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Abstract

Arronde Pérez, Dailys; Sampaio-Neto, Raimundo (Advisor). An-
tenna Selection in the Downlink of Precoded Multiuser
MIMO Systems. Rio de Janeiro, 2018. 82p. Dissertação de Mes-
trado – Departamento de Engenharia Elétrica, Pontifícia Universi-
dade Católica do Rio de Janeiro.

This thesis focuses on the downlink of a multiuser multiple-input
multiple-output (MU-MIMO) systems where the Base Station (BS) and the
users’ stations (UEs) transmit and receive information symbols, respectively,
by selected subset of their antennas. The performance of the system is
evaluated employing linear precoding techniques as Zero Forcing (ZF) and
Minimum Mean Square Error (MMSE). A general model to describe the
system and expressions that relate the energy spent in transmission with
the energy available for detection at each user are presented. A transmit
antenna selection procedure is proposed aiming at the minimization of the
detection error probability. A suboptimal search algorithm, called ITES
(Iterative Search), able to deliver a performance close to the one resulting
from the optimal exhaustive search selection is also proposed. The receive
antenna selection is also performed using a similar optimization criterion.
Joint antennas selection at the transmitter and receiver contemplates the
efficient combination of both strategies, leading to a complexity reduction in
BS and UEs. BER performance results, obtained via simulation and semi-
analytical approaches, are presented for different scenarios.

Keywords
MU-MIMO systems; Linear precoding; Downlink antenna selection;

Sub-optimal selection algorithms.
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Resumo

Arronde Pérez, Dailys; Sampaio-Neto, Raimundo (Orientador). Se-
leção de Antenas no Enlace Direto de Sistemas MIMO
Multiusuario com Pré-codificação. Rio de Janeiro, 2018. 82p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Esta dissertação enfoca o enlace direto de sistemas MIMO multiusuário
com pré-codificação onde a estação base e os terminais dos usuários possuem
múltiplas antenas mas transmitem e recebem, respectivamente, símbolos
de informação através de subconjuntos selecionados de seus conjuntos
de antenas. O trabalho considera sistemas que utilizam técnicas de pré-
codificação linear como Zero Forcing (ZF) e Minimum Mean Square Error
(MMSE). Expressões gerais que descrevem os sistemas e relacionam a
energia gasta na transmissão com a energia disponível para a detecção em
cada usuário são apresentadas. Com base nestas relações, um procedimento
para seleção de antenas na transmissão é proposto visando a minimização
da probabilidade de erro. Um algoritmo de busca não exaustiva denominado
ITES (Iterative Search) foi desenvolvido e testado e mostrou-se capaz
de, com apenas uma pequena fração do esforço computacional, fornecer
um desempenho próximo ao da seleção ótima, que demanda uma busca
exaustiva. A seleção de antenas na recepção é também efetuada usando
um critério de otimização semelhante. O caso geral da seleção conjunta de
antenas na transmissão e na recepção contempla a combinação de ambas
estratégias, resultando na redução da complexidade tanto na estação base,
quanto nos terminais dos usuários. Os resultados de desempenho em termos
da taxa de erro de bit, obtidos por meio de simulações e abordagem semi-
analítica, são apresentados para diferentes cenários.

Palavras-chave
Sistemas MU-MIMO; Pré-codificação linear; Seleção de antenas no

enlace direto; Algoritmos sub-ótimos.
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Nothing in life is to be feared, it is only to
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1
Introduction

Wireless communication systems had experienced an accelerated evolu-
tion in the last decades caused by the increasing requirements in term of data
rates, latency and energy efficiency. In [1], it is predicted that between 2015
and 2021, there will be a 12X growth in mobile data traffic, that is being
driven both by increased smartphone subscriptions and a continued increase
in average data volume per subscription [2]. The requirements of the actual
fourth-generation (4G) standards set the peak of data rate to 100 Mpbs for
high mobility and 1 Gpbs for low mobility equipments [3,4]. As the number of
smart terminals and applications are growing, research challenges arise for the
implementation of the future communications systems. Under this considera-
tion, it is expected that the fifth generation (5G) standard, which is currently
being developed, achieves peak data rates of 10 Gbps for low mobility and 1
Gbps for high mobility, that represents an increase of 10 times with respect to
4G, besides the low energy consumption, reduced latency and low computa-
tional cost requirements for the signal processing [5–7].

The deployment of multiple antennas at the transmitter and receiver
sides have been presented as one of the most suitable solutions to improve
the capacity and reliability of wireless communication systems. Multiple-
Input Multiple-Output (MIMO) makes use of multipath signal propagation to
increase the spectral efficiency and data rate transmission, as well as to reduce
the bit error rate. This systems are present in most wireless communication
standards and for sure, will be key part of future standards, which will demand
their advantages to achieve the promising transmission rates, making an
efficient use of the spectrum and energy in the fifth-generation (5G) networks.

The use of a very large number of antennas at the base station (BS) to
achieve more dramatic diversity gains leads to the so called Massive MIMO
systems, which serves a high number of user terminals at the same time without
requiring extra bandwidth resources, has been extensively studied in the last
decade. An comprehensive overview from various perspectives on the topic is
provided in [8,9]. The main drawback for the implementation of this technology
is the cost, in terms of size, power consumption and hardware complexity, that
scale with the number of antennas since there is a Radio Frequency (RF) chain
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Chapter 1. Introduction 16

associated to each antenna element. In order to overcome this problem, it is
necessary to search for strategies that can reduce the cost of implementing and
operating MIMO systems, especially those with a high number of antennas,
allowing to capture many of the advantages of MIMO systems.

The antenna selection strategy, at the transmitter and receiver sides,
have been presented as a viable and interesting solution that reduces the
hardware complexity through the use of a number of RF chains smaller than
the number of available antennas in the system, i.e. the basic idea is to use a
reduced number of RF chains and choose the best subset of all the antennas
combinations.

The problem of antenna selection have been addressed in [10–18]. In [10]
classic results on selection diversity are reviewed, followed by a discussion of
antenna selection algorithm, based on the channel norm, at the transmit and
receive sides. A strategy for selecting the optimal transmit antenna subset
for spatial multiplexing systems when linear coherent receivers are used over
slowly varying channel, is proposed in [11,12]. The selection is carry out, using
the post-processing signal-to-noise ratios of the multiplexed streams. A norm-
and-correlation-based selection algorithm for energy efficiency maximization to
decide the transmit RF chain configuration under the total power constraint
in millimeter wave channel is proposed in [13]. An antenna selection scheme
for Large-but-Finite MIMO network, using Genetic Algorithm is addressed in
[14], which can be applied with different amount of channel state information
(CSI), various data communication models and objective functions. In [15] an
approach to receive antenna selection for capacity maximization as a convex
optimization problem is presented, where an alternative approach that reaches
near-optimal performance is proposed. In [16] a Generalized Pre-coding aided
Spatial Modulation (GPSM) system for downlink MU-MIMO is considered.
The joint transmit/receive antenna selection in single user MIMO systems is
addressed in [17,18]. In [17] a method using the real-valued genetic algorithm to
improve the channel capacity of systems is proposed. In [18], a concise formula
to perform the joint transmit/receive antenna selection algorithm is presented,
that uses a novel partition of the channel matrix, leading to a complexity
reduction of the problem.

This thesis aims to propose an antenna selection strategy for the downlink
of a multiuser MIMO systems (MU-MIMO). The presence of a precoding stage
in transmission, for preprocessing the signal conveyed to the different users
in order to separate them in the respective receivers, make the problem of
the antenna selection more challenging than in the single user case. Among
the main contributions of this work, we can highlight the development of
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Chapter 1. Introduction 17

an optimum antenna selection strategy, aiming at the minimization of the
detection error probability at each user station (UE). Sub-optimal antennas
selection approaches and an efficient search algorithm are also addressed,
in order to relax the problem of the optimum selection, which demand an
exhaustive search with computational complexity increasing with the system
dimensions. The proposed antenna selection approaches are formulated for the
transmit and/or receive antenna selection and extended to the more general
case of joint selection.

The chapters of this thesis are organized as follows: In Chapter 2, the
basic concepts for MIMO systems are studied, starting with the signal model
and some propagation characteristics. Then, channel estimation techniques
and channel capacity are described. Finally, the main detection and precoding
techniques are presented.

In Chapter 3 we present the proposed transmit antenna selection strategy
for MU-MIMO systems. The mathematical representation that describe the
system and expressions that relate the energy spent in transmission with the
energy available for detection at each user are derived. An efficient search
algorithm is also proposed and simulation results to evaluate the performance
of the addressed selection schemes, with ZF and MMSE precoding, are also
presented.

In Chapter 4, the problem of receive antenna selection is addressed,
describing the mathematical model of the system by considering that the BS
is the one in charge to perform the selection. A frame notification scheme
to inform the users the selected subset of antennas is also proposed, as well
as a sub-optimum receive selection approach that significantly reduces the
problem complexity. Simulation results to evaluate the performance of the
proposed strategies are provided, when ZF and MMSE precoding techniques
are employed.

In Chapter 5, the general case of the joint antenna selection is examined
by considering the combination of the selection strategies in Chapters 3 and
4. The mathematical representation of the problem is presented and numerical
results assessing the system performance, when ZF precoding is used, are also
provided.

Conclusions of this work are discussed and future directions for this
research topic are presented in Chapter 6.
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2
Fundamentals of MIMO systems

In this Chapter, a general overview of MIMO systems is accessed. Section
2.1 describes the mathematical model for different MIMO systems, starting
with point-to-point MIMO and then discussing the cases with multiple users.
The MIMO channel capacity is studied in Section 2.4, where its main expres-
sions are obtained. Due to the impact of channel characteristics on the per-
formance of wireless communication systems, principles of radio propagation
and channel estimation techniques are considered. One of the main challenges
in MIMO systems is to obtain an acceptable estimation of the transmitted
signal at the receiver side, for this reason some important existing detection
techniques are presented in Section 2.5. Finally, some linear precoding schemes
that are employed to mitigate the multiuser interference (MUI) are reviewed
in section 2.6

2.1
System Model

MIMO systems were first investigated in point-to-point scenarios, also
refereed as Single User MIMO (SU-MIMO), where the transmitter and the
receiver are equipped with multiple transmit (NT ) and receive (NR) antennas
respectively, as depicted in Figure. 2.1. Here the wireless MIMO channel is
represented by a [NR×NT ] matrix H, where the component hij represents the
fading coefficients from the jth transmit antenna to the ith receive antenna.
Let s ∈ CNT×1 be the vector whose components are the symbols radiated from
the NT transmit antennas, s = [s1, s2, . . . , sNT

]T . The received signal vector
can be expressed as y = [y1, y2, . . . , yNR

]T

y = Hs + n, (2-1)

where n ∈ CNR×1 is the noise vector.
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Antenna 2

Antenna 1

T

h11

h21

hN 1R

hN  2R
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Figure 2.1: Point-to point MIMO system.

2.1.1
Multiuser MIMO (MU-MIMO) Signal Model

In a cellular network there are two communication links to consider: the
uplink, where a group of users all transmit data to the same base station, and
the downlink, where the base station attempts to transmit signals to multiple
users [19].

2.1.1.1
Uplink

In the uplink scenario, also referred as Multiple Access Channel (MAC),
users transmit to the base station over the same channel. Let’s consider K
users, each one equipped with NU antennas transmitting to a Base Station
with NA antennas, as shown in Figure. 2.2

BS

Antenna NA

Antenna 2

Antenna 1

H 1

y

NU

1
UE1

NU

UE2

SK

S2

S1

H 2

H 1

H 1H K

H 1H 1

1

NU

UE2

1

NU

UE2

1

NU

UEK

1

Figure 2.2: Uplink channel for MU-MIMO system.
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The signal vector [NA × 1] received at the base station can be expressed
as y =H1s1 + H2s2 + · · ·+ HKsK + n

=
K∑
k=1

Hksk + n,
(2-2)

where sk is the [NU × 1] signal vector transmitted by the kth user, Hk is the
[NA ×NU ] channel matrix and n is the [NA × 1] noise vector at the BS.

2.1.1.2
Downlink

The downlink or Broadcast Channel (BC) case is by far the most
challenging one [20], where the BS is simultaneously transmitting to K users.
Assuming detection in presence of additive noise, the received signal by all
users is expressed in a [KNR × 1] vector y = [y1,y2, . . . ,yK ]T

y = Hx + n, (2-3)

where H = [HT
1 ,HT

2 , . . . ,HT
K ]T , H ∈ CKNR×NT is the channel matrix for all

users, with Hk ∈ CNR×NT representing the channel matrix that connects the
BS with the kth user and n is a [KNR × 1] noise vector.

