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Abstract

Andrade, Tiago Coutinho Carneiro de Andrade; Hamacher, Sil-
vio (Advisor); Oliveira, Fabricio (Co-Advisor). Decomposition
and relaxation algorithms for nonconvex mixed integer
quadratically constrained quadratic programming pro-
blems. Rio de Janeiro, 2018. 80p. Tese de doutorado – Departa-
mento de Engenharia Industrial, Pontifícia Universidade Católica
do Rio de Janeiro.

This thesis investigates and develops algorithms based on Lagran-
gian relaxation and normalized multiparametric disaggregation technique
to solve nonconvex mixed-integer quadratically constrained quadratic pro-
gramming. First, relaxations for quadratic programming and related pro-
blem classes are reviewed. Then, the normalized multiparametric disaggre-
gation technique is improved to a reformulated version, in which the size of
the generated subproblems are reduced in the number of binary variables.
Furthermore, issues related to the use of the Lagrangian relaxation to solve
nonconvex problems are addressed by replacing the dual subproblems with
convex relaxations. This method is compared to commercial and open source
off-the-shelf global solvers using randomly generated instances. The propo-
sed method converged in 35 of 36 instances, while Baron, the benchmark
solver that obtained the best results only converged in 4 of 36. Additionally,
even for the one instance the methods did not converge, it achieved relative
gaps below 1% in all instances, while Baron achieved relative gaps between
10% and 30% in most of them.

Keywords
Quadratically constrained quadratic programming; Mixed-integer pro-

gramming; Decomposition; Convex relaxation; Lagrangian relaxation;
Normalized multiparametric disaggregation technique.
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Resumo

Andrade, Tiago Coutinho Carneiro de Andrade; Hamacher, Silvio;
Oliveira, Fabricio. Algoritmos baseados em decomposição e
relaxação para problemas de programação inteira mista
quadrática com restrições quadráticas não convexa. Rio
de Janeiro, 2018. 80p. Tese de Doutorado – Departamento de
Engenharia Industrial, Pontifícia Universidade Católica do Rio de
Janeiro.

Esta tese investiga e desenvolve algoritmos baseados em relaxação La-
grangiana e técnica de desagregação multiparamétrica normalizada para
resolver problemas não convexos de programação inteira-mista quadrática
com restrições quadráticas. Primeiro, é realizada uma revisão de técnias
de relaxação para este tipo de problema e subclasses do mesmo. Num se-
gundo momento, a técnica de desagregação multiparamétrica normalizada é
aprimorada para sua versão reformulada onde o tamanho dos subproblemas
a serem resolvidos tem seu tamanho reduzido, em particular no número
de variáveis binárias geradas. Ademais, dificuldas em aplicar a relaxação
Lagrangiana a problemas não convexos são discutidos e como podem ser so-
lucionados caso o subproblema dual seja substituído por uma relaxação não
convexa do mesmo. Este método Lagrangiano modificado é comparado com
resolvedores globais comerciais e resolvedores de código livre. O método pro-
posto convergiu em 35 das 36 instâncias testadas, enquanto o Baron, um dos
resolvedores que obteve os melhores resultados, conseguiu convergir apenas
para 4 das 36 instâncias. Adicionalmente, mesmo para a única instância que
nosso método não conseguiu resolver, ele obteve um gap relativo de menos
de 1%, enquanto o Baron atingiu um gap entre 10% e 30% para a maioria
das instâncias que o mesmo não convergiu.

Palavras-chave
Programação quadrática com restrições quadráticas; Programação

inteira-mista; Decomposição; Relaxação convexa; Relaxação Lagran-
giana; Técnica de desagregação multiparamétrica normalizada.
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There once lived a man
who learned how to slay dragons
and gave all he possessed to mastering the art.

After three years
he was fully prepared but,
alas, he found no opportunity
to practice his skills.

Dschuang Dsi.

As a result he began
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1
Introduction

The main objective of this thesis is to develop and investigate methods
to solve nonconvex quadratically constrained quadratic programming, possibly
with integer variables, ((MI)QCQP) problems.

The MIQCQP is a very general class of mathematical programming prob-
lems. Such as (mixed integer) linear programming, convex (mixed integer)
quadratically constrained quadratic programming, quadratic programming,
and convex quadratic programming, polynomial programming, semidefinite
programming and conic programming can be reduced to MIQCQP. Addition-
ally, Taylor theorem tells that all analytical functions can be approximated
using polynomials, and it is known that any polynomial programming can be
reformulated by MIQCQP [1].

Moreover, (MI)QCQP is a natural way to model many important pro-
cesses in areas such as heat integration networks, separation systems, reactor
networks, batch processes, pooling problems and refinery operations planning
problem [2, 3, 4, 5, 6].

Although the techniques developed here are general and intentionally
build to be applicable to any MIQCQP problem or to a general subclass.
The problem that inspired the initial research was the Refinery Operations
Planning Problem (ROPP). ROPP is an important problem in the oil and gas
industry and has been aiding by use of optimization tools practically since the
development of simplex Method and the birth of Linear Programming.

We first review techniques used to solver MIQCQP in the literature.
Then, we investigate one promising technique in the state-of-art and improve
on it by controlling the sizes of subjacent subproblems being solved. Finally, we
investigate how can a MIQCQP with a special block angular structure — as is
the case of stochastic programming — can be decomposed efficiently based on
a original algorithm that is build on top of a modified Lagrangian relaxation.

1.1
Objectives

The main objective of the thesis can be broken down into two secondary
objectives. First, we explore how (MI)QCQP problems can be relaxed, i.e.,
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Chapter 1. Introduction 13

using piecewise convex (linear) relaxations to solve a nonconvex MIQCQP.
The main relaxation technique is an improved version of normalized multi-
parametric disaggregation technique. Second, we investigate how Lagrangian
relaxation can be used to solve (MI)QCQP problems exploiting special decom-
posable structure if it exists. Additionally, we discuss issues that arise while
solving a nonconvex problem with Lagrangian relaxation and how they can be
resolved combining this approach with another relaxation, namely, a reformu-
lation of the normalized multiparametric disaggregation technique.

Other minor objetive of the thesis is to prove theorical properties of the
methods developed here and to compare our proposed methods with state-of-
art algorithms for nonconvex (MI)QCQP.

1.2
Thesis structure

The first chapter discusses the background necessary for the remaining
of the Thesis. Chapter 2 presents the formulation for the MIQCQP and how it
can be solved. Most methods rely on relaxations for the problem. This chapter
provides an overview of the main relaxations for this type of mathematical
programming problem. Section 2.1 derives the McCormick envelopes, a linear
relaxation for the product of two continuous variables. This chapter is partially
based on Andrade et al [6] published at Industrial & Engineering Chemistry
Research and on a submitted paper to Journal of Global Optimization.

Chapter 3 presents piecewise relaxations for the MIQCQP. This family of
relaxations has one advantage over linear relaxations such as the McCormick
envelopes, it can provide arbitrarily tight relaxations. On the other hand,
binary variables are added to the problem, resulting in a harder problem to be
solved. First, a relaxation called normalized multiparametric disaggregation
technique (NMDT) is presented. Then, it is shown how the model size can
be improved through reformulations resulting in the reformulated normalized
multiparametric disaggregation technique (RNMDT). This chapter is based on
an accepted paper to Journal of Global Optimization.

Chapter 4 investigate how MIQCQP problems with special separable
structure can be decomposed into smaller problems and solved separably. First,
the procedure is done using a classic relaxation named Lagrangian relaxation
(LR). Then, it is shown the issues that appear when this technique is applied
to nonconvex problems. Furthermore, a new relaxation based on both LR and
RNMDT is presented. This chapter is based on a yet unpublished paper that
we intent to submit to Mathematical Programming.

Last, Chapter 5 presents conclusions and discuss further research pos-
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Chapter 1. Introduction 14

sibilities. Appendixes are presented to provide additional information to the
main text. Appendix A presents a table with the complete results for the con-
tinuous instances used in Chapter 3. Appendix B complements the analysis
from Chapter 3.
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2
Mixed-integer quadratically constrained quadratic program-
ming

In this chapter, the following general nonconvex (mixed-integer) quadrat-
ically constrained quadratic programming ((MI)QCQP) problems with box
constraints are considered.

min xTQ0x+ f0(x, y) (2-1)

s.t.:

xTQrx+ fr(x, y) ≤ 0, ,∀r ∈ I1,m (2-2)

xi ∈ [XL
i , X

U
i ] ,∀i ∈ I1,n1 (2-3)

yi ∈ {Y L
i , . . . , Y

U
i } , ∀i ∈ I1,n2 , (2-4)

where Ia,b = {a, . . . , b} is the subset of integers between a and b (inclusive),
for all r ∈ I0,m, Qr is a symmetric matrix, f0 : Rn1 × Rn2 → R is a linear
function, and for all r ∈ I1,m, fr : Rn1 × Rn2 → R are affine functions. The
variable x can assume any value between its bounds XL and XU , and y can
assume any integer value between Y L and Y U . One implicit assumption in
formulation (2-1)–(2-4) is that all variables that appear in product terms are
continuous, as a product term containing at least one integer variable can be
trivially linearized. If n2 = 0, the problem is reduced to a nonconvex QCQP
problem.

An (MI)QCQP problem is called convex if its continuous relaxation is
convex regardless of the nonconvexity introduced by the integrality constraints
of the decision variables. This problem is convex if Qr is positive semi-definite
for all r ∈ I0,m, and nonconvex otherwise. In this study, the latter case is
considered, i.e., when Qr is not positive semi-definite.

The (MI)QCQP problem with box constraints is known to be NP-
hard [7], even without quadratic constraints. It should be noted that if the box
constraints are removed, the problem is undecidable [8]. A detailed definition
and implications of undecidability and NP-hardness can be found in [9].

It is known that MIQCQP problems are equivalent to QCQP problems,
as any integer variable can be defined as a sum of binary variables, and the
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Chapter 2. Mixed-integer quadratically constrained quadratic programming 16

constraint y = y2 can be added to represent the integrality condition y ∈ {0, 1}.
Although this transformation is possible, it is usually undesirable because it
generally results in more computationally difficult nonconvex problems.

As (MI)QCQP problems and their variants are difficult to solve, many
alternative solution methods have been proposed. They can be classified
into exact methods, such as spatial Branch-and-Bound (BnB), and heuristic
methods. The former can ensure that a globally optimal solution will be
achieved, whereas the latter can only ensure local optimality of the solutions.
Furthermore, nearly all methods involve relaxation techniques.

A commonly used exact algorithm for solving MIQCQP problems is BnB
and its variants. If the problem is convex, BnB obtains bounds and eventually
globally optimal solutions by relaxations of the integrality constraints. If the
problem is nonconvex, spatial BnB is typically used, and the nonconvexity
that arises from nonlinearity must also be relaxed via convex relaxations. In
spatial BnB, both integer and continuous variables are usually branched by
partitioning the feasible region into hyper-rectangles within the search space.
Other forms of branching using different types of polyhedra have also been
employed [10]. In general it is recommended that a domain reduction step be
performed to accelerate BnB [11, 12]. A survey on BnB applied to nonconvex
problems may be found in [13].

The relaxations for MIQCQP problems can be classified into five cate-
gories. The first category consists of linear relaxations whereby the problem
is relaxed to a mixed-integer programming (MIP) problem without auxiliary
integer variables. A classic approach of this type relies on McCormick en-
velopes [14], where bounded auxiliary variables representing the product of
two variables are added to the problem. If the variables that appear in the
product assume their bounds, the auxiliary variable will assume the value
of the product; therefore, the relaxation will then be exact. Al-Khayyal [15]
showed that McCormick envelopes represent the convex and concave envelopes
of the function f(x, y) = xy defined in a rectangle, that is, we assume
f : [XL, XU ] × [Y L, Y U ] → R. Bao et al. [16] proposed a tighter relaxation,
namely polyhedral multiterm relaxation, obtained by determining the convex
envelope of the sum of the quadratic terms. Sherali and Adams [17] proposed
the reformulation-linearization technique (RLT), which is a systematic ap-
proach for generating valid constraints to a problem using linear equations
and inequalities including the bounding constraints, and thus strengthening
its linear relaxation. In particular, McCormick envelopes can be derived using
RLT.

The second category uses convex relaxations. The resulting relaxed

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Chapter 2. Mixed-integer quadratically constrained quadratic programming 17

problem is still nonlinear, possibly with integer variables, but its continuous
relaxation is convex. This can be achieved by adding convex terms with
sufficiently large coefficients [18] or by decomposing the quadratic matrices
into a sum of positive and negative matrices and then linearizing the second
term only. This method is known as the difference of convex functions (DC)
approach. Fampa et al. [19] proposed several approaches for decomposing the
quadratic functions as sums of a convex and a concave function. Another
possible strategy is to determine envelopes for the quadratic terms over regions
other than rectangles [10].

The third category uses Lagrangian relaxations and Lagrangian bounds
[20, 21, 22]. Although the relaxed problem is convex, the resulting Lagrangian
relaxation subproblem is usually nonconvex and as difficult to solve as the
original problem. Augmented Lagrangian relaxation [23, 24] can be used to
obtain a tighter relaxation with convex subproblems, however, these methods
introduce nonlinear terms to the dual problem. Moreover, both traditional
Lagrangian relaxation and the augmented version usually result in nonsmooth
problems.

The fourth category is based on conic programming, which can be con-
sidered a generalization of linear programming. The most common approach
is semidefinite programming (SDP) [25, 26, 27]. Another common approach
is second-order conic programming (SOCP). Sherali and Fraticelli [28] pro-
posed a cutting plane generation method using SDP. Anstreicher [29] com-
pared SDP and RLT relaxations and proposed an integrated approach for using
SDP to tighten RLT relaxations. Linderoth [10] showed that the relaxation of
quadratic terms over triangular regions of the form

{(x, y, w)|w = xy,XL ≤ x ≤ XU , Y L ≤ y ≤ Y U , x+ y ≤ c}

can be formulated using SOCP. More recently, Bomze et al. [30] and Bomze [31]
proposed copositive programming (a subclass of conic programming) for solv-
ing quadratic problems. The resulting conic programming is nonconvex; how-
ever, it provides a tighter relaxation.

The fifth category is based on partitioning the solution space and relaxing
each partition independently. The partitions can be obtained by adding
binary variables or using disjunctive programming [32]. The most traditional
approach is based on piecewise McCormick envelopes [33, 34, 35, 36]. A recent
alternative method, which also relies on convex envelopes, is the nominalized
multiparametric disaggregation technique (NMDT) proposed by Castro [37].
A similiar approach was propsed by Gupte et al. [38]. NMDT and its variations
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Chapter 2. Mixed-integer quadratically constrained quadratic programming 18

will be reviewed in more detail in Chapter 3.
A relaxation method of the fifth class was chosen to be used and

improved in this study in Chapter 3 because this class can generate arbitrarily
tight relaxations without using spatial BnB. Moreover, these relaxations
yield problems that can be solved using off-the-shelf MIP solvers, such as
CPLEX [39], GUROBI [40], and XPRESS [41], which are known to be
reliable and efficient. The next section is dedicated to review in more detail
the McCormick envelopes, that is a basic relaxation that appear in other
relaxations to the MIQCQP, including to the relaxations that we will use in
the next chapters.

2.1
McCormick envelopes

In this section, the McCormick envelopes are derived and applied to the
(MI)QCQP formulation given in Chapter 2. Then, an heuristic based on [6] is
construct and later on tested in computational experiments.

2.1.1
Formulation

Consider the following set:

{(x, y, w)|XL ≤ x ≤ XU , Y L ≤ y ≤ Y U , w = xy} (2-5)
First, let two functions, h1 : [XL, XU ] → R and h2 : [Y L, Y U ] → R

to be defined as h1(x) = x − XL and h2(y) = y − Y L. Those functions are
nonnegative by construction. Now, let the function w1,2 : [XL, XU ]× [Y L, Y U ]
be the defined as the product of functions h1 and h2. Since it is defined at
every point as the product of two nonnegative numbers, w1,2 ≥ 0. Thus, we
have the relation given by Proposition 1.

Proposition 1 The following fours inequalities are valid:
xy ≥ xY L +XLy −XLY L

xy ≥ xY U +XLy −XUY U

xy ≤ xY U +XLy −XLY U

xy ≤ xY L +XUy −XUY L

Proof. The first inequality can be proved as follows: w1,2 = (x−XL)(y−Y L) =
xy − xY L −XLy +XLY L ≥ 0
The other three inequality proofs are analogous.

Those inequalities, proposed by McCormick [14], can be used to define
set (2-6) that serves as a relaxation to the set (2-5). Additionally, those
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Chapter 2. Mixed-integer quadratically constrained quadratic programming 19

inequalities are used to define the convex and concave envelopes to the function
f : [XL, XU ] × [Y L, Y U ] → R where f(x, y) = xy as can be visualized in
Figure 2.1. Thus, they are named McCormick envelopes.

Figure 2.1: McCormick envelopes

{(x, y, w)|XL ≤ x ≤ XU , Y L ≤ y ≤ Y U , w ≥ xY L +XLy −XLY L,

w ≥ xY U +XLy −XUY U , w ≤ xY U +XLy −XLY U ,

w ≤ xY L +XUy −XUY L}

(2-6)

This new Set (2-6) has important relations to the Set (2-5). The former is
a superset for the later, and is its convex hull. Furthermore, if ∀x ∈ {XL, XU}
and ∀y ∈ {Y L, Y U} and (x, y, w) ∈ Set (2-6), then w = xy.

Proposition 2 Set (2-5) ⊂ Set (2-6)

Proof. Set (2-5) = {(x, y, w)|XL ≤ x ≤ XU , Y L ≤ y ≤ Y U , w ≥ xY L +
XLy − XLY L, w ≥ xY U + XLU − XUY U , w ≤ xY U + XLy − XLY U , w ≤
xY L +XUy −XUY L, w = xy} ⊂ Set (2-6)

Proposition 3 Set (2-6) is the convex hull of Set (2-5)

Proof. Let A, B be sets. For set A be the convex hull of Set B, three condi-
tions must be met. i) B ⊂ A; ii) A must be convex; iii) There cannot exist a
convex Set C such that B ⊂ C and A 6⊂ C.
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Chapter 2. Mixed-integer quadratically constrained quadratic programming 20

Proposition 2 gives condition (i); since Set (2-6) is an intersec-
tion of semispaces, it is convex, thus satisfying condition (ii); let C

be a convex set such that Set (2-5) ⊂ C, then, the four points
(XLY L, XLY L), (XLY U , XLY U), (XUY L, XUY L), (XUY U , XUY U) belong
to C. Since C is convex, all points in the polytope with these four points as
vertices also belongs to C, thus, Set (2-6) ⊂ C, which satisfies condition (iii)
and completes the proof.

Since the McCormick envelopes provide the convex hull to a product
between two variables limited in a rectangular region and it can be represented
using a polyhedral formulation (Proposition 3), it can be used to generate
linear relaxations to the (MI)QCQP directly or to be incorporated in tighter
relaxations. This second approach will be done in Chapter 3 where piecewise
relaxations are created using additional binary variables to reduce the bound
of continuous variables that appear in products, and then relax the products
using the McCormick envelopes.
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3
Piecewise relaxation

In this chapter, the mathematical background of NMDT is reviewed, and
the related notation is introduced. Moreover, an initial formulation of NMDT
is presented that will be central to this study.

NMDT appears as a natural progression of relaxations that have recently
been used for solving either (MI)QCQP problems or certain subclasses of these
problems such as bilinear programming problems. The ideas that led to the
development of NMDT are reviewed below.

Li and Chang [42] proposed an approximation to the quadratic problem
using a binary expansion of all variables. Based on this idea, Teles et al. [43]
proposed the multiparametric disaggregation technique (MDT) as an approx-
imation to polynomial programming.

Kolodziej et al. [44] proposed a relaxation for QCQP problems based on
MDT by performing a decimal expansion on a subset of the variables and by
including additional continuous variables with arbitrarily tight bounds. The
products of binary variables and continuous variables were linearized exactly,
and the products of two continuous variables were relaxed using McCormick
envelopes. Additionally, they showed that their formulation can be obtained
using disjunctive programming.

Later, Castro [37] proposed the normalized multiparametric disaggrega-
tion technique (NMDT) and showed that it is advantageous to normalize the
variables before performing the decimal expansion, as the number of partitions
for all variables is more controllable.

In the remainder of this section, the formulation of NMDT is presented.
Given a (MI)QCQP problem, let the set of the indexes that appear in a
quadratic term be defined as QT = {(i, j) ∈ I2

1,n1 |j ≥ i, ∃r ∈ I0,m, |Qr,i,j| > 0},
and the set of indexed of variables that will be discretized as DS = {j ∈
I1,n1|∃i ∈ I1,n1 , (i, j) ∈ QT}.

