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Abstract

Sampaio, Raphael Araujo; Poggi de Aragao, Marcus Vinicius So-
ledade (Advisor); Vidal, Thibaut Victor Gaston (Co-Advisor). A 
Study on Ellipsoidal Clustering. Rio de Janeiro, 2018. 104p. 
Dissertação de Mestrado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.
Unsupervised cluster analysis, the process of grouping sets of points

according to one or more similarity criteria, plays an essential role in various
fields. The two most popular algorithms for this process are the k-means
and the Gaussian Mixture Models (GMM). The former assigns each point
to a single cluster and uses Euclidean distance as similarity. The latter
determines a probability matrix of points to belong to clusters, and the
Mahalanobis distance is the underlying similarity. Apart from the difference
in the assignment method – the so-called hard assignment for the former
and soft assignment for the latter – the algorithms also differ concerning the
cluster structure, or shape: the k-means considers spherical structures in the
data; while the GMM considers ellipsoidal ones through the estimation of
covariance matrices. In this work, a mathematical optimization problem
that combines the hard assignment with the ellipsoidal cluster structure
is detailed and formulated. Since the estimation of the covariance plays a
major role in the behavior of ellipsoidal cluster structures, regularization
techniques are explored. In this context, two meta-heuristic methods, a
Random Swap perturbation and a hybrid genetic algorithm, are adapted,
and their impact on the improvement of the performance of the methods
is studied. The central objective is three-fold: to gain an understanding of
the conditions in which ellipsoidal clustering structures are more beneficial
than spherical ones; to determine the impact of covariance estimation with
regularization methods; and to analyze the effect of global optimization
meta-heuristics on unsupervised cluster analysis. Finally, in order to provide
grounds for comparison of the present findings to future related works, a
database was generated together with an extensive benchmark containing
an analysis of the variations of different sizes, shapes, number of clusters,
and separability and their impact on the results of different clustering
algorithms. Furthermore, packages written in the Julia language have been
made available with the algorithms studied throughout this work.

Keywords
Pattern Recognition; Ellipsoidal Clustering; Regularization; Ran-

dom Swap; Genetic Algorithm;
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Resumo

Sampaio, Raphael Araujo; Poggi de Aragao, Marcus Vinicius Sole-
dade; Vidal, Thibaut Victor Gaston. Um Estudo Sobre Agru-
pamento Baseado em Distribuições Elípticas. Rio de Janeiro,
2018. 104p. Dissertação de Mestrado – Departamento de Informá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.
A análise de agrupamento não supervisionado, o processo que consis-

tem em agrupar conjuntos de pontos de acordo com um ou mais critérios de
similaridade, tem desempenhado um papel essencial em vários campos. O
dois algoritmos mais populares para esse processão são o k-means e o Gaus-
sian Mixture Models (GMM). O primeiro atribui cada ponto a um único
cluster e usa a distância Euclidiana como similaridade. O último determina
uma matriz de probabilidade de pontos pertencentes a clusters, e usa dis-
tância de Mahalanobis como similaridade. Além da diferença no método de
atribuição – a chamada atribuição hard para o primeiro e a atribuição soft
para o último – os algoritmos também diferem em relação à estrutura do
cluster, ou forma: o k-means considera estruturas esféricas no dados; en-
quanto o GMM considera elipsoidais através da estimação de matrizes de
covariância. Neste trabalho, um problema de otimização matemática que
combina a atribuição hard com a estrutura do cluster elipsoidal é detalhado
e formulado. Uma vez que a estimativa da covariância desempenha um pa-
pel importante no comportamento de estruturas agrupamentos elipsoidais,
técnicas de regularizações são exploradas. Neste contexto, dois métodos de
meta-heurística, uma perturbação Random Swap e um algoritmo híbrido
genético, são adaptados, e seu impacto na melhoria do desempenho dos
métodos é estudado. O objetivo central dividido em três: compreender as
condições em que as estruturas de agrupamento elipsoidais são mais bené-
ficas que as esféricas; determinar o impacto da estimativa de covariância
com os métodos de regularização; e analisar o efeito das meta-heurísticas
de otimização global na análise de agrupamento não supervisionado. Final-
mente, a fim de fornecer bases para a comparação das presentes descobertas
com futuros trabalhos relacionados, foi gerada uma base de dados com um
extenso benchmark contendo análise das variações de diferentes tamanhos,
formas, número de grupos e separabilidade, e seu impacto nos resultados de
diferentes algoritmos de agrupamento. Além disso, pacotes escritos na lin-
guagem Julia foram disponibilizados com os algoritmos estudados ao longo
deste trabalho.
Palavras-chave

Reconhecimento de padrão; Agrupamentos Elipsoidais; Regulariza-
ções; Random Swap; Algoritmos Genéticos;
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1
Introduction

The information through the internet is increasing more and more [3].
In 2018, just a minute on the internet can generate an overwhelming amount
of information, as presented in Figure 1.1, taken from Lewis and Callahan of
Cumulus Media. In a matter of a decade, the internet will completely change
the way that we do business and communicate, as forecast by an International
Data Corporation (IDC) study [4]: by 2025, the information generated will
grow up to 163 zettabytes, ten times the amount generated in 2016.

Figure 1.1: What Happens in an Internet Minute in 2018? [1]

New sources of information, aligned with the new technological capaci-
ties, have massively increased the number of the stored data [5], most of which
is in its raw format [6]. Therefore, one of the most significant challenges today
is to learn how to extract knowledge hidden in these complex raw datasets, a
field known as Big Data [7].

An article in the magazine The Economist, in 2017, claimed that data
is, in this century, what oil was in the last [8]. The statistics captured through
the usage of Big Data approaches are creating new infrastructures, businesses,
politics, and economics. On the other hand, it is almost impossible for humans
to analyze such massive data flows in practical times. The techniques to provide
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Chapter 1. Introduction 15

computers with the ability to capture useful statistics based on raw data is
known as Machine Learning [9].

A more formal definition, proposed by the regarded researcher Tom
Mitchell, states that: "A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with experience E"
[10]. In simple terms, a program learned when it could improve the performance
of a task by using previous experience.

Sometimes, to understand the large data sets is common to split the data
into homogeneous groups that have high similarity between its samples. In this
context, classification, or clustering, is a handy statistical tool for information
extraction. As a supervised learning technique, the goal of classification is to
construct a classification rule based on a training set where both characteristics
and class labels are given. Once obtained, the classification rule can then be
used for class prediction of new objects whose characteristics are available.
Unfortunately, the similarities based on which the classification rules are
constructed are subjective, leading to several different definitions. At the
same time, there are different methodologies in the vast literature of the field
[11, 12, 13].

Depending on how the data is presented, two main concepts can be
derived: the supervised; and the unsupervised clustering [14]. Supervised
clustering refers to the case where data is labeled, and the expected outcome of
the clustering method is previously known. Hence, supervised data is usually
used to train the clustering method, detecting the patterns, and then labeling a
newly encountered, yet unlabeled, pattern [15]. The Support Vector Machines
(SVM) [16] and Random decision forests [17] are two examples of popular
algorithms in supervised clustering.

When the data is not labeled, the classification is known as unsupervised
data learning. The input of the clustering method is the unlabeled data, and the
methodology behind it needs to find a similarity measure to split the data into
groups. Each cluster found must be meaningful and have similar characteristics
based on a given metric. The k-means [18] and Affinity Propagation [19] are
two examples of popular algorithms in unsupervised clustering.

The subject of a clustering method is a dataset, a collection of samples
where each has features. This features, in turn, can be encoded into different
data types. In order to apply most methods, these features are converted to
numbers following a consistent procedure.
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Chapter 1. Introduction 16

Figure 1.2: Visualization of a two-dimensional dataset. The shapes (square,
triangle and circle) represent the real outcomes.

In case the dataset has two features, it can be represented as a two-
dimensional figure, as can be seen in Figure 1.2, where each point represents
a sample, and its position on the chart is given by the numerical values
of its features, the shapes of the points indicating which class they belong.
While unsupervised algorithms are used when this information is not available,
datasets containing the real outcomes can be used to validate such algorithms.

The present work studies the class of clustering known as center-based
algorithms. It requires a fixed number of clusters specified a priori. For
instance, taking the dataset of Figure 1.2 as an example, three clusters could
be devised. The intention is to identify such clusters by its middle point or
centroid. Even though the widely used method in literature is the k-means [18],
a spherical metric algorithm, real data sets with a perfectly spherical shape are
not usual. Spheres, however, are particular instances of more general shape,
the ellipsis. Therefore, these shapes would be capable of better-approximating
clusters with more general shapes, resulting in an improved classification. The
contrast between shapes is a central issue of this study and Figure 1.3 depicts
the results of implemented algorithms using either metrics: spherical (Figure
1.3(a)) and ellipsoidal (Figure 1.3(b)).
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Chapter 1. Introduction 17

1.3(a): k-means. 1.3(b): Ellipsoidal method proposed.

Figure 1.3: Result of the the actual implementations of the methods, analyzing
the two possible shapes: spherical and ellipsoidal.

Since these problems are complex, to make them more accessible, the
algorithms usually perform local searches leading to a local (often non-global)
optimum. A better search in the solution space regarding results can be
done with meta-heuristics [20], which will henceforth be referred to as global
optimization efforts. This work adapts two meta-heuristics already applied in
spherical methods to improve the results of ellipsoidal methods: the Random
Swap [21]; and the Hybrid Genetic Algorithm [22].

In addition to the shapes and the search effort, a third definition of the
analyzed methods is of concern: soft or hard assignment. The hard assignment
involves the assignment of a sample to a single cluster. Soft assignment, on the
other hand, assigns probabilities of each sample belonging to either cluster.

The goal of this work is to review the concepts and techniques used in
the clustering analysis in order to propose ellipsoidal clustering methodologies.
We present a mathematical formulation of the hard assignments considering
the ellipsoidal shapes problem, from now on referred to as ellipsoidal minimum
sum-of-squares clustering (EMSSC). Furthermore, ellipsoidal heuristics, with
both hard and soft assignment, are proposed and compared. The proposed
algorithms adapted the two described meta-heuristics.

Since the identification of the clusters shapes uses covariance matrices,
when these are poorly estimated, the algorithms perform likewise. For this
reason, a concept called regularization, which can improve covariance matrices
estimation, is also tested and compared so that better results in ellipsoidal
algorithms can be obtained. Finally, an analysis of the circumstances where
ellipsoidal clustering algorithms supersede spherical ones is performed con-
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sidering all the fundamental concepts of classification. Several circumstances
involving these two shapes are also analyzed, such as the type of assignment
and the effort of a global optimization search.

All the algorithms were implemented purely on Julia [23] and are
available in packages.

This document is structured as follows: Chapter 2 presents the general
problem of clustering and three mathematical formulations; in Chapter 3 we
discuss the contributions in the literature and some fundamentals concepts
necessary to understand the proposed methodologies; Chapter 4 begins by
reviewing two ellipsoidal heuristics. Along with this heuristics, the proposed
methodologies gather some regularization concepts of the covariance matrices
and two meta-heuristics; Chapter 5 describes the benchmarks tests with
artificially generated and some datasets available public. There is a comparison
between the methods, their advantages, and disadvantages; Chapter 6 holds
the conclusions and some future works.
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2
Problem Statement

In this work, we define a dataset X as a collection of points X =
{~x1, ..., ~xn}. Each point ~xi = {x(1)

i , ..., x
(d)
i } is a sample and the dimension d

denote the number of features of this dataset. The representation of the entire
dataset is a matrix, n×d, of the number of points and the number of features.
The points of the dataset do not have its group label given a priori; the only
known information is the number of groups, k. The method has to learn a way
to infer a function that describes the structure of unlabeled data, and this is
known as unsupervised learning. The general problem of grouping data, into
k sets according to one or more similarity criteria is named clustering, and
each group is a cluster. Partitioning data into clusters is a powerful tool in
various fields of study [24], including pattern recognition, computer graphics,
and bioinformatics. It is important to notice that clustering analysis is not a
specific algorithm, but a general problem.

There are two ways to classify the points: hard and soft assignments. The
former estimates the probability of each point belonging to each cluster. The
latter assigns a classification to one and only one group without producing the
probability.

Due to subjectivity about what a cluster is, there are several formulations
in the literature, and each one can lead to a different solution [25]. However,
the main task of the algorithms remains the same: gather several samples into
clusters. The elements belonging to some cluster must have high similarity,
and those who belong to different clusters should have low similarity. The very
first challenge in this problem is to define a similarity measure to compare the
objects. Among the premises of similarity, some stands out.

– connectivity-based: seeks to build a hierarchy of clusters, using some
distance notion of relating points that are close to each other. The divisive
strategy starts with all the points belonging to a single cluster, and
new clusters are created by diving the existing ones. By contrast, the
agglomerative strategy starts with all the points belonging to its cluster,
and pairs of clusters merged into a new one.