BS
Antenna 2

Antenna 1

NR

1
UE1

NR

UE2
y2

y1

1
UE2

NR

UE2

1
UEK

Antenna NT

H
 

yK

UE2

UE2

s1

s2

sK PK

P2

P1

Figure 2.3: Downlink channel for MU-MIMO system.

The vector x ∈ CNT×1 contains the information transmitted by the
NT antennas at the BS. In MU-MIMO systems, it is necessary to employ
a precoding technique to decouple the information conveyed to the different
users and mitigate the multiuser interference (MUI), as is illustrated in Figure.
2.3. Precoding techniques will be studied in Section 2.6. The transmit vector
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Chapter 2. Fundamentals of MIMO systems 21

x can be expressed as

x = Ps (2-4)

= [P1,P2, . . . ,PK ]
[
sT1 , sT2 , . . . , sTK

]T
=

K∑
k=1

Pksk,

where P = [P1,P2, . . . ,PK ], P ∈ CNT×KNR is the precoding matrix and the
information symbols for all users are organized into the s = [sT1 , sT2 , . . . , sTK ]T

vector. Each entry sk ∈ CNR×1 , k = 1, 2, . . . , K represents the kth user
information vector, to be precoded by the matrix Pk ∈ CNT×NR . For a flat
fading MIMO channel, the received signal yk ∈ CNR×1 at the kth user is given
by

yk = HkPksk + Hk

K∑
j=1,j 6=k

Pjsj + nk (2-5)

where xk = Pksk,xk ∈ CNT×1 is the kth user’s transmit signal, the second
element in (2-5) represents the interference caused by others users and nk ∈
CNR×1 is the kth user’s noise vector.

2.2
Channel Characterization

The performance of wireless communication systems is mainly governed
by the wireless channel environment [21]. The study of radio channels is
essential and complex due to effects of large and small scale fading that take
place in the propagation of the radio waves.

The three basic propagation mechanisms for radio waves are reflection,
diffraction, and scattering.

Reflection occurs when an electromagnetic signal strikes a smooth surface
at an angle and is reflected toward the receiver. This happens when electro-
magnetic waves bounce off objects whose dimensions are large compared with
the wavelength of the propagating wave [22].

Diffraction occurs when the electromagnetic signal strikes a structure
that is large in terms of wavelength (the area affected by this structure is also
called shadowed region). Diffraction is caused by the propagation of secondary
wavelets into a shadowed region [23]. These secondary wavelets are combined
to produce a new wavefront in the direction of propagation and allows radio
signals to propagate around the curved surface of the earth, beyond the
horizon, and behind obstructions.

Scattering occurs when the electromagnetic signal strikes objects that
are much larger than a wavelength. When a radio wave impinges on a rough
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Chapter 2. Fundamentals of MIMO systems 22

surface, the reflected energy is spread out in all directions due to scattering,
this causes that the received signal in a mobile radio environment is often
stronger than what is predicted by reflection and diffraction models alone [22].

Scattering, reflection, and diffraction give rise to alternate propagation
paths such that the received signal is a composite of numerous replicas all
differing in phase, amplitude, and in time delay. The interaction between these
waves causes multipath fading, because their phases are such that sometimes
they add and sometimes they subtract (fade).

2.2.1
Large-scale fading

Large-scale propagation models or macroscopic fading models are based
on average-received signal strength at a given distance from the transmitter
i.e. large-scale fading is due to path loss of signal as a function of distance [24].
Therefore, they are characterized by a large separation between the transmitter
and receiver. There exists different models that describe this phenomenon, as
the Free-Space Propagation Model that is applied when the received signal
is exclusively the result of direct path propagation (line-of-sight path). The
free-space model allows us to compute the received power as a function of
the distance from the transmitter and the path loss as the difference (in dB)
between the transmitted power and the received power. In reality, we need
to take into account the terrain profile for estimating path loss. Examples
are the Okumura and Hata models, which are based on iterative experiments
conducted over a period of time by measuring data in a specific area. With
the former we can obtain the propagation path loss in an urban area and the
latter supplies corrections of the first one and can be applied in suburban and
rural areas.

2.2.2
Small-scale fading

Propagation models that characterize the rapid fluctuations of the am-
plitude, phases, or multipath delays of the received signal over very short
distances or short time durations are called small-scale fading models or mi-
croscopic fading models [23]. Small-scale fading is caused by a number of signals
arriving at the reception point through different paths. There are three types
of microscopic fading

1. Doppler spread or time selective fading
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Time selective fading results due to the motion of the transmitter or
the receiver or both. When the receiver is moving, the received signal
frequency will be shifted compared with its original transmitted
signal. The maximum value of this additional frequency shift is
known as Doppler frequency shift Ds. The coherence time is defined
as

Tc = 1
Ds

(2-6)

When the transmission time of the symbol is less than Tc, the state
of the channel will be constant in the symbol duration, and then
the pulse distortion will not occur. This is known as slow fading.
Otherwise fast fading refers when the symbol time is greater than
Tc and the waveform of the signal suffer distortion.

2. Delay spread-frequency selective fading

Frequency selective fading can be characterized in terms of coher-
ence bandwidth.

Wc = 1
Td

(2-7)

where Td is the delay spread, that express the time difference
between the last and first arrived signal. When the coherence
bandwidth is comparable with or less than the signal bandwidth, the
channel is said to be frequency selective. Otherwise, non- frequency
selective or flat fading channel refers when Wc is greater than the
signal bandwidth. In other words, the frequency components in the
received signal undergo the same attenuation and phase shift.

3. Angle spread-space selective fading

Angle spread at the receiver refers to the angle of arrival (AOA)
of the multipath components at the receive antenna. Angle spread
causes space selective fading, which means that signal amplitude
depends on the spatial location of the antenna. Space selective
fading is characterized by coherent distance Dc, which is the spatial
separation for which the autocorrelation coefficient of the spatial
fading drops to 0.7 [23].

Table 2.1 [25] shows a summary of the types of wireless channels and their
defining characteristics. In this work, we focus on narrowband MIMO commu-
nication systems with frequency flat fading channels.
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Table 2.1: Types of wireless channels and their defining char-
acteristics.

Types of Channel Defining characteristics
Fast Fading Tc � symbol duration
Slow Fading Tc � symbol duration
Flat Fading W � Wc

Frequency-selective Fading W � Wc

2.3
Channel Estimation Techniques

The deployment of MIMO systems can result in a significant capacity
increase. However, this advantage is based on the assumption that the trans-
mitter or the receiver or both have an accurate channel state information (CSI).
But in real situations it is not possible to have perfect channel knowledge at
both sides and it is necessary to estimate the channels parameters.

Training sequences, or pilot signals, is one of the most popular and
widely used approaches to the MIMO channel estimation, that estimate the
channel based on the received data and the knowledge of training symbols
[26]. The principal techniques for structuring the training sequences are the
preamble structure, which append a packet of strictly pilot symbols, and the
pilot structure, in which the packet consists of both, pilot and information
symbols [27]. The first one is effective only in slow fading channels while
the other allows for tracking a fast moving channel but with less accuracy.
If the training sequences from the individual antennas are orthogonal to each
other, then we are dealing with a narrowband system and each subcarrier
can be considered as an independent channel, free of inter carrier-interference
(ICI).[21]

Let us consider a flat fading MIMO system with NT and NR transmit and
receive antennas respectively, as described in section 2-1. In order to estimate
the channel matrix H, let N ≥ NT training signal vectors π1, . . . ,πN be
transmitted [26]. The corresponding Nr × N matrix R = [r1, . . . , rN ] of the
received signals can be expressed as

R = HΠ + N, (2-8)

where Π = [π1, . . . ,πN ] is the NT ×N training matrix and N is the Nr ×N
noise matrix.

2.3.1
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Least Squares Estimation (LSE)

Based on the knowledge of the pilot signals Π and the received data R,
the least-square (LS) channel estimation method finds the estimated channel
Ĥ as

ĤLS = RΠ†, (2-9)
where Π† = ΠH(ΠΠH)−1 is the pseudoinverse of Π. The mean-square error
(MSE) of this LS channel estimative is given as

MSELS =E
{∥∥∥H− ĤLS

∥∥∥2

F

}
=E

{∥∥∥NΠ†
∥∥∥2

F

}
=σ2

nNRTr
{
Π†HΠ†

}
=σ2

nNRTr
{(

ΠΠH
)−1

}
,

(2-10)

Where E{NHN} = σ2
nNRI, being σ2

n the receiver noise power and I the
identity matrix. Here Tr{ΠΠH} = ET to satisfy the transmitted training
power constraint, with ET as a given constant value. E{} and Tr{} denote
the expectation and trace operators respectively. We note that the MSE is
inversely proportional to the SNR. Due to its simplicity the LS method has
been widely used.

2.3.2
Minimum Mean Squares Estimation (MMSE)

Let us obtain a linear estimator that minimizes the estimate MSE of H.
It can be express in the following general form [26]-[28]

HMMSE = RA0, (2-11)

where A0 has to be obtained so that the MSE is minimized

A0 = argmin
A

E
{∥∥∥H− Ĥ

∥∥∥2

F

}
= argmin

A
E
{
‖H−RA‖2

F

}
. (2-12)

The optimal A can be found by derivating the above function and setting it
to 0. Then, we have

A0 =
(
ΠHRHΠ + σ2

nNRI
)−1

ΠHRH (2-13)

Where RH is the channel correlation matrix, hence the linear estimator of H
can be written as

ĤMMSE = R
(
ΠHRHΠ + σ2

nNRI
)−1

ΠHRH (2-14)

The MSE of this estimator can be computed with the following expression
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MSEMMSE = Tr


(

RH
−1 + 1

σ2
nNR

ΠΠH

)−1
 (2-15)

The mean square error of MMSE technique is lower than LSE, but it requires
the knowledge of the channel autocorrelation matrix and the noise autocorre-
lation matrix.

2.4
Capacity of MIMO Systems

The channel capacity of MIMO systems can be increased by the factor
N = min(NR, NT ) when compared to a conventional single-antenna system,
for the same transmit power and spectral bandwidth.

Consider the SU-MIMO system described in section 2.1, to derive the
capacity of the channel we maximize the average mutual information between
the input and the output of the channel over the choice of the distribution of
the input [29].

C = max
f(s)

I (s; y) (2-16)

where f(s) is the probability density function of the transmit vector s. The
mutual information between the vectors s and y is given by

I (s; y) = H (y)−H (y|s) (2-17)

where H(y) is the differential entropy of y and H (y|s) is the conditional
entropy of y given s. The differential entropy H(y) is maximized when y is a
complex circularly-symmetric Gaussian random vector with mean my = 0,
which consequently requires s and n in (2-1) to be zero-mean circularly-
symmetric complex Gaussian. Since s and n are independent H (y|s) = H (n)
and

I (s; y) = H (y)−H (n) (2-18)
with y and n being Gaussian, their entropies are given by

H (y) = log2 [det (πeRy)] (2-19)

H (n) = log2 [det (πeRn)] (2-20)

where Ry and Rn are the autocorrelation matrices of the receiver and noise
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vectors respectively:

Rn = E
{
nnH

}
= σ2

nINR
(2-21)

Ry = E
{
yyH

}
(2-22)

= E
{

(Hs + n) (Hs + n)H
}

= HE
{
ssH

}
HH + E

{
nnH

}
= HRsHH + E

{
nnH

}

Substituting the above equations in (2-18) the mutual information results as

I (s; y) = log2

[
det

(
INR

+ 1
σ2
n

HRsHH

)]
(2-23)

The capacity of the channel in MIMO systems is, then

C = max
Tr(Rs)=Es

log2

[
det

(
INR

+ 1
σ2
n

HRsHH

)]
bps/Hz (2-24)

2.4.1
Capacity when Channel is Unknown to the Transmitter

When the channel state information (CSI) is not available at the trans-
mitter, it’s assumed that the energy is equally distributed among the NT trans-
mit antennas and that the components of the information vector s are uncorre-
lated. Then, the autocorrelation matrix of s is Rs = σ2

sINT
, where σ2

s represents
the variance of the transmit symbols. We can express the channel capacity as
a function of the average energy per transmitted symbol( Es

NT
). In this case the

capacity can be expressed as

C = log2

[
det

(
INR

+ Es
NTσ2

n

HHH

)]
bps/Hz (2-25)

Making the Eigen-decomposition of H, we can rewrite HHH = QΛQH where
Q is the unitary matrix whose columns are the eigenvectors of H and Λ is the
diagonal matrix whose diagonal elements are the corresponding eigenvalues
(λ)

C = log2

[
det

(
INR

+ Es
NTσ2

n

QΛQH

)]
bps/Hz (2-26)

= log2

[
det

(
INR

+ Es
NTσ2

n

Λ
)]

bps/Hz

=
N∑
i=1

log2

(
1 + Es

NTσ2
n

λi

)
bps/Hz
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We can see from the results that the MIMO channel is converted into
N = min(NT , NR) SISO channels with the same transmit energy for each
transmitted signal and the capacity grows proportionally with the N .