The variables xj for all j ∈ DS are normalized as follows:

xj = (XU
j −XL

j )λj +XL
j ,∀j ∈ DS. (3-1)

λj ∈ [0, 1] is discretized in partitions of size 10p each, where p corresponds to
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a precision factor. The variables ∆λj are added to allow λj to attain all values
in the interval [0, 1]. Thus,

λj =
∑

k∈I0,9,l∈Ip,−1

k10lzj,k,l + ∆λj, ∀j ∈ DS (3-2)

0 ≤ ∆λj ≤ 10p, ∀j ∈ DS. (3-3)

The following relations are obtained by multiplying both sides of (3-1) and
(3-2) by xi for all i ∈ I1,n.

xixj = (XU
j −XL

j )xiλj + xiX
L
j , ∀i, j ∈ QT (3-4)

xiλj =
∑

k∈I0,9,l∈Ip,−1

k10lxizj,k,l + xi∆λj, ∀i, j ∈ QT. (3-5)

Subsequently, the auxiliary variables wi,j, x̂i,j,k,l, vi,j, and ∆vi,j are included to
represent the products xixj, xizj,k,l, xiλj, and xi∆λj, respectively. Using these
auxiliary variables, we obtain

wi,j = (XU
j −XL

j )vi,j + xiX
L
j , ∀i, j ∈ QT (3-6)

vi,j =
∑

k∈I0,9,l∈Ip,−1

k10lx̂i,j,k,l + ∆vi,j, ∀i, j ∈ QT. (3-7)

Constraints (3-8)–(3-9) are known as the McCormick envelopes and provide a
relaxation of the product of two continuous variables. The product of binary
and continuous variables is exactly linearized by constraints (3-10)–(3-12).

XL
i ∆λj ≤ ∆vi,j ≤ XU

i ∆λj, ∀i, j ∈ QT (3-8)

10p(xi −XU
i ) +XU

i ∆λj ≤ ∆vi,j ≤ 10p(xi −XL
i ) +XL

i ∆λj, ∀i, j ∈ QT
(3-9)∑

k∈I0,9

zj,k,l = 1, ∀j ∈ DS, l ∈ Ip,−1 (3-10)

∑
k∈I0,9

x̂i,j,k,l = xi, ∀i, j ∈ QT, l ∈ Ip,−1 (3-11)

XL
i zj,k,l ≤ x̂i,j,k,l ≤ XU

i zj,k,l, ∀i, j, k, l. (3-12)

Furthermore, using the variable wi,j, the objective function (2-1) and the origi-
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nal constraints (2-2) are replaced by Equations (3-13) and (3-14), respectively.

min
∑

i|(i,i)∈QT
Q0,i,iwi,i + 2

∑
(i,j)∈QT |j>i

Q0,i,jwi,j + f0(x, y)

(3-13)∑
i|(i,i)∈QT

Qr,i,iwi,i + 2
∑

(i,j)∈QT |j>i
Qr,i,jwi,j + fr(x, y) ≤ 0, ∀r ∈ I1,m.

(3-14)

We need to define one additional constraint that will serve the purpose of
simplifying the technical results stated later on. Constraint (3-15) represents
an alternative nonlinear definition of the variable ∆v.

∆vi,j = xi∆λj (3-15)

Definition 1 For every p, EQUIVp is defined as the problem of minimizing
the objective function (3-13), subject to the constraints (3-1)–(3-3), (3-6), (3-7),
(3-10)–(3-12), (3-14), and (3-15).

Definition 2 For every p, the set FS-EQUIVp is defined as the feasible set
of problem EQUIVp. That is, (x, y, w, z, v, x̂, λ,∆λ,∆v) ∈ FS-EQUIVp if and
only if it satisfies constraints (3-1)–(3-3), (3-6), (3-7), (3-10)–(3-12), (3-14),
and (3-15).

Lemma 1 For all p ≤ 0, EQUIVp is equivalent to the original problem (2-1)–
(2-4).

Lemma 1 is trivial, as all additional constraints (and associated variables)
are redundant and the linearizations are exact. Problem EQUIVp is useful as
an intermediate step in proving that NMDTp is a relaxation of the original
(MI)QCQP problem.

Definition 3 For every p, NMDTp is defined as the problem of minimizing the
objective function (3-13) subject to the constraints (3-1)–(3-3), (3-6)–(3-12),
and (3-14).

Definition 4 For every p, the set FS-NMDTp is defined as the feasible set of
problem NMDTp. That is, (x, y, w, z, v, x̂, λ,∆λ,∆v) ∈ FS-NMDTp if and only
if it satisfies constraints (3-1)–(3-3), (3-6)–(3-12), and (3-14).

Proposition 4 NMDTp is a relaxation of EQUIVp for every p ≤ 0.
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Proof. Both problems have the same objective function. Thus, NMTDp will
be a relaxation of EQUIVp if FS-NMDTp ⊇ FS-EQUIVp. The constraints that
are used to define both feasible sets are nearly the same. The only difference
is that FS-NMDTp has constraints (3-8) and (3-9) instead of (3-15). As the
former are the McCormick envelopes of the product that appears in the latter,
it follows that constraints (3-8) and (3-9) are implied from constraint (3-15),
whereas the converse is not true. Therefore, FS-NMDTp ⊇ FS-EQUIVp, and
the proposition follows.

Proposition 5 NMDTp is a relaxation of the original (MI)QCQP problem
for every p ≤ 0.

Proof. The result follows directly from Lemma 1 and Proposition 4.

Theorem 1 For any pair (p1, p2) with p1 < p2 ≤ 0, NMDTp2 is a relaxation
of NMDTp1.

Proof. It should be noted that NMDTp1 has more variables than NMDTp2 .
Thus, the feasible sets FS-NMDTp1 and FS-NMDTp2 cannot be compared
directly, as they have different dimensions. To allow such a comparison, a
mappingM : FS-NMDTp1 → FS-NMDTp2 is constructed so that every element
(x, y, w, z, v, x̂, λ,∆λ,∆v) ∈ FS-NMDTp1 evaluated in the objective function
of NMDTp1 is equal to M(x, y, w, z, v, x̂, λ,∆λ,∆v) evaluated in the objective
function of NMDTp2 . Let M be defined as

x
NMDTp2
i = x

NMDTp1
i , ∀i ∈ I1,n1

y
NMDTp2
i = y

NMDTp1
i , ∀i ∈ I1,n2

w
NMDTp2
i = w

NMDTp1
i , ∀i, j ∈ QT

z
NMDTp2
j,k,l = z

NMDTp1
j,k,l , ∀j ∈ DS, k ∈ I0,9, l ∈ Ip2,0

v
NMDTp2
i,j = v

NMDTp1
i,j , ∀i, j ∈ QT

x̂
NMDTp2
i,j,l = x̂

NMDTp1
i,j,l , ∀i, j ∈ QT, k ∈ I0,9, l ∈ Ip2,0

λ
NMDTp2
j = λ

NMDTp1
j , ∀j ∈ DS

∆λNMDTp2
j = ∆λNMDTp1

j +
∑

l∈Ip1,p2−1

k10lzNMDTp1
j,k,l , ∀j ∈ DS

∆vNMDTp2
i,j = ∆vNMDTp1

i,j +
∑

l∈Ip1,p2−1

k10lx̂NMDTp1
i,j,l , ∀i, j ∈ QT

It is straightforward to verify that the image of this mapping is in the feasibility
set FS-NMDTp2 , completing the proof.

Theorem 2 For any pair (p1, p2) with p1 < p2 ≤ 0, NMDTp1 is a tighter (or
equal) relaxation of the original (MI)QCQP problem than NMDTp2.
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Proof. By Proposition 5, both problems are relaxations of the original prob-
lem. By Theorem 1, NMDTp2 is a relaxation of NMDTp1 , it follows that
NMDTp1 is a tighter relaxation of the original problem than NMDTp2 .

3.1
Algorithm

Algorithm 1 was originally proposed in Castro [37] for solving an
(MI)QCQP problem using NMDT. It is similar to the algorithm in Kolodziej
et al. [44].

Algorithm 1 Algorithm to NMDT
Step 0. Choose p = 0 and let UB = +∞ and iteration = 0.
Step 1. iteration = iteration+ 1.
Step 2. Solve relaxation NMDTp, obtaining LB and (xR, yR).
Step 3. Solve original problem with a local solver with initial solution
(xR, yR) and fix integer variables at yR. If a new best solution is found,
store the incumbent solution (x∗, y∗) and update UB.
Step 4. If one of the stopping criteria (discussed below) is met, stop.
Otherwise, set p = p− 1 and return to Step 1.

The principle of this algorithm is to tighten the relaxation as the
iterations progress by decreasing the parameter p, thus gradually increasing
the lower bound (LB). Feasible solutions are obtained using local methods
with warm starts and fixing integer variables, which in turn provides upper
bounds (UB). An incumbent solution is the best feasible solution obtained
during the execution of the algorithm. Common stop criteria are the maximum
number of iterations, the maximum time elapsed, and the relative or absolute
gap with respect to a certain threshold.

If the feasible space of the original (MI)QCQP problem is not empty,
the algorithm converges to the optimal value of the (MI)QCQP problem since
limp→−∞∆λj = 0 and, if ∆λJ = 0, then wi,j = xixj. Thus, the relaxed solution
is feasible for the original problem and UB = LB.

Although convergence is only asymptotically guaranteed, it is often
observed (as will also be seen in the computational experiments presented later)
that feasible solutions are obtained within a few iterations of the algorithm.
Furthermore, the lower bound in each iteration is at least as good as the bound
in the previous iteration, as stated in the following theorem.

Theorem 3 The sequence of lower bounds generated by Algorithm 1 is mono-
tonic.

Proof. As in each iteration, the value of p is decreased, the result follows from
Theorem 2.
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3.2
Reformulated Normalized Multiparametric Disaggregation

Herein, the main contributions of this study are presented. It is first
shown that a binary expansion is preferable to a decimal expansion in NMDT.
Subsequently, a reformulation of the problem is presented in which the number
of variables (both binary and continuous) and constraints are reduced. Finally,
an alternative algorithm is developed.

3.2.1
Reformulation using binary expansion

The first reformulation consists in changing from 10 to 2 the numerical
base that is used for representing the continuous variables. It should be noted
that this idea is not new and has already been successfully applied to other
techniques related to RNMDT [45]. Nevertheless, Castro [37] used decimal
representation for the NMDT. Despite a brief mention in that other bases may
be chosen, to the best of our knowledge [37], base-2 (or binary) expansions
have not been applied in this context. Other key difference between the base-2
expansion used in Teles et al. [45] and the proposed approach is that, while the
former uses base-2 for the MDT only as a means to reduce the total of auxiliary
variables while trying to maintain the same precision level, our focus is to use
the base-2 formulation to control how the model grows as the precision level
increase between iterations.

The formulation using a binary expansion (i.e., a representation in which
each variable is replaced by a base-2 expansion) instead of the traditional
decimal expansion is obtained by modifying constraints (3-2), (3-3), (3-7),
(3-9), (3-10), and (3-11). The new constraints are obtained by replacing the
number 10 by 2 and 9 by 1, respectively, wherever they appear in these
constraints. This procedure results in the new constraints (3-16)–(3-21).
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λj =
∑

k∈I0,1,l∈Ip,−1
2lkzj,k,l + ∆λj ,∀j ∈ DS (3-16)

0 ≤ ∆λj ≤ 2p ,∀j ∈ DS (3-17)

vi,j =
∑

k∈I0,1,l∈Ip,−1
2lkx̂i,j,k,l + ∆vi,j ,∀i, j ∈ QT (3-18)

2p(xi −XU
i ) +XU

i ∆λj ≤ ∆vi,j ≤ 2p(xi −XL
i ) +XL

i ∆λj ,∀i, j ∈ QT
(3-19)∑

k∈I0,1

zj,k,l = 1 ,∀j ∈ DS, l ∈ Ip,−1 (3-20)

∑
k∈I0,1

x̂i,j,k,l = xi ,∀i, j ∈ QT (3-21)

Despite its simplicity, this reformulation allows a significant reduction in
the number of auxiliary binary variables required in the variable expansion
for a given precision 10p. The following propositions allow the comparison of
the total number of binary variables required in the base-10 and the base-2
expansions.

Proposition 6 The number of auxiliary binary variables z for NMDT in base
10 is 10(−p)|DS| for a given value of the parameter p < 0, where |DS| is the
cardinality of the set QT , i.e., the number of quadratic terms in the original
(MI)QCQP problem.

Proof. For every j ∈ DS, ∑k∈I0,9

∑
l∈Ip,−1 1 binary variables are added to the

problem. Therefore, the number of added auxiliary binary variables z is

|DS|
∑
k∈I0,9

∑
l∈Ip,−1

= |DS| × |I0,9| × |Ip,−1| = 10(−p)|DS|.

Proposition 7 The number of auxiliary binary variables z for NMDT in base
2 is 2(−p)|DS| for a given value p < 0.

Proof. For every j ∈ DS, ∑k∈I0,1

∑
l∈Ip,−1 1 binary variables are added to the

problem. Therefore, the number of added auxiliary binary variables z is

|DS|
∑
k∈I0,1

∑
l∈Ip,−1

= |DS| × |I0,1| × |Ip,−1| = 2(−p)|DS|.

Figures 3.1 and 3.2 illustrate the discretization of λ using decimal and
binary base, respectively. Even though for a given p, the binary expansion
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Figure 3.1: Discretization using decimal expansion

Figure 3.2: Discretization using binary expansion

provides less precision than the decimal expansion, it also requires fewer binary
variables. Alternatively, for a given desired precision, fewer binary variables are
required, as will be further discussed in Section 3.2.4.

3.2.2
Eliminating redundant variables and constraints

The original formulation of NMDT presents redundancy in both variables
and constraints. Therefore, the first step of the reformulation process is to
eliminate these redundant terms. The variables λ and v can be eliminated
by replacing them in every constraint they appear with the form given by
constraints (3-16) and (3-18), respectively.

The second step consists of replacing zj,0,l with 1 − zj,1,l for all j ∈
DS, l ∈ Ip,−1. This renders equation (3-20) redundant. Similarly, variable x̂i,j,0,l
is replaced by xi − x̂i,j,0,l, thus rendering equation (3-21) redundant.

The last two steps do not involve elimination of constraints, but rather
rearrangement of variable labels and indices to accomodate the previous
simplifications. First, index k can be dropped, as it refers to the singleton
set ({1}). It should be noted that k = 0 can be disregarded (see, for
example, constraint (3-16)), as it only adds variables with null coefficient to
the summation. The last step consists of replacing ∆λ and ∆v with ∆x and
∆w, respectively, as λ and v no longer exist.

The simplified model (3-22)-(3-33) is hereinafter referred to as reformu-
lated normalized multiparametric disaggregation technique (RNMDT). For
every p ≤ 0 it is denoted as RNMDTp, following the notation used for the
previous models.
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min
∑

i|(i,i)∈QT
Q0,i,iwi,i + 2

∑
(i,j)∈QT |j>i

Q0,i,jwi,j + f0(x, y) (3-22)

s.t.:
∑

i|(i,i)∈QT
Qr,i,iwi,i + 2

∑
(i,j)∈QT |j>i

Qr,i,jwi,j + fr(x, y) ≤ 0, ∀r ∈ I1,m

(3-23)

xj = (XU
j −XL

j )(
∑

l∈Ip,−1

2lzj,l + ∆xj), ∀j ∈ DS (3-24)

wi,j = (XU
j −XL

j )(
∑

l∈Ip,−1

2lx̂i,j,l + ∆wi,j), ∀i ∈ I1,n, j ∈ I1,n|(i, j) ∈ QT

(3-25)

0 ≤ ∆λj ≤ 2p, ∀j ∈ DS (3-26)

2p(xi −XU
i ) +XU

i ∆xj ≤ ∆wi,j ≤ 2p(xi −XL
i ) +XL

i ∆xj, ∀i, j|(i, j) ∈ QT
(3-27)

xLi ∆xj ≤ ∆wi,j ≤ xUi ∆xj, ∀i, j|(i, j) ∈ QT (3-28)

XL
i zj,l ≤ x̂i,j,l ≤ XU

i zj,l, ∀i, j, l ∈ QT × I0,p (3-29)

XL
i (1− zj,l) ≤ xi − x̂i,j,l ≤ XU

i (1− zj,l), ∀i, j, l ∈ QT × I0,p (3-30)

xi ∈ [XL
i , X

U
i ], ∀i ∈ I1,n1 (3-31)

yi ∈ {Y L
i , . . . , Y

U
i }, ∀i ∈ I1,n2 (3-32)

zj,l ∈ {0, 1}, ∀j, l ∈ DS × I0,p. (3-33)

The following technical results concern the reduction in the number of
binary variables necessary for representing the expansions, to a given precision
10p, after performing the proposed reformulations. The total reduction in the
number of binary variables is such that only one tenth of the original number
of binary variables is required when combining the proposed reformulation and
the change of base.

Proposition 8 The number of auxiliary binary variables z for RNMDT is
(−p)|DS| for a given parameter p < 0.

Proof. For every j ∈ DS, ∑l∈Ip,−1 1 binary variables are added to the model.
Therefore, the number of added binary variables z is |DS| × ∑

l∈Ip,−1 1 =
|DS| × |Ip,−1| = (−p)|DS|.

Theorem 4 For every p ≤ 0, the number of auxiliary binary variables z
for RNMDTp is one tenth of the number of binary variables of the problem
NMDTp.

Proof. The proof follows from Propositions 6 and 8.
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Moreover, most of the technical results previously presented concerning
the reformulation and the change of base still hold. They are reproduced for
the sake of completeness.

Proposition 9 RNMDTp problem is a relaxation of the original (MI)QCQP
problem of every p ≤ 0.

Proof. The proof is analogous to that of Proposition 5.

Theorem 5 For any pair of (p1, p2) with p1 < p2 ≤ 0, RNMDTp2 is a
relaxation of NMDTp1.

Proof. The proof is analogous to that of Theorem 1.

Theorem 6 For any pair of (p1, p2) with p1 < p2 ≤ 0, RNMDTp1 is a tighter
(or equal) relaxation of the original (MI)QCQP problem than RNMDTp2.

Proof. The proof is analogous to that of Theorem 2.

3.2.3
Dynamic-precision RNMDT algorithm

One disadvantage of Algorithm 1 is that all discretized variables are
expanded using the same number of partitions (or the same precision in the
MDT case), which can result in a rapid increase in the number of binary
variables that are added to the problem. In this section, an alternative
algorithm is proposed for solving the (MI)QCQP problem using RNMDT,
whereby the number of partitions is increased only for the variables that will
potentially improve (i.e., tighten) the relaxation. Initially, the single precision
parameter p is replaced with a parameter vector pj for all j ∈ DS, where
each entry represents the number of partitions that will be used to expand
the variable xj for all j ∈ DS. The variables that will have their precision
increased are then chosen dynamically in each iteration.

This procedure is summarized in Algorithm 2. In each iteration, the
variables for which the number of partitions will be increased are chosen by
ranking them using the function frank given in (3-34). The first term of this
function represents the absolute error of the relaxation for the pure quadratic
terms in which a given variable is present. The second term is the error in the
bilinear terms in which the variable appears. The first N1 variables with the
largest function value are selected and their precision is increased, i.e., pj is
reduced by one unit. For every N2 iterations, each pj for all j, is reduced by one
unit to ensure convergence (i.e., to ensure that for every j ∈ DS, pj → −∞;
therefore, wi,j → xixj).
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frank(j) =
∑
r

|Qr,j(wj,j − x2
j)|+ 2

∑
((r,i)|i>j|(i,j)∈QT )

|Qr,i,j(wi,j − xixj)| (3-34)

Algorithm 2 Dynamic-precision RNMDT algorithm
Step 0. For all j ∈ DS, set pj = 0 and let UB = +∞ and iteration = 0.
Step 1. iteration = iteration+ 1.
Step 2. Solve relaxation and obtain LB and point (xR, yR).
Step 3. Solve original problem with a local solver with initial solution
(xR, yR) and fixing integer variables at yR. If a new best solution is found,
save the incumbent solution (x∗, y∗) and update UB.
Step 4. If some of the stopping criteria is met, stop. Otherwise continue.
if iteration+ 1 is not a multiple of N2 then

Step 5. Rank j using frank, and for the first N1 indexes j ranked by frank,
set pj = pj − 1. return to step 1.
else

Step 5. For all j, set pj = pj − 1. return to Step 1.
end if

Theorem 7 The sequence of lower bounds generated by Algorithm 2 is mono-
tonic.

Proof. As the parameter p is point-wise decreased in each iteration, mono-
tonicity follows from Theorem 6.

3.2.4
Discussions

It should be noted that the proposed changes aim at reducing the total
number of binary variables required for obtaining the relaxation at each
iteration. In that sense, the change of base reduces the number of binary
variables necessary for expanding the continuous variables, the elimination
of redundant variables and constraints reduces the overall model size. The
proposed algorithm controls the increase in the model size between iterations.

