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Abstract

Mamani Castillo, Edhin Franklin; Tomei, Carlos (Advisor); Sve-
tlichny, George (Co-Advisor). Tomita-Takesaki theorem and
KMS states. Rio de Janeiro, 2018. 80p. Dissertação de mestrado
– Departamento de Matemática, Pontifícia Universidade Católica
do Rio de Janeiro.

In this work we present the Tomita-Takesaki theory for a Von Neumann
algebra M with cyclic separating vector u. We use the finite-dimensional
case to motivate the theory, and then proceed to the analytical arguments
usually employed to prove the infinite dimensional case. Also, we calculate
the modular operators from the theory for three standard examples. In
quantum statistical mechanics, the thermodynamic equilibrium states of a
physical system with finitely many particles and finite volume are modeled
by Gibbs states, while in the infinite case they are modeled by the so called
KMS states through the operator-algebraic approach. We show how Tomita-
Takesaki theory provides natural KMS states and the uniqueness of the time
evolution of the physical system for those states.

Keywords
Tomita-Takesaki theorem; KMS states; Gibbs states; KMS condi-

tion; Cyclic and separating vector; Tomita Operator; Modular Operator;
Modular group.
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Resumo

Mamani Castillo, Edhin Franklin; Tomei, Carlos; Svetlichny, Ge-
orge. O teorema de Tomita-Takesaki e os estados KMS. Rio
de Janeiro, 2018. 80p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho apresentamos a teoria de Tomita-Takesaki para uma
álgebra de Von NeumannM com vetor cíclico separante u. Usamos o caso
finito dimensional para motivar a teoria, depois prosseguimos para os ar-
gumentos analíticos geralmente empregados para provar o caso infinito di-
mensional. Também calculamos os operadores modulares da teoria para três
exemplos padrão. Na mecânica estatística quântica, os estados de equilíbrio
termodinâmico de um sistema físico com um número de partículas e volume
finito são modelados pelos estados de Gibbs, enquanto no caso infinito eles
são modelados pelos chamados estados KMS através da abordagem de ál-
gebra de operadores. Mostramos como a teoria de Tomita-Takesaki fornece
estados KMS naturais e a unicidade da evolução temporal do sistema físico
para esses estados.

Palavras-chave
Teorema de Tomita-Takesaki; Estados KMS; Estados de Gibbs;

Condição KMS; Vetor cíclico e separador; Operador de Tomita; Ope-
rador Modular; Grupo Modular.
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1
Introduction

Thermodynamics is the study of the macroscopic properties of matter —
pressure, temperature, heat capacity. The main goal of statistical mechanics
is the ultimate explanation of thermodynamics in terms of the microscopic
behavior of the system constituents. The original formalism, in which the
constituents are supposed to obey classical physics, is called classical statistical
mechanics. With the advent of quantum theory, it was soon noticed that in
many systems the behavior of microscopic constituents was modeled more
accurately by quantum mechanics, so quantum statistical mechanics was born
with the same goal.

A pioneer in the modern approach of classical statistical mechanics was
Josiah Willard Gibbs which in 1878 formalized the foundations of the subject
[1]. He introduced statistical ensembles, a very useful concept to handle sys-
tems of large number of particles through probabilistic considerations. Later,
the probabilistic approach was adapted to fit quantum mechanics. In both
cases, the framework suggested by Gibbs defined heuristically the thermodyn-
amic equilibrium states of the physical system, the Gibbs states. The subject
found applications in a variety of branches of physics: the theory of metals,
semiconductors, solid state, atomic and molecular physics. It also gave indica-
tions about new physical phenomena: superfluidity and superconductivity.

Meanwhile, in 1929 John Von Neumann suggested that the fundamental
object in the mathematical setting of quantum mechanics was not the Hilbert
space H of physical states, but families of quantum observables modeled by
operators acting on H. He defined and studied rings of bounded operators
on H which are closed in the weak operator topology, known today as Von
Neumann algebras [2]. In a attempt to synthesize the essence of the quantum
observables, other families of bounded operators were considered, among them
C∗ and Jordan algebras.

In 1943, Israel Gelfand and Mark Naimark characterized abstractly
C∗-algebras without any reference to the underlying Hilbert space [3]. This
remarkable achievement led Irving Segal in 1947 to state a set of axioms
that any physical theory should satisfy [4]. These axioms were abstracted
from the mathematical model of quantum mechanics and implied a complete
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Chapter 1. Introduction 10

reformulation of any physical theory in algebraic terms: physical observables
are modeled by elements in a C∗-algebraM and physical states by normalized
positive linear functionals onM. This was the starting point of the operator
algebraic approach of quantum mechanics, quantum statistical mechanics and
quantum field theory.

The algebraic approach was a meaningful conceptual breakthrough, but
was not particularly useful to connect theory with experimental data. The
subject was largely ignored by the physics community until in 1957, when
Rudolf Haag pointed out its importance in quantum field-theoretic models [5].
In the 1960’s, it was applied to quantum statistical mechanics mostly to study
the (Gibbs) equilibrium states of quantum systems.

In 1957 Ryogo Kubo [6] and in 1959 Paul Martin and Julian Schwin-
ger [7] highlighted an algebraic property satisfied by the Gibbs states, the
so called KMS (Kubo-Martin-Schwinger) condition. The states that satisfied
this property were called KMS states. Physicists realized that this property
characterized completely the Gibbs states for quantum systems in a finite di-
mensional state space: KMS states were exactly the Gibbs states. In 1967,
Haag, Hugenholtz and Winnink proposed the KMS states as the thermodyna-
mic equilibrium states for a general quantum system [8]. Despite the existence
of other alternative proposals, KMS states were the most studied theoretical
models of quantum statistical mechanics and quantum field theory.

In 1967, out of purely mathematical motivations, Minoru Tomita intro-
duced an elaborate theory of Von Neumann algebras with a cyclic separating
vector. His main achievement was the construction of a strongly continuous
one-parameter unitary group of automorphisms of the Von Neumann algebra,
the modular automorphism group. In 1970, Masamichi Takesaki improved the
presentation of the theory and related it to KMS states: the cyclic separating
vector induces a KMS state. This connection between pure mathematics and
theoretical physics is now known as the Tomita-Takesaki theory [9].

In this dissertation we describe the Tomita-Takesaki theory and its
connection with KMS states. Chapter 2 gives a basic account of some topics
of operator theory which are needed for the development of the subsequent
chapters. In particular, we consider Banach, C∗ and Von Neumann algebras,
with emphasis on the functional calculus that arises from the representation
theorems of the correspondent commutative algebras. Specifically, we present
the Gelfand transform, Von Neumann’s bicommutant theorem, Kaplansky’s
density theorem and the functional calculus in three levels: for holomorphic,
continuous and bounded functions of normal operators.
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Chapter 1. Introduction 11

The Tomita-Takesaki theory is the subject of Chapter 3. The finite
dimensional case is treated first to motivate some constructions, and then
additional technical aspects are discussed in the infinite dimensional context.
Three mathematical examples of the theory are presented.

Chapter 4 introduces the KMS states. First, we provide an introduction
to the GNS (Gelfand-Naimark-Segal) construction. The Gibbs states and the
elements of the operator algebraic approach to quantum statistical mechanics
are motivated. We then present the KMS condition in a special case and
show the equivalence between KMS and Gibbs states for finite quantum
systems. The general definition follows, with some consequences. We finish with
Takesaki’s theorem, which relates the Tomita-Takesaki theory to KMS states.
Our presentation of the algebraic operator approach of quantum statistical
mechanics mainly follows the spirit of [10, 11].

Appendix A.1 and A.4 are tool boxes of standard topics in functional
analysis while Appendix A.2 considers briefly anti-linear operators on a Hilbert
space. Appendix A.3 gives miscellaneous applications of the holomorphic
functional calculus.
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2
Basic Operator Theory

This chapter is devoted to some basic topics in operator theory and is
based mainly on [10, 12, 13]. The first two sections provide a brief introduction
to Banach algebras and the holomorphic functional calculus. The next two
sections handle C∗-algebras, the Gelfand-Naimark theorem and the continuous
functional calculus for normal elements. Finally, the last two consider Von
Neumann algebras, the density theorems of Von Neumann and Kaplansky,
the representation theorem for commutative Von Neumann algebras and the
bounded Borel functional calculus for normal elements.

2.1
Banach algebras

An algebra is a complex vector space A with a product, (a, b) ∈ A×A 7→
ab ∈ A, which is distributive with respect to vector addition and associative.

The algebra A is a normed algebra if A admits a multiplicative norm, i.e.,
|ab| ≤ |a||b| for a, b ∈ A. If the product has an unit element e ∈ A and |e| = 1
then A is unital. If it is commutative, A is commutative.

Definition 2.1. A Banach algebra B is a complete normed algebra.

The Banach space B has a dual B∗, which in turn also has a dual B∗∗ ⊃ B.
Example 2.1. z Let H be a complex Hilbert space and B(H) be the set of linear
bounded operators from H to itself, endowed with the operator norm. With
the usual product given by composition of maps, B(H) is a non-commutative
unital Banach algebra. If H = Cn then B(H) = Mn(C) is the set of n × n

complex matrices.
Example 2.2. Let K be a compact Hausdorff space. The space C(K) of
continuous complex valued functions onK, endowed with the function sum and
multiplication and the sup norm, is an unital commutative Banach algebra.
Example 2.3. Let U ⊂ C be a bounded open set with closure U . The set H(U)
of all functions of C(U) admitting holomorphic restrictions to U . With the
obvious induced structures, H(U) is a commutative unital Banach algebra.

Here, Banach algebras B are always unital, with identity denoted by e.

Spectral concepts on B(H), which are of algebraic nature, extend to B.
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Definition 2.2. For a ∈ B, the spectrum σ(a) is

σ(a) = {λ ∈ C | λe− a is not invertible},

its complement is the resolvent ρ(a) and r(a) = sup |σ(a)| is the spectral
radius. The resolvent function is the map z ∈ ρ(a) 7→ Ra(z) = (ze− a)−1 ∈ B.

Example 2.4. Let K be a compact Hausdorff space and f ∈ C(K). The
spectrum σ(f) is the range of f , σ(f) = f(K) and hence r(f) = |f |.

Example 2.5. Let A ∈ Mn(C). The spectrum σ(A) is the set of eigenvalues of
A and r(A) is the largest absolute value among the eigenvalues of A.

Clearly, polynomials induce functions p : B → B. Convergent series, and
hence analyticity, also make sense in B. Since the usual estimates yielding
absolute convergence of series on the complex numbers only require the
properties of a multiplicative norm, standard results extend trivially. Among
the examples are the uniqueness of the series at a point, analytic continuation
and the fact that entire functions from C to itself give rise to entire functions
from B to itself.

Another form of analyticity is very convenient. Let U ⊂ C be an open
set. A function f : U 7→ B is analytic if every point in U is a center of an open
ball in which f admits an absolutely convergent power series. Again, from
the properties of multiplicative norms, the Cauchy-Hadamard formula for the
radius of convergence of a function f : U → B at a point still holds. Explicitly,
for f(z) = ∑

cnz
n, cn ∈ B, the radius of convergence R at 0 is given by

R = 1
lim sup |cn|1/n

.

Some results of complex theory from analytic functions f : U → C
transfer to analytic functions f : U → B by use of Dunford’s theorem [14].

Theorem 2.1. A function f : U → B is analytic if and only if it is weakly
analytic, i.e., all compositions f` = ` ◦ f : U → C for ` ∈ B∗ are analytic

Thus, for example, a bounded isolated singularity of an analytic function
f : U → B is removable. Cauchy’s theorem — integration along a contractible
smooth curve in U of an analytic f : U → B is zero — also holds.

Proposition 2.1. Let B be a Banach algebra and a ∈ B.

1. (Neumann series) If |a| < 1, (e− a)−1 = ∑∞
n=0 a

n.

2. The function Ra is analytic on ρ(a) = σ(a)c and limz→∞Ra(z) = 0.
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Chapter 2. Basic Operator Theory 14

3. The spectrum σ(a) is compact and non-empty.

4. (Gelfand’s formula for the spectral radius) r(a) = limn→∞ |an|1/n.

Proof. The proof of (1) is standard, from which, as usual, three facts are
immediate: the openness of the set of invertible elements, the openness of
ρ(a) ⊂ C and the analyticity of Ra in ρ(a). For |z| > |a|, write w = 1/z
so that w ∈ B = {w ∈ C , |wa| < 1}. From the Neumann series, Ra(z) =
F (w) = w(e−wa)−1 is an analytic function in B \ {0}. On the other hand, F
is analytic at a point w∗ 6= 0 if and only if Ra is analytic at z∗ = 1/w∗. Since
limz→∞Ra(z) = limw→0 F (w) = 0, the proof of (2) is complete. Also from
F (w) = Ra(z), we have that z ∈ ρ(a) if |z| > |a|, so that sup |σ(a)| ≤ |a| and
thus σ(a) is a compact set of C. If σ(a) = ∅, from the behavior at ∞ of R− a
in (2), we learn that Ra is a bounded, entire — hence constant — function
and (3) follows.

To obtain (4), we consider the radius of convergence R of F . Let w∗ ∈ C
with |w∗| = R. If (e−w∗a) ∈ B is invertible, F is analytic at w∗. Thus a point w∗
in which F is not analytic (and then R = |w∗|) gives rise to z∗ = 1/w∗ ∈ σ(a).
Gelfand’s formula now follows from the Cauchy-Hadamard formula for the
radius of convergence R = |w∗| of F at 0. �

A linear map φ : B1 7→ B2 between Banach algebras is an algebra
homomorphism if φ preserves product, i.e., φ(ab) = φ(a)φ(b) for a, b ∈ B1

and takes one identity to the other, φ(e1) = e2. If φ is also bijective, it is an
algebra isomorphism and B1 and B2 are isomorphic.

An algebra with every non-zero element invertible is a division algebra.

Proposition 2.2 (Gelfand-Mazur). A division Banach algebra B is isometri-
cally isomorphic to C.

Proof. Let a ∈ B. By (3) of proposition 2.1, there exists λa ∈ C such that
λae − a is not invertible and hence equal to zero, so that a = λae. The map
a 7→ λa is the required isomorphism. �

Proposition 2.3. Let φ : B1 7→ B2 be an algebra homomorphism. Then, for
a ∈ B1, σ(φ(a)) ⊂ σ(a) hence r(φ(a)) ≤ r(a).

Proof. We show that ρ(a) ⊂ ρ(φ(a)) and taking complements gives the
result. For µ ∈ ρ(a), (µe − a)b = e for some b ∈ B1. Applying φ we have
(µφ(e)− φ(a))φ(b) = φ(e) and hence µ ∈ ρ(φ(a)). �
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2.2
Holomorphic Functional Calculus

Let U ⊂ C be an open set, γ ⊂ U be a smooth, simple, closed curve with
positive orientation, bounding an open disk D ⊂ U . For a analytic function
f : U 7→ C and z0 ∈ D, recall Cauchy’s formula

f(z0) = 1
2πi

∮
γ
f(z)(z − z0)−1dz.

Let B be a Banach algebra, a ∈ B and U ⊂ C be a bounded neighborhood of
σ(a). Let γ ⊂ U be a finite set of smooth, simple, closed curves γi, i = 1, . . . , n
surrounding open disks Di ⊂ U counterclockwise such that σ(a) ⊂ ∪i Di. For
f ∈ H(U) (defined in example 2.3), set

f(a) = 1
2πi

∮
γ
f(z)(ze− a)−1dz = 1

2πi

∮
γ
f(z)Ra(z)dz. (2.1)

Lemma 2.2. Any γ with the properties above obtains the same f(a) ∈ B.

Proof. Since f and Ra are holomorphic on U \σ(a), so is fRa and in particular
fRa is continuous on γ. Thus, f(a) is defined by the usual integration process
on Banach spaces — one may approximate by Riemann sums uniformly, and
conclude that f(a) ∈ B. Two sets of curves γ and γ̃ satisfying the hypotheses
above are homologically equivalent in U \σ(a) and the equality of the integrals
follow from Cauchy’s theorem on integration of analytic functions. �

As we shall see, this definition coincides with the natural definition of
p(a) for a polynomial p, and extends for functions f ∈ H(U).

Theorem 2.3 (Holomorphic functional calculus). Let B be a Banach algebra,
a ∈ B and U ⊂ C be a bounded neighborhood of σ(a). There exists a unique
continuous algebra homomorphism

φ = φa : H(U)→ B

for which φ(1) = e, φ(z) = a. It is given by

f ∈ H(U) 7→ f(a) = 1
2πi

∮
γ
f(z)Ra(z)dz ∈ B.

Proof. The linearity is clear. For the product, let γ as above and f, g ∈ H(U):

f(a)g(a) = 1
2πi

∮
γ
f(z1)Ra(z1)dz1

1
2πi

∮
γ
g(z2)Ra(z2)dz2

= ( 1
2πi)

2
∮
γ
dz1

∮
γ
dz2

(
f(z1) g(z2) Ra(z1) Ra(z2)

)
.
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We now use the familiar resolvent identity,

Ra(z1)Ra(z2) = Ra(z1)−Ra(z2)
z1 − z2

, (2.2)

which in turn is a direct consequence of

(z1e− a)[(z1e− a)−1 − (z2e− a)−1](z2e− a) = (z2 − z1)e, for z1, z2 ∈ ρ(a) .

The integrand of the double integral above becomes

( 1
2πi)

2f(z1)Ra(z1) g(z2)
z1 − z2

− ( 1
2πi)

2g(z2)Ra(z2) f(z1)
z1 − z2

.

The term z1− z2 becomes zero if both variables run through the same curve γi
of the set γ. We dilate the curves in γ slightly, obtaining curves γ̃ surrounding
those of γ: for the associated bounded disks, Di ⊂ D̃i. Clearly, the original
integrals do not change their values. We are ready to continue: f(a)g(a) is

( 1
2πi)

2
∮
γ
f(z1)Ra(z1)dz1

∮
γ̃

g(z2)dz2

z1 − z2
− ( 1

2πi)
2
∮
γ̃
g(z2)Ra(z2)dz2

∮
γ

f(z1)dz1

z1 − z2
.

Use Cauchy’s formula for the scalar integrals, taking into account that z1 is
surrounded by the curve γ̃i containing z2, but z2 is outside of the curve γi
containing z1: the second term vanishes and

f(a)g(a) = 1
2πi

∮
γ
f(z1)g(z1)Ra(z1)dz1 = (fg)(a).

We now check that φ(1) = e. Integrate the resolvent-like identity

(ze− a)−1 − e/z = (ze− a)−1(a/z) = (1/z)(e− a/z)−1(a/z), for z ∈ C

on a circle centered at the origin surrounding σ(a) (any circle will obtain the
same answer, by Cauchy’s theorem). Up to a multiplicative scalar, the first
integral gives φ(1), the second gives e and the third equals zero, by taking
absolute values of the integrand on circles with large radius.

Similarly, to obtain φ(z) = a, integrate on a large circle as above

(z − a)(z − a)−1 = z(z − a)−1 − a(z − a)−1

to obtain 0 = φ(a)− aφ(1).
Therefore the map φ is an algebra homomorphism. Moreover, the map is
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continuous: if fn → f in H(U), we estimate norms on γ,

|f(a)− fn(a)| = | 1
2πi

∮
γ
(f − fn)(z)Ra(z)dz| ≤ 1

2π |f − fn|∞|Ra|∞L(γ).

By compactness the norm of the resolvent function Ra is bounded. �

Since φ is an algebra homomorphism and φ(z) = a, we must have
φ(p) = p(a) for polynomials. The map extends by continuity in a unique way.
It is a nontrivial fact that polynomials are dense in H(U) [14].