2.4.2
Capacity when Channel is Known to the Transmitter

When the CSI is available at the transmitter using the SVD of H =
UΣVH , the transmitted signal s is pre-processed by the precoder V at the
transmitter side and the received signal is then post-processed with UH at
the receiver side, where U and V are the unitary matrices with the left and
right singular vectors respectively. In this case the received vector ỹ can be
expressed as

ỹ =
√
Es
NT

UHHVs̃ + UHn (2-27)

=
√
Es
NT

Σs̃ + ñ,

where E
{
‖s̃‖2

}
= NT and ñ is a complex circularly-symmetric Gaussian noise

vector with zero mean and autocorrelation matrix Rn = σ2
nINR

. Equation (2-
27) shows that with channel knowledge at the transmitter, H can be explicitly
decomposed into NR parallel SISO channels satisfying

ỹi =
NR∑
i=1

√
Es
NT

√
λis̃i + ñi (2-28)

The capacity of the MIMO channel is the sum of the individual parallel SISO
channel capacities and is given by

C = max∑NR
i=1 ρi=NT

NR∑
i=1

log2

(
1 + Esρi

NTσ2
n

λi

)
bps/Hz (2-29)

where ρi = E
{
|̃si|2

}
is the energy at the ith subchannel. The values of ρi can

be obtained making an optimal energy allocation through "the water-filling
algorithm", in which more power is allocated to the channel that is in good
condition and less or none at all to the bad channels.[30] It is to be expected
that this method yields a capacity that is equal or better than the situation
when the channel is unknown to the transmitter.

2.4.3
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Ergodic Capacity

Wireless channels are not deterministic, they change randomly due to
the environment conditions, mobility, etc. In general, the components of the
channel matrix are modeled as complex random variables and independent
realizations of the channel matrix are considered. Then if the channel is
random the mutual information is also random. Assuming the randomness
of the channel is an ergodic process, the ergodic capacity is defined as the
expectation of the channel capacity conditioned on a given channel matrix H

C = E {C|H} = E
{

max
Tr(Rs)=NT

log2

[
det

(
INR

+ Es
NTσ2

n

HRsHH

)]}
bps/Hz

(2-30)
When CSI is not available at the transmission, the expression above can be
written using (2-26) as

C = E


min(NT ,NR)∑

i=1
log2

(
1 + Es

NTσ2
n

λi

) bps/Hz (2-31)

In this case, the eigenvalues λ1, λ2. . . . , λN are considered random variables.
On the other hand when CSI is available at the transmitted we use expression
(2-29), and the ergodic Capacity is given by

C = E

 max∑NR
i=1 ρi=NT

NR∑
i=1

log2

(
1 + Esρi

NTσ2
n

λi

) bps/Hz (2-32)

2.4.4
Capacity in MU-MIMO Systems

MU-MIMO systems have received a wide attention due to the potentiality
to achieve very high data rates over wireless links. The capacity region of a
general MIMO MAC was described in [31], [32] and [33]. Considering the MU-
MIMO uplink scenario, described in Section 2.1.1.1, the optimum sum capacity
under the condition that the sum power is constrained to P is deduced in [31]
and given by

CMAC = max∑K

i=1 Tr(Rsi)≤P
log2

[
det

(
I + 1

σ2
n

K∑
k=1

HkRsk
HH
k

)]
bps/Hz (2-33)

where Rsk
= E

[
sksHk

]
is the transmit covariance matrix of user k. For the

maximization of the sum-rate in (2-33), each user needs to determine its
optimum covariance by using convex optimization techniques.

Considering the MU-MIMO downlink scenario, described in Section
2.1.1.2, with K non-cooperating receivers, each equipped with NR antennas,
when perfect CSI is available at the transmitting base station, equipped with
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NT antennas, the signal vector sent to the user k is precoded by the matrix
Pk. Under the equality power constraint∑K

k=1 Tr{PkPH
k } = ET , the achievable

rate for user k is derived in [34], [35] and could be expressed as

Rk = log2

[
det

(
INR

+ PH
k HH

k R−1
ñk

HkPk

)]
bps/Hz (2-34)

where Rñk
denotes the effective noise covariance matrix at user k, given by

Rñk
= σ2

nINR
+

K∑
i=1,i 6=k

HiPiPH
i HH

i (2-35)

2.5
Detection Techniques

One of the main challenges in communication systems is to obtain an as
good as possible estimate of the transmitted information at the receiver side.
In this section, the classic signal detection techniques for spatially multiplexed
MIMO systems are accessed. We adopt the MIMO system model described in
(2-1), assuming that the channel matrix H ∈ CNR×NT is known by the receiver.

2.5.1
Linear Detectors

In linear detectors, the received signal vector y, is filtered by a linear filter
to reduce the channel effects [36]. The desired signal is recovered by applying a
linear transformation followed by a decision on the transmitted symbol. Each
symbol is estimated by a linear combination of the received signals and the
filter matrix W ∈ CNR×NT . The filter matrix W can be optimized by using
different criteria, two of the most popular are the Zero Forcing criterion (ZF)
and Minimum Mean Square Error (MMSE) criterion.

2.5.1.1
Zero-Forcing Detection

The ZF filter, that completely remove the interference between antennas
in the received signal, is given by

WZF =
(
HHH

)−1
HH (2-36)

In other words, the ZF receive filter eliminates channel effects on the trans-
mitted signal without concern about noise [37]. The estimated symbol vector
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is given by

ŝZF = WZFy (2-37)

=
(
HHH

)−1 (
HHHs + HHn

)
= s + nZF

With nZF =
(
HHH

)−1
HHn . The noise power can be significantly increased

by WZF when the channel is ill conditioned. Thus, the BER performance of
the ZF detector can be greatly reduced. The final decision on s is usually made
on a component-by-component basis as follows

ŝ = Q (̂sZF) (2-38)

where Q(x) = [Q(x1)Q(x2) . . .Q(xn)]T and Q(x) returns the point of the
complex signal constellation closest to x.

2.5.1.2
Minimum Mean Square Error Detector

In order to reduce the effects of noise amplification caused by the ZF filter
and the interference between antennas in the received signal, i.e. maximize the
signal-to-interference-plus-noise ratio (SINR), the MMSE filter WMMSE can
be computed by minimizing the mean square error (MSE) as

WMMSE = arg max
W

E
{
‖s−Wy‖2

}
(2-39)

= E
{
syH

} (
E
{
yyH

})−1

= HH

(
HHH + σ2

n

σ2
s

I
)−1

=
(

HHH + σ2
n

σ2
s

I
)−1

HH

Then the estimated symbol vector is given by

ŝMMSE = WMMSE y (2-40)

= WMMSE Hs + WMMSE n,

And the usual suboptimal decision of ŝ is given by

ŝ = Q
(
D−1 (WMMSE H) ŝMMSE

)
, (2-41)
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where D (WMMSE H) represents a diagonal matrix, containing the real non-
negative main diagonal elements of WMMSE H. In the case of PSK modulation

ŝ = Q (ŝMMSE) , (2-42)
Linear Detectors are more feasible due to their lower complexity compared
to non-linear detectors, however they offer a limited performance, due to the
impact of interference and noise.

2.5.2
Non-linear detection

2.5.2.1
Maximum Likelihood Detection

The Maximum Likelihood (ML) Detection is equivalent to the maximum
a posteriori probability (MAP) detection when the transmitted vectors are
equally likely. The ML detector minimizes the error probability by estimating
the transmitted signal vector ŝML based on the knowledge of the received
vector y and the channel matrix H. The estimate of the transmitted signal
vector with the highest a posteriori probability is given by

ŝMAP = arg max
ŝ∈CNT

P (s = ŝ|y) (2-43)

= arg max
ŝ∈CNT

P (s = ŝ) py|s (y|s = ŝ)
py (y) ,

where C denotes the modulation constellation with order M , py (y) is the
probability density function of the observation y and py|s (y|s = ŝ) is the
conditional probability density function of y when the transmitted signal is
ŝ. Since py (y) does not depend on ŝ and all the transmitted signals have the
same a priori probability, then (2-43) reduces to

ŝML = arg max
ŝ∈CNT

py|s (y|s = ŝ) (2-44)

Considering (2-1) we know that py|s (y|s = ŝ) = pn (y−Hŝ) and the proba-
bility density function of y, which is complex Gaussian with i.i.d. circularly
symmetric component, given s is

py|s (y|s = ŝ) = 1
(πσ2

n)NR
exp

(
−‖y−Hŝ‖2

σ2
n

)
. (2-45)

Note that (2-45) is maximized by minimizing ‖y−Hŝ‖2. Then the optimal
detector determines the estimate of the symbol vector ŝML selecting the
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message with the smallest Euclidean distance between the received signal
vector y and the hypothesis message Hŝ.

ŝML = arg min
ŝ∈CNT

‖y−Hŝ‖2 (2-46)

The ML detection achieves an optimal performance and its BER performance
can be used as the lower bound to measure the performance of other detection
algorithms, however, its computational complexity increases exponentially
as the number of dimensions increases, such as modulation order (M) and
the number of transmit antennas (NT ) [38], since the algorithm requires an
exhaustive search of the MNT possible symbols.

2.5.2.2
Successive Interference Cancelation

The Successive Interference Cancelation (SIC) detection finds a good
trade-off between the ML and the Linear detection, in view of the BER per-
formance and computational complexity [39]. As opposed to linear detection,
SIC detector don’t detect the NT data symbols simultaneously, it makes the
detection in a sequential form. The successively detected symbol in each stage
is then subtracted from the received signal and the remaining received signal,
with the reduced interference, is used of performing the estimation for the fol-
lowing symbols [38]. The SIC detector uses a bank of linear detectors and each
detects a selected component si of s. The successively interference canceled
received vector in the ith stage is y̌i = y ; i = 1

y̌i = y−∑i−1
j=1 hj ŝj ; i ≥ 2

(2-47)

with hj representing the jth column vector of the channel matrix H.
After subtracting the detected symbols from the received signal vector,

the remaining signal is processed either by an MMSE or a ZF filter for the sym-
bol estimation in the following stage. The detected signal is subtracted through
a feedback loop that performs an interference cancellation and improves the
overall bit error rate in MIMO systems [38].

If ŝi = si the interference is successfully cancelled but in the case that
ŝi 6= si the subtraction with the erroneous detected symbol will produce
an error burst and overall performance degradation. To avoid this ordering
mechanisms to detect reliable signals in the early stages are implemented.

These methods can be SINR based ordering, SNR based ordering and
Norm based ordering. In the first one, signals with higher SINR are detected
first and the linear MMSE detection is used. In the second one, the first
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detected signals are the ones that have higher SNR and the linear ZF detection
is considered. The last one is proposed to reduce the complexity of the previous,
and the norm of the column vectors in the channel matrix is used for ordering,
therefore the signals can be detected in decreasing order of the norms ‖hi‖ .

2.6
Precoding

MU-MIMO systems are highly sensitive to multiuser interference (MUI).
In order to mitigate this effect, precoding methods are used at the transmitter
side, which are designed to optimize the signal transmission form. Precoding
is implemented at the base station (BS) due to its higher processing capacity
and normally the power supply is not a problem.

The idea of precoding is to eliminate the MUI and/or to simplify the
detection procedures based on the knowledge of the channel. In general, a
transmitter does not have direct access to the channel state information. The
CSI necessary for precoding is obtained from the users through estimation
techniques, refereed in Section 2.3, using feedback channel in Frequency
Division Duplexing (FDD) or reciprocity in Time Division Duplexing (TDD).

In FDD system, uplink and downlink use different frequency bands, al-
lowing full duplex transmission. FDD usually does not have channel reciprocity
between opposite directions, the BS relies on the channel feedback informa-
tion from the receiver [21]. Its main disadvantage is that additional resource is
necessary for transmit the feedback information. On the other hand, in TDD
system, the information is allocated at different time intervals and the same
frequency band is used for both downlink and uplink. Here the channel reci-
procity is exploited, based on this assumption, only CSI for the uplink needs
to be estimated. As long as the channel gains in both directions are highly
correlated, channel condition in one direction can be implicitly known from
the other direction.