Table 3.1 shows the precision and the number of additional binary
variables for each choice of the parameter p. The first column represents
different choices of p. The remaining columns are grouped in pairs. The first
column for each pair represents the precision for the chosen p, i.e., the tightness
of the bounds of ∆λ or ∆x depending on whether the model is NMDT or
RDNMT, respectively. The second column represents the number of auxiliary
variables z that are added for each continuous variable that is discretized.
There are three pairs of columns, the first is for NDMT using base 10, the
second for NMDT using base 2, and the last for RNMDT.
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Table 3.1: Precision x number of binary variables
NMDT - base 10 NMDT - base 2 RNMDT

p precision binary
variables precision binary

variables precision binary
variables

0 1.00E+00 0 1.00E+00 0 1.00E+00 0
-1 1.00E-01 10 5.00E-01 2 5.00E-01 1
-2 1.00E-02 20 2.50E-01 4 2.50E-01 2
-3 1.00E-03 30 1.25E-01 6 1.25E-01 3
-4 1.00E-04 40 6.25E-02 8 6.25E-02 4
-5 1.00E-05 50 3.13E-02 10 3.13E-02 5
-6 1.00E-06 60 1.56E-02 12 1.56E-02 6
-7 1.00E-07 70 7.81E-03 14 7.81E-03 7
-8 1.00E-08 80 3.91E-03 16 3.91E-03 8
-9 1.00E-09 90 1.95E-03 18 1.95E-03 9
-10 1.00E-10 100 9.77E-04 20 9.77E-04 10

It is easily seen that the binary expansion has two major advantages
compared to the decimal expansion; namely, it allows more control over
accuracy and generates fewer binary variables for each chosen accuracy. As
an illustrative example, if NMDT in base 10 is chosen, ten binary variables are
necessary for a precision of 10−1, whereas for RNMDT, the same number of
variables results in a precision of 9.77E − 04.

Table 3.2 shows the model complexity before and after the elimination
of redundant variables and constraints. It is noticeable that the number of
additional binary variables (represented by variable z) is reduced by a factor
of 5, owing to the base change, and by half after the redundancy elimination.
Clearly, the remainder of the model size decreases as well. However, it should
be noted that comparing the model sizes for the same parameter p value can
be misleading, since the same value of p leads to different precisions in the
different formulations. Nevertheless, if one compares the formulations for a
given precision level, the reduction in the number of auxiliary binary variables
from base 10 to the RNMDT formulation is approximately by a factor of 3, as
can be observed in Table 3.1.

As the Algorithm 2 (dynamic-precision algorithm) may require different
number of iterations from Algorithm 1, and each iteration may have different
computational cost, their efficiency is not directly comparable by theoretical
analysis. However, the advantage of the dynamic-precision RNMDT algorithm
will become clear in the next section in which computational experiments are
presented

3.3
Computational experiments

In this section, the results obtained using the proposed relaxation and
algorithm are presented. The QCQP problem instances were obtained from the
literature and we also consider some randomly generated MIQCQP problem
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Table 3.2: Model Complexity
NMDT - base

10
NMDT - base

2 RNMDT

x n1 n1 n1
y n2 n2 n2
w |QT | |QT | |QT |
z 10(−p)|DS| 2(−p)|DS| (−p)|DS|
λ |DS| |DS| 0

∆x/∆λ |DS| |DS| |DS|
v |QT | |QT | 0
x̂ 10(−p)|QT | 2(−p)|QT | (−p)|QT |

∆v/∆w |QT | |QT | |QT |

binary
variables 10(−p)|DS| 2(−p)|DS| (−p)|DS|

integer
variables n2 n2 n2

continuous
variables

n1 + (10(−p) +
3)|QT |+ 2|DS|

n1 + (2(−p) +
3)|QT |+ 2|DS|

n1 + ((−p) +
2)|QT |+ |DS|

constraints
m+ (2 +

(−p))DS + (4 +
11(−p))|QT |

m+ (2 +
(−p))|DS|+

(4 + 3(−p))|QT |

m+ (−p)|DS|+
(3 + 2(−p))|QT |

instances. All instances were solved by four methods: i) Algorithm 1 and
NMDT in base 10, ii) Algorithm 1 and NMDT in base 2, iii) Algorithm 1
and RNMDT, and iv) Algorithm 2 and RNMDT.

The algorithms were implemented in GAMS on an Intel i7-3612QM with
8GB. The LP/MIP solver was CPLEX 12.6, and the local nonlinear solver
was CONOPT 3.17. For the dynamic-precision RNMDT algorithm, N1 and
N2 were set to 3 and 10, respectively. These values were selected based on
early experiments that will be discussed next. A time limit of 1000 seconds
and an absolute gap |UB − LB| (optimality tolerance) of 0.001 were set as
stopping criteria.

3.3.1
Literature Instances

These instances were originally presented in [16]. They were provided
by the Optimization Firm, which is responsible for the development of the
BARON solver [46].

All instances are QCQP minimization problems. All variables are contin-
uous except for the auxiliary z variables in the relaxation, which are discrete.

There are 135 instances, and all are nonconvex. The number of variables
ranged from 10 to 50, and the number of constraints from 10 to 100. The
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density of the quadratic matrices Q was 25%, 50%, or 100%. The linear part
was 100% dense for all problems. The coefficients from both the quadratic
and the linear terms were chosen to be randomly generated numbers chosen
uniformly between 0 and 1. Table 3.3 classifies instances according to problem
size and density.

Table 3.3: Instances sizes

variables constraints density (%)
number

of
instances

small
8 to 10 8 to 40 25 18
10 to 20 10 to 40 50 18
10 to 20 10 to 40 100 18

medium
28 to 40 28 to 80 25 18
30 to 40 30 to 80 50 18
30 to 40 30 to 80 100 18

large
48 48 to 96 25 9
50 50 to 100 50 9
50 50 to 100 100 9

3.3.1.1
Parameterizing the dynamic-precision algorithm

Algorithm 2 requires the parameters N1 and N2 to be set beforehand.
To select these values, a representative instance was chosen from the group
of large instances and solved with a time limit of 48 hours using Algorithm 1
(classic algorithm) and Algorithm 2 (Dynamic-precision algorithm) setting the
parameter pair (N1, N2) to (1, 20), (3, 10), (5, 10), and (10, 5). The results are
shown in Figure 3.3.1.1 using log-transformation on the time axis. In this figure,
each dot represents an iteration and each line a different setting.

As can be seen in Figure 3.3.1.1, Algorithm 2 was more efficient than
Algorithm 1, as the latter required considerably more time to complete
iteration 2, primarily owing to the number of binary variables added in the
relaxation. If a significantly small number of continuous variables have their
discretization refined per iteration, then several consecutive iterations with
little or no improvement may be observed. For example, this can be seen in
the setting (1, 20). In contrast, if a considerably large number of variables are
expanded the algorithm requires a larger amount of time to complete the first
iterations, as can be seen, for example, in the setting (10, 5). Figure 3.3.1.1
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Figure 3.3: Setting parameter N1 and N2 (logarithm)

shows that the two intermediate settings are nearly equivalent; however, the
setting (3, 10) was chosen as a conservative option in terms of problem growth
(as it expands fewer variables per iteration). This experiment showed that, in
this case, the performance of the dynamic-precision algorithm for the given
parameters was, to a certain degree, robust. A similar behavior was also
observed in preliminary experiments with other instances.

3.3.1.2
Numerical results

Given the choice of parameters (N1, N2) = (3, 10) for the dynamic-
precision algorithm, all four methods were used for solving the 135 instances. In
these experiments, the same optimality tolerance of 0.001 was used; however,
the time limit was reduced to 1000 seconds. One can conclude from the
numerical results, the three proposed improvements surpassed, in terms of
performance, the relaxation and the algorithm in Castro [37]. The instances
solved are summarized in Table 3.4.

NMDT using base 2 and RNMDT solved 18 additional instances when
compared with NMDT using base 10. In particular, they solved seven addi-
tional small instances with 100% density. RNMDT with the dynamic-precision
algorithm solved two additional instances compared with RNMDT combined
with the classic algorithm, namely, one large instance with 25% density and
one medium instance with 50% density. To compare the performance of the
methods in the instances for which the optimality gap was not closed, Table 3.5
presents the average relative gaps after termination of the algorithm due to
the time limit criterion.

The proposed improvements over the NMDT formulation and the algo-
rithm presented in Castro [37] were both successful in terms of the number of
instances solved and also the quality of the bounds obtained for the instances
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Table 3.4: Solved instances

size density
(%)

total
in-

stances

NMDT
+ base

10

NMDT
+ base

2

RNMDT
+ Algo-
rithm
1

RNMDT
+ Algo-
rithm
2

small

25 18 18 18 18 18
50 18 18 18 18 18
100 18 9 16 16 16

average 54 45 52 52 52

medium

25 18 18 18 18 18
50 18 9 9 9 10
100 18 - - - -

average 54 27 27 27 28

large

25 9 1 5 5 6
50 9 - - - -
100 9 - - - -

average 27 1 5 5 6
average 135 66 84 84 86

that could not be solved to optimality. The single most significant improvement
was due to the change in the base of the expansion from 10 to 2 which reduc-
ing the average relative gap by nearly half. Furthermore, additional gains were
obtained, albeit to a lesser degree, using the reformulation and Algorithm 2.
The reformulation and proposed algorithm were significantly more successful
for the larger and denser instances, as these instances had many quadratic
terms and thus, many variables are needed to be expanded. Complete results
for these instances are presented in Appendix A.

3.3.2
Generated instances

Six MIQCQP instances with 100% density were generated to test the
proposed reformulations and algorithms in the mixed-integer case. These
instances are available from the authors upon request. As MIQCQP problems
are typically more computationally demanding, the time limit was increased
to 7200 seconds.

Table 3.6 shows the model sizes for the six instances. Table ?? shows the
relative gap achieved for these instances. The average relative gap for NMDT in
base 10, NMDT in base 2, RNMDT, and RNDMT with the dynamic-precision
algorithm is 163.4%, 121.7%, 124.7%, and 111.3%, respectively. It is clear
that Algorithm 2 exhibited the best performance for these instances as well.
Moreover, the three methods outperform the formulation and the algorithm in
[37], as the lower bound was improved in all cases. It should be noted that the
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Table 3.5: Relative gaps

size density
(%)

NMDT
+ base

10

NMDT
+ base

2

RNMDT
+ Algo-
rithm
1

RNMDT
+ Algo-
rithm
2

small

25 0.0% 0.0% 0.0% 0.0%
50 0.0% 0.0% 0.0% 0.0%
100 14.5% 0.0% 0.0% 0.0%
total 4.8% 0.0% 0.0% 0.0%

medium

25 1.9% 0.0% 0.0% 0.0%
50 30.3% 3.4% 3.5% 3.7%
100 112.0% 65.8% 65.7% 53.3%
total 48.1% 23.1% 23.1% 19.0%

large

25 23.8% 2.0% 2.2% 2.4%
50 98.0% 56.4% 53.5% 49.4%
100 185.8% 155.2% 152.2% 115.6%
total 102.5% 71.2% 69.3% 55.8%

total 41.7% 23.5% 23.1% 18.8%

Table 3.6: Mixed-integer instances
instance continuous variables integer variables constraints density (%)

1 20 10 20 100
2 30 10 30 100
3 30 30 30 100
4 30 30 60 100
5 50 30 100 100
6 100 100 100 100

reformulated NMDT without the algorithm presented worse average relative
gap than the NMDT without the reformulation, which was primarily observed
in a single instance (instance 6).

3.3.3
Comparison with open-source solver

In the experiments that we presented so far, we compared our improve-
ments with the approach proposed in Castro [37]. Next, we present results
obtained from comparing the RNMDT with Algorithm 2, the best performing
of the four configurations tested, with Couenne [47], a state-of-art open-source
global solver for MINLP (MIQCQP inclusive) made available by the COIN-OR
[48] initiative. Couenne relies on convex over and under envelopes and spatial
BnB.

Table 3.8 details the size of generated instances. Note that, as is the case
for the previously subsections, these are fully dense instances, e.g., an instance
with 50 constraints and 50 variables has (50× 49/2 + 50)× (50 + 1) = 65025
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Table 3.7: Relative gaps for generated instances

instance
NMDT
+ base

10

NMDT
+ base 2

RNDMT
+ Algo-
rithm
1

RNDMT
+ Algo-
rithm
2

1 15.9% 0.1% 0.1% 0.1%
2 114.7% 51.1% 47.2% 54.1%
3 58.2% 20.1% 18.6% 18.4%
4 89.0% 50.3% 50.8% 48.4%
5 340.9% 258.8% 257.5% 222.5%
6 361.6% 349.8% 373.4% 324.4%

total 163.4% 121.7% 124.6% 111.3%

Table 3.8: Instances size - comparison with open-source solver
instance continuous variable constraints integer variables

1 50 50 0
2 50 50 10
3 50 50 50
4 60 60 50
5 60 60 60
6 70 70 50
7 100 100 0
8 100 100 10

bilinear terms (that is, nonzero entries in the Hessian matrices). We opted for
this setting so that we could asses the performance of the algorithm under
the most challenging instances possible using a similar number of variables
and constraints of those instances available in the literature. Nevertheless, we
highlight that practical problems of that nature are typically much sparser,
meaning that larger instances could potentially be solved, if those instances
were available. Considering the computational platform used, we were not able
to solve instances larger than instance 8 in Table 3.8 due to memory shortage
caused by the size of the dense Hessian matrix.

Table 3.9 shows the results in terms of relative gaps for both RNMDT
with Algorithm 2 and for Couenne. All experiments were terminated due to
the time limit of 3600s. RNMDT was not able to find a solution for instance
5, even though we observed that the upper bound reported by RNMDT was
16% better than that reported by Couenne. In Section 3.3.4 we present the
performance profiles for these results.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Chapter 3. Piecewise relaxation 39

Table 3.9: Results - relative gap - comparison with open-source solver

instance Couenne

RNMDT
+ Algo-
rithm
2

1 315% 262%
2 294% 234%
3 229% 167%
4 305% 278%
5 267% 211%
6 302% 265%
7 530% 464%
8 554% 465%

3.3.4
Performance profiles

To provide a structured comparison between the configurations being
compared, performance profiles based on Dolan and More [49] are presented.
Let ts,ip be the time taken by a given solver or algorithm s ∈ S to solve the
instance problem ip ∈ IP . Let rs,ip be defined as follows rs,ip = ts,ip/min{ts,ip :
s ∈ S} where S is the set of all solvers and algorithm that are being
compared in the experiment. Let the time performance profile ρt(τ) be defined
as ρt(τ) = |{ip ∈ IP : rs,ip ≤ τ}|/|IP |, where IP is the set of all instance
problems of the experiment and | · | denotes the cardinality of · . Similarly,
let gs,ip be the relative gap achieved by the solver or algorithm s for the
instance problem ip. Let the relative gap performance profile ρg(τ) be defined
as ρg(τ) = |{ip ∈ IP : gs,ip ≤ τ}|/|IP |. Figure 3.4 and 3.5 presents the time
and gap performance profile, respectively, for the computational experiments
performed in sections 3.3.1 and 3.3.2 combined, while Figure 3.6 presentes the
gap profile for the instances used in section 3.3.3.

The NMDT with basis 2 and the RNMDT with Algorithm 1 presented
similar performance profiles, and both were faster and achieved better bounds
then NMDT with basis 10. The RNMDT with Algorithm 2 was slower then
with Algorithm 1, since it requires more iterations for the instances that both
could solve, which explains the behavior depicted on the beginning (left-hand
side) of the time performance profile. However, the gap performance profile
shows its superior performance in terms of reaching smaller optimality gaps.
An alternative analysis using box-plot is present in Appendix B.
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Figure 3.4: time performance profile - sections 3.3.1 and 3.3.2

Figure 3.5: relative gap performance profile - sections 3.3.1 and 3.3.2

Figure 3.6: relative gap performance profile - section 3.3.3
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3.4
Discussion

Three key improvements to the NMDT were proposed. Namely, the re-
placement of decimal expansion with binary expansion, the reduction of model
size, thus eliminating redundant variables and constraints in the formulation,
and a new algorithm for solving (MI)QCQP problems using this relaxation
that allows the control of the number of binary variables added per iteration.

Instances from the literature and also a set of randomly generated
instances were used to assess the performance of the reformulations and the
new algorithm. The results showed that the reformulation is easier to solve than
the formulation available in the literature, thus providing better bounds at the
same computational cost and achieving global optimality for more instances.
The proposed algorithm appears to be particularly useful in the presence
of many quadratic terms, as in the case of high-density problems. Despite
having more parameters to configure, preliminary experiments suggest that its
performance is robust for different parameter settings.

The proposed method (RNMDT + Algorithm 2) also showed good results
when compared to the state-of-art (open-source) global solver Couenne. Future
work include to incorporate cuts and other primal heuristics in our method
to increase performance (such as those available in global solvers such as
Couenne), and to compare with other global solvers using instances derived
from real-world problems.
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4
Decomposition

In this chapter, we address nonconvex (mixed-integer) quadratically con-
strained quadratic programs ((MI)QCQP) with box constraints and decompos-
able structure, which is a special case of the Problem (2-1)-(2-4) described in
Chapter 2 and can be generally represented as:

f ∗ = max
∑
s∈S

(xTsQ0xs + f0(xs, ys)) (4-1)

s.t.:

xTsQrxs + fr(xs, ys) ≤ 0 ∀s ∈ S,∀r ∈ Cs (4-2)

xs,i ∈ [XL
s,i, X

U
s,i] ∀s ∈ S,∀i ∈ VCs (4-3)

ys,i ∈ {Y L
s,i, . . . , Y

U
s,i} ∀s ∈ S,∀i ∈ VIs (4-4)∑

s∈S
(A1

sxs +B1
sys) = b1 (4-5)

∑
s∈S

(A2
sxs +B2

sys) ≥ b2 (4-6)

Taking Ia,b = {a, . . . , b} is the subset of integers ranging from a and b

(inclusive), m = ∑
s∈S |Cs|, ∀r ∈ I0,m, Qr is a symmetric matrix, f0 is a linear

function and ∀r ∈ I1,m, fr is an affine function. Variable x can assume any
continuous value between its bounds, XL and XU and variable y can assume
any integer value between Y L and Y U , As and Bs are matrices of adequate
size, and b is a vector.

Moreover, s ∈ S is an index for separable subproblems; Cs, VCs and
VIs are the sets for the indexes for constraints, continuous variables and
integer variables sets, respectively, for each subproblem s ∈ S. We assume
that for each two subproblems s1, s2 ∈ S2 such that s1 6= s2, it follows that
Cs1 ∩ Cs2 = ∅, VCs1 ∩ VCs2 = ∅ and VIs1 ∩ VIs2 = ∅, i.e., each subproblem
has its own variables and constraints. The only constraints that have variables
from different subproblems are constraints (4-5) and (4-6), which are refereed
to as linking or complicating constraints. If it was not for these constraints,
each subproblem could be solved independently. The linking constraints are
represented as equalities (eq. (4-5)), and linear inequalities (eq. (4-6)). It is
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important to highlight that, although we use the word subproblem to call each
block structure of the problem, rigorous, they become subproblem only after
a decomposition is applied and each of the subproblems is solved separably.

The (MI)QCQP is a NP-Hard problem, i.e., it is at least as hard to solve
as the most difficult decision problem. A common approach to solving larger
instances in mathematical programming programs is decomposition, i.e., to
split the problem into several smaller problems that are more tractable and
can be solved separately or even in parallel.

In linear programming, the three most common decompositions frame-
works are Dantzig-Wolf decomposition (DWD) [50], Benders decomposition
(BD) [51], and Lagrangian relaxation (LR) [52]. It should be noted that LR
is not limited to be used in a decomposition framework, but it can be used
to relax complicating constraints, thus, allowing the problem to be separated
in independent subproblems. Lagrangian decomposition (LD) [53, 54] can be
viewed as a special case of Lagrangian relaxation decomposition strategies.
First, a complicated variable is cloned, and then, a complicated constraint
linking the cloned variables are relaxed using Lagrangian duality theory. The
BD can be stated as the dual of DWD. If the LD is solved using the cutting-
planes algorithm it can be viewed as a BD. Which of the three approaches will
be the most appropriated will depend on the structure of the problem, e.g.,
whether the problem has complicating constraints or variables.

Furthermore, the BD in its classic form (and DWD) cannot be applied to
nonlinear programming problems. Geoffrion [55] proposed the generalized Ben-
ders decomposition (GBD) based on BD to decompose convex nonlinear pro-
gramming. Later, Li, Tomasgard, and Barton [56] improved the GBD through
the nonconvex generalized Benders decomposition (NGBD) to decompose non-
convex nonlinear programming. Even though the LR and LD can be applied,
in principle, directly to a nonconvex problem, nonconvex subproblems must
be solved to global optimality as will be seen in Section 4.1, which can be
challenging since they belong to NP-Hard class.

This chapter proposes a class of dual functions based on LR and a
relaxation of the subproblems that will be performed using the reformulated
normalized multiparametric disaggregation technique (RNMDT) presented in
Chapter 3. The idea of relaxing the subproblems is inspired by the approach
used to expand the GBD to the NGBD. This new dual allows one to use the
same decomposition strategies as the classic LR but with easier subproblems
to be solved.
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4.1
Lagrangian relaxation

Lagrangian relaxation is a common technique to solve or to obtain bounds
for nonlinear convex programming problems that relies on relaxing constraints
and adding terms to the objective function. However, its use presents some
issues when applied to nonconvex problems as is showed in this section.