Corollary 2.3.1 (Spectral mapping theorem for holomorphic functions). Let
B be a Banach algebra, a ∈ B and U ⊂ C be a bounded neighborhood of σ(a).
Then, for f ∈ H(U),

σ(f(a)) = f(σ(a)).

Proof. We prove first the direct inclusion. Suppose by contradiction that there
exists λ ∈ σ(f(a)) such that λ /∈ f(σ(a)). Thus, λ 6= f(z) for z ∈ σ(a).
Now take an open set Ũ ⊂ U containing σ(a) on which the function g(z) =
(λ− f(z))−1 is holomorphic. By theorem 2.3, g(a) = (λe− f(a))−1 exists, and
from the fact that φ is an algebra homomorphism, it is indeed the inverse of
(λe− f(a)), contradicting λ ∈ σ(f(a)).

For the reverse inclusion, let λ ∈ f(σ(a)), for which λ = f(µ) for some
µ ∈ σ(a). Since f is holomorphic on U , so is the function g defined through
the formula (µ− z)g(z) = f(µ)− f(z) (i.e., z = µ is a removable singularity).
Applying theorem 2.3, we have (µe−a)g(a) = λe−f(a). If λe−f(a) is invertible
then (µe−a)

(
g(a)(λe−f(a))−1

)
= e and we conclude that µe−a is invertible,

contradicting µ ∈ σ(a). Thus λe− f(a) is not invertible: λ ∈ σ(f(a)). �

To conclude this section, we remark that the main atraction of the
holomorphic functional calculus and its spectral mapping theorem relies on
the fact that they work for any element of the Banach algebra, while the
continuous and bounded Borel functional calculus only work on a special
class: the normal elements, as we shall see in later sections. Therefore, the
holomorphic functional calculus has many interesting applications, few ones
are showed in appendix A.3.
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2.3
C*-algebras

The spectral theorem from self-adjoint and normal operators in B(H)
follows almost immediately from the fact that, for such operators, the norm
is given by its spectral radius. This property, or better, a request that readily
implies this property, characterizes C∗-algebras.

Let A be an algebra. An involution on A is a map a ∈ A 7→ a∗ ∈ A such
that for λ ∈ C and a, b ∈ A,

(λa+ b)∗ = λa∗ + b∗, (a∗)∗ = a, (ab)∗ = b∗a∗.

Involutions extend the adjoint operation on B(H).

Definition 2.3. A C∗-algebra M is a Banach algebra with an involution
satisfying the C∗condition: |a∗a| = |a|2 for a ∈M.

Since |a|2 = |a∗a| ≤ |a∗||a|, we have |a∗| ≤ |a|. Interchanging a and a∗,
we see that the involution is an isometry.

A subset T ⊂M that is itself a C∗-algebra with the induced operations
is a C∗-subalgebra ofM.

Example 2.6. The set B(H) is a non-commutative C∗-algebra with the adjoint
operation for involution. The C∗ condition plays the role of a fundamental
property in B(H): the usual operator norm is related to the quadratic form
for self-adjoint operators. For a compact Hausdorff space K and a bounded
open subset U ⊂ C, C(K) and H(U) are commutative C∗-algebras with the
involution given by pointwise conjugation.

Definition 2.4. LetM be a C∗-algebra and a ∈M,

1. a is self-adjoint if a∗ = a.

2. a is unitary if a∗a = aa∗ = e (and thus a∗ = a−1).

3. a is normal if a∗a = aa∗.

Every a ∈M splits in real and imaginary parts,

a = Re(a) + iIm(a) , with Re(a) = a+ a∗

2 , Im(a) = a− a∗

2i . (2.3)

Clearly, both real and imaginary parts are self-adjoint. An element a is normal
if and only if real and imaginary parts commute. The relationship between
normal and self-adjoint operators is analogous to the one between the complex
and the real numbers.
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Theorem 2.4. Let M be a C∗-algebra. If a ∈ M is normal, then r(a) = |a|.
Thus, for a ∈M, |a|2 = r(a∗a).

Proof. First, if a ∈ M is self-adjoint then |a2| = |a∗a| = |a|2 hence |a2n| =
|a|2n . Therefore r(a) = limn→∞ |a2n|1/2n = |a|. Thus, if a ∈M is normal then

r2(a) ≤ |a|2 = |a∗a| = lim
n→∞

|(a∗a)n|1/n = lim
n→∞

|a∗nan|1/n ≤ r(a∗)r(a) = r2(a).

The second statement follows easily. �

Thus, the norm in a C∗-algebra (which induces the metric and topological
properties) is determined by the spectral radius (an algebraic property of
elements of the C∗-algebra).

Definition 2.5. LetM1 andM2 be C∗-algebras. An algebra homomorphism
φ : M1 7→ M2 is a *-homomorphism if φ preserves involution, i.e., φ(a∗) =
φ(a)∗, for a ∈M1. If additionally, φ is bijective, it is a *-isomorphism. In this
case,M1 andM2 are *-isomorphic.

Corollary 2.4.1. Every *-homomorphism is contractive, hence continuous,
and every *-isomorphism is an isometry.

Proof. The result follows from proposition 2.3 and theorem 2.4. �

Proposition 2.4. LetM be a C∗-algebra and a ∈M.

1. If a is unitary then σ(a) ⊂ S1(the unit circle).

2. If a is self-adjoint then σ(a) ⊂ R.

Proof. Let a ∈ M be unitary and λ ∈ σ(a). Since |a| = 1, |λ| ≤ 1. By
corollary 2.3.1, σ(a−1) = σ(a)−1. But a−1 is also unitary: |λ−1| ≤ 1 and λ ∈ S1.

Take now a ∈M self-adjoint and consider exp(ia) = ∑∞
n=0(ia)n/n!. Since

(exp(ia))∗ = exp(−ia) and exp(ia) exp(−ia) = exp(0) = e, exp(ia) is unitary.
By corollary 2.3.1, σ(eia) = eiσ(a) ⊂ S1, so that σ(a) ⊂ R. �
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2.4
The Continuous Functional Calculus

A rather naive fact underlies the main constructions in this section.
For a ∈ B, if λ ∈ σ(a), then f(λ) ∈ σ(f(a)) for f ∈ H(U) for which the
holomorphic spectral mapping theorem holds (corollary 2.3.1). Said differently,
the map f ∈ H(U) 7→ f(λ) ∈ C is an algebra homomorphism for each λ ∈ σ(a).
The Gelfand transform below relies on the identification between σ(a) and a
class of algebraic objects, which are interpreted as algebra homomorphisms or
as maximal proper ideals (the kernels of such homomorphisms).

Definition 2.6. Let B be a commutative Banach algebra. A nonzero linear
functional ` : B 7→ C is a character on B if ` preserves product. The set Ω(B)
of all characters is the character space.

Thus, the character ` is also an algebra homomorphism from B into C
and takes invertible elements of B into invertible complex numbers.

Lemma 2.5. Let B be a commutative Banach algebra, a ∈ B and ` ∈ Ω(B).
Then `(a) ∈ σ(a) and |`| = 1.

Proof. Since `(`(a)e − a) = 0, we have `(a) ∈ σ(a). Also |`(a)| ≤ |a|, so that
|`| ≤ 1. The result follows from `(e) = 1. �

Thus, the character space Ω(B) is included in B∗1 , the closed unit ball of
B∗. We endow Ω(B) with the relative weak* topology. By the Banach-Alaoglu
theorem, B∗1 is compact in the weak* topology.

Lemma 2.6. For a commutative Banach algebra B, the character space Ω(B)
is a compact Hausdorff space.

Proof. Clearly, Ω(B) is Hausdorff. Since B∗1 is weak* compact, it is enough to
show that Ω(B) is weak* closed. Take ` ∈ B∗ in the weak* closure of Ω(B),
and a net (`j) in Ω(B) such that `j → ` in the weak* topology. For a, b ∈ B,

(ab)(`j) = `j(ab) = `j(a)`j(b) = a(`j)b(`j) .

Since the evaluation functionals are weak* continuous, ` ∈ Ω(B). �

Definition 2.7. Let B be a Banach algebra. The Gelfand transform is the
map Γ : B 7→ C(Ω(B)) defined by Γ(a)` = `(a) for a ∈ B and ` ∈ Ω(B).

Lemma 2.7. Let B be a commutative Banach algebra. Then, the Gelfand
transform Γ is an algebra homomorphism with σ(a) = σ(Γ(a)) for a ∈ B.
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Proof. Clearly Γ is an algebra homomorphism. From proposition 2.3 we know
that σ(Γ(a)) ⊂ σ(a).

To prove σ(a) ⊂ σ(Γ(a)), let λ ∈ σ(a), so that λe− a is not invertible in
B. By Zorn’s lemma there exists a maximal proper ideal I containing λe−a. An
ideal containing an invertible element coincides with B, and thus the properness
of I implies that it has no invertible elements, as well as its closure I, since
the set of invertible elements is open in B. Thus, I is a closed proper ideal
containing λe− a. By maximality, I = I.

Since I is closed and maximal, the quotient B/I is a division Banach
algebra, and by proposition 2.2, B/I ∼= C. Thus, the quotient map is a
character ` ∈ Ω(B) such that `(λe−a) = 0, or equivalently, `(a) = λ. Therefore
Γ(a)` = `(a) = λ and λ ∈ σ(Γ(a)). �

The result above extends to C∗ algebras. In a nutshell, every commutative
C∗-algebraM is the algebra of continuous functions of some compact space.

Theorem 2.8 (Gelfand-Naimark theorem). For a commutative C∗-algebraM,
the Gelfand transform Γ :M 7→ C(Ω(M)) is a *-isomorphism.

Proof. We first show that Γ preserves involution. Split a = Re(a) + iIm(a) as
in eq. (2.3). Since Re(a) and Im(a) are self-adjoint, their spectrum is real and,
for ` ∈ Ω(M), by lemma 2.5, `(Re(a)) and `(Im(a)) are real numbers. Thus

Γ(a∗)` = `(Re(a))− i`(Im(a)) = `(Re(a)) + i`(Im(a)) = Γ(a)`.

We now show that Γ is a bijective isometry. For a ∈M, by theorem 2.4
and lemma 2.7,

|Γ(a)|2 = r(Γ(a∗a)) = r(a∗a) = |a|2

so that Γ is an isometry, hence injective, and the image Γ(M), being a closed
set, is a C∗-algebra. We apply the Stone-Weierstrass theorem: since Γ(M) is a
C∗-subalgebra of C(Ω(M)) that contains the constant functions and separates
points of Ω(M) (recall that Ω(M) is Hausdorff in the weak* topology), it must
be C(Ω(M)) itself. �

An intersection of C∗-subalgebras is a C∗-subalgebra.

Definition 2.8. Let M be a C∗-algebra and S ⊂ M. The C∗-subalgebra
C∗(S) generated by S is the smallest C∗-subalgebra ofM containing S.

The subalgebra C∗(S) can be viewed as the closure of the set of finite
sums of products of elements in S ∪ S∗. Therefore, for a normal element
a ∈ M, C∗(a) is commutative C∗-algebra and consists of polynomials in a
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and a∗ together with their uniform limits. Every ` ∈ Ω(C∗(a)) is determined
by the values `(a) and `(a).

Theorem 2.9 (Continuous functional calculus). Let M be a C∗-algebra and
a ∈M be normal. Then, there is a *-isomorphism

φ : C(σ(a))→ C∗(a), f 7→ f(a)

for which φ(1) = e and φ(z) = a.

Proof. We first show that Γ(a) : Ω(C∗(a)) 7→ σ(a) is a homeomorphism. By
lemma 2.7, Γ(a) is surjective. If Γ(a)` = 0 then `(a) and `(a) vanish hence
` = 0, implying injectivity. Since Γ(a) is a weak* continuous bijection between
compact Hausdorff spaces, it is a homeomorphism.

Identify Ω(C∗(a)) with σ(a). By theorem 2.8, Γ : C∗(a) 7→ C(σ(a)) is a
*-isomorphism and Γ−1 is the desired *-isomorphism. The facts φ(1) = e and
φ(z) = a are easy. �

Corollary 2.9.1 (Spectral mapping theorem for continuous functions). LetM
be a C∗-algebra and a ∈M be normal. If f ∈ C(σ(a)) then σ(f(a)) = f(σ(a)).

Proof. By theorem 2.9, f(σ(a)) = σ(f) = σ(f(a)). �

Let U be a bounded neighborhood of σ(a). In a sense, we extend the
functional calculus for f ∈ H(U)(section 2.2) to f ∈ C(σ) at a price of only
consider normal elements. For a functional calculus on a ’intermediate’ function
class, see appendix A.3.3.

2.5
A clarifying example: group algebras

For a finite group G of order n, identify Cn with the formal linear
combinations of the orthonormal basis elements {eg : g ∈ G}. For g, h ∈ G,
define the unitary operator Lg : Cn 7→ Cn by Lg(eh) = egh on basis elements.
The linear span of the set {Lg : g ∈ G} is a C∗-algebra, the group algebra of G.
Note that the group algebra is commutative if and only if G is commutative.

Consider the group algebra M for G = S3, and we interpret the group
as the symmetries of an equilateral triangle centered at the origin of R2. Its
elements are {I, r1, r2, x1, x2, x3}: I is the identity, r1 and r2 represent rotations
by π/3 and 2π/3 while x1, x2, x3 represent reflections on different axes of the
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triangle. Its multiplication table is

I r1 r2 x1 x2 x3

I I r1 r2 x1 x2 x3

r1 r1 r2 I x3 x1 x2

r2 r2 I r1 x2 x3 x1

x1 x1 x2 x3 I r1 r2

x2 x2 x3 x1 r2 I r1

x3 x3 x1 x2 r1 r2 I

and we then consider the representation of G by 6× 6 permutation matrices,
which can be read in each row of the multiplication table. The C∗-algebraM
consists of the linear combinations of such matrices,

M = {



a b c d e f

c a b f d e

b c a e f d

d f e a c b

e d f b a c

f e d c b a


, a, b, c, d, e, f ∈ C }

The underlying Hilbert space is C6 and M is a 6-dimensional vector
subspace of M6(C). Since {I, r1, r2} is a commutative subgroup of S3 then the
correspondent 3-dimensional subalgebra span{LI , Lr1 , Lr2} is commutative.

2.6
Von Neumann algebras

We refer to the weak and strong operator topologies as the weak and
strong topologies on B(H). For some basic results, see appendix A.1.

Definition 2.9. A C∗-algebraM⊂ B(H) is a Von Neumann algebra ifM is
weakly closed and contains the identity.

Example 2.7. In finite dimensional spaces, the operator topologies on Mn(C)
are equivalent and C∗-algebras and Von Neumann algebras coincide.

Example 2.8. Not every C∗-algebra is a Von Neumann algebra. Let K be a
infinite compact Hausdorff space and µ be a finite positive Borel measure onK.
Consider the map M : L∞(K,µ) 7→ B(L2(K,µ)) defined by f 7→Mf (ψ) = fψ

for ψ ∈ L2(K,µ). Clearly M is an isometric isomorphism from L∞(K,µ) onto
its image M(L∞(K,µ)). In particular, we may identify C(K) and L∞(K, dµ)
with their images under M .
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Endow L∞(K,µ) ∼= (L1(K,µ))∗ with the weak* topology and
M(L∞(K,µ)) with the weak topology induced by B(L2(K,µ)). We now
show that M : L∞(K,µ)→M(L∞(K,µ)) is a homeomorphism for this choice
of topologies(appendix A.1). Let (fj) be a net in L∞(K,µ), with fj → f in
the weak* topology and ψ ∈ L2(K,µ), then

(M(fj)ψ, ψ) =
∫
K
fj ψ ψ dµ = |ψ|2 fj

shows that indeed M and M−1 are continuous.
The image M(C(K)) ∼= C(K) is a C∗-algebra, but C(K) is weak* dense

in L∞(K, dµ), so that the image M(C(K)) is weakly dense in M(L∞(K,µ)).
Therefore C(K) is a C∗-algebra that it is not a Von Neumann algebra. Still,
L∞(K,µ) is a commutative Von Neumann algebra.

As for C∗-algebras, the intersection of Von Neumann algebras is again
a Von Neumann algebra. Let F ⊂ B(H). The Von Neumann algebra W ∗(F)
generated by F is the smallest Von Neumann algebra in B(H) containing F .
Clearly, W ∗(F) is the weak closure of C∗(F).

Given a subset F ⊂ H of a Hilbert space, the (closed) vector space
V spanned by F is obtained by applying twice the orthogonal complement,
V = F⊥⊥. It was Von Neumann’s idea to describe W ∗(F) in a similar fashion
using commutants instead of the (nonexistent) inner products. Closures are
taken with respect to strong or weak topologies — recall that weak and strong
closures of convex sets are equal(see appendix A.1).

Definition 2.10. The commutant of F is

F ′ = {T ∈ B(H) : TF = FT, for all F ∈ F}

and (F ′)′ = F ′′ is the bicommutant of F .

Example 2.9. IfM⊂ B(H) is a Von Neumann algebra thenM′,M′′ and the
center ofM, Z(M) =M∩M′, are Von Neumann algebras. Additionally we
haveM⊂M′′.

Example 2.10. We compute the commutant M′ of the finite group algebra
introduced in Section 2.5. The underlying fact is trivial: multiplications on the
left and on the right commute. Let S = span{Rg : g ∈ G} with Rg(eh) = ehg for
h ∈ G. Clearly LgRhem = RhLgem for g, h,m ∈ G hence S ⊂ M′. If A ∈ M′

then Aeg = ALgeI = LgAeI = ∑
mAmIegm so that A ∈ S andM′ = S.

Theorem 2.10 (Von Neumann density theorem). Suppose M ⊂ B(H) is a
C∗-algebra containing the identity. ThenM is strongly dense inM′′.
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Notice thatM is not necessarily weakly closed, whereasM′′ is.

Proof. Let T ∈M′′ and V be a strong neighborhood of T (appendix A.1): take
x1, . . . , xn ∈ H and ε > 0 such that V = {S ∈ B(H) : |Txi − Sxi| < ε, i =
1, . . . , n} ⊂ M′′. Set x̃ = (x1, . . . , xn) ∈ Hn: we are led to consider n-uples

M̃x̃ = {S̃x̃ = (Sx1, . . . , Sxn) ⊂ Hn for S ∈M} .

We show that T̃ x̃ = (Tx1, . . . , Txn) lies in the (weak, strong) closure M̃x̃.
Let P be the orthogonal projection from Hn onto M̃x̃. The set M̃ =

{Ã ∈ B(Hn) : A ∈ M} endowed with componentwise operations is a C∗-
algebra. Clearly RanP = M̃x̃ is invariant by M̃ and, because M̃ is closed
under the involution, kerP also is, so that P ∈ M̃′.

A simple computation shows that T ∈ M′′ which implies that T̃ ∈ M̃′′.
Therefore T̃ commutes with P , so that RanP is invariant under T̃ and
T̃ x̃ ∈ RanP = M̃x̃. �

Corollary 2.10.1. Let M ⊂ B(H) be a C∗-algebra containing the identity.
ThenM is a Von Neumann algebra if and only ifM =M′′.

Adding up, by theorem 2.10, the weak and strong closures of a C∗-algebra
M are equal toM′′. We useM′′ to refer to the strong or weak closure ofM.

A function f : R 7→ C is strongly continuous if for every Hilbert space H
and every strongly convergent net (Tj) of self-adjoint operators in B(H) with
Tj → T , one has f(Tj)→ f(T ) strongly. We quote Theorem 4.3.2 of [13].