Precoding techniques can be linear or non-linear. In linear techniques, we
find the widely used Zero-Forcing and MMSE precoding, whereas in non-linear,
we have Tomlinson-Harashima Precoding (THP), Vector perturbation and
Dirty-Paper Coding. Compared with linear precoding methods, non-linear have
better performance albeit with higher implementation complexity. However,
with an increase in the number of antennas at the BS, linear precoders, such
as MF and ZF, are shown to be near-optimal [8]. Thus, we focus our study
mainly on linear precoding techniques since it is more practical to use this
low-complexity schemes.
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2.6.1
Linear Precoding

Consider the downlink channel model in MU-MIMO, described in Section
2.1.1.2, at the BS the information vector s = [s1, s2, . . . , sKNR

] is precoded
applying a linear transformation to obtain the transmit vector x ∈ CNT×1

x = Ps (2-48)

where P is the [NT×KNR] precoding matrix. Figure 2.4 shows a block diagram
of the system, where the receiver signal y = [y1,y2, . . . ,yK ] can be expressed
then as

y = HPs + n (2-49)

s

P
Precoder

H
Channel

Detector
x

+
Hx

n

y ŝ

Figure 2.4: MU-MIMO system with Linear Precoding.

The received signal at the kth user, defined in (2-5), is

yk = HkPksk +
K∑

j=1,j 6=k
HkPjsj + nk. (2-50)

The second term represents the interference caused by the other users. The
matrix P is designed in such a way that the terms in the summation are
minimized or eliminated. The linear precoding is also known as channel
inversion, because eliminates the effect of the channel and interferences causes
by others users. NT ≥ KNR is considered for transmit processing.

2.6.2
Matched Filter (MF)

Considering that the transmitter has perfect knowledge of the channel
matrix, a transmit filter that maximize the desired signal at the receiver was
introduced in [40] by moving the channel matched filter HH from the receiver
to the transmitter. Then the precoding matrix is P = HH and the receive
signal vector y is given by

y = HHHs + n, (2-51)

and the received vector at user k in this case is given by

yk = HkHH
k sk +

K∑
j=1,j 6=k

HkHH
j sj + nk. (2-52)
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The MF maximize the signal-to-noise ratio at the receiver side but it can’t
remove the MUI, since HkHH

j 6= 0.

2.6.3
Zero Forcing (ZF)

With the CSI available at the transmit side, this method deals with the
MUI forcing all interference terms to zero, HkPj = 0, ∀k 6= j. Considering
the signal model in (2-49) the ZF precoder is designed in such a way that the
transmission chain is forced to be the identity, i.e. PH = IKNR

To derive the
expression for the ZF precoder, we have to minimize the transmit power, that
is

PZF = arg min
P

E
{
‖Ps‖2

}
s.t.:HP = I

Using the Lagrange multipliers method [41], we get

PZF = HH(HHH)−1. (2-53)

Since the transmitted power is limited by ET , the precoding matrix has to be
designed to satisfy the transmit power constraint, that is

E
{
‖Ps‖2

}
= ET . (2-54)

To deal with this problem, a scalar factor βZF ∈ R+ is introduced in [42], which
scales the transmit filter, i.e. βZFPZF to make sure that the transmitted signal
power after precoding will not be changed. The expression to compute the gain
factor β is deduced in [43] and can be expressed as

βZF =
√√√√ ET

Tr
(
(HHH)−1 Rs

) (2-55)

2.6.4
Minimum Mean Square Error (MMSE)

Despite the ZF completely remove the MUI, for low SNR the ZF is
outperformed by the MF. In order to find an optimum tradeoff between the
signal maximization and the interference elimination, the MMSE precoder arise
as an optimal solution. The Wiener Filter can be found solving the following
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optimization problem

PMMSE = arg min
P,βMMSE

E
{
‖s− β−1

MMSEy‖2
}

s.t.:E
[
‖Ps‖2

]
= ET

Note that the scalar factor βMMSE ∈ R+ is included in the definition of mean
square error (MSE), since the automatic gain control of the receiver will not
only scale the desired portion but also the noise portion of the received signal
with β−1

MMSE [43]. Then by applying the Lagrangian multiplier method [41], it
is possible find the optimal solutions for PMMSE and βMMSE, given by

PMMSE = βMMSE HH
(

HHH + Tr (Rn)
ET

I
)−1

(2-56)

βMMSE =
√√√√√ ET

Tr
((

HHH + Tr(Rn)
ET

I
)−2

HRsHH
) (2-57)

Note that the transmitter needs to know the noise power to perform the MMSE
precoding. Therefore, this value has to be fed back from the receiver to the
transmitter, since the transmitter can’t measure this quantity.

2.6.5
Block Diagonalization (BD)

As a generalization of the ZF precoding algorithm, Block Diagonalization
(BD) based precoding algorithms have been proposed in [44], for MU-MIMO
systems specially for receivers with multiple antennas. In the BD method,
the complete suppression of MUI is achieved without any consideration on
the noise and its design is performed in two stages. The first one, seeks a
precoding matrix which suppresses the other users interference. Applying this
matrix, block channels are formulated for each user. In the second one, each
block channel is decoupled into parallel sub-channels in order to allow a single
symbol detection. Correspondingly, the precoding matrix PBD

k for the kth user
can be written as

PBD
k = P1

kP2
k (2-58)

where P1
k ∈ CNT×NR and P2

k ∈ CNR×NR . Considering the model in (2-50)
applying BD precoding

yk = HkPBD
k sk +

K∑
j=1,j 6=k

HkPBD
j sj + nk, (2-59)
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we can cancel the interference generated by user j when HkPBD
j =

0NR×NR
; ∀ j 6= k. To determine P1

k we exclude the kth user’s channel matrix
and define H̃k ∈ C(K−1 )NR×NR as

H̃k =
[
HT

1 · · · HT
k−1 HT

k+1 · · · HT
K

]T
, (2-60)

thus P1
k should be in the null space of H̃k, that is

H̃kP1
k = 0(K−1)NR×NR

(2-61)

Assuming that the rank of H̃k is L̃k = (K − 1)NR by performing the SVD, we
can obtain

H̃k = ŨkΣ̃kṼH
k = ŨkΣ̃k

[
Ṽ(1)
k Ṽ(0)

k

]H
(2-62)

where Ũk ∈ CL̃k×L̃k and Ṽk ∈ CNT×NT are the unitary matrices and Σ̃k ∈
CL̃k×NT contains the singular values of H̃k. The matrices Ṽ(1)

k ∈ CNT×L̃k and
Ṽ(0)
k ∈ CNT×(NT−L̃k) consist of the non-zero singular vectors and the zero

singular vectors respectively. Thus, Ṽ(0)
k forms an orthogonal basis for the

null space of H̃k and
P1
k = Ṽ(0′)

k (2-63)
where Ṽ(0′)

k is composed by selecting any NR columns of Ṽ(0)
k .

In order to find the second precoding filter P2
k we found the non-

interfering block channel matrix for the kth user Heff = HkP1
k. Then we

perform the second SVD to decouple the channel into NR parallel sub channels

Heff = UkΣkVH
k (2-64)

Finally the BD precoding for each user is given by

PBD
k = P1

kP2
k (2-65)

= Ṽ(0′)
k Vk

The computational complexity of the BD precoding algorithms comes from the
two SVD operations, which need be implemented K times each one, making
the computational complexity to increase with the number of users K and the
system dimensions.
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3
Transmit Antennas Selection

The main advantage of MIMO systems is based on the better performance
that can be achieved without using additional transmit power or bandwidth
extension. By increasing the number of transmit and/or receive antennas
more dramatic gains can be obtained. However, the main drawback for the
implementation of this technology is the hardware complexity and cost, that
scale with the number of antennas, since high-cost RF modules are required as
multiple antennas are employed. In general, RF modules contain a low noise
amplifier (LNA), frequency down-converter and ADC/DAC converters. In an
effort to reduce the cost associated with the multiple RF modules, antenna
selection techniques can be used. The basic idea is to employ a smaller number
of RF chains than the number of antennas. This reduction in the number of
active RF chains increases the energy efficiency and decreases the cost of the
system.

In this chapter, we point out the basis of the antenna selection approach,
presenting a general model to describe the transmit antennas selection for the
downlink of a MU-MIMO system. Expressions that relate the energy spent in
transmission with the energy available for detection at each user are derived.
Transmit antenna selection strategies are proposed, aiming at the minimization
of the detection error probability. An efficient search algorithm, ITES (Iterative
Search), to be used with the proposed antenna selection strategies is addressed.
Simulation results describing the BER performance of the system, employing
ZF and MMSE precoding, are presented.

3.1
Energy Relations

We consider the downlink of a MU-MIMO system, described in Section
2.1.1.2, where the base station (BS) is equipped with NT transmit antennas
serving K user stations (UEs), each one with NR antennas, where KNR ≤
NT . Assuming, perfect channel state information (CSI) at the transmitter,
transmission over flat fading channels and detection in presence of additive
noise, the received signal vector by all users y = [y1,y2, . . . ,yK ]T is expressed
as
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y = Hx + n, (3-1)
where the transmit vector x ∈ CNT×1 is given by

x = Ps = [P1,P2, . . . ,PK ][sT1 , sT2 , . . . , sTK ]T (3-2)

=
K∑
k=1

Pksk.

Conveniently for our analyses, each entry sk ∈ CNR×1 , k = 1, 2, . . . , K
containing the user k information vector, are represented by

sk =
√
Eks̃k =

√
Es
√
εk s̃k, (3-3)

where Ek is the energy of the information symbols sent to user k, Es =
1/K∑K

k=1 Ek is the average energy of all the transmitted information symbols,
εk = Ek/Es and s̃k ∈ CNR×1 contains statistically independent symbols
with zero mean and variance 1 in all its entries, taken from the modulation
constellation C = {c1, c2, . . . , cM}, where M is the order of the modulation.
Then (3-2) can be written as

x =
√
EsPE1/2 s̃, (3-4)

where E is a diagonal matrix containing the vectors εk = εku, k = 1, 2, . . . , K,
in its main diagonal, u = 1NR×1 is a vector of ones and s̃ = [s̃T1 , s̃T2 , . . . , s̃TK ]T ,
then E[s̃] = 0 and E

[
s̃s̃H

]
= IKNR .

The mean energy expended by the BS at each transmission is

ET = E
{
‖x‖2

}
= Tr

{
E
[
xxH

]}
, (3-5)

from (3-4), we then have

ET = Tr
{
EsPE1/2E

[
s̃s̃H

]
E1/2PH

}
(3-6)

= Tr
{
EsPE1/2IKNRE1/2PH

}
= Tr

{
EsEPHP

}
= Esγ,

with γ given by
γ = Tr

{
EPHP

}
=

K∑
k=1

εkuTgk, (3-7)

where the column vectors gk are defined as[
gT1 ,gT2 , . . . ,gTK

]T
= d

(
PHP

)
, (3-8)

with d(A) denoting the vector whose entries are the main diagonal elements of
matrix A. Considering (3-6), and since Ek = Esεk, we can express the relation
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between the energy of symbols conveyed to user k and ET as

Ek = ET
εk
γ
. (3-9)

3.2
Signal Model

To model the transmit antenna selection, we assume that BS is equipped
with Nta RF chains (Nta ≤ NT). Figure 3.1 depicts the system with a new
processing stage at the BS, where an antenna selection algorithm should be
performed to reduce the number of active transmitting antennas.

Antenna 2

Antenna 1

NR

1
UE1

NR

UE2
y2

y1

1
UE2

NR

UE2

1
UEK

Antenna NT

H

yK

RF

RF

RF

s

Nta

P
Antenna 

Selector 

Figure 3.1: MU-MIMO system with antenna selector and Nta

RF chains.

Since Nta antennas are used among NT transmit antennas, the effective
channel can now be represented by Nta columns of H ∈ CKNR×NT . Let the
column vector p ∈ RNT denote a given set with Nta active antennas, i.e
the elements of p take the values 1 or 0, if the antenna is activated or not
respectively. For instance, let NT = 5 and Nta = 3, pattern p = [11100]T

indicates that antennas 1, 2 and 3 are selected for transmission, while antennas
4 and 5 are deactivated. Then, the effective channel will be modeled by
H(p) ∈ CKNR×Nta that represents the sub-channel matrix of H obtained by
selecting the columns indexed by p. Consequently, H(p) is given by

H(p) = HU(p), (3-10)

where U(p) ∈ CNT×Nta is obtained from INT , suppressing its ith column, when
the ith component of vector p is zero. The matrix U(p) fulfills the properties
UT

(p)U(p) = INta and U(p)UT
(p) = D(p), where D(p) is a diagonal matrix with

the elements of vector p on its main diagonal. In this case, Nta among NT

antennas, are selected to be active and the received signal y can be written as
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y = H(p)xp + n (3-11)
where xp ∈ CNta×1 models the precoded signal, that will be transmitted by
the active antennas indexed by p. Considering equation (3-4), we have

y =
√
EsH(p)PpE1/2 s̃ + n (3-12)

The channel capacity of the system in (3-12) will depend on which pattern p is
chosen and on the power distribution among all users E . It could be expressed
as

Cp = log2

[
det

(
IKNR

+ Es
σ2
n

H(p)PpEPp
HH(p)

H

)]
bps/Hz (3-13)

3.3
Antenna Selection Approach for ZF Precoding

At each transmission, the most suitable subset with Nta active antennas
should be selected, thus we have a total of St possibles combinations containing
Nta out of NT antennas.

