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Abstract

Application of the Keras Framework to Nonlinear Black-
Box System Identification of Piezoelectric Micromanipu-
lators

Micromanipulation has several applications in different fields of science.

This document aims to use the Keras framework as a system identification

tool combining with artificial neural networks to solve problems related to

micromanipulation with 1 DoF and 2 DoF.
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1

INTRODUCTION

System identification is the use of inputs and output data of a certain

system to create a data-driven model to simulate the system. This model can

be used for example as a feedback for micromanipulators. System identification

is the use of inputs and outputs of measured data of a certain system to create

a mathematical model that represents the system observed (Chen, Billings &

Grant, 1990).

Micromanipulators are devices widely used in medical tasks for the

manipulation of microscopic level samples under a microscope and for tissue

examination and dissection. The micromanipulators, when interacting with

the samples, need to have a high precision. For an interaction with the

sample the micromanipulator has a gripper that can be fabricated with

piezoelectric material. When applying a small electrical discharge the gripper

closes, capturing the sample.

The technological development of artificial intelligence is a relative young

branch of science (Cohen & Feigenbaum, 2014). However it already have

applications in several current technologies, the mankind realizes this powerful

tool can be useful in solving repetitive problems that an ordinary machine

was not capable of doing, or problems that even the human being was not

physically capable of solving. So, in order to create a machine that could

learn how humans learn, artificial neural networks have been created to have

their development based on how neurons transmit information. Artificial neural

networks, unlike a standard computational algorithm, are able to learn new

functions and have multiple processing in parallel. Because parallel processing

was slow, neural networks have long been an unattractive field of study, but

this has changed with the advent of GPUs (graphics processing units) that

can quickly solve the problems in parallel like the network need (Oh & Jung,

2004). After the introduction of the GPUs in the market in an accessible way,

artificial intelligence took a great leap and began to be implemented in the

most diverse technologies, ranging from autonomous cars until its use in the

medicine of dissection tissues using micromanipulators. Like the brain neurons,

neural networks have processing cores that are divided into layers. For networks

with many layers the approach is made by deep learning and are called deep

neural networks (Goodfellow et al., 2016)

An interesting field of application of deep learning is the identification

of dynamic systems. Using the inputs and outputs of the system, the tool
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creates a model that represents, ideally with high precision, the dynamics of the

system studied.A possibility to create a model is using the Keras framework, an

open source neural network library, designed to enable fast experimentation

with deep neural networks. Keras framework has high performance and an

ease training on large datasets (Chollet & Allaire, 2018). The use of deep

learning applied to system identification has several advantages such as its

simplicity, high accuracy with respect to the real system and its high capability

of recognition and classification of patterns (Schmidhuber, 2015). It is also a

interesting tool for modeling non-linear systems. With the model of the system

reproduced by the system identification tool, it is possible to obtain feedback

for application in micromanipulation systems, which requires a high precision,

whenever the output is assumed not to be measured. Moreover piezoelectric

materials, used in grippers of micromanipulation, have some intrinsic problems

like hysteresis, creep and coupling effect, making manipulation difficult without

the use of a feedback system that regulates these problems. So the use of deep

learning applied to systems identification is able to improve the accuracy of

micromanipulators through their feedback and so with greater precision the

equipment may be able to perform more precise positioning tasks.

1.1

Motivation

Recently the use of deep learning is increasing, associated with new

technologies coming, its use will increase widely in the next few years. The

increased use of this technology is due to its large application, ease of use

and primarily because of the amount of data increasing largely day after day.

Nowadays all big companies as Google, Netflix, NASA and others, already

uses deep learning in some way in their technologies, but in general the large

amount of data need to be treated with some smart technology as deep leaning

(Genc, 2017). The big companies which don’t plan to use this kind of treatment

in their data, will have problems in competing with companies that use such

technology. So the project done in this document will enhance the field of

application, improving feedback for actual and future systems in order to solve

problems associated with precision control.

1.2

Objectives

The main goal of this project is to obtain models with nonlinear black-

box system identification using artificial neural networks. This can be used

to provide feedback on several kinds of different systems. One of the main
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system of interest is the piezoelectric micromanipulation, so the feedback will

make micromanipulation more precise, and the user can be able to perform

the increasingly complex tasks and area of operation of the micromanipulation

devices.

1.3

Literature Review

The project here presented aims to expand the way in which microma-

nipulation can obtain a precise feedback through neural networks for solving

the problems of micromanipulation e.g. hysteresis, creep and coupling effect,

by application of recently developed tools for creating artificial neural network

models. According to (Rakotondrabe, 2013), the hysteresis associated to smart

materials need the use of a feedback control to compensate the nonlinearities

in micromanipulation. In (Goldfarb & Celanovic, 1997), the authors models a

piezoelectric stack actuators to control micromanipulation systems which re-

quire an accurate position and force control. For (Zhang, Han, Yu, Shee & Ang,

2012), the modeling of micromanipulation problems can be done through an

automatic Prandtl-Ishlinskii method, using for this the vision-feedback. The

advantage of micromanipulation for biomedical applications instead the com-

mon manually based injection methods is shown in (Tan & Ng, 2001), while

in (Nakayama et al., 1999) is shown an example of application of micromanip-

ulation: improve human fertilization in vitro.

The use of artificial neural networks as a black-box system identification

to build a model for micromanipulation is challenging, due to the hystere-

sis problem of piezoelectric materials. For this purpose, in (Noël, Esfahani,

Kerschen & Schoukens, 2017) the authors uses a black-box based in Bouc-Wen

equations to model the hysteresis while in (Habineza, Rakotondrabe & Le Gor-

rec, 2015), (Aljanaideh & Rakotondrabe, 2018) and (Rakotondrabe, 2017) the

authors use models of 2-DoF with different approaches for modelling and con-

trol of a multivariable hysteresis in piezoelectric systems to get a feedback. A

nonlinear black-box system identification for modelling the 2-DoF microma-

nipulation problems is discussed in (Ayala, Rakotondrahe & Coelho, 2018).

The authors in (Chen et al., 1990) and (Žilková, Timko & Girovskỳ,

2006), shows neural networks as black-box and they also show the advantages

of the use of neural network in system identification. In (Haykin, 2009) the

author show how neural networks can be used in regression to solve problems

of large datasets. In (De la Rosa & Yu, 2016) the authors use nonlinear system

identification with deep learning modification to construct the statistical

features of the hidden weights, improving the search for weights in regression
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and classification problems. And finally in (Genc, 2017) the author talks about

the scalability and robustness issues in complex nonlinear system identification

of dynamic system within the framework of deep convolutional neural networks

(CNNs) applying in Keras with Tensorflow backend, and to building energy

load prediction problem.



