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3.

Rational function approximation (RFA)

3.1. Introduction

The linear dynamic system of the bridge deck subjected to self-excited and

buffeting wind forces was approximated by the following equations:
mh + cyh+ ky h = pU2B | KHi (k) 5+ KH; () B+ K2 H3 (k) a+ K2 Hy"(K) -

1 2 ’ w
—3PU?B[CL T + (CL + Cp) ] (2.39)
. . h a
I 6+ coa'+ Kk, h = pU2B? [KA§ k) ot KA} (k)BG+ K2 A% (k) a] +

+K2 A7 (K) £ +35pU?B? [Cy 2 + Cyy 3] (2.40)

In order to solve the equations (2.39) and (2.40), it is required that the air-force
vector be available in the time domain. This is accomplished if the Laplace
transform representation of (2.39) and (2.40) with zero initial conditions is used,

yielding the following equations in matrix form:
2
[Mp?2>+Cp 2+ K| Z(q) = V] [Q] V2 Z (q) (2.46)

where M, C, K are the two by two diagonal mass, damping and stiffness
matrices, respectively, and [Q(t)] represents the air-force vector in the time

domain. All matrices belonging to (2.46) were presented in (2.47) to (2.50).

Equation (2.46) is said to represent a finite-state aero elastic system that can
be converted into a linear, time-invariant, finite-state form to perform stability
analysis of control system design if each term of the unsteady aerodynamic
matrix [Q(p)] can be represented by a ratio of polynomials in p. Generally the air
forces can be determined only for pure oscillatory motion of a structure such as a
lifting surface. However, since [Q(p)] is analytic for a causal, stable, and linear
system, it can be directly deduced from [Q(p)], which is obtained from an

oscillatory theory. This is realized by approximating each term of the generalized
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air-force matrix [Q(p)] by a rational polynomial in p and then solving for the
coefficients of the polynomial, which gives the least-square-error fit with tabulated
oscillatory air forces at given values of the reduced frequency. The transfer

function matrix [Q(p)] is then obtained by the replacement.

It is more convenient to use the non-dimensionalized reduced frequency
k = wb/U because the oscillatory aerodynamic data are generally available for
certain reduced frequencies. When this is done, the Laplace variable also

sb (wb

becomes non-dimensionalized such that p = 7= T)i = ki

There have been many approaches to this direct conversion process, as for
example Roger [ 56 ] and Abel [ 1 ], who formulated a rational function
approximation for three-dimensional, subsonic aerodynamics by using a series of
poles to represent the aerodynamic lags attributable to the wake. The poles are
chosen to be the same for all elements of the transfer matrix. The success of the
fit is dependent on the choice of poles, which, in turn, is based on experience.
This method is known as the conventional least-squares method because the

parameters in the curve fit are determined by a least-squares technique.

Tiffany and Adams [ 89] used a non-gradient, non-linear optimizer to select the
values of lag-parameters in the least-squares formulation, which gave the
minimum total least-squared fit error with oscillatory data. Another approach,
similar in many ways to the rational function of Roger [ 56 ] and Abel [ 1 ] is that
of Dowell [ 12 ]. He used a series of decaying exponentials in the time domain,

which in the Laplace domain is represented by a series of simple poles.

Eversman and Tewari [ 15 ] mention in the references of their article many
important contributions that deal with the problem of representing the unsteady
aerodynamics by rational functions. The interested reader may consult them for

further research.

3.2 Least-squares Rational Function Approximation

The least-squares approximation uses a rational function represented by a
second-order polynomial in the Laplace variable with an additional series of
simple poles for each term of the generalized unsteady aerodynamic matrix Q(s).
The poles, which denote lag terms in the time domain, are common for all
elements of Q(s), thereby reducing considerably the number of augmented

aerodynamic states compared to the case where all (or some) of the elements


DBD
PUC-Rio - Certificação Digital Nº 0611865/CA


PUC-RIo - Certificagdo Digital N° 0611865/CA

45

are allowed to have different poles. This leads to the representation of the Q(s)

matrix by the following approximation:

~ b U An
Q) =q {AO + Ars (2)+ A2+ (O Ink H((T;)} 3.3)
b n

In equation (3.3), Q(s) denotes the approximation to Q(s) in equation (2.50),
s = % , A, are the n lag parameters, q is the free stream pressure, b is the bridge
semi-width and n; is the number of lag terms. In aeronautical applications the
approximation function has the term s?representing the added aerodynamic
mass and mass torsional moment of inertia. However, in problems of bridge
aerodynamics this term is neglected and the approximation is restricted to terms

in s.