Let f : Rn → R, g : Rn → Rm1 and h : Rn → Rm2 be twice
continuously differentiable functions. Suppose that we are interested in solving
the Problem (4-7), also called the primal problem.

f ∗ = max
x

f(x)

s.t. g(x) ≤ 0

h(x) = 0

(4-7)

Function L : Rn × Rm1
+ × Rm2 → R can be defined by L(x, µ, λ) =

f(x) − µTg(x) + λTh(x) where (µ, λ) ∈ Rm1
+ × Rm2 is called Lagrangian

multipliers or dual variables and the function is called Lagrangian function. It
is common to say that the constraints g and h are relaxed.

If the multipliers µ and λ are fixed, a dual function φ : Rm1
+ × Rm2 → R

can be defined as the maximum of Problem 4-8. This function is called the
(Lagrangian) dual function.

φ(µ, λ) = max
x

f(x)− µTg(x) + λTh(x) (4-8)
This function φ, defined by an optimization problem, will hereinafter be

called the Lagrangian subproblem (LDS) or dual subproblem. In what follows,
we present some important properties of the dual function φ that will be used
later on.

Proposition 10 φ is a convex function.

Proof. A function is convex if and only if its epigraph is convex. Its epigraph is
the intercession of the epigraphs of each affine function f(x)−µTg(x)+λTh(x).
Since any affine function is convex, so are their epigraphs. An arbitrary
intersection of convex sets is convex as well, thus, φ is convex.

Proposition 11 φ is a lower semicontinuous function.

Proof. A function is lower semicontinuous if and only if its epigraph is
closed. Its epigraph is the intercession of the epigraphs of each affine function
f(x) − µTg(x) + λTh(x) that is convex. Affine function epigraphs are closed
and an arbitrary intersection of closed sets is also closed. Therefore, φ is lower
semicontinuous.
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Even though the function φ and the LD problem are always convex, the
dual subproblem is nonconvex if f is nonconcave, g is nonconvex, or h is not
affine. Thus, LDS may be as hard to solve to global optimality as the primal
problem. This will hereinafter be called issue 1. The LDS feasible solutions and
optimal value have a relation with the primal feasible solutions and optimal
value respectively as stated in the following propositions.

Proposition 12 (Weak Duality 1) φ(µ, λ) ≥ f(x), ∀µ ≥ 0, λ ∈ Rm2 ∀x ∈
{x ∈ Rn|g(x) ≤ 0, h(x) = 0}

Proof. φ(µ) = maxx f(x)− µTg(x) + λTh(x) ≥ maxx∈{Rn|g(x)≤0,h(x)=0} f(x)−
µTg(x) + λTh(x) ≥ maxx∈{Rn|g(x)≤0,h(x)=0} f(x) ≥ f(x)

For every chosen µ and λ, the Lagrangian dual function φ provides an
upper bound for the primal problem. Our objective is to obtain the best
possible bound. Thus, we are interested in solving the problem defined in
Problem (4-9) that is called (classic) Lagrangian Dual problem (LDP).

φ∗ = min
µ,λ

φ(µ, λ)

s.t. µ ≥ 0
(4-9)

Remark 1 Although the relaxation in Chapter 3 was for a minimization prob-
lem. It is straight forward to prove the equivalent theorems and propositions
for a maximization problem. In the present chapter we define a primal maxi-
mization problem, so we obtain a minimization dual problem 4-9.

Proposition 13 (Weak Duality 2) φ∗ ≥ f ∗ where φ∗ and f ∗ are the opti-
mal values of the dual and primal problems respectively.

Proof. It is a direct consequence of Proposition 12.

Proposition 14 (Strong Duality) If f and g are convex functions and the
primal problem satisfies the Slater constraint qualification, then f ∗ = φ∗

For the definition of Slater constraint qualification see Boyd [57]. For the
proof of this proposition and alternative versions that use others constraints
qualifiers other than the Slater condition, see Robinson [58]. For a complete
review of Lagrangian duality theory and the proofs of the above propositions,
see Ruszczynki [59].

The convexity hypothesis of Proposition 14 may be too strong for
problems that arise naturally in many areas, therefore a duality gap may exist
for these problems. This will hereinafter be called issue 2. Nevertheless, the
Lagrangian dual problem can still be used to obtain bounds for the problem
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using weak duality. In some contexts that the strong duality is not valid, as
in integer programming, the dual problem is usually called the Lagrangian
relaxation.

Even if we are willing to accept to use a nonzero duality gap and the
original problem is feasible and bounded, the Lagrangian dual problem can be
unbounded, i.e., φ∗ = +∞ (issue 3).

If the primal problem is nonconvex, we have three main issues to address
when using the Lagrangian duality, i.e., we must solve nonconvex subproblems
(issue 1), only the weak duality is valid (issue 2) and the generated dual bound
can be +∞ (issue 3).

The second and third issues are traditionally addressed by modifying the
Lagrangian function adding penalty terms. Linear penalty expressions were
introduced by Pietrzykowski [60] and Zangwill [61]. Quadratic penalty expres-
sions by Courant [62]. Penalty expressions with both linear and quadratic
pieces were proposed by Rockafellar [23]. A generalized approach called aug-
mented Lagrangian was presented by Rockafellar and Wets [63, 64, 65]. Two
disadvantages of the augmented Lagrangian is that it usually ruins the problem
separable structure when it exists, thus, compromising decomposition strate-
gies [66] and it also adds nonlinearities to the problem.

Another common approach to address the third issue is to relax only a
subset of the constraints in a way that the Lagrangian subproblem is always
bounded, e.g., not relaxing box constraints if they exist. If only a subset of
the constraints is relaxed, this is called partial Lagrangian relaxation or semi
Lagrangian relaxation. One reason to do so is to generate fewer Lagrangian
multipliers, thus it might be easier to find their optimal value and to obtain
the optimal dual bound. In particular, if the subproblem is always bounded,
which is the case when the box constraints are not relaxed, the dual bound
will always be finite and the issue 3 will be resolved.

We will concentrate on addressing issues 1 and 3 for the nonconvex
(MI)QCQP. Additionally, the (MI)QCQP is an undecidable problem if the
variables are unbounded [8] and NP-Hard otherwise, thus, in this work, we will
assume that all variables have known bounds. The extension of the framework
presented in this study to solve the second issue is not within the scope of this
study and will be the topic of a future research.

The new class of dual problems we develop in this chapter addresses
the issue 3, replacing the nonconvex (MI)QCQP subproblems with MIP
relaxations, which also may be intractable due to being NP-Hard. However,
there are more reliable techniques that have been showed to be efficient in many
real cases, e.g., Branch and Cut and widely available off-the-shelf commercial
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solvers such as GUROBI [40] and CPLEX [39]. These relaxations are obtained
using the reformulated normalized multiparametric disaggregation (RNMD)
developed in Chapter 3. The MIP relaxations are bounded, solving the first
issue as well.

A possible approach to solve decomposable QCQP problems is to relax at
least all quadratic constraints, thus, obtaining a subproblem that is equivalent
to a SDP problem that can be solved to global optimality using interior
point methods [67]. On the other hand, the formulation of the SDP that is
equivalent to the LR is not trivial to find, especially if not all constraints are
relaxed. Another issue with this approach is that we may generate large dual
bounds that could be reduced if an alternative subset of constraints were to
be relaxed. Dentcheva and Römisch [68] give a framework to estimate how
large the duality gap will be if a subset of constraints is relaxed, then they
apply this methodology to decide which decomposition classic forms of the
nonconvex stochastic programming constraints generates the smallest duality
gap. In this study, only constraints that are identify as complicating constraints
((4-5) and (4-6)) will be relaxed. The resulting dual subproblem is represented
in Problem (4-10)-(4-13).

φ(µ, λ) = max
∑
s∈S

(xTsQ0xs + f0(xs, ys))− µT (A1
sxs +B1

sys) + λT (A2
sxs +B2

sys)

(4-10)

s.t.:

xTsQrxs + fr(xs, ys) ≤ 0 ,∀s ∈ S,∀r ∈ Cs (4-11)

xs,i ∈ [XL
s,i, X

U
s,i] ,∀s ∈ S,∀i ∈ VCs (4-12)

ys,i ∈ {Y L
s,i, . . . , Y

U
s,i} ,∀s ∈ S,∀i ∈ VIs (4-13)

4.1.1
Motivating example

In this subsection, a motivating example is developed with the purpose
of showing that even in simple cases, the Lagrangian dual problem can fail
to obtain a valid bound if its LDS’s solution is not global optimum. Consider
problem (4-14).

max
x

x1x2

s.t. x1 + 2x2 ≤ 1

x ∈ [0, 1]2
(4-14)

For a fixed nonnegative multiplier µ, the DSP for 4-14 is:
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max
x

x1x2 − µ(x1 + 2x2 − 1)

s.t. x ∈ [0, 1]2
(4-15)

This problem and its LDS version were implemented at GAMS 23.7 [69].
Solving Problem (4-14) with the global solver BARON 9.3, we obtain the
optimal value 0.125. Since the LD and this problem have a (weak) dual
relationship, Problem (4-15) should provide an upper bound, a value greater
or equal than 0.125, as its optimal value for all fixed nonnegative multiplier.
However, if we solve it using the local solver 3 [70], it returns a solution that
is zero for all variables, corresponding to a zero objective function value, and
thus, is not a valid upper bound, since the feasible solution (x1, x2) = (1

2 ,
1
4)

has a greater value than that.
It is worth highlighting that, for this particular problem, we could

improve the solution by using another local solver that uses alternative
methods, providing a warm start or even by applying a multi-start strategy.
However, the point that has been made here remains. If one cannot guarantee
that the solutions obtained for the Lagrangian dual subproblems are global
maxima, one cannot be sure about the validity of the resulting bounds which,
in turn, compromises the efficacy and efficiency of solutions methods that rely
on this type of relaxation.

To obtain a bound, it suffices that the dual subproblem is solved for only
one fixed multiplier, not necessarily the optimal one. The Lagrangian duality
theory states that its (global) optimal solution approaches a valid bound for
the primal problem, but not a local solution.

After our method is presented, we will show how to address the issue of
generating invalid bound in Section 4.2.1.

4.1.2
Multipliers update

The dual problem is, in general, nonsmooth, i.e., not differentiable.
Nevertheless, it is convex, and there is an extensive literature on how to solve
this type of problem by updating the Lagrangian multipliers. Held et al. [71]
proposed the classical approach which becomes known as the subgradient
method. Improvements of this method were proposed by Camerini et al.
[72] and Fisher [52]. An alternative method that presents better convergence
properties is the cutting plane method by Goldstein [73] and Kelley [74].
An improvement of this method is presented by Marsten et al. [75]. Other
methods include the Volume algorithm [76] and bundle method [77, 78], that is
more stabilized than cutting-planes methods. In this study, we use the bundle
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method, since preliminary experiments showed that it has a good trade-off
between easiness to implement and convergence rate.

4.2
p-Lagrangian relaxation

Using the RNMDT relaxation, one can construct problems that are
solvable and have a weak dual relation to the mixed-integer quadratically
constrained quadratic program (MIQCQP). This is an important feature of
the relaxation, as it implies that one can apply a Lagrangian relaxation to the
MIQCQP and then relax the dual subproblem (LDS) (Problem 4-8) using
RNMD with arbitrary precision, changing the value of p. Hence, for each
fixed p, we obtain a relaxed version of LDS and a dual problem associated
with it, which we will call the p-Lagrangian dual subproblem (p-LDS) and p-
Lagrangian dual problem (p-LDP). Alternatively, one can apply the RNMDT
to relax the primal problem and then apply the Lagrangian relaxation to relax
Constraint (4-5) and (4-6) and get the same dual function. The procedure
to relax one or more constraints with this method is called p-Lagrangian
relaxation (p-LR) and the procedure to relax complicated constraints to solve
subproblems independently is called p-Lagrangian decomposition (p-LD).

The parameter p controls the degree of relaxation of the dual subproblem.
Thus, the possibility of controlling how tight the dual bound becomes is one
of the interesting properties of the p-LDP, i.e., if we solve two p-LDP setting
two different values for p, the one with the smaller parameter p will provide a
better or equal bound compared with the one with the larger p.

This relaxation of the dual subproblem is equivalent to replacing the dual
function φ with an over-estimator φ̂p, obtaining a dual function class, one dual
function for each p ∈ Z−. The functions φ̂p of this class have the following
properties:

Proposition 15 φ̂p ≥ φ, ∀ p ≤ 0

Proof. Consequence of Proposition 5.

Proposition 16 (Weak duality for p-LD) φ̂p ≥ f ∗, ∀ p ≤ 0 where f ∗ is
the primal optimal value

Proof. It is known by weak duality that φ ≥ f ∗. Proposition 15 gives that
φ̂p ≥ φ. It follows by transitivity that φ̂p ≥ f ∗.

Proposition 17 φ̂p is a polyhedral function (continuous piecewise linear)
∀p ≤ 0

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Chapter 4. Decomposition 50

Proof. The function is defined at every point as the optimal value of an
optimization problem, where the function is defined as the pointwise supremum
of affine functions. Since the optimization problem in question is a MIP, there
are only a finite number of relevant optimal values, i.e., the vertices of the
convex hull of the problem. Thus, the function is equivalent to a pointwise
maximum of a finite number of affine functions. Therefore, φ̂p is polyhedral.

Proposition 18 φ̂p is convex ∀p ≤ 0

Proof. Analogous to proposition 10.

Proposition 19 φ̂p2 ≥ φ̂p1 ∀p1 ≤ p2 ≤ 0

Proof. Consequence of Theorem 1

Proposition 20 infµ≥0,λ φ̂p2(µ, λ) ≥ infµ≥0,λ φ̂p1(µ, λ) ≥ infµ≥0 φ(µ, λ), ∀p1 ≤
p2 ≤ 0

Proof. It is a consequence of Propositions 15 and 19.

Proposition 21 {φ̂p=−n}n∈N is a monotonic decreasing sequence.

Proof. It follows from Proposition 20
The following theorems are about the convergence of the sequence of

the dual functions generated by the proposed methodology of this chapter,
to the classic (partial) dual function. First pointwise convergence is proved in
Theorem 8. Then, in Theorem 9, it is proved a relation between monotonic
and uniform convergence for monotonic sequences, This is a less restrictive
version of the Dini’s Theorem where only semicontinuity is required instead of
continuity. Finally, uniform convergence is proved when the dual functions are
restricted to an arbitrary compact. For a review of concepts including types
of convergence, upper and lower semicontinuity, open sets, compactness and
Dini’s Theorem, the reader should refer to Rudin [79].

Theorem 8 {φ̂p=−n}n∈N converges pointwise to φ

Proof. For every µ ≥ 0, λ ∈ Rm2 . If p → −∞, then ∀j ∈ DS,∆xj = 0, ∀i
that (i, j) ∈ QT,∆wi,j = 0 and wi,j = 0. Thus, the optimal solution
of the subproblem defining {φ̂p=−n}n∈N(µ, λ) becomes feasible for the dual
subproblem of φ(µ, λ) when p → −∞. Hence, µ ≥ 0, limp→−∞ φ̂p(µ, λ) ≤
φ(µ, λ). Therefore, the pointwise convergence follows using Proposition 15.
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Theorem 9 Let {fn}n∈N be a monotonic decreasing sequence of real upper
semicontinuous functions defined over a compact set K that converges point-
wise to a lower semicontinuous function f , then {fn}n∈N converges uniformly
to f .

Proof. Let the function gn be defined as gn = fn−f . It follows by its definition
that gn ≥ 0 and gn is upper semicontinuous for all n ∈ N and the sequence
{gn}n∈N is monotonic decreasing.

For any ε > 0, let En be the set of those x ∈ K such that gn(x) < ε. Since
gn is upper semicontinuous, En is open. Since {gn}n∈N is monotonic decreasing,
the sets En are ascending sets, i.e., En ⊂ En+1.

Since fn converges pointwise to f , the sets {En}n∈N forms an open cover
to the domainK. By compactness, there exists a finite open subcover {En}n≤N
for K. Since the covers sets are ascending, ∪n≤N{En} = EN . Thus K ⊂ EN .
Therefore if follows that for all n ≥ N , for all x ∈ K, |fn(x) − f(x)| < ε and
{fn}n∈N converges uniformly to f .

Theorem 10 {φ̂−n
∣∣∣
K
}n∈N converges uniformly to φ

∣∣∣
K

where K is a compact
set and φ̂−n

∣∣∣
K

and φ
∣∣∣
K

are the dual functions with their domain restricted to
the compact K.

Proof. i) {φ̂−n
∣∣∣
K
}n∈N is a monotone sequence as stated in Proposition 21;

ii) the sequence {φ̂−n
∣∣∣
K
}n∈N converge pointwise as stated by Theorem 8; iii)

each φ̂−n
∣∣∣
K

is a polyhedral function, thus continuous, and in particular, upper
semiconstinuous as stated in Proposition 17; iv) φ

∣∣∣
K

is lower semicontinuous
as stated in Proposition 11; v) Therefore, the convergence uniformly follows
from Theorem 9.

Corollary 1 The dual function φ is a continuous function.

Proof. For any compact K, a sequence of continuous functions ({φ̂−n
∣∣∣
K
}n∈N)

converges uniformly to φ
∣∣∣
K
, so the limit is also continuous. Any (µ, λ) ∈

Rm1
+ × Rm2 with µ > 0 belongs to a open set inside a compact set, so the

function φ is continuous in every point, therefore φ is continuous. The case
where µ = 0 is also continuous since (µ, λ) belongs to the intersection of a
compact with [0,∞)m1×Rm2 . The case where some of the µ are null and other
are positive, is analogous. Therefore, completing the proof.
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4.2.1
Motivating example: part 2

Applying the p−LR to the motivating problem presented in Section 4.1.1
we obtain the Problem 4-16.

max
x

w1,2 − µ(x1 + 2x2 − 1)

s.t. w1,2 = 2−1x̂1,2,−1 + v1,2

x2 = 2−1z2,−1 + ∆x2

0 ≤ x̂1,2,−1 ≤ z2,−1

0 ≤ x1 − x̂1,2,−1 ≤ 1− z2,−1

2−1(x1 − 1) + ∆x2 ≤ v1,2 ≤ 2−1x1

0 ≤ v1,2 ≤ ∆x2

z2,−1 ∈ {0, 1}

x ∈ [0, 1]2

∆x2 ∈ [0, 2−1]

(4-16)

Here, the x2 variable was discretized with a precision p = −1 with
the Lagrangian multiplier µ fixed at zero. Solving the resulting problem with
CPLEX 12.3 [39], we obtain the dual bound φ̂−1(0) = 1, that is valid since it is
greater than 0.125. Of course, that is not a tight bound, but that was obtained
using only one multiplier value as an example. This could be strengthened by
applying a subgradient subroutine to choose a better multiplier (the optimum
is µ = 0.25) or by increasing the used precision, lowering parameter p, but
that is not the purpose of this example.

If one is interested in obtaining a tighter bound, it is necessary to
choose more carefully the parameter p and the Lagrangian multipliers values.
If p and µ are set respectively to -2 and 0.25, the dual bound obtained is
φ̂−2(0.25) = 0.125, the same as the primal optimal value. On the next section,
it is presented how one can choose these values.

4.3
Algorithm

An algorithm to solve a nonconvex problem, as it is the case of the
(MI)QCQP usually relies on finding dual and primal bounds. Dual bounds
are upper (lower) bounds for maximization (minimization) problems. Primal
bounds are the objective value for feasible solutions and provide lower (upper)
bounds. To obtain tight dual bounds using p-LD, one shall choose good values
for the precision parameter p and for the Lagrangian multipliers. On the other
hand, to find a primal bound, one shall obtain a feasible solution. For the
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first part, the proposed algorithm in this section is inspired by Algorithm 1
and in methods for solving nonsmooth problems used to solve the Lagrangian
dual discussed in Section 4.1.2, such as the bundle method. For the latter, the
integer variables are fixed and a nonlinear local solver is used with a warm
start to solve problem (4-1)-(4-6).

Algorithm 3 p-LD algorithm
Step 0. Set p = 0 and starting lagrangian multiplier
Step 1. Compute a p−Lagrangian dual bound using the Lagrangian multi-
plier and obtain a feasible solution using a Lagrangian heuristic
Step 2. Update the Lagrangian multipliers using a nonsmooth optimization
algorithm step
Step 3. If a stop condition of type 1 is met, set p = p− 1
Step 4. If a stop condition of type 2 is met, stop. Otherwise, return to Step
1

Some of the steps in Algorithm 3 must be clarified. A Lagrangian
heuristic in Step 1 can be any method to generate feasible solutions. In this
study, a local solver will be used to solve the original problem having the
dual solution as a warm start, fixing any integer variables if they exist, and
also fixing complicated variables that allow the primal problem to be solved
decomposability. Nonsmooth optimization algorithm step can be any algorithm
described in Section 4.1.2. A stop condition of type 1 is a stop criterion to the
dual problem. They are discussed in the references provided in Section 4.1.2.
A stop condition of type 2 is a condition to stop the whole algorithm, e.g.,
time limit, iteration limit, or a threshold relative or absolute gap using primal
and dual bounds.