2

METHODS

The chapter is organized as follows: section 2.1 explain how to model the

nonlinear system of micromanipulation with artificial neural networks. Section

2.2 explain what is the Keras framework and how it works. Section 2.3 shows

the validation of the proposed model. Section 2.4 explain the pre-processing

done on the data. Section 2.5 shows a case of study using a piezoelectric

micromanipulator with 1 DoF.

2.1

Nonlinear System Identification with Artificial Neural Networks

Artificial Neural Networks (ANN’s) have an interesting ability to model

nonlinear systems (Žilková et al., 2006). Therefore, ANN are a good tool to

model nonlinear problems of micromanipulation (e.g. the hysteresis).

Using ANN to model (De la Rosa & Yu, 2016) a nonlinear system (Figure

2.1), the follow equation is obtained:

ŷ(t) = β · φp · (Wp · φp−1 · (...+W3 · φ2 · (W2 · φ1(W1 · (u(t− 1) + ...+ u(t− n)+

+y(t− 1) + ...+ y(t− n)) + b1) + b2) + b3 + ...) + bp)

(2-1)

Where ŷ(t) is the output of the neural model, p is the number of hidden

layers, li with (i = 1...p) are the number of neurons in each layer, n is the order

of the regression, Wi are the weight, bi are the bias, φi are the active function

and β is the weight of the output layer.

A neural model need to find the best representation of the system, for

this it is necessary to reduce the residual between the output of the model and

the output of the system:

e(k) = ŷ(k)− y(k) (2-2)

Where y(k) is the output of the system.

In order to build an ANN, it is necessary to choose a network architecture.

When constructing ANNs, one of the main considerations is the choice of

activation functions. This is because calculating the backpropagated error

signal that is used to determine ANN parameter updates requires the activation

function gradient. Some of the most commonly used activation functions in
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Figure 2.1: Illustration of ANN Model used for solve 1-DoF problems, where
z−1 is a delay in the order of the regressor.

ANNs are the Uni-polar sigmoid, Bi-polar sigmoid, Conic Section, Radial Bases

Function (RBF), and the hyperbolic tangent (tanh) function (Karlik & Olgac,

2011). The activation functions are used to determine if the output of the

neural network has a value sufficient to activate a neuron output or not. To

obtain the described models, the hyperbolic tangent function (tanh) was used.

The parameters to be adjusted within the network are called weights, they are

associated with each neuron and are used to give more or less importance on

information that travels through the network. The weights are used to create

a model that represents the real system.

Another important parameter to build an ANN is the type of training.

There are 3 different models of ANN training: supervised learning, unsuper-

vised learning and reinforcement learning (Haykin, 2009). In this project will

be employed supervised learning, where the network receives several input

samples and its expected final result, so the output given by the model is



Chapter 2. METHODS 13

compared to the expected output and its residual will be used to adjust the

network parameters.

A problem associated with ANN is the definition of the values of weights.

Sometimes the back-propagation can not find a suited weight value due to the

well-known differential problems in finding the minimum local into a function.

In these cases, it becomes impossible to solve the problem manually.

In general ANNs has many layers and each layer contains many neurons,

therefore it becomes impossible to manually adjust each of these weights. The

learning algorithm that adjust the weights is called back-propagation. In a

summarized way, back-propagation is a gradient descendent that finds the

best value for each weight in order to obtain a satisfactory model with respect

to the real system. For this, the back-propagation need to use the residuals.

The metric based on residual is called cost function.

Gradient descent (GD) is an optimizer, i.e. it will determine how ANN

will be updated based on the cost function. Gradient descent works in a

multidimensional space of weights, bias and cost function. In this way it

searches the local minimum through the inverse gradient, i.e. since the gradient

of a function shows the direction of greatest growth at one point of a curve, the

inverse gradient will look for the direction of greatest decay at this point. When

adding training examples to train the ANN, the gradient descent looks for the

local minimum in relation to the weights and biases and the backpropagation

is in charge of updating these parameters in the network. The Figure 2.2 show

in an abstract way how the gradient descent works.

To train the network for each example at a time is very slow, then an

alternative way through the called mini-batches was developed. This way the

gradient does not lead directly to the local minimum, but through curves on

the surface of the function, the gradient converges faster to the local minimum.

When using the mini-batch the gradient descent gains the name of Stochastic

Gradient Descent (SGD) due to its way of reaching the local minimum. The

Figure 2.3 show in an abstract way how the gradient descent works.
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Figure 2.2: Gradient Descent converging to local minimum, x1 and x2 repre-
sents weights or bias (Goodfellow et al., 2016).

Figure 2.3: Stochastic Gradient Descent converging to local minimum, x1 and

x2 represents weights or bias (Goodfellow et al., 2016).
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In this project the optimization algorithm of gradient descent used

is the RMSProp. RMSprop, proposed by Geoff Hinton, is an unpublished

adaptive learning rate method that optimizes the gradient descent making the

convergence become faster. RMSprop adapts the leaning rate to slow down

as it approaches the minimum location and grows away from the minimum

location. In this way it becomes suitable to deal with sparse data, improving

SGD performance. a good default value for the learning rate, using RMSprop,

is 0.001. The RMSProp has been shown effective in solve problems of neural

networks, being widely used by the scientific community (Goodfellow et al.,

2016).

When using ANN, usually the number of data is large. It is computation-

ally expensive to use all the data to train your algorithms at the same time.

Instead, it is more practical to compute it by splitting them into randomly

small samples from the dataset, this is called mini-batch (Goodfellow et al.,

2016). Thus, the batch size is the number of data in each portion, in which all

are processed simultaneously in a large batch. In addition to increasing train-

ing speed, the mini-batch also avoids repeated training samples by reducing

computational cost. when using small batch size the time of processing will

increase, because will take more time to process all the data.

Each time a mini-batch ends, an iteration ends. After going through all

the mini-batches, an epoch is completed. Normally, the training should last

for many epochs, so the network fits well to the data. However if there are too

many epochs an overfitting can occur. Another important parameter is the

learning rate that controls the speed of adjustment of the network weights in

relation to the loss gradient. The lower the value, the slower the learning. So

by using a low learning rate to ensure that the best value is not lost, it will

lead to significant time to converge, and sometimes problems occur when the

learning rate is too low and can be stuck in a bad value (Chollet & Allaire,

2018).

