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Abstract

Ortega Adarme, Mabel Ximena; Queiroz Feitosa, Raul. (Advisor);
Rodrigues Gomes, Alessandra (Co-Advisor). A comparison of
Deep Learning techniques for deforestation detection in
the Brazilian Amazon and Cerrado biomes from remote
sensing imagery. Rio de Janeiro, 2019. 70p. Dissertação de
mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.

Deforestation is one of the main causes of biodiversity reduction,
climate change, among other destructive phenomena. Thus, early detection
of deforestation processes is of paramount importance. Techniques based on
satellite images are one of the most attractive options for this application.
However, many works developed include some manual operations or
dependency on a threshold to identify regions that suffer deforestation
or not. Motivated by this scenario, the present dissertation presents an
evaluation of methods for automatic deforestation detection, specifically
Early Fusion (EF) Convolutional Network, Siamese Convolutional Network
(SN), Convolutional Support Vector Machine (CSVM) and Support Vector
Machine (SVM), taken as the baseline. These methods were evaluated in
regions of Brazilian Amazon and Cerrado Biomes. Two Landsat 8 images
acquired at different dates were used in the experiments, and the impact
of training set size was also analyzed. The results demonstrated that Deep
Learning-based approaches clearly outperformed the SVM baseline in our
approaches, both in terms of F1-score and Overall Accuracy, with the
superiority of SN and EF over CSVM and SVM. In the same way, a
reduction of the salt-and-pepper effect in the generated probabilistic change
maps was noticed due, mainly, to the increase of samples in the training
sets. Finally, an analysis was carried out to assess how the methods can
reduce the time invested in the visual inspection of deforested areas.

Keywords
Deforestation Detection; Brazilian Biomes; Remote Sensing; Deep

learning; Convolutional Neural Network.
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Resumo

Ortega Adarme, Mabel Ximena; Queiroz Feitosa, Raul.; Rodrigues
Gomes, Alessandra. Comparação de técnicas de Deep
Learning para detecção de desmatamento em biomas da
Amazônia e Cerrado brasileiros a partir de imagens de
sensoriamento remoto. Rio de Janeiro, 2019. 70p. Dissertação
de Mestrado – Departamento de Engenharia Elétrica, Pontifícia
Universidade Católica do Rio de Janeiro.
O desmatamento é uma das principais causas de redução da

biodiversidade, mudança climática e outros fenômenos destrutivos. Assim,
a detecção antecipada de desmatamento é de suma importância. Técnicas
baseadas em imagens de satélite são uma das opções mais iteresantes para
esta aplicação. No entanto, muitos trabalhos desenvolvidos incluem algumas
operações manuais ou dependência de um limiar para identificar regiões
que sofrem desmatamento ou não. Motivado por este cenário, a presente
dissertação apresenta uma avaliação de métodos para detecção automática
de desmatamento, especificamente de Early Fusion (EF) Convolutional
Network, Siamese Convolutional Network (SN), Convolutional Support
Vector Machine (CSVM) e Support Vector Machine (SVM), o último
tomado como baseline. Todos os métodos foram avaliados em regiões dos
biomas brasileiros Amazônia e Cerrado. Duas imagens Landsat 8 adquiridas
em diferentes datas foram utilizadas nos experimentos, e também o impacto
do tamanho do conjunto de treinamento foi analisado. Os resultados
demonstraram que as abordagens baseadas no Deep Learning superaram
claramente o baseline SVM em termos de pontuação F1-score e Overrall
Accuracy, com uma superioridade de SN e EF sobre CSVM e SVM. Da
mesma forma, uma redução do efeito sal e pimenta nos mapas de mudança
gerados foi notada devido, principalmente ao aumento de amostras nos
conjuntos de treinamento. Finalmente, realizou-se uma análise visando
avaliar como os métodos podem reduzir o esforço humano na inspeção visual
das áreas desmatadas.