– density-based clustering: works by assuming clusters in areas of high den-
sity of points. The most known density-based algorithm is the Density-
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Chapter 2. Problem Statement 20

Based Spatial Clustering of Applications with Noise, or simply DBSCAN
[26]. Introduced by Ester et al. in 1996, the paper was awarded the 2014
SIGKDD Test of Time for having a significant impact in the data mining
research community beyond the last decade [27].

– center-based: has a point (not necessarily a member of the dataset)
representing each cluster and assigns each point to the closest cluster
center based on distance criteria. This premise is very popular due to
the widespread k-means algorithm [28].

– distribution-based: instead of using a distance function, it fits a distribu-
tion model to define a probability to a point belonging to a cluster. These
methods usually take advantage of the correlation between the features.
The most popular one assumes Gaussian distributions and is known as
Gaussian Mixture Models clustering.

All these premises and principles reveal the multiple definitions which
a clustering problem can have. In this chapter, there is the revision of two
classical mathematical formulations of the problem, which are the minimum
sum of squares clustering and maximum likelihood estimation. In the end,
we describe a mathematical optimization formulation of a known problem:
ellipsoidal clustering with hard assignments, described in this work as the
ellipsoidal minimum sum of squares clustering.

2.1
Minimum Sum of Squares Clustering Problem

There are several ways to define a clustering problem, one of the most
common is the minimum sum of squares clustering (MSSC) problem [29]. The
problem is to assign a single group to each point, and it is also known as
the hard assignment problem. Since the problem is center-based, it defines
k centers µ1, ..., µk, and the objective is to minimize the sum of squared
distances between the samples to their respective cluster center. The MSSC is
a widely studied problem, and several algorithms to solve it are proposed in
the literature [30, 31, 32].

Let Si be a subset i of ofX and S = {S1, ..., Sk} denote all the k partitions
of X. The subsets represent the clusters, and so, they are disjoint (2-1) and
every sample belongs to a subset (2-2).

Si ∩ Sj = ∅ ∀i, j ∈ {1, ..., k} (2-1)
k⋃
i=1

Si = X (2-2)
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Now, we detail an optimization problem that seeks to cluster a dataset
using a hard assignment: Equation (2-3) describes the binary variable wi,j
which denote that each point can only belong to exactly one cluster.

wi,j =

 1 if the point xi belongs to the cluster Sj,
0 otherwise.

(2-3)

Given M = {~µ1, ..., ~µk}, Equation (2-4) describes the objective function
of MSSC problem, which is the cost of the k subsets that minimizes the sum of
squares of the i-th point to the center ~µj of his respective cluster j in a subset
Sj.

minimize
w,M

n∑
i=1

k∑
j=1

wi,j‖~xi − ~µj‖2 (2-4)

subject to
k∑
j=1

wi,j = 1, i ∈ {1, ..., n} (2-5)

wi,j ∈ {0, 1}, i ∈ {1, ..., n}, j ∈ {1, ..., k} (2-6)

Constraint (2-5) implies that each point belongs to one and only one
cluster. The objective function (2-4) has a product of two decision variables,
and therefore it is nonlinear and not convex. Due to the non-linearity of the
problem, classical techniques of optimization have difficulty trying to solve it,
taking a very long computation time. There is an alternative formulation of
the problem using a big M constant: the distance between a sample ~xi and
a cluster center ~µj, defined in the objective function (2-4), is now stored in a
variable di. So, a big M constant makes Constraint (2-9) always feasible for the
points that do not belong to that cluster. Let I = {1, ..., n} and J = {1, ..., k}:

minimize
w,M,~(d)

n∑
i=1

di (2-7)

subject to
k∑
j=1

wi,j = 1, i ∈ I (2-8)

di ≥ ‖~xi − ~µj‖2 −M (1− wi,j) , i ∈ I, j ∈ J (2-9)

di ≥ 0, i ∈ I (2-10)

wi,j ∈ {0, 1}, i ∈ I, j ∈ J (2-11)
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Several studies about this problem were made, producing an extensive
literature [33, 34, 35]. It is important to mention that the MSSC is an NP-Hard
problem [36]. However, if both k and d are fixed, the problem can be solved
exactly in O(ndk+1) time [37]. Among all the heuristics already developed for
this problem, the most popular is the k-means [38].

2.2
Maximum likelihood Estimation

Besides minimizing the sum of squares between the points and their
respective cluster, there is another traditional methodology that uses a different
objective function, called maximum likelihood estimator (MLE) [39]. This
section details the formulation of the clustering problem using MLE.

The first fundamental concept for defining the likelihood function is
the probability distribution function: a probability function of a continuous
random variable, in statistics, is a function that describes the odds of a random
outcome, given a model parameter. On the other hand, a likelihood function
describes the plausibility of the model parameters, given a specific observed
point.

Figure 2.1: Probability and likelihood relationship.

Figure 2.1 shows the relationship between the probability and the like-
lihood functions: if we have a statistical model and a probability distribution
that describes that model, then that probability function can be used to gener-
ate the samples of the model. On the other hand, instead of generating random
samples from an existing model, the required is the opposite: find a model that
explains the empirical data, in this case, we use a likelihood function. The use
of these two functions depends how is the desired approach, after all, proba-
bility and likelihood use the distribution function fo a random variable.

Assuming that the sample set X = {x1, ..., xn} of n points in IRd

are independent and identically distributed random variables (IID) where
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each sample xi is extracted from a probability distribution function f(xi|θi),
parameterized by θ, let the probability be defined:

P (X|θ) = f(x1, ..., xn|θ) = f(x1|θ) · · · · · f(xn|θ) =
n∏
i=1

f(xi|θ) (2-12)

Since the samples are independent, Equation (2-12) describes the defi-
nition of the joint probability distribution function, which is the product of
indexed terms. The likelihood function L of the θ parameters given the data
is the same as the probability of the data given the theta parameters, shown
in Equation (2-13).

L(θ|X) = P (X|θ) (2-13)

The estimation of the parameters in a statistical model usually uses
likelihood functions. Equation (2-14) describes that the best parameter values
that fit the given data are found such that they maximize the likelihood
estimation.

maximize
θ

n∏
i=1

f(xi|θ) (2-14)

Since Equation (2-14) is hard to differentiate, for computational conve-
nience, it is common to rely on the log of the likelihood function. The log is
a monotonic increasing, and the desired point is the maximum value. So the
maximum of the likelihood and log-likelihood occurs at the same parameters,
seen in Equation (2-15).

maximize
θ

n∏
i=1

f(xi|θ) → maximize
θ

n∑
i=1

log f(xi|θ) (2-15)

However, if there is more than one subpopulation within an overall
population, the data can have more than one statistical model, and then the
Mixture of Models concept can be applied. This concept uses a weighted sum
over the distributions to mixture these subpopulations. It can be, for example,
several densities or statistical models. Let M = {P1, ..., Pk} be a set of k
distributions and πi be the mixing weights, where πj ≥ 0 and ∑k

j=1 πj = 1.
Equation (2-16) is a convex combination of the components and Figure 2.2
shows an example of a mixture of 3 Gaussian distributions.
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k∑
j=1

πjP (X|θj) (2-16)

Figure 2.2: Example of a Mixture of Models of Gaussian distributions 1, 2 and
3.

Let Θ = {θ1, ..., θk} and Π = {π1, ..., πk}, the formulation below combines
the mixture of models and the maximum likelihood estimator, resulting in k
parameters θ and π.

maximize
Θ,Π

n∑
i=1

log
 k∑
j=1

πjfj(xi|θj)
 (2-17)

subject to
k∑
j=1

πj = 1 (2-18)

πj ≥ 0, j ∈ {1, ..., k} (2-19)

When there is just one distribution, analytical expressions found the pa-
rameters of MLE directly. However, when there is more than one distribution,
the problem becomes not trivial to solve analytically. In 1977, Dempster et al.
[40] proposed the Expectation Maximization (EM), an iterative method to find
the MLE with several distributions. The methodology modifies the problem by
adding a new random variable: the classes Y , that is which distribution each
sample comes from, analogously, the clusters. The addition of a new random
variable can make the problem more difficult to solve directly. However, the
EM takes advantage of the new variable to split the algorithm into two steps,
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and make an iterative procedure to reach local optima of the MLE [41]. Since
the value of Y is unknown, we use the EM to maximize the expected value of
the likelihood function, describe in Equation (2-20).

maximize
θ

E
Y |X,θ

[L(θ|X, Y )] (2-20)

The first step is known as Expectation: it fixes the parameters θ and
finds the expected value of the likelihood function. Equation (2-21) details Q,
which is the function of likelihood, where θ(t−1) is the current parameters and
θ is the new parameters that we want to optimize.

Q(θ, θ(t−1)) = E
[
logP (X, Y |θ) | X, θ(t−1)

]
(2-21)

Equation (2-22) describes the Maximization step, which maximizes the
expectation evaluated in the previous step.

θ(t) = argmax
θ

Q(θ, θ(t−1)) (2-22)

The method iteratively attempts to estimate the distributions param-
eters, θ, and the cluster indexes, Y . Both steps improve the likelihood and
converge to local optimum [42]. The complete explanation of the EM with all
the proofs and details are in Bilmes et al. work [43].

A particular case of EM is when the distributions are Multivariate Gaus-
sians distributions, the problem is known as Gaussian Mixture Models (GMM).
Each Gaussian distributions have the mean vector µ and the covariance matrix
Σ as parameters. The interpretation of µ and Σ in clustering context is, re-
spectively, the cluster center and how the points spread in the space regarding
an ellipsoidal shape.

The whole concept applies to the clustering problem, where the observa-
tions are the dataset, and the k models are the clusters [44]. Unlike MSSC, the
MLE does not use hard assignments, it uses soft, which describes probabilities
of each point belonging to each cluster.

2.3
Ellipsoidal Minimum Sum of Squares Clustering Problem

Both heuristics, k-means and GMM, are very popular in the literature
[45, 46]. The former produces hard assignments to the samples considering
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a spherical metric. The latter treats the clusters as ellipsis while doing soft
assignments. However, the mixture of these two, ellipsoidal shapes with hard
assignments problem, are rarely used in practice.

The idea is using the same objective function and the hard assignments
of the MSSC problem, but remodeling the restrictions to distort the distances
using the ellipse’s eccentricity. Positive definite matrices can be used to define
these shapes. There are some descriptions of this problem in the literature
[47, 48, 49], but in this work, we formulate as a mathematical optimization
problem. We named this formulation as the ellipsoidal minimum sum of squares
clustering (EMSSC).

Throughout this work, we reference the positive-definite matrix, which
defines the ellipsoidal shape, as the shape matrix or Σ. Positive definite
matrices have interesting characteristics: it has only positive eigenvalues and
a unique Cholesky decomposition [50].

The objective function is the same as the MSSC. The difference is that
the Euclidean norm is replaced by a metric called Mahalanobis distance norm,
which distorts the distance using a positive definite matrix. Each cluster has
an associated matrix and distorts the distance from each sample to its center.
Equation (2-23) describes the Mahalanobis distance.

dM(~a,~b,Σ) =
√(
~a−~b

)>
Σ−1

(
~a−~b

)
(2-23)

Let ~λ = {λ1, ..., λd} be the eigenvalues of the matrix Σ, Equation (2-24)
describes the determinant of it, which is the product of the eigenvalues. This
determinant defines, in a certain sense, the volume of the ellipsoid

det Σ =
d∏
i=1

λi (2-24)

The shape matrices can not assume any value. If this happens, the
eigenvalues of one matrix will tend to infinity, the distances to that cluster
would be zero, and then all samples would be assigned to that cluster. To
solve this issue, the determinant of the covariance matrix needs to have a fixed
value.

Let P represent the inverse of the positive definite matrix Σ−1 and
~P = {P1, ..., Pk}. To precisely define the hard ellipsoidal problem, let X =
{~x1, ..., ~xn} denote the set of n points in IRd, M = {~µ1, ..., ~µk}, I = {1, ..., n}
and J = {1, ..., k}. The problem below is the EMSSC mathematical formula-
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tion.

minimize
w,M,~d, ~P

n∑
i=1

di (2-25)

subject to
k∑
j=1

wi,j = 1, i ∈ I (2-26)

di ≥ dM(~xi, ~µj, Pj)2 −M (1− wi,j) , i ∈ I, j ∈ J (2-27)

di ≥ 0, i ∈ I (2-28)

Pj � 0, j ∈ J (2-29)

detPj = 1, j ∈ J (2-30)

wi,j ∈ {0, 1}, i ∈ I, j ∈ J (2-31)

Constraint (2-26) is analogous to Constraint (2-8) from MSSC; the
variable ~µj remains the center of its respective cluster j; the variable di is the
cost of the sample i, that is the distance from the sample to the nearest cluster.
If a point xi does not belongs to the cluster j the Constraint (2-27) becomes
slack. Otherwise, di is the Mahalanobis distance of the point i to the cluster
j modified by the matrix Pj. Constraint (2-29) describes that the P must be
positive definite to keep the metric properties [51]. Finally, Constraint (2-30)
guarantees that the determinant of the covariance matrix is different from 0,
which prevents any cluster from disappearing.

