and 𝑅𝑒𝜏 = 5200). 

The mean axial velocity is shown in Fig 4.14 while the shear Reynolds 

component of the Reynolds tensor 𝑎𝑥𝑦 is shown in Fig. 4.15 and for all four 

Reynolds number. All models present very similar profiles for both variables, for 

each Reynolds number. The profiles are almost coincident, with a slight under 

estimation of the mean velocity in relation to the DNS data, but excellent agreement 

of the shear Reynolds stress, indicating universal behavior of the models, i.e., the 

models behavior is independent of the Reynolds number.  
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                      (a) 𝑅𝑒𝜏 = 395                                                      (b) 𝑅𝑒𝜏 = 590  
 
 

 
                     (c) 𝑅𝑒𝜏 = 2000                                                 (d) 𝑅𝑒𝜏 = 5200  

Figure 4.14 – Comparison of mean axial velocity with DNS data. Different Reynolds 
numbers. 

 

The behavior of the four models with respect to the prediction of the normal 

Reynolds stress tensor can be seen in Figs. 4.16 and 4.17. It can be seen the same 

behavior previously described. Model I (linear model) is unable to predict any 

normal component. Model II underestimates 𝑎𝑥𝑥  and predicts equal 𝑎𝑦𝑦  to 𝑎𝑥𝑥 , 

with the wrong sign, and overestimates 𝑎𝑧𝑧. Model IV shows a better prediction of 

𝑎𝑥𝑥 and 𝑎𝑦𝑦, but fails to predict 𝑎𝑧𝑧. For all Reynolds numbers Model III has shown 

a good adherence to the DNS data, however, a slight deterioration of the results as 

Reynolds number increases is observed. 
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                            (a) 𝑅𝑒𝜏 = 395                                               (b) 𝑅𝑒𝜏 = 590  

 
                           (c) 𝑅𝑒𝜏 = 2000                                             (d) 𝑅𝑒𝜏 = 5200  

Figure 4.15 – Comparison of the shear Reynolds tensor components 𝒂𝒙𝒚 with DNS data. 

Different Reynolds numbers. 

The performance of the models with respect to the turbulent kinetic energy 

and its dissipation rate is shown in Fg. 4.18. The models’ predictions are equivalent, 

but a deterioration of the agreement is observed for the two higher Reynolds 

number, which can be explained by the larger difference also observed for the 𝑎𝑧𝑧  

component for the higher Reynolds numbers. 

As a final remark, it is important to mention, that all models presented exactly 

the same behavior for all variables as obtained with the analysis a priori developed 

by Nieckele et al (2016). 
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                    (a) 𝑎𝑥𝑥 ; 𝑅𝑒𝜏 = 395                                        (e) 𝑎𝑦𝑦 ;   𝑅𝑒𝜏 = 395 

 
                    (b) 𝑎𝑥𝑥 ; 𝑅𝑒𝜏 = 590                                      (f) 𝑎𝑦𝑦 ;   𝑅𝑒𝜏 = 590 

 
                    (c) 𝑎𝑥𝑥 ; 𝑅𝑒𝜏 = 2000                                   (g) 𝑎𝑦𝑦 ;   𝑅𝑒𝜏 = 2000 

 
                    (d) 𝑎𝑥𝑥 ; 𝑅𝑒𝜏 = 5200                                   (h) 𝑎𝑦𝑦 ;   𝑅𝑒𝜏 = 5200 

Figure 4.16 – Comparison of the normal Reynolds tensor components 𝒂𝒙𝒙 and 𝒂𝒚𝒚with 

DNS data. Different Reynolds numbers. 
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                      (a) 𝑅𝑒𝜏 = 395                                                      (b) 𝑅𝑒𝜏 = 590  

 
                     (c) 𝑅𝑒𝜏 = 2000                                                 (d) 𝑅𝑒𝜏 = 5200  
Figure 4.17 – Comparison of the normal Reynolds tensor components 𝐚𝐳𝐳 with DNS data. 