This is the reason why the terms H; and A3

Hi(k) = —2m [z + °2| (2.20)
300 = [Fao -5+ “8—2 — (2.24)
are simplified to
Hi(k) = —2m [209] (2.35a)
A3 = [P0 -] =5 (2.35b)

In so doing, the additional matrix A, does not need to be considered in the

approximation operations. The elements of A, and A; represent stiffness and
Amn+2)
s+ (3)An

terms (termos de retardo), because each term represents a transfer function in

damping respectively. The partial fractions are commonly called lag

which the output “lags” behind the input and permits an approximation of the time

delays inherent in unsteady aerodynamics.

The values of the lag parameters must be positive for the stability of the
transfer function. The number of lag parameters taken directly influences the fit
accuracy of the approximate aerodynamic transfer function with the frequency
domain data because the lag terms account for the lag associated with
circulation, which is presumably represented exactly only by an infinite number of
lag terms. When the inverse Laplace transform is applied upon Q(s), the

approximate aerodynamic unit impulse response matrix results.


DBD
PUC-Rio - Certificação Digital Nº 0611865/CA


PUC-RIo - Certificagdo Digital N° 0611865/CA

46

3.3. Karpel minimum-state RFA

The formulation suggested by Karpel [ 25 ], called minimum-state RFA,

approximates Q(p) to Q(p) by the following rational equations:

Q) =Ag+ A p+D(pI+R)'E (3.4)
M 0

where R = ( oo )] is the diagonal matrix of lag parameters A, , for
0 - Ay

1<n<n andp=3=()i=k.

The matrices to be approximated are:

2K%H; + 2K?Hj i 2K?Hj + 2K%H; i]

= 2.51
Q [2K2A11+ 2K2A% i 2K2A% + 2K2A% i (251

For two degrees of freedom and n;, = 3 , the matrix equation (3.4) can be

expressed with the size of its terms as:

Q(p) = Ag[2x2] + A, [2x2] p + D [2x3]. .E[3x2] (3.10)

p+Aq 0 0
0 p+Ay 0
0 0 p+As3

The resulting state-space equations have the form:

g1 [-M [c- (%)val] ~M7K - ViA] MWViD] g
Q= [{1] = I 0 0o | q] (3.11)
% 0 FE ~@R | X

Improvement of the approximation can be achieved by increasing the number
of lag terms. However, it adversely increases the number of equations required to
define the aerodynamic system. Minimization of approximation errors can also be
obtained by imposing constraints on the elements of the transfer functions to
match the oscillatory data at some values of the reduced frequency, but this
degrades the fit at other frequencies. Thus, no constraints were imposed on the

transfer function in the present thesis.

The augmented state vector contains new terms known as aerodynamic states,
represented by vector x, . In this RFA formulation, the addition of one lag term
results in the addition of only one new aerodynamic state. The additional
improvements may be gained by an optimization of the lag parameters. In the
minimum state formulation (3.10), the numerator coefficients for the lag terms are
the product elements of D and E, so the two-step iterative linear optimization is

employed. First, for the selected initial R and D, the matrices Ay, A; and E are
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obtained through the least-squares optimization such that the total approximation

error

\/Zi2=1 Y wiey (3.12)
is minimized. The weighing factor is denoted by w;;, and the measure of error
between the approximating curve and the actual tabular data is:

et ey - o)
Si]' = M

(3.13)

ij
where

max

My = 2201, [|Qy K|} (3.14)

n
In the next step, for the same R and previously determined E the matrices
Ay, Ajand new E are computed. These steps are repeated till the global

approximation error (3.13) converges or reaches the stopping criterion of a

maximum number of iterations.