2.4
Research Questions

Chapter 2 describes three mathematical formulations for the clustering
problem: MSSC, MLE, and EMSSC. The scalability and simplicity of the
k-means algorithm made the MSSC one of the most used formulations to
solve the unsupervised clustering problem. However, the ease of implementing
this heuristic comes with the limitation of using spherical shapes. The GMM
clustering, which has the MLE as the objective function, also has an essential
role in literature. It is the state of the art when it is desired to use ellipsoidal
shapes with soft assignments. The third and last formulation is the EMSSC,
which have a few works in the literature, but in this work, we formulate as a
mathematical optimization problem. This formulation makes hard assignments
and generalizes the MSSC problem to consider ellipsoidal shapes.

Among the three formulations, two aspects stand out: the format of the
clusters and the type of assignment. From these aspects, we raise two questions.
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The first is under what conditions an algorithm considering ellipsoidal shapes is
more advantageous than one that only considers spherical. The other question
is about the type of assignment. A careful comparison between the formulations
of these problems still lacks in the literature. This work highlights the qualities
and defects of each one, with several and extensive benchmark tests with both
artificial and real datasets.
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3
Fundamentals and Literature Review

The three formulations discussed in the last chapter deal with two
concepts of the clustering problem: type of classification (hard and soft
assignment) and the shape of clusters (spherical and ellipsoidal). However,
ellipsoidal problems have more degrees of freedom because of the estimation of
shape matrices. Having more parameters can make the problem more difficult
to solve.

A single local search to find a local optimum, which is a solution where no
improving neighbors are available, may not be good enough, especially when
the solution space is huge. We want to design an algorithm that explores the
search space in a way to provide a sufficiently good solution for the problem. A
meta-heuristic is a high-level algorithm aimed at implementing a solution space
search strategy, possibly mixing different heuristics, in order to find better
quality solution hopefully quasi-optimal. Two meta-heuristics are tailored to
improve the local search: a random swap and a hybrid genetic algorithm.
Therefore, we discuss the global optimization effort along with the shapes
and assignment analysis throughout this chapter. In the last section of this
chapter, we revise and summarize the methods.

3.1
Hard x Soft Assignment

There are two possible classification types: hard and soft assignments.
This choice affects the assignment type of samples. When a classifier is soft,
it estimates the probability γi,j an observation i has to belong to cluster j.
The probabilistic model gives the power to express uncertainty about the
assignment of each point. Equation (3-1) describes the probabilities ~γi of the
point i.

~γi = {γi,1, ..., γi,k}, γi,j ≥ 0 ∀ j ∈ {1, ..., k} and
k∑
j=1

γi,j = 1 (3-1)

The conventional hard classifier targets the classification without pro-
ducing the probability estimation, i.e., each object belongs to one and only
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one cluster. According to Liu et al. [52], this classifier tends to work better
on datasets that are well separable. On the other hand, the soft classification
tends to have better results when the underlying conditional class probability
function is relatively smooth. There are some hard versus soft comparisons
in literature, but when it comes to ellipsoidal clusters, there are almost none.
This lack in the literature is one of the analyzed issues in this work.

Depending on the application or method, one may be more appropriate
than the other. During this work, we observe the situations that one is worth
more than another and evaluate the accuracy of each assignment type with
different methods.

3.2
Spherical x Ellipsoidal Clustering

The use of spherical shapes, as in the MSSC problem, is widespread
in clustering algorithms. The k-means heuristic has a straightforward imple-
mentation and is relatively cheap to compute. However, the formulation as-
sumes that the points are spread as spherical distributions, even though not
all datasets have the dispersion of points that way.

Since real-world datasets with a perfectly spherical shape are rare,
generalizing this concept is essential. This generalization leads to another
center-based possible shape, the ellipsoidal. Figure 3.1 illustrates the actual
implementation of two algorithms: a spherical and an ellipsoidal.

3.1(a): k-means. 3.1(b): Ellipsoidal method proposed.

Figure 3.1: Result of the the actual implementations of the methods, k-
means has the limitation of only considering spherical shapes, while ellipsoidal
methods can be more adaptive.
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The shape matrix Σ defines the ellipsoidal shape of the cluster: while
its eigenvalues explain the spread of data in directions parallel to axes of the
feature space, its eigenvectors represent a rotation matrix of the ellipsoid [53].
Whereas spheres are particular cases of ellipsoids, this flexibility can increase
the space of solutions and perhaps improve the results.

The most common algorithm that has ellipsoidal shapes is the GMM clus-
tering method [54], which uses Multivariate Gaussian distributions and MLE
to identify the components of a probability density function that generated
the data. The parameters that need to be estimated are the average vector ~µ
and the shape matrix Σ of each cluster. The ~µ represents the centroid of each
cluster, and the matrix Σ correlates the samples, that contributes to defining
the distorted distances. Since the GMM assigns the probability of each point
belonging to each cluster, then it is a soft assignment method.

Algorithms that consider ellipsoidal shapes and have a hard assignment
are few in literature [47, 48] and practice, and this is the main difference
between the GMM and the EMSSC problem. The use of ellipsoidal shape
structure to the clusters gives more flexibility to the classification, and perhaps
better results can be obtained. This flexibility leads to a fundamental research
question in this work: to understand what circumstances ellipsoidal shapes are
more beneficial than spherical shapes.

As previously seen, there are two basic requirements to define the
structure of an ellipsoidal clustering: a metric that distorts the notion of
distance and a shape matrix, which captures the shape of a distribution. In
the next subsection, we revise the concept of Metric.

3.2.1
Metrics

There are several possible similarity criteria in clustering, which is a real-
valued function that quantifies the similarity between the two observations.
These similarity criteria can be a distance function. A distance function that
satisfies the metric properties is known as a metric.

Equation (3-2) describes that a metric, on a set X, is a non-negative
function between two points d : X × X → [0,∞) while satisfies the triangle
inequality (3-3) and the property of symmetry (3-4).
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d(~x, ~y) ≥ 0 (3-2)

d(~x, ~z) ≤ d(~x, ~y) + d(~y, ~z) (3-3)

d(~x, ~y) = d(~y, ~x) (3-4)

d(~x, ~y) = 0⇔ ~x = ~y (3-5)

The last property, Equation (3-5), means that if the points are the same, the
distance between the points is zero. This property is the identity of indis-
cernibles, and its presence is what distinguishes a metric from a pseudometric.

The commonly-used Euclidean distance has an intuitive appeal and
assumes that each point is equally important and disassociated from the
others. Equation (3-6) gives the Euclidean distance between two points in
a d-dimensional space. Its computational complexity is O(n).

dE(~x, ~y) =

√√√√ d∑
i=1

(xi − yi)2 (3-6)

Since the Euclidean distance does not correlate the points, it would be
essential to use a distance that considers the variance and the correlation
between the variables. In 1936, Mahalanobis [55] introduced the Mahalanobis
distance, which is a generalization of the Euclidean distance that considers a
covariance matrix Σ that distorts the space and considers different weights to
the points according to its distortion.

This distortion considers the covariance between the variables and is
direction-sensitive, in other words, allows that each variances direction can
have different sizes. Equation (3-7) defines the Mahalanobis distances, which
weights dimensions according to their covariances.

dM(~x, ~y) =
√

(~x− ~y)>Σ−1(~x− ~y) (3-7)

Notice that when the Σ is the identity matrix the Mahalanobis distance
reduces to the Euclidean distance. If Σ−1 is already given, the computational
complexity of the Mahalanobis distance is O(n2), otherwise the cost of the
inversion of a matrix using the naive method, Gaussian elimination, is O(n3).

3.2.2
Covariance Matrices

The covariance matrices are essential to estimate the shape matrices used
in the Mahalanobis distance, and along the algorithms explained in this work,
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they approximate the description of the distribution of points in space. This
subsection details how the estimation works.

Equation (3-8) reveals the matrices, which apply the concept of covari-
ance of two random variables X and Y is the expected product of their de-
viations from their individual expected values. The variance is the expected
value of the squared deviation from the expected value of a random variable X
(3-9). Equation (3-10) shows that the variance is the covariance of a random
variable with itself.

Cov( ~X, ~Y ) = E
[(
~X − E

[
~X
]) (

~Y − E
[
~Y
])]

(3-8)

Var( ~X) = E
[(
~X − E

[
~X
])2
]

(3-9)

Var( ~X) = Cov( ~X, ~X) (3-10)

Equation (3-12) express the covariance matrix, which is a measure of
how much the data spread across the feature space. The element in the i-th
row and j-th column, of that matrix shows the covariance between the i-th
and j-th elements of a random vector. When i = j, that is a diagonal entry,
the element represents the variance of that variable. The expected value of an
element can be seen simply as the mean (3-11).

~µ = E
[
~X
]

(3-11)

Σ =


E
[(
X(1) − µ(1)

) (
X(1) − µ(1)

)]
· · · E

[(
X(1) − µ(1)

) (
X(d) − µ(d)

)]
... . . . ...

E
[(
X(d) − µ(d)

) (
X(1) − µ(1)

)]
· · · E

[(
X(d) − µ(d)

) (
X(d) − µ(d)

)]


(3-12)

Equation (3-13) and Equation (3-14) are the empirical formulas of
variance and covariance, respectively. Consider n points, each point is d-
dimensional, and µ is the mean of those points.

~µ = 1
n
·
n∑
i=1

~xi (3-13)

Σ = 1
n
·


∑n
i=1

(
x

(1)
i − µ(1)

) (
x

(1)
i − µ(1)

)
· · · ∑n

i=1

(
x

(1)
i − µ(1)

) (
x

(d)
i − µ(d)

)
... . . . ...∑n

i=1

(
x

(d)
i − µ(d)

) (
x

(1)
i − µ(1)

)
· · · ∑n

i=1

(
x

(d)
i − µ(d)

) (
x

(d)
i − µ(d)

)


(3-14)
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The covariance matrix is positive semi-definite, meaning that Σ is sym-
metric and z>Σz ≥ 0 for every non-zero column vector z ∈ IRd. The inverse of
a covariance matrix Σ−1 is usually known as the precision matrix. The com-
plexity of the covariance matrix estimation is O(nd2).
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Figure 3.2: Different covariance matrices generated with the same eigenvalues
λ1 = 8 and λ2 = 1.

Figure 3.2 shows different dataset generated by four different covariance
matrices. Although the datasets are different, the eigenvalues of the matrices
on this example are the same, λ1 = 8 and λ2 = 1. The dimensions of the ellipse
are the same, the eigenvectors that rotate them.

Covariance matrices generated with the empirical estimator and with
insufficient observations are usually ill-conditioned, and when it happens, the
matrix can be singular and not invertible. The matrices can become flat with
an empty interior and degrade the methods that use it.

Due to the increasing number of parameters in the ellipsoidal methods,
the number of observations to estimate them need to be sufficiently large. If
they are not, the model can be over-fitted [56]. There is a method for this
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specific problem called regularization, which tries to avoid these imprecise and
unstable problems with the empirical covariance estimator.

3.2.2.1
Regularized Covariance Matrices

A technique known as regularization (or shrinkage) is designed to prevent
over-fitting of statistical models [57]. In the covariance matrices context, the
regularization is used to improve the estimator by reducing the condition
number, which is the ratio between the largest and the smallest eigenvalue.
The regularization, in turn, reduces the size of the hypothesis space and may
allow for better generalization.

The method computes the convex linear combination between the matrix
Σ and a scaled identity matrix [58]. When the number of samples is sufficiently
larger than the number of features, no regularization is necessary. However,
we can not guarantee that the number of observations is sufficient. The
estimation can produce ill-conditioned matrices and spoil the final results of
the clustering algorithm. Equation (3-15) describes the regularization of the
covariance matrix.

Σregularized = (1− δ)Σ + δ
Tr Σ
d

I (3-15)

The regularization constant is defined to keep the magnitude of the
original matrix. This constant is the average of the diagonal members of Σ,
given by Tr Σ

d
. The convex linear combination of the original matrix and the

identity matrix with the regularization constant on the diagonal maintains the
order of magnitude of the original matrix and regularizes it.

The empirical covariance matrix can be seen as a random variable, having
a variance and an average. If the samples change and the estimated matrix is
entirely different, the variance is large. So it is not robust to small changes in
the samples. The original matrix has a small bias but a large variance for the
observations. While the matrix Tr Σ

d
I has a large bias but a small variance. The

purpose of the regularization is to reduce the variance, allowing a larger bias.
The parameter δ controls the trade-off between the bias and the variance.

The default parameter δ value of the Shrunk methodology is 0.1, but
the choice of a good value may depend on an analysis of the observations.
There already exist methods in literature for choosing the δ parameters, and
we choose two of them in this work.