Different Reynolds numbers. 
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                    (a) 𝜅+ ; 𝑅𝑒𝜏 = 395                                        (e) 𝜀+ ;𝑅𝑒𝜏 = 395 

 
                    (b) 𝜅+ ; 𝑅𝑒𝜏 = 590                                       (f) 𝜀+ ;   𝑅𝑒𝜏 = 590 

 
                    (c) 𝜅+ ; 𝑅𝑒𝜏 = 2000                                        (g) 𝜀+ ;   𝑅𝑒𝜏 = 2000 

 
                    (a) 𝜅+ ; 𝑅𝑒𝜏 = 5200                                        (e) 𝜀+ ;   𝑅𝑒𝜏 = 5200 

Figure 4.18 – Comparison of turbulent kinetic energy and its dissipation with DNS data. 
Different Reynolds numbers 
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 Figure 4.19 shows the results for the Reynolds Stress profile for all values 

of Reynolds number presented in this subsection. It is possible to observe that the 

all components have the same pattern near the wall (𝑦+ < 90) while the outer 

region varies depending on the Reynolds number. 

 

FIGURE 4.19 – MODEL III REYNOLDS STRESS FOR DIFFERENT REYNOLDS NUMBER 

4.4 κ-γ Models’ Results 

In this subsection the results obtained with the κ-γ models for 𝑅𝑒𝜏 = 1000 

are presented. The same mesh and properties were specified to simulate the flow as 

in the κ-ε 𝑅𝑒𝜏 = 1000 case.  

Figures 4.20 through 4.23 present a comparison of the results obtained with 

the two types of nondimensionalization of the models’ coefficients, i.e, employing 

κ-ε and κ-γ. These results are also compared with the DNS data. All κ-γ and κ-ε 

models follow the same trend as the a priori analysis. Model II provides the same 

𝑎𝑥𝑥and 𝑎𝑦𝑦components. Model III is the one which can best predict the Reynolds 
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tensor. Model IV under estimates 𝑎𝑥𝑥 and super estimates 𝑎𝑦𝑦  and cannot evaluate 

𝑎𝑧𝑧.  

Starting the discussion with the velocity field shown in Fig. 4.20, it can be 

seen that both families of models accurately and similarly predict this quantity (the 

maximum difference between the two curves results is less than 2%). At the same 

figure, the shear stress Reynolds component 𝑎𝑥𝑦is presented. The agreement of 

both models’ families is also very good and equivalent. There is a small difference 

between the predictions of κ-γ model for 𝑦+ between 2 and 10, when a perfect 

agreement with DNS data can be seen, while κ-ε models detaches from the DNS. 

On the other hand, the κ-ε models, performs better for 𝑦+ between 10 and 20. The 

agreement of the shear component has a direct effect on the prediction of the mean 

axial velocity, with equivalent behavior. Overall, both models accurately predict 

the 𝑎𝑥𝑦 component: for Model I for example both nondimensionalization presented 

less than 2.1% of average error and less than 0.043 absolute error. 

The great advantage of κ-γ nondimensionalization is evident when one is 

interested in the normal components of the Reynolds stress tensor. The comparison 

of the models prediction with the two types of nondimensionalization is shown in 

Figs. 4.21 and 4.22. As already discussed, Model I is unable to predict the normal 

components, therefore, at Fig. 4.21, the results for 𝑎𝑥𝑥  and 𝑎𝑦𝑦  are shown for 

Models II, III and IV. Since Model IV is unable to predict the 𝑎𝑧𝑧 component, Fig. 

4.22 only presents the results obtained with Models II and III. For all normal 

Reynolds stress components κ-γ models prediction is superior to κ-ε counterpart. It 

is also possible to notice that not only the resulting profiles are smoother but the 

shift problem discussed in Appendix D, due to κ and especially ε influence, 

disappears for κ-γ models.  

The superiority behavior of the κ-γ models can be attributed to the prediction 

of the dissipation of the turbulent kinetic energy ε. With κ-γ nondimensionalization, 

the influence of this variable is indirect, since it only affects the  prediction, though 

the destruction term in the κ equation, therefore avoiding an important and direct 

affect in the calculation of the Reynolds stress components.  

Finally, the prediction of both  and is shown in Fig. 4.23. The κ field is 

better predicted by κ-γ models which matches the DNS data for almost the whole 

domain. The region of  𝑦+ between 5 and 30 is where the prediction field detaches 
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from DNS data. For this region, both sets of models over estimate this quantity. 

