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Applications to single bridge decks

4.1. Introduction

In order to obtain a time-domain modeling of bridge deck flutter, the frequency
dependent aerodynamics self-excited forces were approximated in the Laplace
domain by rational functions. A matrix formulation of the rational functions using
Karpel's “minimum state” was applied to aerodynamic data obtained for various

bridge decks.

In the example presented below, the critical velocity of a bridge with a 2000m
span and designed with an aerodynamic cross section that may be considered as
having the same behavior of a flat plate when subjected to a wind stream is
determined. The flutter derivatives were computed through the theoretical
formulation of Theodorsen [ 84 ] in Chapter 2. The approximation functions were

calculated in Chapter 3.

4.2 Calculation of the critical velocity of a bridge deck

One starts with the state-space system equations:
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where A is the state-space system matrix
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A is variable according to the wind velocity. The various terms of A read:
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The equations above are written for 2 lag terms, i.e., n;=2. For n;>2,
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where m is the mass of the bridge deck per meter and I, the torsional mass
moment of inertia per meter, B is the deck width and = m/pB? represents the
dimensionless relation between the inertial forces of the bridge deck and the
forces exerted by the fluid. Introducing all variables in A , a complex eigenvalue
analysis of the system matrix for increasing wind velocity is performed. The

critical velocity is found when one eigenvalue of A has a positive real part.
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4.3. Numerical example

Wilde [ 95 ] proposes to find the critical velocity of a bridge with a 2000m

span whose properties are stated in Table 4-1.

Notation Variable Input
ro_a Air density in kgf.s?/m* 0.125
Bd Deck width in m 0.2927
m Mass in kgf.s?/m? 0.191
Mass moment of inertia
I_a . 2 0.0019345
in kgf.s
delta h Logarithmic decrement of 0.007
— h mode
delta a Logarithmic decrement of 0.006
- o mode
Fundamental frequency
omega_h of h mode in rad/s 7.88
Fundamental frequency
omega_a of o mode in rad/s 25.06
A0 (1,1) 1.30E+00
20 A0 (1,2) 3.53E+00
A0 (2,1) 3.35E-01
A0 (2,2) 8.74E-01
A1(1,1) 3.38E+00
a1 A1(1,2) 2.36E+00
A1(2,1) 7.99E-01
A1(2,2) -1.88E-01
D(1,1) 3.47E+00
d D (1,2) 0. 3266975E+01
D (2,1) 0. 8526074E+00
D (2,2) 0. 8640608E+00
E(1,1) -1.45E-02
o E(1,2) 7.82E-02
E(2,1) -2.30E-01
E (2,2) 2.60E-01
lamb lamb1 0.1911883E+00
lamb?2 0.7477236E+00

Table 4-1 - Data for a 2-DOFs 2000m bridge
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PROGRAM "DATA FOR
2-DOF 2000M BRIDGE"

PROGRAM "A=ASEMB2000.m"

A YUeritico | END

RE [eig (A)]

Uu=u+ AU

PROGRAM "ROOTLOCUS.m"

Figure 4-1- Fluxogram 1

4.4. Method to determine the critical velocity of a bridge

In order to calculate the critical velocity of the 2000m bridge, a complex
eigenvalue analysis is performed as shown by the fluxogram in Figure 4-1.

The sequence is:

Define the characteristics of the bridge, as in Table 4-1.

Start with the velocity U = UOQ.

Assemble the state matrix A .

Calculate the eigenvalues of A .

If one eigenvalue of A has a positive real part, print A and U = Ucritical.

If no eigenvalue of A has a positive real part, increase U by AU and enter the

loop again.

Results of the program “Main_Program_GIBRALTAR.m” written for Wilde’s
example are show in Table 4-2. Plots of heaving and pitching frequencies versus
wind velocity are presented in Figure 4-2, where all real frequencies were

suppressed as being meaningless.

For a small positive real eigenvalue (5.84e-004) the damping ratio approaches
zero (-3.29e-005). The critical frequency is 17.8 rad/s. The ratio of amplitudes is
the ratio of eigenvectors [0.010691 - 0.027685i | /| 1.5697e-006 - 0.047727i|=
0.62182. The phase angle is 21.113°.
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Notation Variable Result
U Critical Velocity 10.21 m/s
-3.3273 -2.3057 -106.5900 | -120.5500 -118.3600 | -111.4600
6.6090 -1.5991 96.8000 |-375.8200| 246.0600 | 249.3700
A State Matrix for | 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10.21 m/s 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -0.5047 2.7272 -6.6697 0.0000
0.0000 0.0000 -8.0391 9.0545 0.0000 | -26.0850
K Reduced 0.293 x 17.8 rds / 10.21 m/s = 0.51
frequency
Eigenvalue Damping Frequency (rad/s)
5.84e-004+1.78e+001i -3.29E-05 1.78E+01
5.84e-004-1.78e+001 -3.29E-05 1.78E+01
Rgzj“;fv:‘;:zzrﬁ:szfx -2.24E+00 1.00E+00 2.24E+00
-7.11e+000+9.54e+00i 5.98E-01 1.19E+01
-7.11e+000-9.54e+00i 5.98E-01 1.19E+01
-2.12E+00 1.10E+01 2.12E+00

Table 4-2- Results of the complex eigenvalue analysis.

Frequencies for Umin = 0.01 to Umax = 12.01 m/s Damping ratios from Umin = 0.01 to Umax = 12.01 mfs
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Figure 4-2 - Variation of frequencies and damping ratios versus wind velocity
The frequencies 11.9 and 17.8 rad/s correspond to the critical velocity of 10.21

m/s. The flutter wind velocity corresponds to the point where the damping ratio of

pitching changes sign.
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