Lemma 2.11. If f : R 7→ C is a bounded and continuous function then it is
strongly continuous.

Recall thatMsa is the set of self-adjoint elements ofM. The map taking
A ∈M to its real part Re(A) ∈Msa is weakly continuous(see appendix A.1).

Theorem 2.12 (Kaplansky density theorem). LetM⊂ B(H) be a C∗-algebra
with strong closureM′′.

1. Every self-adjoint operator A ∈ M′′ is the strong limit of a net of self-
adjoint operators (Aj) inM, with |Aj| ≤ |A|.

2. Every A ∈M′′ is the strong limit of a net (Aj) inM, with |Aj| ≤ |A|.

Proof. For (1), take a net (Aj) inM with Aj → A strongly (hence weakly, see
appendix A.1) to the self-adjoint operator A ∈M′′. We may suppose Aj to be
in the weak (strong) closure ofMsa by taking real parts.
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We show that we may bound each self-adjoint operator Aj by |A|. Define
f : R → R so that f(x) = x for |x| ≤ |A| which is continuous and constant
outside of this interval. By lemma 2.11, f(Aj) → f(A) = A, because f is the
identity function on σ(A). Moreover, f is real and |f |∞ = |A|, so that f(Aj)
is self-adjoint and |f(Aj)| ≤ |A|, and (1) is proved.

For (2), take again for each Aj → A ∈M′′ strongly. Embed the net and
the limit as matrices with entries inM′′,

Ã =
 0 A

A∗ 0

 ∈M2(M′′) = M2(M)′′

apply (1) to obtain a convergent net of self-adjoint matrices. The (1, 2) entries
of such matrices are the required net Aj. �

2.7
Cyclic and separating vectors

Definition 2.11. LetM ⊂ B(H) be a C∗-algebra and u ∈ H. The vector u
is cyclic forM if the setMu is dense in H. The vector u is separating forM
if the map A ∈M 7→ Au ∈ H is injective.

A separating vector does not have to be cyclic.

Example 2.11. LetM be the group algebra of a finite group G, as in section 2.5.
For k ∈ G, set u = ek. Then, for h ∈ G, Lhk−1ek = eh hence uk is cyclic forM.
Since dimM = n, the vector is also separating. Cyclic vectors are frequently
abundant: we show that u = eI + ier1 also is cyclic separating for M. For
k ∈ S3, the equation

ek = (
∑
g∈S3

cgLg)(eI + ier1)

must have solutions {cg ∈ C : g ∈ S3}, with some cg 6= 0 (exactly one, by the
dimension count, so that u is also separating). The required system is

1 0 i 0 0 0
i 1 0 0 0 0
0 i 1 0 0 0
0 0 0 1 0 i

0 0 0 i 1 0
0 0 0 0 i 1





cI

cr1

cr2

cx1

cx2

cx3


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(2.4)

whose matrix has non-zero determinant and hence u is cyclic forM.
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Inverting eq. (2.4),


cI

cr1

cr2

cx1

cx2

cx3


= −1

2



1 −1 −i 0 0 0
−i 1 −1 0 0 0
−1 −i 1 0 0 0
0 0 0 1 −i −1
0 0 0 −1 1 −i
0 0 0 −i −1 1


,

where the k-th column gives the coefficients cg to obtain ek = ∑
g cgLgu. For

example, eI = −LI/2 + iLr1/2 + Lr2/2.

Lemma 2.13. Let H be a separable Hilbert space. Every commutative C∗-
algebraM⊂ B(H) has a separating vector.

Proof. Take u1 ∈ H1, the unit sphere of H. If Mu1 is dense in H, stop,
otherwise take u2 ∈ H1 with u2 ⊥ Mu1. Then necessarily Tu1 ⊥ Tu2

for T ∈ M (recall M is closed by taking adjoints). By Zorn’s lemma
and the separability of H, there is a sequence of unitary vectors (un) such
that ∪∞n=1Mun is dense in H with an additional property: for all T ∈ M,
Tun ⊥ Tum for n 6= m.

We will show that u = ∑∞
n=1 2−nun is separating for M. The series

converges because the un’s are normal. If T ∈ M satisfies Tu = 0, then
Tun = 0 for n ∈ N, because Tun ⊥ Tum for n 6= m. Using the commutativity
ofM in T (∪∞n=1Mun) yields T = 0. �

Proposition 2.5. Let M ⊂ B(H) be a C∗-algebra and u ∈ H. Then u is
cyclic forM if and only if u is separating forM′.

Proof. If A′ ∈ M′ with A′u = 0, then A′Au = 0 for A ∈ M. Since u is cyclic,
A′ = 0 and hence u is separating forM′. Conversely, take a separating vector
u ofM′ and let P be the orthogonal projection ontoMu. As in theorem 2.10,
this space is invariant under M, so that P ∈ M′. Now, (I − P )u is also
separating for M′. Indeed, if A′, B′ ∈ M′ satisfy A′(I − P )u = B′(I − P )u,
then (A′ −B′)u = (A′ −B′)Pu. But A′ −B′, (A′ −B′)P ∈M′, contradicting
the separability of u. Therefore u ∈ kerP and then I, (I − P ) ∈M′ and from
Iu = (I − P )u either I = I − P or I = P . But P = 0 impliesMu = {0}, and
it contains Iu. Thus P = I, so thatMu = H and thus u is cyclic. �

Corollary 2.13.1. Let M ⊂ B(H) be a Von Neumann algebra. Then u ∈ H
is cyclic and separating forM if and only if u is cyclic and separating forM′.

Proof. Combine proposition 2.5 and corollary 2.10.1. �
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2.8
The bounded Borel functional calculus

The main result in this section is the representation theorem for commu-
tative Von Neumann algebras acting on separable Hilbert spaces.

Theorem 2.14. Let H be a separable Hilbert space and M ⊂ B(H) be a
commutative Von Neumann algebra. ThenM is *-isomorphic to L∞(K,µ) for
a compact Hausdorff space K and a finite positive Borel measure µ on K.

The result follows immediately from lemma 2.15 and lemma 2.16 below.

Lemma 2.15. Let H be a separable Hilbert space and M ⊂ B(H) be
a commutative Von Neumann algebra. Then M is *-isomorphic and weak
homeomorphic to a commutative Von Neumann algebra with a cyclic vector.

Proof. By lemma 2.13, M has a separating vector u0 ∈ H. For H0 = Mu0,
consider the orthogonal projection P : H → H0 and the restriction map
φ : M ⊂ B(H) 7→ B(H0) that carries A ∈ M to the restriction of A to
H0. Since H0 is invariant byM, φ is well-defined. We show that φ is injective:
if φA = 0, then A = 0. Indeed, u0 = Iu0 ∈ H0, so that φAu0 = Au0 = 0 and
since u is separating, A = 0.

Clearly, φ : M 7→ φ(M) is a weakly continuous *-isomorphism. Also,
u0 ∈ H0 is a cyclic vector of the commutative C∗-algebra φ(M). From the
Kaplansky density theorem, φ−1 is weakly continuous: φ is a homeomorphism
and φ(M) is a Von Neumann algebra. �

Lemma 2.16. LetM⊂ B(H) be a commutative C∗-algebra with cyclic vector
u ∈ H. Then, there exist a finite positive Borel measure µ on the character
space K = Ω(M) such thatM′′ and L∞(K,µ) are *-isomorphic.

The new ingredient provides a proof of the self-adjoint spectral theorem.
For T ∈ B(H) and v ∈ H, the map f ∈ C(σ(T )) 7→ 〈f(T )v, v〉 ∈ C belongs
to C(σ(T ))∗. By the Riesz representation theorem, there is a measure µv such
that the map is given by f 7→

∫
σ(T ) f dµv. The use of the cyclic vector is

also standard: for the multiplication operator Tf = xf , the constant function
1 ∈ L2(σ(T ), dµ) gives rise to monomials T k1 = xk, which by Gram-Schmidt
obtain the orthogonal polynomials with respect to dµ. The process converts the
rather abstract vector space spanned by v, Tv, T 2, . . . into a bona fide subspace
of polynomials. The two arguments above are implemented in the context of
Von Neumann algebras in the first two paragraphs of the proof.

Proof. For K = Ω(M), let Γ : M 7→ C(K) be the Gelfand transform. The
Riesz representation theorem applied to f ∈ C(K) 7→ (Γ−1(f)u, u) ∈ C gives
a unique finite regular Borel measure µ on K such that for f ∈ C(K),
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(Γ−1(f)u, u) =
∫
K
fdµ. (2.5)

A calculation with positive functions f ∈ C(K) implies that µ is positive.
Define U0 : Mu ⊂ H 7→ C(K) ⊂ L2(K,µ) by U0(Au) = Γ(A). A

calculation using eq. (2.5) shows that U0 is an isometry, so that it extends to
a unitary operator U : H 7→ L2(K,µ) since u is cyclic. The map

φ : B(H) 7→ B(L2(K,µ)) , A 7→ UAU∗

is a *-isomorphism (hence an isometry) and a weak homeomorphism and

φ(A) Γ(B) = Γ(A) Γ(B) , for A,B ∈M

so that φ(A) = Γ(A) because C(K) is dense in L2(K,µ). Thus,

φ(M) = C(K) ⊂ L∞(K,µ) .

SinceM is weakly dense inM′′, φ(M′′) ⊂ L∞(K,µ). Therefore, the restriction
φ :M′′ 7→ L∞(K,µ) is an isometric *-homomorphism.

We are left with showing that φ is surjective. The unit ball (B(H))1

is weakly compact(see appendix A.1) so that (M′′)1 also is and (φ(M′′))1 is
weakly closed. An application of Kaplansky density theorem (theorem 2.12)
shows that φ(M′′) is weakly closed, and hence is a Von Neumann algebra
containing C(K). Therefore φ(M′′) = L∞(K,µ). �

We are ready for the last extension of the (normal) functional calculus.

Theorem 2.17 (Bounded Borel functional calculus). Let H be a separable
Hilbert space and T ∈ B(H) be a normal operator. Then there is a finite
positive Borel measure µ on σ(T ) such that the Gelfand transform Γ : C∗(T ) 7→
C(σ(T )) extends to an *-isomorphism Γ̃ : W ∗(T ) 7→ L∞(σ(T ), µ).

Proof. By lemma 2.15, we may suppose that W ∗(T ) possess a cyclic vector
u ∈ H, so that u is also cyclic for C∗(T ). The result follows from lemma 2.16
applied to C∗(T ). �

The functional calculus does not exist only for holomorphic, continuous
and bounded Borel functions. In appendix A.3.3, we show a functional calculus
for Ck functions is the natural context in the presence of nilpotent parts.
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3
The Tomita-Takesaki theory

We describe the Tomita-Takesaki theory for Von Neumann algebras with
a cyclic separating vector. We first present the finite dimensional case, then the
infinite dimensional case without giving proofs. After providing three examples
of modular operators — two of which in finite dimensions — we indicate the
proof of the main theorem. We follow [10, 15, 16].

We need some rather unusual concept of anti-linear operators between
Hilbert spaces, stated in appendix A.1, associated to anti-isomorphisms bet-
ween C∗-algebras. A linear bijection φ : M1 7→ M2 between C∗-algebras is
an anti-isomorphism if it preserves involution and for A,B ∈ M1, φ(AB) =
φ(B)φ(A). In this case,M1 andM2 are anti-isomorphic.

We consider three examples of maps φ for which φ(AB) = φ(B)φ(A).
The first is an involution ∗ : B 7→ B, a self-inverse anti-linear map for which
(AB)∗ = B∗A∗. For the inverse operation in GL(B), the group of invertible
elements of B, we also have (AB)−1 = B−1A−1. Finally, from section 2.5,
recall the group algebra of a finite group G and the right multiplication map
R : G 7→Mn(C), g 7→ Rg(ek) = ekg, for k ∈ G: clearly Rgh = RhRg.

3.1
The Tomita-Takesaki theory for H = Cn

In finite dimensions, the Tomita-Takesaki theory is easier. Von Neumann
algebrasM⊂Mn(C) are simply C∗ algebras and all operators are bounded.

We show that for a C∗ algebra M ⊂ Mn(C) and its commutant
M′ ⊂ Mn(C) with common cyclic separating vector u ∈ Cn (recall Corollary
2.13.1), there is an anti-isomorphism φu :M 7→M′ induced by u.

The vector u ∈ Cn, induces a natural linear map, the evaluation at u,

θu :M 7→ Cn A 7→ Au.

From the separating property of u, θu is injective, while the fact that u is cyclic
in a finite dimensional space yields surjectivity: θu is an isomorphism of vector
spaces. Thus, the C∗-algebra structures of M ⊂ Mn(C), i.e., the involution
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and product algebra, are induced on Cn. Similarly, the inner product of Cn

induces one inM⊂Mn(C).
Now, u is also cyclic and separating forM′ and

ψu :M′ 7→ Cn , A′ 7→ A′u

is also an isomorphism of vector spaces, as well as

φu = ψ−1
u ◦ θu :M 7→M′.

The explicit form of φu is hard do find. Instead, note that, for A ∈M,

Au = φu(A)u,

since A ∈M and φu(A) ∈M′ are related through Au.
The diagram below should help the reader to get used with the new

definitions. In the first row are the maps θu and ψu. The central (identity)
map identifies H = Cn with its dual through a linear (and not antilinear)
map. The composition of bijections on the top row is φu :M→M′.

M θu−→ Mu ' H
id−→ H∗ 'M′u

ψu←− M′

∗
y S

x S∗
y ∗

y
M θu−→ Mu ' H

∆−→ H∗ 'M′u
ψu←− M′

The vertical arrows are anti-linear bijections. The arrows at each side are
involutions inM andM′. Define the Tomita operator associated to (M, u),

S :Mu → Mu Au 7→ A∗u, (3.1)

which completes a commutative square on the left of the diagram. Clearly S is
anti-linear (see appendix A.2 for basic facts about anti-linear maps and their
duals) and S = S−1. In the same fashion, one defines its dual S∗ :M′u→M′u.
We compute S∗ :M′u → M′u: let A ∈M and A′ ∈M′,

(SAu,A′u) = (A∗u,A′u) = (A′∗u,Au), (3.2)

hence S∗A′u = A′∗u and again (S∗)−1 = S∗.
The map ∆ = S∗S : H → H ensures the commutativity of the central

square of the diagram. Horizontal maps are linear bijections. For an example
in which ∆ is not a unitary map, see section 3.3.1.

The map φu is easily described in terms of S.

Proposition 3.1. For A ∈M, φu(A) = SA∗S and SMS =M′, in the sense
that SMSu =M′u for the cyclic vector u. Also, S∗M′S∗ =M.
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Proof. For A ∈ M, φu(A)u = Au = S(A∗u) = SA∗S(Iu) = SA∗Su. Thus, if
SA∗S ∈M′, the separability of u implies φu(A) = SA∗S. We must then show
that for A ∈M, SAS commutes withM. Thus, for B,C ∈M and since every
vector in H = Cn is of the form Cu by cyclicity of u,

SASB(Cu) = SAC∗B∗u = BCA∗u = BS(AC∗u) = BSAS(Cu). (3.3)

so that SMS ⊂ M′. For the other inclusion, imitate eq. (3.3) to obtain
S∗M′S∗ ⊂ M′′ = M, where the last equality is corollary 2.10.1. Applying
involutions on both sides yields SM′S ⊂ M. Now compose with S = S−1 on
both sides and getM′ ⊂ SMS. Similarly, S∗M′S∗ =M. �

We consider additional structure. Thus, for example, φu reverses pro-
ducts. Indeed, from section 3.1, for A,B ∈M, we have φu(B) ∈M′ and

φu(AB)u = ABu = Aφu(B)u = φu(B)Au = φu(B)φu(A)u .

However, usually φu does not preserve the involution.

Proposition 3.2. The map φu preserves the involution if and only if

(u,ABu) = (u,BAu), for all A,B ∈M .

Commutative C∗-algebras satisfy this condition. The Tomita-Takesaki
theorem, presented in this section for finite dimensions, constructs a family of
anti-isomorphisms betweenM andM′ which preserve involution.

Proof. Suppose that φu preserves involution. Recall that H is a Hilbert space:
in particular, an inner product is defined. We have

(u,ABu) = (A∗u,Bu) = (φu(A∗)u,Bu) = (φu(A)∗u,Bu) = (u, φu(A)Bu)

= (u,Bφu(A)u) = (u,BAu).

A similar calculation shows the converse. �

Consider the polar decomposition of Tomita’s operator (see appendix A.2),

S = J (S∗S)1/2 = J ∆1/2 (3.4)

where J is an anti-linear unitary operator, J∗ = J−1, and ∆ = S∗S is a (self-
adjoint) positive operator with positive square root ∆1/2 (a positive operator
T is a self-adjoint operator for which (Tu, u) ≥ 0 ). The operators ∆ and J

are the modular and conjugation operators associated to the pair (M, u).

Proposition 3.3. Let S be the Tomita operator associated to (M, u). Then
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1. J = J∗ = J−1 and ∆−1 = SS∗.

2. S = J∆1/2 = ∆−1/2J .

Proof. The first claim is immediate. Since J = J−1, eq. (3.4) gives

S = S−1 = (SS∗)1/2J = ∆−1/2J .

�

For A ∈M, we compare φu(A∗) and φu(A)∗,

φu(A∗) = SA∗S = J∆1/2A∆−1/2J, φu(A)∗ = J∆−1/2A∆1/2J .

There is no reason why φu should preserve involutions. Tomita’s wonderful
idea is to replace the self-adjoint operator ∆1/2 by the skew adjoint ∆i/2 (a
simple consequence of the functional calculus): we will show that the map

τ(A) :M→M′ , A 7→ J∆i/2A∗∆−i/2J

is a linear bijection which preserves involutions and reverses products.
To see what should be proved, express τ in terms of the Tomita operator,

τ(A) = J(∆1/2∆−1/2)∆i/2A∗∆−i/2(∆1/2∆−1/2)J

= S∆(−1+i)/2A∗∆−(−1+i)/2S.

If we could prove that ∆(−1+i)/2M∆−(−1+i)/2 ⊂M, then τ(A) ∈M′ since, by
proposition 3.1, SMS =M′. Furthermore,

A = ∆−(1+i)/2S∗(τ(A))∗S∗∆(1+i)/2 (3.5)

which suggests that ∆−(1+i)/2M′∆(1+i)/2 ⊂ M because S∗M′S∗ = M, again
by proposition 3.1.

We prove more: ∆zM∆−z ⊂ M for z ∈ C, where the operators ∆z

and ∆−z are well defined by the continuous functional calculus for a suitable
definition of the map w ∈ C 7→ wz ∈ C.

We use a special case of Carlson’s theorem (see page 186 of [17]).

Theorem 3.1. Let f : C 7→ C be analytic. If f vanishes on Z and it is bounded
on Re z ≥ 0, then f is identically zero.

Theorem 3.2. Let M ⊂ Mn(C) be a Von Neumann algebra with cyclic
separating vector u ∈ Cn. Then ∆zM∆−z =M for every z ∈ C.
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Proof. We first prove the direct inclusion: we show that elements of ∆zM∆−z

commute with M′, so that ∆zM∆−z ⊂ M′′ = M. Let A ∈ M, A′ ∈ M′,
ej, ek ∈ Cn be basis elements, and define the function

f : C 7→ C, z 7→ |∆|−2z([∆zA∆−z, A′]ej, ek),

where [A,B] = AB − BA, for A,B ∈ Mn(C), is the commutator of matrices.
We show that f satisfies the hypotheses of theorem 3.1.