Palavras-chave
Detecção de Desmatamento; Biomas Brasileiros; Sensoriamento

Remoto; Aprendizado Profundo; Redes Neuronais Convolucionais.
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1
INTRODUCTION

Deforestation is one of the largest sources of anthropogenic CO2
emissions. It is a wide-reaching problem including reduction of carbon storage,
greenhouse gas emissions, and other environmental issues such as biodiversity
losses and climate change [1]. Currently, one of the worldwide highest
deforestation rates occurs in South America [2], where the major statistics of
tree loses is concentrated in Brazil. This country comprises the biggest portion
of tropical rainforest with 60% of its total territory [3]. Indeed, the last three
decades it has lost about 660’000 square kilometers (see Figure 1).

A
re
a
(h
a)

BRAZIL

1 Forest Formations

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

520M

540M

560M

580M

600M

Figure 1: Forest formation in Brazil from 1985 to 2017 . Mapbiomas (Available
at: http://www.mapbiomas.org/stats).

Brazil comprises six terrestrial biomes: Amazon, Cerrado, Atlantic
Forest, Caatinga, Pampa, and Pantanal with an area of 49.3%, 23.9%, 13%,
9.9%, 2%, and 1.7%, respectively [3]. In this sense, Amazon and Cerrado
Brazilian biomes cover an area of about 73%. Both biomes together comprise
an area around 6.2 million square kilometers of the Brazilian territory. These
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Chapter 1. INTRODUCTION 17

biomes accommodate large biodiversity and they are home to a large number
of species, including endemic and endangered flora and fauna [4]. Therefore,
they provide essential resources for the maintenance of our planet and its
preservation is of paramount importance.

For many years the Amazon biome has faced several threats as a result
of unsustainable economic development. These threats are primarily caused
by the extension of agricultural activities at industrial scale (e.g., soybeans,
cattle), slash-and-burn land grabbing by underprivileged rural communities,
forest fires, illegal gold mining and logging, expansion of informal settlements,
and infrastructure construction such as roads and train tracks [5–7]. According
to the National Institute for Space Research (INPE) [8], deforestation
accelerated significantly during the 1990s and early 2000s in the Amazon
biome. Likewise, the World Wildlife Fund (WWF) [9] estimates that more
than a quarter of the biome will be without trees by 2030 if the current rate
of deforestation continues.

Following the Amazon biome, Cerrado is the Brazilian biome that
suffered the most changes with human occupation [10]. Despite its biological
importance, it faces intensive land use pressure, losing over 40% of natural
vegetation due to agricultural expansion [11, 12]. Moreover, the Cerrado has
been one of the least studied biomes in Brazil. It has not received great
attention compared to other Brazilian biomes, such as the Amazon and the
Atlantic Forest [4, 11]. In fact, information about land use and land cover
change of this biome is still limited. In this sense, the monitoring of this biome
is necessary to track natural disasters and human activities, as well as to
enforce public policies to avoid illegal activities in the region, achieving an
ecological balance and contributing to the mitigation of climate change [13].
In this scenario, Remote Sensing (RS) has proven to be a cost-effective solution
to monitor these regions.

Traditionally, change detection techniques based on image algebra, such
as image differencing, image rationing and Change Vector Analysis (CVA) [14],
have been widely used to detect changes in multi-temporal images. However,
they strongly depend on manually selected thresholds to define what is
considered a change [15]. More recently, Deep Learning (DL) techniques have
become state-of-the-art in many application fields, including RS. Through
the usage of Deep Neural Networks (DNNs), it is possible to learn multiple
levels of data representation, which usually correspond to more informative
features and often allow for better results than what can be achieved by using
domain-specific handcrafted features.

In this context, this work evaluates and compares Deep Learning based
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Chapter 1. INTRODUCTION 18

techniques for deforestation detection in the Brazilian Amazon and Cerrado
biomes. The aim is to reduce the human effort involved in monitoring
programs such as the Amazon Deforestation Monitoring Project (Projeto de
Monitoramento do Desmatamento na Amazônia Legal por Satélite-PRODES)
and the Cerrado Monitoring Project. In addition, this work aims at
contributing to improve accuracy and reduce the subjectivity inherent to
human photointerpretation, as well as reduce the time needed to generate
results.