However, κ-γ models are still more accurate than its κ-ε counterpart.  

For the ε variable, no major changes are observed away from the wall, where 

the profiles approach zero in every case. Near the wall, no major difference is 

observed for this field when comparing only the models in each respective set. 

When comparing models of different sets, however, the profiles are slightly 

different. Near the wall, the dissipation rate is higher for the κ-γ 

nondimensionalization relatively to κ-ε. The boundary ε is also better predicted by 

κ-γ models in the case of Models III and IV. 

The nondimensionalization of the models’ coefficient with κ-γ has the 

following advantages: (1) The influence on the flow prediction of the model to 

determine  is reduced. (2) Better results for the normal components were obtained.  
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                          Model I                                       Model II                                         Model III                                           Model IV 

 

Figure 4.20 - Comparison of models 𝜿 − 𝜸 and 𝜿 − 𝜺 models for the mean axial velocity and shear Reynolds stress component. 
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                                     Model II                                                          Model III                                                              Model IV 

 

 

Figure 4.21 - Comparison of models κ-γ and κ-ε models for the normal Reynolds stress component, 𝑎𝑥𝑥 and 𝑎𝑦𝑦 
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                                                                                    Model II                                           Model III                                

 

 

Figure 4.22 - Comparison of models κ-γ and κ-ε models for the normal Reynolds stress component, 𝑎𝑧𝑧 
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                          Model I                                       Model II                                         Model III                                           Model IV 

  

 

Figure 4.23 - Comparison of models κ-γ and κ-ε models for the turbulent kinetic energy and its dissipation.
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5 Conclusion 

The main objective of this work was to prove that non-linear eddy viscosity 

models, especially when using the non-persistence of strain (P) tensor, quadratic of 

rate of strain (𝐷2) and rate of strain’s intensity (γ), can be used in simulations to 

reduce the error associated with the Boussinesq hypothesis. By doing that, better 

predictions of the turbulence, majorly with respect to the Reynolds Stress tensor, 

were expected. 

To do that, in the present work, existing linear and non-linear models were 

assessed by simulating a turbulent, incompressible steady state flow in a channel, 

for friction Reynolds number ranging from 395 to 5200. Low Reynolds Linear 

models were compared among themselves in order to choose the one that provides 

the best κ and ε fields. These fields are required to build the final non-linear model 

coefficients and, for this reason, the Rodi Mansour model was chosen as the most 

promising. 

 Four non-Linear κ-ε models were, simulated using the Rodi Mansour model 

as a provider of the κ and ε fields. The results from these simulations agree with the 

trends suggested from the a priori analysis, and even the normal components of the 

Reynolds Stress Tensor could be accurately captured. Among the non-linear κ-ε, 

the one that adds both contributions of the quadratic of the rate of strain and the 

non-persistence of strain is the one that best matched the DNS data, despite shifts 

in the maximum values being observed in the solution when compared to the DNS 

data. A careful analysis was performed and these problems were attributed to 

inaccurate κ and, specially, ε fields. 

 The non-linear models were simulated for cases with different Reynolds 

number. The results shown that the model is general enough to be valid for low and 

high Reynolds Numbers. 

 Model III was compared to the Lien cubic model (Lien et al., 1991) already 

implemented in OpenFoam. Model III showed a better performance in the 

prediction of the components of the Reynolds stress Tensor, including the normal 

components which are under estimated by the Lien cubic model.  
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Four κ-γ models were numerically solved for the same geometry and 

Reynolds Number than the κ-ε ones. All resulting profiles were  compared to their 

κ-ε counterpart. No major difference could be observed for the velocity, 𝑎𝑥𝑦 and 

dissipation fields. However, better results were obtained for the normal components 

of the Reynolds Tensor when compared to the DNS data. The models based on  

showed a shift in relation to y+ for the Reynolds stress components. This shifting 

problem is significantly mitigated by the κ-γ nondimensionalization and a better 

agreement with the a priori analysis was observed. 

5.1 Future Work 

Several possibilities to continue the present work can be suggested. It is 

desirable to evaluate the models in more complex geometries, such as a backstep, a 

fully developed flow in a square duct, or a jet.  