To see that f is zero at n ∈ Z, we prove ∆nM∆−n = M. We use
proposition 3.3. Write ∆M∆−1 = S∗(SMS)S∗ = S∗M′S∗ =M. Similarly,

∆2M∆−2 = ∆(∆M∆−1)∆−1 =M

and the result for n ∈ N follows by induction. For −n ∈ N, ∆−nM∆n =
∆−n(∆nM∆−n)∆n =M.

Since ∆ is an invertible positive operator, its eigenvalues λk are strictly
positive. The maps z 7→ λzk = ez log λk are entire maps for, say, the usual real
valued logarithm. From the analytical functional calculus we obtain an entire
function z 7→ ∆z. The spectral theorem ∆z = UDzU∗ gives the bounds

‖∆−z‖ = min
k

λRezk = mRez , ‖∆z‖ = max
k

λRezk = MRez .

Since J is anti-unitary, by proposition 3.3,

|∆−1| = |SS∗| = |J∆1/2∆1/2J | = |J∆J | = |∆|,

which implies that mM = 1. Finally,

f(z) ≤ 2‖∆‖−2z ‖∆z‖ ‖∆−z‖ ‖A‖ ‖A′‖ ≤ 2M−2RezMRezm−Rez‖A‖ ‖A′‖ ,

which is bounded for Rez ≥ 0.
The reverse inclusion is clear:M = ∆z(∆−zM∆z)∆−z ⊂ ∆zM∆−z. �

We are ready for the Tomita-Takesaki theorem. There is nothing special
in the computations above about the exponent i/2.

Theorem 3.3. Let M ⊂ Mn(C) be a Von Neumann algebra with cyclic
separating vector u ∈ Cn. Then JMJ =M′. For t ∈ R, the map

A ∈M 7→ J∆itA∗∆−itJ ∈M′

is as an anti-isomorphism which preserves involutions.
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Proof. Indeed, JMJ = J(∆1/2M∆−1/2)J = SMS =M′, so that

τ(M) = J(∆i/2M∆−i/2)J = JMJ =M′ .

Furthermore, eq. (3.5) is an inverse of τ because of theorem 3.2: τ :M 7→M′ is
a bijection which preserves involutions andM andM′ are anti-isomorphic. �

3.2
The infinite dimensional case

Throughout this section, M ⊂ B(H) is a Von Neumann algebra with
a cyclic separating vector u ∈ H. Tomita’s ideas provide a whole family of
anti-isomorphisms preserving involution between M and M′ in the infinite
dimensional case. We state results analogous to theorem 3.2 and theorem 3.3
and obtain some consequences.

Call S0 to Tomita operator associated to (M, u) given by eq. (3.1). From
the separability of u, S0 is well defined. The cyclic property of u only implies
that S0 is densely defined, since S0 may be unbounded (see section 4 of [15]
for an example). Fortunately, S0 is closable (see appendix A.4 for definitions).

Proposition 3.4. LetM⊂ B(H) and u ∈ H as above. Then

1. For A′ ∈M′, S∗0(A′u) = A′∗u and hence S∗0 = (S∗0)−1 onM′u.

2. S0 is a well-defined closable operator.

Proof. The first fact is proved as in finite dimensions: since S0 is densely
defined, S∗0 is well defined and one follows eq. (3.2). From corollary 2.13.1,
M′u is dense in H and hence S∗0 is densely defined which implies that S0 is
closable (see appendix A.4). �

For S, the closure of S0, we have a polar decomposition (see appen-
dix A.2): there exists a densely defined positive linear operator ∆ = S∗S and
a partial anti-isometry J : Ran(∆1/2)→ Ran(S) such that

S = J∆1/2. (3.6)

The invertible positive operator ∆, the anti-unitary operator J and the
closed operator S are the modular operator, the modular conjugation and the
Tomita operator associated to the pair (M, u). For simplicity, from now on,
we refer to (∆, J) as the modular pair associated to (M, u).

Proposition 3.5. LetM⊂ B(H) and u ∈ H as above. Then

S = J∆1/2 = (SS∗)1/2J,
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∆−1 = SS∗, J = J−1 = J∗, Ju = ∆u = ∆−1u = u,

S = J∆1/2 = ∆−1/2J, S∗ = ∆1/2J = J∆−1/2.

Proof. First, observe that S0 = (S0)−1 on Dom(S0) = Ran(S0) ⊂ Mu. Since
S is closed, S2

0 = I implies S2 = I on Dom(S) and Dom(S) = Ran(S). From
properties of unbounded operators(appendix A.4), S∗ = S∗0 and S∗∗ = S.
As before, (1) of proposition 3.4 implies that, (S∗)2 = I on Dom(S∗) and
Dom(S∗) = Ran(S∗). From these, we conclude that S∗SSS∗ = I on Dom(∆),
and hence that ∆−1 = SS∗ and we also obtain the first equality above.

Since S and ∆ (hence ∆1/2) have dense ranges, J is an anti-unitary
operator, i.e., J∗ = J−1. From eq. (3.6), we get S = J∆1/2 = ∆−1/2J and taking
adjoints gives S∗ = ∆1/2J = J∆−1/2. Also, I = S2 = J∆1/2∆−1/2J = J2 on
the dense subspace Dom(S), and hence J2 = I. We thus get J = J∗ = J−1.

Finally, Su = S0(Iu) = u and using the previous results,

S∗u = ∆u = ∆−1u = ∆−1/2u = u

together with Ju = J∆1/2u = Su = u. �

We present the infinite dimensional Tomita-Takesaki theorem.

Theorem 3.4 (Tomita-Takesaki). LetM⊂ B(H) and u ∈ H as above. Then,
for t ∈ R,

∆itM∆−it =M and JMJ =M′.

The proof is given in section 2.5. The first conclusion is no longer true
for an arbitrary complex exponent as happened in finite dimension.

Corollary 3.4.1. Let M ⊂ B(H) and u ∈ H as above. Then, for t ∈ R,
A ∈M 7→ J∆itA∗∆−itJ ∈M′ is an anti-isomorphism preserving involutions.

Also, theorem 3.4 provide easier proofs for standard results. For example,
for a commutative Von Neumann algebraM⊂ B(H) the inclusionM⊂M′

is usually strict. The algebraM is maximally Abelian ifM =M′.

Proposition 3.6. Let M ⊂ B(H) be a commutative Von Neumann algebra.
IfM has a cyclic vector u ∈ H, then it is maximally Abelian.

Proof. Clearly, Mu ⊂ M′u. Thus M′u is dense in H, since u is cyclic for
M: u is also cyclic forM′. By proposition 2.5, u is separating forM. We use
theorem 3.4 to show the reverse inclusion

R′ = JMJ ⊂ JM′J = J(JMJ)J =M.

�
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From proposition 3.2 we obtain a characterization of algebras with trivial
modular pair.

Proposition 3.7. Let M ⊂ B(H) and u ∈ H as above, with modular pair
(∆, J) and Tomita operator S. Then ∆ = I if and only if, for A,B ∈ M,
(u,ABu) = (u,BAu).

Proof. For the direct implication, observe that S is an anti-unitary operator,
so that (u,ABu) = (A∗u,Bu) = (S(Bu), S(A∗u)) = (u,BAu) for A,B ∈M.

Conversely, a calculation shows that |S(Au)|2 = |Au|2 and thus S is
an anti-unitary operator. By uniqueness of the polar decomposition, S = SI

hence S = J and ∆ = I. �

For a C∗-algebra M, a *-isomorphism from M onto itself is a *-
automorphism of M. The set Aut(M) of all *-automorphisms on M is a
group: multiplication is given by composition.

Since ∆ is an invertible positive operator, the functional calculus for
(unbounded) self-adjoint operators implies that H = log ∆ is self-adjoint,
the modular Hamiltonian associated to the pair (M, u). From Stone’s the-
orem, (eiHt)t∈R = (∆it)t∈R is a unitary, strongly continuous one-parameter
group and hence (σt)t∈R is a σ-weakly continuous one-parameter group of *-
automorphisms (by theorem 3.4) ofM:

σt :M 7→M , A 7→ ∆itA∆−it. (3.7)

The action σt the modular automorphism group associated to the pair (M, u),
or, more briefly, the modular group ofM.

The modular group σt is important in mathematical physics because
it can be interpreted as providing a temporal evolution for the self-adjoint
elements ofM, which represent physical objects, the so called observables of
the physical system. We shall see an application in chapter 4.

3.3
Modular Operators in different contexts

We compute the modular operators for three cases. To do this, we provide
cyclic separating vectors for each Von Neumann algebra being considered.

3.3.1
Finite group algebras

Let M be the group algebra of section 2.5 and I be the identity of G.
For each k ∈ G, u = ek is cyclic separating for M, as seen in example 2.11.
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We compute the action of the Tomita operator S. For g ∈ G,

S(eg) = S(Lgk−1ek) = L∗gk−1ek = Lkg−1ek = ekg−1k,

while for the adjoint S∗, for g, h ∈ G, we see that S = S∗:

(Seg, eh) = δkg−1k,h = δkh−1k,g = (ekh−1k, eg) = (Seh, eg).

Thus, for each k ∈ G the pair (M, ek) is trivial, i.e., ∆ = S∗S = I, J = S

and the modular group is also trivial. For some cyclic separating vectors, non-
commutative Von Neumann algebras may have trivial modular operator ∆.

We next show the modular operator is not trivial for the group algebraM
of G = S3 for the cyclic separating vector u = eI + ier1 (see example 2.11). The
formula obtained there give rise to the matrix representations of the Tomita
and modular operators,

S =



0 i 0 0 0 0
i 0 0 0 0 0
0 0 i 0 0 0
0 0 0 0 1 + i i

0 0 0 i −i 0
0 0 0 0 −1 + i 0


, ∆ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 −1 0
0 0 0 −1 4 1− i
0 0 0 0 1 + i 1


.

Since {I, r1, r2} is a commutative subgroup of S3, the correspondent 3-
dimensional subalgebra span{LI , Lr1 , Lr2} ⊂ Mn(C) is commutative which
gives ∆ = I on the correspondent vector subspace span{eI , er1 , er2} ⊂ Cn.

Different cyclic separating vectors for the same Von Neumann algebra
give in general different modular operators.

3.3.2
Tensor products

Let H and K be n-dimensional Hilbert spaces with bases {ek} and {fk}.
The set {ei ⊗ fj} is a basis for the tensor product H ⊗K. Let IK ∈ B(K) be
the identity matrix. The tensor product of algebrasM = B(H)⊗CIK acts on
H ⊗K through (A⊗ λIK)(ei ⊗ fj) = A(ei)⊗ λIK(fj). The operations

(A1 ⊗B1) ◦ (A2 ⊗B2) = (A1 ◦ A2)⊗ (B1 ◦B2) and (A⊗B)∗ = A∗ ⊗B∗,

are well defined, so that M is a finite dimensional C∗-algebra, and hence a
Von Neumann algebra. ClearlyM′ = (B(H)⊗ CIK)′ = CIH ⊗B(K).
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We show that the vector u = ∑n
i=1 aiei ⊗ fi ∈ H ⊗ K with ai > 0 for

every i is cyclic separating forM.
To show that u is cyclic, let Aij ∈ B(H) be the operator that carries ei

into ej and the other basis vectors to zero. Then

(a−1
j Aji ⊗ IK)(

∑
k

akek ⊗ fk) = ei ⊗ fj.

For the separability, let B ⊗ IK ∈M with (B ⊗ IK)(u) = 0. Then

0 = (B ⊗ IK)(
∑
i

aiei ⊗ fi) =
∑
i,j

aiBjiej ⊗ fi ,

shows that Bji = 0 since ai > 0 for every i.
We compute the action of the Tomita operator S and its adjoint S∗:

S(ei ⊗ fj) = S

((
Aji
aj

)
u

)
=
(
Aij
aj

)
u = ai

aj
ej ⊗ fi,

while S∗(em ⊗ fn) = (an/am)en ⊗ fm because

(S(ei ⊗ fj), em ⊗ fn) = ai
aj
δjmδin = ( an

am
en ⊗ fm, ei ⊗ fj).

Similar calculations using the action of S and S∗, yields

∆(ei ⊗ fj) =
(
ai
aj

)2

ei ⊗ fj, J(ei ⊗ fj) = ej ⊗ fi.

Note that ∆ is diagonal: this simplifies the calculation of J , ∆it and the
modular group σt. Thus, for example,

∆it(A⊗ IK)∆−it(ek ⊗ fj) =
∑
m

(
am
ak

)2it
Amkem ⊗ fj = (Ã⊗ I)(ek ⊗ fj),

where Ã ∈ B(H) is a matrix with entries Ãkj =
(
ak

aj

)2it
Akj. Again, for each

t ∈ R, this relationship is a bijection from B(H) onto itself. From this we
deduce that ∆itM∆−it =M.

The freedom in the choice of (ai) > 0 allows to enlarge the trivial part
of ∆. For 4-dimensional vector spaces H and K, ∆ = I on the 4-dimensional
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vector subspace span{ek ⊗ fk : k = 1, 2, 3, 4}. Furthermore, if

a1 = a2 6= a3 6= a4 then ∆ = I in 6 dimensions,

a1 = a2 = a3 6= a4 then ∆ = I in 10 dimensions,

a1 = a2 = a3 = a4 then ∆ = I in all the 16 dimensions.

Observe that, while the modular operator changes with these choices of u, the
modular conjugation remains the same.

3.3.3
Crossed products

The crossed product of a Von Neumann algebraM and a group G acting
onM gives rise to a Von Neumann algebra containing copies ofM and G.

We consider a special case. Let (Ω,Σ,P) be a separable measure space
with a probability measure P defined on the Borel σ-algebra Σ. A bijective
map S : Ω 7→ Ω is an automorphism of (Ω,Σ,P) if, for W ∈ Σ,

1. S(W ), S−1(W ) ∈ Σ.

2. P(W ) = 0 if and only if P(S−1(W )) = 0.

The set Aut(Ω,Σ,P) of automorphisms of Ω is a group under composition.
The space M = L∞(Ω,P) is a commutative Von Neumann algebra with
automorphism group Aut(M) consisting of ∗-isomorphisms of M to itself.
For α ∈ Aut(Ω), the map f 7→ f ◦ α belongs to Aut(M).

Let G be a group of order n and consider a group action T : G 7→ Aut(Ω)
which preserves probability, in the sense that P(Tg(W )) = P(W ) for W ∈ Σ
and g ∈ G. This action induces canonically a group action α onM by

α : G→ Aut(M), αg(f) : Ω→ C

g 7→ αg w 7→ f(Tg−1(w)).

We proceed to describe the cross product of G acting by α onM.
Let H = L2(Ω,P) ⊕ . . . ⊕ L2(Ω,P) (n copies) and (xg) ∈ H with

components xg ∈ L2(Ω,P) for g ∈ G. For f ∈ M and h ∈ G, we define
the operators (the copies) π(f), U(h) ∈ B(H) by

(π(f)x)g = α−1
h (f)xg, (U(h)x)g = xh−1g.

The Von Neumann algebra generated by these operators,

M = W ∗ ({π(f) : f ∈ L∞(Ω,P)} ∪ {U(h) : h ∈ G}) ⊂ B(H)
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is the finite crossed product of L∞(Ω,P) by G.
It is useful to consider the matrix representations of elements of M.

First, note that every operator B ∈ B(H) can be represented by a matrix
with entries Bij ∈ B(L2(Ω,P)). Thus, fix g, h ∈ G and (xm) ∈ H, then for any
f ∈M and k ∈ G, the matrix entries of π(f)U(k) ∈M are

Bgh(xm) = Pgπ(f)U(k)((Ph(x))m) = α−1
g (f)((Phx)k−1g) = α−1

g (f)δk−1g,h(xm),

where Pg is the projection operator onto the g-th summand L2(Ω,P). Adding
up, π(f)U(k) has matrix entries Bgh = α−1

g (δk−1g,h) ∈ B(L2(Ω,P)).
Similar calculations show that the matrix entries of B ∈M ⊂ B(H) are

of the form Bgh = α−1
h (EB(gh−1)) for some map EB : G 7→ L∞(Ω,P): we can

generate elements ofM by specifying EB.
We now compute a cyclic separating vector. Let e be the identity of G

and 1 be the constant map x ∈ Ω 7→ 1. Consider the vector u = (u)g ∈ H with
components ug = δg,e1 ∈ L2(Ω,P).

To check the separability of u, let B ∈M with Bu = 0. Thus, for g ∈ G,

0 = (Bu)g =
∑
h

Bghuh = α−1
h (EB(gh−1))δh,e1 = EB(g),

which implies that Bgh = 0 and so B = 0.
To show that u is cyclic, we approximate (y)g ∈ H by an element ofMu.

Fix ε > 0. By the density of L∞(Ω,P) in L2(Ω,P), for g ∈ G we can choose
fg ∈ L∞(Ω,P) such that |yg − fg|L2 < ε. Define B ∈ M by its matrix entries
Bgh: the choice EB(g) = fg yields the cyclicity,

|(y)g −Bu|2H =
∑
g

|yg − EB(g)|2L2 =
∑
g

|yg − fg|2L2 < nε2.

We calculate the matrix entries Sgh of the Tomita operator. For B ∈M,

(S(Bu))g = (B∗u)g∑
h

SghEB(h) =
∑
h

B∗ghuh =
∑
h

Bhguh = α−1
g (EB(g−1)),

which implies that Sgh = δh,g−1αg(C(.)), where C is the complex conjugation.
Thus S is an isometry:

|S(Bu)|2H =
∑
g

|(S(Bu))g|2L2 =
∑
g

|α−1
g (EB(g−1))|2L2

=
∑
g

|EB(g−1)|2L2 = |Bu|2H
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and S extends to an anti-unitary operator. By the uniqueness of the polar
decomposition S = SI, J = S and ∆ = I.

3.4
Proof of the Tomita-Takesaki theorem

We have to be careful with operator domains (again, see appendix A.4
for the basic definitions). As usual, M ⊂ B(H) is a Von Neumann algebra
with cyclic separating vector u ∈ H and modular pair (∆, J).

The proof of the following lemma is given at the end of this section.

Lemma 3.5. Let M and u ∈ H as above, and w be a weakly continuous
functional on B(H). If w(JM′J) = 0 then w(∆itM∆−it) = 0 for t ∈ R.

The proof of Tomita-Takesaki theorem follows below.

Proof. We first show that, for t ∈ R,

∆itM∆−it ⊂ JM′J. (3.8)

Suppose by contradiction that ∆it0B∆−it0 /∈ JM′J for t0 ∈ R and B ∈ M.
The linear functional

w0 : JM′J ⊕ C ∆it0B∆−it0 → C, A+ λ∆it0B∆−it0 7→ λ

is weakly continuous, because ker(w0) = JM′J is weakly closed. Extend w0 to
a weakly continuous functional w in all B(H) by the Hahn-Banach theorem
(see theorem 5.3 of [18]). Clearly w(JM′J) = 0 and w(∆it0B∆−it0) 6= 0,
contradicting lemma 3.5.

Thus eq. (3.8) holds and we take t = 0:

M⊂ JM′J. (3.9)

We prove the symmetric inclusion

M′ ⊂ JMJ. (3.10)

By corollary 2.13.1, u is also cyclic separating for M′ and we identify in
M′ facts which we already know about M. Let S̃ and (∆̃, J̃) be the Tomita
operator and the modular pair for (M′, u). From proposition 3.4 (1), S̃ = S∗

and (S̃)∗ = S onM′u andMu respectively, and hence ∆̃ = (S̃)∗S̃ = SS∗ =
∆−1 on a dense subset of H.