St =
(
NT

Nta

)
= NT !

(NT −Nta)!Nta!
. (3-14)

Let Γt = {p1,p2, . . . ,pSt} denote the set of all possible transmit antenna
configurations. The key question here is how to find the optimum subset of Nta

transmit antennas. In [45–47], the best solution is found through the channel
capacity maximization, while in [10] and [13] a channel norm based selection
is addressed. Based on the channel model described in the previous section
we propose to find the optimum pattern p, aiming at the maximization of the
detection signal-to-noise ratio and consequent minimization of the detection
error probability.

Considering the ZF precoding technique, addressed in Section 2.6.3, the
expression of the precoding matrix for a given pattern p is

PpZF = HH
(p)

[
H(p)HH

(p)

]−1
(3-15)

= UT
(p)HH

[
HD(p)HH

]−1
.

Applying (3-15) into the signal model described by (3-12) we have

y = H(p)PpZF s + n = s + n, (3-16)

and the signal received by user k is

yk =
√
Eks̃k + nk. (3-17)
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From (3-9) and (3-17) it results evident that, for a fixed energy distri-
bution εk, k = 1, 2, . . . , K and a given energy ET available at the transmitter,
maximizing the detection energy Ek at the receivers is equivalent to minimize
the factor γ given by (3-7) and (3-8). Hence the optimization problem can be
written as

po = arg min
p∈Γt

γ(p), (3-18)

where γ(p) is given by

γ(p) = Tr
{
E
(
Pp

H
ZFPpZF

)}
=

K∑
k=1

εkuTgk(p), (3-19)

with

[
g1

T (p),g2
T (p), . . . ,gKT (p)

]T
= d

(
Pp

H
ZFPpZF

)
(3-20)

= d
([

H(p)HH
(p)

]−1
)
.

The optimum subset of antennas po that minimize γ(p) is found by performing
the exhaustive search, i.e. testing all possible patterns p of the set Γt. For
a fixed energy distribution, an expression for computing the capacity of the
system can be found by substituting (3-15) in (3-13). Taken into account the
energy relation given in (3-6), the capacity for a ZF precoded system with Nta

transmit antennas indexed by p, when the total transmit power is limited by
ET is given by

Cp = log2

[
det

(
IKNR

+ ET
γ(p)σ2

n

E
)]

bps/Hz (3-21)

Note that (3-21) is concave, thus by minimizing γ(p), the capacity is also
maximized. Then, to perform the antenna selection based on the proposed
metric γ is optimum in the sense that minimize the detection error probability
and maximize the capacity.

It is worth mentioning that the energy relations developed here satisfy
the transmit energy constraint, then we don’t need to include the scalar factor
βZF in (3-15). Taken into account that

Rs = E
{
ssH

}
= E

{√
EsE1/2s̃s̃HE1/2

√
Es

}
(3-22)

= EsEE
{
s̃s̃H

}
= EsE

From (2-55) we know that
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βZF =
√√√√√ ET

Tr
((

H(p)HH
(p)

)−1
EsE

) (3-23)

Using the relations in (3-6) and the expression for γ(p) in (3-19), we get
βZF =

√
ET

Esγ
= 1.

3.3.1
Proposed Sub-optimum Search Algorithm ITES

Given the channel matrix H and the normalized energy distribution
εk, k = 1, 2, . . . , K, the subset of antennas that minimize γ(p) can be obtained
by exhaustive search. However, as the number of transmit antennas and
available RF chains grow, the search complexity, that includes the inversion of
large dimension matrices for each tested configuration pattern p, increases
dramatically. For that reason, we propose a sub-optimal search algorithm,
described in Algorithm 1 [48]. ITES (Iterative Search) is based on a pilot-
symbols allocation algorithm for OFDM systems proposed in [49].

It starts the algorithm by considering an initial pattern pinit, randomly
selected from the set Γt, and its associated metric γinit. The vectors αi and δj

index the able and unable antennas respectively. The algorithm generate new
patterns by moving the active antennas positions independently, thus we have
a new pattern for each possible position, i.e. each element pαi→δj of de set Ωi

is generated by deactivating the ith antenna and activating the jth. The set
Ωi is composed by Nd = NT − Nta new patterns and the algorithm finds the
pattern in Ωi that results in the best value of γ and saves it as potm for the next
cycle. Note that each iteration implies Nta×Nd trials of antenna assignments.
The process continues until no improvements in γ calculation are found, i.e.
the algorithm stops when two consecutive iterations return the same pattern.

ITES can be implemented for different scenarios and precoding schemes.
Moreover, as will be seen in the following, it reaches results near the optimal
solution with significantly less implementation complexity.
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Algorithm 1: Iterative Search Algorithm (ITES)
Input: pinit, γinit
Output: potm

1 Initialization: potm = pinit , γ
in = γinit

2 αi → index the Nta active antennas
3 δj → index the Nd = (NT −Nta) deactive antennas
4 do
5 γout = γin

6 for i = 1 to Na do
7 p = potm

8 Ωi =
{
pαi→δj

}Nd

j=1
9 p = arg minp∈Ωi

γ(p)
10 if γ(p) < γin then
11 γin = γ(p)
12 potm = p
13 else
14 end
15 update the vector δj for the next cycle
16 end
17 keep the best pattern potm for the next iteration
18 while (γin < γout);

3.3.2
Maximum Likelihood (ML) detection

Here we consider that the noise vector in (3-11) is a complex white
Gaussian noise (AWGN). Considering the signal received by user k in (3-17),
hence the optimal ML detection of the signal vector sk provides the estimate

ŝk = arg min
s̃k∈C

∥∥∥∥yk −√Eks̃k∥∥∥∥2
. (3-24)

Since the symbols sent to each user are assumed statistically independent,
decoupled detection may be employed, which treats the separate ML detection
of the NR modulated symbols. The advantage is that only NR×M hypothesis
need to be tested, instead of theMNR required if joint detection is implemented,
thus the complexity reduction is noteworthy. We then have

ŝk = Q
(

yk√
Ek

)
, (3-25)

which in the case of PSK modulation (3-25), simplifies to

ŝk = Q (yk) . (3-26)
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3.4
Antenna Selection Approach for MMSE precoding

We consider now that the BS uses the MMSE precoding technique,
studied in section 2.6.4. Then the precoding matrix for each subset p is given
by

PpMMSE = HH
(p)

(
H(p)HH

(p) + Tr (Rn)
ET

IKNR

)−1

(3-27)

Applying (2-56) into the signal model described by (3-11) we have

y = H(p)PpMMSE s + n (3-28)

Taken into account that PpMMSE =
[
Pp1, . . . ,PpK

]
, the signal received

by user k can be expressed using equation (2-50) as

yk =
√
EkH(p)kPpks̃k +

K∑
j=1,j 6=k

√
EjH(p)kPpj s̃j + nk, (3-29)

Unlike the ZF precoding, MMSE doesn’t remove the MUI completely. For a
fixed energy distribution εk, k = 1, 2, . . . , K and a given energy ET available for
transmission, we know from (3-9) and (3-29) that minimizing the factor γ(p) we
maximize the desired detection energy Ek but also, the energy corresponding
to the interference terms Ej. Then we can’t guarantee that the minimization
of γ(p), given in equation (3-30) and (3-31) , leads to the optimum subset of
Nta antennas.

γ(p) = Tr
{
E
(
Pp

H
MMSE PpMMSE

)}
=

K∑
k=1

εkuTgk(p), (3-30)

with

[
g1

T (p),g2
T (p), . . . ,gKT (p)

]T
= d

(
Pp

H
MMSE PpMMSE

)
(3-31)

= d

(H(p)HH
(p) + Tr (Rn)

ET
IKNR

)−2

H(p)HH
(p)

 .

The sum rate of the system can be expressed, using equation (2-34), as

Rp =
K∑
k=1

log2

[
det

(
INR

+ ET εk
γ(p)σ2

n

Pp
H
k H(p)

H
k

R−1
ñk

H(p)kPpk

)]
bps/Hz (3-32)

where Rñk
is given by
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Rñk
= INR

+ ET
γ(p)σ2

n

K∑
j=1,j 6=k

εjH(p)jPpjPp
H
j H(p)

H
j

(3-33)

In a first tentative to find the most suitable transmit pattern, the
expression of the sum rate was used as objective function, i.e. we select the
subset p aiming at the maximization of the sum rate in (3-32). The results, in
term of BER performance, obtained by employing this metric to perform the
transmit selection, were very poor. We conjectured, that this might be caused
by numerical problems.

Looking for a more appropriated metric, we define the matrices Ap =
H(p)PpMMSE, D(Ap) which represent the diagonal matrix, containing the
main diagonal elements of Ap and Āp = Ap−D(Ap). Then the signal model
in (3-28) can be rewritten as

y = Ap s + n (3-34)

= D(Ap)s + Āps + n

where the first term contains the desired symbols and the second, the inter-
symbol and interuser interferences. It can be verified that the elements in the
diagonal of D(Ap) are all real and positive. Now let µ(p) be the signal to
interference-plus-noise ratio

µ(p) = Tr{D(Ap)RsD(Ap)H}
Tr{ĀpRsĀH

p }+ Tr{Rn}
(3-35)

= EsTr{D(Ap)ED(Ap)H}
EsTr{ĀpEĀH

p }+ Tr{Rn}

= Tr{ED(Ap)2}
Tr{EĀH

p Āp}+ Tr{Rn}
Es

By employing (3-9) and γ(p) given in (3-30) we get

µ(p) = Tr{ED(Ap)2}
Tr{EĀH

p Āp}+ Tr{Rn}γ(p)
ET

(3-36)

We consider µ(p) the metric to perform the antenna selection approach, i.e.
the strategy to find the best pattern po is through the maximization of µ(p).
Then, the optimization problem can be expressed as

po = arg max
p∈Γt

µ(p), (3-37)

The solution of this problem can be found by exhaustive search, considering a
normalized energy distribution E . However due to the combinatorial nature of
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the problem, as we previously mentioned, it is unfeasible to solve it for large
values of NT . Then we employ the algorithm proposed in section 3.3.1 to find
a near optimal solution.

To implement ITES, we use the algorithm described in Algorithm 1, by
replacing γ by µ and modifying lines 10 and 18 by µ(p) > µin and µin > µout

respectively. With such changes a near optimum pattern can be found in
systems where the MMSE precoding scheme is employed.

3.4.1
Detection

ML detection applied to the signal received by user k in (3-29) would
require full knowledge of the statistics of the interuser interference. Here
we consider suboptimal approaches to obtain ŝk requiring different levels of
parameter knowledge (or estimation) by the receiver. Considering equation
(3-29) and defining

Ak =
√
EkH(p)kPpk, (3-38)

we have

– Minimum Distance Detection (MDD)

ŝk = arg min
s̃k∈C

‖yk −Aks̃k‖2. (3-39)

– Approximate MDD

ŝk = arg min
s̃k∈C

‖yk −D(Ak)s̃k‖2, (3-40)

or equivalently,
ŝk = Q

(
D−1(Ak)yk

)
. (3-41)

Since D(Ak) is a diagonal matrix with positive elements in its main
diagonal, then in the case of PSK modulation (3-40) simplifies to the element
by element detection

ŝk = Q (yk) , (3-42)
that requires no parameter knowledge (or estimation).

3.5
Computational Complexity of ITES

To evaluate the computational complexity of the proposed antenna
selection scheme, we count the number of floating-point operations (flops)
required to carry it out, as a function of the dimensions of the matrices
and vectors involved. A flop can be defined as one addition, subtraction,
multiplication or division of two floating-point number [50], but for our
complexity analyses we define a flop as one complex operation.
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ITES leads to a significantly less implementation complexity because
it implies NtaNd trials of antennas pattern at each iteration, instead of the
St trials required by performing the exhaustive search. The average number
of iteration (Nit) executed can be found by simulations. Particularly, our
simulations show that ITES perform between 2 and 3 iterations, that is a
fairly good convergence speed.