Rodi Mansour Modified model (Michelassi et al. 1993) has been proposed 

for a channel flow, therefore, it relies only on the y direction as the normal direction. 

This was sufficient for the present work, however, for other geometries, the model 

should be extended to a more general formulation, i.e., geometry independent. 

Despite being the best linear model, the Rodi Mansour Modified model was 

not able to fully match the DNS profile. Another possible way of improvement, 

therefore, is to enhance the model’s predictability of the ε field by changing its 

damping functions. These functions’ definitions are also a major challenge for 

complex flows, specially for flows with huge adverse pressure gradient and 

separation. 

The main goal of the κ-γ models was to provide smooth damping functions. 

Further, the reduced dependence on the dissipation ε is a great benefit of this 

formulation. However, the particular model implemented here for the κ-γ models, 

does not completely eliminate the ε field. Thus, one possible future development is 

to eliminate completely ε from the model, introducing a new model for the 

destruction of the turbulent kinetic energy on its equation. This would not only 

make the solution to run much faster but also prevent coupling convergence 

problems, as one transport equation would be excluded.  

In the κ-γ model, the eddy viscosity and the other non-linear terms are 

expressed divided by the rate of strain tensor intensity (γ). This can be a problem 
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for flows with zero velocity gradients (such as the channel flow at the symmetry 

plane). When the velocity gradient is close to zero, these quantities tend to infinity 

which makes the solution convergence much harder to attain. Therefore, 

improvements in the converging techniques can also be the focus of future work. 

The κ-γ models still requires to have their universality assessed for a broad 

range of Reynolds numbers, as done for the κ-ε models. However, the coefficients 

calibration of the κ-γ models depend on the friction Reynolds Number, and they 

must be first determined. 

With this work, and the works to come, it is believed that new tools to predict 

the turbulence phenomena, such as the non-persistence of strain tensor and the rate 

of strain intensity, were proven valuable. The user of these models is expected to 

have better prediction of the turbulent flow in simple and, in the future, complex 

geometries than conventional eddy viscosity models.    
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Appendix A – Coefficients Adjustments for  Models 

As mentioned in Chapter 3, Nieckele et al. (2016) recommend the Modified 

Rodi Mansur damping function for the linear term. They also proposed expressions 

for the damping functions (𝑓𝜇2 and 𝑓𝛽) and reference coefficients: 𝐶𝜇 for the linear 

contribution and 𝐶𝜇2 and 𝐶𝛽for the non-linear terms, by fitting the DNS data. At 

this appendix a revaluation of the parameters proposed by Nieckele et al (2016) is 

performed. First, the influence of the reference 𝐶𝜇 is addressed, since Rodi Mansour 

(Michelassi et al. 1993) recommend a coefficient to be used with their proposed 

damping function and Nieckele et al. (2016), recommended another one. Then, a 

reevaluation of the damping functions of the linear terms 𝑓𝜇2  and 𝑓𝛽 is also 

performed. 

A.1 Coefficient 𝑪𝝁 

In order to choose the better 𝐶𝜇  for the Rodi Mansour Modified model 

(RMM) into the DNS data, simulations were carried out with different 𝐶𝜇 

coefficients (0.075, 0.08 and 0.09). Figures A.1, A.2 and A.3 presents the influence 

of the reference coefficient in the profiles of 𝑎𝑥𝑦, 𝑈+, ε and κ, respectively.  

 

Figure A.1 - Shear Reynolds tensor component 𝒂𝒙𝒚 with Rodi Mansour Modified (RMM) 

damping function, with different 𝑪𝝁 
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Analysing the figures, it is possible to notice that the simulation with 

Cμ=0.075 could reproduce better the DNS 𝑎𝑥𝑦 , 𝜅+  and 𝜀+  while no significant 

changes were observed for the velocity.  The value of 0.075 was, therefore, chosen 

to be used for non-linear models’ simulations. This value is, moreover, close to the 

one proposed by (Nieckele et al. 2016). 