The first method is the Ledoit-Wolf Shrinkage (LW) [58], which tries to
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minimize the mean squared error between the estimated and the real covariance
matrix. Due to the extensive formulations, we do not place the equations in
the text; they are accessible in the paper.

The second is the Oracle Approximating Shrinkage (OAS) [59], which
assumes that the data came from a Gaussian distribution. The work of Chen
et al. says that the shrinkage coefficient δ reduces, even more, the mean squared
error compared to the LW regularization. Equation (3-16) is the formula that
computes the δ in OAS methodology.

δOAS = min
1, (1− 2/d) Tr (Σ2) + Tr2 (Σ)

(n+ 1− 2/d)
[
Tr (Σ2) + Tr2 (Σ) /d

]
 (3-16)

Figure 3.3 reveals the behavior of the covariance estimation of each
method: the empirical, the Shrunk, the LW and the OAS regularizations.
It is clear that when there are enough points, these regularizations are not
necessary. However, when the number of points is not enough, regularization
make the matrices more stable and well conditioned.
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Figure 3.3: Behavior of regularized covariance estimations.

The regularization techniques present in this section are all variants of
computing a convex combination between an empirically obtained covariance
matrix and a scalar multiple of the identity matrix. These methods have an
interpretation regarding the eigenvalues: the eigenvalues of the regularized
matrices are eigenvalues of the empirically obtained matrices summed of a
positive constant. Therefore, we can interpret the regularization procedure as
setting lower bound on the eigenvalues of the covariance matrix.

To explain the algebraic behavior of eigenvalues in regularization we
define and review some concepts: let A be a d × d covariance matrix, I be
a identity matrix and λ = {λ1, ..., λd} be a set of eigenvalues of A, present
in Equation (3-18). The λi is an eigenvalue of A if and only if there is
an eigenvector v 6= 0 that satisfies Av = λv. Equation (3-17) presents the
decomposition of matrix A where D is a matrix with the eigenvalues of A in
its diagonal and V is a matrix with the eigenvectors of A in its columns.
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A = V DV > (3-17)

eigenvalues(A) = {λ1, ..., λd} (3-18)

Let α be a scalar which multiplies the matrix A, express in Equation (3-
19). Equation (3-20) shows that if α multiplies the matrix A, their eigenvalues
are scaled by α too.

αA = αV DV > = V αDV > (3-19)

eigenvalues(αA) = {αλ1, ..., αλd} (3-20)

The scaling of the eigenvalues can be shown with the characteristic
polynomial too. Let c be a non-negative scalar, Equation (3-21) and Equation
(3-22) define the characteristic polynomial of A and αA, respectively.

pA(t) = det (tI − A) = c
d∏
i=1

(t− λi) (3-21)

pαA(t) = det (tI − αA) = c
d∏
i=1

(t− αλi) (3-22)

To show the translation of the eigenvevalues of A, let β be another scalar.
Equation (3-23) describes the characteristic polynomial of A + βI. Equation
(3-24) presents the relation between Equation (3-21) and pA(t− β).

pA+βI(t) = det (tI − A− βI) = det ((t− β) I − A) = pA(t− β) (3-23)

pA(t− β) = c
d∏
i=1

(t− β − λi) = c
d∏
i=1

(t− (λi + β)) (3-24)

Finally, the eigenvalues of the translation of A by β are also translated
by β, as shown in Equation (3-25).

eigenvalues(A+ βI) = {λ1 + β, ..., λd + β} (3-25)

The last step is mixing both scaling and translation. The scalar α scales
and β translatesA. Equation (3-26) describes the characteristic polynomial and
Equation (3-27) describes the relation between Equation (3-21) and pαA(t−β).
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pαA+βI(t) = det (tI − αA− βI) = det ((t− β) I − αA) = pαA(t− β) (3-26)

pαA(t− β) = c
d∏
i=1

(t− β − αλi) = c
d∏
i=1

(t− (αλi + β)) (3-27)

Equation (3-28) presents the eigenvalues of A scaled by α and translated
by β.

eigenvalues(αA+ βI) = {αλ1 + β, ..., αλd + β} (3-28)

3.3
Local x Global Optimization

A continuous function f , defined on a domain X, has a local minimum
at p if there is an open set I containing p that f(p) ≤ f(x) ∀x ∈ I. The local
maximum is analogous, however the point is where f(p) ≥ f(x) ∀x ∈ I. These
points are known as local optimum. Another definition to the local optimum
is a solution with the best value within its neighboring solutions. On the other
hand, a global optimum is a solution with the best value among all domain,
that is all the feasible solutions.

The algorithms that reach a local optimum are known as local searches.
Blum et al. [60] describes local search as algorithms that start from some initial
solution and iteratively try to replace the current solution by a better solution
in an appropriately defined neighborhood of the current solution. The popular
algorithms k-means and GMM are local searches. They are sensitive to starting
points, and they can get stuck easily in a local optimum. These algorithms are
very dependent on the seeds, and bad initial solutions can lead to sub-optimal
solutions or a poor convergence rate. To improve the results, the algorithms
repeat the local search from different initial points and keep the best solution.
However, there are smarter ways of improving a solution using meta-heuristics.

Meta-heuristics are methodologies that orchestrate the local searches and
higher level strategies to escape from local optimum and reach better solutions
[20].

A simple method which improves solution space search is the Iterated
Local Search (ILS) [61]. The idea is to apply a perturbation on the current
local optimum, trying to move to a different solution. This perturbation needs
to be strong enough to lead the next local search to a different local optimum,
but not so much to preserve the information gained in the past search. Figure
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Figure 3.4: Iterated Local Search: the red arrows means the perturbations.

3.4 is an example of a global search using ILS. When the search reaches a local
optimum, there is a perturbation that tries to escape from this solution.

The application of the ILS concept to cluster problems, using the k-
means algorithm, is known as Random Swap [62]. The design of this algorithm
follows the simple idea of ILS: when the local search finds a solution apply the
swap, which changes the position of one random exiting cluster to a random
point in the dataset. These cluster centers are the new starting points of a new
local search. The algorithm rejects the solution if its worse than the best one.
Algorithm 1 illustrates and shows how simple is the random swap.

Algorithm 1 Random swap clustering algorithm
1: Initialize the solution c
2: for T times do
3: Generate a solution c′ by perturbing c
4: Apply k-means on c′
5: if the solution c′ is better than c then
6: Set c′ as best solution c
7: end if
8: end for
9: return best solution c

Another way to search for the global optimum is with genetic algorithms
(GA), which is a meta-heuristic that aims to generate high-quality solutions
based on the process of natural evolution. The process starts with an initial
population of solutions, the algorithm selects two parents and apply a crossover
to generate the offspring. After that, the algorithm modifies the offspring using
a mutation operator. When the population exceeds, the algorithm applies a
survivors operator to keep the population bounded. The process keeps evolving
until reaches a maximum number of generations.
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A hybrid genetic algorithm for the k-means problem, called HG-means,
was proposed by Gribel et al. [22]. The proposed algorithm seeks to combine
the k-means local improvement procedure with the problem-tailored crossover,
mutation and diversification operators. The general structure of the algorithm
follows the simple workflow:

– Create an initial population of solutions.
– Select the parents using a binary tournament, which selects two random
individuals and keeps the one with the best fitness.

– Apply the crossover operator to create a new individual, by mixing two
individuals.

– Apply the mutation operator by randomly perturbing the solution of the
created individual.

– Enhance the produced individual with the local search algorithm (k-
means).

– Select the survivors for the propagation of the population.

Both proposed algorithms, k-means with Random Swap and HG-means,
can efficiently escape from local optimum and find better solutions.

3.4
Summary

The last sections describe some important attributes, summarize and
make a clear analysis of the algorithms. Table 3.1 organizes in each row the
fundamental attributes. Table 3.2 shows in its columns the attributes of the
methods and in its rows, some algorithms of the literature.

Cluster Shape

1 Spherical
2 Ellipsoidal with empirical covariance matrix.
3 Ellipsoidal with Shrunk covariance matrix.
4 Ellipsoidal with Ledoit Wolf covariance matrix.
5 Ellipsoidal with OAS covariance matrix.

Assignment
6 Hard assignment of the observations classes.
7 Soft assignment of the observations classes.

Optimization Effort
8 Single local search.
9 Random Swap meta-heuristics.
10 Hybrid Genetic Algorithm meta-heuristics.

Table 3.1: Attributes of the analysis.
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The cluster shape is at the top of Table 3.1: it can be the standard
spherical (Attribute 3.1.1) or the ellipsoidal. In this case, there are four possible
methods for estimating the covariance matrix: the empirical (Attribute 3.1.2),
the shrunk (Attribute 3.1.3), the Ledoit Wolf (Attribute 3.1.4) and the OAS
(Attribute 3.1.5). There are only two assignment options: the hard (Attribute
3.1.6) and the soft (Attribute 3.1.7). The optimization effort is also analyzed:
a single local search (Attribute 3.1.8) and two procedures for improving the
solution with the application of the local search: the Random Swap meta-
heuristics (Attribute 3.1.9) and a hybrid genetic algorithm (Attribute 3.1.10).
Table 3.2 has in each row a different method, and in each column, there is a
feature that is potentially present.

Algorithm

1 2 3 4 5 6 7 8 9 10

Shape Asg. Opt.

Sp
he
ric

al

Ellipsoidal

H
ar
d

So
ft

Lo
ca
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ea
rc
h
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an

do
m

Sw
ap
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yb

rid
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en
et
ic

Em
pi
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al

Sh
ru
nk

Le
do

it
W
ol
f

O
A
S

a k-means [18] × × ×
b k-means++ [63] × × ×
c k-means ellipsoidal [47, 48] × × ×
d k-means with RS [62] × × ×
e HG-means [22] × × ×
f c-means [64] × × ×
g GMM [54] × × ×
h RGMM [65] × × ×
i RGMM with LW [66] × × ×
j RSEM [67] × × ×
k GAEM [68] × × ×

Table 3.2: Summary of the methods and its attributes.

All the following methods are an application of the EM algorithm, which
is an efficient iterative procedure to compute the MLE [69]. The algorithm has
two main procedures: the Expectation and the Maximization step. The former
fed the observations into the distribution model, and the latter maximizes the
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likelihood function under the assumption of the expectation step. After some
iterations, the EM algorithm is guaranteed to converge to a local optimum
monotonically [41].

The most popular statistical model of EM is the GMM (Method 3.2.g),
where the models are multivariate Gaussian distributions [54]. So it uses
ellipsoidal shape structure to the clusters, giving it more flexibility, and
Gaussian distributions representing the probabilities of the soft assignments
for each different group. Let the points of the dataset X = {x1, ..., xn} ∈ IRd

and the k initial clusters centers ∈ IRd be the initialization parameters. The
Expectation step updates the ownership weights (soft) of each point ∈ X, while
the Maximization step recomputes the weighted clusters centers, the weighted
covariances matrices, and the mixing weights variables. The improvements
made by the iterative process leads to the convergence of a local optimum.

The standard k-means (Method 3.2.a) proposed by Lloyd [18] is one of
the most popular clustering tool used in scientific and industrial applications
[70]. K-means is the simplest heuristic that tackles the MSSC problem. It starts
with random initials clusters centers, and the algorithm improves the objective
function by reassigning each point to a cluster and re-computing each cluster
center. The Euclidean distance is used as the similarity measure [37]. That is
why the shapes of these clusters are spherical. It is given the same importance
to all the points, and there is no distortion of the distance. The k-means has a
hard assignment, i.e., assigns each point to exactly one cluster. The algorithm
is a two-step procedure: the assignment step makes a hard classification of
each point in X to a group with the nearest (Euclidean distance) clusters
centers, and the update step recomputes the clusters centers, assuming that
the assignment found in the previous step is correct. The assignment step fixes
the clusters’ centers µ and seeks to optimize the subsets S, while the update
step is the opposite: fix the subsets S and optimize the clusters’ centers µ.
These steps iteratively refine the solution until it finds a local minimum. The
complexity k-means’ Lloyd’s algorithm is O(iknd), where i is the number of
iterations until convergence.

The solution convergence of the k-means is sensitive to their initial
clusters centers. The k-means++ (Method 3.2.b), proposed by David Arthur
[63], smartly select the initial cluster centers to speed up convergence and the
accuracy of the results.

The k-means ellipsoidal (Method 3.2.c) is the classical k-means algorithm,
but the Mahalanobis is used instead of Euclidean distance. In 2005, Cerioli
[47] described the simple algorithm at a high level without benchmark tests.
The author points out that the ellipsoidal clustering field can generate good
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results and encourages further research in this field. In 2014, Esteban [48] built
an adaptive Mahalanobis k-means algorithm with a geosciences application.
Although some authors published this method, the ellipsoidal hard assignment
version is not public implemented and is not in the main packages of machine
learning, such as sklearn [71]. The general heuristic is a k-means heuristic
generalization with the Mahalanobis distance distortion with Σ covariance
matrix associated with each cluster. The algorithm has two steps: assignment
and update. The former makes hard classifications of each point ∈ X to a
group with the nearest (Mahalanobis distance) clusters centers, and the latter
recomputes the centers and the empirical covariance matrices of each cluster.

