
  
  

3  
XFEM Formulation for Coupled Problems 

This chapter focus on the theoretical formulations that give base to the 

implemented code in this thesis. As stated before, the eXtended Finite Element 

Method shares its base characteristics with the Finite Element Method. 

Consequently, the base concepts of the Finite Element Method (p. ex. the definition 

of topology or shape function) are not explained in this chapter and further reading 

about this may be done in works by Zienkiewicz, Taylor and Zhu (2013) or Potts 

and Zdravković (1999). 

The physical differential equations that govern the behaviour of the 

implemented model are presented, as well as the developments and transformations 

made for them to be numerically computed. The physical equations are defined to 

couple both the hydro-mechanical behaviour in the porous region and in the 

fracture. Then the space is discretized by enrichments functions, which were 

established by Moes and Dolbow (1999) and Belytschko and Black (1999) and 

extended for intersections by Daux, Moes and Dolbow (2000), and time discretized 

by the Newmark technique. The set of resulting non-linear equations is linearized 

and solved using the Newton-Raphson method. The formulation follows the 

mathematical notation presented by Khoei et al. (2014). 

Finally, the constitutive model used to simulate the behaviour of the natural 

fractures is presented. Although used together, the formulation for the contact and 

friction models is presented separately. The former is based on the penalty method 

while the latter uses Rueda et al. (2014) as reference. 

3.1.  
Governing equations 

Modelling of hydraulic fracture propagation in porous fractured media 

involves coupling of various physical phenomena. In the implementation presented 

in this work the following effects are considered: deformation of the continuous 

medium, deformation and friction in the fracture, pore fluid flow through the porous 

DBD
PUC-Rio - Certificação Digital Nº 1313002/CA



66 
 

 

medium surrounding the fracture, fluid flow within the fracture, fluid exchange 

between the fracture and the surrounding porous medium, and propagation of the 

fracture. Two different partial differential equations are used to correctly simulate 

those phenomena, equilibrium equation for the mechanical behaviour and 

continuity equation for the fluid flow. 

Some simplifications or assumptions are made. It is assumed that the porous 

medium is saturated and both pore and fracture flow occur under laminar regime. 

In addition, both grains and pore fluid have a bulk modulus which is several orders 

of magnitude higher than the skeleton's bulk modulus, so they can be considered 

incompressible. Also, all inertial effects and body forces are neglected, as the in situ 

stress state is defined as an input. Though relevant in certain situations, these 

assumptions do not substantially affect the overall behaviour of the hydraulic 

fracture models. 

The partial differential equations apply to the generalized fractured domain 

defined in Figure 3.1.  

 

 

a) b) 

Figure 3.1 – Generalized fractured domain. a) Boundary conditions of a 

fractured body Ω with a geomechanical discontinuity 
�. b) Geometry of the 

fracture domain Ω’ (adapted from Khoei et al. (2014) 

Considering �
 the outward unit normal vector to the general domain Ω, the 

boundary conditions (BC) of the domain are as follows: 

•  � �	 on �� (essential BC) and � ∙ �
 � � ̅on �� (natural BC), for the 

porous medium  
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• � � ��	 on �� (essential BC) and �� ∙ �
 � �� on �� (natural BC), for 

the fluid phase 

Additional BC apply to the discontinuities having �
�  as the unit normal 

vector which points to the positive side  ! and "�� # as the jump of fluid velocity in 

the discontinuity:  

• � ∙ �
� � −�% ∙ �
� 	and	"�� # ∙ �
� � �)���	on	�+	(natural	BC).	

The linear momentum balance that characterizes the mechanical behaviour of 

the porous medium is given by  

3 ∙ � � 0	 (3.1) 

where � is the stress tensor and 3 the vector gradient operator. 

The total stress tensor may be defined as � � �′ − 6. 7	, where �′ is the 

effective stress tensor, p the average pressure of pore fluid and I the identity matrix. 

In this context, compressive stresses are negative.  

The continuity equation governs the fluid phase.  Although belonging to the 

same phase, different equations describe porous and fracture flow. This allows 

representing loss of pressure between fracture faces and surrounding porous 

medium, as the filter cake effect. Considering a saturated medium with 

incompressible fluid, the simplified continuity equation for the porous and the 

fracture flow follows  

3 ∙ �� + 3 ∙ � � 0	 (3.2) 

where ��  is the fluid velocity, while �  is the solid-fluid mixture velocity, if the 

equation is applied on the porous or the fracture domain, or the fracture opening 

velocity,  if on the fracture domain. 

