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Abstract 

Cruz, Rui Francisco Pereira Moital Loureiro da Cruz; Roehl, Deane; Vargas, 
Eurípedes. An XFEM element to model intersections between hydraulic 
and natural fractures in porous rocks. Rio de Janeiro, 2018. 225p. Tese de 
Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade 
Católica do Rio de Janeiro 

A large number of hydrocarbon reservoirs are naturally fractured. When 

subjected to hydraulic fracturing treatments, the natural fractures may influence the 

propagation of the hydraulic fracture, which can grow in a complicated manner 

creating complex fracture networks in the reservoir. In order to better understand 

and simulate such phenomena an element based on the eXtended Finite Element 

Method is proposed. The element formulation comprises fracture intersection and 

crossing, fracture frictional behaviour, fully coupled behaviour between 

displacements, pore and fracture fluid pressure, leak-off from the fracture to the 

surrounding medium and the eventual loss of pressure due to filter cake. The 

theoretical background and implementation aspects are presented. A set of analyses 

is performed in order to validate different features of the implemented element. 

Finally, the results of four practical applications are analysed and discussed: two 

laboratory hydraulic fracture tests, hydraulic fracture propagation in a multi-

fractured synthetic model and percolation through a dam fractured foundation. It is 

concluded that the implemented code provides very good predictions of the coupled 

fluid-rock fracture behaviour and is capable of correctly simulating the interaction 

between hydraulic and natural fractures. Moreover, it is shown that the hydraulic 

behaviour of the models and the intersection between fractures are very sensible to 

parameters such as differential in-situ stresses, angle between fractures, initial 

hydraulic aperture and fracture face transversal conductivity. 

 
Keywords 

Finite Element Method; eXtended Finite Element Method; Hydraulic 
Fracturing; Intersection between hydraulic and natural fractures  
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Resumo 

Cruz, Rui Francisco Pereira Moital Loureiro da Cruz; Roehl, Deane; Vargas, 
Eurípedes. Um elemento XFEM para modelar intersecções entre fraturas 
hidráulicas e naturais em rochas porosas. Rio de Janeiro, 2018. 225p. Tese 
de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade 
Católica do Rio de Janeiro. 

Um elevado número de reservatórios de hidrocarbonetos é naturalmente 

fraturado. Quando sujeitos a estimulação hidráulica, as fraturas naturais podem 

influenciar a propagação da fratura hidráulica, que pode tomar uma forma 

geométrica complexa, criando redes de fraturas no reservatório. De forma a melhor 

entender e simular tais fenômenos, um elemento baseado no Método dos Elementos 

Finitos Estendidos (XFEM) é proposto. A formulação do elemento inclui interseção 

e cruzamento entre fraturas, atrito entre as faces das fraturas, comportamento 

acoplado entre deslocamentos, poro-pressões e pressões do fluido da fratura, 

absorção de fluído da fratura para o meio poroso (leak-off) e a eventual perda de 

pressão nas faces da fratura (filter cake). Os fundamentos teóricos e os aspectos 

relevantes da implementação são apresentados. Um conjunto de análises é realizado 

de forma a validar em separado as diferentes funcionalidades do elemento 

implementado. Finalmente, os resultados de quatro aplicações práticas são 

analisados e discutidos: dois conjuntos de ensaios de laboratório de interseção de 

fratura, propagação de fratura hidráulica num modelo sintético multi-fraturado e 

percolação na fundação fraturada de uma barragem. Conclui-se que o código 

implementado fornece previsões muito boas do comportamento acoplado do meio 

fraturado e tem capacidade de simular corretamente a interação entre fraturas 

hidráulicas e naturais. Pode também verificar-se que o comportamento hidráulico 

dos modelos e a propagação e interseção de fraturas são muito influenciados por 

parâmetros tais como o diferencial de tensões in-situ, ângulo entre fraturas, a 

abertura hidráulica das fraturas e a condutividade transversal das faces da fratura. 

Palavras Chave 

Método dos Elementos Finitos; Método dos Elementos Finitos Estendidos; 
Fraturamento Hidráulico; Interseção entre fraturas hidráulicas e naturais 
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