4.4
Numerical experiments

Random instances of the form (4-1)-(4-6) were generated, where only
the right-hand side (RHS) implicit defined at fr functions varies in each
subproblem. The linking constraints are on the form xi,s = xi,s+1 for each
i in a subset of a and for each s ∈ S − {slast} assuming that S is a finite
ordered set and slast is the last element of this set. This form is commonly
used in the stochastic programming (SP) with fixed recourse, where each
subproblem is represented by a scenario and the variables that must be
equal among all scenarios - first stage variables in the two-stage stochastic
programming case - are duplicated and the linking constraints are added to
the problem dictating that duplicated variables values must be the same, also
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Table 4.1: Instances sizes
continuous mixed-integer

instance #
subprob.

# c.
var.

#
constrs.

# i.
var.

#
subprob.

# c.
var.

#
constrs.

# i.
var.

1 2 21 41 0 2 21 41 8
2 3 31 61 0 3 31 61 12
3 4 41 81 0 4 41 81 16
4 5 51 101 0 5 51 101 20
5 6 61 121 0 6 61 121 24
6 7 71 141 0 7 71 141 28
7 8 81 161 0 8 81 161 32
8 9 91 181 0 9 91 181 36
9 10 101 201 0 10 101 201 40
10 20 201 401 0 20 201 401 80
11 30 301 601 0 30 301 601 120
12 40 401 801 0 40 401 801 160
13 50 501 1001 0 50 501 1001 200
14 60 601 1201 0 60 601 1201 240
15 70 701 1401 0 70 701 1401 280
16 80 801 1601 0 80 801 1601 320
17 90 901 1801 0 90 901 1801 260
18 100 1001 2001 0 100 1001 2001 400

know as nonanticipativity constraints. This form for the SP was proposed by
Ruszczynski [59].

Instances with 2 to 10 subproblems - with a step of 1 - were generated
with subproblems with 10 continuous variables and 20 constraints. Instances
from 20 to 100 subproblems with a step of 10 were generated. Each of
them was solved using Algorithm 3 with the Bundle method to update the
multipliers. The quality and time of solution were compared with RNMDT
with Algorithm 2 and with the global solvers Lindo Global [80], Scip [81],
Couenne [47], Antigone [82] and Baron [46]. Since only Couenne is open Source
and the other solvers are commercial and requires a license, we used the Neos
Servers [83, 84, 85] to run them. As the computers used by Neos Servers have
better processors (Xeons) and more memory than the computer that we used
to obtain the other results, if our algorithm have better performance than the
global solver in better hardware, the algorithm should outperform them in the
same computer as well.

Instances sizes are summarized in Table 4.1. Each generated instance is
enumerated for the continuous and mixed-integer instances. For each group
the number of decomposable subproblems, continuous variables, constraints,
and integers variables are shown. It should be noted that, although small in
size, these instances are difficulty to solve partially because of their density.
In fact, when decomposed, each subproblem have both full quadratic (among
continuous variables) and full linear density.

Table 4.2 and Table 4.3 show the relative gap and time results for the
continuous instances, respectively. Table 4.4 and Table 4.5 show the relative
gap and time results for the mixed-integer instances, respectively. "#N/A"

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Chapter 4. Decomposition 55

Table 4.2: Continuous instances - relative gap
instance RNMDT p-LR LINDOGLOBAL SCIP COUENNE ANTIGONE BARON

1 0.0% 0.0% 153.6% 68.3% 0.0% 0.0% 0.0%
2 1.7% 0.0% 269.2% 201.7% 0.0% 3.9% 0.0%
3 8.5% 0.0% 267.5% 255.2% 14.9% 8.1% 4.4%
4 14.4% 0.0% 295.3% 275.7% 30.1% 9.4% 4.9%
5 17.2% 0.0% 298.1% 287.7% 40.0% 10.2% 6.2%
6 23.3% 0.0% 324.0% 300.3% 459.0% 13.5% 10.6%
7 27.2% 0.0% 306.8% 308.5% 57.1% 13.1% 11.4%
8 27.5% 0.0% 330.3% 322.0% 53.6% 13.5% 11.2%
9 28.5% 0.0% 325.9% 304.5% 170.0% 16.5% 15.7%
10 41.8% 0.0% 350.5% 362.0% 76.6% 18.8% 21.1%
11 47.5% 0.0% 395.1% 367.6% 83.3% 24.2% 24.6%
12 48.9% 0.0% 369.5% 378.9% 115.5% 21.2% 24.0%
13 52.1% 0.0% 498.3% 358.5% 85.1% 24.0% 27.8%
14 54.0% 0.0% 486.7% 373.8% 89.0% 24.7% 29.3%
15 52.8% 0.0% 504.6% 360.7% 89.0% 23.3% 30.2%
16 53.3% 0.0% 507.4% 374.7% 94.9% 24.9% 31.5%
17 55.9% 0.0% 500.9% 368.1% 97.3% 25.4% 33.9%
18 56.7% 0.0% #N/A 358.4% 110.2% 24.8% 34.3%

denotes that the method was not able to obtain the lower or an upper bound,
or both, for that instance. Table 4.6 shows how many instances each algorithm
was able to converge before the time limit for the continuous and mixed-integer
instances.

The proposed decomposition was compared to the commercial solver us-
ing the same methodology as in Chapter 3, i.e., relative and time performance
profile based on Dolan [49] methodology. Figure 4.1 and Figure ?? shows the
time and relative gap, respectively, for the continuous instances. Figure 4.3 and
Figure 4.4 shows the time and relative gap, respectively, for the mixed integer
instances p-LR was able to find and prove global optimality for all mixed inte-
ger instances with one exception that achieved a relative gap of less than 1%.
All commercial solvers were dominated by p-LR in the numerical experiments.

The p-LR was able to converge in 35 of the 36 instances, not proving
global optimality in only one mixed-integer instance where a relative gap of
0.3% was obtained. All others methods converged only for 4 or less instances.
Since p-LR exploits these instances decomposable structure, it scales better
with the number of decomposable subproblems, where the other methods scales
worse since they are trying to solve the problem directly. It is interesting
to notice that RNMDT with Algorithm 2 was able to compete wtih the
benchmark solvers, but it scales badly for the mixed-integer instances when
compared with the state-of-art commercial solvers Baron and Antigone. It is
remarkable, that RNMDT obtained better solutions than the best open-source
global solver available, i.e., Couenne.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Chapter 4. Decomposition 56

Table 4.3: Continuous instances - time(s)
instance RNMDT p-LR LINDOGLOBAL SCIP COUENNE ANTIGONE BARON

1 1.27E+02 2.29E+01 7.20E+03 7.20E+03 6.30E+01 1.77E+02 1.60E+01
2 7.20E+03 4.45E+01 7.20E+03 7.20E+03 2.10E+03 7.20E+03 2.20E+03
3 7.20E+03 1.27E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
4 7.20E+03 1.27E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
5 7.20E+03 7.66E+01 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
6 7.20E+03 1.93E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
7 7.20E+03 1.37E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
8 7.20E+03 2.13E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
9 7.20E+03 2.18E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
10 7.20E+03 3.70E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
11 7.20E+03 7.35E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
12 7.20E+03 4.10E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
13 7.20E+03 1.50E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
14 7.20E+03 2.37E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
15 7.20E+03 2.11E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
16 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
17 7.20E+03 4.17E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
18 7.20E+03 6.16E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03

Table 4.4: Mixed-integer instances - relative gap
instance RNMDT p-LR LINDOGLOBAL SCIP COUENNE ANTIGONE BARON

1 23.2% 0.0% 290.5% 93.8% 0.0% 0.0% 0.0%
2 25.0% 0.0% 326.7% 182.5% 19.4% 5.8% 0.0%
3 29.9% 0.0% 327.2% 226.5% 239.4% 9.2% 5.7%
4 38.9% 0.0% 337.9% 271.2% 63.2% 11.4% 9.5%
5 45.2% 0.0% 331.8% 283.8% 74.1% 14.9% 13.5%
6 48.2% 0.0% 328.0% 281.1% 135.5% 14.8% 14.0%
7 48.5% 0.0% 334.8% 319.8% 75.5% 15.4% 16.2%
8 62.5% 0.0% 346.5% 316.7% 86.2% 18.1% 18.1%
9 65.5% 0.3% 421.9% 317.6% 85.1% 19.6% 20.1%
10 67.4% 0.0% 503.7% 365.8% 88.8% 19.3% 21.0%
11 85.5% 0.0% 436.8% 359.5% 82.4% 23.7% 27.8%
12 #N/A 0.0% 519.8% 331.1% 91.0% 23.6% 25.6%
13 #N/A 0.0% 709.7% 358.7% 85.2% 24.3% 29.0%
14 #N/A 0.0% #N/A 358.3% 91.7% 24.8% 31.7%
15 #N/A 0.0% 6552.8% 355.7% 80.3% 24.5% 29.8%
16 124.6% 0.0% #N/A 357.5% 87.1% 24.3% 32.7%
17 #N/A 0.0% #N/A 361.6% 82.0% 25.9% 33.8%
18 #N/A 0.0% #N/A 359.2% 81.8% 26.9% 32.6%

Table 4.5: Mixed-integer instances - time(s)
instance RNMDT p-LR LINDOGLOBAL SCIP COUENNE ANTIGONE BARON

1 7.20E+03 3.76E+01 7.20E+03 7.20E+03 2.43E+02 5.42E+02 6.20E+01
2 7.20E+03 5.51E+01 7.20E+03 7.20E+03 7.20E+03 7.20E+03 2.98E+03
3 7.20E+03 5.94E+01 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
4 7.20E+03 4.92E+01 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
5 7.20E+03 6.70E+01 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
6 7.20E+03 6.36E+01 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
7 7.20E+03 1.20E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
8 7.20E+03 1.00E+02 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
9 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
10 7.20E+03 1.25E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
11 7.20E+03 1.17E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
12 7.20E+03 2.15E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
13 7.20E+03 2.08E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
14 7.20E+03 2.29E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
15 7.20E+03 4.85E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
16 7.20E+03 3.84E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
17 7.20E+03 3.28E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
18 7.20E+03 4.33E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03 7.20E+03
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Table 4.6: Solved instances
RNMDT p-LR LINDOGLOBAL SCIP COUENNE ANTIGONE BARON total

Continuous 1 18 0 0 2 1 2 18
Mixed-integer 0 17 0 0 1 1 2 18

total 1 35 0 0 3 2 4 36

Figure 4.1: time performace profile for continuous instance

Figure 4.2: gap performace profile for continuous instance

Figure 4.3: time performace profile for mixed-integer instance
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Figure 4.4: gap performace profile for mixed-integer instance

4.5
Discussion

In this chapter, we identified issues when using Lagrangian relaxations
to decompose nonconvex quadratic problems, and, we addressed two of them,
i.e., to obtain a finite dual bound and avoiding solve a nonconvex problem.
This is achieved by only relaxing the complicated constraints, maintaining
the quadratic and box constraints in the subproblem and by replacing the
dual subproblem using a relaxation developed in Chapter 3. Then, we used
these changes in the classic Lagrangian dual problem to define a class of
dual problems and dual functions, and also proved relations between members
of that class, including pointwise and uniform convergence to the classic
Lagrangian dual problem.

Furthermore, we proposed an algorithm to solve a MIQCQP with the
novel dual class that allows similar decomposition strategies then the classic
Lagrangian decomposition. Then, we compared this algorithm with the algo-
rithm proposed in Chapter 3 and with several commercial solvers and observed
that it converges faster and it is particularity useful if the problem is decom-
posable in many subproblems.
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5
Conclusions and further research

The main objective was to investigate and develop methods to solve
nonconvex quadratically constrained quadratic programming, possibly with
integer variables, ((MI)QCQP) problems. Thus, this study 1) review the
existing methods and categorize them; 2) propose improvements in a relaxation
method — NMDT — and in an algortihm based on it; 3) propose a set of dual
functions that can be used to decompose a nonconvex (MI)QCQP as would be
possible to do with a Lagrangian relaxation with the advantage of avoiding to
solve nonconvex (MI)QCQP subproblems to global optimality.

Moreover, the proposed methods were compared with the state-of-art
algorithms and solvers using both literature instances and random generated
instances. Numerical experiments showed that the proposed methods are at
least competitive and that taking advantage of special structure such as block
angular structure can greatly improve the efficiency of the solution methods.

The short term future research plans are to publish the results found
in Chapter 4 and to apply the p-LD method to solve a stochastic version of
the refinery operational planning problem (ROPP). Longer term future plans
include to improve the selection and the choice of how many binary variables
will be used to discretized each continuous variables in RNMDT and how to
close the dual gap presented in p-LD method.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography

[1] BURER, S.; LETCHFORD, A. N.. Non-convex mixed-integer non-
linear programming: A survey. Surveys in Operations Research and
Management Science, 17(2):97–106, 2012.

[2] BAGAJEWICZ, M.. A review of recent design procedures for water
networks in refineries and process plants. Computers & Chemical
Engineering, 24(9-10):2093–2113, 2000.

[3] JEZOWSKI, J.. Review of water network design methods with
literature annotations. Industrial & Engineering Chemistry Research,
49(10):4475–4516, 2010.

[4] MISENER, R.; FLOUDAS, C. A.. Advances for the pooling problem:
Modeling, global optimization, and computational studies. Ap-
plied and Computational Mathematics, 8(1):3–22, 2009.

[5] VISWESWARAN, V.. MINLP: Applications in blending and pooling
problems., 2009.

[6] ANDRADE, T.; RIBAS, G. ; OLIVEIRA, F.. A strategy based on
convex relaxation for solving the oil refinery operations planning
problem. Industrial & Engineering Chemistry Research, 55(1):144–155,
2016.

[7] PARDALOS, P. M.; VAVASIS, S. A.. Quadratic programming with
one negative eigenvalue is NP-hard. Journal of Global Optimization,
1(1):15–22, 1991.

[8] JEROSLOW, R.. There cannot be any algorithm for integer
programming with quadratic constraints. Operations Research,
21(1):221–224, 1973.

[9] GAREY, M. R.; JOHNSON, D. S.. Computers and intractability: A
guide to the theory of NP-Completness, volumen 29. wh freeman
New York, 2002.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 61

[10] LINDEROTH, J.. A simplicial branch-and-bound algorithm for
solving quadratically constrained quadratic programs. Mathemat-
ical Programming, 103(2):251–282, 2005.

[11] THAKUR, L. S.. Domain contraction in nonlinear programming:
minimizing a quadratic concave objective over a polyhedron.
Mathematics of Operations Research, 16(2):390–407, 1991.

[12] GLEIXNER, A. M.; BERTHOLD, T.; MÜLLER, B. ; WELTGE, S.. Three
enhancements for optimization-based bound tightening. Journal
of Global Optimization, 67(4):731–757.

[13] TAWARMALANI, M.; SAHINIDIS, N. V.. Global optimization of mixed-
integer nonlinear programs: A theoretical and computational
study. Mathematical Programming, 99(3):563–591, 2004.

[14] MCCORMICK, G. P.. Computability of global solutions to fac-
torable nonconvex programs: Part I convex underestimating
problems. Mathematical programming, 10(1):147–175, 1976.

[15] AL-KHAYYAL, F. A.; FALK, J. E.. Jointly constrained biconvex
programming. Mathematics of Operations Research, 8(2):273–286, 1983.

[16] BAO, X.; SAHINIDIS, N. V. ; TAWARMALANI, M.. Multiterm poly-
hedral relaxations for nonconvex, quadratically constrained
quadratic programs. Optimization Methods & Software, 24(4-5):485–
504, 2009.

[17] SHERALI, H. D.; ADAMS, W. P.. A reformulation-linearization tech-
nique for solving discrete and continuous nonconvex problems,
volumen 31. Springer Science & Business Media, 2013.

[18] ANDROULAKIS, I. P.; MARANAS, C. D. ; FLOUDAS, C. A.. αBB: A
global optimization method for general constrained nonconvex
problems. Journal of Global Optimization, 7(4):337–363, 1995.

[19] FAMPA, M.; LEE, J. ; MELO, W.. On global optimization with
indefinite quadratics. EURO Journal on Computational Optimization,
5.

[20] NOWAK, I.. Dual bounds and optimality cuts for all-quadratic
programs with convex constraints. Journal of Global Optimization,
18(4):337–356, 2000.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 62

[21] TUY, H.. On solving nonconvex optimization problems by re-
ducing the duality gap. Journal of Global Optimization, 32(3):349–365,
2005.

[22] VAN VOORHIS, T.. A global optimization algorithm using la-
grangian underestimates and the interval newton method. Journal
of Global Optimization, 24(3):349–370, 2002.

[23] ROCKAFELLAR, R. T.. Lagrange multipliers and optimality. SIAM
review, 35(2):183–238, 1993.

[24] DANDURAND, B.; BOLAND, N.; CHRISTIANSEN, J.; EBERHARD, A. ;
OLIVEIRA, F.. A parallelizable augmented Lagrangian method ap-
plied to large-scale non-convex-constrained optimization prob-
lems. arXiv preprint arXiv:1702.00526, 2017.

[25] LOVÁSZ, L.. On the shannon capacity of a graph. IEEE Transactions
on Information theory, 25(1):1–7, 1979.

[26] GOEMANS, M. X.; WILLIAMSON, D. P.. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM (JACM), 42(6):1115–
1145, 1995.

[27] LUO, Z.-Q.; MA, W.-K.; SO, A. M.-C.; YE, Y. ; ZHANG, S.. Semidefi-
nite relaxation of quadratic optimization problems. IEEE Signal
Processing Magazine, 27(3):20–34, 2010.

[28] SHERALI, H. D.; FRATICELLI, B. M.. Enhancing RLT relaxations
via a new class of semidefinite cuts. Journal of Global Optimization,
22(1-4):233–261, 2002.

[29] ANSTREICHER, K. M.. Semidefinite programming versus the
reformulation-linearization technique for nonconvex quadrati-
cally constrained quadratic programming. Journal of Global Op-
timization, 43(2-3):471–484, 2009.

[30] BOMZE, I. M.; DÜR, M.; DE KLERK, E.; ROOS, C.; QUIST, A. J. ; TER-
LAKY, T.. On copositive programming and standard quadratic
optimization problems. Journal of Global Optimization, 18(4):301–320,
2000.

[31] BOMZE, I. M.. Copositive optimization–Recent developments and
applications. European Journal of Operational Research, 216(3):509–520,
2012.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 63

[32] BALAS, E.. Disjunctive programming. Annals of Discrete Mathematics,
5:3–51, 1979.

[33] KARUPPIAH, R.; GROSSMANN, I. E.. Global optimization for the
synthesis of integrated water systems in chemical processes.
Computers & Chemical Engineering, 30(4):650–673, 2006.

[34] WICAKSONO, D. S.; KARIMI, I. A.. Piecewise MILP under-and
overestimators for global optimization of bilinear programs.
AIChE Journal, 54(4):991–1008, 2008.

[35] GOUNARIS, C. E.; MISENER, R. ; FLOUDAS, C. A.. Computational
comparison of piecewise- linear relaxations for pooling problems.
Industrial & Engineering Chemistry Research, 48(12):5742–5766, 2009.

[36] CASTRO, P. M.. Tightening piecewise McCormick relaxations for
bilinear problems. Computers & Chemical Engineering, 72:300–311, 2015.

[37] CASTRO, P. M.. Normalized multiparametric disaggregation: an
efficient relaxation for mixed-integer bilinear problems. Journal
of Global Optimization, 64(4):765–784, 2016.

[38] GUPTE, A.; AHMED, S.; CHEON, M. S. ; DEY, S.. Solving mixed
integer bilinear problems using milp formulations. SIAM Journal
on Optimization, 23(2):721–744, 2013.

[39] CPLEX, I.. Ilog cplex 12.6 optimization studio, 2014.

[40] OPTIMIZATION, G.. Inc.,?gurobi optimizer reference manual,?
2014. URL: http://www. gurobi. com, 2014.

[41] FICO, T.. Xpress optimization suite. Xpress-Optimizer, Reference
manual, Fair Isaac Corporation, 2009.

[42] LI, H.-L.; CHANG, C.-T.. An approximate approach of global
optimization for polynomial programming problems. European
Journal of Operational Research, 107(3):625–632, 1998.

[43] TELES, J. P.; CASTRO, P. M. ; MATOS, H. A.. Multi-parametric
disaggregation technique for global optimization of polynomial
programming problems. Journal of Global Optimization, 55(2):227–251,
2013.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 64

[44] KOLODZIEJ, S.; CASTRO, P. M. ; GROSSMANN, I. E.. Global optimiza-
tion of bilinear programs with a multiparametric disaggregation
technique. Journal of Global Optimization, 57(4):1039–1063, 2013.

[45] TELES, J. P.; CASTRO, P. M. ; MATOS, H. A.. Global optimization
of water networks design using multiparametric disaggregation.
Computers & Chemical Engineering, 40:132–147, 2012.

[46] SAHINIDIS, N. V.. BARON: A general purpose global optimization
software package. Journal of Global Optimization, 8(2):201–205, 1996.

[47] BELOTTI, P.. COUENNE: a user’s manual. Technical report, Technical
report, Lehigh University, 2009.