The k-means with random swap (Method 3.2.d) is the standard k-means
wrapped with the random swap meta-heuristics, and the HG-means (Method
3.2.e) is the hybrid genetic algorithm with k-means as local search.

The Fuzzy c-means algorithm (Method 3.2.f) was initially developed by
Dunn in 1973 and tries to solve the MSSC problem. The algorithm is very
similar to k-means, but rather than hard assignments, the proposal is to make
it soft giving to each point and cluster a weight. The algorithm has two steps:
the first computes the ownership weights (soft) of each point ∈ X and the
second updates the weighted clusters centers.

In 2002, Dundar et al. [65] improved the results of GMM using a regu-
larization after the empirical estimation of the shape matrix. The application
of this regularization in GMM is known as RGMM (Method 3.2.h).

In 2013, Halbe et al. [66] introduced the use of adaptive α in the
regularization of covariance matrices. In their work, the shape matrices were
regularized using the LW methodology (Method 3.2.i). Moreover, their work
has shown a significant improvement of results by using these matrices.

In 2012, Zhao et al. [67] proposed the application of RS using the EM
algorithm, and it was called the random swap EM (RSEM) algorithm. The
RSEM performs T iterations and in each iteration the p component is removed
(3-29) and added to a new position (3-30), represented with the data point q
(3-31). Both indices are chosen using an Uniform distribution.

p = U (1, k) (3-29)

q = U (1, n) (3-30)

In the swap operation, only the cluster center is changed (3-31). The
others parameters, shape matrix (3-32) and weights (3-33), are kept the same
as the previous iteration, to maintain the same magnitude of the previous
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iteration.

~µp = ~xq (3-31)

Σp = Σb
p (3-32)

πp = πbp (3-33)

The RSEM framework is described below in Algorithm 2, and as in the
original RS algorithm, keeping the best current solution.

Algorithm 2 RSEM Algorithm
1: Initialize solution
2: for T times do
3: Perturbation
4: Normalize the weights π to sum 1
5: Expectation Maximization
6: if the solution is better then
7: Set the best solution
8: end if
9: end for

10: return best solution

In 2005, Pernkopf et al. [68] proposed another meta-heuristics for the
GMM: a genetic algorithm. Along with some definitions, one of the highlights is
the recombination of crossovers which is made using the single-point crossover
[72, 73].

It is clear looking at Table 3.2 that there are some missing algorithms.
Many of the possible configurations have never been tested in the literature.
We propose, in the following section, some missing methods.
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Solution Approaches

This chapter describes two ellipsoidal clustering local searches, a soft and
a hard one, along with three possibilities of shape matrices regularization. In
the last sessions of the chapter, two meta-heuristics are proposed to improve
the solution: a random swap perturbation and a hybrid genetic algorithm.

4.1
k-ellipses Clustering

The k-ellipses (KE) heuristic finds a local optimum of the EMSSC
problem. The designed method seeks to identify beyond the round shapes;
it generalizes to adapt the eccentricity of the ellipse. The basis of the designed
method is the k-means. That is, it has the two steps: assignment and update.
The former fixes the shapes and centers of the clusters and seeks to optimize
the assignments, and the latter fixes the assignments and optimize the clusters’
shapes and centers.

The general structure is to initialize the solution and iterate the reas-
signment and the re-computation of the centers and shapes steps.

Algorithm 3 k-ellipses Clustering
1: Initialize solution
2: while the stopping criterion has not been met do
3: Compute the d Mahalanobis distances
4: Assigns the cluster of each sample w
5: Recompute the clusters centers µ
6: Recompute the shape matrices Σ
7: end while
8: return solution

Equation (4-1) describes the objective function of EMSSC problem:
minimize the sum of squared distances between the points to their respective
cluster center.

minimize
n∑
i=1

k∑
j=1

wi,j · di,j (4-1)
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4.1.1
Initial Solution

The algorithm generates randomly initial clusters by assigning a different
data sample to each cluster, according to a discrete uniform distribution. The
starting shape of each cluster is spherical, so the shape matrices are d × d

identity matrices.

4.1.2
Distances

The first step of the iteration routine is to compute the distances between
the points and the clusters. Those values are stored in the n× k matrix d. For
each cluster, there is a shape matrix associated with it, and these modify the
distance. So, the value of di,j is the Mahalanobis distance between the data
sample ~xi and the cluster center ~µj, considering the shape matrix Σj.

di,j =
√

(~xi − ~µj)>Σ−1
j (~xi − ~µj) (4-2)

However, it is not necessary to invert the Σj matrix to obtain distances,
for this, it is necessary to obtain the Cholesky decomposition of the shape
matrix.

Σj = Lj · L>j (4-3)

The matrix Lj is a lower triangular matrix with real and positive diag-
onal entries. Since Σj is a symmetric positive-definite matrix, it has a unique
Cholesky decomposition [74]. There are several mathematical operations ap-
plied to Equation (4-2) rearranging it to Equation (4-8).

d2
i,j = (~xi − ~µj)>Σ−1

j (~xi − ~µj) (4-4)

d2
i,j = (~xi − ~µj)>

(
LjL

>
j

)−1
(~xi − ~µj) (4-5)

d2
i,j = (~xi − ~µj)>

(
L>

−1

j L−1
j

)
(~xi − ~µj) (4-6)

d2
i,j =

(
L−1
j (~xi − ~µj)

)> (
L−1
j (~xi − ~µj)

)
(4-7)

di,j = L−1
j (~xi − ~µj) (4-8)

Since the matrix Lj is a lower triangular matrix, it is possible to find
the distance between the sample ~xi and the cluster center ~µj computing just a
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forward substitution in Lj [50], present in Equation (4-9). The computational
complexity of a forward substitution is O(n2) [75].

Ljdi,j = ~xi − ~µj (4-9)

Even with similar computational complexity, the linear solution produces
more stable matrices than the inverse.

4.1.3
Assignment Step

The assignment step is the same as the k-means because the clusters’
shapes have already distorted the distances. The sample ~xi belongs to a cluster
j if its the smallest distance among all clusters’ centers.

The matrix w have in its elements the hard assignments values. A sample
~xi belongs to a cluster j, the position in the matrix is 1, otherwise is 0.

wi,j =

 1, di,j ≤ di,l ∀ l ∈ {1, ..., k}
0, otherwise.

(4-10)

4.1.4
Update Step

The update step changes the clusters’ parameters, which are the clusters’
centers and shape matrices. Equation (4-11) represents the center of mass of
the points belonging to the cluster.

~µj =
∑n
i=1wi,j~xi∑n
i=1wi,j

(4-11)

The last step of the iteration is to update the shape of the clusters, i.e.,
the computation of the new shape matrices. The description of the workflow
summary of the shape matrix estimation is in Algorithm 4.

To identify the ellipsoidal shapes, as previously described, is necessary
to compute the empirical shape matrix by estimation the covariance matrix.
Equation (4-12) represent each element of the shape matrix, shown in Equation
(4-13). The current matrix multiplication techniques, such as those present
in BLAS library [76], have a dedicated implementation and makes use of the
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Algorithm 4 Recompute the shape matrices
1: for each cluster j do
2: Compute the empirical shape matrix
3: Regularize the matrix
4: Normalize the matrix
5: end for
6: return shape matrices

cache hierarchy. So, the matrix multiplication implementation can have a good
performance in practice.

cov(p,q)
j =

∑n
i=1wi,j

(
x

(p)
i − µ

(p)
j

) (
x

(q)
i − µ

(q)
j

)
∑n
i=1wi,j

(4-12)

Σj =


cov(1,1)

j · · · cov(1,d)
j

... . . . ...
cov(d,1)

j · · · cov(d,d)
j

 (4-13)

In the case of the sample amount in a cluster is less than d, the algorithm
sets the shape matrix as the identity. If even though the shape matrix is not
positive-definite, its forced by changing the eigenvalues to be at least a ε to
fix this numerical issues. Another problem is when a cluster has no samples,
to solve it the algorithm applies a Random Swap iteration to define the center
(which we present in Section 4.3.1). The regularization reduces these numerical
issues on the estimation of the shape matrix. After the estimation of the
empirical shape matrix, the algorithm can apply a regularization, and Equation
(3-15) describes it. In Chapter 5 we evaluate all the three regularization
methods.

If there are applications of regularization in the heuristic, the method is
called Regularized k-ellipses (RKE). The names of the RKE methods using
the regularizations are RKE (Shrunk), RKE (OAS) and RKE (LW).

The formulation of the EMSSC, in Chapter 2, has Constraint (2-30). This
constraint ensures that the matrices have a non-zero determinant, preventing
the clusters associated with these matrices from disappearing, satisfying the
constraint. The shape matrices are normalized after the estimation. Equation
(4-14) fixes the determinant of Σ in 1. Equation (4-15) is the application of
the property of determinant det(cA) = cn det(A) (for an n× n matrix A) [77]
to obtain the parameter α in Equation (4-16).
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det (αΣ) = 1 (4-14)

αd det (Σ) = 1 (4-15)

α = 1
(det Σ) 1

d

(4-16)

Equation (4-17) shows the normalization of the shape matrix, which is
the multiplication of α by the original matrix Σ.

Σnorm
j = αjΣj = 1

(det Σj)
1
d

· Σj (4-17)

4.2
Gaussian Mixture Models Clustering

Since the GMM is very important for this work, this section describes it.
We propose three modifications for the GMM. The first one is the application
of the OAS regularization; the other two are meta-heuristics which we explain
at the end of this chapter.

The GMM is a widely known algorithm in the literature [78, 79]. It
corresponds to a heuristic for the MLE problem. The GMM assumes that a
mixture of Gaussian distributions models the data.

k∑
j=1

πj N (X | ~µj,Σj) (4-18)

Equation (4-19) describes the multivariate Gaussian distribution, which
is the generalization of the one dimension normal distribution to the IRd.
Besides that, this distribution is non-degenerate because the shape matrix
Σ is positive definite.

N (~xi | ~µj,Σj) = 1√
(2π)d det Σj

exp
(
−1

2 (~xi − ~µj)>Σ−1
j (~xi − ~µj)

)
(4-19)

In addition to the clusters’ centers and shape matrices, GMM has two
other variables: the ownership and mixing weights. The mixing weights π are
the same as the mixture of models. The ownership weights, represented by the
variable γ, is a n× k matrix which represents the soft labels, the value γi,j is
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the probability of the sample xi belongs to cluster j. Algorithm 5 describes
the general structure of the GMM.

Algorithm 5 GMM Clustering
1: Initialize solution
2: while the stopping criterion has not been met do
3: Compute γ ownership weights
4: Recompute the mixing weights π
5: Recompute the clusters centers µ
6: Recompute the shape matrices Σ
7: end while
8: return solution

4.2.1
Initial Solution

In the same way as the hard version, the initial clusters centers are
randomly generated by assigning a different data sample to each cluster,
according to a discrete uniform distribution. The starting shape is spherical.

After setting the initial points, there is a hard assignment step to define
the initial ownership weights (4-20).

γi,j =

 1, di,j ≤ di,l ∀ l ∈ {1, ..., k}
0, otherwise.

(4-20)

The values of ~µ, Σ and π are initially updated using the maximization
step, the explanation of this step is in the following subsections.

4.2.2
Expectation Step

Given the current π, µ and Σ, this step computes the estimated ownership
weights of each sample belonging to each cluster. Equation (4-21) describes the
expectation step.

γi,j = πj N (~xi | ~µj,Σj)∑k
c=1 πc N (~xi | ~µc,Σc)

(4-21)
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4.2.3
Maximization Step

Given the ownership weights, the maximization step estimates the new
model by updating the clusters’ parameters π, ~µ, Σ, shown in Equation (4-22),
Equation (4-23) and Equation (4-24), respectively.

πj =
∑n
i=1 γi,j∑k

j=1
∑n
i=1 γi,j

(4-22)

~µj =
∑n
i=1 γi,j~xi∑n
i=1 γi,j

(4-23)

Σj = 1∑n
i=1 γi,j

n∑
i=1

γi,j (~xi − ~µj) (~xi − ~µj)> (4-24)

After the estimation of the empirical shape matrix, there is the regular-
ization, by applying Equation (3-15). The three regularizations previously seen
are used to improve the matrices estimation.

4.2.4
Convergence criterion

Each iteration increases the likelihood of the data, such that the method
is guaranteed to converge to a local optimum [44]. The GMM objective function
(4-25) is the likelihood objective function, described in the MLE problem (2-
19), with the Gaussian distributions.

maximize
n∑
i=1

log
 k∑
j=1

πj N (~xi | ~µj,Σj)
 (4-25)

If necessary, at the end of the algorithm, assign only one class to a sample.
It is possible to allocate each sample to it is the most probable class.