 

Figure A.2 Mean axial velocity with Rodi Mansour Modified (RMM) damping function, with 

different 𝑪𝝁 

 

Figure A.3 - κ and ε with Rodi Mansour Modified (RMM) damping function, with different 

𝑪𝝁 
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A.2 Damping functions of non-linear terms 𝒇𝝁𝟐 and 𝒇𝜷 

The damping expression they recommend is shown in Eq. A.1, with            

𝐶𝜇2 = 0.05 and 𝐶𝛽 = 0.05. Figure shows the comparison with the fit with the 𝑓𝜇2 

and 𝑓𝛽 extracted from DNS. 

 
𝑓𝜇2 = 𝑓𝛽 =

tanh(8.5 × 10−4( 𝑦+)2.01)

tanh(1.8 × 10−5( 𝑦+)5.35)
 (A.1) 

 

(a) Damping function of D2 term 

 

(b) Damping function of P term 

Figure A.4 – Damping functions of the non-linear terms from Nieckele et al. (2016) 

However, at the present work, the recommended fit for 𝑓𝜇2 and 𝑓𝛽were reevaluated 

using the DNS data of κ, ε and U. The coefficients 𝐶𝜇2 and 𝐶𝛽 were maintained as 0.05. 

The new damping expression proposed at the present work are 

𝑓𝜇2 =
tanh(6.15 × 10−4( 𝑦+)2.135)

tanh(10−5( 𝑦+)5.8)
+ 6.1 × 10−2𝑒

(−
𝑦+

300
)
2

 (A.2) 
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𝑓𝛽 =
tanh(2.56 ∗ 10−4( 𝑦+)2.305)

tanh(1.3 ∗ 10−5( 𝑦+)6.5)
+ 1.818 ∗ 10−2𝑒

(−
𝑦+

300
)

2

+
60.6

(𝑦+)4
+ 0.02727 (A.3) 

Figure A.5 shows a comparison of the fitting of new damping functions 𝑓𝜇2 

and 𝑓𝛽  with the damping function obtained directly from the DNS data. Although 

the expressions are much more complicated, a better adherence to the DNS data 

was obtained.  

To verify the quality of the new fit of the damping coefficients, a comparison 

of the normal Reynolds tensor components determined with these coefficients and 

with the DNS velocity data are presented in Fig, A.6. The components obtained 

with the adjustment recommended by Nieckele et al. (2016) is also added in the 

figure, as well as the DNS tensor components. Looking at the plots of the Reynolds 

Stress tensor it’s possible to observe that not only the new damping functions better 

fit the DNS data but also the resulting Reynolds Stress is better adjusted. Also, the 

new Reynolds Stress Tensor does not present an oscillation region at  𝑦+ ≈ 10 

anymore.  

 

(a) Damping function of D2 term 

 

(b) Damping function of P term 

Figure A.5 – New damping functions of the non-linear terms.  
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(a) 𝑎𝑥𝑥 Reynolds stress component 

 

(c) 𝑎𝑦𝑦 Reynolds stress component 

 

(c) 𝑎𝑧𝑧 Reynolds stress component 

Figure A.6 - Reynolds Stress Comparison from different damping functions 
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Appendix B – Coefficients Adjustments for  Models  

Here, the definition of coefficients 𝐶𝜇−𝛾, 𝐶𝜇2−𝛾 and 𝐶𝛽−𝛾 will be discussed. 

For this purpose, this section will be divided into three parts (one for each 

coefficient). 

B.1 Coefficient 𝑪𝝁−𝜸 

Figure B.1 shows the coefficient for different Reτ values. To calibrate this 

coefficient the DNS data needed to be split into three groups, in which 𝐶𝜇−𝛾 had 

different behaviors:  𝑦+ < 3, 3 < 𝑦+ ≤ 𝑦̂+ and 𝑦̂+ < 𝑦+.  

 

Figure B.1 – 𝑪𝝁−𝜸 from DNS for different 𝑹𝒆𝝉: 𝟑𝟗𝟓, 𝟓𝟗𝟎, 𝟏𝟎𝟎𝟎 

Before, proceeding to the proper discussion, first some clarifications of 

𝑦̂+need to be made. 𝑦̂+ is the 𝑦+in which 𝐶𝜇−𝛾 is maximum. This value varies with 

the Reynolds Number as seen in figure B.1, hence, in order to obtain a generic 

calibration of  𝐶𝜇−𝛾, 𝑦̂+ needs to be written as a function of Reynolds. Figure B.2 

shows that 𝑦̂+ can be approximated from 𝑅𝑒𝜏 as a linear function. 