2.2

Keras framework

The system identification will be done through the Keras framework

within the R language. Released in 2015, Keras is an open source neural

network library written in Python language designed to have ease of use,

accessibility and enable good performance of neural networks, giving possibility

to train almost any kind of deep-learning model.

Keras is very popular between academic research and engineers. With

more then 150,000 users Keras dominates the competitions of Kaggle, a
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machine learning competition website, where the majority of participants were

made your deep learning using Keras Framework 13. Figure 2.4 show Keras as

position number two in mentions in scientific papers, only behind of Tensorflow.

Figure 2.4: Position of Keras in mentions of scientific papers.

It’s important to note the two most popular languages in data science, R

and Python, are supported by Keras. The performance and the ease of training

large datasets made even the European Organization for Nuclear Research

(CERN), NASA, Google, Netflix and Uber adopt it to solve wide range of

problems. Finally a recent big step, given by LEGO, is the use of Keras to make

deep learning easy in manipulation of LEGO bricks which made a revolution

in the way of teach students to use neural networks in high school (Chollet &

Allaire, 2018).

2.3

Model validation

To test the model, the one-step-ahead (OSA) simulation was used. With

OSA, the program simulates always one step forward of the data, i.e, based

on the number of regressors, the program takes a number of samples equal the

number of regressors, then simulates the output for one step ahead of the last

regressors taken from output sample. Next the program takes the same number

of data, but with one new sample forward in the data (instant of regression t)

to simulates the next output (Chen et al., 1990).
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ŷ(t) = F [y(t− 1), y(t− 2), ..., y(t− ny), u(t− 1), u(t− 2), ..., u(t− nu)] (2-3)

Where F [·] is a nonlinear function given by the ANN model using Keras

Framework. y is a measured output while ŷ is a predicted output. And t is the

instant of the regression.

To evaluate the quality of the model was used the free-run simulation

in which the sample is used only to define the initial conditions of the model

and the model itself at each step is based on the previously calculated step.

The number of samples is equal the number of regressors chosen (Ayala et al.,

2018):
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ŷ(ny) = y(ny)

ŷ(t) = F [ŷ(t− 1) , ŷ(t− 2) , ... , ŷ(t− ny) , u(t− 1) , u(t− 2) , ... , u(t− nu)]

In order to determine whether the values obtained are reasonable, the

multiple correlation coefficient can also be used. The multiple correlation

coefficient, also called R2, is a measure of adjustment model, in relation to

the observed values. The R2 ranges from -∞ to 1. The higher the R2, the more

explanatory the model is, and better it fits the given sample. The multiple

correlation coefficient is given by:

R2 =
1−

∑N

i=1
ε2

∑N

i=1
(y − y)2

(2-4)

Where: ε is the residual and y is the average of the outputs of the sample.
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must be modelled, so a feedback system is able to increase accuracy and make

use of the micromanipulator more accurate.

Because of the nonlinearities, the micromanipulator can be well modeled

by a nonlinear neural network black-box model for system identification showed

in this project. In this way, this project has 50000 samples equally divided for

training (25000 samples) and for testing (25000 samples). In figure 2.6 is shown

the hysteresis curve measured at the input voltage and output displacement.

Figure 2.6: Hysteresis plot for the sinusoidal input.

2.5

Case study: 2-DOF

The second case of study in this project will be the piezoelectric micro-

manipulator with 2 DoF. In a 2 DoF model, besides of hysteresis and creep

effect, it have also the coupling effect. This drawback presented in piezoelec-

tric actuator model of 2 DoF, occurs by a movement of the actuator in two

different degrees of freedom at the same time, i.e. when applying a voltage in
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order to move the actuator in the direction x, it will move as required in the

x direction, but the coupling effect will make it move in the y direction as

well (Figure 2.7). Thus, in a 2 DoF micromanipulator, hysteresis, creep and

coupling effect must be modelled, so a feedback system is able to increase the

accuracy of the micromanipulator.

Figure 2.7: Piezoelectric cantilever axis. (Rakotondrabe, 2017)

The 2 DoF case can also be modeled by a nonlinear neural network black-

box model for system identification. The case dispose of 500 samples equally

divided for training (250 samples) and test (250 samples). Also the it has 2

inputs (voltage) and 2 outputs (displacement in x and y direction). The model

was divided into two parts. For each output, both the input were used into the

model. Then 2 models were made for the outputs. This could be done because

the outputs are independent.



3

RESULTS

The objective of the project is to apply nonlinear system identification

through the Keras framework to find a suitable model for a micromanipulator

with 1 and 2 DoF . In order to obtain a feedback that considerably corrects

its hysterical behaviour, creep and coupling effect, this model will be used

to provide better information for the regulator. Therefore it will increase its

accuracy and will simplify the use of micromanipulators making possible to

solve more complex tasks.

The project uses the system identification and ANN to find an acceptable

model for micromanipulator problems. The system identification uses previ-

ously values obtained and re-inserted them into the network to help improve

the fit of the ANN model. When looking for the number of regressors that fits

well to the data, it is possible to find different numbers. However, as the num-

ber of regressors increases, the computational complexity increases, leading to

a higher operating cost, i.e. a longer time until the program finishes executing.

So it is necessary to establish a minimum number of regressors in order to

obtain reasonably and quickly results. However there is no method for directly

finding the best model for the problem (Knerr, Personnaz & Dreyfus, 1990).

The structure of this chapter is organized as follows: section 3.1 explain

how the computational experiences were obtained for 1 DoF. Section 3.2

explain the metrics used to chose the best suitable model for 1 DoF. Section

3.3 explain how the computational experiences were obtained for both outputs

for 2 DoF and the the metrics used to chose the best suitable model for each

output.

3.1

Computational Experiments for 1 DoF

Nonlinear AutoRegressive with eXogenous inputs model (NARX) with

ANNs were tested by varying the order of the regressors in both input and

output (both with the same order always) in order to check how the accuracy

of the model changes by gradually increasing the number of regressors and

neurons. The first step was define the number of regressors ranging from 2 to 5

and making a combination between the regressors and the number of neurons,

which are ranging from 6 to 12 with step 2, thus creating 16 different models.