The constitutive mechanical equation for the porous medium is introduced as 

the strain- effective stress relationship in Eq. (3.3), where D is a fourth order 

tangential stiffness matrix of the bulk material. Due to assumption of small strains 

and displacements the strain-displacement kinematic relation is given by Eq. (3.4), 

where ∇: is the symmetric part of the gradient operator . The mechanical behaviour 

of the fracture is given by a traction-displacement relationship, such as the one in 

Eq. (3.5) where ;% represents a second order tangential stiffness matrix, �% the 

fracture tractions and "<# the fracture relative displacements. 

=�′ � ;. =>	 (3.3) 
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> � 3?	 (3.4) 

 

=�% � ;%. ="#	 (3.5) 

 

�� � −@.3�	 (3.6) 

One further assumption is laminar flow without gravitational effects both in 

the porous medium and in the fracture medium, following Darcy’s Law, Eq. (3.6), 

where p is the pressure and q the flow rate. The variable k depends on the domain 

of interest: 

• In the porous medium, it represents the hydraulic conductivity matrix (@A), 
which is given by the constant second order matrix  

BCD 0
0 CEF 

• In the fracture tangential direction, k represents the fracture longitudinal 

transmissibility, which affects the longitudinal flow represented in Figure 

3.2a. This is a scalar that is assumed to follow a cubic law, depending on 

the fracture aperture ω and fluid dynamic viscosity µ, given by Eq. (3.7). 

CGH � IJ 12M⁄  (3.7) 

• In the fracture-porous region interface, it represents the conductivity of a 

very thin layer that causes loss of pressure in the flow transversal to the 

fracture (see Figure 3.2b). A scalar parameter c, named fracture face 

transversal conductivity, quantifies this effect. Although having different 

dimensions, this parameter is physically similar to the so-called leak-off 

coefficient. Considering 6) the fluid pressure in the discontinuity, p the 

pressure in the surrounding porous region and �) as the flow rate between 

both, the adaptation of Darcy’s equation gives 

�) = O�6 − 6)� (3.8) 
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a) b) 

Figure 3.2 – Representation of fracture flow. a) Longitudinal flow. b) 

Transversal flow 

3.2.  
Weak formulation 

The weak form of the governing differential equations is obtained by 

integrating the product between each equation and admissible test functions. Then, 

in order to represent correctly the fractured domain, the Divergence Theorem for 

discontinuous functions is applied, as given in Eq. (3.9), in order to correctly 

represent the fractured domain.  

P =QR % = S = P % ∙ �
 =�T − P "%# ∙ �
�  =�TU  (3.9) 

 

P =QR % = S = P % ∙ �
 =�T − V P "%W# ∙ �
�W  =�TUX
YZ
[  (3.10) 

"%# represents the jump of the function F, being "%# = %! − %\, i.e. %! is 

the value of F at the boundary �
!and %\ is the value of F at �
\. If more than one 

discontinuity exists, the Divergence Theorem may be generalized to Eq. (3.10), 

where ]O is the number of discontinuities in the domain. 

Defining �^, `�, 6�^, `� and 6)�a, `�  as trial functions and b�^, `�, b6�^, `� 

and b6)�a, `�  as test functions and integrating over the domain Ω, the weak form 

of equations (3.1) and (3.2) is respectively 

P b�c ∙ ��S = = 0 (3.11) 

 

P b6�3 ∙ �� + 3 ∙ � �S = = 0 (3.12) 
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As for the fracture domain Ω’ presented in Figure 3.1b, the weak form of 

equation (3.2) is 

P b6)�3 ∙ �� + 3 ∙ � �Sd = = 0 (3.13) 

Applying to Eqs. (3.11) to (3.13) the mechanical and hydraulic constitutive 

relationships, Eqs. (3.3) to (3.8), in the continuous region and in the fracture, gives 

P b>. �′S = − P b>. e. 6S = + P "b#TU ��% − 6f. �
��=�
− P b. �̅Tg =� = 0  (3.14) 

 

P ∇b6CG∇6S = + P b6"�� #�
�TU =� + P b6. 3�S = 
+ P b6. ��Th =� = 0    (3.15) 

 

P ∇b6)CGH∇6)Sd = − P b6)"�� #�
�TU =� + P b6)3�Sd = = 0   (3.16) 

For simplicity, Eqs. (3.14) to (3.16) reflect the presence of one discontinuity. 