1.1
Objectives

1.1.1
General Objective

The general objective of this work is to test state-of-the-art Deep
Learning techniques for deforestation detection in Brazil from optical images
acquired at two different dates.

1.1.2
Specific Objectives

The specific objectives of this work are the following:

1. Compare Siamese Networks, Early Fusion and Convolutional SVM for
automatic deforestation detection;

2. Assess the aforementioned methods in datasets of two regions with
different deforestation patterns: the Amazon and Cerrado biomes;

3. Evaluate how the amount of training samples impacts the performance
of each method;

4. Analyze how semi-automatic approaches could be designed based on
these methods to reduce human intervention with minimal accuracy loss.

1.2
Contributions

The main contributions of this work are:

1. An evaluation of state-of the art Deep Learning techniques for automatic
deforestation detection in Brazilian Amazon and Cerrado biomes;

2. An assessment of these methods’ accuracy under scarce training samples;
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Chapter 1. INTRODUCTION 19

3. An estimation for each method of the relation: area assigned as
deforestation vs. area of true deforestation.

1.3
Organization of the remaining parts of this thesis

Chapter 2 describes the related work available in the literature for change
detection and deforestation detection using traditional approaches as well as
models based on Deep Learning.

Chapter 3 presents the fundamental concepts and theory underlying the
methods used in this work.

Chapter 4 introduces and explains the deep learning methods used for
deforestation detection.

Chapter 5 presents the study areas used in this work, the experimental
setup followed in the experiments and the results obtained from each method.

Chapter 6 summarizes the conclusions derived from the performed
experiments and provides directions for further development of the proposed
method.
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2
RELATED WORKS

This chapter presents an overview of different works related to change
detection techniques for remote sensing applications. Most of them focused on
deforestation detection in the Brazilian biomes as well as other areas commonly
studied in the literature.

With the development of RS, the dynamic earth observation (EO) has
led to a great deal of available, detailed, accurate and up-to-date change
information for use in learning about and monitoring our planet [16, 17].
Numerous change detection techniques have been proposed thus far. Some of
the traditional unsupervised methods are based on image algebra such as Image
Differencing [18], Image Ratioing [19], Regression Analysis [20] and Change
Vector Analysis (CVA) [21]. In addition, techniques based on transformations
such as Principal Component Analysis (PCA) [22] and Tasselled cap (KT) [23]
have been also used for this purpose. However, these methods require the
selection of a proper threshold to identify the changed regions. Besides, the
features adopted by these conventional algorithms are hand-crafted, which
may lead to poor image representations [24].

For the supervised methods, Support Vector Machine (SVM) is one of the
most popular algorithms used in satellite image classification [25, 26] due to
its good performance and robustness in scenarios where there are few available
labeled samples. Nevertheless, a proper setup of its hyper parameters, including
the appropriate kernel function, is essential to achieve good generalization. In
general, this process involves to consider several kernel types and compare them
via cross-validation or other methods [27]. Similarly, tree based [28] classifiers
and methods based on Artificial Neural Networks (ANN) are widely used for
image classification [29]. However, one of the drawbacks of decision trees is its
high computational cost during the tree building because the training samples
have to traverse repeatedly each node of the tree [30]. For ANN, is necessary
to make modeling assumptions to properly select the number of hidden layers
and number of their units. Indeed, there are not a general rule to select the
optimal setup of these parameters.