4.3
Meta-heuristics

The algorithms seen in the two previous sessions are local searches. These
methods can only improve the objective function, and therefore must terminate
in the first local optimum found.
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The ellipsoidal methods have many degrees of freedom, due to their
large number of parameters. Therefore, to improve the performance of the
results, we present four meta-heuristics based on two frameworks: the random
swap and the hybrid genetic algorithm. The framework differs according to
the type of assignment: a soft and hard random swap algorithm and a soft
and hard genetic algorithm. All meta-heuristics throughout this section allow
some deteriorations of the objective function at specific steps of the search.
Figure 4.1 shows that a single local search can get stuck in an unsatisfactory
local optimum. The meta-heuristics have a better solution space search and
can reach better results.

4.1(a): Single local search. 4.1(b): Meta-heuristic.

Figure 4.1: Example of the final results of a single local search and a meta-
heuristic of ellipsoidal methods.

4.3.1
Random Swap Ellipsoidal Clustering

The first version of the Random Swap is called Random Swap k-ellipses
(RS-KE) clustering. The algorithm follows the same idea as the RS framework
but applying the k-ellipses clustering local search instead of k-means. Equation
(4-26) and Equation (4-27) present the indices of the removed and added
cluster swap, respectively, using a uniform distribution.

p = U (1, k) (4-26)

q = U (1, n) (4-27)
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The new cluster center p is the sample of index q and the new shape
matrix is the identity, as can be seen in Equation (4-28) and Equation (4-29),
respectively. The shape matrix of the swapped cluster is set as an identity to
reset the shape to spherical.

~µp = ~xq (4-28)

Σp = Id×d (4-29)

Algorithm 6 defines the generic RS clustering. Among all the random
swap iterations, the method keeps the best solution, until it finds a better one.

Algorithm 6 Random Swap clustering framework
1: Initialize the solution c
2: for T times do
3: Generate a solution c′ by perturbing c
4: Apply clustering local improvement on c′
5: if the solution c′ is better than c then
6: Set c′ as best solution c
7: end if
8: end for
9: return best solution c

Analogously to RS-KE, the version of the GMM is called Random
Swap Gaussian Mixture Models (RS-GMM) clustering, and there is only one
difference between them: since the shape matrices of the GMM can assume
arbitrary values, when performing the random swap, a normalization of the
matrix is done to keep the magnitude. Otherwise, the matrices could become
smaller and smaller, and then some clusters would tend to disappear.

~µp = ~xq (4-30)

The new cluster center is the same as the RS (4-30), along with the
indices p (4-26) and q (4-27). As in the RS-HRE, there is a redefinition of the
cluster that is chosen to be reallocated, meaning the new shape matrix is the
identity matrix. However, do not modify the magnitude of the current clusters,
a mean of all the determinants of the shape matrices of the current clusters is
computed (4-31). Then the normalization of the matrix is done with this value
(4-32).
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size = 1
k

k∑
j=1

det Σj (4-31)

Σnorm
p = 1

(size)
1
d

· Id×d (4-32)

Figure 4.2 shows an example of an RS move in a hard ellipsoidal
methodology, each frame represents an instant of time, from left to right.

4.2(a): A cluster and data
sample are randomly se-
lected.

4.2(b): The algorithm swaps
the cluster to the selected
data sample and changes the
shape matrix to identity.

4.2(c): The algorithm makes
a local improvement using
the current solution.

Figure 4.2: Example of a Random Swap move in a hard ellipsoidal methodolo-
gies.

It is possible to apply the different regularizations by merely changing the
local search algorithm. The names of the RKE methods are RS-RKE (Shrunk),
RS-RKE (OAS) and RS-RKE (LW). So analogously, the ones using the RGMM
are RS-RGMM (Shrunk), RS-RGMM (OAS) and RS-RGMM (LW). Figure 4.3
is an example of the final results of a single local search and RS algorithm, the
meta-heuristic escape from the local optimum and performed better.
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4.3(a): Single local search. 4.3(b): Random swap (RS) algorithm.

Figure 4.3: Example of the final results of a single local search and a RS
algorithm, using the hard ellipsoidal formulation.

4.3.2
Hybrid Genetic Ellipsoidal Clustering

The basis of the hybrid genetic algorithm proposed in this work is the
HG-means framework [22]. Gribel et al. proposed the HG-means using the k-
means as the local search. In this work, we keep the main framework, but we
adapted the local search to the ellipsoidal methods: KE and GMM. Algorithm
7 presents the general work-flow of the HG-means.

Algorithm 7 Genetic algorithm framework
1: Initialize population
2: for T times do
3: Select parents p1 and p2
4: Generate an offspring θ from p1 and p2 (crossover)
5: Generate an individual θ′ by mutating θ (mutation)
6: Apply clustering local improvement on θ′
7: Add θ′ to the population
8: if population size = maximum size then
9: Select survivors

10: end if
11: end for
12: return best solution

The tuple of the array of clusters’ centers {~µ1, ..., ~µk} and the array of
shape matrices {Σ1, ...,Σk} represents a solution. Also, for the comparison of
solutions is considered the value of their respective objective function.
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After the generations of the initial population, there is the application of
the three operations, until satisfying a criterion. The first one is the selection,
which is the selection method of the parents of the new offspring; the second
one is the crossover of these parents, generating a new offspring; the last one is
the application of a mutation in this offspring. When the population exceeds
the maximum size, there is the application of the survivor selection phase
keeping the best individuals. The selection operator is the same as the HG-
means, with a binary tournament [80]. The binary tournament picks up two
random solutions, based on a uniform probability distribution, and selects the
one with the best fitness. The newly generated solution comes from these two
parents. Figure 4.4 shows an example of 2 selected parents.

4.4(a): First parent. 4.4(b): Second parent.

Figure 4.4: Example of 2 selected parents of a Hybrid Genetic Ellipsoidal
Clustering.

The crossover operator needs to match the centers of two parents
solutions to generate the offspring. To find it is necessary to solve a minimum
weighted bipartite matching. The actual implementation of the algorithm does
not consider parameter α presented in Gribel et al. [22]. Let G = (V,E) be
a complete weighted graph, V be vertex set and E edge set. The vertices can
be divided into two disjoint and independent sets X and Y . A bipartite graph
needs that every weighted edge in U connects a vertex in X to one in Y .
The minimum weighted bipartite matching is a bipartite graph in which the
edges weights sum is the minimum. The problem is solved using the Hungarian
algorithm [81]. After matching the two parents solutions, the algorithm chooses
the offspring’s clusters: the method selects each cluster among all the matched
pairs, with a uniform random selection. The offspring inherits each cluster
chosen, and it is the center and its respective shape matrix. Figure 4.5 shows
an example of an offspring generation using two selected parents.
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4.5(a): Selected parents. 4.5(b): Matched centers of se-
lected parents.

4.5(c): Offspring with the se-
lected clusters.

Figure 4.5: Example of the offspring generation.

The mutation operator is one random swap step, that is, one cluster is
relocated to another position, resetting its shape matrix. This operator is what
differentiates the soft genetic algorithm from the hard. After the mutation, the
algorithm uses the solution as the starting point for a local improvement until
it converges to a local optimum. Figure 4.6 shows an example of the mutation
step of an offspring.

4.6(a): Relocation of a cluster
center.

4.6(b): Cluster shape reset. 4.6(c): Application of a local
improvement at the current
solution.

Figure 4.6: Example of the mutation step.

The Hybrid Genetic K-ellipses (HG-KE) Clustering uses the KE as the
local improvement, and the RS-KE step for the mutation, leaving the new
identity matrix with the determinant equal to 1. On the other hand, the Hybrid
Genetic Gaussian Mixture Models (HG-GMM) Clustering uses the GMM as
the local improvement. The mutation operator is a step of RS-GMM, which
modifies the value of the determinant to maintain the magnitude of the shape
matrices of the clusters. In the same way as the RS, the regularized local
searches can be applied to the HG. The names of the RKE methods are HG-
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RKE (Shrunk), HG-RKE (OAS) and HG-RKE (LW). Also, the ones using the
RGMM are HG-RGMM (Shrunk), HG-RGMM (OAS) and HG-RGMM (LW).

4.4
Notation

The following tables summarize the notations of the proposed algorithms,
so that is easier to make comparisons in the Chapter 5. The right arrow → on
the right of specific rows indicates the variations of methodologies proposed
in this work. Table 4.1 is about the hard methods, and Table 4.2 are the soft
ones.

Algorithm

1 2 3 4 5 6 7 8 9 10

Shape Asg. Opt.

Sp
he
ric

al

Ellipsoidal
H
ar
d

So
ft

Lo
ca
lS

ea
rc
h

R
an

do
m

Sw
ap

H
yb

rid
G
en
et
ic

Em
pi
ric

al

Sh
ru
nk

Le
do

it
W
ol
f

O
A
S

K-means × × ×
RS-means × × ×
HG-means × × ×
K-means++ × × ×
KE × × ×

→ RS-KE × × ×
→ HG-KE × × ×
→ RKE (Shrunk) × × ×
→ RS-RKE (Shrunk) × × ×
→ HG-RKE (Shrunk) × × ×
→ RKE (LW) × × ×
→ RS-RKE (LW) × × ×
→ HG-RKE (LW) × × ×
→ RKE (OAS) × × ×
→ RS-RKE (OAS) × × ×
→ HG-RKE (OAS) × × ×

Table 4.1: Aliases of hard methods. The→ indicates the variations of method-
ologies proposed in this work.
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Algorithm

1 2 3 4 5 6 7 8 9 10

Shape Asg. Opt.

Sp
he
ric

al

Ellipsoidal

H
ar
d

So
ft

Lo
ca
lS

ea
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h

R
an

do
m

Sw
ap

H
yb

rid
G
en
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Em
pi
ric

al

Sh
ru
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do

it
W
ol
f

O
A
S

C-means × × ×
→ RS C-means × × ×
→ HG C-means × × ×

GMM × × ×
→ RS-GMM × × ×
→ HG-GMM × × ×

RGMM (Shrunk) × × ×
→ RS-RGMM (Shrunk) × × ×
→ HG-RGMM (Shrunk) × × ×

RGMM (LW) × × ×
→ RS-RGMM (LW) × × ×
→ HG-RGMM (LW) × × ×
→ RGMM (OAS) × × ×
→ RS-RGMM (OAS) × × ×
→ HG-RGMM (OAS) × × ×

Table 4.2: Aliases of soft methods. The → indicates the variations of method-
ologies proposed in this work
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5
Computational Experiments

In this chapter, we describe the computational experiments and detail
the results. We artificially generated the benchmark instances varying four at-
tributes: number of samples, number of features, number of clusters and sepa-
rability between the clusters (presented in Section 5.2). These four attributes
help to evaluate and identify the limitations of both existing and proposed
methods.

This work focuses on comparing the methods regarding their quality of
solutions. We left the comparisons regarding CPU time as future works. The
implementations are purely in Julia v0.6.4 [23]. The similarity measure to
compare the results is the Adjusted Rand Index (ARI).

The comparisons in this chapter analyze the three main differences be-
tween the fundamentals: hard times soft classification, spherical times ellip-
soidal shapes, and local times global optimization. We describe all the details
and differences between these algorithms features in Chapter 3. We benchmark
all the local searches in this work with ten single runs with different starting
points, keeping the best results. The meta-heuristics have only a single run.

5.1
Implementation Details

The meta-heuristic parameters are chosen based on superficial tests made
during the development of the algorithms. We left a better calibration study as
future works. The number of RS iterations chosen is 100. Also, the parameters
of HG are the following:

– Minimum population: 4.

– Maximum population: 10.

– Maximum number of iterations: 100.
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5.2
Datasets

A controlled testing environment is essential to this work. As we evaluate
several algorithms, the inconsistency of a real-world dataset could undermine
the analysis of the results. To reach a controlled testing environment, we
generated artificial datasets.

We generate artificial datasets using the clusterGeneration package [82]
in R programming language [83]. The package implements the proposed
methodology in Qiu et al. [84]. The measure of separation between two clusters
is the index J defined in another Qiu et al. work [85].

To compute the separation index, the method projects the points of
a cluster in a direction ~a. Considering the lower (Lj) and upper (Uj) 0.025
percentile of the projected cluster j in the direction ~a, Equation (5-1) describes
the quantile version of the separation index J between the clusters p and q.

Jpq(~a) = Lq − Up
Uq − Lp

(5-1)

Figure 5.1 shows an example of a lower and upper percentile of two
clusters in a direction ~a.

d2

d1

L1 L2U1 U2

a

1 2

Figure 5.1: Illustration of two clusters (1 and 2) with its lower (L) and
upper (U) percentiles in the direction ~a. The two measures d1 = L2 − U1
and d2 = U2 − L1 are necessary to compute the separation index, which is
J(~a) = d1

d2
= L2−U1

U2−L1
.