However, this formulation may be generalized to any number of discontinuities, 

according to Eq. (3.10). At this point, the hydro-mechanical coupling is evident in 

each equation. In Eq. (3.14) the hydraulic coupling arises from the pore and fracture 

pressures, which are present in the second and third term, respectively. In Eq. (3.15) 

the fluid exchange through the fracture wall is in the second term, followed by the 

mechanical coupling in the third term. Finally, in Eq. (3.16) the fluid exchange with 

the porous medium is in the second term – repeating the exchange term of Eq. (3.15) 

– and the fracture deformation in the third term. 

Considering the integrals over the discontinuity domain (Ω’) presented in Eq. 

(3.16) and the fact that discontinuities have an aperture many orders of magnitude 

smaller than the other dimensions, a simplification is convenient. It consists in 

assuming the fluid pressures along the discontinuity cross section as constant, 

reducing the integration domain in one order – from Ω’ to �. Thus, the first and 

third term of Eq. (3.16) are redefined as 
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P ∇b6)CGH∇6)Sd = = P ∂b6)∂a′ CGH . 2ℎ. ∂6)∂a′TU =�    (3.17) 

 

P b6). 3�Sd = = P b6). 2ℎ. 〈lu� mdlan 〉TU =� +  P b6) . p<� EdqTU =�  (3.18) 

where x’ and y’ are the local coordinates of the discontinuity, as seen in Figure 3.1b, 

and h is the half-aperture of the fracture. The local x’ and y’ components of the 

velocity vector projected on the longitudinal and transversal directions are <� Dd and <� Ed, respectively, which are assumed to vary linearly in the transversal direction. 

According to this hypothesis, the derivative of the velocity in x’ direction may take 

an average value 〈r〉 = �r! + r\� 2⁄ . Substituting the redefined terms in Eq. 

(3.16) and taking the flow rate jump, i.e. the flow through the fracture faces, as "�� # = �), gives the following equation  

P ∂b6)∂a′ CGH . 2ℎ. ∂6)∂a′TU =� − P b6)�)�
�TU =�
+ P b6) . 2ℎ. 〈l<� Ddlan 〉TU =� +  P b6) . p<� EdqTU =� = 0  (3.19) 

3.3.  
Spatial discretization 

3.3.1.  
XFEM discretization 

The eXtended Finite Element Method (XFEM) to discretize Eqs (3.14), (3.15) 

and (3.19) consists in adopting special spatial discretization fields. In the standard 

FEM, the displacement and pressure fields, �^, `� and ��^, `�, respectively, within 

an element are given by the product between the vector of node variables in one 

element <[�`� and shape functions related to each node ][, as Eq. (3.20) shows. s 

is the set of all nodal points in the domain. 

�^, `� = V <[�`�. ][[∈s  (3.20) 

Independently of the number of nodes per element, the shape functions used 

in the standard FEM are smooth and continuous. As a consequence, the resulting 

fields are also continuous. Figure 3.3 shows an example of the values along the 
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element of a shape function for a node i, considering a 4-node element. Three 

perspectives are presented for easiness of understanding. 

 
  

a) b) c) 

Figure 3.3 – Value of shape function in node i for a 4-node element. a) 

View 0º. b) View 70º. c) View 250º 

The basic idea of the XFEM is to change shape functions to represent 

discontinuities in the displacement fields (or any other variable). For example, in 

order to represent a fracture explicitly within one element, for each standard degree 

of freedom  the XFEM considers an additional degree of freedom (or “enriched 

degree of freedom”) which is multiplied by a discontinuous shape function, as seen 

in Eq. (3.21).  

�^, `� = V <[�`�. ]�X:�+
[∈s + V uv�`�. ]�wxyz

v∈sUX{  (3.21) 

This provides a discontinuous field that represents the jump in the 

displacement field given by the fracture faces. The additional degrees of freedom 

aj are often called “enriched degrees of freedom” and the enriched shape function ]�wxyz is given by the product between the standard shape functions ]�w:�+ and an 

enrichment function |, as seen in Eq. (3.22). The influence of these degrees of 

freedom is only considered in the s+[:, which is the set of nodes whose support is 

bisected by the crack as seen in Figure 3.4. 
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Figure 3.4 – Standard and Enriched degrees of freedom and their 

positions 

It should be highlighted that the shape function ]�:�+  used to define the 

enriched shape function ]�xyz does not have to be the standard shape function. 