It is important to note that all models made here were made with only 1 deep

layer and with 100 epochs. Each combination of regressors and neurons was
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made for two learning rates: 0.01 and 0.001 and combining these learning rates

with two different batches: 1 and 128. In this way, was possible to obtain 64

models (figure 3.1).

Figure 3.1: Combination of parameters used in this document to form 64

models used in 1-DoF problem

For all the models, we saved the following correlation coefficients R2: for

One-step-ahead (OSA) and Free-run (FR), both for validation and training

phases, in order to compare all of them and choose the best result of model.

Another important parameter to choose the best model is the time of operation

to build the model through training. As explained previously, the operating

cost need to be taken into account. Then, beyond the R2, was saved also the

elapsed time to build the model through training and we took the average

time of all the models for each combination of batch and learning rate, this

combination we called the cases of the 1 DoF modelling. The average time of

all models in each table are written at the top of their respective table (case).

Also, after the table, is printed the 3D graph for a better visualization of the

models. The axis of the graph are regressors, neurons and elapsed time to build

that specific model only.
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1 Layer; Batch 1; Learning Rate 0.001; 50.000 Samples (Case 1)

Average Time 1h 43 min

R2, OSA Training

Regressors/Neurons 6 8 10 12

2 0.9997077 0.9996126 0.9994604 0.9997091

3 0.9983698 0.9994410 0.9994927 0.9995370

4 0.9982744 0.9990404 0.9997122 0.9996179

5 0.9989511 0.9989521 0.9995515 0.9995729

R2, FR Training

Regressors/Neurons 6 8 10 12

2 0.8360115 0.7773966 0.9992819 0.9962369

3 0.8701254 0.6272992 0.9447296 0.9934010

4 0.8742571 0.9816253 0.6340712 0.4482929

5 0.4494410 0.2534791 0.7704910 0.8378925

R2, OSA Test

Regressors/Neurons 6 8 10 12

2 0.9996992 0.9995737 0.9994455 0.9996864

3 0.9983558 0.9994381 0.9995026 0.9995049

4 0.9981580 0.9989883 0.9997258 0.9996378

5 0.9989541 0.9989392 0.9995577 0.9995628

R2, FR Test

Regressors/Neurons 6 8 10 12

2 0.8350828 0.7767934 0.9992923 0.9963151

3 0.8691701 0.6268060 0.9450209 0.9935666

4 0.8738049 0.9815459 0.6357256 0.4484921

5 0.5725771 0.2522576 0.7707644 0.8473604

Table 3.1: Multiple Correlation Coefficients for Batch 1 and Learning Rate

0.001 (1 DoF).
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Figure 3.2: 3D Graph showing how long take to build the model with the

combination of regressors, neurons and parameters .

For the case 1, it is possible to see that all R2 values of OSA for training

and test are greater than 0.9 in any combination of regressors and neurons.

Otherwise the R2 for FR in training and test got some values less than 0.9 and

even less than 0.3, however all the values are positive. The majority of values

of R2 in FR greater than 0.9 became concentrated in a region which has the

greater number of neurons (10 and 12) and the lowest number of regressor (2

and 3). Note that the average time to compile this package of models was 1

hour and 43 minutes.

In the graph is showed that with less neurons and regressors the elapsed

time to build the model is lower with exception of 2 points out of the curve.
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1 Layer; Batch 128; Learning Rate 0.001; 50.000 Samples (Case 2)

Average Time 24 min

R2, OSA Training

Regressors/Neurons 6 8 10 12

2 0.9996278 0.9997041 0.999746 0.9997546

3 0.9993154 0.9995368 0.9996898 0.9997338

4 0.9993794 0.9994317 0.9997598 0.9996422

5 0.9989707 0.9995576 0.9995175 0.999789

R2, FR Training

Regressors/Neurons 6 8 10 12

2 0.5205786 0.6925345 0.4461068 0.5551839

3 0.6705247 0.8419732 0.9252495 0.9243027

4 -0.4137852 0.7838424 0.813022 0.8983720

5 -0.972349 -0.6521976 -0.1789108 0.6314544

R2, OSA Test

Regressors/Neurons 6 8 10 12

2 0.9996252 0.9996924 0.9997235 0.9997428

3 0.999305 0.9995413 0.9996834 0.9997292

4 0.9993952 0.9994318 0.9997608 0.9996364

5 0.9989228 0.9995542 0.9995175 0.9997882

R2, FR Test

Regressors/Neurons 6 8 10 12

2 0.5193330 0.6725372 0.4456376 0.5560610

3 0.7045499 0.8524704 0.9278230 0.9266442

4 -0.4102181 0.7823735 0.7920774 0.8976120

5 -0.9710301 -0.6395710 -0.1823629 0.6476350

Table 3.2: Multiple Correlation Coefficients for Batch 128 and Learning Rate

0.001 (1 DoF).
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Figure 3.3: 3D Graph showing how long take to build the model with the

combination of regressors, neurons and parameters.

For the case 2, it is possible to see that all R2 values of OSA for training

and test are greater than 0.9 in any combination of regressors and neurons.

Otherwise the R2 for FR in training and test got some negative values. These

negative values were concentrated in a region which has a great number of

regressors and a small number of neurons, probably indicating that increase

number of regressors and diminishing number of neurons is not a good option.

While the values of R2 in FR greater than 0.9 got 3 regressors and the two

largest numbers of neurons (10 and 12). Note that the average time to compile

this package of models was 24 minutes, being smaller than the average time of

case 1. This happens because the increment of batch from 1 in case 1 to 128 in

case 2, that shows batch has a strong influence on the build time of the model.

In the graph shown there is much fluctuation of the combinations between

neurons and regressors in relation to the time of construction of the model.