[48] LOUGEE-HEIMER, R.. The common optimization interface for op-
erations research: Promoting open-source software in the opera-
tions research community. IBM Journal of Research and Development,
47(1):57–66, 2003.

[49] DOLAN, E. D.; MORÉ, J. J.. Benchmarking optimization software
with performance profiles. Mathematical Programming, 91(2):201–213,
2002.

[50] DANTZIG, G. B.; WOLFE, P.. Decomposition principle for linear
programs. Operations Research, 8(1):101–111, 1960.

[51] BENDERS, J. F.. Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik, 4(1):238–
252, 1962.

[52] FISHER, M. L.. The Lagrangian relaxation method for solving
integer programming problems. Management Science, 27(1):1–18,
1981.

[53] SHEPARDSON, F.; MARSTEN, R. E.. A lagrangean relaxation algo-
rithm for the two duty period scheduling problem. Management
Science, 26(3):274–281, 1980.

[54] GUIGNARD, M.; KIM, S.. Lagrangean decomposition: A model
yielding stronger lagrangean bounds. Mathematical Programming,
39(2):215–228, 1987.

[55] GEOFFRION, A. M.. Generalized benders decomposition. Journal of
Optimization Theory and Applications, 10(4):237–260, 1972.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 65

[56] LI, X.; TOMASGARD, A. ; BARTON, P. I.. Nonconvex generalized
benders decomposition for stochastic separable mixed-integer
nonlinear programs. Journal of Optimization Theory and Applications,
151(3):425, 2011.

[57] BOYD, S.; VANDENBERGHE, L.. Convex Optimization. Cambridge
Uuniversity Press, 2004.

[58] ROBINSON, S. M.. First order conditions for general nonlinear
optimization. SIAM Journal on Applied Mathematics, 30(4):597–607,
1976.

[59] RUSZCZYŃSKI, A. P.. Nonlinear optimization, volumen 13. Princeton
university press, 2006.

[60] PIETRZYKOWSKI, T.. An exact potential method for constrained
maxima. SIAM Journal on numerical analysis, 6(2):299–304, 1969.

[61] ZANGWILL, W. I.. Non-linear programming via penalty functions.
Management science, 13(5):344–358, 1967.

[62] COURANT, R.. Variational methods for the solution of problems
of equilibrium and vibrations. Bulletin of the American Mathematical
Society, 49(1):1–23, 1943.

[63] ROCKAFELLAR, R. T.; WETS, R. J.-B.. Variational analysis, volumen
317. Springer Science & Business Media, 2009.

[64] POWELL, M.. A method for nonlinear constraints in minimization
problems in optimization, r. Academic Press, NY, p. 283–298.

[65] HESTENES, M. R.. Multiplier and gradient methods. Journal of
Optimization Theory and Applications, 4(5):303–320, 1969.

[66] TAPPENDEN, R.; RICHTÁRIK, P. ; BÜKE, B.. Separable approx-
imations and decomposition methods for the augmented La-
grangian. Optimization Methods and Software, 30(3):643–668, 2015.

[67] BAO, X.; SAHINIDIS, N. V. ; TAWARMALANI, M.. Semidefinite relax-
ations for quadratically constrained quadratic programming: A
review and comparisons. Mathematical programming, 129(1):129–157,
2011.

[68] DENTCHEVA, D.; RÖMISCH, W.. Duality gaps in nonconvex stochas-
tic optimization. Mathematical Programming, 101(3):515–535, 2004.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 66

[69] BROOKE, A. K.; D MEERAUS, A.. Gams release 2.25; a user’s guide.
Technical report, GAMS Development Corporation, Washington, DC (EUA),
1996.

[70] DRUD, A.. CONOPT: A GRG code for large sparse dynamic non-
linear optimization problems. Mathematical Programming, 31(2):153–
191, 1985.

[71] HELD, M.; WOLFE, P. ; CROWDER, H. P.. Validation of subgradient
optimization. Mathematical Programming, 6(1):62–88, 1974.

[72] CAMERINI, P. M.; FRATTA, L. ; MAFFIOLI, F.. On improving relax-
ation methods by modified gradient techniques. In: NONDIFFER-
ENTIABLE OPTIMIZATION, p. 26–34. Springer, 1975.

[73] CHENEY, E. W.; GOLDSTEIN, A. A.. Newton’s method for convex
programming and Tchebycheff approximation. Numerische Mathe-
matik, 1(1):253–268, 1959.

[74] KELLEY, JR, J. E.. The cutting-plane method for solving convex
programs. Journal of the Society for Industrial and Applied Mathematics,
8(4):703–712, 1960.

[75] MARSTEN, R.; HOGAN, W. ; BLANKENSHIP, J. W.. The boxstep
method for large-scale optimization. Operations Research, 23(3):389–
405, 1975.

[76] BARAHONA, F.; ANBIL, R.. The volume algorithm: producing pri-
mal solutions with a subgradient method. Mathematical Program-
ming, 87(3):385–399, 2000.

[77] LEMARÉCHAL, C.. An algorithm for minimizing convex functions.
In: IFIP CONGRESS, p. 552–556, 1974.

[78] ZHAO, X.; LUH, P. B.. New bundle methods for solving lagrangian
relaxation dual problems. Journal of Optimization Theory and Applica-
tions, 113(2):373–397, 2002.

[79] RUDIN, W.. Real and Complex Analysis. Tata McGraw-Hill Education,
1987.

[80] LIN, Y.; SCHRAGE, L.. The global solver in the LINDO API.
Optimization Methods & Software, 24(4-5):657–668, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



Bibliography 67

[81] ACHTERBERG, T.. SCIP: solving constraint integer programs.
Mathematical Programming Computation, 1(1):1–41, 2009.

[82] MISENER, R.; FLOUDAS, C. A.. ANTIGONE: algorithms for contin-
uous/integer global optimization of nonlinear equations. Journal
of Global Optimization, 59(2-3):503–526, 2014.

[83] CZYZYK, J.; MESNIER, M. P. ; MORÉ, J. J.. The neos server. IEEE
Journal on Computational Science and Engineering, 5(3):68—–75, 1998.

[84] DOLAN, E. D.. The neos server 4.0 administrative guide. Techni-
cal Memorandum ANL/MCS-TM-250, Mathematics and Computer Science
Division, Argonne National Laboratory, 2001.

[85] GROPP, W.; MORÉ, J. J.. Optimization environments and the neos
server. In: Buhman, M. D.; Iserles, A., editors, APPROXIMATION THEORY
AND OPTIMIZATION, p. 167–182. Cambridge University Press, 1997.

[86] BENJAMINI, Y.. Opening the box of a boxplot. The American
Statistician, 42(4):257–262, 1988.

DBD
PUC-Rio - Certificação Digital Nº 1412704/CA



A
Complete results for QCQP instances

The following table contains the complete results for the instances taken
from the literature. The column "model" refers to which relaxation model and
algorithm was used. The second to seventh columns contains the information
about the instances name, seed used to generate the instance, number of
continuous variables, number of constraints, density of quadratic terms and
execution time in seconds. The last two columns are the lower and upper
bound respectively.