On the other hand, the Brazilian National Institute for Space Research
(Instituto Nacional de Pesquisas Espaciais-INPE) has developed and maintains
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Chapter 2. RELATED WORKS 21

a number of projects to provide surveillance reports about deforestation
over the Brazilian Legal Amazon (BLA). The best known-action is the
Amazon Deforestation Monitoring Project (PRODES) [31], which supervises
the deforestation in areas with native vegetation of BLA since 1988. They
estimate deforested areas using the Linear Spectral Mixture Model (LSMM),
which uses the original Landsat TM bands 3, 4 and 5 to generates synthetic
images of vegetation, soil, and shade. Next, an image segmentation based on
the region growing algorithm is performed followed by a classification stage
using the clustering algorithm ISOSEG, but it is only applied to the segmented
shade image. After these procedures, it is necessary to identify errors in the
classified image manually. Thus, this task is highly dependent on experienced
interpreters.

The near real-time deforestation detection project (DETER) [32], was
developed to support land use policies in BLA and controls the illegal
deforestation, forest degradation and wood exploration. This process is done by
LSMM and visual interpretation based on five main elements (color, tonality,
texture, shape and context). Finally, the Land Use and Land Cover Mapping
of Amazon Deforested Areas (TerraClass) project is responsible for qualifying
deforestation in BLA and investigating the possible causes of logging. De
Almeida C and et at. [33], showed that in the Amazonian post-deforestation
landscape pasture is dominant, followed by clear cut, used for silviculture,
agriculture or pasture. Eventually, part of them regenerates and turns into
forest again.

Similar to BLA, the Cerrado biome has also been monitored by INPE.
Brito et al. [34] present a methodology used for mapping deforestation in
the Cerrado biome since 2000. The process is entirely manual, and is carried
out by visual interpretation by taking into account five main elements: color,
tonality, texture, shape and context. TerraClass Cerrado is another project
coordinated by the Brazil’s environment minister in cooperation with the
Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa
Agropecuária - Embrapa) and INPE. With this protect, they map the use
and cover of deforested areas of the Brazilian Amazon and they enable the
characterization of the areas mapped by PRODES, using satellite images from
2013 1.

Similarly, MapBiomas 2 is an initiative that analyzes the Brazilian
territory by mapping the land use and land cover since 1985. MapBiomas has
the potential to monitor primary forest changes. The methodology adopted

1http://www.dpi.inpe.br/tccerrado/
2http://mapbiomas.org/
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by MapBiomas is presented in [35]. Its dataset comprises images of all
Brazilian biomes and they have been collected by Landsat 5-6-7 sensors. The
methodology also involves extracting statistical features to train a Random
Forest (RF) classifier. In a post-classification stage, spatial and temporal filters
remove classification noise and fill information gaps due to cloud. In this
methodology, all procedures are performed using the Google Earth Engine.
However, the final validation stage is based on visual interpretation.

Further works have been developed by the RS community. Bueno et
al. [4] present a study for detecting deforestation in highly seasonal areas of
the Cerrado biome. They adopted the object-based image analysis (OBIA)
methodology, applied to Landsat OLI (The Operational Land Imager)time
series with the aim to find out the best spectral bands and/or vegetation
indices for discrimination of true deforestation from seasonal changes using
a RF classifier. Likewise, Machado et al. [36] present a study of mapping
the deforested areas using images of MODIS sensor (or Moderate Resolution
Imaging Spectroradiometer). A maximum likelihood classifier implemented in
ERDAS software is used for the task.

Recently, Deep Learning (DL) techniques have been successfully applied
to RS image analysis. Using Deep Neural Networks (DNNs), it is possible
to learn multiple levels of data representation and to extract more robust and
abstract features [24], which usually provide more meaningful information than
hand-crafted ones. They are also able to capture spatial context information
using different kernels in convolution operations.

Zagoruyko and Komodakis [37], proposed and explored different CNN
architectures to learn similarity functions between image pairs that implicitly
suffered some transformations and other kinds of effects (due to e.g., rotation,
translation, illumination). These algorithms presented good performances in
comparison to methods based on hand-crafted feature descriptors. Examples
of such algorithms are the Early Fusion, Siamese CNN and Pseudo-Siamese,
which were also used in [38] to detect changes in urban areas. In this work
the authors compared the Siamese CNN and Early Fusion techniques, and
evaluated the impact of using different spectral channels as inputs.