However is possible to see that with less neurons the elapsed time to build the

model is lower.
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1 Layer; Batch 1; Learning Rate 0.01; 50.000 Samples (Case 3)

Average Time 1h 43 min

R2, OSA Training

Regressors/Neurons 6 8 10 12

2 0.9932163 0.9958785 0.9945194 0.9909835

3 0.9773624 0.9804612 0.9879727 0.9788836

4 0.9571679 0.9792299 0.9235091 0.9589338

5 0.8456940 0.9069847 0.9051564 0.9090456

R2, FR Training

Regressors/Neurons 6 8 10 12

2 0.4034994 0.9033679 0.2277386 0.3668113

3 -0.1460767 -0.6094115 -0.1706908 -0.3479258

4 0.0105672 -0.0698936 -0.9058537 -1.5241200

5 -1.1949890 -1.0402710 -0.9074499 -1.5773810

R2, OSA Test

Regressors/Neurons 6 8 10 12

2 0.9933322 0.9957371 0.9945502 0.9909655

3 0.9769320 0.9806352 0.9879411 0.9785662

4 0.9571873 0.9795893 0.9236016 0.9584784

5 0.8444545 0.9080350 0.9027419 0.9093385

R2, FR Test

Regressors/Neurons 6 8 10 12

2 0.4018950 0.9033505 0.2253305 0.3647295

3 -0.1457781 -0.6097267 -0.1701890 -0.3469355

4 0.0106835 -0.0695541 -0.9052779 -1.5223450

5 -1.1941800 -1.0389940 -0.9059696 -1.5746660

Table 3.3: Multiple Correlation Coefficients for Batch 1 and Learning Rate

0.01 (1 DoF).
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Figure 3.4: 3D Graph showing how long take to build the model with the

combination of regressors, neurons and parameters.

For the case 3, it is possible to see that only one model has values of

R2 lower than 0.9 for OSA in training and test, however greater than 0.8.

Otherwise the R2 for FR in training and test obtained, in majority, negative

values. Only for 2 regressors all the values are positives combining with any

of the numbers of neurons and only one model had values of training and test

greater than 0.9: 2 regressors and 8 neurons. Note that the average time to

compile this package of models was 1 hour and 43 minutes same as the case

1, which has the same batch size, showing once more the strong influence of

batch has on the build time of the model.

In the graph is showed that with less neurons and regressors the elapsed

time to build the model is lower with exception of 3 points out of the curve.
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1 Layer; Batch 128; Learning Rate 0.01; 50.000 Samples (Case 4)

Average Time 26 min

R2, OSA Training

Regressors/Neurons 6 8 10 12

2 0.9963244 0.9991037 0.9991008 0.9985764

3 0.9972108 0.9980686 0.9980096 0.9984052

4 0.9976949 0.9919646 0.9971071 0.9979620

5 0.9954367 0.9953074 0.9941696 0.9957953

R2, FR Training

Regressors/Neurons 6 8 10 12

2 0.8133385 0.7805277 0.8233956 0.6931343

3 0.8306456 0.9719331 0.9308468 0.9688430

4 0.7006301 0.9046013 0.9733141 0.9841038

5 0.7143235 0.9388632 0.4770590 -0.0280644

R2, OSA Test

Regressors/Neurons 6 8 10 12

2 0.9963029 0.9990892 0.9991418 0.9985178

3 0.9972184 0.9980824 0.9980341 0.9984284

4 0.9976883 0.9919548 0.9971134 0.9979664

5 0.9954336 0.9953436 0.9942626 0.9957359

R2, FR Test

Regressors/Neurons 6 8 10 12

2 0.8129247 0.7816866 0.8223943 0.6917121

3 0.8311256 0.9719060 0.9307424 0.9687896

4 0.7014565 0.9048482 0.9736321 0.9841195

5 0.7148792 0.9390010 0.4774554 -0.0309065

Table 3.4: Multiple Correlation Coefficients for Batch 128 and Learning Rate

0.01 (1 DoF).
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Figure 3.5: 3D Graph showing how long take to build the model with the

combination of regressors, neurons and parameters.

For the case 4, it is possible to see that all R2 values of OSA for training

and test are greater than 0.9 in any combination of regressors and neurons.

Otherwise the R2 for FR in training and test got some values less than 0.9

and even one negative value. While the values of R2 in FR greater than 0.9

are concentrated in majority in the line of 3 and 4 regressors for 8, 10 and

12 neurons. Is not necessary look for the combination with more neurons once

that doing it the complexity will increase and the time to build the model will

also increase. Note that the average time to compile this package of models

was 26 minutes, very close of case 2, which has the same batch size, showing

once more the strong influence of batch has on the build time of the model.

In the graph is showed that, in general, with less neurons and regressors

the elapsed time to build the model is lower with exception of 1 point out of

the curve.
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In general OSA has values greater than 0.9, this can be an effect of

behavioral pattern in the sample or due to the large sampling used to train

the model. Otherwise the FR in relation to OSA, obtained less values greater

than 0.9, this is due to the parameters which compose the FR method which

accumulates the residuals after each iteration. It can be noticed in the tables

that the worst combinations, in general, are made with few neurons and many

regressors. On the other hand, the best combinations, in general, are made

with many neurons and few regressors.

3.2

Selection of the 1 DoF model

For the selection of the best model, in table 3.1 was compiled all the

values obtained for FR test greater than 0.9 in order to compare them.

Model

Number
R

2, FR Test Regressors Neurons
Elapsed

Time (min)
Batch

Learning

Rate
Layer

1 0.9972837 2 8 91 1 0.001 1

2 0.9968095 2 10 95 1 0.001 1

3 0.9997272 2 12 96 1 0.001 1

4 0.9995326 3 12 101 1 0.001 1

5 0.9319252 4 12 154 1 0.001 1

6 0.9298589 4 12 24 128 0.001 1

7 0.9033505 2 8 95 1 0.01 1

8 0.9719060 3 8 25 128 0.01 1

9 0.9307424 3 10 28 128 0.01 1

10 0.9687896 3 12 45 128 0.01 1

11 0.9048482 4 8 25 128 0.01 1

12 0.9736321 4 10 28 128 0.01 1

13 0.9841195 4 12 29 128 0.01 1

14 0.9390010 5 8 32 128 0.01 1

Table 3.5: Compilation of the best models in relation to R2 FR Test (1 DoF).

Based in comparisons between all the models showed in table 3.5 and

looking for the simplest models with good accuracy results and small elapsed

time, the model chosen was number 12, which has batch 128, learning rate

0.01 (case 4), 4 regressors and 10 neurons, which takes 28 minutes to build the

model and has training for OSA equal to 0.9971071, training for FR equal to
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0.9733141, test for OSA equal to 0.9971134 and test for FR equal to 0.9736321

i.e. all values of R2 are greater than 0.97. This model was chosen also because

it gives a stable model, i.e, it was rebuild some times and the model don’t have

a huge change in your correlation coefficients after each training.

Beside of the model chosen, if necessary to get better results without

carry with the time elapsed in consideration, it is possible to chose the model

number 1 which has a R2 of 0.9972837 and will provide a better accuracy.