model instance s. #v.c.c #c. d.(%) t(s) LB UB
NMDT + base 10 10_10_1_100 1 10 10 100 4.56 -14.1793 -14.179
NMDT + base 10 10_10_1_50 1 10 10 50 0.3 -7.38 -7.38
NMDT + base 10 10_10_2_100 2 10 10 100 1.76 -6.5478 -6.5468
NMDT + base 10 10_10_2_50 2 10 10 50 0.32 -6.95 -6.95
NMDT + base 10 10_10_3_100 3 10 10 100 1 -11.79 -11.79
NMDT + base 10 10_10_3_50 3 10 10 50 0.31 -10.3 -10.3
NMDT + base 10 10_15_1_100 1 10 15 100 8.67 -11.6368 -11.6365
NMDT + base 10 10_15_1_50 1 10 15 50 0.76 -5.39 -5.39
NMDT + base 10 10_15_2_100 2 10 15 100 0.4 -28.07 -28.07
NMDT + base 10 10_15_2_50 2 10 15 50 0.35 -11.6028 -11.6028
NMDT + base 10 10_15_3_100 3 10 15 100 1.03 -7.98 -7.98
NMDT + base 10 10_15_3_50 3 10 15 50 0.77 -7.83 -7.83
NMDT + base 10 10_20_1_100 1 10 20 100 1.41 -8.19 -8.19
NMDT + base 10 10_20_1_50 1 10 20 50 0.83 -5.4 -5.4
NMDT + base 10 10_20_2_100 2 10 20 100 2.43 -15.9451 -15.9442
NMDT + base 10 10_20_2_50 2 10 20 50 0.78 -3.13 -3.13
NMDT + base 10 10_20_3_100 3 10 20 100 3.14 -5.899 -5.8987
NMDT + base 10 10_20_3_50 3 10 20 50 0.32 -7.49 -7.49
NMDT + base 10 20_20_1_100 1 20 20 100 1001.16 -35.3384 -28.1906
NMDT + base 10 20_20_1_25 1 20 20 25 0.47 -12.86 -12.86
NMDT + base 10 20_20_1_50 1 20 20 50 2.36 -26.598 -26.5977
NMDT + base 10 20_20_2_100 2 20 20 100 1002.26 -25.679 -18.8752
NMDT + base 10 20_20_2_25 2 20 20 25 0.43 -9.88 -9.88
NMDT + base 10 20_20_2_50 2 20 20 50 3.08 -17.03 -17.03
NMDT + base 10 20_20_3_100 3 20 20 100 1198.7 -33.4183 -26.1
NMDT + base 10 20_20_3_25 3 20 20 25 0.46 -23.43 -23.43
NMDT + base 10 20_20_3_50 3 20 20 50 1.66 -18.54 -18.54
NMDT + base 10 20_30_1_100 1 20 30 100 1001.95 -27.4146 -17.08
NMDT + base 10 20_30_1_25 1 20 30 25 1.33 -13.3571 -13.3571
NMDT + base 10 20_30_1_50 1 20 30 50 2.96 -20.09 -20.09
NMDT + base 10 20_30_2_100 2 20 30 100 1001.73 -26.915 -19.9515
NMDT + base 10 20_30_2_25 2 20 30 25 0.54 -13.68 -13.68
NMDT + base 10 20_30_2_50 2 20 30 50 1.88 -24.7097 -24.7097
NMDT + base 10 20_30_3_100 3 20 30 100 1001.79 -28.2278 -24.0611
NMDT + base 10 20_30_3_25 3 20 30 25 0.55 -9.5442 -9.5442
NMDT + base 10 20_30_3_50 3 20 30 50 1.93 -28.83 -28.83
NMDT + base 10 20_40_1_100 1 20 40 100 1002.13 -28.4199 -19.3111
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NMDT + base 10 20_40_1_25 1 20 40 25 0.68 -10.59 -10.59
NMDT + base 10 20_40_1_50 1 20 40 50 3.04 -21.97 -21.97
NMDT + base 10 20_40_2_100 2 20 40 100 1002.02 -30.5198 -30.51
NMDT + base 10 20_40_2_25 2 20 40 25 1.74 -10.8254 -10.8254
NMDT + base 10 20_40_2_50 2 20 40 50 10.16 -24.2649 -24.2644
NMDT + base 10 20_40_3_100 3 20 40 100 1002.3 -29.5042 -26.272
NMDT + base 10 20_40_3_25 3 20 40 25 2.34 -13.7731 -13.7731
NMDT + base 10 20_40_3_50 3 20 40 50 2.01 -27.4064 -27.4064
NMDT + base 10 28_28_1_25 1 28 28 25 0.81 -30.23 -30.23
NMDT + base 10 28_28_2_25 2 28 28 25 0.8 -27.1518 -27.1518
NMDT + base 10 28_28_3_25 3 28 28 25 6.06 -28.532 -28.5319
NMDT + base 10 28_42_1_25 1 28 42 25 5.04 -37.5291 -37.5283
NMDT + base 10 28_42_2_25 2 28 42 25 2.84 -26.78 -26.78
NMDT + base 10 28_42_3_25 3 28 42 25 1.05 -29.84 -29.84
NMDT + base 10 28_56_1_25 1 28 56 25 3.36 -17.9769 -17.9769
NMDT + base 10 28_56_2_25 2 28 56 25 3.39 -25.01 -25.01
NMDT + base 10 28_56_3_25 3 28 56 25 7.19 -32.6527 -32.652
NMDT + base 10 30_30_1_100 1 30 30 100 1003.61 -92.5073 -44.1885
NMDT + base 10 30_30_1_50 1 30 30 50 12.92 -54.6614 -54.6605
NMDT + base 10 30_30_2_100 2 30 30 100 1003.41 -88.6063 -44.7318
NMDT + base 10 30_30_2_50 2 30 30 50 207.84 -48.5095 -48.5095
NMDT + base 10 30_30_3_100 3 30 30 100 1003.32 -84.1821 -38.23
NMDT + base 10 30_30_3_50 3 30 30 50 137.13 -44.45 -44.45
NMDT + base 10 30_45_1_100 1 30 45 100 1004.51 -110.637 -80
NMDT + base 10 30_45_1_50 1 30 45 50 198.41 -53.2051 -53.2051
NMDT + base 10 30_45_2_100 2 30 45 100 1004.59 -103.455 -77.05
NMDT + base 10 30_45_2_50 2 30 45 50 9.61 -56.0508 -56.0504
NMDT + base 10 30_45_3_100 3 30 45 100 1004.71 -87.5204 -47.5897
NMDT + base 10 30_45_3_50 3 30 45 50 70.99 -53.9703 -53.9701
NMDT + base 10 30_60_1_100 1 30 60 100 1007.36 -102.618 -72.0805
NMDT + base 10 30_60_1_50 1 30 60 50 1004.1 -47.1663 -35.6243
NMDT + base 10 30_60_2_100 2 30 60 100 1006.58 -95.3213 -43.9133
NMDT + base 10 30_60_2_50 2 30 60 50 1003.38 -40.9757 -33.8916
NMDT + base 10 30_60_3_100 3 30 60 100 1192.88 -111.778 -61.3861
NMDT + base 10 30_60_3_50 3 30 60 50 108.75 -47.71 -47.71
NMDT + base 10 40_40_1_100 1 40 40 100 1013.25 -188.011 -90.82
NMDT + base 10 40_40_1_25 1 40 40 25 31.16 -48.3719 -48.3719
NMDT + base 10 40_40_1_50 1 40 40 50 1007.93 -87.2517 -51.9
NMDT + base 10 40_40_2_100 2 40 40 100 1008.11 -180.393 -71.364
NMDT + base 10 40_40_2_25 2 40 40 25 16.88 -44.65 -44.65
NMDT + base 10 40_40_2_50 2 40 40 50 1003.92 -89.4937 -54.29
NMDT + base 10 40_40_3_100 3 40 40 100 1010.35 -180.058 -97.6901
NMDT + base 10 40_40_3_25 3 40 40 25 2.41 -62.16 -62.16
NMDT + base 10 40_40_3_50 3 40 40 50 1004.06 -94.1587 -53.6238
NMDT + base 10 40_60_1_100 1 40 60 100 1011.43 -173.874 -52.2255
NMDT + base 10 40_60_1_25 1 40 60 25 1003.21 -48.7138 -48.0569
NMDT + base 10 40_60_1_50 1 40 60 50 1005.68 -98.5651 -76.663
NMDT + base 10 40_60_2_100 2 40 60 100 1012.03 -189.595 -74.4395
NMDT + base 10 40_60_2_25 2 40 60 25 14.06 -41.76 -41.76
NMDT + base 10 40_60_2_50 2 40 60 50 1005.43 -79.7596 -54.87
NMDT + base 10 40_60_3_100 3 40 60 100 1011.73 -167.841 -50.2828
NMDT + base 10 40_60_3_25 3 40 60 25 1003.14 -38.8982 -38.8627
NMDT + base 10 40_60_3_50 3 40 60 50 1005.32 -92.6473 -56.4343
NMDT + base 10 40_80_1_100 1 40 80 100 1014.97 -199.818 -97.7667
NMDT + base 10 40_80_1_25 1 40 80 25 1003.79 -39.6674 -32.7279
NMDT + base 10 40_80_1_50 1 40 80 50 1006.86 -96.3103 -85.6393
NMDT + base 10 40_80_2_100 2 40 80 100 1014.77 -191.639 -102.591
NMDT + base 10 40_80_2_25 2 40 80 25 1003.99 -48.4642 -48.421
NMDT + base 10 40_80_2_50 2 40 80 50 1006.97 -93.9692 -59.9291
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NMDT + base 10 40_80_3_100 3 40 80 100 1014.83 -190.519 -81.3659
NMDT + base 10 40_80_3_25 3 40 80 25 1003.84 -34.1173 -30.8041
NMDT + base 10 40_80_3_50 3 40 80 50 1006.89 -89.0017 -50.3836
NMDT + base 10 48_48_1_25 1 48 48 25 1003.67 -66.809 -52.1083
NMDT + base 10 48_48_2_25 2 48 48 25 1003.55 -56.5626 -50.62
NMDT + base 10 48_48_3_25 3 48 48 25 1003.59 -71.3836 -54.516
NMDT + base 10 48_72_1_25 1 48 72 25 1004.98 -58.6024 -49.15
NMDT + base 10 48_72_2_25 2 48 72 25 1005.05 -72.9573 -63.7748
NMDT + base 10 48_72_3_25 3 48 72 25 1004.9 -70.6443 -59.7569
NMDT + base 10 48_96_1_25 1 48 96 25 868.12 -70.6765 -70.6761
NMDT + base 10 48_96_2_25 2 48 96 25 1006.43 -55.5084 -38.798
NMDT + base 10 48_96_3_25 3 48 96 25 1006.28 -55.0782 -37.1034
NMDT + base 10 50_100_1_100 1 50 100 100 1032.06 -274.533 -94.9017
NMDT + base 10 50_100_1_50 1 50 100 50 1015.77 -152.025 -86.3921
NMDT + base 10 50_100_2_100 2 50 100 100 1032.08 -300.149 -98.3512
NMDT + base 10 50_100_2_50 2 50 100 50 1015.28 -145.297 -78.2427
NMDT + base 10 50_100_3_100 3 50 100 100 1033.85 -308.527 -133.875
NMDT + base 10 50_100_3_50 3 50 100 50 1015.67 -138.847 -67.486
NMDT + base 10 50_50_1_100 1 50 50 100 1015.59 -280.978 -100.967
NMDT + base 10 50_50_1_50 1 50 50 50 1007.58 -139.117 -57.9588
NMDT + base 10 50_50_2_100 2 50 50 100 1015.03 -262.43 -76.5882
NMDT + base 10 50_50_2_50 2 50 50 50 1007.73 -149.666 -78.6604
NMDT + base 10 50_50_3_100 3 50 50 100 1014.58 -303.548 -118.338
NMDT + base 10 50_50_3_50 3 50 50 50 1007.26 -148.652 -77.2531
NMDT + base 10 50_75_1_100 1 50 75 100 1022.61 -315.536 -140.491
NMDT + base 10 50_75_1_50 1 50 75 50 1010.9 -151.543 -92.8247
NMDT + base 10 50_75_2_100 2 50 75 100 1021.05 -276.031 -72.7486
NMDT + base 10 50_75_2_50 2 50 75 50 1010.88 -144.781 -66.858
NMDT + base 10 50_75_3_100 3 50 75 100 1022.15 -285.581 -107.373
NMDT + base 10 50_75_3_50 3 50 75 50 1011.95 -139.093 -65.5265
NMDT + base 10 8_12_1_25 1 8 12 25 0.82 -6.44 -6.44
NMDT + base 10 8_12_2_25 2 8 12 25 0.3 -2.14 -2.14
NMDT + base 10 8_12_3_25 3 8 12 25 0.35 -9.21 -9.21
NMDT + base 10 8_16_1_25 1 8 16 25 0.31 -2.49 -2.49
NMDT + base 10 8_16_2_25 2 8 16 25 0.29 -2.79 -2.79
NMDT + base 10 8_16_3_25 3 8 16 25 0.3 -2.44 -2.44
NMDT + base 10 8_8_1_25 1 8 8 25 0.33 -3.97 -3.97
NMDT + base 10 8_8_2_25 2 8 8 25 0.48 -0.56 -0.56
NMDT + base 10 8_8_3_25 3 8 8 25 0.36 -5.3 -5.3
NMDT + base 2 10_10_1_100 1 10 10 100 4.64 -14.1797 -14.179
NMDT + base 2 10_10_1_50 1 10 10 50 0.26 -7.38 -7.38
NMDT + base 2 10_10_2_100 2 10 10 100 2.92 -6.5475 -6.5468
NMDT + base 2 10_10_2_50 2 10 10 50 0.25 -6.95 -6.95
NMDT + base 2 10_10_3_100 3 10 10 100 0.81 -11.79 -11.79
NMDT + base 2 10_10_3_50 3 10 10 50 0.25 -10.3 -10.3
NMDT + base 2 10_15_1_100 1 10 15 100 7.51 -11.6372 -11.6365
NMDT + base 2 10_15_1_50 1 10 15 50 0.54 -5.39 -5.39
NMDT + base 2 10_15_2_100 2 10 15 100 0.3 -28.07 -28.07
NMDT + base 2 10_15_2_50 2 10 15 50 0.26 -11.6028 -11.6028
NMDT + base 2 10_15_3_100 3 10 15 100 0.71 -7.98 -7.98
NMDT + base 2 10_15_3_50 3 10 15 50 0.69 -7.83 -7.83
NMDT + base 2 10_20_1_100 1 10 20 100 1.17 -8.19 -8.19
NMDT + base 2 10_20_1_50 1 10 20 50 0.63 -5.4 -5.4
NMDT + base 2 10_20_2_100 2 10 20 100 3.55 -15.9449 -15.9442
NMDT + base 2 10_20_2_50 2 10 20 50 0.71 -3.13 -3.13
NMDT + base 2 10_20_3_100 3 10 20 100 2.64 -5.8993 -5.8987
NMDT + base 2 10_20_3_50 3 10 20 50 0.26 -7.49 -7.49
NMDT + base 2 20_20_1_100 1 20 20 100 960.23 -28.1913 -28.1906
NMDT + base 2 20_20_1_25 1 20 20 25 0.3 -12.86 -12.86
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NMDT + base 2 20_20_1_50 1 20 20 50 2.91 -26.5985 -26.5977
NMDT + base 2 20_20_2_100 2 20 20 100 1000.67 -18.8821 -18.8752
NMDT + base 2 20_20_2_25 2 20 20 25 0.32 -9.88 -9.88
NMDT + base 2 20_20_2_50 2 20 20 50 0.94 -17.03 -17.03
NMDT + base 2 20_20_3_100 3 20 20 100 41.68 -26.1 -26.1
NMDT + base 2 20_20_3_25 3 20 20 25 0.32 -23.43 -23.43
NMDT + base 2 20_20_3_50 3 20 20 50 1.14 -18.54 -18.54
NMDT + base 2 20_30_1_100 1 20 30 100 350.53 -17.08 -17.08
NMDT + base 2 20_30_1_25 1 20 30 25 1.88 -13.3572 -13.3571
NMDT + base 2 20_30_1_50 1 20 30 50 1.26 -20.09 -20.09
NMDT + base 2 20_30_2_100 2 20 30 100 750.02 -19.9523 -19.9515
NMDT + base 2 20_30_2_25 2 20 30 25 0.38 -13.68 -13.68
NMDT + base 2 20_30_2_50 2 20 30 50 0.94 -24.7097 -24.7097
NMDT + base 2 20_30_3_100 3 20 30 100 414.42 -24.0614 -24.0611
NMDT + base 2 20_30_3_25 3 20 30 25 0.36 -9.5442 -9.5442
NMDT + base 2 20_30_3_50 3 20 30 50 1 -28.83 -28.83
NMDT + base 2 20_40_1_100 1 20 40 100 1001.01 -19.3224 -19.3111
NMDT + base 2 20_40_1_25 1 20 40 25 0.39 -10.59 -10.59
NMDT + base 2 20_40_1_50 1 20 40 50 1.87 -21.97 -21.97
NMDT + base 2 20_40_2_100 2 20 40 100 82.55 -30.51 -30.51
NMDT + base 2 20_40_2_25 2 20 40 25 1.32 -10.8254 -10.8254
NMDT + base 2 20_40_2_50 2 20 40 50 7.18 -24.2647 -24.2644
NMDT + base 2 20_40_3_100 3 20 40 100 939.57 -26.2728 -26.272
NMDT + base 2 20_40_3_25 3 20 40 25 0.89 -13.7731 -13.7731
NMDT + base 2 20_40_3_50 3 20 40 50 1.14 -27.4064 -27.4064
NMDT + base 2 28_28_1_25 1 28 28 25 0.47 -30.23 -30.23
NMDT + base 2 28_28_2_25 2 28 28 25 0.47 -27.1518 -27.1518
NMDT + base 2 28_28_3_25 3 28 28 25 4.77 -28.5326 -28.5319
NMDT + base 2 28_42_1_25 1 28 42 25 6.27 -37.529 -37.5283
NMDT + base 2 28_42_2_25 2 28 42 25 1.33 -26.78 -26.78
NMDT + base 2 28_42_3_25 3 28 42 25 0.58 -29.84 -29.84
NMDT + base 2 28_56_1_25 1 28 56 25 1.56 -17.9769 -17.9769
NMDT + base 2 28_56_2_25 2 28 56 25 1.5 -25.01 -25.01
NMDT + base 2 28_56_3_25 3 28 56 25 10.95 -32.6526 -32.652
NMDT + base 2 30_30_1_100 1 30 30 100 1002.57 -67.5587 -44.1885
NMDT + base 2 30_30_1_50 1 30 30 50 11.07 -54.6611 -54.6605
NMDT + base 2 30_30_2_100 2 30 30 100 1002.37 -67.335 -44.7318
NMDT + base 2 30_30_2_50 2 30 30 50 4.62 -48.5095 -48.5095
NMDT + base 2 30_30_3_100 3 30 30 100 1001.63 -59.6437 -37.886
NMDT + base 2 30_30_3_50 3 30 30 50 3.23 -44.45 -44.45
NMDT + base 2 30_45_1_100 1 30 45 100 1001.85 -80.7549 -80
NMDT + base 2 30_45_1_50 1 30 45 50 6.24 -53.2051 -53.2051
NMDT + base 2 30_45_2_100 2 30 45 100 1004.1 -79.0787 -77.1362
NMDT + base 2 30_45_2_50 2 30 45 50 8.98 -56.0513 -56.0504
NMDT + base 2 30_45_3_100 3 30 45 100 1003.35 -63.1731 -47.5897
NMDT + base 2 30_45_3_50 3 30 45 50 41.93 -53.9708 -53.9701
NMDT + base 2 30_60_1_100 1 30 60 100 1002.69 -74.7214 -72.0805
NMDT + base 2 30_60_1_50 1 30 60 50 743.58 -35.9506 -35.9506
NMDT + base 2 30_60_2_100 2 30 60 100 1002.93 -69.7283 -43.3869
NMDT + base 2 30_60_2_50 2 30 60 50 1001.33 -33.895 -33.8916
NMDT + base 2 30_60_3_100 3 30 60 100 1002.74 -80.5275 -61.424
NMDT + base 2 30_60_3_50 3 30 60 50 5.33 -47.71 -47.71
NMDT + base 2 40_40_1_100 1 40 40 100 1003.58 -151.371 -90.82
NMDT + base 2 40_40_1_25 1 40 40 25 4.24 -48.3719 -48.3719
NMDT + base 2 40_40_1_50 1 40 40 50 1001.5 -54.6839 -51.9
NMDT + base 2 40_40_2_100 2 40 40 100 1003.42 -152.545 -71.364
NMDT + base 2 40_40_2_25 2 40 40 25 3.6 -44.65 -44.65
NMDT + base 2 40_40_2_50 2 40 40 50 1001.46 -58.3125 -55.7089
NMDT + base 2 40_40_3_100 3 40 40 100 1003.25 -147.586 -97.6901
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NMDT + base 2 40_40_3_25 3 40 40 25 0.86 -62.16 -62.16
NMDT + base 2 40_40_3_50 3 40 40 50 1001.53 -61.6025 -54.09
NMDT + base 2 40_60_1_100 1 40 60 100 1004.8 -139.903 -52.2255
NMDT + base 2 40_60_1_25 1 40 60 25 698.32 -48.0574 -48.0569
NMDT + base 2 40_60_1_50 1 40 60 50 1002.21 -76.8747 -76.8059
NMDT + base 2 40_60_2_100 2 40 60 100 1004.74 -155.669 -73.1024
NMDT + base 2 40_60_2_25 2 40 60 25 4.71 -41.76 -41.76
NMDT + base 2 40_60_2_50 2 40 60 50 1002.11 -56.6075 -55.07
NMDT + base 2 40_60_3_100 3 40 60 100 1005.22 -132.388 -50.2946
NMDT + base 2 40_60_3_25 3 40 60 25 205.02 -38.8634 -38.8627
NMDT + base 2 40_60_3_50 3 40 60 50 1002.1 -61.1726 -56.4343
NMDT + base 2 40_80_1_100 1 40 80 100 1005.74 -165.528 -97.7667
NMDT + base 2 40_80_1_25 1 40 80 25 415.79 -32.7279 -32.7279
NMDT + base 2 40_80_1_50 1 40 80 50 805.67 -85.6402 -85.6393
NMDT + base 2 40_80_2_100 2 40 80 100 1005.83 -157.418 -102.602
NMDT + base 2 40_80_2_25 2 40 80 25 439.02 -48.4218 -48.421
NMDT + base 2 40_80_2_50 2 40 80 50 1002.64 -61.665 -59.9291
NMDT + base 2 40_80_3_100 3 40 80 100 1005.82 -159.246 -82.6464
NMDT + base 2 40_80_3_25 3 40 80 25 61.88 -30.899 -30.899
NMDT + base 2 40_80_3_50 3 40 80 50 1002.84 -62.2514 -50.4984
NMDT + base 2 48_48_1_25 1 48 48 25 1001.8 -52.143 -52.1085
NMDT + base 2 48_48_2_25 2 48 48 25 23.01 -50.9941 -50.9941
NMDT + base 2 48_48_3_25 3 48 48 25 1001.51 -55.8781 -55.7666
NMDT + base 2 48_72_1_25 1 48 72 25 17.32 -49.15 -49.15
NMDT + base 2 48_72_2_25 2 48 72 25 198.51 -63.7757 -63.7748
NMDT + base 2 48_72_3_25 3 48 72 25 99.84 -59.7569 -59.7569
NMDT + base 2 48_96_1_25 1 48 96 25 177.22 -70.6769 -70.6761
NMDT + base 2 48_96_2_25 2 48 96 25 1002.66 -41.6305 -37.3316
NMDT + base 2 48_96_3_25 3 48 96 25 1002.56 -40.84 -38.3101
NMDT + base 2 50_100_1_100 1 50 100 100 1012.96 -243.255 -94.9017
NMDT + base 2 50_100_1_50 1 50 100 50 1006.63 -124.257 -86.3921
NMDT + base 2 50_100_2_100 2 50 100 100 1013.28 -265.367 -98.3512
NMDT + base 2 50_100_2_50 2 50 100 50 1006.68 -115.592 -78.2427
NMDT + base 2 50_100_3_100 3 50 100 100 1012.8 -276.776 -133.875
NMDT + base 2 50_100_3_50 3 50 100 50 1006.5 -107.268 -67.486
NMDT + base 2 50_50_1_100 1 50 50 100 1007.18 -249.336 -91.9634
NMDT + base 2 50_50_1_50 1 50 50 50 1004.21 -105.939 -57.9588
NMDT + base 2 50_50_2_100 2 50 50 100 1006.7 -230.176 -76.5882
NMDT + base 2 50_50_2_50 2 50 50 50 1004.56 -118.224 -78.6604
NMDT + base 2 50_50_3_100 3 50 50 100 1007.24 -268.952 -120.102
NMDT + base 2 50_50_3_50 3 50 50 50 1003.97 -118.168 -77.2531
NMDT + base 2 50_75_1_100 1 50 75 100 1009.31 -280.17 -140.823
NMDT + base 2 50_75_1_50 1 50 75 50 1004.68 -121.676 -92.8517
NMDT + base 2 50_75_2_100 2 50 75 100 1009.5 -242.711 -72.7486
NMDT + base 2 50_75_2_50 2 50 75 50 1004.95 -116.186 -66.858
NMDT + base 2 50_75_3_100 3 50 75 100 1009.85 -253.045 -107.373
NMDT + base 2 50_75_3_50 3 50 75 50 1004.91 -109.091 -65.5265
NMDT + base 2 8_12_1_25 1 8 12 25 0.25 -6.44 -6.44
NMDT + base 2 8_12_2_25 2 8 12 25 0.22 -2.14 -2.14
NMDT + base 2 8_12_3_25 3 8 12 25 0.24 -9.21 -9.21
NMDT + base 2 8_16_1_25 1 8 16 25 0.25 -2.49 -2.49
NMDT + base 2 8_16_2_25 2 8 16 25 0.22 -2.79 -2.79
NMDT + base 2 8_16_3_25 3 8 16 25 0.27 -2.44 -2.44
NMDT + base 2 8_8_1_25 1 8 8 25 0.25 -3.97 -3.97
NMDT + base 2 8_8_2_25 2 8 8 25 0.27 -0.56 -0.56
NMDT + base 2 8_8_3_25 3 8 8 25 0.33 -5.3 -5.3
RNMDT + Alg 1 10_10_1_100 1 10 10 100 5.31 -14.1798 -14.179
RNMDT + Alg 1 10_10_1_50 1 10 10 50 0.28 -7.38 -7.38
RNMDT + Alg 1 10_10_2_100 2 10 10 100 3.58 -6.5475 -6.5468
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RNMDT + Alg 1 10_10_2_50 2 10 10 50 0.27 -6.95 -6.95
RNMDT + Alg 1 10_10_3_100 3 10 10 100 0.7 -11.79 -11.79
RNMDT + Alg 1 10_10_3_50 3 10 10 50 0.27 -10.3 -10.3
RNMDT + Alg 1 10_15_1_100 1 10 15 100 6.93 -11.6371 -11.6365
RNMDT + Alg 1 10_15_1_50 1 10 15 50 0.86 -5.39 -5.39
RNMDT + Alg 1 10_15_2_100 2 10 15 100 0.32 -28.07 -28.07
RNMDT + Alg 1 10_15_2_50 2 10 15 50 0.26 -11.6028 -11.6028
RNMDT + Alg 1 10_15_3_100 3 10 15 100 0.63 -7.98 -7.98
RNMDT + Alg 1 10_15_3_50 3 10 15 50 0.84 -7.83 -7.83
RNMDT + Alg 1 10_20_1_100 1 10 20 100 1.11 -8.19 -8.19
RNMDT + Alg 1 10_20_1_50 1 10 20 50 0.61 -5.4 -5.4
RNMDT + Alg 1 10_20_2_100 2 10 20 100 3.17 -15.9449 -15.9442
RNMDT + Alg 1 10_20_2_50 2 10 20 50 0.59 -3.13 -3.13
RNMDT + Alg 1 10_20_3_100 3 10 20 100 2.94 -5.8993 -5.8987
RNMDT + Alg 1 10_20_3_50 3 10 20 50 1.96 -7.49 -7.49
RNMDT + Alg 1 20_20_1_100 1 20 20 100 773.92 -28.1913 -28.1906
RNMDT + Alg 1 20_20_1_25 1 20 20 25 0.33 -12.86 -12.86
RNMDT + Alg 1 20_20_1_50 1 20 20 50 2.64 -26.5986 -26.5977
RNMDT + Alg 1 20_20_2_100 2 20 20 100 1000.73 -18.8821 -18.8752
RNMDT + Alg 1 20_20_2_25 2 20 20 25 0.32 -9.88 -9.88
RNMDT + Alg 1 20_20_2_50 2 20 20 50 0.9 -17.03 -17.03
RNMDT + Alg 1 20_20_3_100 3 20 20 100 38.63 -26.1 -26.1
RNMDT + Alg 1 20_20_3_25 3 20 20 25 0.32 -23.43 -23.43
RNMDT + Alg 1 20_20_3_50 3 20 20 50 0.86 -18.54 -18.54
RNMDT + Alg 1 20_30_1_100 1 20 30 100 173.07 -17.0801 -17.08
RNMDT + Alg 1 20_30_1_25 1 20 30 25 1.75 -13.3572 -13.3571
RNMDT + Alg 1 20_30_1_50 1 20 30 50 0.93 -20.09 -20.09
RNMDT + Alg 1 20_30_2_100 2 20 30 100 626.01 -19.9523 -19.9515
RNMDT + Alg 1 20_30_2_25 2 20 30 25 0.34 -13.68 -13.68
RNMDT + Alg 1 20_30_2_50 2 20 30 50 0.91 -24.7097 -24.7097
RNMDT + Alg 1 20_30_3_100 3 20 30 100 481.01 -24.0614 -24.0611
RNMDT + Alg 1 20_30_3_25 3 20 30 25 0.51 -9.5442 -9.5442
RNMDT + Alg 1 20_30_3_50 3 20 30 50 1.41 -28.83 -28.83
RNMDT + Alg 1 20_40_1_100 1 20 40 100 1000.99 -19.3167 -19.3111
RNMDT + Alg 1 20_40_1_25 1 20 40 25 0.35 -10.59 -10.59
RNMDT + Alg 1 20_40_1_50 1 20 40 50 2.03 -21.97 -21.97
RNMDT + Alg 1 20_40_2_100 2 20 40 100 72.11 -30.51 -30.51
RNMDT + Alg 1 20_40_2_25 2 20 40 25 1.27 -10.8254 -10.8254
RNMDT + Alg 1 20_40_2_50 2 20 40 50 6.18 -24.2647 -24.2644
RNMDT + Alg 1 20_40_3_100 3 20 40 100 713.46 -26.2728 -26.272
RNMDT + Alg 1 20_40_3_25 3 20 40 25 0.93 -13.7731 -13.7731
RNMDT + Alg 1 20_40_3_50 3 20 40 50 0.87 -27.4064 -27.4064
RNMDT + Alg 1 28_28_1_25 1 28 28 25 0.44 -30.23 -30.23
RNMDT + Alg 1 28_28_2_25 2 28 28 25 0.45 -27.1518 -27.1518
RNMDT + Alg 1 28_28_3_25 3 28 28 25 3.9 -28.5326 -28.5319
RNMDT + Alg 1 28_42_1_25 1 28 42 25 5.91 -37.529 -37.5283
RNMDT + Alg 1 28_42_2_25 2 28 42 25 1.18 -26.78 -26.78
RNMDT + Alg 1 28_42_3_25 3 28 42 25 0.51 -29.84 -29.84
RNMDT + Alg 1 28_56_1_25 1 28 56 25 1.68 -17.9769 -17.9769
RNMDT + Alg 1 28_56_2_25 2 28 56 25 1.29 -25.01 -25.01
RNMDT + Alg 1 28_56_3_25 3 28 56 25 9.32 -32.6526 -32.652
RNMDT + Alg 1 30_30_1_100 1 30 30 100 1003.04 -66.5364 -44.1885
RNMDT + Alg 1 30_30_1_50 1 30 30 50 13.51 -54.6611 -54.6605
RNMDT + Alg 1 30_30_2_100 2 30 30 100 1005.18 -65.3151 -44.7318
RNMDT + Alg 1 30_30_2_50 2 30 30 50 4.92 -48.5095 -48.5095
RNMDT + Alg 1 30_30_3_100 3 30 30 100 1000.27 -59.2925 -37.886
RNMDT + Alg 1 30_30_3_50 3 30 30 50 3.78 -44.45 -44.45
RNMDT + Alg 1 30_45_1_100 1 30 45 100 1001.12 -80.755 -80
RNMDT + Alg 1 30_45_1_50 1 30 45 50 4.01 -53.2051 -53.2051
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RNMDT + Alg 1 30_45_2_100 2 30 45 100 1000.66 -79.0787 -77.1362
RNMDT + Alg 1 30_45_2_50 2 30 45 50 9.32 -56.0513 -56.0504
RNMDT + Alg 1 30_45_3_100 3 30 45 100 1000.45 -62.8187 -47.5897
RNMDT + Alg 1 30_45_3_50 3 30 45 50 42.34 -53.9708 -53.9701
RNMDT + Alg 1 30_60_1_100 1 30 60 100 1005.9 -74.6338 -72.0805
RNMDT + Alg 1 30_60_1_50 1 30 60 50 703.92 -35.9506 -35.9506
RNMDT + Alg 1 30_60_2_100 2 30 60 100 1006.39 -69.8079 -40.7145
RNMDT + Alg 1 30_60_2_50 2 30 60 50 1001.23 -33.8935 -33.8916
RNMDT + Alg 1 30_60_3_100 3 30 60 100 1001.55 -79.4183 -61.424
RNMDT + Alg 1 30_60_3_50 3 30 60 50 5.71 -47.71 -47.71
RNMDT + Alg 1 40_40_1_100 1 40 40 100 1002.23 -152.087 -90.82
RNMDT + Alg 1 40_40_1_25 1 40 40 25 4.49 -48.3719 -48.3719
RNMDT + Alg 1 40_40_1_50 1 40 40 50 1001.35 -54.6838 -51.9
RNMDT + Alg 1 40_40_2_100 2 40 40 100 1002.33 -152.52 -71.364
RNMDT + Alg 1 40_40_2_25 2 40 40 25 4.02 -44.65 -44.65
RNMDT + Alg 1 40_40_2_50 2 40 40 50 1001.05 -58.3125 -54.96
RNMDT + Alg 1 40_40_3_100 3 40 40 100 1002.02 -147.531 -97.6901
RNMDT + Alg 1 40_40_3_25 3 40 40 25 0.85 -62.16 -62.16
RNMDT + Alg 1 40_40_3_50 3 40 40 50 1001.17 -61.6025 -53.8089
RNMDT + Alg 1 40_60_1_100 1 40 60 100 1003.24 -140.075 -52.2255
RNMDT + Alg 1 40_60_1_25 1 40 60 25 642.94 -48.0575 -48.0569
RNMDT + Alg 1 40_60_1_50 1 40 60 50 1001.59 -76.8747 -76.8059
RNMDT + Alg 1 40_60_2_100 2 40 60 100 1003.29 -155.755 -73.1024
RNMDT + Alg 1 40_60_2_25 2 40 60 25 6.97 -41.76 -41.76
RNMDT + Alg 1 40_60_2_50 2 40 60 50 1001.34 -56.6075 -55.07
RNMDT + Alg 1 40_60_3_100 3 40 60 100 1003.82 -131.883 -50.2946
RNMDT + Alg 1 40_60_3_25 3 40 60 25 224.51 -38.8634 -38.8627
RNMDT + Alg 1 40_60_3_50 3 40 60 50 1001.41 -61.1726 -56.4343
RNMDT + Alg 1 40_80_1_100 1 40 80 100 1004.07 -165.071 -97.7667
RNMDT + Alg 1 40_80_1_25 1 40 80 25 452.48 -32.7279 -32.7279
RNMDT + Alg 1 40_80_1_50 1 40 80 50 660.91 -85.6402 -85.6393
RNMDT + Alg 1 40_80_2_100 2 40 80 100 1004.33 -157.541 -102.602
RNMDT + Alg 1 40_80_2_25 2 40 80 25 495.49 -48.4217 -48.421
RNMDT + Alg 1 40_80_2_50 2 40 80 50 1001.98 -61.665 -59.9291
RNMDT + Alg 1 40_80_3_100 3 40 80 100 1003.81 -159.106 -82.6464
RNMDT + Alg 1 40_80_3_25 3 40 80 25 80.59 -30.899 -30.899
RNMDT + Alg 1 40_80_3_50 3 40 80 50 1002.58 -62.2514 -50.8809
RNMDT + Alg 1 48_48_1_25 1 48 48 25 1001.39 -52.143 -52.1085
RNMDT + Alg 1 48_48_2_25 2 48 48 25 26.1 -50.9941 -50.9941
RNMDT + Alg 1 48_48_3_25 3 48 48 25 1001.53 -55.8781 -55.7666
RNMDT + Alg 1 48_72_1_25 1 48 72 25 20.43 -49.15 -49.15
RNMDT + Alg 1 48_72_2_25 2 48 72 25 203.92 -63.7757 -63.7748
RNMDT + Alg 1 48_72_3_25 3 48 72 25 117.03 -59.7569 -59.7569
RNMDT + Alg 1 48_96_1_25 1 48 96 25 230.4 -70.6769 -70.6761
RNMDT + Alg 1 48_96_2_25 2 48 96 25 1000.6 -41.6305 -38.0908
RNMDT + Alg 1 48_96_3_25 3 48 96 25 1002.97 -42.2775 -38.3101
RNMDT + Alg 1 50_100_1_100 1 50 100 100 1007.6 -242.947 -94.9017
RNMDT + Alg 1 50_100_1_50 1 50 100 50 1028.42 -121.444 -86.3921
RNMDT + Alg 1 50_100_2_100 2 50 100 100 1010.47 -265.039 -98.3512
RNMDT + Alg 1 50_100_2_50 2 50 100 50 1004.63 -112.548 -78.2427
RNMDT + Alg 1 50_100_3_100 3 50 100 100 1009.24 -277.731 -133.875
RNMDT + Alg 1 50_100_3_50 3 50 100 50 1004.17 -105.21 -67.486
RNMDT + Alg 1 50_50_1_100 1 50 50 100 1004.13 -249.381 -100.967
RNMDT + Alg 1 50_50_1_50 1 50 50 50 1002.66 -104.553 -57.9588
RNMDT + Alg 1 50_50_2_100 2 50 50 100 1004.49 -230.262 -76.5882
RNMDT + Alg 1 50_50_2_50 2 50 50 50 1014.13 -117.096 -78.6604
RNMDT + Alg 1 50_50_3_100 3 50 50 100 1008.72 -267.17 -120.102
RNMDT + Alg 1 50_50_3_50 3 50 50 50 1004.48 -114.668 -77.2531
RNMDT + Alg 1 50_75_1_100 1 50 75 100 1008.37 -279.682 -140.598
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RNMDT + Alg 1 50_75_1_50 1 50 75 50 1003.73 -121.956 -92.8247
RNMDT + Alg 1 50_75_2_100 2 50 75 100 1010.07 -241.871 -72.7486
RNMDT + Alg 1 50_75_2_50 2 50 75 50 1003.9 -113.065 -66.858
RNMDT + Alg 1 50_75_3_100 3 50 75 100 1007.75 -252.722 -107.373
RNMDT + Alg 1 50_75_3_50 3 50 75 50 1006.72 -106.684 -65.5265
RNMDT + Alg 1 8_12_1_25 1 8 12 25 0.25 -6.44 -6.44
RNMDT + Alg 1 8_12_2_25 2 8 12 25 0.22 -2.14 -2.14
RNMDT + Alg 1 8_12_3_25 3 8 12 25 0.23 -9.21 -9.21
RNMDT + Alg 1 8_16_1_25 1 8 16 25 0.27 -2.49 -2.49
RNMDT + Alg 1 8_16_2_25 2 8 16 25 0.24 -2.79 -2.79
RNMDT + Alg 1 8_16_3_25 3 8 16 25 0.28 -2.44 -2.44
RNMDT + Alg 1 8_8_1_25 1 8 8 25 0.25 -3.97 -3.97
RNMDT + Alg 1 8_8_2_25 2 8 8 25 0.33 -0.56 -0.56
RNMDT + Alg 1 8_8_3_25 3 8 8 25 0.23 -5.3 -5.3
RNMDT + Alg 2 10_10_1_100 1 10 10 100 5.1 -14.1797 -14.179
RNMDT + Alg 2 10_10_1_50 1 10 10 50 0.25 -7.38 -7.38
RNMDT + Alg 2 10_10_2_100 2 10 10 100 3.2 -6.5475 -6.5468
RNMDT + Alg 2 10_10_2_50 2 10 10 50 0.25 -6.95 -6.95
RNMDT + Alg 2 10_10_3_100 3 10 10 100 0.59 -11.79 -11.79
RNMDT + Alg 2 10_10_3_50 3 10 10 50 0.27 -10.3 -10.3
RNMDT + Alg 2 10_15_1_100 1 10 15 100 5.88 -11.6368 -11.6365
RNMDT + Alg 2 10_15_1_50 1 10 15 50 0.83 -5.39 -5.39
RNMDT + Alg 2 10_15_2_100 2 10 15 100 0.29 -28.07 -28.07
RNMDT + Alg 2 10_15_2_50 2 10 15 50 0.26 -11.6028 -11.6028
RNMDT + Alg 2 10_15_3_100 3 10 15 100 0.68 -7.98 -7.98
RNMDT + Alg 2 10_15_3_50 3 10 15 50 0.69 -7.83 -7.83
RNMDT + Alg 2 10_20_1_100 1 10 20 100 1.06 -8.19 -8.19
RNMDT + Alg 2 10_20_1_50 1 10 20 50 0.59 -5.4 -5.4
RNMDT + Alg 2 10_20_2_100 2 10 20 100 2.92 -15.9449 -15.9442
RNMDT + Alg 2 10_20_2_50 2 10 20 50 0.56 -3.13 -3.13
RNMDT + Alg 2 10_20_3_100 3 10 20 100 2.57 -5.8994 -5.8987
RNMDT + Alg 2 10_20_3_50 3 10 20 50 0.28 -7.49 -7.49
RNMDT + Alg 2 20_20_1_100 1 20 20 100 332.13 -28.1912 -28.1906
RNMDT + Alg 2 20_20_1_25 1 20 20 25 0.31 -12.86 -12.86
RNMDT + Alg 2 20_20_1_50 1 20 20 50 2.16 -26.5985 -26.5977
RNMDT + Alg 2 20_20_2_100 2 20 20 100 1000.68 -18.8766 -18.8752
RNMDT + Alg 2 20_20_2_25 2 20 20 25 0.28 -9.88 -9.88
RNMDT + Alg 2 20_20_2_50 2 20 20 50 1.32 -17.03 -17.03
RNMDT + Alg 2 20_20_3_100 3 20 20 100 32.36 -26.1 -26.1
RNMDT + Alg 2 20_20_3_25 3 20 20 25 0.29 -23.43 -23.43
RNMDT + Alg 2 20_20_3_50 3 20 20 50 0.77 -18.54 -18.54
RNMDT + Alg 2 20_30_1_100 1 20 30 100 213.21 -17.0801 -17.08
RNMDT + Alg 2 20_30_1_25 1 20 30 25 1.92 -13.3572 -13.3571
RNMDT + Alg 2 20_30_1_50 1 20 30 50 1.4 -20.09 -20.09
RNMDT + Alg 2 20_30_2_100 2 20 30 100 298.06 -19.9523 -19.9515
RNMDT + Alg 2 20_30_2_25 2 20 30 25 0.34 -13.68 -13.68
RNMDT + Alg 2 20_30_2_50 2 20 30 50 0.84 -24.7097 -24.7097
RNMDT + Alg 2 20_30_3_100 3 20 30 100 154.64 -24.0614 -24.0611
RNMDT + Alg 2 20_30_3_25 3 20 30 25 0.35 -9.5442 -9.5442
RNMDT + Alg 2 20_30_3_50 3 20 30 50 0.88 -28.83 -28.83
RNMDT + Alg 2 20_40_1_100 1 20 40 100 1000.84 -19.3125 -19.3111
RNMDT + Alg 2 20_40_1_25 1 20 40 25 0.36 -10.59 -10.59
RNMDT + Alg 2 20_40_1_50 1 20 40 50 2.26 -21.97 -21.97
RNMDT + Alg 2 20_40_2_100 2 20 40 100 65.78 -30.51 -30.51
RNMDT + Alg 2 20_40_2_25 2 20 40 25 1.61 -10.8254 -10.8254
RNMDT + Alg 2 20_40_2_50 2 20 40 50 5.95 -24.2647 -24.2644
RNMDT + Alg 2 20_40_3_100 3 20 40 100 265.85 -26.2728 -26.272
RNMDT + Alg 2 20_40_3_25 3 20 40 25 1.2 -13.7731 -13.7731
RNMDT + Alg 2 20_40_3_50 3 20 40 50 0.87 -27.4064 -27.4064
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RNMDT + Alg 2 28_28_1_25 1 28 28 25 0.42 -30.23 -30.23
RNMDT + Alg 2 28_28_2_25 2 28 28 25 0.43 -27.1518 -27.1518
RNMDT + Alg 2 28_28_3_25 3 28 28 25 3.41 -28.5326 -28.5319
RNMDT + Alg 2 28_42_1_25 1 28 42 25 4.77 -37.529 -37.5283
RNMDT + Alg 2 28_42_2_25 2 28 42 25 1.02 -26.78 -26.78
RNMDT + Alg 2 28_42_3_25 3 28 42 25 0.5 -29.84 -29.84
RNMDT + Alg 2 28_56_1_25 1 28 56 25 2.19 -17.9769 -17.9769
RNMDT + Alg 2 28_56_2_25 2 28 56 25 1.22 -25.01 -25.01
RNMDT + Alg 2 28_56_3_25 3 28 56 25 7.39 -32.6526 -32.652
RNMDT + Alg 2 30_30_1_100 1 30 30 100 1001.45 -62.8013 -44.1885
RNMDT + Alg 2 30_30_1_50 1 30 30 50 10.01 -54.6611 -54.6605
RNMDT + Alg 2 30_30_2_100 2 30 30 100 1001.52 -61.5984 -44.7318
RNMDT + Alg 2 30_30_2_50 2 30 30 50 7.74 -48.5095 -48.5095
RNMDT + Alg 2 30_30_3_100 3 30 30 100 1001.45 -55.3 -37.886
RNMDT + Alg 2 30_30_3_50 3 30 30 50 6.78 -44.45 -44.45
RNMDT + Alg 2 30_45_1_100 1 30 45 100 1001.71 -81.1574 -80
RNMDT + Alg 2 30_45_1_50 1 30 45 50 9.51 -53.2051 -53.2051
RNMDT + Alg 2 30_45_2_100 2 30 45 100 1001.75 -78.924 -77.1362
RNMDT + Alg 2 30_45_2_50 2 30 45 50 12.45 -56.0513 -56.0504
RNMDT + Alg 2 30_45_3_100 3 30 45 100 1001.89 -57.4972 -47.5897
RNMDT + Alg 2 30_45_3_50 3 30 45 50 28.14 -53.9708 -53.9701
RNMDT + Alg 2 30_60_1_100 1 30 60 100 1002.61 -76.7451 -72.0805
RNMDT + Alg 2 30_60_1_50 1 30 60 50 456.04 -35.9506 -35.9506
RNMDT + Alg 2 30_60_2_100 2 30 60 100 1002.46 -62.8088 -43.4413
RNMDT + Alg 2 30_60_2_50 2 30 60 50 761.98 -33.8924 -33.8916
RNMDT + Alg 2 30_60_3_100 3 30 60 100 1002.39 -73.7557 -61.424
RNMDT + Alg 2 30_60_3_50 3 30 60 50 9.74 -47.71 -47.71
RNMDT + Alg 2 40_40_1_100 1 40 40 100 1003.31 -139.651 -90.82
RNMDT + Alg 2 40_40_1_25 1 40 40 25 8.03 -48.3719 -48.3719
RNMDT + Alg 2 40_40_1_50 1 40 40 50 1001.76 -57.322 -51.9
RNMDT + Alg 2 40_40_2_100 2 40 40 100 1003.33 -141.109 -71.364
RNMDT + Alg 2 40_40_2_25 2 40 40 25 4.83 -44.65 -44.65
RNMDT + Alg 2 40_40_2_50 2 40 40 50 1001.49 -58.3125 -55.7089
RNMDT + Alg 2 40_40_3_100 3 40 40 100 1003.47 -136.067 -97.6901
RNMDT + Alg 2 40_40_3_25 3 40 40 25 0.79 -62.16 -62.16
RNMDT + Alg 2 40_40_3_50 3 40 40 50 1001.91 -61.6025 -54.09
RNMDT + Alg 2 40_60_1_100 1 40 60 100 1004.49 -127.295 -52.2255
RNMDT + Alg 2 40_60_1_25 1 40 60 25 291.29 -48.0576 -48.0569
RNMDT + Alg 2 40_60_1_50 1 40 60 50 1001.84 -76.8268 -76.8059
RNMDT + Alg 2 40_60_2_100 2 40 60 100 1004.51 -144.426 -73.6973
RNMDT + Alg 2 40_60_2_25 2 40 60 25 7.1 -41.76 -41.76
RNMDT + Alg 2 40_60_2_50 2 40 60 50 1001.96 -56.6075 -55.07
RNMDT + Alg 2 40_60_3_100 3 40 60 100 1004.48 -121.182 -50.2828
RNMDT + Alg 2 40_60_3_25 3 40 60 25 109.49 -38.8634 -38.8627
RNMDT + Alg 2 40_60_3_50 3 40 60 50 1002.2 -61.1726 -56.4343
RNMDT + Alg 2 40_80_1_100 1 40 80 100 1005.45 -153.768 -97.7667
RNMDT + Alg 2 40_80_1_25 1 40 80 25 520.8 -32.7279 -32.7279
RNMDT + Alg 2 40_80_1_50 1 40 80 50 258.72 -85.6402 -85.6393
RNMDT + Alg 2 40_80_2_100 2 40 80 100 1005.43 -134.923 -102.591
RNMDT + Alg 2 40_80_2_25 2 40 80 25 246.53 -48.4214 -48.421
RNMDT + Alg 2 40_80_2_50 2 40 80 50 1002.41 -61.665 -59.9291
RNMDT + Alg 2 40_80_3_100 3 40 80 100 1006.13 -149.088 -83.9075
RNMDT + Alg 2 40_80_3_25 3 40 80 25 111.33 -30.899 -30.899
RNMDT + Alg 2 40_80_3_50 3 40 80 50 1002.89 -62.2514 -50.2957
RNMDT + Alg 2 48_48_1_25 1 48 48 25 1001.31 -52.1259 -52.1083
RNMDT + Alg 2 48_48_2_25 2 48 48 25 71.27 -50.9941 -50.9941
RNMDT + Alg 2 48_48_3_25 3 48 48 25 574.96 -55.8037 -55.8037
RNMDT + Alg 2 48_72_1_25 1 48 72 25 25.1 -49.15 -49.15
RNMDT + Alg 2 48_72_2_25 2 48 72 25 242.81 -63.7757 -63.7748
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RNMDT + Alg 2 48_72_3_25 3 48 72 25 147.88 -59.7569 -59.7569
RNMDT + Alg 2 48_96_1_25 1 48 96 25 140.23 -70.6771 -70.6761
RNMDT + Alg 2 48_96_2_25 2 48 96 25 1002.61 -42.94 -38.101
RNMDT + Alg 2 48_96_3_25 3 48 96 25 1002.43 -41.635 -38.3101
RNMDT + Alg 2 50_100_1_100 1 50 100 100 1013.06 -218.9 -94.9017
RNMDT + Alg 2 50_100_1_50 1 50 100 50 1006.04 -119.153 -86.3921
RNMDT + Alg 2 50_100_2_100 2 50 100 100 1012.23 -216.467 -98.3512
RNMDT + Alg 2 50_100_2_50 2 50 100 50 1005.78 -109.148 -78.2427
RNMDT + Alg 2 50_100_3_100 3 50 100 100 1011.19 -236.287 -133.875
RNMDT + Alg 2 50_100_3_50 3 50 100 50 1005.9 -103.49 -67.6457
RNMDT + Alg 2 50_50_1_100 1 50 50 100 1006.24 -209.703 -100.493
RNMDT + Alg 2 50_50_1_50 1 50 50 50 1003.03 -98.7119 -57.9588
RNMDT + Alg 2 50_50_2_100 2 50 50 100 1006.04 -211.492 -76.7843
RNMDT + Alg 2 50_50_2_50 2 50 50 50 1003.88 -114.782 -76.334
RNMDT + Alg 2 50_50_3_100 3 50 50 100 1006.24 -224.163 -120.102
RNMDT + Alg 2 50_50_3_50 3 50 50 50 1003.39 -111.522 -78.2193
RNMDT + Alg 2 50_75_1_100 1 50 75 100 1008.83 -255.05 -140.67
RNMDT + Alg 2 50_75_1_50 1 50 75 50 1004.72 -117.785 -92.8247
RNMDT + Alg 2 50_75_2_100 2 50 75 100 1008.8 -198.693 -74.6084
RNMDT + Alg 2 50_75_2_50 2 50 75 50 1004.37 -110.371 -67.653
RNMDT + Alg 2 50_75_3_100 3 50 75 100 1008.29 -209.269 -107.373
RNMDT + Alg 2 50_75_3_50 3 50 75 50 1004.27 -105.641 -65.6177
RNMDT + Alg 2 8_12_1_25 1 8 12 25 0.23 -6.44 -6.44
RNMDT + Alg 2 8_12_2_25 2 8 12 25 0.22 -2.14 -2.14
RNMDT + Alg 2 8_12_3_25 3 8 12 25 0.21 -9.21 -9.21
RNMDT + Alg 2 8_16_1_25 1 8 16 25 0.22 -2.49 -2.49
RNMDT + Alg 2 8_16_2_25 2 8 16 25 0.21 -2.79 -2.79
RNMDT + Alg 2 8_16_3_25 3 8 16 25 0.24 -2.44 -2.44
RNMDT + Alg 2 8_8_1_25 1 8 8 25 0.21 -3.97 -3.97
RNMDT + Alg 2 8_8_2_25 2 8 8 25 0.26 -0.56 -0.56
RNMDT + Alg 2 8_8_3_25 3 8 8 25 0.2 -5.3 -5.3
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B
Box plots