Equation (5-2) describes the optimal separation index J∗ab between two
clusters a and b, which is where the quantile version of the separation index is
maximized.

J∗pq = maximize
~a

Jpq(~a) (5-2)
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The algorithm produces for each cluster a Gaussian distribution with
two parameters: the average (cluster center) and covariance matrix (cluster
shape). Then, the algorithm spreads the clusters in a simplex mesh, and
choose the distributions parameters considering the separation index J . Figure
5.2 illustrates a simplex mesh of clusters in a two-dimensional space. The
neighboring clusters are those that have a single edge linking them.

Figure 5.2: Visualization of a two-dimensional simplex mesh. The package
allocates a cluster center in each vertex and scales edges’ size according to the
separability index. The neighboring clusters

After the generation of the elliptical distributions, the algorithm produces
the samples of each one of the k clusters. In this work, there are 4 parameters
to generate the instances:

– Number of clusters (k).

– Cluster size (m), that is, the number of samples per cluster (total number
of samples n = k ·m).

– Separability (c), which means the degree of separation J between a
cluster and its neighboring clusters. This index belongs to the range
[−1,+1]. The higher the index, more separated are the clusters.

– Number of non-noisy variables (d), which represents the features of the
observations in a dimensional space.

The other parameter used in the package does not vary according to
the instance: the minimum and maximum eigenvalues of the shape matrices.
The eigenvalues are randomly chosen with a uniform probability over the range
[1, 200]. Ultimately, these eigenvalues generate the shape of the cluster, because
they are the eigenvalues of the positive definite matrix that represents the
ellipsoidal shape.

Table 5.1 summarizes artificially created datasets. For each configuration,
we generate the indicated number of instances. For example, there are 100
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instances with the settings (n: 1000, k: 10, c: −0.26, d: 70) and 15 instances
with the settings (n: 2000, k: 20, c: 0.21, d: 40). There are two significant
groups of the generated data: the instances with 100 points per cluster and
those with 500 points. Those with smaller cluster size are to analyze the impact
of dimensionality, clusters number and separability; the remaining ones are to
analyze the impact of cluster size.

In
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um
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sa
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es

(n
)

Sa
m
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lu
st
er
s
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)

Se
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(c
)

N
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r
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fe
at
ur
es

(d
)

100 300 100 3 {−0.26,−0.10, 0.01, 0.21} {2, 5, 10, 20, 30, 40, 50, 60, 70}
100 1000 100 10 {−0.26,−0.10, 0.01, 0.21} {2, 5, 10, 20, 30, 40}
15 2000 100 20 {−0.26,−0.10, 0.01, 0.21} {2, 5, 10, 20, 30, 40}
100 1500 500 3 {0.01} {50, 75, 100, 125, 150}

Table 5.1: Parameters of the artificially generated instances.

This work analyses how the algorithms behave in simple datasets with
ellipsoidal shapes. We left the analysis of the performance in a very high
dimension or with a large number of clusters as future work. Figure 5.3
shows an instance that has only two features and three clusters, but spherical
algorithms perform poorly.
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5.3(a): K-means 5.3(b): RS-GMM (OAS)

Figure 5.3: A comparison between the actual implementation of the algorithms
showing that spherical methodolgies may have difficulty classifying instances.

5.3
Similarity Measure

During the tests, the results are compared to their correct classification
through the Adjusted Rand Index (ARI) [86]. The ARI is the corrected version
of the Rand Index [87, 88], widely known and most used similarity measure
for clustering analysis [89]. This measure establishes a baseline by using the
expected similarity of all pair-wise comparisons between the classifications.

Let U and V be two clustering classifications, and tij = |Ui ∩ Vj| be the
classifications in common considering the clusters i for U and j for V . Table
5.2 defines the contingency table and Equation (5-3) defines the ARI formula.

V
Total

v1 . . . v2

U
u1 t11 . . . t1k a1
... ... . . . ... ...
uk tk1 . . . tkk ar

Total b1 . . . bs

Table 5.2: Contingency table of ARI.
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∑
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The ARI values belong to the range [−1, 1]. When it is close to 0, means
that is as good as a random classification. When is +1, the classifications are
identical up to a permutation, i.e., correct.

5.4
Experimental Results

5.4.1
The Impact of the Size of Clusters

In order to analyze the impact of the size of clusters, i.e., the number
of points per cluster, we compare the clustering performance of the "pure"
algorithms (no regularization and no meta-heuristics): k-means, c-means, k-
ellipses, and GMM. We compare the algorithms with two different cluster
sizes: 100 and 500 points.
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5.4(a): Clustering in lower dimensions (2
to 40) with 300 samples.
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5.4(b): Clustering in higher dimensions
(50 to 150) with 1500 samples.

k-means c-means KE GMM

Figure 5.4: Comparison between algorithms with n : 300 and n : 1500
instances. Note that the domain of the charts are different.

In Figure 5.4(a) we can see that k-means’ and c-means’ clustering quality
(measured by ARI) are not much affected by the dimension, i.e., the number
of features in each sample, although there is a slight decrease. However, the
performance of the ellipsoidal methods decreases steeply when the number of
dimensions increases. Since the c-means performs strictly worse than k-means
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(you can see it in the Appendix A tables), from here, we will only analyze the
hard method.

The amount of parameters in the ellipsoidal methodology causes this
problem. While the number of parameters to be estimated in spherical cluster-
ing is O(kd), in the ellipsoidal clustering is O(kd2). Therefore we need much
more points to estimate parameters in ellipsoidal clustering accurately. This
problem is confirmed by Figure 5.4(b), in which we increase the number of
points per cluster and performance in dimension 50 is much better again.
Moreover, as the dimension grows, the quality of the clustering degrades again.

We discuss the shape matrix estimation in Section 3, it is a relevant
problem in statistics, and there are proposed solutions in the literature. The
empirical conclusion here is that shape matrices d× d need O(d2) points to be
adequately estimated.

5.4.2
The Impact of Dimensionality

As previously seen, shape matrices need a sufficient number of points to
be estimated. If there are enough points and the estimation is good, the results
do not tend to degrade. However, it is not necessarily what happens in the real
world. There are two methodologies capable of improving the estimation and
the solution space search: regularization and meta-heuristics.

5.4.2.1
Regularization

When the number of features is significantly large compared to the sample
size, the shape matrices can become ill-conditioned and poorly estimated.
The regularization techniques were developed to overcome this difficulty.
The benchmark tested the three presented methodologies in Chapter 3.2.2.1:
Shrunk, OAS, and LW.

Figure 5.5 shows that, as expected, methods with regularization improve
the estimation of the shape matrices, and therefore, the final results. When
there are enough samples per cluster (usually d2), the methods have similar
results. Figure 5.5 also shows that both hard and soft methods improved the
results. However, the regularization impacted more the soft methodologies: the
degradation of the results in the soft methods starts at a larger dimension than
the hard ones.
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5.5(a): Hard algorithms.
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5.5(b): Soft algorithms.

Figure 5.5: Comparison between regularization methodologies (n : 300, k : 3,
c : 0.01).

5.4.2.2
Meta-heuristics

When using meta-heuristics, there is an expectation of a better search
in the solution space and therefore, find better solutions. Along both meta-
heuristics seen, there is a step in common: an RS iteration, which changes the
position of a cluster. In hard methodologies, the swapped cluster matrix is set
merely to identity, because there is a restriction that fixes the determinant of
shape matrices in 1: this way the clusters do not disappear. On the other hand,
the soft methods do not have this restriction. Their shape matrices can assume
arbitrary values. There are three ways of handling the new shape matrix when
doing a random swap iteration in a soft meta-heuristic. The selected swap
cluster:

– RSEM: Keep the same shape matrix as the previous iteration.

– RS-GMM (no resizing): Reset the shape matrix to identity.

– RS-GMM: Reset the shape matrix to identity, and resize it to keep the
same magnitude as the other shape matrices (explained in Equation (4-
31) and Equation (4-32)).

Figure 5.6 shows an example of the three ways of swap possibilities: the
left panel illustrates the moment before the random swap; the center panel is
the moment before the swap with the points unassigned; the right panel is the
results after the GMM improvements. Figure 5.7 compare the results of these.
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5.6(a): RSEM

5.6(b): RS-GMM (no resizing)

5.6(c): RS-GMM

Figure 5.6: An example of the swap possibilities in soft methods. Three
moments are shown: before the random swap (left panel); right after the swap
with unassigned the points (center panel); after the GMM local improvement
(right panel).
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Figure 5.7: Comparison between random swap in soft methods (n : 300, k : 3,
c : 0.01).

Until d = 5, the RS-GMM method maintains the GMM result, while the
other two methods do not. However, the results are still not satisfactory. It may
seem counter-intuitive since meta-heuristics can only accept solutions equal to
or better than local searches. It is important to analyze an RS iteration to
understand what is happening. The chosen instance is where the results start
to get worse: (n : 300, k : 3, d : 10, c : 0.01). Table 5.3 shows the RS iterations
in this instance. Each line represents an iteration that was accepted.

Iteration ARI Obj. Func.
Cluster 1 Cluster 2 Cluster 3

Det.
Eig.
diff.

Det.
Eig.
diff.

Det.
Eig.
diff.

1 0.83 −22.23423 106 23.3 105 11.9 106 11.5
2 0.85 −22.23375 106 23.2 105 11.8 106 11.5
4 0.85 −22.23333 106 23.2 105 11.8 106 11.6
6 0.86 −22.23242 106 23.2 105 11.7 106 11.5
9 0.88 −22.23163 106 23.3 105 11.7 106 11.5
16 0.87 −22.23159 106 23.2 105 11.7 106 11.5
25 0.88 −22.23158 106 23.3 105 11.7 106 11.6
37 0.87 −22.23156 106 23.3 105 11.7 106 11.6
45 0.90 −22.23064 106 22.8 105 11.5 106 11.4
49 0.49 −22.05719 106 25.3 10−21 24746893.6 107 12.7
53 0.47 −22.04634 105 26.0 10−21 24746893.7 107 11.2
70 0.48 −21.99079 106 25.0 10−21 26978527.1 107 11.9

Table 5.3: Accepted RS iterations in an instance of (n : 300, k : 3, d : 10,
c : 0.01).

Along the iterations, the objective function and the ARI get better, until
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iteration 49. At this swap, the difference between the eigenvalues gets huge,
and the size of the cluster becomes very small. That means that the cluster
became very small and disappeared. The value of the function keep improving,
but the ARI only gets worse. After this, the current solution can never recover
the ARI, and the result of the RS gets worse than a single local search. When
the cluster size is small, the matrices estimations gets ill-conditioned, and the
results start to degrade. Without regularization, high-quality solutions of the
proposed model may be very distant from the desired classifications. Figure
5.8 shows comparisons of both hard and soft meta-heuristics.

5.8(a): Hard algorithms.
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5.8(b): Soft algorithms.

Figure 5.8: Comparison between meta-heuristics methodologies (n : 300, k : 3,
c : 0.01). RS and HG exploit well the solution space in the hard methods, but
the genetic algorithm seems to take advantage on a higher dimensions.

As seen in Figure 5.8(a), both the RS and the HG present proper
exploitation of the solution space of the hard method, with the latter seeming
to take advantage on a higher dimension instance. Even though the meta-
heuristics improved the results, regularization can also be used to stabilize the
shape matrix estimation. The next subsection tests the improvement caused
by the regularization with meta-heuristics.

5.4.2.3
Regularization and Meta-heuristics

As previously seen, the regularizations could solve the problem of the
ill-conditioned matrices in RS-GMM. Figure 5.9 adds RS-RGMM (Shrunk),
and reveals that meta-heuristics and the regularization together improve a lot
the results.
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Figure 5.9: Comparison between GMM Random Swap and RS-RGMM
(Shrunk) methods (n : 300, k : 3, c : 0.01).

Figure 5.10 presents two charts with soft methods: Figure 5.10(a) is the
comparison os the RS with different regularizations, while Figure 5.10(b) is the
same but with HG. Figure 5.11 is similar but considering the hard methods.

5.10(a): RS algorithms. 5.10(b): HG algorithms.

Figure 5.10: Comparison between meta-heuristics with regularization soft
methods (n : 300, k : 3, c : 0.01).
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5.11(a): RS algorithms.
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5.11(b): HG algorithms.

Figure 5.11: Comparison between meta-heuristics with regularization hard
methods (n : 300, k : 3, c : 0.01).

For the k = 3, the results of RS-RKE, HG-RKE, RS-RGMM, and HG-
RGMM are pretty close. We choose to compare the regularizations with slightly
better results: Shrunk and LW, for hard and soft, respectively.

Figure 5.12(a) presents the comparison of the hard methods between the
regularization (Shrunk), the meta-heuristics and both together. Figure 5.12(b)
is the same comparison, but with soft methods and LW as the regularization.
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5.12(a): Hard algorithms.
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5.12(b): Soft algorithms.

Figure 5.12: Comparison between regularized meta-heuristics methodologies
(n : 300, k : 3, c : 0.01).

