
4  
CUT GENERATION ALGORITHM 
 

 

4.1  
Active cuts at the optimal solution 

 

Depending on the percentage error threshold (and on the minimum and 

maximum scenarios’ probabilities should the approximation cuts be determined as 

discussed at the end of Chapter 3) the number of necessary cuts may grow to be 

very large, leading to computational difficulties and slower performance of 

solution algorithms. 

However, the observation that only a small fraction of these cuts will be 

active at the optimal solution of problem (3.12) – (3.17) – only | |  cuts 

represented in the set of constraints (3.15) will be actually binding – naturally 

points towards the design of an algorithm that dynamically generates the cuts to 

construct the piecewise linear approximation to the exponential function.  

Next, we follow the notation and terminology of Geoffrion (1972) [27]: the 

value of the objective function at the optimal solution of an optimization problem 

(·) is denoted by ·  and its set of feasible solutions by · . Additionally, ·  

denotes the value of variable · at the optimal solution. 

 

4.2  
Solution properties  

 

The original problem (2.1) – (2.6) and its re-formulated linear counterpart 

(3.12) – (3.17) have exactly the same set of feasible solutions (or, more precisely, 

any feasible solution to one may be mapped into the feasible solution space of the 

other), which may be expressed by . In addition, if we denote the 

true second-stage cost function by ,  and its piecewise linear 

approximation by ,  then, by construction, the following relation holds 

for all feasible : 
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, , , (4.1)  

 

Consequently, the value of the optimal solution of problem (2.1) – (2.6) will 

always be greater or equal to the optimal value of problem (3.12) – (3.17), i.e.: 

 

 (4.2)  

 

4.3  
Approximation of the second-stage cost function 

 

Based on the previous remarks, the following algorithm (ALG1) may be 

used in order to obtain a solution to the problem for which the percentage error of 

the approximation of the second-stage cost function is less or equal to : 

 

1 Initialize the set of cuts , the lower bound , upper bound 

 and define the maximum percentage error  

2 While | |⁄  

3 Solve problem  defined by (3.12) – (3.17) with the currently defined 

set of cuts  

4 Set ∑ ∑ · ̂  

5 Set ∑ · exp  

6 For each scenario   

7 Add the cut defined by exp · 1  and 

exp  to the cut set  

8 End For 

9 End While 

 

The algorithm works by gradually constructing a better approximation of 

the second stage cost function through the addition of cuts around the optimal 

values of variables  found at each iteration. Following the discussion in 

Chapter 3, the addition of a cut centered on a specific value  provides an 

approximation that may also be useful (i.e., for which the percentage 
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approximation error is smaller than ) for other possible values of the same 

variable which may be part of the optimal solution found in subsequent iterations.  

  

4.3.1  
Convergence analysis 

 

The following proposition determines the maximum number of iterations of 

the algorithm needed in order to obtain a solution for which the percentage error 

of the approximated second-stage cost function relative to the true function is no 

larger than . 

Proposition 3. Let ,  and  be defined as in Chapter 3, then algorithm 

ALG1 converges to a solution of problem  for which the percentage gap of the 

approximated second-stage cost function relative to its exact counterpart is less or 

equal to  in a number of iterations not larger than: 

 

ln ∏ ln ∏
 

(4.3)  

 

Proof. As per the result of Proposition 1, if the convergence criterium of the 

algorithm has not been met at a given iteration , it means that there exists at least 

one  for which . Since it can be verified that | | | |, 

this implies the fact that there exists at least one variable   which 

satisfies the relation: 

 

,  (4.4)  

 

where  denotes the value of variable  at the optimal solution of problem 

 solved at iteration  (  are thus the points around which the piecewise 

linear approximation to the exponential function has been built in previous 

iterations). 

Let  be a scenario for which relation (4.4) holds and let  be the total 

length of the region(s) within the feasible interval of variable  for which the 
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current approximation violates the maximum percentage error threshold. The 

addition of a cut around the value  reduces  by at least  (and, potentially, 

by ). As discussed in Chapter 3, and repeated here for convenience, the 

condition of each edge is known for each scenario, thus allowing us to determine 

the feasible interval for each variable  as: 

 

ln , ln  (4.5)  

 

At different iterations, each variable  ( ) may satisfy condition (4.4) 

at most ln ∏ ln ∏ /  times – since, after that, the 

approximation of the exponential function over all its feasible region will be so 

that the maximum percentage error is less or equal to . The result on the 

maximum number of iterations of the algorithm follows naturally. 

■ 

 

4.4  
An algorithm considering the gap to the global optimal solution 

 

The approximation of the second-stage cost function at the solution obtained 

by the algorithm presented in the previous Section is ensured to be within  

percentage points of the true function. However, the gap between the solution 

returned by the algorithm and the global optimal solution to the problem may be 

different since it depends on the first-stage cost function as well.  

A slight modification to the algorithm may be introduced in order to account 

for the percentage gap between the solution of the problem solved using the 

approximation to the second-stage cost function and the global optimum, as 

shown below (ALG2): 

 

1 Initialize the set of cuts , the lower bound , upper bound 

 and define the maximum percentage error  

2 While | |⁄  
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3 Solve problem  defined by (3.12) – (3.17) with the currently defined 

set of cuts  

4 Set  

5 Set ∑ ∑ · exp  

6 If , set  

7 For each scenario   

8 Add the cut defined by exp · 1  and 

exp  to the cut set  

9 End For 

10 End While 

 

The algorithm above works by (i) obtaining a series of feasible solutions for 

the original problem and (ii) progressively perfecting the approximation of the 

second stage cost function at each iteration, as in ALG1.  

On the one hand, the series of feasible solutions provide a monotonically 

decreasing sequence of upper bounds. On the other hand, the series of values of 

the objective function at the optimal solution of the approximated problem solved 

at each iteration constitutes a monotonically increasing sequence of lower bounds, 

since , ,  for all feasible  (where ,  denotes 

the piecewise linear approximation of the second stage cost function at iteration 

). 

In this case, a simple upper bound on the number of iterations until the 

convergence of the algorithm is given by | | · 2| |, which would correspond to a 

complete enumeration of the linear constraints that provide an exact 

representation of the exponential function at all possible values of each variable 

. 
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