From proposition 3.5, J̃∆−1/2 = J̃∆̃1/2 = S̃ = S∗ = J∆−1/2 on a dense
subset of H and hence J̃ = J . Therefore, eq. (3.9) applied to (M′, u) implies
that M′ ⊂ J̃M′′J̃ = JMJ . From this it follows that, M = JM′J and
M′ = JMJ because J = J−1.
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Using eq. (3.8), ∆itM∆−it ⊂M. The reverse inclusion follows from a by
now familiar trick:M = ∆it(∆i(−t)M∆it)∆−it ⊂ ∆itM∆−it. �

The rest of the section is devoted to prove the technical results needed
to show lemma 3.5.

Let M ⊂ B(H) be a Von Neumann algebra and T : D ⊂ H 7→ H be
an unbounded linear operator. We say that T is affiliated to M, denoted by
T η M, if TA extends AT for A ∈ M′, i.e., if T commutes with A ∈ M′ on
D. Said differently, T fails to belong toM just because it is unbounded.

Lemma 3.6. Let T : D ⊂ H 7→ H be a densely-defined closed operator with
polar decomposition T = UP . Then T ηM if and only if U ∈M and P ηM.

Proof. Clearly if U ∈ M and P η M, then T η M. For the converse, let
V ∈ M′ be unitary and observe that, the assertion: T commutes with V on
D, is equivalent to V ∗TV = T on D. Using the polar decomposition of T gives
V ∗TV = (V ∗UV )(V ∗PV ). Thus, TηM if and only if T = (V ∗UV )(V ∗PV ).
By the uniqueness of polar decomposition, V ∗UV = U and V ∗PV = P on D.
From this we deduce that U ∈ M and PηM because every element ofM′ is
a linear combination of unitary elements ofM′. �

The spectral theorem applied to P asserts that if A ∈ B(H) commutes
with P (on D) then A commutes with each spectral projector E of P . Thus, if
PηM then A ∈ M′ commutes with E. Therefore, E ∈ M′′ = M and so M
contains all the spectral projectors of P .

Lemma 3.7. LetM and u ∈ H as above. Then for A ∈ M and r > 0, there
exists A′ ∈M′ such that

A′u = (∆−1 + rI)−1Au. (3.11)

Proof. Let A ∈M, r > 0 and set y = (∆−1 + rI)−1Au. First, note that

y ∈ Dom(∆−1 + rI) = Dom(∆−1) ⊂ Dom(S∗) .

Set z = S∗y and define the linear operators

Y0 :Mu −→ H Z0 :Mu −→ H

Bu −→ By Bu −→ Bz.

A calculation gives (Y0(Bu), Cu) = (Bu,Z0(Cu)), for B,C ∈ M, i.e., Y ∗0
extends Z0. This implies that Y ∗0 is densely defined, and so Y0 is closable (see
appendix A.4). Let Y be the closure of Y0.
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For B,C ∈M, Y0B(Cu) = BCy = BY0(Cu), i.e., Y0 commutes with the
elements ofM on Dom(Y0). Since Y is closed, it commutes with elements of
M on Dom(Y ): Y η M′. We claim that Y is bounded, and so Y ∈ M′. This
suffices to prove the lemma:

Y u = Y0(Iu) = Iy = (∆−1 + rI)−1Au.

We now prove the claim. Suppose by contradiction that Y is unbounded and
let Y = UP be its polar decomposition. Since the spectrum σ(P ) is unbounded
(otherwise P and hence Y = UP would be bounded), there are positive
numbers a and b such that

|A|
2r1/2 < a < b and PE 6= 0, (3.12)

where E ∈ M is the spectral projector of P corresponding to [a, b]. Since
Y η M′, lemma 3.6 gives P η M′ and U,E,EP ∈M′. We now show

|A|2|Ez|2 ≥ 4ra2|Ez|2. (3.13)

Since z = Z0u = Y ∗0 u = PU∗u and Au = (∆−1 + rI)y, by inverting eq. (3.11),

|A|2|Ez|2 ≥ |AEz|2 = |AEPU∗u|2 = |PEU∗Au|2 = |PEU∗(∆−1 + rI)y|2

≥ |PEU∗∆−1y + rPEU∗y|2

≥ |PEU∗∆−1y + rPEU∗y|2 − |PEU∗∆−1y − rPEU∗y|2. (3.14)

Use |x+ y|2 − |x− y|2 = 4Re(x, y) in eq. (3.14) to obtain

|A|2|Ez|2 ≥ 4Re(PEU∗∆−1y, rPEU∗y) = 4rRe(∆−1y, UEP 2EU∗(Y u))

= 4rRe(SS∗y, UP 2EU∗(UPu)) = 4rRe(S∗(UP 2EU∗UPu), S∗y)

= 4rRe(PU∗UEP 2U∗u, z) = 4rRe(P 2E(PU∗u), z)

= 4rRe(P 2Ez, z). (3.15)

For the spectral projector E on [a, b] we have P 2E ≥ a2E, and eq. (3.15)
gives eq. (3.13).

Combining eqs. (3.12) and (3.13) yields Ez = 0. Thus, for A ∈M,

0 = AEz = E(Az) = EZ0(Au) = E(PU∗)Au = PEU∗(Au)

and hence PEU∗ = 0 on H. Finally, PE = U∗UPE = U∗(PEU∗)∗ = 0
contradicting PE 6= 0 from eq. (3.12). �

Fix A ∈ M and r > 0. In what follows, A′ = A′(A, r) ∈ M is defined in
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the previous lemma, i.e., A, A′ and r satisfy eq. (3.11).

Lemma 3.8. LetM⊂ B(H) and u ∈ H as usual, A ∈ M and r > 0. Then,
for x1, x2 ∈ D = Dom(∆1/2) ∩Dom(∆−1/2), X = JA′∗J solves

(Ax1, x2) = (X∆1/2x1,∆−1/2x2) + r(X∆−1/2x1,∆1/2x2). (3.16)

Proof. We first show eq. (3.16) for x1 = B′1u, x2 = B′2u ∈M′u ⊂ D.

(A(B′1u), B′2u) = (Au,B′∗1 B′2u) = ((∆−1 + rI)A′u,B′∗1 B′2u)

= (SS∗(A′u) + rA′u,B′∗1 B
′
2u)

= (SA′∗u,B′∗1 B′2u) + r(A′u,B′∗1 B′2u)

= (S∗(B′∗1 B′2u), A′∗u) + r(B′1A′u,B′2u)

= (B′1u,B′2A′∗u) + r(S∗(A′∗B′∗1 u), B′2u)

= (B′1u, S∗A′S∗B′2u) + r(S∗A′∗S∗B′1u,B′2u).

Now use S∗ = ∆1/2J = J∆−1/2 to complete the computation:

(A(B′1u), B′2u) = (B′1u,∆1/2JA′J∆−1/2B′2u) + r(∆1/2JA′∗J∆−1/2B′1u,B
′
2u)

= (JA′∗J∆1/2B′1u,∆−1/2B′2u) + r(JA′∗J∆−1/2B′1u,∆1/2B′2u).
(3.17)

We prove the general case, with x1, x2 ∈ D, with a limiting argument. We first
show that, for x ∈ D, there exists a sequence (B′n) inM′ such that

B′nu −→ x, ∆1/2B′nu −→ ∆1/2x, ∆−1/2B′nu −→ ∆−1/2x. (3.18)

Since u is cyclic, for x ∈ D, there exists a sequence (Bn) inM such that

B∗nu −→ J∆−1/2x+ J∆1/2x, hence J(B∗nu) −→ ∆−1/2x+ ∆1/2x.

Since ∆1/2Bnu = J2∆1/2Bnu = JSBnu = J(B∗nu), we have

∆1/2Bnu = J(B∗nu) −→ ∆−1/2x+ ∆1/2x = (∆−1 + I)∆1/2x. (3.19)

By lemma 3.7, for Bn ∈M, there exists B′n ∈M′ such that

B′nu = (∆−1 + I)−1Bnu. (3.20)

If t ∈ [0, 1], then f(z) = z−t(z−1 + 1)−1 is a bounded Borel function
for z ∈ (0,∞) hence ∆−t(∆−1 + I)−1 is a bounded operator. Applying this
operator to both sides of eq. (3.19) and using eq. (3.20) shows the claim:

∆1/2−tB′nu→ ∆1/2−tx, t = 0, 1/2, 1. (3.21)
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Finally approximate x1, x2 ∈ D by sequences of the form above and take
limits in eq. (3.17) using eq. (3.18). �

Lemma 3.9. LetM⊂ B(H) and u ∈ H as usual, A ∈ M and r > 0. Then,
for y1, y2 ∈ H, X = JA′∗J solves

(Xy1, y2) =
∫
R

rit−1/2

eπt + e−πt
(∆itA∆−ity1, y2) dt. (3.22)

Roughly speaking, this equation is an inverse of eq. (3.16).

Proof. We first show the result for a bounded ∆, so thatD = H. By lemma 3.8,
for y1, y2 ∈ H, B = JA′∗J satisfies eq. (3.16) for ∆−ity1,∆−ity2 ∈ H:

(A∆−ity1,∆−ity2) =

(B∆1/2∆−ity1,∆−1/2∆−ity2) + r(B∆−1/2∆−ity1,∆1/2∆−ity2)

(∆itA∆−ity1, y2) = (∆−1/2+itB∆1/2−ity1, y2) + r(∆1/2+itB∆−1/2−ity1, y2).

Using the projection valued measure for ∆, the right side turns into∫ ∫
x−1/2+ity1/2−itd(ExBEyy1, y2) + r

∫ ∫
x1/2+ity−1/2−itd(ExBEyy1, y2).

(3.23)
Setting s = x/y, from eq. (3.23) we obtain

(∆itA∆−ity1, y2) =
∫ ∫

sit(s−1/2 + rs1/2)d(ExBEyy1, y2). (3.24)

Since (∆it)t∈R is an unitary strongly continuous one-parameter group, the left
side is a bounded Borel function. Integrate eq. (3.24) to get

∫
R

rit−1/2

eπt + e−πt
(∆itA∆−ity1, y2)dt =∫ ∫

d(ExBEyy1, y2)(s−1/2 + rs1/2)
∫
R

sitrit−1/2

eπt + e−πt
dt. (3.25)

From the residue theorem,

∫
R

sitrit−1/2

eπt + e−πt
dt = 1

s−1/2 + rs1/2

yielding the result for a bounded ∆:∫
R

rit−1/2

eπt + e−πt
(∆itA∆−ity1, y2)dt =

∫ ∫
d(ExBEyy1, y2) = (By1, y2). (3.26)

We prove the general case. For n ∈ N, let En be the spectral projector of ∆ in
[n−1, n] and consider the operators EnBEn, EnAEn,∆0 = ∆En, the last one
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being the restriction of ∆ to the subspace En(H). For y1, y2 ∈ H,

Eny1, Eny2 ∈ Dom(∆1/2
0 ) ∩Dom(∆−1/2

0 )

and hence the operators satisfy eq. (3.16). Since ∆0 is bounded,

(BEny1, Eny2) =
∫
R

rit−1/2

eπt + e−πt
dt(∆itA∆−itEny1, Eny2).

The general result follows by dominated convergence, since En → I strongly.
�

We finally prove lemma 3.5.

Proof. Let w be a weakly continuous functional on B(H) with w(JM′J) = 0.
Then, there are xk, yk ∈ H such that w(A) = ∑n

k=1(Axk, yk) for A ∈ M.
Taking finite sums in eq. (3.22) with X = JA′∗J by lemma 3.9, and setting
k = log r gives

0 = w(JA′∗J) =
∫
R

rit−1/2w(∆itA∆−it)dt
eπt + e−πt

= r−1/2
∫
R
eikt

(
w(∆itA∆−it)
eπt + e−πt

)
dt.

Thus, the function
w(∆itA∆−it)
eπt + e−πt

has zero Fourier transform and hence it is identically zero. From this,
w(∆itA∆−it) = 0 and w(∆itM∆−it) = 0. �

DBD
PUC-Rio - Certificação Digital Nº 1521984/CA



4
KMS states

This chapter presents the main application of Tomita-Takesaki theorem
to mathematical physics, the KMS states. We first review basic facts related to
positivity in C∗-algebras and introduces the GNS construction. We then intro-
duce the Gibbs states together with a brief introduction to quantum statistical
mechanics and KMS states. In Section 3, we consider some properties of states
in the the operator algebraic approach of quantum statistical mechanics. KMS
states in a abstract setting come up in Section 4. The Takesaki theorem for
KMS states is the subject of Section 5. The material is based on [10, 11, 16, 19].

4.1
The GNS construction

Standard examples of C∗-algebras are the C∗-subalgebras of B(H) for a
Hilbert space H and C(K), the space of continuous functions on a compact
Hausdorff space K, which is the standard model of a commutative C∗-algebra,
as seen in theorem 2.8. In this section we describe a *-homomorphism from
any C∗-algebra onto a C∗-subalgebra of B(H) for some Hilbert space H, the
GNS construction after Gelfand, Naimark and Segal.

In this sectionM denotes a C∗-algebra.
We first review some elementary facts regarding positivity on a C∗-

algebra. The following commutation relation is very convenient.

Proposition 4.1. Let a, b ∈M. Then σ(ab) \ {0} = σ(ba) \ {0}.

Proof. If λ ∈ σ(ab) \ {0}, then c(λe − ab) = (λe − ab)c = e for some c ∈ M,
so that c(ab) = (ab)c. Thus, (e + bca)(λe − ba) = λe which means that
λ ∈ σ(ba) \ {0}. Swapping roles, we get σ(ab) \ {0} = σ(ba) \ {0}. �

A self-adjoint element a ∈ M is positive if σ(a) ⊂ [0,∞). We denote a
positive element by a ≥ 0 and the set of all positive elements of M by M+.
A subset P ⊂M is a cone if for λ ≥ 0 and each a, b ∈ P , then λa, a+ b ∈ P .
Recall thatMsa is the set of self-adjoint elements ofM.

Proposition 4.2. Let a ∈M.

1. a ≥ 0 if and only if a ∈Msa and |te− a| ≤ t for t ≥ |a|.
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2. If a ∈Msa, then a = a+ − a−, a+a− = 0 with a+, a− ∈M+.

3. M+ is a closed cone.

4. Msa is partially ordered: a ≥ b if a− b ≥ 0.

5. a is positive if and only if a = b∗b for some b ∈M.

Proof. Let I ∈ C(σ(a)) be the identity function on σ(a).
For (1), note that σ(a) ⊂ [0,∞) if and only if |t.1− I|∞ ≤ t for t ≥ |a|,

which is equivalent to |te− a| ≤ t for t ≥ |a|, by the functional calculus.
For (2), for t ∈ σ(a), set I±(t) = 2−1(|t| ± t) then I = I+ − I−, I+I− = 0

with I+, I− ≥ 0. By the continuous functional calculus on a, the result follows.
For (3), take limits of sequences on (1), to obtain the closedness ofM+.

Let a, b ∈ M+ and t, s ∈ R with t ≥ |a| and s ≥ |b|, then t + s ≥ |a + b| and
|(t+ s)e− (a+ b)| ≤ |te− a|+ |se− b| ≤ t+ s hence a+ b ∈ M+. The other
cone condition is clear.

For (4), if a ≥ b and b ≥ a, then σ(a− b) ⊂ [0,∞) and σ(b−a) ⊂ [0,∞).
Thus, σ(a − b) = −σ(b − a) ⊂ (−∞, 0] hence σ(a − b) = {0}. Thus,
|a − b| = r(a − b) = 0. If a ≥ b and b ≥ c, then a − b ≥ 0 and b − c ≥ 0
hence a− c = (a− b) + (b− c) ≥ 0 becauseM+ is a cone.

For the direct implication of (5), note that I = I1/2I1/2 = (I1/2)∗I1/2,
then a = (a1/2)∗a1/2 by the functional calculus.

Conversely, by (2), a = b∗b = a+ − a−. Setting c = ba−, we see that
−c∗c = −a−b∗ba− = −a−(a+ − a−)a− = a3

− ≥ 0. SinceM+ is a cone, we have
cc∗ = 2(Re2(c)+Im2(c))+(−c∗c) ≥ 0 hence σ(cc∗) ⊂ [0,∞). Excluding 0 ∈ C,
we also have σ(cc∗) = σ(c∗c) = −σ(−c∗c) ⊂ (−∞, 0] hence σ(cc∗) = {0}. Thus,
|c|2 = |c∗|2 = |cc∗| = r(cc∗) = 0 hence a2

− = (a−−a+)a− = −b∗ba− = −b∗c = 0.
This implies that a− = 0 and hence a = a+ ≥ 0. �

We also use a ≤ b for b ≥ a. A linear functional ` : M 7→ C is positive
if `(a) ≥ 0 for a ≥ 0. From the definition, we see that ` preserves positivity:
for a ≥ b we have `(a) ≥ `(b). Also, ` is positive definite if it is positive and
`(a) > 0 for a ≥ 0, a 6= 0.

Lemma 4.1. Let ` be a positive linear functional onM and a, b ∈M. Then

1. ` is bounded.

2. The map (a, b) 7→ `(a∗b) is a positive semi-definite sesquilinear form.

3. |`(a∗b)|2 ≤ `(a∗a)`(b∗b).

4. `(e) = |`|.
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5. |`(b∗ab)| ≤ |a|`(b∗b).

6. The set J` = {a ∈M : `(a∗a) = 0} is a left ideal.

Proof. For (1), suppose by contradiction that ` is unbounded and take a
sequence (an) ∈ (M)1, the unit sphere of M, with `(an) > 2n for n ∈ N.
By eq. (2.3) and (2) of proposition 4.2, we assume an ≥ 0. Clearly a =∑∞
n=1 2−nan ∈M and for n ∈ N, n ≤ ∑n

k=1 2−k`(ak) ≤ `(a), a contradiction.
Item (2) is clear and implies (3). For (4), observe that `(e) ≤ |`| and for

a ∈ (M)1, by (3), we have |`(a)|2 = |`(e∗a)|2 ≤ `(e)`(a∗a) ≤ `(e)|`|. Taking
sups we obtain |`| ≤ `(e).

Item (5) is clear if `(b∗b) = 0. Thus, suppose that `(b∗b) 6= 0. The map
a 7→ υ(a) = `(b∗b)−1`(b∗ab) is a positive linear functional onM. By (5), |υ| = 1
hence `(b∗b)−1|`(b∗ab)| ≤ |a|. Item (6) follows from the previous items. �

From the lemma, positive definite functionals induce inner products.
For a Hilbert space H and a *-homomorphism π :M 7→ B(H) the pair

(H, π) is a representation of M. If u ∈ H is a cyclic vector for the image
π(M) ⊂ B(H), (H, π, u) is a cyclic representation ofM. We now describe the
so-called GNS construction.

Theorem 4.2 (GNS representation). Given a positive linear functional ` on
M, there exists a cyclic representation (H`, π`, u`) of M, for which |u`| = |`|
and `(a) = (u`, π`(a)u`) for a ∈M.

Proof. From lemma 4.1, the quotient space H = M/J` admits the inner
product (ã, b̃) ∈ H ×H 7→ `(a∗b), hence its completion H` is a Hilbert space.

We define π` :M 7→ B(H`): for a ∈M, set π`(a) : H 7→ H by π`(a)(b̃) =
ãb, a well-defined linear operator onH. Since |π`(a)b̃|2 ≤ `(b∗a∗ab) ≤ |`||a|2|b̃|2,
π` extends to a bounded linear operator denoted by same letter on H`. A
direct calculation shows that π` is a *-homomorphism and hence (H`, π`) is a
representation ofM.