In the case of ZF precoding, the calculation of γ(p), given by (3-19) and
(3-20), involves the product of two [KNR × Nta] matrices, that making use
of the Hermitian structure of the product, leads to (Nta(KNR)2 +NtaKNR −
1
2(KNR)2− 1

2KNR) flops and the inversion of a positive definite [KNR×KNR]
matrix with ((KNR)3 + (KNR)2 + KNR) flops [51]. Including the cost of
multiplying by a diagonal matrix ((KNR)2) and the trace operation (KNR),
we obtain a total of

NitNtaNd

[
(KNR)3 +Nta(KNR)2 +NtaKNR + 3

2(KNR)2 − 3
2KNR

]
flops.
(3-43)

On the other hand, when MMSE precoding is employed, the complex-
ity is determinate by the computation of the factor µ(p), given in (3-
36). We first consider that finding Ap involves the inversion of the matrix(
H(p)HH

(p) + Tr(Rn)
ET

IKNR

)
with a cost of ((KNR)3 + Nta(KNR)2 + NtaKNR +

1
2(KNR)2 + 7

2KNR+1) flops and the multiplication of two square matrices with
order KNR. Then computing Ap requires a total of (3(KNR)3 +Nta(KNR)2 +
NtaKNR − 1

2(KNR)2 + 7
2KNR + 1) flops. To compute the factor γ(p), defined

in equations (3-30) and (3-31), it is considered (3(KNR)3 + KNR) flops ad-
ditionally. Finally, the computation of µ(p) leads to a total of (8(KNR)3 +
Nta(KNR)2 +NtaKNR− 1

2(KNR)2 + 21
2 KNR + 1) flops, consequently the com-

putational complexity of ITES is given by

NitNtaNd

[
8(KNR)3 +Nta(KNR)2 +NtaKNR − 1

2(KNR)2 + 21
2 KNR + 5

]
flops. (3-44)

Table 3.1, presented in the next Section, includes numerical examples of the
number of complex operations associated with the different antenna selection
approaches addressed in this Chapter.

3.6
Simulation Results

In this section, numerical results are presented to evaluate the bit-error-
rate (BER) performance of the considered systems in different scenarios. The
curves are obtained after NCR independent realizations of the channel matrix
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H. The entries of H, are complex independent circularly symmetric gaussian
random variables with zero mean and unity variance. The noise vector in (3-1)
is a complex zero-mean gaussian vector with circularly symmetric components
and covariance matrix Kn = σ2

nI. Results are expressed in terms of the signal-
to-noise ratio

SNRdB = 10 log10

(
ET
σ2
n

)
, (3-45)

and QPSK modulation is assumed. From (3-9) we have that the detection
signal-to-noise ratio per receive antenna is

Ek
σ2
n

= ET
σ2
n

εk
γ

= SNRεk
γ
. (3-46)

ZF Precoding

With ML detection performed by the UE receivers it results that for a
given channel realization and antenna pattern selection the user k conditional
bit-error-rate, when ZF precoding is performed by the BS, is given by

BERk(γ) = Q
(√

Ek
σ2
n

)
= Q

(√
SNR

γ
εk

)
, (3-47)

where Q(.) is the Q-function defined as

Q(x) = 1√
2π

∫ ∞
x

exp
(
−β

2

2

)
dβ (3-48)

and the user k BER performance is

BERk = E
[
Q
(√

SNR

γ
εk

)]
. (3-49)

In a semi-analytical approach we approximate (3-49) by

BERk ∼=
1

NCR

NCR∑
i=1

Q
(√

SNR

γi
εk

)
. (3-50)

We note that (3-47) and the approximation (3-50), with γ(p) given by (3-19)
and (3-20), are only applicable to the case of transmit antenna selection with
ZF precoding. The results in this section consider an uniform user energy
allocation (εk = 1, for all k).

Figure 3.2 compares the BER performance obtained with Monte Carlo
simulation and with the semi-analytical approximation (3-50), when the ZF
precoding scheme is employed. In both cases the results are for NCR = 1000
channel realizations, and in the Monte Carlo simulations a data frame of 1200
signal vectors are transmitted to each user per channel realization. Considering
the coincidence of the BER results, the much less computation time consuming
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approximation (3-50) was used to generate the results presented in Figures 3.3
and 3.4

SNR (dB)
-5 0 5 10 15 20 25 30

B
E
R

10−3

10−2

10−1

100

Simulation

Semi-analitycal

Figure 3.2: BER vs. SNR(dB) for NT = 8 , NR = 4 and K = 2
in ZF precoded system.

The results in Figure 3.3 are for transmit antenna selection and illustrate
the BER performance when the BS is equipped with different number of
antennas and RF chains. It is easily observed that the case of no selection
with 10 available antennas gives the best performance, but it requires a RF
chain connected to each transmit antenna. However, if we have 6 RF chains
available a notable improvement in BER performance is obtained when BS is
equipped with 10 antennas and the most suitable set of 6 antennas is selected
for transmission when compared to the case of 6 fixed antennas.

The results shown in Figure 3.4 correspond to a scenario with NT = 20,
Nta = 6 , K = 2 and NR = 3 and illustrate the high gain in performance
obtained with the proposed BER minimizing antenna selection approach when
compared with a non-selective choice, where one of the possible St sets is
randomly selected for each channel realization. Also in this figure are the BER
results obtained with the use of the proposed suboptimal search algorithm
(ITES) and with the Genetic Algorithm based search procedure proposed in
[14]. The former resulted in a improvement in BER performance than the
latter. To have a fair comparison, both algorithms use the same number of
iterations to generate their results, i.e. we modify the stop condition of ITES
so that it performs 3 iterations, same as GA. This change in the stop criteria
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Optimum selection NT = 10 and Nta = 6 (ZF)

NT = Nta = 6 (ZF)

NT = Nta = 10 (ZF)

Figure 3.3: BER vs. SNR(dB) for transmit antenna selection
considering different number of antennas and RF chains avail-
able at BS with ZF precoding, NR = 3 and K = 2.

was made only for comparative purposes. Note that with only 3 iteration
ITES achieves a BER performance close to that obtained with the optimum
exhaustive search, with a very significant lower complexity. For the considered
scenario, the exhaustive search tested all the St = 38760 possible antenna
patterns, while the ITES and GA tested only NitNaNd = 252 each.
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Figure 3.4: BER vs. SNR(dB) for transmit antenna selection
with NT = 20 , Nta = 6, NR = 3 and K = 2 in ZF precoded
system.

MMSE Precoding

Figure 3.5 depicts the BER performance when the BS implements the
MMSE precoding scheme and it is equipped with different number of antennas
and RF chains. The suboptimal detection procedure follows (3-42). It is
observed the gain performance when the BS has 6 RF chains available and
the proposed selection scheme to select 6 out of 10 antennas is implemented
over the case when 6 fixed antennas are used.

In Figure 3.6 the results corresponding to a scenario with NT = 20,
Nta = 6 , K = 2 and NR = 3 are plotted. We can appreciate the performance
gap between the proposed BER minimizing antenna selection approach, based
on the metric µ(p), and the case when a subset is randomly selected for each
channel realization, between the possible St choices. We also illustrate the
results obtained by using ITES when MMSE precoding technique is performed
by the BS and how it outperforms the GA based search procedure, considering
that both experience the same number of iterations.

In order to compare the system performance when ZF and MMSE
precoding techniques are employed, we present the results for BER and
Capacity in Figures 3.7 and 3.8 respectively, considering a scenario with
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Figure 3.5: BER vs. SNR(dB) for transmit antenna selection
considering different number of antennas and RF chains avail-
able at BS with MMSE precoding, NR = 3 and K = 2.

NT = 10, Nta = 6 , K = 2 and NR = 3. In Figure 3.7 we can see how
BER performance achieved by MMSE precoding slightly outperforms ZF,
when the optimum and ITES selection procedures are executed. However,
this gain of MMSE over ZF is higher in the random selection case. Based
on this result we can conclude, that it is more suitable to employ the ZF
precoding with the proposed transmit antennas selection approach since it
achieves almost the same BER performance than MMSE, implying a lower
computational complexity (see Table 3.1). Figure 3.8 depicts the capacity that
can be achieved when the above mentioned selection techniques are employed,
for each precoding scheme employing the expressions in (3-21) and (3-32) .
Note that for high SNR the capacity of the MMSE precoding converges to the
ZF, as it is expected.
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Figure 3.6: BER vs. SNR(dB) for transmit antenna selection
with NT = 20 , Nta = 6, NR = 3 and K = 2 in MMSE
precoded system.

SNR (dB)
-5 0 5 10 15 20 25

B
E
R

10−6

10−5

10−4

10−3

10−2

10−1

100

Proposed Selection (ZF)

ITES (ZF)

Random (ZF)

Proposed Selection (MMSE)

ITES (MMSE)

Random (MMSE)

Figure 3.7: BER vs. SNR(dB) for transmit antenna selection
with NT = 10 , Nta = 6, NR = 3 and K = 2.
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Figure 3.8: Sum Rate vs. SNR(dB) for transmit antenna
selection with NT = 10 , Nta = 6, NR = 3 and K = 2.

Table 3.1: Computational complexity of the transmit antenna
selection approaches

Scenario Antenna Selection Approach FLOPS
NT = 20 Nta = 6 Proposed Selection (ZF) 19883880
NR = 3 K = 2 Proposed Selection (MMSE) 78682800

ITES (ZF) 86184
ITES (MMSE) 341040

NT = 10 Nta = 6 Proposed Selection (ZF) 107730
NR = 3 K = 2 Proposed Selection (MMSE) 426300

ITES (ZF) 24624
ITES (MMSE) 97440
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4
Receive Antennas Selection

In this chapter, we address the problem of the antenna selection at the
receiver side. The downlink of a MU-MIMO system is also considered and the
mathematical model for receive antennas selection is described. The proposed
receive antenna selection scheme finds the most suitable subset of antennas for
each UE, where the BS is responsible for carrying out the selection procedure,
since it has a higher processing capacity. Consequently, the BS must inform to
each user the antennas to which their RF chains should be connected, in this
sense a frame notification procedure is proposed. Numerical results describing
the system performance, employing ZF and MMSE precoding, are presented.

4.1
Signal Model

To evaluate the receive antenna selection, we consider that each UE is
equipped with NR receive antennas and only Nra RF chains (Nra < NR), as
it is depicted in Figure 4.1. The total number of combinations containing Nra

out of NR antennas is given by

Sr =
(
NR

Nra

)
= NR!

(NR −Nra)!Nra!
. (4-1)

The most appropriate set of Nra antennas is selected by the transmitter to
receive the transmitted information, i.e. the BS selects the set of antennas
that should be activated and must notify the users which of the Sr possible
patterns is chosen for transmission, in order to guarantee the correct signal
detection. In the receiving antenna selection case, the signal vector conveyed
to user k is expressed by

sk =
√
EkU′(qk)s̃k =

√
Es
√
εk U′(qk)s̃k, (4-2)

where the NR-dimensional vector qk has Nra entries 1 and the remaining are
zero. Its non-zero entries indicate the information bearing (IB) antennas to
which the receiver Nra RF chains are to be connected and U′(qk) ∈ CNra×NR is
obtained from INR , suppressing its ith row, when the ith component of vector
qk is zero. The matrix U′(qk) fulfills the properties U′(qk)U′T(qk) = INra and
U′T(qk)U′(qk) = D(qk). Note that vector sk ∈ CNra×1 , since only Nra antennas
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Figure 4.1: MU-MIMO system with Nra RF chains available
at each UE.

will be active for detection.
In this case, the effective channel will be modeled by H(q) ∈ CKNra×NT ,

that represents a sub-channel matrix of H obtained by selecting the rows
indexed by q = [qT1 ,qT2 , . . . ,qTK ]T . Consequently, H(q) is given by

H(q) = Ũ(q)H, (4-3)

where Ũ(q) ∈ CKNra×KNR is obtained from IKNR , suppressing its ith row, when
the ith component of vector q is zero and can be expressed as

Ũ(q) =


U′(q1) 0 · · · 0

0 U′(q2) · · · 0
... ... . . . ...
0 0 0 U′(qk)


When the set of Nra antennas is selected by the BS to receive information at
each user, the received signal y ∈ CKNra×1 can be written as

y = H(q)x + n, (4-4)

where x ∈ CNT×1 models the precoded signal that will be transmitted to the
K UEs. Then, we have

y = H(q)Pqs + n, (4-5)
where Pq = [Pq1 ,Pq2 , . . . ,PqK

] ∈ CNT×KNra and the received signal vector
yk ∈ CKNra×1 for the kth UE is given by

yk =
√
EkH(q)kPqkU

′
(qk)s̃k +

K∑
j=1,j 6=k

√
EjH(q)kPqjU

′
(qj)s̃j + nk. (4-6)
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4.2
Receive Antenna Selection Approach for ZF Precoding

Considering that the BS employs the ZF precoding to process the
information symbols vectors that should be transmitted to each user, the
expression of the precoding matrix is given by

PqZF = HH
(q)

[
H(q)HH

(q)

]−1
(4-7)

= HHŨT
(q)

[
Ũ(q)HHHŨT

(q)

]−1
.