In a similar work [39] a Siamese CNN was successfully applied to identify
building and tree changes, and also to distinguish between real changes from
false ones caused by misregistration errors or false matches. However, the
patches assigned as "change" go through a post-processing stage,then they
are grouped and analyzed as individual objects to perform a filtering and
segmentation stage, and finally detect individual object-level changes.

Zhan et al. [24] proposed a supervised change detection method based
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on a deep Siamese CNN for optical aerial images. As in previous approaches,
the authors of this work improve the preliminary classification result in
post-processing stage. Essentially, the score map produced by the SN is
segmented using a thresholding segmentation. The generated segments are then
classified using a k-nearest neighbor (k-NN) approach. In a similar approach,
the authors of [40] integrate the advantages of CNN and RNN to learn
joint spectral-spatial-temporal features and solve a multispectral image change
detection problem, achieving encouraging results. A drawback of LSTM is the
number of parameters to be learned, which increases significantly compared to
CNN.
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3
FUNDAMENTALS

This chapter provides the basics for a proper understanding of the
methods selected for deforestation detection. First, a brief introduction about
Remote Sensing is given. Then, some concepts related to Deep Learning (DL)
are described, centering on Convolutional Neural Networks (CNN), Siamese
Networks (SN) and Convolutional SVM (CSV M).

3.1
Remote Sensing (RS)

Remote sensing is the process of acquiring information about an object,
area, or phenomenon without being in physical contact with it [41]. This
process is carried out by measuring emitted radiation by the sensor and
reflection radiation by the object of interest. One of the most important
advantages of RS is the possibility of collecting data of dangerous or
inaccessible areas. This property makes RS a very useful tool to monitor
deforestation, glaciers, and depth sounding of coastal and ocean depths.

In RS there are two basic types of sensors, passive and active. Passive
sensors measure the proportion of the electromagnetic (EM) emitted by the
sun, which is reflected by the imaged objects. Hence, orbital optical sensors
can only obtain measurements in the day time. They are sensitive to weather
conditions and also very vulnerable to clouds and shadows. On the other hand,
active systems are equipped with their own source of energy to illuminate
objects of interest. Active sensors emit their own EM energy towards the
earth and measures the energy reflected from it. In contrast to the passive
counterparts, active sensors can obtain measurements anytime (Day and
Night) and operate in different environmental conditions (see Figure 2).
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Figure 2: Passive and Active sensors. Passive sensors does not require any
external power source to produce output signal while active sensor requires an
external power source to operate.

3.2
Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a kind of Neural Networks
(NN) specialized in processing data with an inherent grid-like topology in
which nearby entries are correlated, such as time series or a two-dimensional
(2D) image [42]. They are comprised of units, called neurons, which have
learnable weights and biases, and they are focused in processing information
associated to a restricted location of the visual field, known as the receptive
field. Each neuron receives some inputs, performs a dot product and optionally
follows it with a non-linearity.

CNNs were introduced by LeCun et al. [43], outperforming other
approaches and becoming the state-of-the art in areas such as image
recognition, natural language processing and classification.

The basic CNN comprises one or more convolutional layers, each
followed by a pooling layer which reduces the data resolution. Finally, there
are one or more fully-connected layers, where the last one —the output layer
—delivers class scores. For CNNs the layers are organized in three dimensions:
width (w), height (h) and depth (Nfeatures). Additionally, the neurons in
one layer do not connect to all the neurons in the next layer but only to a
small region of it [44]. The final output will be reduced to a single vector of
probability scores.

Figure 3 illustrates a basic CNN architecture with two convolutional
layers (with kernels sizes k1 and k2) + 2 × 2 pooling, a fully-connected layer,
and finally, the output layer with m neurons, where m is the number of classes.
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Figure 3: A CNN basic architecture with two convolutional layers. Adapted
from [45].

In the following, each block is detailed, as well as other layers commonly
used in CNN architectures.