For u` = ẽ ∈ H, we have π`(M)ẽ = H so that (H`, π`, u`) is a cyclic
representation ofM. The remaining properties are clear. �

We refer to (H`, π`, u`) as the GNS-representation induced by `.
A state w ∈ M is a positive functional of norm one. The GNS con-

struction applied to a state w leads to a cyclic representation (Hw, πw, uw)
with unit cyclic vector, since |w| = |u| = 1.
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4.2
Gibbs states

An important question in quantum statistical mechanics is the following:
given a physical system composed of large number of particles that obey the
rules of quantum mechanics, what are the equilibrium states of the system? In
this section we shall sketch the physical meaning of the question and introduce
the costumary answer: the Gibbs states.

The bulk properties of matter — pressure, temperature, heat capacity,
volume — are studied by thermodynamics, which provides laws determining
the behavior of these properties when matter is in the so called equilibrium
thermodynamic state. Thermodynamics works very well without information
of the microscopic structure of matter. The classical and quantum statistical
mechanics try to derive the thermodynamic properties from microscopic laws
that governs the (classical, quantum) behavior of the particles composing the
system. The statistical approach circumvents the difficulties arising from an
analytic method having to model a large number of particles.

We sketch the basic procedure of quantum statistical mechanics. Denote
by S a physical system enclosed in a finite volume V ⊂ R3, composed of n
particles obeying the rules of quantum mechanics. To model S, we consider its
state space, a separable Hilbert space H with the following specifications.

1. The pure physical states of S are represented by unit vectors of H.

2. The physical quantities of the system S that can be measured —
the physical observables — are represented by self-adjoint operators
belonging to B(H), also called observables. The set of all observables
is denoted by O ⊂ B(H).

An important observable is the Hamiltonian operator H ∈ O: it encodes
the forces acting on the particles of S and generates the time evolution of S.
More explicitly, the time evolution τ of S is given by

τ : R×O → O (t, A) 7→ τt(A) = eitHAe−itH. (4.1)

It is natural to extend τ from O to B(H).

Proposition 4.3. The evolution τ of the Hamiltonian H ∈ O is a strongly
continuous one-parameter group of automorphisms of B(H).

Proof. This is a consequence of Stone’s theorem:H is a self-adjoint operator, so
that (eitH)t∈R is a strongly(operator) continuous unitary one-parameter group
and clear calculations shows the strongly continuity of the time evolution. �
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More general physical states, the ensembles, are identified with a special
class of observables, the density operators. A density operator ρ ∈ B(H) is a
positive trace-class operator of trace one. An operator T ∈ B(H) is trace class
if, for an orthonormal basis {ek} of H , the trace

‖T‖1 = Tr |T | =
∑
k

(
(T ∗T )1/2ek, ek

)

is finite. The trace is independent of basis. Trace class operators are compact.

Proposition 4.4. Every density operator ρ ∈ B(H) induces a state

wρ : B(H)→ R A 7→ Tr(ρA). (4.2)

Proof. Clearly, wρ ∈ B(H)∗ and wρ(I) = 1. For A ∈ B(H),

wρ(A∗A) = Tr(ρA∗A) = Tr(ρ1/2ρ1/2A∗A) = Tr((Aρ1/2)∗(Aρ1/2)) ≥ 0,

so that wρ is a positive functional, hence a state. �

If A ∈ O, then wρ(A) gives the expected value of the observable A in the
physical state ρ. Physically, if we measure n times the observable A, exactly in
the same physical state ρ, we obtain n real numbers a1, . . . , an. The expected
value of A in ρ is the usual limit,

lim
n→∞

a1 + . . .+ an
n

.

For the evolution τt(A), wρ(τt(A)) describes the corresponding variation of the
expected value.
Despite of the abundance of density operators (and hence of physical states),
the thermodynamic properties of matter only make sense (and thus can be
measured) in the equilibrium states. Rather than providing a definition, we list
some properties that a physical system S in a equilibrium state ρ should have.

Time Invariance: The expected values of the physical observables
should be constant in time in ρ.

Stability: If the system S is disturbed slightly, then S returns smoothly
to ρ as the time passes.

Maximal Entropy: The system S should reach the maximal entropy
when it is in the state ρ. Entropy should be understood as the number of all
possible physical configurations of the particles of the system.

For the system S with Hamiltonian H, we postulate a family of Gibbs
states, which are equilibrium states ρβ parameterized by the inverse tempera-
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ture β ∈ R. The β-Gibbs state is the state wβ induced by the density operator

ρβ = e−βH

Z
Z = Tr(e−βH), (4.3)

where Z is the partition function.
A way to motivate these states is to consider the principle of maximum

entropy. For simplicity, assume that H is finite dimensional.

Definition 4.1. Let ρ1, ρ2 be density operators and β ∈ R.

1. The entropy S of a state ρ is defined as S(ρ) = −Tr(ρ log(ρ)).

2. The free energy F of a state ρ is F (ρ) = βwρ(H)− S(ρ).

3. The entropy of ρ1 relative to ρ2 is

S(ρ1|ρ2) = −Tr(ρ1 log ρ1 − ρ1 log ρ2) (4.4)

Additionally, we shall need lemma 6.2.21 from [11].

Lemma 4.3. Let A be a positive n×n matrix and B a strictly positive matrix.
Then

−Tr(A logA− A logB) ≤ Tr(B − A)

with equality if and only if A = B.

We shall see that Gibbs states are characterized by a variational principle:
they maximize entropy and minimize free energy. Denote by Emin and Emax

the minimum and maximum elements of the spectrum σ(H).

Theorem 4.4. Let H be finite dimensional. If E ∈ σ(H) and E ∈ (Emin, Emax)
then there exists a Gibbs state wβ maximizing entropy and minimizing free
energy for which wβ(H) = E.

Proof. We first show that the energy E = w(H) ∈ (Emin, Emax) for every state
w. To see this, write EminI < H < EmaxI. Applying w to this equation gives

Eminw(I) < w(H) < Emaxw(I)

Emin < E < Emax.
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We now show that for any E ∈ (Emin, Emax) there exists a Gibbs state wβ for
which wβ(H) = E. We note that

dE

dβ
= d

dβ
w(H) = d

dβ

(
Tr(e−βHH)
Tr(e−βH)

)

= −Tr(e−βHH2) Tr(e−βH) + Tr(e−βHH) Tr(e−βHH)
Tr(e−βH)2

= −Tr(e−βHH2)
Z

+
(

Tr(e−βHH)
Z

)2

= −Tr(e−βHH2)
Z

+ 2E2 − E2

= −
[
−Tr(e−βHH2)

Z
− 2ETr(e−βHH)

Z
+ Tr(e−βHE2I)

Z

]

= −
Tr
[
e−βH(H2 − 2EH + E2)

]
Z

= −wβ
[
(H− E)2

]
≤ 0.

Thus, E is decreasing with respect to β and strictly decreasing unless H is
constant hence E = wβ(H) is injective. Since E depends continuously of β,
this relation is actually a bijective correspondence and so for every E there
exists wβ such that wβ(H) = E.

Also, from lemma 4.3 setting A = ρ1 and B = ρ2 in eq. (4.4) gives

S(ρ1|ρ2) ≤ Tr(ρ1 − ρ2) = 0.

Therefore, the relative entropy is always decreasing. By similar calculations for
ρ1 = ρ and ρ2 = ρβ = e−βH/Z we obtain

S(ρ|ρβ) = −Tr
(
ρ log ρ− ρ log e

−βH

Z

)
= −Tr(ρ log ρ) + Tr

(
ρ log e

−βH

Z

)
= S(ρ) + Tr(ρ log e−βH) + logZ = S(ρ)− β Tr(ρH) + log Tr(e−βH)

= S(ρ)− βwρ(H) + log Tr(e−βH). (4.5)

While the free energy of the Gibbs state wβ is

F (ρβ) = βwβ(H) + Tr(ρβ log ρβ) = βwβ(H) + Tr
(
e−βH

Z
log e

−βH

Z

)

= βwβ(H)− βTr(e−βHH)
Z

+ log(Tr(e−βH)) = log(Tr(e−βH)).

From this and eq. (4.5) we deduce that S(ρ|ρβ) = −F (ρ)+F (ρβ) ≤ 0 and hence
wβ minimizes free energy: F (ρβ) ≤ F (ρ). Moreover wβ maximizes entropy:

S(ρ) = βwρ(H)− F (ρ) ≤ βwρ(H)− F (ρβ) = S(ρβ).

�
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Frequently e−βH is a trace-class operator, hence compact: for simplicity
we suppose so as a hypothesis, so that H admits an orthonormal basis
of eigenvectors. By the continuous functional calculus ρβ is positive since
e−βt, β ∈ R, is a positive function . Thus, ρβ is a density operator and wβ

is a state on B(H) by proposition 4.4.
LetM⊂ B(H) be a Von Neumann algebra. A state w onM is faithful

if A ∈M+ \ {0} implies that w(A) > 0. Equivalently, w is faithful if A ∈M+

with w(A) = 0 implies that A = 0.
Finally, a state w is a (τ, β)-KMS state if satisfies the KMS condition:

wβ(AτiβB) = wβ(BA), for A,B ∈ B(H), (4.6)

where τiβ is obtained setting t = iβ in eq. (4.1) through the continuous
functional calculus for the Hamiltonian H.

Proposition 4.5. Let wβ be a β-Gibbs state for the physical system S. Then

1. For A ∈ O, t ∈ R, wβ(τt(A)) = wβ(A): wβ is invariant under τt.

2. wβ is faithful.

3. wβ is a (τ, β)-KMS state.

Proof. From the functional calculus, e−βH and eitH commute. We prove (1):

Zwβ(τt(A)) = Tr(e−βHeitHAe−itH) = Tr(eitHe−βHAe−itH) = Tr(e−βHA).

To show (2), let A ≥ 0 with wβ(A) = 0 and (ψn) be the orthonormal
basis of eigenvectors of H with eigenvalues (En). Then

0 = wβ(A) = 1
Z

Tr(e−βHA) = 1
Z

Tr(Ae−βH)

=
∞∑
n=1

(ψn, Ae−βHψn) =
∞∑
n=1

(ψn, Ae−βEnψn) =
∞∑
n=1

e−βEn(ψn, Aψn).

Since A ≥ 0, |A1/2ψn|2 = (ψn, Aψn) = 0 for n ∈ N. Hence A1/2 and A vanish:
wβ is faithful.

To see (3), for A,B ∈ B(H) we have

wβ(AτiβB) = 1
Z

Tr(e−βHAe−βHBeβH) = 1
Z

Tr(Ae−βHB) = wβ(BA).

�

Property (3) was proved by Kubo(1957) and Martin and Schwin-
ger(1959). It is fundamental for the characterization of equilibrium states in
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general settings, as we shall see in section 3.4, because for a special family of
quantum physical systems, the KMS states are equivalent to the Gibbs states.
A finite quantum system is a system S with finite dimensional state space H.

Proposition 4.6. Let β ∈ R. Every (τ, β)-KMS state of a finite quantum
system S is a β-Gibbs state.

Proof. Let w be a (τ, β)-KMS state and (ψi) be the orthonormal basis of
eigenvectors of H with eigenvalues (Ei). The rank one operators

ψi ⊗ ψj : Cn → Cn v 7→ (ψj, v)ψi,

satisfy (ψi ⊗ ψk)(ψk ⊗ ψj) = ψi ⊗ ψj. Using the KMS condition,

w(ψi ⊗ ψj)) = w((ψi ⊗ ψk)(ψk ⊗ ψj)) = w((ψk ⊗ ψj)e−βH(ψi ⊗ ψk)eβH)

= w((ψk ⊗ ψj)e−βEi(ψi ⊗ ψk)eβEk) = e−βEieβEkw((ψk ⊗ ψj)(ψi ⊗ ψk)

= eβEke−βEiδijw((ψk ⊗ ψk)).

Summing over k,

∑
k

e−βEkw(ψi ⊗ ψj) = e−βEiδij
∑
k

w(ψk ⊗ ψk) = e−βEiδijw(I) = e−βEiδij.

Since Z = Tr(e−βH) = ∑
k e
−βEk , we obtain w(ψi ⊗ ψj) = e−βEiδij/Z.

We now turn to the general case. Write A ∈ B(H) as A = ∑
i,j Aijψi⊗ψj

with Aij = (ψi, Aψj) and recall that ρβ has the matrix representation e−βEiδij

on the basis {ψn}. Then

w(A) =
∑
i,j

Aijw(ψi ⊗ ψj) = 1
Z

∑
j

∑
i

(e−βEiδji)Aij = 1
Z

Tr(ρβA),

so that w is a β-Gibbs state. �

Abstracting some of the facts above we are led to the algebraic approach
of quantum statistical mechanics. For a physical system S and a separable
Hilbert space H, we require the following axioms.

Axiom 1: The physical observables of S are represented by the self-
adjoint elements of a Von Neumann algebraM⊂ B(H).

Axiom 2: The physical states of S are represented by normal states on
M, to be defined in the next section.

Axiom 3: The expected value of an observable A ∈M in the state w is
given by w(A).

Axiom 4: The time evolution of S is given by a σ-weakly continuous
one-parameter group τ of automorphisms ofM.
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Finally, there is an axiom concerning physical symmetries that we omit,
since we do not use it in the sequel.

4.3
Normal states

In this section, we define normal states and show that they are equivalent
to states induced by density operators. As a consequence, we obtain interesting
properties about *-homomorphisms between Von Neumann algebras.

Let T (H) be the set of trace class operators of H. The norm given by
the trace converts T (H) into a Banach space. We quote theorem 6.26 of [18].

Proposition 4.7. The following facts are true.

1. B(H) is the dual of T (H) under the map

φ : B(H)→ (T (H))∗ A 7→ φ(A)(ρ) = Tr(ρA), ρ ∈ T (H).

2. The weak* and σ-weak topology on B(H) coincide.

3. For a σ-weakly continuous functional w on B(H), there is ρ ∈ T (H)
such that w(A) = Tr(ρA), for A ∈ B(H).

We extend the well known fact that the commutative Von Neumann
algebra L∞(K,µ) is the dual space of L1(K,µ) for some compact Hausdorff
space K with finite positive Borel measure µ.

Definition 4.2. The predual of a Von Neumann algebraM is the setM∗ of
linear functionals onM, which are σ-weakly continuous on the unit ballM1.

In this section,M⊂ B(H) is a Von Neumann algebra.

Proposition 4.8. The predualM∗ is a uniformly closed subspace ofM∗. The
dual ofM∗ isM.

Proof. First, note thatM1 =M∩ B(H)1 is weakly compact because B(H)1

is andM1 is σ-weakly compact because it is bounded. Therefore, if w ∈ M∗,
then w(M1) ⊂ C is compact, hence bounded. This implies that w ∈ M∗ and
henceM∗ ⊂M∗.

We now show thatM∗ is uniformly closed. Let wn ∈ R∗ → w uniformly
and Am ∈ M1 → A σ-weakly. We must show that w(Am)→ w(A) uniformly,
so that w ∈M∗. Indeed, if m,n→∞

|w(A)− w(Am)| ≤ |w(A)− wn(A)|+ |wn(A)− wn(Am)|+ |wn(Am)− w(Am)|

≤ 2|w − wn|+ |wn(A)− wn(Am)| → 0,
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since each wn is σ-weakly continuous onM1.
To prove the duality, consider J :M→ (M∗)∗ defined for A ∈M by

J(A) :M∗ ⊂M∗ → C w 7→ w(A).

We first show that J is an isometry, and hence injective. Denote by |.|1 the
norm on (M∗)∗. Then |J(A)|1 = supw∈(R∗)1 |J(A)w| ≤ supw∈(R∗)1 |w||A| = |A|,
for A ∈M. To see the reverse inequality, take x, y ∈ H and define

wx,y :M→ C A 7→ (y, Ax) .

Clearly wx,y ∈M∗ and wx,y ∈ (R∗)1 if |x| = |y| = 1, and thus

|A| = sup
|x|=|y|=1

|(x,Ay)| = sup
wx,y∈(R∗)1

|wx,y(A)| ≤ sup
w∈(R∗)1

|J(A)w| = |J(A)|1.

It remains to prove that J is surjective. For φ ∈ (M∗)∗,

φ(w(·,·)) : H ×H → C (x, y) 7→ φ(wx,y)

is a sesquilinear form on H, hence φ(wx,y) = (y, Ax) for some A ∈ B(H).
Actually, A ∈M. Indeed, for A′ ∈M′ self-adjoint, wA′x,y = wx,A′y and

(y, AA′x) = φ(wA′x,y) = φ(wx,A′y) = (A′y, Ax) = (y, A′Ax).

Hence A commutes with M′ and A ∈ M′′ = M, since each element
in M′ is a complex linear combination of self-adjoint elements(eq. (2.3)).
Thus φ(wx,y) = (y, Ax) = J(A)(wx,y), i.e., φ = J(A) on the subspace
F = {wx,y ∈ M∗ : x, y ∈ H}. Recall(appendix A.1) that w ∈ M∗ has the
form w = ∑∞

n=1wxn,yn for sequences (xn), (yn) ∈ H with ∑n |xn|2 and ∑n |yn|2

finite. Therefore F is dense inM∗ and φ = J(A): J is surjective. �

A net (Aj)j∈J ∈ M+ is increasing if for j, k ∈ J with j ≤ k, then
Aj ≤ Ak. It is bounded inM+ if there is B ∈M+ such that Aj ≤ B for every
j: in this case, B is an upper bound for (Aj). An upper bound C ∈ M+ for
(Aj), is the supremum supj Aj of (Aj), if for every upper bound B for (Aj),
we have C ≤ B.

Lemma 4.5. Let (Aj) ∈ M+ be an increasing net with an upper bound in
M+. Then (Aj) has a supremum A ∈M+ and Aj → A σ-weakly.

Proof. For each i ∈ J , let Si be the weak closure of {Aj : j > i}. Since (Ai)
has an upper bound, we see that Si is bounded. The balls of M are weakly
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compact and each Si is weakly closed, hence Si is weakly compact. Thus, there
exists A ∈ ∩i∈JSi such that for i ∈ J , Ai ≤ A, A ∈ Si and A = w − limAi.
Moreover it is easy to see that A = supi(Ai). Finally, Ai → A strongly hence
weakly (and hence σ-weakly since the weak and σ-weak topologies coincide in
bounded sets), because

|(A− Ai)x|2 = |(A− Ai)1/2(A− Ai)1/2x|2 ≤ 2|A|((A− Ai)x, x)→ 0 .

�

A positive linear functional w ∈ M is normal if for every bounded
increasing net (Aj) ∈M+, w(supj Aj) = supj w(Aj).

Theorem 4.6. Let w ∈M. The following conditions are equivalent.

1. w is normal.

2. w is σ-weakly continuous.

3. There is a density operator ρ such that w(A) = Tr(ρA) for A ∈M.

Proof. For (1)⇒(2), see theorem 2.4.21 of [10]. For the converse, let (Aj) be
a bounded increasing net in M+. Then Aj → A = supj Aj σ-weakly hence
w(Aj)→ w(A) uniformly. Thus w(A) = supj w(Aj) and w is normal.

For (3)⇒(2), extend w to B(H), and by (2) of proposition 4.7, w is σ-
weakly continuous. Similarly, for (2)⇒(3), the extended state w satisfies (3)
by item (3) of proposition 4.7. �

We present some applications. The first is yet another context in which
order relates to topology.