Applying (4-7) in (4-6) we get

yk =
√
EkU′(qk)s̃k + nk. (4-8)

At each transmission, the BS selects the most suitable subset of receiving
antennas (qk) aiming at the maximization of the detection energy Ek for each
user. Here the energy relation in (3-6) assumes the form

ET = EsTr
{
EqPq

H
ZFPqZF

}
(4-9)

= Esγr(q),

where the γr(q) factor is given by

γr(q) = Tr
{
EqPq

H
ZFPqZF

}
=

K∑
k=1

εkuTgk(q), (4-10)

and vectors gk, k = 1, . . . , K obtained according to (3-8) are given by

[gT1 (q),gT2 (q), . . . ,gTK(q)]T = d
(
Pq

H
ZFPqZF

)
(4-11)

= d
([

H(q)HH
(q)

]−1
)
.

As was addressed in Chapter 3, for a fixed energy distribution εk, k =
1, 2, . . . , K and energy ET available for transmission, by minimizing γr the
detection signal-to-noise ratio of all users is maximized. Let Γr denotes the set
of all possibles receive antennas configurations. Since each user has Sr possible
patterns associated, the cardinality of Γr is (Sr)K . The optimum subset of
antennas qo that minimize γr(q) is found by performing the exhaustive search,
i.e. testing all possible patterns q of the set Γr.

qo = arg min
q∈Γr

γr(q), (4-12)

Unlike the BS, UE are usually equipped with few antennas, therefore
the exhaustive search could be performed when an small number of users are
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involved. However the cardinality of the search space increases exponentially
with K. Then we implement a sub-optimum selection approach that relax the
problem in (4-12).

4.2.1
Sub-optimum Receive Antenna Selection

To model this suboptimal approach, we suppose that the signal vector
conveyed to user k is given by

sk =
√
EkD(qk)s̃k =

√
Es
√
εk D(qk)s̃k, (4-13)

where sk ∈ CNR×1 has Nra entries, indexed by qk, containing information
symbols and the remaining entries are zero. Then the relation (3-6) assumes
the form

ET = EsTr
{
ED(q)P′HZFP′ZF

}
= Esγ

′
r, (4-14)

where P′ZF = HH
[
HHH

]−1
is the precoding matrix, supposing that no

selection is implemented and the γ′r factor is given by

γ′r = Tr
{
ED(q)P′HZFP′ZF

}
=

K∑
k=1

εkqkTgk, (4-15)

where vectors gk, k = 1, . . . , K obtained according to (3-8) are given by

[gT1 ,gT2 , . . . ,gTK ]T = d
(
P′HZFP′ZF

)
= d

([
HHH

]−1
)
. (4-16)

As pointed out previously, by minimizing γ′r the detection signal-to-noise
ratio of all users are maximized. In order to minimize γ′r we consider the
independent minimization of the terms in the summation (4-15), since they
are all positive and each one is associated to a single user. Among the Sr
possible choices of pattern qk, the one that results in minimal qTk gk is selected
for user k. This is done by simply setting to one the elements of qk, in positions
corresponding to the Nra smaller values of gk entries.

It is important to be remarked here that the procedure described above
is proposed only as a receive antenna selection. Once the antenna pattern q is
obtained, the precoding matrix is generated according to (4-7) and the received
signal is characterized by (4-8)-(4-11).

As in (3-21), for a fixed energy distribution, the capacity of a ZF precoded
system, when the total transmit power is limited by ET is given by

Cq = log2

[
det

(
IKNra + ET

γr(q)σ2
n

Eq

)]
bps/Hz (4-17)
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4.3
Receive Antenna Selection Approach for MMSE Precoding

The precoding matrix, when the BS uses the MMSE precoding technique,
is given by

PqMMSE = HH
(q)

(
H(q)HH

(q) + Tr (Rn)
ET

IKNra

)−1

. (4-18)

Applying (4-18) into the signal model described in (4-5) we have

y = H(q)PqMMSE s + n, (4-19)

Considering PqMMSE = [Pq1 , . . . ,PqK
], the signal received by user k can be

expressed as

yk =
√
EkH(q)kPqkU

′
(qk)s̃k +

K∑
j=1,j 6=k

√
EjH(q)jPqjU

′
(qj)s̃j + nk, (4-20)

In order to maximize the detection signal-to-interference plus noise ratio
of the sets of users in (4-19), we employ the metric introduced in Section 3.4 to
select the most suitable subset of receiving antennas (qk) for each user. From
equation (3-36), we define µr(q) as

µr(q) = Tr{EqD(Aq)HD(Aq)}
Tr{EqĀH

q Āq}+ Tr{Rn}γr(q)
ET

(4-21)

where Aq = H(q)PqMMSE and γr(q) is given by

γr(q) = Tr
{
EqPq

H
MMSEPqMMSE

}
=

K∑
k=1

εkuTgk(q), (4-22)

with

[gT1 (q),gT2 (q), . . . ,gTK(q)]T = d
(
Pq

H
MMSEPqMMSE

)
(4-23)

= d

[H(q)HH
(q) + Tr{Rn}

ET
IKNra

]−2

H(q)HH
(q)

 .

By employing an optimization procedure similar to the one in Section
3.4, for a fixed energy distribution εk, k = 1, 2, . . . , K and energy ET available
for transmission, the detection signal-to-interference plus noise ratio of the set
of all users is maximized by solving the following optimization problem

qo = arg max
q∈Γr

µr(q), (4-24)

The sum rate of the system can be computed similar to the expression (2-34)
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Cq =
K∑
k=1

log2

[
det

(
INra + ET εk

γ(q)σ2
n

Pq
H
k H(q)

H
k

R−1
ñk

H(q)kPqk

)]
bps/Hz (4-25)

where
Rñk

= INra + ET
γ(q)σ2

n

K∑
j=1,j 6=k

εjH(q)jPqjPq
H
j H(q)

H
j

(4-26)

4.4
Notification

As mentioned before, to guarantee correct detection the UE receiver must
connect its Nra RF chains to the correct set of Nra IB antennas. Since the IB
pattern selected by the BS may change according to the variations of the
channel, information regarding the pattern selection has to be periodically
sent to the UE receiver (UE notification) where a very reliable retrieval of
this information has to be performed. To implement the UE notification we
consider a frame transmission scheme, where signals informing the index of the
selected pattern are sent to the users during the notification period, preceding
the user data frame.

The antenna pattern used during the notification period is fixed and
known a priori by the receivers. Moreover by sending the same notification
information several times, it is possible to further reduce the notification
error probability. The UE accumulates the signal vectors received during the
notification period and performs detection using the resulting summation of
the Fnot signals. The received signal vector in the notification interval can be
expressed as

ynot =
Fnot∑
t=1

yk(t) = Fnot

√
EkH(p)Ppsnotk +

Fnot∑
t=1

nk(t) (4-27)

where yk(t) denote the vector received by the user k at each transmission, snotk

is the symbol vector employed to notify the pattern for the next data frame and
nk(t) vector represents the AWGN components at the transmission t. With this
procedure, if Fnot is the number of repeated transmissions adopted, a detection
signal-to-noise ratio gain of 10 log10(Fnot) dB is obtained.

4.5
Simulation Results

In this section, numerical results are presented to evaluate the bit-error-
rate (BER) performance of the systems when receive antenna selection is
performed. The curves are obtained after NCR = 1000 independent realizations
of the channel matrix H. The noise vector is a complex zero-mean gaussian
vector with circularly symmetric components and covariance matrix Kn = σ2

nI.
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Results are expressed in terms of the signal-to-noise ratio, defined in Section
3.6.

ZF Precoding

Here the previously addressed ML detection is used. The semi-analytical
approach, expressed by (3-47) to (3-50), is applicable to the case of receive
antenna selection only if error free notification is assumed.

In receive antenna selection, the BS uses all its NT antennas for transmis-
sion and, based on the minimization of γr, given in (4-10) and (4-11), selects
the most suitable set of antennas to be activated at each UE. Figures 4.2 and
4.3 present BER performance curves for a scenario with NT = 10, NR = 4, Nra

= 2 and K = 2, thus yielding a set of Sr = 6 possible antenna patterns that
can be selected.

Figure 4.2 shows the BER curves assuming error-free user notification and
the proposed notification method, employing the receive selection approach
addressed in Section 4.2. These curves were generated using Monte Carlo
simulations, where for each of the NCR = 1000 channel realizations, 1200 data
signal vectors followed by Fnot = 10 notification signal vectors are transmitted
to each user. The coincidence of the BER performance curves evidences the
effectiveness of the adopted notification method.

The results in Figure 4.3 were generated using the semi-analytical ap-
proach, since error free notification is assumed. The BER performance curves
correspond to the cases when the optimum and sub-optimum antenna selection
approaches, proposed in Section 4.2, are implemented. The former implies a
total of (Sr)2 = 36 trials to find the optimum pattern for each user. The results
also evidence the performance gain that can be obtained with the proposed
receive antenna selection methods when compared with a random selection.
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Figure 4.2: BER vs. SNR(dB) considering error free notifi-
cation and the proposed notification scheme for NT = 10 ,
NR = 4 , Nra = 2 and K = 2 in ZF precoded system.
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Figure 4.3: BER vs. SNR(dB) for receive antenna selection
with NT = 10 , Nra = 2, NR = 4 and K = 2 employing ZF
precoding.
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MMSE Precoding

Considering the same scenario, Figure 4.4 shows BER performance
curves, when the antenna selection procedure with MMSE precoding is im-
plemented and detection is performed according to (3-42). It is notable the
performance gain obtained with the proposed receive antenna selection tech-
nique.
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Figure 4.4: BER vs. SNR(dB) for receive antenna selection
with NT = 10 , Nra = 2 , NR = 4 and K = 2 employing
MMSE precoding.

Figure 4.5 presents performance curves obtained with the proposed
receive antenna selection approaches when ZF and MMSE precoding are
employed. We consider a scenario where the BS is equipped with NT = 20 and
each UE with NR = 4. We also consider a total of K = 5 users and differents
number of available RF chains at the receivers. In the case of no selection,
i.e. when UEs receive information through all its antennas (Nra = NR), the
MMSE precoding experiences a high performance gain over the ZF. However,
when the respective selection procedures are implemented this performance
gap decrease dramatically. Note that when Nra decreases the gain of MMSE
over ZF also decreases and when a single antenna is used for detection both
precoding techniques achieve virtually the same performance. The results
indicate that when receive antenna selection is implemented in the MIMO
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system, the use of ZF precoding might be more advantageous if the trade-off
performance/complexity is considered.
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Figure 4.5: BER vs. SNR(dB) for receive antenna selection
with NT = 20, NR = 4, K = 5 and differents numbers of RF
chains available at the UE.
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5
Joint Transmit and Receive Antennas Selection

In this chapter, we address the general case of joint antenna selection at
the transmitter and the receiver sides, through the adequate combination of
the selection strategies examined in Chapters 3 and 4, leading to a hardware
complexity reduction both in the BS and in the user terminals. The mathe-
matical model for the joint antenna selection is presented, for the downlink of
a MU-MIMO system when ZF precoding scheme is employed. We also intro-
duce an alternative metric that can be used to perform the selection. Finally,
numerical results to describe the BER performance achieved by the different
selection approaches are presented.

5.1
Joint Selection Approach

To model the joint antenna selection, we consider that the BS selects the
most suitable par of subset (p,q) for transmitting and receiving information
symbols. It’s assumed that BS is equipped with Nta RF chains (Nta ≤ NT)
and UEs with Nra (Nra ≤ NR), as it’s depicted in Figure 5.1.
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Figure 5.1: MU-MIMO system with Nta and Nra RF chains
available at the BS and UEs respectively.

The effective channel will be modeled by Ȟ ∈ CKNra×Nta , that represents
a sub-channel matrix of H obtained by selecting the rows indexed by q =
[qT1 ,qT2 , . . . ,qTK ]T and the columns indexed by p, and is given by

DBD
PUC-Rio - Certificação Digital Nº 1621987/CA



Chapter 5. Joint Transmit and Receive Antennas Selection 68

Ȟ = Ũ(q)HU(p), (5-1)

where U(p) ∈ CNT×Nta and Ũ(q) ∈ CKNra×KNR are obtained from INT and IKNR

respectively, as was defined in the previous chapters. For implementing the
joint selection, the ZF precoding scheme is considered, where the precoding
matrix is expressed as

P̌ZF = ȞH
[
ȞȞH

]−1
(5-2)

= UT
(p)HŨT

(q)

[
Ũ(q)HD(p)HHŨT

(q)

]−1
.