The lag parameters A ; are in the denominator and are found via the nonlinear
no-gradient optimizer proposed by Nelder & Mead [ 47 ]. The range of variation is

the range of reduced frequencies in the available tabular data, i.e.
0<L <A< (3.15)

These side constraints are enforced by an inverse sinusoidal transformation of
the design space [L;, U;] onto the real line segment [-1, 1]. The relationship

between them is:

Uu-L, . m Uy+Ly
i=———sin(>z
)\1 > S (2 ])+ >

(3.16)

1<z <1 (3.17)

This transformation ensures that the side constraints are always satisfied. A
Fortran program written by Masukawa [ 43 ], to model unsteady aerodynamic
forces of various bridge decks is used throughout this work. Besides checking the
modeling matrices Ay, A;,C, D, R reported by Wilde [ 96 ] for the case of the
flat plate, the aerodynamic derivatives of eight different bridge profiles, reported
by Starossek [ 81 ] will be also modeled, using Masukawa’s program, which in

fact follows the procedure stated by Nelder and Mead [ 47 1.

3.4. Numerical examples
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The time domain modeling of unsteady aerodynamics of a bridge deck,
described in the previous chapter, can be applied to any experimentally
determined flutter derivatives. This was the objective of Masukawa’'s Master
thesis [ 43 ] (in Japanese). Results of rational function approximations of flat and
bluff decks and trusses and rectangular girder cross section are partially
presented by Scanlan et al. [ 66 ] and [ 67 ], by Wilde etal. [ 95]and [ 99 ], as
well as in Masukawa’s Master thesis [ 43 ], a copy of which was obtained by the

library of the Pontificia Universidade Catdlica do Rio de Janeiro.

The program was applied to the modeling of the aerodynamic derivatives of
eight different profiles reported by Starossek [ 81 ]. The same procedure can be
repeated by bridge designers to other cross sections, provided the derivatives of
the profile under investigation are known, as well as the corresponding dynamic

data.

The example to be discussed in items 3.4.1 and 3.4.2 is the general case
where the flutter derivatives are computed by the theoretical formulation of
Theodorsen [ 84 ], adapted by Scanlan and Tomko [ 66 ], and revised later by
Simiu and Scanlan [ 67 ] expresses Scanlan derivatives by the following

formulae, repeated below for reasons of convenience:

H,"(k) = 2nF(k)/4k ; A;"(k) = nF(k)/8k (2.17),(2.22)
H,*(k) = (n/8k) [1 + 2G(k)/k + F(K)] (2.18)
H3"(k) = (2m/8k?)[F(k) -k G(k)/2] (2.19)

Hy " (K) = (—1/4)(2G(K)/k ); Ay"(K) = —mG(k)/8k (2.36a),(2.22)
A" (K) = (1/32K) [F(k) — 1 + 2G(k) /K] (2.23)
A (k) = (m/16k?)[F(K) -kG(k)/2] (2.36b)
Next, these terms are rearranged to produce the Q matrix:

2K2H; 2KH: 2K2%H: 2KH3
_ 4+Dp 1 3+Dp 2] (3.18)

Q= 2K%A% +p 2KA,  2K2A% + p 2KA}
Matrix Q(p), i.e., the approximation of matrix Q, reads:

1
p+A1 - 0

Q(p) = Ap[2x2] + A¢[2x2]p + D[2 x n; ] E[n;, x 2]

0 pthn,
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where n;, is the number of lag terms and Ay, A1, D, (pI + R), E are obtained

by Karpel's minimum state RFA method. Considering two lag terms A; ,A, only,

the full expressions of Q;1,Q12,Q,1,Q,, read:

Qu =

Figure 3-1 - Full expressions of Q,;, Q;,, as approximations of Q;;, Q5.

[ a0;; +aly Kyi+ ;1111211 + ;zliliill
a0y, +alqy.Kp i"‘;;i_}i; + ;2111211
a0y +alyyKs.i :ll-ll-liill + :ZI-ZI-IZII
a0 +aly . Ky.i+ ;1111;211 + ;2111211
a0y +alyp.Ks.i ;;i_;;l, + ;2111211
alp; +aly;.Kg.i ;11},;211 + )1111211
a0y +aly.K7i+ ;ili;?, + )?Zlilijll
a0 +aly;.Kg.i+ ;;i;:, + ;211;211
3011 + 3111- K9'i + ;(\111.1,_;211 + }(\lzl-zl-liill