Chapter 3. RESULTS 33

3.3

Results for 2 DoF

The piezoelectric cantilever in micromanipulators with 2 DoF, different

of 1 DoF, has drawback of coupling effect. This effect make the cantilever

under voltage move in both directions x and y (Figure 2.7). Then 2 outputs

are produced for x and y directions. For 2 DoF were built 2 models, each model

were built for each output and receives samples of 2 inputs and 1 output (for

training and test). The NARX method with ANNs were used by varying the

order of the regressors in both inputs and the output (all with the same order

always) in order to check how the accuracy of the model changes by gradually

increasing the number of regressors and neurons.

For the first output was defined the number of regressors ranging from

4 to 9 and making a combination between the regressors and the number of

neurons, which are ranging from 145 to 205 with step 15, thus creating 30

different models. It is important to note that all models made here were made

with only 1 batch, 1 deep layer and 100 epochs. Each combination of regressors

and neurons was made for three learning rates: 0.01, 0.001 and 0.0001. In this

way, was possible to obtain 90 models for the fist output (figure 3.6).

Figure 3.6: Combination of parameters used in this document to form 54

models used in 2-DoF problem.

For the first output models, we saved the following correlation coefficients

R2: for One-step-ahead (OSA) and Free-run (FR), both for validation and

training phases, in order to compare all of them and choose the best result

of model. Here were not saved the time elapsed to build the model, because

in general the time elapsed to build the 2 DoF models are almost the same

(around 3 min each model) and is faster than the time elapsed to build 1 DoF

models, due to the bigger number of samples that 1 DoF has. All the models
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were put in tables and the tables were divided in cases for each learning rate

chosen.

1 Layer; Batch 1; Learning Rate 0.001; 500 Samples (Case 1)

R
2, OSA Training

Neurons/Regressors 4 5 6 7 8 9

145 0.9986614 0.9975264 0.9983008 0.997356 0.9965636 0.9985976

160 0.9977542 0.9987513 0.9984684 0.9982018 0.9978504 0.9981393

175 0.9987481 0.9984042 0.9983196 0.9982075 0.9985128 0.9979437

190 0.9987102 0.9988671 0.9979753 0.9983986 0.998223 0.9981071

205 0.9990119 0.9987094 0.9978408 0.9984953 0.9986279 0.9985423

R
2, FR Training

Neurons/Regressors 4 5 6 7 8 9

145 0.862347 0.04929068 0.9894701 0.00233991 0.7580069 0.9010972

160 -0.2608189 0.9451563 0.1834611 0.6915893 0.8209727 0.9864567

175 0.9959253 0.6794783 0.1080795 0.9869321 0.9958667 0.9449763

190 0.9864332 0.9950858 0.03256669 0.9880586 0.9943644 0.9929051

205 0.9949568 0.6998308 0.9925817 0.9887439 0.9075991 0.9924626

R
2, OSA Test

Neurons/Regressors 4 5 6 7 8 9

145 0.9961759 0.9962852 0.9946631 0.9964043 0.9930894 0.9970135

160 0.9966247 0.9968689 0.9967062 0.995649 0.9952625 0.9961886

175 0.9958961 0.9961031 0.9956776 0.9959496 0.996761 0.9962544

190 0.9963376 0.9970716 0.9966082 0.9963223 0.9964988 0.9973897

205 0.9967842 0.9969001 0.9965406 0.9965745 0.9967946 0.9960455

R
2, FR Test

Neurons/Regressors 4 5 6 7 8 9

145 0.6575496 0.0556689 0.9663191 0.0099241 0.6619129 0.9931115

160 -0.0410240 0.8359197 0.2514659 0.6678359 0.7406800 0.8504922

175 0.9580344 0.6363985 0.1172827 0.9705652 0.8555071 0.8529002

190 0.7923266 0.9902354 0.1792099 0.7543438 0.9806411 0.9864209

205 0.9928115 0.8019694 0.9880154 0.9843496 0.7893304 0.9842715

Table 3.6: Multiple Correlation Coefficients for Learning Rate 0.001 (2 DoF -

1ST output).
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1 Layer; Batch 1; Learning Rate 0.0001; 500 Samples (Case 2)

R
2, OSA Training

Neurons/Regressors 4 5 6 7 8 9

145 0.9982662 0.9984519 0.9986129 0.9987748 0.9992084 0.9982692

160 0.9984468 0.9986105 0.9991896 0.9989955 0.9994156 0.9990378

175 0.9987983 0.9989337 0.9989813 0.9992974 0.99931 0.9992254

190 0.9986917 0.9991036 0.9992496 0.999375 0.9992326 0.9993627

205 0.9988739 0.9992845 0.9993078 0.9995117 0.999518 0.9994933

R
2, FR Training

Neurons/Regressors 4 5 6 7 8 9

145 0.9922119 0.9935742 0.09392488 0.9925617 0.9898151 0.986024

160 0.9616721 0.9875445 0.9856295 0.4982136 0.523414 0.8186685

175 0.08808451 0.9921332 0.2928431 0.9899251 0.9908928 0.9680588

190 0.1072489 0.9902111 0.2601345 0.379472 0.9885377 0.6484878

205 0.4757388 0.5081645 0.9921495 0.9908208 0.8259167 0.9927662

R
2, OSA Test

Neurons/Regressors 4 5 6 7 8 9

145 0.9952588 0.9947449 0.994916 0.9952934 0.9961952 0.9945395

160 0.9955483 0.9956068 0.9965505 0.995513 0.9969239 0.9956244

175 0.9965387 0.9964881 0.9960841 0.9961365 0.9965266 0.9966629

190 0.9968549 0.9966868 0.9964881 0.9969394 0.9954459 0.9967107

205 0.9965166 0.9970699 0.9966107 0.9971896 0.9970402 0.997082

R
2, FR Test

Neurons/Regressors 4 5 6 7 8 9

145 0.9797028 0.979581 -0.0039014 0.9869789 0.9856614 0.982686

160 0.906069 0.9012067 0.9632767 0.1038866 0.6906955 0.9820897

175 0.8635429 0.9585072 0.1821907 0.9833816 0.9863514 0.9780014

190 0.4376468 0.9767255 0.3510986 0.6810725 0.9740704 0.8788341

205 0.0798337 0.4656284 0.9157195 0.9768344 0.9425035 0.9882593

Table 3.7: Multiple Correlation Coefficients for Learning Rate 0.0001 (2 DoF

- 1ST output).
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1 Layer; Batch 1; Learning Rate 0.00001; 500 Samples (Case 3)