However, in this work, the standard shape functions are also used to compute the 

enriched shape functions. ]�xyz = ]�:�+ . | (3.22) 

According to Fries and Belytschko (2010), the approximation presented in 

Eq. (3.21) can reproduce any enrichment function exactly in Ω as long as the 

Partition of Unity is valid, i.e. 

V ]�wxyz
v∈sUX{ = 1 (3.23) 

3.3.2.  
Enrichment functions 

As the XFEM is generalized for any kind of enrichment function |, proper 

functions must be defined considering the type of problem of interest. In this study, 

only linear quadrilateral elements are used, i.e. 4 node elements, so it must be 

considered that the chosen enrichment functions are multiplied by linear shape 

functions.  

For the simulation of hydraulic or natural fractures these functions must meet 

the following requirements: 1) show a discontinuity in the fracture position; 2) have 

a discontinuous derivative in the fracture position; and 3) be linear on each side of 

the fracture. A signed level set function guarantees these conditions.  }�a� = eQ~‖a − a∗‖. �Q�~ ��a − a∗� ∙ �
�� (3.24) 
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The level set function for a point a is the closest distance to the point a∗ 

located on the discontinuity. The signed level set function H is  

��}�a�� = �+1, }�a� ≥ 0−1, }�a� < 0 (3.25) 

As for the pore pressure fields, two different types of patterns are expected to 

occur in the studied problems. For the sake of simplicity, these will be called 

hydraulic fracture type and natural fracture type. Fluid injection in hydraulic 

fractures usually induces longitudinal and transversal flow. This leads to high 

pressures inside the fracture, which dissipate in the surrounding porous medium 

(Figure 3.5a). Furthermore, the possible occurrence of a filter cake may lead to loss 

of pressure on the fracture faces. As seen in Figure 3.5b, this loss of pressure may 

be different on both faces of the fracture. The hydraulic or mechanical conditions 

may also differ between fracture faces, resulting in  �� ≠ �� (Figure 3.5c). 

 

 a) b) c)  

Figure 3.5 – Pore pressure patterns (section A-A’) near a hydraulic 

fracture. a) Filter cake not considered. b) Filter cake with loss of pressure. 

c) Filter cake with different top and bottom leak-off conditions 

In natural fractures, a different pattern is expected. In the cases of dominant 

transversal flow, loss of pressure related to the fracture may be significant or not, 

as seen in Figure 3.6. Regarding the focus of this research on studying the 

intersection between hydraulic and natural fractures, high pressures inside a natural 

fracture may occur, causing a change of behaviour from the patterns represented in 

Figure 3.6 to the ones presented in Figure 3.5. 
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 a) b)   

Figure 3.6 – Pore pressure patterns (section A-A’) near a natural 

fracture. a) Without loss of pressure through the fracture. b) With loss of 

pressure in the fracture 

Based on these considerations, the pore pressure field of a fractured element 

must: 1) show a discontinuity in the fracture position; 2) have a derivative which is 

discontinuous at the fracture face; and 3) be linear at each side of the fracture. These 

are the same conditions as those for the displacement fields. Consequently, the same 

enrichment function (signed level set function H) is adequate to represent the pore 

pressure fields in a fractured domain. 

For hydro-mechanical coupling in the element domain, it may be stated that 

the sets s and s+[: are the same for both mechanical and hydraulic discretization, 

(3.26) and (3.27), respectively. 

�^, `� = V <[�`�. ]�X:�+
[∈s + V uv�`�. ]�w:�+ . ��a�v∈sUX{  (3.26) 

 

��^, `� = V 6[�`�. ]�X:�+
[∈s + V 6�w�`�. ]�w:�+ . ��a�v∈sUX{  (3.27) 

As stated by Belytschko et al. (2001), it is beneficial to replace the enrichment 

function in Eqs. (3.26) and (3.27) by ���a� − �v�. The enrichment function then 

vanishes in all elements except those that contain the discontinuity. Another 

advantage is that the enrichment variable vanishes in the nodal points, which means 

that the interpretation of the results on those nodes only depends on the standard 

part of the solution. This variation, often called shifted formulation, is applied in all 
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enrichments used in this work. However, for the sake of notation simplicity, the 

shifted formulation is represented by H in further developments.  