The received signal y ∈ CKNra×1 can be written as

y = ȞP̌ZF s + n (5-3)

=
√
EsE1/2

q Ũ(q)s̃ + n,

where s ∈ CKNra×1 is the vector containing the information symbols of the K
users and s̃ ∈ CKNR×1 contains statistical independent symbols, taken from
the modulation constellation. The received signal vector yk ∈ CKNra×1 at user
k is then

yk =
√
EkU′(qk)s̃k + nk. (5-4)

Aiming at the maximization of the detection energy Ek, the BS selects the
most suitable subsets of transmit and receive antennas at each transmission.
The energy relation deduced in equation (3-6) assumes the form

ET = EsTr
{
EqP̌H

ZFP̌ZF
}

(5-5)

= Esγ(p,q),

where γ(p,q) factor is given by

γ(p,q) = Tr
{
EqP̌H

ZFP̌ZF
}

=
K∑
k=1

εkuT ǧk, (5-6)

and vectors ǧk, k = 1, . . . , K obtained according to (3-8) are given by

[ǧT1 , ǧT2 , . . . , ǧTK ]T = d
(
P̌H

ZFP̌ZF
)

(5-7)

= d
([

ȞȞH
]−1

)
.

We know that, for a fixed energy distribution and energy ET available
for transmission, by minimizing γ(p,q) the detection signal-to-noise ratio of
all users is maximized. To find the optimum pair (p,q), the BS must test
all possible receive patterns q for each subset of transmit antennas p. Let’s
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divide this problem in two steps. We first find the optimum receive subsets
qo = [qT1 ,qT2 , . . . ,qTK ]T for a given transmit subset p′ ∈ Γt, that is

(p′,qo) = arg min
q∈Γr

γ(p′,q), (5-8)

where Γt and Γr were defined in sections 3.3 and 4.2 respectively. The problem
in (5-8) should be solved for each possible transmit subset. Then, we have St
pars of (p,qo) and we choose the one that minimize γ(p,qo) by solving

(po,qo) = arg min
p∈Γt

γ(p,qo). (5-9)

The cardinality of the search space Γ of the joint selection problem is given by

Sj = St(Sr)K , (5-10)
where St and (Sr)K are the cardinalities of Γt and Γr respectively. Due to
the combinatorial nature of this problem, find the optimum subsets could be
unfeasible for large dimension systems. Then we implement a sub-optimum
joint selection approach that is presented in the next subsection.

The channel capacity of the system in equation (5-3) will depend on
which patterns (p,q) are chosen and the power distribution among all users
E . It could be expressed as

Cp,q = log2

[
det

(
IKNra + ET

σ2
nγ(p,q)ȞP̌ZF EP̌H

ZFȞH

)]
bps/Hz (5-11)

5.1.1
Sub-optimal Joint Selection Approaches

In order to relax the problem of the joint selection we consider the
combination of the suboptimal approaches addressed in the previous chapters.
In a first approximation, we suppose that BS employs the sub-optimum search
algorithm ITES, proposed in Section 3.3.1, to find the patterns (p,q). Then
for each transmit subset p tested at each iteration of the algorithm we should
perform the optimization problem addressed in (5-8). The search space is then
reduced to

Sj’ = NitNaNd(Sr)K . (5-12)
We obtain the pair (po′ ,qo), denoting the patterns provided by implementing
ITES with the receive antenna selection approach, proposed in Section 4.2,
which involves the exhaustive search.

In a second approximation, ITES is implemented by performing the
sub-optimum receive selection procedure, proposed in Section 4.2.1, for each
transmit subset p tested at each iteration of the algorithm. Let’s denote
(po′ ,qo′) the pair obtained with this version, where the cardinality of the search
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space is given by
Sj” = NitNaNd. (5-13)

It is notable the complexity reduction achieved with this suboptimal ap-
proaches. In Section 5.3 a BER performance comparison of the joint selection
approaches addressed here is presented.

5.2
Alternative Joint Selection Approach

To perform the joint antennas selection, in ZF precoded systems, we have
defined the metric γ(p,q) given in (5-6) and (5-7), that can be also expressed
as

γ(p,q) = Tr
{
EqP̌H

ZFP̌ZF
}

(5-14)

= Tr
{

Eq
[
ȞȞH

]−1
}
,

The calculation of γ involves the inversion of the matrix
[
ȞȞH

]−1
, that can

be computationally expensive for systems with large dimensions. In order to
avoid the inversion operation, we consider an alternative selection approach,
which is introduced below.

Let’s define the symmetric non-negative definite matrix B ∈ CKNra×KNra ,
B = ȞȞH and considering an uniform distribution of users energy allocation
( Eq = IKNra), expression in (5-14) is given by

γ(p,q) = Tr
{
B−1

}
, (5-15)

If λ1, λ2, . . . , λKNra are the eigenvalues of B, where λ1 = λmin and λKNra =
λmax are its smallest and largest eigenvalues, respectively, we know that

Tr {B} = λ1 + λ2 + · · ·+ λKNra (5-16)

Tr
{
B−1

}
= 1

λKNra

+ · · ·+ 1
λ2

+ 1
λ1

, (5-17)

where 1
λ1

= 1
λmin

is the largest eigenvalue of the inverse matrix. Then, the trace
of the inverse matrix can be upper bounded by

Tr
{
B−1

}
≤ KNra

( 1
λmin

)
, (5-18)

from (5-15) and (5-18) we have

γ(p,q) ≤ KNra

( 1
λmin

)
. (5-19)
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We know that by minimizing γ(p,q) the detection energy of the users is
maximized, then using the result in (5-19), we present an alternative approach
to perform the joint antennas selection, based on the maximization of the
minimum eigenvalue of B, i.e. we are going to find the pair (p,q) aiming at
the maximization of λmin in order to minimize the upper bound in (5-19). The
most suitable pair of patterns is found by following the procedure presented
in Section 5.1 with the new metric. Thus we first find the receive subsets
qo = [qT1 ,qT2 , . . . ,qTK ]T for each transmit pattern p′ ∈ Γt, by solving

(p′,qo) = arg max
q∈Γr

λmin(p′,q), (5-20)

and then we choose the pair (po,qo), given by the solution of the following
optimization problem,

(po,qo) = arg max
p∈Γt

λmin(p′,qo). (5-21)

This approach, avoids the inversion of the matrix B, we only need to
find its smallest eigenvalue, that can be found by doing a Singular Values
Decomposition (SVD) of B or employing a more efficient method, since we are
not interested in the eigenvectors of B and don’t need all its eigenvalues, only
the smallest one.

5.3
Simulation Results

In this section, numerical results are presented to evaluate the perfor-
mance of the system when joint antennas selection is considered. The curves
are generated after NCR = 1000 independents realizations of the channel ma-
trix and applying the semi-analytical approach, expressed by (3-47) to (3-50),
since error free notification is assumed. Results are expressed in terms of the
signal-to-noise ratio (SNR), given by (3-46).

Figure 5.2 shows BER performance results when the joint transmit
and receive antenna selection is implemented. It is considered a scenario
with NT = 10, Nta = 8, NR = 4, Nra = 2 and K = 2. The optimum
selection procedure slightly outperforms this suboptimal approach. The former
is obtained by executing the exhaustive search, which involves the evaluation
of Sj = St(Sr)K = 1620 pairs of patterns, while the latter find the pair
(p,q) employing the suboptimal procedure proposed in Section 4.2.1 for
each transmit subset p, evaluating only St = 45 pairs. Both experience a
considerable performance gain over the random selection.

Considering the same scenario, the BER performance results achieved
by the suboptimal approximations, proposed in Section 5.1.1, are plotted in
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Figure 5.2: BER vs. SNR(dB) for the joint antenna selection
with NT = 10, Nta = 8, NR = 4, Nra = 2 and K = 2.

Figure 5.3. With the first approximation is possible to achieve almost the
same performance resulting from the exhaustive search, requiring a total of
Sj’ = NitNaNd(Sr)K = 1152, considering that ITES performs two iterations.
In the second approximation case, where ITES is used with the suboptimal
receive selection procedure, a little performance loss can be observed, but the
complexity reduction is significant, since only Sj” = NitNaNd = 32 pairs of
patterns should be tested.

In Figure 5.4 we compare the BER performance achieved when the joint
antenna selection is based on the alternative metric λmin described in Section
5.2, with the result obtained using the proposed metric γ(p,q). The latter
achieves a better performance but can be computationally more expensive,
since the computation of γ involves a matrix inversion. In both cases the
patterns (po,qo) are found by performing exhaustive searches, i.e. testing all
the Sj = 1620 possible patterns.

Figure 5.5 illustrates the BER performance and system Capacity, con-
sidering a scenario with NT = 10, Nta = 8, NR = 4, Nra = 2 and K = 2.
The curves show performance results when transmit only, receive only, joint
selection and no selection are implemented. In the receive only selection case
we consider that Nta = 8 fixed antennas are used for transmission, while in
the transmit only selection case we fixed Nra = 2 antennas for receiving infor-
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Figure 5.3: BER vs. SNR(dB) considering the suboptimal
joint antenna selection with NT = 10, Nta = 8, NR = 4,
Nra = 2 and K = 2.

mation symbols at each user. In the no selection case, Nta = 8 and Nra = 2
fixes antennas are used for transmitting and receiving information symbols,
respectively. We can see that joint selection can achieve a better performance
than when transmit and receive selection are implemented separately. More-
over, the introduction of antenna selection procedures can deliver a substantial
performance gain when compared to the no selection case.
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Figure 5.4: BER vs. SNR(dB) considering the exhaustive
search with NT = 10, Nta = 8, NR = 4, Nra = 2 and K
= 2.
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Figure 5.5: Performance comparison between joint, transmit
and receive selection for NT = 10, Nta = 8, NR = 4, Nra = 2
and K = 2.
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6
Conclusions and Future Works

This thesis focused on the antenna selection problem in the downlink
of MU-MIMO systems. We have developed new procedures to perform the
antenna selection when a reduced number of RF chains is available at the BS
and/or UEs.

An overview of the general principles involved in the design and imple-
mentation of MIMO communication systems have been studied in Chapter 2.
The mathematical model for different MIMO systems were presented, deduc-
ing the expressions of the capacity, when the channel is known and unknown
at the transmitter side and considering both deterministic and random chan-
nels. A review of the channel characterization and estimation schemes were
also included. The most important linear and non-linear detection techniques,
existing in the literature, have been presented, as well as the linear precoding
methods employed at the base station for mitigating the MUI.

In Chapter 3, we have developed a procedure to perform the transmit
antenna selection, aiming at the maximization of the energy available for de-
tection at each UE. Consequently, appropriated metrics on which the selection
is based have been proposed for both cases, when ZF and MMSE precoding
techniques are employed in the BS. We have also introduced the ITES algo-
rithm, that significantly reduces the search space and it is able to achieve a
BER performance close to the optimum exhaustive search selection. Moreover,
its computational complexity has been analyzed in terms of the number of
complex operations, that it involves.

An extension of the procedure proposed for the receive antenna selection
case was presented in Chapter 4, where it was assumed that the BS is in
charge of selecting the most suitable set of antennas employed for detection
at each user. A notification scheme to inform the BS selections to the users’
receivers was explored. It has shown a high effectiveness, yielding essentially
the same BER performance achieved when error-free notification was assumed.
A sub-optimum receive antenna selection approach was also addressed that
significantly reduces the problem complexity and shows fairly good BER
performance results.

The general case of the joint antenna selection, at the transmitter and
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receiver, that contemplates the combination of both strategies was examined in
Chapter 5 for the ZF precoding case. It was shown that this approach leads to
a reduction of the hardware complexity and achieves better results in term of
BER performance and capacity than executing the transmit and receive selec-
tion separately. We have also proposed suboptimal joint selection approaches
that reduce the search space and are able to achieve near optimal BER perfor-
mance. Simulation results, showing the performance of the proposed selection
approaches, have been presented.

Some suggestions for possible future works:

– The selection techniques presented here have been evaluated considering
perfect channel state information (CSI) available at the transmitter. The
performance of the proposed schemes could be analyzed for partial CSI
knowledge, obtained by employing channel estimation algorithms.

– To employ "water-filling" algorithm to find the optimum user energy
allocation. It can be considered the optimization of matrix E for a
given antenna pattern, obtained supposing uniform energy distribution
(E = I).

– To evaluate the BER performance and convergence rate of ITES, in
Massive MIMO scenarios, where BS is equipped with a substantially
high number of transmit antennas.

– The proposed selection schemes could be extended to systems where
non-linear precoding techniques, as Dirty Paper Coding (DPC) and
Tomlinson-Harashima Precoding (THP), are employed.

– A new search algorithm to find the optimum subset of antennas could be
developed using the Branch-and-Bound optimization method, which have
been employed to solve different problems, especially in combinatorial
optimization.
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