R
2, OSA Training

Neurons/Regressors 4 5 6 7 8 9

145 0.5986768 0.6457335 0.6083497 0.6138595 0.6363258 0.6085248

160 0.6747787 0.6804224 0.6488642 0.657246 0.6237461 0.6736876

175 0.6853711 0.7223644 0.7192783 0.7053398 0.6932741 0.6966688

190 0.7770856 0.7423055 0.742892 0.7436222 0.7074937 0.7335795

205 0.8116791 0.754495 0.7958073 0.7565614 0.7574878 0.7618261

R
2, FR Training

Neurons/Regressors 4 5 6 7 8 9

145 0.1031794 -0.0485545 -0.2390091 -0.0827425 -0.2873559 0.2667048

160 0.6473319 -0.1281776 -0.04151905 -0.1844581 -0.0693717 0.6642077

175 0.06824042 -0.0010346 -0.2129984 -0.2046245 -0.4529675 0.6875974

190 -0.1931267 -0.386371 -0.1067817 -0.3994835 -0.2009121 0.2729826

205 -0.0012419 -0.151641 -0.388255 -0.5272722 -0.4012677 0.2362106

R
2, OSA Test

Neurons/Regressors 4 5 6 7 8 9

145 0.5652327 0.6075328 0.5685361 0.5679355 0.5940797 0.5687744

160 0.6397609 0.6439763 0.6046997 0.6141026 0.5786678 0.6342203

175 0.6520428 0.6825876 0.6761558 0.6634414 0.6482098 0.6553333

190 0.7450106 0.705697 0.6994855 0.6980191 0.6654916 0.6921287

205 0.7809434 0.7156713 0.7539262 0.7062678 0.7150601 0.7217461

R
2, FR Test

Neurons/Regressors 4 5 6 7 8 9

145 0.0927180 0.0402869 -0.2644856 -0.1266243 -0.2914266 0.3767803

160 0.5619591 -0.1770918 0.0896918 -0.220421 -0.116001 0.6264218

175 0.04052363 0.1216265 -0.2842086 -0.2519529 -0.4137436 0.6468319

190 -0.1406955 -0.3634035 0.1031531 -0.4186212 -0.0923154 0.4196988

205 0.0260836 -0.0624941 -0.163769 -0.4466456 -0.2711802 0.3816805

Table 3.8: Multiple Correlation Coefficients for Learning Rate 0.00001 (2 DoF

- 1ST output).
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For all the tables shown, it is possible to find just three models with

FR test greater than 0.99. For this case was choose the model with 1 layer,

batch 1, learning rate 0.001, 205 neurons and 4 regressors (Case 1) having OSA

training 0.9990119, FR training 0.9949568, OSA test 0.9967842 and FR test

0.9928115. This model was choose because of your R2 greater than 0.99, your

model is less complex than the two others with R2 greater than 0.99 and it

gives the best graph of correlation coefficient. Figure 3.7 shows the correlation

coefficient R2 for OSA and FR.

Figure 3.7: Correlation Coefficient of One-Step-Ahead and Free-Run for 2 DoF

(1ST output).
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For the second output was also defined the number of regressors ranging

from 4 to 9 and making a combination between the regressors and the number

of neurons, which are ranging from 145 to 205 with step 15, thus creating

30 different models. The number of neurons for this output increased largely

because the samples don’t have an easy pattern to be recognized by few

neurons, as tested. Then were chosen more neurons which could give some

R2 values reasonable. It is important to note that all models made here were

made with only 1 batch, 1 deep layer and 100 epochs. Each combination of

regressors and neurons was made for three learning rates: 0.001, 0.0001 and

0.00001. In this way, was possible to obtain 90 models for the second output

(figure 3.8).

Figure 3.8: Combination of parameters used in this document to form 90

models used in 2-DoF problem.

For the second output models, we saved the following correlation coeffi-

cients R2: for One-step-ahead (OSA) and Free-run (FR), both for validation

and training phases, in order to compare all of them and choose the best re-

sult of model. Here were not saved also the time elapsed to build the model,

because in general the time elapsed to build the 2 DoF models are almost the

same (around 3 min each model) and is faster than the time elapsed to build

1 DoF models, due to the bigger number of samples that 1 DoF has. All the

models were put in tables and the tables were divided in cases by the learning

rate chosen.
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1 Layer; Batch 1; Learning Rate 0.001; 500 Samples (Case 1)

R
2, OSA Training

Neurons/Regressors 4 5 6 7 8 9

145 0.984420 0.996188 0.988082 0.988700 0.979877 0.977979

160 0.991419 0.990801 0.990780 0.991054 0.983507 0.985242

175 0.982497 0.989078 0.988999 0.988707 0.985031 0.988099

190 0.989415 0.995728 0.992251 0.993071 0.988363 0.980504

205 0.989665 0.995206 0.984330 0.986363 0.989286 0.981461

R
2, FR Training

Neurons/Regressors 4 5 6 7 8 9

145 0.810541 0.982745 0.966348 0.939256 0.930804 0.923943

160 0.741600 0.837370 0.962720 0.974709 0.933314 0.974685

175 0.822956 0.966982 0.900249 0.970214 0.928516 0.963051

190 0.855075 0.990889 0.984850 0.976502 0.967932 0.919951

205 0.908366 0.979607 0.888652 0.953672 0.943226 0.939270

R
2, OSA Test

Neurons/Regressors 4 5 6 7 8 9

145 0.981512 0.988858 0.988552 0.984228 0.975913 0.969064

160 0.982107 0.986570 0.979415 0.980556 0.962322 0.973791

175 0.969257 0.986259 0.986663 0.982281 0.974789 0.981989

190 0.990279 0.986801 0.986626 0.982547 0.983049 0.969195

205 0.987285 0.990428 0.973793 0.982297 0.978741 0.974171

R
2, FR Test

Neurons/Regressors 4 5 6 7 8 9

145 0.514853 0.755786 0.779658 0.735141 0.610970 0.599902

160 0.553455 0.734377 0.728604 0.807018 0.655752 0.719300

175 0.438340 0.718250 0.695538 0.769465 0.681276 0.753310

190 0.701416 0.764030 0.787875 0.772075 0.749681 0.660933

205 0.718226 0.767689 0.663842 0.773372 0.656809 0.728469

Table 3.9: Multiple Correlation Coefficients for Learning Rate 0.001 (2 DoF -

2ND output).
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1 Layer; Batch 1; Learning Rate 0.0001; 500 Samples (Case 2)