Lemma 4.7. Let φ :M1 7→ M2 be a *-homomorphism between Von Neumann
algebras. If for a normal state w onM2, w ◦ φ is a normal state onM1, then
φ is σ-weakly continuous.

Proof. A σ-weakly continuous functional w ∈ M∗
2 is a linear combination of

σ-weakly continuous states, hence a linear combination of normal states. From
the hypothesis, w ◦ φ is a linear combination of normal states on M1, i.e.,
w ◦ φ ∈M∗

1 is a σ-weakly continuous functional. �

By proposition 2.3, a *-homomorphism φ between Von Neumann algebras
preserves positivity and hence order. Thus, if (Aj) is a bounded increasing net
in (M1)+, so is (φ(Aj)) in (M2)+. Also, from corollary 2.4.1, *-homomorphisms
between C∗-algebras are uniformly continuous.
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Theorem 4.8. Let φ : M1 ⊂ B(H1) 7→ M2 ⊂ B(H2) be a surjective
*-homomorphism between Von Neumann algebras. Then φ is σ-weakly and
strongly continuous. In particular, *-isomorphisms are homeomorphisms in the
σ-weak and strong topologies.

Proof. We first show σ-weak continuity. Let w be a normal state onM2 and
(Aj) be a bounded increasing net in (M1)+. Since φ is surjective, a computation
with the order relations gives φ(supj Aj) = supj φ(Aj). By the normality of w,
w(φ(supj Aj)) = supj w(φ(Aj)) , i.e., w ◦ φ is a normal state ofM1. Thus φ is
σ-weakly continuous by lemma 4.7.

Strong continuity will follow from σ-weak continuity. First notice that,
for each net (Aj) ∈ M1, |Ajx|2 = (A∗jAjx, x), for x ∈ H1: Aj → 0 strongly if
and only if A∗jAj → 0 weakly. From the previous paragraph, φ(Aj)∗φ(Aj)→ 0
weakly, and hence φ(Aj)→ 0 strongly. Therefore, φ is strongly continuous. �

Let J be a right ideal of a C∗-algebra M. An increasing net (Ej) in
J+∩J1 is an approximate identity of J if EjA→ A uniformly, for A ∈ J . From
proposition 2.2.18 of [10], every right ideal J has an approximate identity.

Lemma 4.9. LetM⊂ B(H1) be a Von Neumann algebra and φ :M 7→ B(H2)
be a σ-weakly continuous *-homomorphism. Then there exists a projection
E ∈ Z(M) (the center ofM) such that the restriction map φ :ME 7→ φ(M)
is a *-isomorphism and φ(M(I − E)) = 0.

Proof. Suppose for the moment the following claim: kerφ is closed by taking
adjoints. Let (Fj) be an approximate identity of (the right ideal) kerφ, and
set F = supj Fj ∈ (kerφ)+. For A ∈ kerφ, FjA∗ → FA∗ = A∗ uniformly
because multiplication is weakly continuous. Thus AFj → AF = A, since
taking adjoints is an isometry. Similarly FA = A and F 2 = F : said differently,
F is a projection onto kerφ. Moreover, for A ∈M,

AF = (AF )F = F (AF ) = (FA)F = FA,

so that F ∈ Z(M). Clearly kerφ = (kerφ)F ⊂MF ⊂ kerφ and kerφ =MF .
Also E = I − F ∈ Z(M) is a projection and M = kerφ ⊕ ME, and
thus the restriction φ : ME 7→ φ(M) is a *-isomorphism together with
φ(M(I − E)) = 0.

We now prove the claim. First, observe that kerφ is a σ-weakly closed
two-sided ideal since φ is σ-weakly continuous. Let A ∈ kerφ with polar
decomposition U(A∗A)1/2 then A∗A, (A∗A)1/2 ∈ kerφ and so does A∗ =
(A∗A)1/2U∗. Therefore, kerφ is closed under adjoints. �
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From section 3.1, a positive linear functional w on a Von Neumann
algebra (hence a C∗-algebra) M induces a cyclic representation (H, π, w) for
which the image π(M) is a C∗-algebra (hence uniformly closed), however it is
not necessarily a Von Neumann algebra. The normality of w does it.

Theorem 4.10. Let w be a normal state on the Von Neumann algebra
M ⊂ B(H) and (Hw, π, w) be the GNS-representation of w. Then, the image
π(M) is a Von Neumann algebra.

Proof. We first show that π is σ-weakly continuous. For a bounded increasing
net (Aj) ∈ M+ with A = supj Aj, (B∗AiB) is also a bounded increasing net
with supj B∗AjB = B∗AB, for B ∈M. Since w is normal,

(π(B)u, π(A)π(B)u) = w(B∗AB)

= sup
j
w(B∗AjB) = (π(B)u, sup

j
π(Aj)π(B)u).

Thus π(A) = supj π(Aj) since π(M)u is dense in Hw. Since w is a normal state
on B(Hw), w ◦ π is a normal state onM1 and π :M1 7→ B(Hw) is σ-weakly
continuous by lemma 4.7.

By lemma 4.9, there is a projection E ∈ Z(M) such that π : ME 7→
π(M) is a *-isomorphism, hence an isometry. SinceM1 is weakly compact and
π is weakly continuous, (π(M))1 is weakly closed. Now use theorem 2.12 to see
that π(M) is weakly closed and thus π(M) is a Von Neumann algebra. �

4.4
KMS states

In section 3.2 Gibbs states were defined as the equilibrium states for
a physical system of n particles in a finite volume V ⊂ R3. A real system
has something like 1023 particles and a large volume: going to infinity is a
reasonable approximation of it. An infinite system is a limiting situation in
which the number of particles and volume increase but keep a finite particle
density n/V . What are the equilibrium states of an infinite system? Here we
introduce the operator algebraic answer: the KMS states.

In order to be of any use, the limiting process has to apply to observables,
in particular equilibrium states. The resulting system, consisting of states and
observables, is the thermodynamic limit of the (finite) system.

The algebraic approach, instead, describes its axioms for the infinite
system directly. For the infinite system S, we model the physical observables by
the self-adjoint elements of a Von Neumann algebraM⊂ B(H), the physical
states by normal states w onM, the time evolution by a σ-weakly continuous
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one-parameter group τ of *-automorphisms of M and the expected value of
the observable A ∈M in the state w by w(A).

By proposition 4.6, the equilibrium states of finite quantum systems are
exactly the KMS states on B(H). By analogy, we later define the KMS states
onM as the equilibrium states of the infinite system.

Let M be a Von Neumann algebra and τ be a σ-weakly continuous
one-parameter group of *-automorphisms of M. The pair (M, τ) is called a
W ∗-dynamical system. We refer to τ as the time evolution ofM.

In section 3.2, the time evolution τt = eitH(·)e−itH extended analytically
from t ∈ R to z ∈ C. For an arbitrary time evolution τ on M, this is
not necessarily true. This is a problem: τiβ for β ∈ R appears in the KMS
condition(eq. (4.6)). We are interested in elements A ∈ M for which this
analytic extension is possible.

Let (M, τ) be a W ∗-dynamical system. An element A ∈M is τ -analytic
if there are s > 0 and f : R× (−s, s)i ⊂ C 7→ M such that

1. f(z) = τz(A) ∈M is well defined in the strip z ∈ R× (−s, s)i.

2. (Weak analyticity) ` ◦ f is analytic for ` ∈M∗.

Thus, the map t ∈ R 7→ τt(A) ∈ M is extended from R to R × (−s, s) for
τ -analytic elements. Condition 2 is actually equivalent to strong analyticity.
We will frequently prove weak analiticity and then use properties of strong
analyticity. Thus, by analytic continuation, τz+w = τzτw. When f is defined in
C, A is a τ -entire element. The set of all τ -entire elements ofM isMτ .
We now approximate A ∈M by τ -entire elements in the σ-weak topology.

Lemma 4.11. Let (M, τ) be aW ∗-dynamical system and µ be a Borel measure
of bounded variation on R. Then for A ∈M there exists B ∈M such that

`(B) =
∫
`(τtA)dµ(t) for ` ∈M∗.

Proof. For ` ∈ M∗, the function ` 7→
∫
`(τtA)dµ(t) is a bounded linear

functional onM∗: |
∫
`(τtA)dµ(t)| ≤ |`||A||µ|. Hence

`(B) =
∫
`(τtA)dµ(t)

for some B ∈ (M∗)∗ =M. �

We express the relationship between A and B by

B =
∫
τt(A)dµ(t).
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Proposition 4.9. The set of τ -entire elementsMτ is σ-weakly dense inM.

Proof. For A ∈ M we obtain a sequence of elements (An) ∈ Mτ which we
then show to converge σ-weakly to A. By lemma 4.11, the map

z ∈ C 7→ fn(z) =
√
n

π

∫
τt(A)e−n(t−z)2

dt ∈M

is well defined, since t 7→ e−n(t−z)2 ∈ L1(R). Moreover, for ` ∈M∗, |`(τt(A))| ≤
|`||A|. By dominated convergence, the integral differentiation commute,

d

dz
`(fn(z)) =

√
n

π

∫
`(τt(A)) d

dz
(e−n(t−z)2)dt,

so that ` ◦ fn is entire. Define

An =
√
n

π

∫
τt(A)e−nt2dt.

For z = s ∈ R,

fn(s) =
√
n

π

∫
τs+u(A)e−nu2

du = τs

(√
n

π

∫
τu(A)e−nu2

du
)

= τs(An),

i.e., An is a τ -entire element. Moreover,

|An| ≤ sup
t∈R
|τt(A)|

√
n

π

∫
e−nt

2
dt ≤ |A|.

We show that An → A σ-weakly. For a σ-weakly continuous functional ` ∈M∗,

`(An − A) =
√
n

π

∫
[`(τtA)− `(A)]e−nt2dt. (4.7)

For |t| ≤ δ we have |`(τt(A))− `(τ0(A))| ≤ 2−1ε since τ is σ-weakly continuous
and if additionally N is large enough,

√
N

π

∫
|t|>δ

e−Nt
2
dt ≤ ε

4|`||A| .

Thus, by eq. (4.7), for n > N ,

|`(An − A)| ≤ ε

2

√
n

π

∫
|t|≤δ

e−nt
2
dt+ 2|`||A|

√
n

π

∫
|t|>δ

e−nt
2
dt ≤ ε ,

i.e., An → A σ-weakly andMτ is σ-weakly dense inM. �

Let (M, τ) be a W ∗-dynamical system and β ∈ R. A normal state w on
M is a (τ, β)-KMS state if for A,B ∈Mτ ,

w(AB) = w(Bτiβ(A)). (4.8)
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A (τ,−1)-KMS state is a τ -KMS state. This special choice relates to the
Tomita-Takesaki theory in the next section.

As in section 3.2, an equilibrium state w is labeled by β, the inverse
temperature. But now we do not have a given family of equilibrium states.
An important and difficult problem is to find all the equilibrium states of a
W ∗-dynamical system (M, τ).

Just for mention, the most interesting and important problem in statisti-
cal mechanics are the phase transitions. For example, if we reduce the pressure
of a confined liquid at fixed temperature then at certain critical pressure the li-
quid vaporizes and slight variations around this critical value produces different
equilibrium states or phases, i.e., mixtures of vapor and liquid can coexist and
large changes in thermodynamic properties such as: density, specific heat, en-
tropy, etc. occur. From theoretical viewpoint, thermodynamic properties vary
sharply with pressure at those critical points. Thus, in the finite volume phy-
sical system, these quantities vary rapidly which in the thermodynamic limit
appear as sharp discontinuities of the thermodynamic properties. These dis-
continuities are sometimes cited as justification of the thermodynamic limit.

We may assume that w is a τ -KMS state by rescaling the time evolution
τ : set τ̃t = τ−βt and w is a (τ, β)-KMS state if and only if it is a τ̃ -KMS state.

We now show that (τ, β)-KMS states exhibit the time invariance property.

Proposition 4.10. Let (M, τ) be a W ∗-dynamical system and w be a (τ, β)-
KMS state with β 6= 0. Then w(τtA) = w(A) for A ∈M and t ∈ R.

Proof. By rescaling we assume β = −1. We first show time invariance for τ -
entire elements. For A ∈ Mτ , recall the entire function f : C 7→ M, f(z) =
τz(A). Then w ◦ f is entire, since w ∈ M∗. For the identity operator I ∈ M
and z ∈ C, by the KMS condition (eq. (4.8)), w ◦ f is periodic with period i:

w(f(z − i)) = w(Iτ−i(τzA)) = w((τzA)I) = w(f(z)) .

Moreover, w ◦ f is bounded on the strip R× [−1, 0]:

|w(f(z))| ≤ |τRe zτi Im zA| ≤ |τi Im zA| ≤M.

From the periodicity, w ◦ f is bounded on C, hence a constant, by Liouville’s
theorem. Time invariance then follows: w(τt(A)) = w(f(t)) = w(f(0)) = w(A).

Time invariance for arbitrary elements ofM follows from an approxima-
tion argument. For A ∈ M, by proposition 4.9, there is a sequence (An) in
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Mτ with An → A σ-weakly. Since τ and w are σ-weakly continuous,

w(τt(A)) = w(τt(lim
n
An)) = lim

n
w(τt(An)) = lim

n
w(An) = w(A)

and the proof is complete. �

The definition of KMS states in terms σ-weakly density onM is harder
to handle when unbounded operators are involved. We provide an alternative
characterization of KMS states which emphasizes their analytic aspects.

Recall two basic properties of analytic functions (theorems 3.7 (chapter
4) and 3.9 (chapter 6) of [14]).

Theorem 4.12. Let Ω ⊂ C be an open connected subset and f : Ω 7→ C be
analytic. If the set {z ∈ Ω : f(z) = 0} has an accumulation point in Ω, then f
is identically zero.

Theorem 4.13. Let f : R× [a, b]i ⊂ C 7→ C be a bounded continuous function,
analytic on R× (a, b). Then

sup
z∈R×[a,b]

|f(z)| ≤ max
(

sup
t∈R
|f(t+ ia)|, sup

t∈R
|f(t+ ib)|

)
.

Proposition 4.11. Let w be a state on aW ∗-dynamical system (M, τ), β ∈ R.
Then w is a (τ, β)-KMS state if and only if for each A,B ∈ M there is a
bounded continuous function FA,B : R × [0, β] 7→ C, analytic on R × (0, β),
such that

FA,B(t) = w(BτtA), FA,B(t+ iβ) = w(τt(A)B) , for t ∈ R. (4.9)

Proof. We prove the case β > 0: the proof for β < 0 is the same.
For the reverse implication, let A,B ∈Mτ and define the entire function

G(z) = w(BτzA). For t ∈ R, G(t) = w(BτtA) = FA,B(t), i.e., G = FA,B onM.
By theorem 4.12, FA,B = G on R× [0, β] and w is a (τ, β)-KMS state:

w(BτiβA) = G(iβ) = FA,B(iβ) = w(AB).

We first prove the direct implication for τ -entire elements A,B ∈ Mτ .
Define the entire function FA,B(z) = w(BτzA). For t ∈ R, FA,B satisfies
FA,B(t) = w(BτtA) and FA,B(t + iβ) = w(BτiβτtA) = w(τt(A)B) by the
KMS condition (eq. (4.8)). Moreover, FA,B is bounded on R × [0, β] since
|FA,B(z)| ≤ |B||τIm zA|. Thus, the restriction of FA,B to the strip R × [0, β] is
the desired function.

We now extend the result for arbitrary elements. Approximate A,B ∈M
by bounded nets (Aj) and (Bj) inMτ , using Kaplansky’s theorem 2.12. Thus
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|Aj| ≤ |A|, |Bj| ≤ |B|, with Aj → A and Bj → B strongly. Define for each j,
Fj = FAj ,Bj

as above and suppose for the moment that (Fj) is a Cauchy net,
uniformly on R× [0, β]. Then Fj converges uniformly to a bounded continuous
function F : R× [0, β] 7→ C which is analytic on R× (0, β), from the analogous
properties for the FAj ,Bj

’s. For t ∈ R, F (t) = limj w(BjτtAj) = w(BτtA) and
F (t+ iβ) = w(τt(A)B). We now prove the claim.

Let (H, π, u) be the GNS-representation of w. By theorem 4.13, |Fj−Fk|∞
occurs on the boundary of the strip R× [0, β]. So, for t ∈ R and R + iβ,

sup
t∈R
|(Fj − Fk)(t)| = sup

t∈R
|w((Bj −Bk)τtAj) + w(Bkτt(Aj − Ak))|

≤ |A||π(B∗j −B∗k)u|+ |B||π(Aj − Ak)u|,

sup
t∈R
|(Fj − Fk)(t+ iβ)| ≤ |A||π(Bj −Bk)u|+ |B||π(A∗j − A∗k)u|.

Combine the estimates to obtain

|Fj − Fk|∞ ≤ |A|
{
|π(B∗j −B∗k)u|+ |π(Bj −Bk)u|

}
+ |B|

{
|π(Aj − Ak)u|+ |π(A∗j − A∗k)u|

}
. (4.10)

Finally, by theorem 4.8 and lemma 3.7, π is strongly continuous, yielding the
following uniform convergences:

π(Aj)u→ π(A)u, π(Bj)u→ π(B)u,

π(A∗j)u→ π(A∗)u, π(B∗j )u→ π(B∗)u.

Thus, eq. (4.10) implies that (Fj) is a uniform Cauchy net on R× [0, β]. �

4.5
The Takesaki theorem for KMS states

We finish this text with Takesaki’s theorem, a profound link between
Tomita-Takesaki theory and KMS states, considered a deep connection be-
tween pure mathematics and theoretical physics. We interpret physically a
special case of this result.

We begin with two properties of a faithful state on its GNS representa-
tion. Throughout this section,M is a Von Neumann algebra.

Lemma 4.14. Let w be a state onM with GNS-representation (H, π, u). Then
w faithful onM if and only if π is injective and u is separating for π(M).

Proof. For the direct inclusion, let A ∈M with π(A) = 0, so that
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w(A∗A) = (u, π(A∗A)u) = |π(A)u|2 = 0, (4.11)

which implies that A∗A = 0, since w is faithful on M. Thus, A = 0 and π

is injective. For the separability, let A ∈ M with π(A)u = 0. By eq. (4.11),
w(A∗A) = 0 and hence A∗A = 0. Again, since w is faithful on M, A = 0.
Therefore, π(A) = 0 and u is separating for π(M).

Conversely, let A ∈ M such that w(A∗A) = 0. By the same calculation
of eq. (4.11), π(A)u = 0. Since u is separating and π is injective, we obtain
A = 0: w is faithful onM. �

Gibbs states are faithful (proposition 4.5), KMS states are too.

Proposition 4.12. Let (M, τ) be a W ∗-dynamical system and w be a (τ, β)-
KMS state with GNS-representation (H, π, u). Then u is cyclic separating for
π(M) and w is faithful for π(M).

Proof. From the GNS construction, u is cyclic, we now prove separability. Let
A ∈ M such that π(A) = 0. By proposition 4.11, for B,C ∈ M, there exists
F = FC,A∗B : R × [0, β] 7→ C satisfying eq. (4.9). Since F (t) = w(A∗BτtC) =
(π(A)u, π(BτtC)u) = 0, F vanishes on M and therefore vanishes identically,
by theorem 4.12. Thus, 0 = F (iβ) = (π(C)∗u, π(A)∗π(B)u) which implies
π(A)∗ = 0 since u is cyclic. We then have π(A) = 0: u is separating for π(M).