The two first regions will be discussed together first, following by the third 

one. For this region the function that could best adjust the data is enunciated by  
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𝐶𝜇−𝛾
3>𝑦+>𝑦̂+

=
−0.007+0.0086𝑦+

1+0.056𝑦++1.5𝑥10−5(𝑦+)2
 .  (B.1) 

 

Figure B.2 - 𝒚̂+dependence of 𝑹𝒆𝝉 

Nevertheless, for 𝑦̂+ bellow 3 that function results in negative values which 

can cause simulation’s numerical problems. In order to solve this problem another 

equation is set for this region: 𝐶𝜇−𝛾
𝑦+<3

= 0.0054𝑦+. This region was only calibrated 

for a Reynolds of 1000. The last region ( 𝑦̂+ < 𝑦+ ) is fitted by a third order 

polynomial function of the form of Eq. B.2. To generate a curve without spikes and 

steps, the first derivate and first point of the fit need to be continuous, hence, 

𝐶𝜇−𝛾
𝑦̂+<𝑦+(𝑦̂+) = 𝐶𝜇−𝛾

3>𝑦+>𝑦̂+(𝑦̂+) (B.2) 

 
𝜕(𝐶𝜇−𝛾

𝑦̂+<𝑦+
(𝑦̂+))

𝜕𝑦+
=
𝜕(𝐶𝜇−𝛾

3>𝑦+>𝑦̂+
(𝑦̂+))

𝜕𝑦+
  (B.3) 

Then, the coefficients of the following equation was determined 

𝐶𝜇−𝛾
𝑦̂+<𝑦+

= 𝑎(𝑦+ − 𝑦̂+)3 + 𝑏(𝑦+ − 𝑦̂+)2 +  𝑐(𝑦+ − 𝑦̂+) + 𝑑 (B.4) 

The first restriction will result in 𝑑 = 𝐶𝜇−𝛾
3>𝑦+>𝑦̂+(𝑦̂+) while the second one 

will produce 𝑐 = 0  since, by definition, 𝐶𝜇−𝛾  achieves its maximum value at 

𝑦̂+ .Only two parameters (a and b), therefore, requires calibration.  From these 

parameters adjustments it was found that “b” can be a constant equal to 9𝑥10−8 

and “a” varies with the Reynolds’ number. Table B.1 and figure B.3 shows the 

parameters, errors and fitting of the region. 
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Table B.1 - Fitting Parameters and Errors 

Reynolds Number a Average Error (%) 

395 −1.10 × 10−8 0.89 

590 −2.54 × 10−9 1.72 

1000 −5.6 × 10−10 1.49 

 

 

 

Figure B.3 - Fitting of 𝑪𝝁−𝜸
𝒚̂+<𝒚+

at different Reynolds Numbers 

To further generalize this region’s calibration, it is possible to write the “a” 

parameter as a log x log function of the Reynolds Number. Figure B.4 shows the 

mentioned dependence as well as the respective fitted equation.  

Figure B.5 exhibits the comparison of the fitting of all integrated regions with 

the DNS data. Although the average error is 5.25%, the generated curve can 

reproduce correctly the behavior of the parameter. The high value of the average 

error is attributed to the closest region of the wall where 𝑪𝝁−𝜸 has lower values and, 

thus, high relative errors. This is corroborated by the low maximum absolute error: 
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Figure B.4 - "a" parameter as a function of the Reynolds number 

 

Figure B.5 - 𝑪𝝁−𝜸 all regions integrated and compared with the dns data 

B.2 Coefficient 𝑪𝝁𝟐−𝜸 

The 𝐶𝜇2−𝛾  coefficient was calibrated using only the DNS 𝑅𝑒𝜏 = 1000 

database as a reference, hence, it is not generalized to other Reynolds values. The 

major area of variation of this coefficient is located between 𝑦+ = 1 and 𝑦+ = 69. 

For this area the coefficient can be represented by Eq. 3.51. 