The KE and the GMM have significant improvement with the implemen-
tation of meta-heuristics and regularization. The shape matrix estimations are
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very good, even with few points. The degradation only starts at dimension
20. Only after the dimension 30, the results of k-means get better than the
ellipsoidal.

5.4.3
The Impact of the Number of Clusters

When the number of clusters grows, the first thing to observe is which
regularization has remained more stable. Figure 5.13 compares the regulariza-
tions of the hard methods, with the number of features fixed in 20.
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5.13(a): Random swap algorithms.
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5.13(b): Hybrid genetic algorithms.

Figure 5.13: Comparison between regularization methodologies of the hard
methods (m : 100, c : 0.01, d : 20).

It seems that LW had better results than the others. Figure 5.14 compares
different meta-heuristics for number of features at 5 and 20.
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5.14(a): Number of features (d): 5
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5.14(b): Number of features (d): 20

Figure 5.14: Comparison between the regularized meta-heuristics methodolo-
gies of hard methods (m : 100, c : 0.01).

For a high number of clusters and when it has enough points, the results
reveal that meta-heuristics make more difference than regularization. However,
when the dimension grows along with the number of clusters, regularization
makes more difference. The two together are still the best choice, securing the
best results.

Figure 5.14 is the comparison of regularization methodologies with the
soft methods. The Shrunk methodology performed very well when the number
of clusters is large.
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5.15(a): Random swap algorithms.
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5.15(b): Hybrid genetic algorithms.

Figure 5.15: Comparison between regularization methodologies of soft methods
(m : 100, c : 0.01, d : 20).
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5.16(a): Number of features (d): 5
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5.16(b): Number of features (d): 20

Figure 5.16: Comparison between regularized meta-heuristics methodologies of
soft methods (m : 100, c : 0.01).

The analyzes made for the hard methods are analogous to those of the
soft. The methods with meta-heuristics and regularizations continue to perform
very well. The RS-GMM and the HG-GMM had good performance when the
cluster number is high, and the size is low.

5.4.4
The Impact of Separability

After analyzing the impact of cluster size, dimensionality and number of
clusters, the last variable to be analyzed is the separability. Among the meta-
heuristics, we choose the HG for comparisons, as it shows to be more robust
than the RS in more scenarios. Figure 5.17 compares the regularizations of the
hard methods, with the number of clusters fixed at 3.
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5.17(a): Number of features (d): 5
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5.17(b): Number of features (d): 20

Figure 5.17: Comparison between regularization methodologies of hard meth-
ods (n : 300, k : 3).

Figure 5.17(a) shows that when there are enough points, the ellipsoidal
methods perform better than k-means. When the separability is lower, the
ellipsoidal methods perform much better than the spherical. However, when
clusters separate, the performance of k-means improves a lot, getting close to
the ellipsoidal.

Figure 5.17(b) shows that the OAS and LW regularizations degrade the
results when the number of features increases. This degradation is because OAS
and LW change the shape matrix much more than Shrunk. HG usually per-
forms very well when searching the solution space. Therefore, regularizations
that estimate the data shape too spherical may work against the methodol-
ogy, leading to poorer classifications. So, using a regularization that changes
the shape matrix minimally to keep it well conditioned seems to be the best
option, that is why Shrunk stands out.
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5.18(a): Number of features (d): 5
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5.18(b): Number of features (d): 30

Figure 5.18: Comparison between regularization methodologies of soft methods
(n : 300, k : 3).

In the lower dimensions, soft and hard methods tend to behave similarly.
However, in higher dimensions, they seem to behave better. Figure 5.18(b)
shows that even in dimension 30 the results of the ellipsoidal methods are still
better than the k-means.

5.5
Summary

After the analysis, among the proposed methods we select some that
produce the best results for the final comparisons: HG-RKE (Shrunk) and
HG-RGMM (Shrunk). Beyond obtaining better results when the number of
clusters is high, these methodologies were very robust when there are few
points for the shape matrices estimation.

Table 5.4 compares the methods with the following instances settings:
m ∈ {100}, c ∈ {0.26,−0.10, 0.01, 0.21}, d ∈ {2, 5, 20}, k ∈ {3, 10, 20}. Table
5.5 compares the methods with another instances settings: m ∈ {500}, c ∈
{0.01}, d ∈ {50, 75, 100, 125}, k ∈ {3}. The results show that elliptical methods
are more advantageous than spherical ones, obtaining better performance in
most instances. The soft methodologies, on the artificially generated datasets,
outperformed the hard ones.

We also apply our algorithms to 18 datasets from the UC Irvine repos-
itory [2]. Table 5.6 compares these datasets with the selected methods. The
results are almost the same as the artificial regarding shapes: the ellipsoidal
algorithms outperformed the spherical. The GMM has some good results; how-
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ever, the objective function of these datasets is not as reliable as the artificial
ones. The full results tables are in Appendix A.
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-0.26 2 0.46 0.45 0.43 0.41 0.46 0.46 0.44 0.48 0.46 0.47 0.43 0.47
-0.26 5 0.36 0.51 0.53 0.55 0.31 0.35 0.33 0.38 0.29 0.32 0.29 0.35
-0.26 20 0.26 0.54 0.28 0.68 0.19 0.16 0.11 0.37 0.14 0.09 0.08 0.20

-0.10 2 0.69 0.74 0.75 0.75 0.71 0.74 0.67 0.75 0.71 0.74 0.62 0.74
-0.10 5 0.64 0.76 0.77 0.78 0.60 0.68 0.62 0.70 0.59 0.66 0.56 0.68
-0.10 20 0.60 0.80 0.41 0.86 0.48 0.43 0.26 0.68 0.41 0.31 0.22 0.52

0.01 2 0.82 0.87 0.90 0.89 0.85 0.88 0.82 0.90 0.85 0.88 0.76 0.90
0.01 5 0.81 0.89 0.91 0.91 0.79 0.85 0.83 0.88 0.78 0.84 0.76 0.87
0.01 20 0.79 0.93 0.52 0.95 0.71 0.67 0.44 0.89 0.64 0.57 0.37 0.78

0.21 2 0.97 0.99 0.99 0.99 0.98 0.99 0.93 0.99 0.98 0.99 0.85 0.99
0.21 5 0.97 0.99 0.99 0.99 0.97 0.99 0.97 0.99 0.96 0.99 0.91 0.99
0.21 20 0.97 0.99 0.70 1.00 0.95 0.95 0.72 1.00 0.94 0.89 0.68 0.99

Table 5.4: Comparison between the selected methods (HG-means, HG-RKE
(Shrunk), GMM and HG-RGMM (Shrunk)) with some meaningful instances
(m : 100).
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0.01 50 0.79 1.00 0.92 1.00
0.01 75 0.79 0.99 0.70 1.00
0.01 100 0.78 0.95 0.43 1.00
0.01 125 0.78 0.62 0.17 0.87

Table 5.5: Comparison between the selected methods (HG-means, HG-RKE
(Shrunk), GMM and HG-RGMM (Shrunk)) with some meaningful instances
(m : 500).

Figure 5.19 illustrates the results of the best methods in an instance
where the number of clusters is 10.
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breast 569 30 2 0.49 0.52 0.71 0.02
egg 12811 11 10 0.05 0.09 0.10 0.10
glass 214 9 6 0.26 0.28 0.21 0.23
heart 270 13 2 0.03 0.06 0.07 0.02

ionosphere 351 34 2 0.18 0.77 0.31 0.74
iris 150 4 3 0.73 0.94 0.90 0.94

libras 360 90 15 0.31 0.31 0.25 0.33
magic 19020 10 2 0.06 0.04 0.07 0.11

page blocks 5473 10 5 0.01 0.09 0.06 0.01
pendigits 10995 16 10 0.53 0.73 0.51 0.78
recognition 20000 16 26 0.13 0.08 0.16 0.24

seeds 210 7 3 0.72 0.72 0.83 0.72
segmentation 2310 19 7 0.34 0.50 0.45 0.43

skin 245057 3 2 -0.04 0.74 0.44 0.08
study 403 5 4 0.30 0.58 0.30 0.49

wholesale 440 6 6 0.11 0.11 0.11 0.15
wines 178 13 3 0.37 0.40 0.84 0.36
yeast 1484 8 10 0.15 0.16 0.06 0.20

Table 5.6: Comparison between the selected methods (HG-means, HG-RKE
(Shrunk), GMM and HG-RGMM (Shrunk)) with some UCI datasets [2].
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5.19(a): HG-means 5.19(b): HG-RKE (Shunk)

5.19(c): GMM 5.19(d): HG-GMM (Shrunk)

Figure 5.19: The final results of a subset of the proposed methods in a
(n : 1000, k : 10, d : 2, c : 0.01) instance.
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6
Conclusions and Future Work

In this work, we study the general problem of clustering. Several math-
ematical problem formulations are investigated. Out of these, two are exten-
sively studied in the literature with formal mathematical formulations: the
minimum sum-of-squares clustering (MSSC); and the maximum likelihood es-
timation (MLE) using Gaussian distributions (GMM). The ellipsoidal cluster-
ing with hard assignments had never been formally detailed as a mathematical
optimization problem, notwithstanding the fact that previous works presented
the problem and proposed algorithmic heuristics to solve it. This work presents
a mathematical optimization formulation for the ellipsoidal minimum sum of
squares clustering (EMSSC) problem. We also extensively compared different
the two assignment types and the cluster shapes.

The simple definition and implementation of the k-means made it one
of the most popular algorithms in unsupervised clustering though it has a
significant limitation when considering the cluster’s shapes: when working with
real-world datasets, it is not common to find clusters with a perfectly spherical
shape. Meanwhile, ellipsoidal methodologies have a larger domain of possible
solutions, due to the considerable amount of parameters in the problem. Even
though these methodologies have great potential since they are a generalization
of the spherical algorithms, on account of their higher degrees of freedom, they
demand a better algorithm to search for solutions.

Several ellipsoidal algorithms have been proposed in this work with the
intention to improve the results of the clustering problem. The tested methods
combine regularization techniques with a Random Swap and a Hybrid Genetic
algorithm. In order to compare all the different algorithms, a broad benchmark
of datasets was generated; this way, the performance of each one could be tested
under different conditions.

The conclusions drawn from the results are as follows. Spherical meth-
ods have a limitation that prevents them from achieving excellent results in
instances with low separability. Using ellipsoidal algorithms significantly im-
proved the results, but only when there are sufficient observations to estimate
the shape matrices correctly. Furthermore, achieving excellent results in high
dimension instances can be challenging for ellipsoidal methods because of the

DBD
PUC-Rio - Certificação Digital Nº 1612862/CA



Chapter 6. Conclusions and Future Work 83

number of parameters that need to be estimated. When the clusters have few
observations in high dimension, there is over-fitting, and the solution diverges,
compromising the results. Using regularization techniques restrict the shape
matrices increasing the lower bound of its eigenvalues. Moreover, these ma-
trices become more well-conditioned. On the tests, they accomplished good
results with both assignments (hard and soft) although the soft assignments
achieved better results due to the higher number of parameters estimated dur-
ing their iterations. Since hard methods have a limitation on the size of their
shape matrices, meta-heuristics efficiently escaped from a local minimum. Soft
methods do not have this control over their formulation so that the matrices
can have different sizes. It has been shown that meta-heuristics in the soft
algorithms require regularization of the matrices to work correctly.

The random swap with regularization methodology has a straightfor-
ward implementation and achieved excellent results. Furthermore, hybrid ge-
netic algorithms with regularizations worked better on more challenging in-
stances. Both regularizations with meta-heuristics achieve good results when
the instances are not so challenging. However, when the number of clusters
increases, the Shrunk regularization obtained significantly improved results in
comparison with others.

The regularizations OAS and LW calculate the parameter δ adaptively,
which is just another variation of the method. When there is a meta-heuristic
that finds good solutions, a regularization that minimally changes the matrices
is seems to work better. Shrunk fulfills this role, therefore the effectiveness of
the HG-RGMM (Shunk).

A significant result is that both hard and soft ellipsoidal methods
performed better than the spherical methods, especially after the search
improvements, even when fewer points were present in the dataset. In tests
with the artificial datasets, the soft ellipsoidal algorithms outperformed the
hard ellipsoidal.

Regarding future works, the inclusion of an adaptive regularization into
the GMM problem is suggested. Is also suggested, to analyze the behavior of
ellipsoidal methods in higher dimensions. The use of better data structures
to improve the performance of the ellipsoidal methods should translate into
shorter CPU times and can also be investigated. Both meta-heuristics still
require a more careful calibration. In order to allow for a consistent comparison
between the future works and the results presented in this document, Julia
packages will be made available as well as a testbench of datasets.
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A
Benchmark Tables

This Appendix provides the results of the research with m ∈ {100}. Beyond
the ARI, these table provides another similarity measure, the Centroid Index,
described in Fränti et al. work [90].
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