_aoll talyyKyp i+ ?\dll-ill(efol-i + l(jzljzlz()l-i-

[ 3012 + 3112' Kl'i + ;(\111.1,_;121 + ;211;:21
3012 + 3112- KZ' i+ ;11_1}221 + )(\lzlj—lizzl
a0;p +alyp.Kz.i+ Sfi;e(f, + ;zli;zzl
a0y +alyy. Ky.i Sfi;e(iz, + ;zli;izl
a0y +algp.Ks.i+ ;111}:21 + )C\lzlj—lzzl
a0i; +aly.Ke.i+ ;1111;22, + ;2111221
3012 + 3112- K71 + ;illlile(izl + )Cllzl-z{—le(izl
a0 +alyp. Kg.i Sfi;e(:, + ;2111221
3012 + al12' K9'i + ;1111221 + )(\jzl-zl—}izzl

201 +alyp. Ky 1+ )ililflloz.i + liljlff;-i-

(3.19a)

(3.19b)
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i ., dorenn dpz-e21
a0 al,q.Ky.i
21 Tala Kyl A+Kqd + A Ky d
., dareqn dzz-e21
a0 al,;.Ks5.i
21 Tala Ky +A1+K2.i + A +Ky i
., dareqn dzz-e21
a0 al,;.Ks.i
21 Tala. K3 A1 +Ksd + A +Ksi
., dareqn dzz-e21
a0 al,;.Ky.i
21 T ala. Ky A1 +Kad + A +Kgld
. dy;.e dyy.e
3021 +3121.K5. 2L 11_ + 22 21_
~ _ A1 +Ks.d Ay +Ks.i 3 20
Q21 = 201 + alor Ke.i dyrenn + daz.e21 (3.20a)
21 21- %6 A1 +Kg.d Ay +Kg.d
., dorenn daz.€21
a0 al,.K-.i
21 tala Ky +;\1+K7.i + Ay +Ko.i
., dareqn dzz-e21
a0 al,;.Kg.i
21 T alz1-Kg +A1+K8.i + A +Kgi
. dareqn dpz-e21
a0 al,q.Koq.i
21 T alz1-Ko +A1+K9.i + Az +Kod
., dprern daz.€21
a0,1 +aly.Kqg.i+ +
R 21- 10 A1 +Kqp.d Ax+Kqp.id
i . darep dzz-€227
1,,.K
a0, +aly. Kyi+ A+Kod + A +Kpd
. darep dpz-e22
1,,.Kq.1
a0z, +aly. Kyi+ A+Kod + A +Kpd
. darep dpz-e22
1,,.Kq.1
a0, +aly. Kyi+ A+Kod + A +Kpd
. darep dpz-e22
1,,.Kq.1
a0z, +aly. Kyi+ A+Kod + A +Kpd
. dy;.e dyy.e
a0y, +alyy. Ky.i+ a1z 22 22
I~ _ }\1+K2.1 }\2+K2.1 3 20b
Q22 = 20+ + aloy. Ko i dp1-e12 + dpp.€22 G. )
22 22: 21 A1+Kod A +Ko.i
., dorer dpp.€22
a0 aly,.Kq.i
22 T alga Kyl A+Kp i + A Ky i
., dareq dpp.e22
a0 aly,. Kq.i
22 T alga Kyl A+Kp i + A Ky i
., dareq dpp.e22
a0 aly,.Kq.i
22 T alga Kyl A+Kp i + A Ky i
., dareq dpp.e22
a0 aly,. Kq.i
2022 +alzz- Ky +11+K2.i + A 4Ky .0

Figure 3-2 - Full expressions of Q,; , Q2 , as approximations of Q,; , Q.
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3.4.1 The flat plate case, 0.1 <K<1.00r0.05<k=<0.5

Table 2-5 in Chapter 2 shows the variables Q; for the bridge deck as a flat

plate, corresponding to the reduced frequencies 0.1 < K< 1.0.

Wilde [ 95 ] specifies the following matrices for the approximation of Q; by

rational functions (valid for 0.1 < K < 1.0):

_ 11.3043 3.5334
Ao = [0.3354 0.8738 (3.21)
133842 2.3576
1_[0.7989 —0.1875] (3.22)
_ [3.4691 3.26701 . _ [—0.0145 0.0782
D_[0.8526 0.8641]’E_[—0.2304 0.2595] (3.23)
A = 0.1912; A, = 0.7477 (3.24)

A MATLAB program was written to plot the tabular data corresponding to the
table “derivatives x reduced frequencies” and the approximation values using the
rational functions given by equations (3.20) and matrices (3.21) to (3.24). These

plots are shown in Figure 3-3 .