To simplify the curve fitting, the other regions (𝑦+ < 1 and 𝑦+ > 69) the 

coefficient is considered to be constant. Moreover, no discontinuations are allowed 

in the curve fitting. To test if this approach would not introduce modeling errors, 

the 
𝜅

𝛾2
𝐶𝜇2−𝛾𝐷

2  term is plotted in figure Figure B.B.6. In this figure, κ, γ and 𝐷2are 
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taken from the DNS data. The difference between the curves is that 𝐷2𝑡𝑒𝑟𝑚_𝐷𝑁𝑆 

is the following term with 𝐶𝜇2−𝛾 from the DNS while 𝐷2𝑡𝑒𝑟𝑚_𝑓𝑖𝑡 is the same term 

with the coefficient from the curve fitting.  

 

Figure B.6 - Coefficient and D² term comparison using DNS data 

As observed from the plots, although 𝐶𝜇2−𝛾 is not correctly represented for 

𝑦+ greater than 69, there is no major effect in the 𝐷2𝑡𝑒𝑟𝑚 that would justify an 

increase in the complexity of the curve fitting. The coefficient value in the 𝑦+ >

69 area should, therefore, be maintained constant. 

B.3 Coefficient 𝑪𝜷−𝜸 

The 𝐶𝛽−𝛾  is calibrated using the same procedure as 𝐶𝜇−𝛾  and 𝐶𝜇2−𝛾 . The 

domain is divided into three groups (see equation 3.52) and individually calibrated 

with DNS data applying restrictions so no steps or spikes appears in the fitting 

curve. As done in the 𝐶𝜇2−𝛾, figure B.7 shows the calibrated coefficient compared 

with the one calculated solemnly from the DNS and the respective term in which it 

appears: 
𝜅

𝛾2
𝐶𝜇2−𝛾𝑃 (𝑃, 𝜅 and 𝛾 extracted from the DNS).  

For the region center region (𝑦+ ≈ 1000) the calibrated coefficient a more 

accentuated decay when compared with the DNS profile. This is imposed 

intentionally to prevent numerical errors propagated by the low values of the P 

tensors in this area which hinders the simulation’s solution convergence. The P 

term, however, is not much affected by this imposed calibration error as the DNS 

profile and term calculated with the fitting coefficient almost match.   
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Figure B.7 - Coefficient and P term comparison using DNS data 
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Appendix C – Mesh Considerations 

This appendix is divided in two subsections: the first one describes the mesh 

composition while the second presents the influence of mesh refining. 

C.1 Mesh Distribution 

At Chapter 3, it was mentioned that Thompson et al (2016) discussed in their 

paper that if the flow statistics are not very well converged, errors can be found in 

the DNS data. Thus, to compare the time average axial field obtained with a RANS 

modeling, one should employ the velocity field obtained by the solution of the 

momentum equations with the DNS Reynolds stress tensor components directly 

inserted at the equations (best possible representation of the tensor). The resulting 

velocity field was called here as “reference DNS”.  

In order to determine the “reference” DNS velocity field, a mesh was defined 

so that no interpolation from the DNS data should be employed. That is, the same 

mesh as defined in the DNS simulation was employed in the normal y direction. For 

𝑅𝑒𝜏 = 1000 of Thais et al. (2012) at the y direction, 257 elements were defined, 

with the same non-uniformity as the reference. Here the problem was solved as 2D, 

i.e., elements at the x direction had to be defined. Since the flow is fully developed, 

no variation of any variable was expected at the direction, meaning that only 1 point 

should suffice. However, for simple convenience, and to verify null variation in the 

axial direction, 4 elements were defined in the present work. 

Before continuing, one information must be given, regarding the mesh 

definition at OpenFoam. In OpenFoam, the position of the center of the element is 

at half distance between its neighbor faces. Therefore, to be able to follow this 

mesh’s pattern, two more elements were inserted along the y direction at the border 

of the domain. Without the addition of them, the element’s size varied too much, 

causing divergence. Figure C.1 illustrate the solution taken, where the center of the 

element is shown in red, and the new elements are yellow. 
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Figure C.1 – Mesh definition 

C.2 Mesh Refinement 

A grid test was performed to define the mesh in the normal direction. κ-ε 

Model III, with 𝑅𝑒𝜏 = 1000 of Thais et al. (2012) was selected to be examined. 