It should be highlighted that, since only a sign function is used to enrich the 

degrees of freedom, there should not be a concern about blending elements, i.e. the 

non-fractured elements that have coincident nodes with enriched elements. As 

stated by Fries (2008), the sign enrichment is a special case that does not lead to 

problems in blending elements. The reason is that the sign enrichment is a constant 

function in the blending elements and as long as the partition of unity functions are 

of the same or lower order than the shape functions, the unwanted terms in the 

blending elements can be compensated.  

From Eq. (3.10) it is noticeable that the coupled hydro-mechanical problem 

may be expanded to several fractures in the domain. Eq. (3.28) presents the 

displacement discretization of a domain with ]O fractures. 

�^, `� = V <[�`�. ]�X:�+
[∈s + V V uv,��`�. ]�w:�+ . ���a�v∈sUX{

YZ
���  (3.28) 

 

Figure 3.7 shows the values of the shape function for a node j multiplied by 

the enrichment shifted function ���a� − �v�, considering a 4-node element. 

   

a) b) c) 

Figure 3.7 – Value of shape function in node j multiplied by the 

enrichment shifted function ����� − ��� for 4-node element. a) View 0º. b) 

View 70º. c) View 250º 

3.3.3.  
Intersections 

If fractures intersect each other, then the discretization needs to be adapted so 

it represents the intersections correctly. A junction enrichment function, J,  

represents an intersection between two fractures (Daux, Moes and Dolbow, 2000). 
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This function depends on the enrichment functions of each fracture, �� and ���, as 

Eq. (3.29) and Figure 3.8 present. 

��a� = � 0, ���a� ≥ 0����a�, ���a� < 0 (3.29) 

 

 

Figure 3.8 – Enrichment function J (adapted from (Daux, Moes and 

Dolbow, 2000) 

Figure 3.9 shows the values along the element of a shape function for a node 

j multiplied by the enrichment shifted function ���a� − �v�, considering a 4-node 

element. 

   

a) b) c) 

Figure 3.9 – Value of shape function in node j multiplied by the 

enrichment shifted function ����� − ��� for a 4-node element. a) View 0º. b) 

View 70º. c) View 250º 

The application of the new enrichment function, requires a new set of degrees 

of freedom sQ~`. Figure 3.10 pictures the different enhanced degrees of freedom 

and shape functions for an intersection situation. 
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Figure 3.10 –Intersection enriched degrees of freedom and their positions 

The generalization of the junction enrichment functions for a number of 

fracture intersections is straightforward.  Yet, a particular case requires special 

attention. When one fracture crosses another, this must be treated as two different 

intersections. In this way, one main and two secondary fractures are defined. Thus, 

different junction enrichments �� and ��� describe the intersection between the main 

fracture and each secondary fracture. Figure 3.11 shows this pattern and the 

enrichment functions. 

 

Figure 3.11 –Secondary fracture enrichment when crossing occurs 
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Each fracture intersection requires a new enriched degree of freedom b related 

to a specific enrichment function J. Eq. (3.30) provides the displacement field 

generalized for ]a intersections and ]O fractures. 

�^, `� = V <[�`�. ]�X:�+
[∈s + V V uv,��`�. ]�w:�+ . ���a�v∈sUX{

YZ
���

+ V V �v,��`�. ]�w:�+ . ���a�v∈sX�g
Y�

���  (3.30) 

All considerations regarding enrichment functions and discretizations for 

displacements are considered applicable to the pore pressure discretization at 

intersections, once the pore pressure enrichment functions are the same. 

Consequently, the discretization of a pore pressure field with intersecting 

discontinuities follows 

��^, `� = V 6[�`�. ]�X:�+
[∈s + V V 6�v,��`�. ]�w:�+ . ���a�v∈sUX{

YZ
���

+ V V 6�v,��`�. ]�w:�+ . ���a�v∈sX�g
Y�

���  (3.31) 

3.3.4.  
Fracture discretization 

Unlike the displacements and pore pressures, which are integrated in the 

domain Ω, the fracture fluid pressures, given by 6), are integrated and discretized 

within the fracture level Γ. This allows the consideration of a jump between the 

fracture pressure and the surrounding pore pressures, as observed in Figure 3.5c. 

The discretization of the fracture pressure using Eq. (3.32), new degrees of freedom 

are placed at every intersection between the fracture and the element sides. 

Additional degrees of freedom are introduced at intersections between fractures, as 

Figure 3.12 presents.  