To prove faithfulness, let A = π(B)∗π(B) ∈ π(M)+ with
w(π(B)∗π(B)) = 0. Then π(B) = 0: indeed,

|π(B)u|2 = (u, π(B)∗π(B)u) = w(π(B)∗π(B)) = 0,

since u is separating for π(M). Therefore A = 0 and w is faithful for π(M). �

We now apply the Tomita-Takesaki theorem and create a time evolution
τ for which the state w is a τ -KMS state.

Theorem 4.15 (Takesaki). Let w be a normal state on the Von Neumann
algebraM⊂ B(H). The following are equivalent.

1. There is a σ-weakly continuous one-parameter group τ of *-
automorphisms ofM such that w is a τ -KMS state.

2. There exists a projection E ∈ Z(M) withM =ME ⊕M(I −E), such
that w faithful onME and w(M(I − E)) = 0.

If these conditions are satisfied, the restriction of τ to ME is uniquely
determined by w. This restriction is then the modular group ofME.
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Proof. To see that (1) implies (2), let (Hw, π, u) be the GNS-representation of
w. By lemma 4.9, π :ME 7→ π(M) is a *-isomorphism and π(M(I−E)) = 0,
for some projection E ∈ Z(M). By proposition 4.12, w is faithful on π(M) and
hence it is faithful onME. Finally, w(M(I − E)) = (u, π(M(I − E))u) = 0.

Conversely, first notice that as w(M(I − E)) = 0, every definition of
τ onM(I − E) satisfies the KMS condition(eq. (4.8)) trivially. Thus, we can
assume that E = I, so that w is faithful onM. We now verify that the modular
group given by Tomita-Takesaki theory is the time evolution with the desired
properties. Let (Hw, π, u) be the GNS-representation of w. By lemma 4.14, the
faithfulness of w implies that u is cyclic separating for π(M). Then eq. (3.7)
in the Tomita-Takesaki theorem (theorem 3.4) specifies the modular group
τ associated to (π(M), u). Clearly (π(M), τ) is a W ∗-dynamical system. By
lemma 4.14, π is injective and hence a *-isomorphism fromM onto its image.
From theorem 4.8, π is a σ-weakly homeomorphism. Thus we may identify
M with π(M) and conclude that (M, τ) is a W ∗-dynamical system. We now
check that w is a τ -KMS state: for A,B ∈Mτ ,

w(Bτ−iA) = (u,B∆A∆−1u) = (B∗u, S∗SAu) = (u,ABu) = w(AB).

To prove the uniqueness claim, suppose that there exist another σ-weakly
continuous one-parameter group κ of *-automorphisms ofM for which w is a
κ-KMS state. By proposition 4.11, for A,B ∈M there are bounded continuous
functions F,G : R× [−1, 0] 7→ C, analytic on R× (−1, 0) such that

F (t) = w(BτtA), F (t− i) = w(τt(A)B),

G(t) = w(BκtA), G(t− i) = w(κt(A)B).

For s ∈ [−1, 0], F (si) = w(BA) = G(si), i.e., F = G on {0}× [−1, 0] and thus
on R× [−1, 0] by theorem 4.12. Since u is cyclic, for t ∈ R,

(B∗u, τt(A)u) = F (t) = G(t) = (B∗u, κt(A)u),

implies τt(A)u = κt(A)u. The separability of u gives τ = κ. �

Choosing E = I yields the following interesting consequence.

Corollary 4.15.1. Let w be a normal state on the Von Neumann algebraM.
Then w is faithful if and only if there exists an unique σ-weakly continuous
one-parameter group τ of *-automorphisms ofM for w is a τ -KMS state.

As before, suppose that for the infinite system S, we model the physical
observables by self-adjoint elements of a Von Neumann algebra M ⊂ B(H),
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the physical states by normal states w on M and the time evolution by a
σ-weakly continuous one-parameter group κ of *-automorphisms of M. By
corollary 4.15.1, a faithful physical state w corresponds to a unique time
evolution τ (the modular group associated to w) for which w is an equilibrium
state (with respect to τ) at β = −1.

Thus, the notion of a (τ, β)-KMS state, hence of an equilibrium state,
depends on the time evolution τ proposed for the physical system.

If w is also a (κ, β)-KMS state then κ must be a rescaling of τ .
Equivalently, if τ and κ are not related by rescaling then w cannot be a
equilibrium state for the time evolution κ: a faithful physical state w induces
an intrinsically related time evolution τ for which it is an equilibrium state.
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5
Conclusions

Um sistema de microscopia digital com reconhecimento e classificação
automática dos cristais de hematita em minérios de ferro foi desenvolvido.

O método utiliza operações tradicionais de processamento digital de
imagens e propõe uma segmentação automática de cristais baseada no cálculo
da distância espectral, a fim de controlar ...

É fundamental também comentar que ...
Assim, como uma proposta para trabalho futuro, pode-se buscar combi-

nar os dois enfoques...
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A
Some Functional Analysis

A.1
Topologies on B(H)

We define the weak, strong and σ-weak topologies on B(H) and then enu-
merate some of their properties. For a treatments of locally convex topologies
and nets, see [18, 20]. For more about topologies on B(H), see [10, 21, 12].

Let H be a complex Hilbert space and l2(H) be the space of sequences
(xn) in H such that ∑n |xn|2 < ∞. The strong, weak and σ-weak operator
topologies on B(H) are the locally convex topologies induced respectively by
the following seminorms

px(A) = |Ax|, px,y(A) = (Ax, y), pxn,yn(A) =
∑
n

|(Axn, yn)|2, for A ∈ B(H) .

Thus, neighborhoods of A ∈ B(H) in the strong and weak topologies are given
by a choice of xi ∈ H, i = 1, . . . , n and ε > 0: they consist of B ∈ B(H) for
which, respectively |(A−B)xi| < ε or |((A−B)xi, xi)| < ε.

By the polarization identity in Hilbert spaces, the weak and σ-weak
topologies are actually induced by (px,x)x∈H and {pxn,xn : (xn) ∈ l2(H)}. In
what follows, we refer to the weak operator topology and strong operator
topology as the weak and strong topologies on B(H).

The weak topology is included in the strong and σ-weak topologies (think
of a topology as a collection of open sets satisfying certain axioms). The
strong and σ-weak topologies in turn are included in the norm topology. These
inclusions are strict ifH is infinite dimensional. Moreover, the weak and σ-weak
topologies coincide in bounded sets of B(H).

These topologies do not satisfy in general the first axiom of countability:
some properties must be characterized by nets instead of sequences. The
convergence of a net (Aj) ⊂ B(H) to A ∈ B(H) is strong if |Ajx| → |Ax|,
weak if (Ajx, x) → (Ax, x) for every x ∈ H, or σ-weak if ∑n(Ajxn, xn) →∑
n(Axn, xn) for (xn) ∈ l2(H).

Let H1 and H2 be Hilbert spaces. The map f : B(H1) 7→ B(H2) is
weakly continuous if for every weakly convergent net (Aj)→ A in B(H1), one
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has f(Aj)→ f(A) weakly (in B(H2)).
Additional well known properties of these topologies are the following.

1. The unit closed ball of B(H) is weakly compact.

2. The weak and strong closures of a convex subset V ⊂ B(H) coincide.

3. The operator product in B(H), (A,B) 7→ A ◦ B is weakly and strongly
separately continuous.

4. The adjoint operation in B(H), A 7→ A∗ is weakly continuous.

5. The map Re : B(H) 7→ B(H), Re(A) = (A+A∗)/2, is weakly continuous.

6. For w be a weakly continuous linear functional on B(H), there exist
x1, . . . , xn, y1, . . . , yn ∈ H such that for A ∈ B(H),

w(A) =
n∑
k=1

(xn, Ayn).

7. For w be a σ-weakly continuous functional on B(H), there exist sequen-
ces (xn), (yn) ∈ l2(H) such that for A ∈ B(H),

w(A) =
∞∑
n=1

(xn, Ayn).

A.2
Anti-linear operators

We give some basic facts about anti-linear operators. We follow [21, 16].
Let H be a complex Hilbert space with scalar multiplication (λ, x) 7→ λx

and inner product (x, y) for λ ∈ C and x, y ∈ H. The conjugate Hilbert space
of H, denoted by H̃, is the set H with the same vector addition of H but scalar
multiplication and inner product defined by

(λ, x) 7→ λ.x = λx, (x, y)c = (x, y) .

For x ∈ H, |x|2 = (x, x) = (x, x)c = |x|2c hence the norm topologies on H and
H̃ are the same. Thus, topological properties do not depend on the Hilbert
space being used.

Let A be an anti-linear operator acting on H. We can consider A : H̃ 7→
H as a map. We see that, for λ ∈ C and x ∈ H̃, A(λ.x) = A(λx) = λAx

hence A : H̃ 7→ H is a linear operator. Similarly, A : H 7→ H̃. An analogous
calculation shows that A : H 7→ H̃ is also a linear operator.
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Conversely, if A : H 7→ H is a linear operator then A : H̃ 7→ H and
A : H 7→ H̃ are anti-linear. Changing both domain and range of A preserves
linearity and anti-linearity.

Let A : D ⊂ H 7→ H be an anti-linear operator defined on a densely
defined subspace D ⊂ H. Then A : D ⊂ H̃ 7→ H is linear with an adjoint
A∗ : Dom(A∗) ⊂ H 7→ H̃ for which A∗y = z for y in

Dom(A∗) = {y ∈ H : there is z ∈ H, (Ax, y) = (x, z)c = (z, x) for all x ∈ H}.

For x ∈ D and y ∈ Dom(A∗), (Ax, y) = (x,A∗y)c = (A∗y, x).
Thus, we can consider the adjoint A∗ without reference to H̃: the anti-

linear operator A∗ : Dom(A∗) ⊂ H 7→ H is the adjoint of the anti-linear
operator A : D ⊂ H 7→ H, with domain

Dom(A∗) = {y ∈ H : there is z ∈ H, (Ax, y) = (z, x) for x ∈ D},

satisfying (Ax, y) = (A∗y, x) for x ∈ D and y ∈ Dom(A∗).
Let A : D ⊂ H 7→ H be a closed densely defined anti-linear operator.

Then A : D ⊂ H̃ 7→ H is a closed, densely defined linear operator and hence
admits a polar decomposition, i.e., A = V (A∗A)1/2 = (AA∗)1/2V for some
partial isometry V : Ran(A∗A)1/2 → Ran(A).

The map AA∗ : Dom(A∗) ⊂ H 7→ H is linear, and so are A∗A : D ⊂
H̃ 7→ H̃ and A∗A : D ⊂ H 7→ H. The maps V : H̃ 7→ H and V : H 7→ H̃ are
linear and V : H 7→ H is anti-linear: it is a partial anti-isometry. The closures
do not change if H is replaced by H̃.

Thus every closed densely defined anti-linear operator A : D ⊂ H 7→ H

admits a polar decomposition A = V (A∗A)1/2 = (AA∗)1/2V for some partial
anti-isometry V : Ran(A∗A)1/2 → Ran(A).

A.3
Some applications of the functional calculus

A.3.1
Riesz projections

For a Banach spaceX and A ∈ B(X), an important problem is to find the
notrivial invariant subspaces of A — actually, it is an open problem if such an
operator admits such a subspace. When X is a Hilbert space and A is a normal
operator, the spectral theorem solves the problem positively. Here, we show
that the holomorphic functional calculus gives a positive answer if σ(A) ⊂ C
has two or more connected components. Indeed, there are Riesz projections Pi
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for each connected component σi of σ(A) such that the Pi’s commute, their
ranges provide a direct sum decomposition of X in invariant subspaces and
the restriction APi has spectrum σi.

In particular, if A is a square complex matrix, the Jordan decomposition
of A follows from the existence of Riesz projections once a structure theorem
for nilpotent matrices is known.

Split σ(A) in n disjoint sets σk, k = 1, . . . , n consisting of unions of
connected components of σ(A): σ(A) and hence each σk are compact. Fix
an open bounded neighborhood U ⊂ C of σ(A) and draw smooth simple
positively oriented curves γk enclosing each σk respectively. Let Dk be the
connected region bounded by γk and χk be the characteristic function of Dk:
clearly χk ∈ H(U). Moreover,

n∑
k=1

χk = 1 and χiχj = 0, i 6= j.

The holomorphic functional calculus provides the Riesz projections Pk =
χk(A). Their ranges Xk = Pk(X) are closed, invariant subspaces, since

n∑
k=1

Pk = I and PiPj = 0, i 6= j.

Let Ak be the restriction of A to Xk, Ak = APk. Then

X = X1 ⊕ . . .⊕Xn and A = A1 ⊕ . . .⊕ An.

Thus, the topological separation of σ(A) in components provides an
algebraic decomposition of X and A in terms of direct sums. Said differently,
a topological property of σ(A) induces an algebraic property of A. Note that
A does not need to satisfy an algebraic condition of symmetry.
If A ∈Mn(C) and its eigenvalues λk are all distinct, then σ(A) = ∪nk=1{λk}: the
invariant closed subspaces Xk are the one-dimensional eigenspaces associated
to each λk. Thus, choosing a basis of eigenvectors, A is diagonalized:

A = A1 ⊕ . . .⊕ An =


A1 · · · 0
... . . . ...
0 · · · An

 =


λ1 · · · 0
... . . . ...
0 · · · λn

 .

If the eigenvalues have algebraic multiplicity, we have σ(A) = ∪mk=1{λk}
with m < n. The invariant closed subspaces Xk associated to each λk are not
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necessarily one-dimensional. Choosing an arbitrary basis for each Xk,

A = A1 ⊕ . . .⊕ Am =


A1 · · · 0
... . . . ...
0 · · · Am

 ,

i.e., a diagonalization by blocks, almost a Jordan decomposition of A. The
topology of σ(A) does not distinguish the algebraic multiplicity of the eigen-
values λk, and the Jordan decomposition does not follow from σ(A) and the
functional calculus. It takes a special basis of (generalized) eigenvectors in each
Xk to obtain the Jordan decomposition of A.

A.3.2
Large powers of an operator

Let B be a Banach algebra and A ∈ B with spectral radius r(A) < 1,
i.e., the spectrum σ(A) is contained in D1, the unit open disk of C. We prove,
using the holomorphic functional calculus that An → 0 uniformly.

Since σ(A) ⊂ D1 is compact, there is a circle of radius r < 1 centered at
the origin (positively oriented) γ ⊂ D1 enclosing σ(A). Thus,

|An| = | 1
2πi

∫
γ
znRA(z)dz| ≤ |RA|∞L(γ)

2π rn → 0,

where the resolvent function RA(z) has bounded norm by compactness.
This nice consequence of the holomorphic functional calculus is striking,

when one considers for example, for s < 1, the matrix

A =


s 100 0
0 s 100
0 0 s

 , with An =


sn 100nsn−1 500n(n− 1)sn−2

0 sn 100nsn−1

0 0 sn

 ,

then r(A) < 1 and |A|∞ = 100 + s. The decay to zero of A takes a while.

A.3.3
Functional calculus for Ck differentiable functions

Let B be a Banach algebra, A ∈ B and U be a bounded neighborhood
of σ(A). The holomorphic functional calculus computes f(A) for f ∈ H(U).
However, depending of the properties of A, the functional calculus for classes
extend to smooth functions. We consider complex matrices with real spectrum.

Let A ∈Mn(C) have Jordan decomposition A = BJB−1 and p be a real
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polynomial of a single variable. Clearly, for λj ∈ σ(A),

p(A) = Bp(J)B−1 = B


p(Jλ1) · · · 0

... . . . ...
0 · · · p(Jλm)

B−1.

Thus, to define f(A), we first define p(Jλj
) and then take a limit.

A Jordan block of dimension k splits in Jλj
= λjI + Nj, where Nk

j = 0.
For a polynomial p expanded at the point λj, we obtain the finite expansion

p(Jλj
) = p(λjI +Nj) = p(λjI) + p(1)(λjI)Nj + . . .+

p(k)(λjI)Nk
j

k!

= p(λj)I + p(1)(λj)Nj + . . .+
p(k)(λj)Nk

j

k! .

Taking the supremum norm of p and its derivatives on [a, b] (the Ck norm),

|p(Jλj
)| ≤ |p|∞ + |p(1)|∞|Nj|+ . . .+ |p

(k)|∞|Nj|k

k! ≤ C|p|Ck .

From this bound, the functional calculus extends to functions f ∈
Ck[a, b], better still, for Ck functions defined in real neighborhood U of
σ(A). By continuity, the algebra homomorphism properties — which hold for
polynomials — are preserved.

We present a convenient tool to exponentiate or invert matrices of small
dimension with known spectrum.

Proposition A.1. Let M be an n × n matrix, with minimal polynomial
m(λ) = Πi(λi), where the eigenvalue λi has multiplicity µi. For two Ck

functions f and g in the neighborhood of σ(M), f(M) = g(M) if and only
if the functions agree on each λi up to the derivative of order µi − 1.

Thus, every entire function of a 3×3 matrix is computed by a polynomial
of degree 2. The computation of the eigenvectors of M is not needed.

A.4
Unbounded operators

We revise some definitions and elementary results about unbounded
operators. The material is based on [18]. There is no way out: some of the
most important operators in quantum theory and mathematical physics are
unbounded. In one dimension, for example, consider the position, momentum,
Laplacian operators on appropriate dense subspaces D ⊂ L2(R),
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q : D → L2(R) p : D → L2[0, 1] ∆ : D → L2[0, 1]

f 7→ xf f 7→ df

dx
f 7→ d2f

dx2

The Hellinger-Toeplitz theorem asserts that an everywhere defined symmetric
operator A : H → H ((Ax, y) = (x,Ay) for x, y ∈ H) is necessarily bounded.
Thus unbounded operators are naturally associated to subspaces of H.

Let D be a dense subspace of H. The linear map A : D ⊂ H → H is a
densely defined linear operator. The graph of A is the subspace

Γ(A) = {(x,Ax) : x ∈ D} ⊂ H ⊕H.

Let A : D1 ⊂ H → H and B : D2 ⊂ H → H. If D1 ⊂ D2 and B restricted to
D1 coincides with A, B is an extension of A. Equivalently, B is an extension
of A if Γ(A) ⊂ Γ(B).

Consider the Hilbert space H ⊕H with the inner product

〈(x1, y1), (x2, y2)〉 = (x1, x2) + (y1, y2).

A densely defined operator A : D ⊂ H → H is closed if its graph Γ(A)
is closed in H ⊕H.

Equivalently, A is closed if the convergences xn → x ∈ H with (xn) in
D and Axn → y ∈ H imply x ∈ D and Ax = y. Thus, closed operators are
rather similar to bounded (continuous) operators.

An operator A which admits a closed extension is closable. Since the
intersection of all graphs of closed extensions of A is again a closed graph,
every closable operator A has a smallest closed extension A, the closure of A.
For a closable operator A, Γ(A) = Γ(A).

Densely defined unbounded operators are still amenable to taking ad-
joints. For such an A : D ⊂ H → H, let

D∗ = {y ∈ H : ∃w ∈ H, (Ax, y) = (x,w) for x ∈ D}.

The adjoint of A is the linear operator

A∗ : D∗ ⊂ H → H y 7→ w.

The familiar adjoint formula states (Ax, y) = (x,A∗y) for x ∈ D and y ∈ D∗.
Also note that A∗ can only be defined if A is densely defined, and then we write
A∗∗ = (A∗)∗. For the reader’s convenience, we recall some basic properties.
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Proposition A.2. Let A : D ⊂ H → H be a densely defined operator. Then

1. A∗ is closed.

2. A is closable if and only if A∗ is densely defined. In this case A = A∗∗.

3. If A is closable then (A)∗ = A∗.
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