Three mesh size were employed in the y direction: 129; 257 and 343. Their 

elements’ positioning followed the same pattern as the original 257 mesh (described 

at the previous section). The mesh size in the x direction was not varied, and it was 

verified that no variation was obtained, as expected, in this direction. 

Figures C.2 through C.4 show the results obtained for the mean velocity and 

the Reynolds stress components, as well as for the turbulent kinetic energy and its 

dissipation rate. All results are coincident, indicating that mesh independent results 

were obtained. 

 

Figure C.2 – Mean axial velocity. Model III. 𝑹𝒆𝝉 = 𝟏𝟎𝟎𝟎. Mesh test. 
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                                    (a) 𝒂𝒙𝒙                                                              (b) 𝒂𝒚𝒚 

 

                                    (c) 𝒂𝒛𝒛                                                              (d) 𝒂𝒙𝒚 

Figure C.3 – Reynolds stress tensor components. Model III. 𝑹𝒆𝝉 = 𝟏𝟎𝟎𝟎. Mesh test 

 

                (a) turbulent kinetic energy, 𝜿                                   (b) dissipation 𝜺 

Figure C.4 - Turbulent kinetic energy and dissipation. Model III. 𝑹𝒆𝝉 = 𝟏𝟎𝟎𝟎. Mesh test. 
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Appendix D – Influence of κ and ε field into κ-ε NLEVM 

At Section 4.3.1, Model III was selected as the best one which could predict 

the Reynolds Stress Tensor. However, analyzing the results, it was shown that 

Model III could not reproduce the DNS data exactly. On the other hand, the analysis 

a priori performed by Nieckele et al (2016) showed a perfect agreement between 

Model III and DNS data. 

Three types of error related to this misprediction are possible: one associated 

with the fitting of the damping functions, one associated to the prediction of κ and 

the other one generated from the misevaluation of ε. In this section, therefore, these 

three causes are analyzed in order to determine the one which most impact the a 

posteriori solution. 

Two types of additional simulations were carried out. At the first one, the ε 

field was not numerically determined and the profile obtained from the DNS 

database was employed directly in the solution, hence, errors associated with ε 

predictions and fitting are accounted. For the second case, both DNS fields of κ and 

ε were directly inserted in the momentum and models’ coefficients therefore, only 

errors of the damping functions’ fitting are present. For convenience, they will be 

referenced as ε DNS simulation and κ-ε DNS simulation. 

These simulations’ results are compared with references values of the 

Reynolds Stress Tensors which were generated by direct calculation using values 

of κ, ε, Dij and Pij  available in the DNS data base, with the appropriated coefficients 

and damping functions. These results are referred here as “DNS reference”. The 

resulting field is the best one possible that a simulation could achieve, therefore, it 

is the best field to use as a reference. 

Figure D.1 shows the results from the mentioned simulations compared with 

the reference field and Model III results. Since the Reynolds Tensor is the variable 

of major interest, only its components are plotted. 

The difference from the DNS reference and the κ-ε DNS simulation curves is 

attributed to the Dij and Pij which are not the same in each case. Meanwhile, the ε-

DNS simulation incorporates the same problem and add the prediction of the κ field. 
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Finally, the Model III needs to predict both  Dij, Pij and κ as well as ε. It is expected 

and observed, therefore, that the κ-ε DNS simulation is the one which best approach 

the DNS reference. 

 

Figure D.1 – Influence of and  profiles. Model III 

Comparing Model III with the ε DNS simulation profiles it is possible to 

notice a shift in the normal components profile. It is expected, therefore, that this 

unwanted shift is caused by the incapacity of the Modified Rodi Mansour model to 

generate the same ε field as the DNS. This lack of prediction is also responsible for 

minor oscillations observed in the azz component.  

The ε field, however, is not the only variable to be blamed since the ε-DNS 

simulation cannot approach the DNS reference field as the κ-ε DNS simulation. The 

only difference between these two cases is the κ field (calculated in the first and 

provided by DNS data in the latter). The error associated with this field’s 

calculations is, therefore, responsible for their contrasts. Despite that, the shift 

problem affecting the components’ peak locations is significantly corrected for the 

ε DNS simulation.    
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