B.1
Literature instances

The average relative gap could, in principle, be influenced by one or two
instances that were outliers compared to the others of the same class of size
and density. To verify if the same observed behavior of the average is the same
for the entire class, Tukey box plots [86] were plotted in Figures B.1, Figure B.2
and Figure B.3 for the small, medium and larger instances respectively.

The same trend observed for the average analysis was confirmed in the
box plot analysis. The proposed dynamic algorithm is particular relevant in
the presence of high density and larger instances, i.e., in the presence of a large
number of quadratic terms and continuous variables to be discretized as can
be observed by the almost steps-like box plots for the medium 100% density
and large with 50% and 100% densities.

Figure B.1: Small instances - Relative gaps - box plots
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Figure B.2: Medium instances - Relative gaps - box plots

Figure B.3: Large instances - Relative gaps - box plots
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B.2
Generated instances

Figure B.4 shows the box plot for the relative gap obtained in this
instances comparing the 3 proposed improvements with the version found
in [37]. The same behavior of the QCQP instances is seem for the MIQCP,
with the two largest improvement in the relative gap being due to the change
of the decimal expansion for the binary expansion and with an additional
improvement in the relative gaps with Algorithm 2. RNMDT with Algorithm 1
was almost the same as NMDT with base 2 with the exception of one instance.

Figure B.4: Relative gap for mixed integer instances
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