6)�a, `� = V 6)[�`�. ]�HX:�+
[∈sU  (3.32) 
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Figure 3.12 –Fracture pressure degrees of freedom and their positions 

3.3.5.  
Resulting space discretization 

Without loss of generality the test functions b, b� and b6) follow the same 

discretization rules as the corresponding fields. Thus, the substitution of the discrete 

fields and their derivatives in Eqs. (3.14), (3.15) and (3.19) gives the following non-

linear system of equations (see Annex A  for details) 

 ���� �¡ − �¢��ℙ�¡ + A W�� − A ¤^� = 0 (3.33) 

 �¢¥�¦ �� § + �¨ + ©ª��ℙ�¡ − �©«��ℙ�%¡ − ¬ℙ¤^� = 0  (3.34) 

 −�©«¥��ℙ�¡ + �¨% + ©��ℙ�%¡ − ¬ℙ�%W�� = 0 (3.35) 

3.4.  
Time discretization 

The volume-related terms in the formulation (� , ®� , "� #, and 〈3� 〉) require a 

time discretization. In this work a first order Generalized Newmark scheme (GN11) 

is employed for the displacement field, as seen in Eq. (3.36). This relation 

establishes a relation between two consecutive time steps n and n+1, whose time 

value is, respectively, `y!� and `y, with ∆` = `y!� − `y. 

 �� y!� = °±∆` � �y!� −  �y� − ²°± − 1³  �� y (3.36) 
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According to Zienkiewicz, Taylor and Zhu (2013), the solution is implicit and 

unconditionally stable for ± = ° = ´ = 1, then 

 �� y!� = � �y!� −  �y�∆`  (3.37) 

 

Attributing the time index and substituting Eq. (3.37) in Eq. (3.34), the 

following equations are obtained µ �¶· = � ��!ª − ¢ℙ��!ª + A �¶ªW�� − A �¶ª¤^� = 0       (3.38) 

 

µℙ��¶· = 1∆` ¢¥ ��!ª + �¨ + ©ª�ℙ��!ª − ©«ℙ�%�!ª − ¬ℙ�¶ª¤^�
− 1∆` ¢¥ �� = 0 (3.39) 

 µℙ�H�¶· = −©«¥ℙ��!ª + �¨% + ©�ℙ�%�!ª − ¬ℙ�%�¶ªW�� = 0     (3.40) 

 

3.5.  
Newton-Raphson algorithm 

The set of Eqs. (3.38), (3.39) and (3.40) may be non-linear if at least one of 

three conditions occur: material non-linearity in the porous region – Eq. (3.3), 

material non-linearity in the fracture region – Eq. (3.5), or fracture longitudinal 

transmissibility depending on fracture aperture – Eq. (3.7). In this case, the 

equations need to be linearized in order to be solved. The Newton-Raphson iterative 

algorithm solves the system of discrete non-linear equations. By expanding Eqs. 

(3.38), (3.39) and (3.40) with the first-order truncated Taylor series, the linear 

approximation of the coupled system is obtained 

¹̧º
µ �¶·[!�µℙ��¶·[!�
µℙ�H�¶·[!� »¼

½ = ¹̧º
µ �¶·[µℙ��¶·[
µℙ�H�¶·[ »¼

½ +
¾¿¿
¿¿¿
À lµ l � lµ lℙ� lµ lℙ�)lµℙl � lµℙlℙ� lµℙlℙ�)lµℙ�Hl � lµℙ�Hlℙ� lµℙ�Hlℙ�) ÁÂÂ

ÂÂÂ
Ã

y!�

[

Ä = �y[=ℙ�y[=ℙ�)y[
Å

= 0 
(3.41) 
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The solution for a certain step n+1 follows by solving Eq. (3.41) iteratively until 

reaching convergence, i.e. the vector of residuals Æ= �y[ =ℙ�y[ =ℙ�)y[ ÇÈ
 at iteration 

i is smaller than a pre-defined tolerance. The Jacobian term J is a non-symmetric 

matrix given by  

� =
¾¿¿
¿¿¿
À lµ l � lµ lℙ� lµ lℙ�)lµℙl � lµℙlℙ� lµℙlℙ�)lµℙ�Hl � lµℙ�Hlℙ� lµℙ�Hlℙ�) ÁÂÂ