R
2, OSA Training

Neurons/Regressors 4 5 6 7 8 9

145 0.996383 0.987201 0.962569 0.931673 0.930098 0.735507

160 0.998269 0.992395 0.942272 0.947543 0.848237 0.876533

175 0.998231 0.994514 0.978529 0.942400 0.928188 0.811701

190 0.998435 0.997294 0.986529 0.946772 0.947413 0.955672

205 0.998739 0.998142 0.994988 0.983410 0.896736 0.923407

R
2, FR Training

Neurons/Regressors 4 5 6 7 8 9

145 0,684823 0,942540 0,558101 0,364297 0,530595 -0,09300

160 0,497286 0,948144 0,694513 0,564760 -0,32520 -0,03832

175 0,477881 0,958926 0,916339 0,281005 -0,29712 -0,05827

190 0,585022 0,986901 0,912671 0,687224 0,250800 0,715680

205 0,937739 0,994405 0,980129 0,908921 0,232431 0,315894

R
2, OSA Test

Neurons/Regressors 4 5 6 7 8 9

145 0.986553 0.962959 0.927439 0.881446 0.877375 0.649143

160 0.995175 0.971153 0.900118 0.906835 0.767244 0.801558

175 0.993695 0.973696 0.948566 0.892750 0.879990 0.734316

190 0.994417 0.985387 0.958842 0.912532 0.902196 0.911710

205 0.994807 0.988460 0.974868 0.951408 0.839987 0.869662

R
2, FR Test

Neurons/Regressors 4 5 6 7 8 9

145 0.467598 0.725513 0.478785 0.194026 0.37330 -0.25491

160 0.261436 0.736683 0.461292 0.454476 -0.40818 -0.19540

175 0.377208 0.743502 0.713766 0.099949 -0.38459 -0.25477

190 0.421438 0.762865 0.719154 0.503250 -0.03470 0.542912

205 0.688181 0.779923 0.765361 0.507194 -0.03425 0.063024

Table 3.10: Multiple Correlation Coefficients for Learning Rate 0.0001 (2 DoF

- 2ND output).



Chapter 3. RESULTS 41

1 Layer; Batch 1; Learning Rate 0.00001; 500 Samples (Case 3)

R
2, OSA Training

Neurons/Regressors 4 5 6 7 8 9

145 -2.39551 -2.66925 -2.75223 -2.77076 -2.87466 -2.94477

160 -2.10997 -1.93532 -1.81270 -2.18956 -2.29396 -2.18914

175 -1.58955 -1.64350 -1.88783 -1.79685 -1.76635 -2.23881

190 -1.41554 -1.43490 -1.36475 -1.28076 -1.38429 -1.54803

205 -1.06870 -1.23436 -1.15413 -1.12941 -1.18107 -1.21073

R
2, FR Training

Neurons/Regressors 4 5 6 7 8 9

145 -2.38968 -2.65312 -2.7451 -2.75339 -2.83187 -2.91529

160 -2.10345 -1.93973 -1.80866 -2.17639 -2.26613 -2.17362

175 -1.60020 -1.64150 -1.87886 -1.78288 -1.74423 -2.22205

190 -1.42362 -1.44043 -1.36715 -1.27896 -1.38276 -1.54637

205 -1.09669 -1.24272 -1.13724 -1.13748 -1.17522 -1.20863

R
2, OSA Test

Neurons/Regressors 4 5 6 7 8 9

145 -1.36227 -1.58680 -1.64745 -1.65536 -1.76340 -1.79025

160 -1.15509 -1.01760 -0.93974 -1.22096 -1.30274 -1.21771

175 -0.76411 -0.81831 -0.99250 -0.94204 -0.92155 -1.26074

190 -0.64965 -0.66328 -0.62625 -0.56640 -0.65069 -0.75717

205 -0.39161 -0.52929 -0.50239 -0.45974 -0.51189 -0.51925

R
2, FR Test

Neurons/Regressors 4 5 6 7 8 9

145 -1.35407 -1.55278 -1.62226 -1.62402 -1.68217 -1.74564

160 -1.14458 -1.02753 -0.93461 -1.19620 -1.25825 -1.19059

175 -0.78723 -0.81729 -0.98470 -0.91431 -0.88480 -1.22633

190 -0.66715 -0.67961 -0.63064 -0.56880 -0.63643 -0.74707

205 -0.45226 -0.54806 -0.48012 -0.47794 -0.49984 -0.52159

Table 3.11: Multiple Correlation Coefficients for Learning Rate 0.00001 (2 DoF

- 2ND output).
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Note that in the tables 3.6 to 3.11 it was impossible to find any value

of R2 greater than 0.9. It is due to the patterns of the samples and the small

number of samples used to train the model. It is possible to note also the

learning rate of 0.00001 provides only negative values for R2. Probably the low

learning rate made the gradient descent stuck in a bad value.

For all the tables shown, it is possible to find just one model with FR

test greater than 0.8. This model has 1 layer, batch 1, learning rate 0.001, 160

neurons and 7 regressors (Case 1) having OSA training 0.991054, FR training

0.974709, OSA test 0.980556 and FR test 0.807018. Figure 3.9 shows the

correlation coefficient R2 for OSA and FR.

Figure 3.9: Correlation Coefficient of One-Step-Ahead and Free-Run for 2 DoF

(2ND output).
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CONCLUSIONS

The chose of the model for 1 DoF has shown balance between the time

elapsed to build the model through training and a high accuracy given by the

R2 greater than 0.9. While the chose of the model for 2 DoF was divided in 2

models. The first model used for the first output showed a relevant result with

R2 greater than 0.9. However for the second model, used to model the second

output, it was not possible to obtain a value for R2 in Free-run test greater

than 0.9, but greater than 0.8. This is because of the small number of samples.

Note that for 2 DoF the time to build models was faster than 1 DoF, because

while 1 DoF has 50000 samples, the 2 DoF samples were only 500, however

the complexity was greater once that both models of 2 DoF used more than

100 neurons.

The present document resulted in models that use system identification

with neural network to provide feedback for piezoelectric micromanipulators,

making the use of piezoelectric micromanipulators more precise and helping to

solve tasks more complex.

Beside of the large number of models obtained in this document, there

are infinite possibilities of combination of regressors, neurons, layers, batches

and learning rates not tested here. Then for future research the search for

new models using these parameters could be done and even using others

optimization algorithms.
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