111 - Lift due to heaving mode

I

2

112 - Lift due to pitching mode
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Figure 3-3 - Plots of exact and approximate values of Q(p) for a flat plate using Wilde’s
results, valid for 0.1 <K< 1.0 and 2 lag terms.
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3.4.2 The winglets

The FORTRAN program was used to calculate the approximating functions

1

Qp) = Ag[2x2] + Aq[2x2]p + D[2 x 1y ]

E[n;, x 2]

0 - p+A

n,

for the winglets (reduced frequencies 0.01 < K < 0.1 or 0.005 < k < 0.05). The
errors ] and ¢; were also calculated by this program. The variables Q; for the
case of the winglets, i.e., for Q; corresponding to the reduced frequencies 0.01<
K < 0.1 or 0.005= k < 0.05, are calculated in sequence by three EXCEL
spreadsheets, shown in Table 3-1, Table 3-2 and Table 3-3. Notice that the
reduced frequencies are one tenth of the reduced frequencies corresponding to
the flat plate, equal to the width ratio of the winglets to the bridge deck. The

matrices are shown below, for 2 lag terms

A :[0.3834 44804 :[4.1688 1.6483
™ 10.0958 1.1201F 17 11.0422 -0.3736

p=[67566 21447)  _ [~02B15e 04 0.1197¢ 02
1.6882 0.5362) ~0.03492 0.1423
X = 0.03374564; A, = 0.1986877
K k Jo J1 YO Y1 F G
0.0000 0.0000 1.0000  0.0000 -7.4032 -63661.9772 1.0000 -0.0001
0.0100 0.0050 1.0000  0.0025 -3.4468 -127.3334 0.9915  -0.0266
0.0200 0.0100  1.0000 0.0050 -3.0055 -63.6786 0.9824  -0.0457
0.0300 0.0150 0.9999  0.0075  -2.7472 -42.4643 0.9731  -0.0615
0.0400 0.0200 0.9999 0.0100  -2.5640 -31.8598 0.9637  -0.0752
0.0500 0.0250 0.9998  0.0125 -2.4217 -25.4990 0.9543  -0.0872
0.0600 0.0300 0.9998 0.0150  -2.3055 -21.2600 0.9450  -0.0979
0.0700 0.0350 0.9997 0.0175  -2.2071 -18.2333 0.9358 -0.1074
0.0800 0.0400 0.9996  0.0200 -2.1219 -15.9643 0.9267 -0.1160
0.0900 0.0450 0.9995 0.0225  -2.0467 -14.2003 0.9178  -0.1237
0.1000  0.0500 0.9994  0.0250  -1.9793 -12.7899 0.9090  -0.1306

Table 3-1 - Auxiliary variables for the calculation of the derivatives of a flat plate, valid for
0<k=<0.05,0=<K=0.10.

The overall square root error is:
J= Xr5t et wye; = 0.3752877E-02.
The errors of each one of the four approximations for n = 10 are:
gjj = Zrll[Qij (p) — Qij (p)]z/Mij

g = [0.3245E — 05 0.5276 E — 05 0.2033E — 06 0.5359E — 05]
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H* =14 to A%, i=1,4 according to (2.17) to (2.25)

K k H, ‘ H, ‘ H; | H, ‘ A, | A, | A | A,
0.00 0.000 | 157077.16 -834760.39 7.8539E+09 18.2660  3.9269E+04  -2.2833E+05 1.9635E+09 4.57
0.01 0.005 311.49 -680.19 31150.77 8.3660 77.8717 -209.3170 7787.69 2.09
0.02 0.010 154.32 -280.70 7717.71 7.1710 38.5796 -89.8103 1929.43 1.79
0.03 0.015 101.90 -163.06 3398.43 6.4415 25.4761 -53.8554 849.61 1.61
0.04 0.020 75.69 -109.11 1893.75 5.9068 18.9227 -37.0957 473.44 1.48
0.05 0.025 59.96 -78.93 1200.63 5.4814 14.9907 -27.5861 300.16 1.37
0.06 | 0030 | 49.48 -59.99 825.96 5.1267 12.3702 -21.5414 206.49 1.28
0.07 0.035 42.00 -47.17 601.18 4.8222 10.4995 -17.4024 150.29 1.21
0.08 0.040 36.39 -38.03 456.03 4.5554 9.0979 -14.4154 114.01 1.14
0.09 0.045 32.04 -31.24 357.04 4.3179 8.0091 -12.1737 89.26 1.08
0.10 0.050 28.56 -26.05 286.60 4.1043 7.1393 -10.4394 71.65 1.03