ÂÂÂ
Ã

=
¾¿¿
¿¿¿
À� + lA W��l � −¢ + lA W��lℙ� lA W��lℙ�)1∆` ¢È �¨ + ©ª� −©«

− l¬ℙ�%W��l � −©«È − l¬ℙ�%W��lℙ� �¨% + ©� − l¬ℙ�%W��lℙ�) ÁÂÂ
ÂÂÂ
Ã
 

(3.42) 

 

In order to optimize computations, the Jacobian may be transformed into a 

symmetric matrix (Khoei et al., 2014). Both the definition of the terms and the 

changes on the matrix are presented in Annex B. As a result, the implemented 

Jacobian matrix is 

� = É� + ¥ −¢ −¢%−¢È −∆`�¨ + ©ª� ∆`. ©«−¢%È ∆`. ©«È −∆`. �¨% + ©�Ê (3.43) 

 

Scaling of the Jacobian in Eq. (3.43) is possible for as many enriched degrees of 

freedom of displacement (β and γ), pore-pressure (δ and ζ) as present in the model 

(see Annex B for example). Therefore, the integrals that compose the Jacobian are  

�ËÌ = P ÍÎËÏÈ;ÎÌS =  (3.44) 

¥ËÌ = P pÐËqÈ
TU ;% pÐÌq=� (3.45) 

¢ËÑ = P ÍÎËÏÈ Ò Ð�ÑS =  (3.46) 

¢%ËÓ% = P pÐËqÈ �
� Ð�%?��S =  (3.47) 
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¨ÔÑ = P ÍÎ�ÔÏÈ C) Î�ÑS =  (3.48) 

©ªÔÑ = P ÍÐ�ÔÏÈ O ÐÓÑ  TU =� (3.49) 

©«ÔÓ% = P ÍÐ�ÔÏÈ O Ð�%?�� TU =� (3.50) 

© = P ÍÐ�%?��ÏÈ O Ð�%?�� TU =� (3.51) 

¨% = P ÍÎ�%?��ÏÈ�
� �2ℎ�C)+  Î�%?�� �
�  TU =� (3.52) 

with Ò = �1 1 0¡È. Moreover, the following integrals are used to 

compute Eqs. (3.38), (3.39) and (3.40). 

AË¤^� = P ÍÐËÏÈ
Tg  `̅ =� (3.53) 

¬Ô¤^� = P ÍÐ�ÔÏÈ ���Th =� (3.54) 

AËW�� = P pÐËqÈ
TU ;% ±̅ =� − P pÐËqÈ

TU �6)�
��=� (3.55) 

¬�%W�� = P ÍÐ�%?��ÏÈ�
�  �2ℎ�〈∇<�� 〉 �
� TU =� + P ÍÐ�%?��ÏÈ "<�� #�
�TU =� (3.56) 

3.6.  
Fracture constitutive behaviour 

3.6.1.  
Contact penalty method 

When studying interaction between fractures, it is expected that the relative 

displacements between fracture faces vary considerably. For example, while a 

hydraulic fracture approaches a natural fracture, compression and friction between 

the natural fracture faces may occur. However, right after the intersection between 

hydraulic and natural fracture, the fluid starts filling and pressurizing the natural 

fracture faces, resulting in a separation of its faces. Therefore, the difference of 

behaviour that occurs between compression and separation must be correctly 

modelled.  
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A formulation based on the contact penalty method limits fracture closure in 

this work. This method assumes the following conditions, known as the standard 

Kuhn-Tucker conditions (Khoei, 2008). �Y ≥ 0   (3.57) `Y ≤ 0   (3.58) �Y . `Y = 0   (3.59) 

Eq. (3.57) indicates that the normal fracture opening �Y = "<#~TU   cannot be 

negative, i.e. no superposition of faces occurs. Eq. (3.58) governs the normal 

tractions on the interface, which must always be compressive. Finally, Eq. (3.59) 

designates that the normal tractions on the interface vanish when there is a gap, i.e. 

the fracture is open.  

The contact constrains are guaranteed through the integral of the fracture 

material constitutive matrix ¥ in Eq. (3.45), where the stiffness matrix ;%  is defined 

by the tangential and normal stiffness, C� and Cy, respectively.  

;% = BC� 00 CyF (3.60) 

In the case of a compressive traction on the fracture faces, the value of the 

normal stiffness Cy takes the value of a penalty factor. The accuracy of satisfying 

contact constraints highly depends on the penalty factor, which should take an order 

of magnitude higher than the deformability of the surrounding medium. The larger 

the value of the penalty parameter, the more accurate contact constraints are. 