Table 3-2 - Derivatives of a flat plate, valid for 0=k <0.05,0<K <0.10.

K K Qlr Qi Qlar Q12i Q21r Q21i Q22r Q22i

=2*K2*H4** | =2*K2*H1** | =2*K2*H3** | =2*K2*H2**| =2*K2*A4** | =2*K2*A1** | =2*K2*A3**| =2*K2*A2**

0.01  0.005  0.0017 0.0623 6.2302  -0.1360  0.0004 0.0156 1.5575 -0.0419
002 001  0.0057 0.1235 6.1742  -0.2246  0.0014 0.0309 1.5435 -0.0718
0.03 0015 0.0116 0.1834 6.1172 02935  0.0029 0.0459 1.5293 -0.0969
0.04 002  0.0189 0.2422 6.0600  -0.3492  0.0047 0.0606 1.5150 -0.1187
0.05 0025 0.0274 0.2998 6.0031 -0.3946  0.0069 0.0750 1.5008 -0.1379
0.06 0.03  0.0369 0.3563 59469  -04319  0.0092 0.0891 1.4867 -0.1551
0.07 0035 0.0473 0.4116 58916 04623  0.0118 0.1029 1.4729 -0.1705
0.08  0.04  0.0583 0.4658 58372 04867  0.0146 0.1165 1.4593 -0.1845
0.09 0.045  0.0700 0.5190 57840  -0.5061 0.0175 0.1297 1.4460 -0.1972

01 005 00821 0.5711 57320  -0.5210  0.0205 0.1428 1.4330 -0.2088

Table 3-3 — Terms Q; for the winglets, valid for 0.005 < k < 0.05, 0.01 = K< 0.10, to be
approximated by rational functions

Plots and are presented in Figure 3-4.
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Figure 3-4 - Plots of exact and approximate values of Q(p) corresponding to the reduced
frequencies 0.01 <K <0.10 (winglets case).
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3.4.3 Eight typical bridge profiles

The same FORTRAN program was used to calculate the approximating

functions:

Q(p) = Ap[2x2] + A{[2x2]p + D[2xn;] E[n, x 2]

p+A1 - 0

0 - pih,
for the aerodynamic derivatives of the profiles shown in Figure 3-5, reported by
Starossek [ 81 ] and Starossek et al. [ 75 ]. The complete results are shown in
item D of the Appendix C. Plots of the unsteady derivatives are shown in item

3.5.

It is worth noting that, if the unsteady derivatives behave like those of a flat
plate, the approximating curves are close to the experimental data. If not, as for
example the Tacoma profile, the approximating curves functions, represented by

matrices Ag,A1, D, E, R, do not match well the experimental data.

This may be explained by the fact that the Tacoma profile does not behave like
aerodynamic profiles and therefore the Theodorsen functions do not represent

their physical behavior when subjected to the fluid pressure.
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Figure 3-5- Investigated profiles of typical bridge decks.
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3.5. Plots of the unsteady aerodynamic data for eight bridge profiles
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Figure 3-6 - Plots of GB unsteady aerodynamic data
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Figure 3-7 - Plots of S unsteady aerodynamic data
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Figure 3-8 - Plots of M unsteady aerodynamic data
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Figure 3-9 - Plots of P unsteady aerodynamic data
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Figure 3-10 - Plots of R unsteady aerodynamic data
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Figure 3-11 - Plots of C unsteady aerodynamic data
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Figure 3-12 - Plots of TC unsteady aerodynamic data
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Figure 3-13 - Plots of G unsteady aerodynamic data
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