However, very large values for the penalty parameter result in an ill conditioned 

formulation (Khoei, 2008). 

Another evident limitation of this method exists when intersections are 

modelled. Figure 3.13a shows an eventual fracture intersection and the integration 

points of each fracture that are closer to the intersection. The colour scheme 

indicates that each integration point only avoids fracture superposition in its 

corresponding fracture, i.e. only fracture faces with the same colour check the 

contact against each other. When a state of deformation similar to the presented in 

Figure 3.13b is obtained, the contact model is applied between faces of each fracture 

(yellow faces and green faces do not overlap) but it is not applied in the intersection 

(yellow and green faces overlap with red and blue faces, respectively). Therefore, 

a superposition, represented by an orange region in Figure 3.13b, exists in the 

model. 
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Although being an important effect in certain cases, in this research it is 

considered that this limitation does not have a strong influence in hydraulic fracture 

models, where the fractures tend to open as intersections are created (due to fluid 

pressure) and contact is less likely to occur. 

  

a) b) 

Figure 3.13 – Zoom of an intersection and fractures integration points. 

a) Situation with all fractures opened. b) Situation of contact between fractures 

3.6.2.  
Mohr-Coulomb model 

Simulation of frictional behaviour of natural fractures adopts a 

Mohr-Coulomb model for discontinuities. The formulation of this model is based 

on the research by Rueda et al. (2014). The Mohr-Coulomb model is an 

elastoplastic constitutive model with a failure surface represented by a function f, 

seen in Figure 3.14 and given by Eq. (3.61). Ö = × + Ø′y Ù tan }′ − O′ (3.61) 

 

Figure 3.14 – Mohr Coulomb failure surface 

where × is the shear stress, Ø′y the normal stress, }′ the effective friction angle and 

O′ the effective cohesion of the fracture filling. 
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Additionally, a tensile cut-off failure surface Öy is defined to limit tension 

stresses, as Eq. (3.62) and Figure 3.15 show. 

Öy = Øny − Ú� (3.62) 

 

Figure 3.15 – Tensile cut-off failure surface 

The constitutive model must define both an elastoplastic stiffness matrix and 

the stress state, considering the actual deformation state. As the final stress state is 

not known a-priori, an implicit procedure is used. In this work both functions (3.61) 

and (3.62) are verified to check if plastic deformations occur. If f or fn are positive, 

it means the stress state Ø�z[�Û, is not admissible, so it should be corrected and the 

plastic deformations computed. Two correction paths are formulated, vertical and 

perpendicular to the failure surface, as seen in Figure 3.16. The first may be called 

a non-associated formulation without occurrence of dilatation, while the second is 

an associated formulation. 

  

a) b) 

Figure 3.16 – Return paths for Mohr Coulomb model. a) vertical return. 

b) perpendicular return 

The final change in stress state and the elastoplastic stiffness are given by Eq. 

(3.63) and Eq. (3.64), respectively. 

�∆Ø¡ = �Üx��∆Ý¡ − �Üx��∆Ý�¡ = �Üx��∆Ý¡ − �Üx�Þ �l�
lØß (3.63) 
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�Üx�� = �Üx� −
�Üx� ¦l�

lØ§ ¦lÖ
lØ§

È �Üx�
¦lÖ

lØ§
È �Üx� ¦l�

lØ§
 (3.64) 

where �Üx� is the elastic stiffness matrix, given in Eq. (3.60) and 

• ¦lÖ
lØ§ is the derivative of the failure surface 

o Mohr Coulomb surface: ¦lÖ
lØ§ = � 1

tan }′ß 

o Tensile cut-off surface: ¦lÖ~
lØ § = ¦0

1§ 

• ¦l�
lØ§ is the derivative of the plastic potential function 

o Mohr Coulomb surface: 

 Vertical return: ¦l�
lØ§ = ¦1

0§ 

 Perpendicular return: ¦l�
lØ§ = � 1

tan }′ß 

o Tensile cut-off surface: ¦l�~
lØ § = ¦0

1§ 

• Þ is a parameter that guarantees that Ö�Ø�z[�Û� = 0 

o Mohr Coulomb surface: 

 Vertical return: Þ = GÍàgáXâãÏ
�{

 

 Perpendicular return: Þ = GÍàgáXâãÏ
�{!��.äåæç èn 

o Tensile cut-off surface: Þ = Ö~ÍàgáXâãÏ
��
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