– Convolutional layer: the term convolution refers to the mathematical
operation on two functions to produce a third one. The arguments
involved in this operation are the input data and the kernels, followed
by a non-linear activation function. Each kernel is a k × k × Nfeatures

multidimensional array of parameters (weights) that slides over the
input data to produce a feature map, performing an element-wise
multiplication and then summing up the results into a single output
pixel. The output is a 3D tensor which dimension depends on the spatial
dimension of the input data (w and h), the stride size, the padding size,
and the number of selected kernels.

– Batch Normalization (BN): It is a trainable normalization layer that
increases the stability of a neural network and reduces the dependency on
the initialization [46]. BN normalizes the output of a previous activation
layer by subtracting the mean and dividing by the standard deviation
over each training mini-batch. Consequently, BN adds two trainable
parameters to each layer, so the normalized output is multiplied by
a standard deviation parameter (gamma) and add a mean parameter
(beta). However, this normalization might not be beneficial for all cases.
It depends on the data, the network architecture and the batch size.

– Activation Function: the output of a convolutional layer, called
activation map, goes through a nonlinear activation function. Figure 4
illustrates the most common activation functions, softmax, sigmoid, tanh,
ReLU, leaky ReLU, and exponential LU.
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Figure 4: Illustration of the most common non-linear activation functions.

– Pooling layer: this layer summarizes the feature map over a
neighborhood around each pixel. This operation usually reduces the
spatial resolution of the feature maps, to reduce the amount of
parameters, and improve the computational efficiency of the network,
as well as controls overfitting [44]. The most common variant is the 2×2
max-pooling, which applies a 2 × 2 filter with a stride of 2 to every depth
slice of the feature map, replacing all values covered by the filter in each
location by the maximum value among them (see Figure 5).

4

Input data Output data

2x2 Max-pooling

Figure 5: Example of max-pooling applying a 2 × 2 filter with stride equal to
2. Each element of the output matrix is the max of the region in the original
input.

– Fully-connected layer (FC): in this layer, each neuron has
connections to all activations of the preceding layer, similar to a regular
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NeuralNetwork. Usually, the last FC comprises a softmax activation
function, which performs the classification task based on the features
extracted by the previous layers, and assigning a posterior probability
of belonging to each class.

– Dropout: is a regularization technique that reduces over-fitting [47]
during the feature-learning procedure. Specifically, dropout can be
considered analogous of training a large ensemble of models consisting of
all sub-networks that share their parameters [42]. In this process, some
randomly neurons are turned off in the forward pass, as well as their
connections, during the training phase. Figure 6 shows an example of
the application of dropout to a neural network with two hidden layers.

(a) Standard Neural Net. (b) After applying dropout.

Figure 6: Dropout in a Neural Network. (a) A standard neural net with two
hidden layers. (b) An example of a thinned net produced by applying dropout
to the network on the left. Crossed units have been dropped [47].

3.3
Siamese Networks (SNs)

The Siamese Network is an adaptation of a traditional CNN. This
network was first introduced in the early 1990s by Bromley et al. [48] for
signature verification as an image matching problem. SN comprises two or
more identical subnetwork components to estimate the similarity between two
inputs and has the ability to learn their discriminative features. They also share
the same hyperparameters and weights values [39], meaning that the desciptor
vector of the two input data are extracted using the same approach [24].
Figure 7 shows the basic architecture of a SN.
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Input 1
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Figure 7: Architecture of the Siamese Network. The two CNNs share the same
structure and weights.

Usually, SNs perform a binary classification at the output, classifying if
the inputs correspond to the same class or not. Different loss functions may
be used during training. One of the most popular loss functions is the binary
cross-entropy loss, which is defined by:

L = −y log p + (1 − y) log(1 − p) (3-1)
where L is the loss function, y the class label (0 or 1) and p is the

prediction of the network.

3.4
Convolutional SVM (CSVM)

The CSVM, proposed by [49], is an alternative DL approach based on
SVMs. This method was tested for object detection from Unmanned Aerial
Vehicles (UAVs) imagery and performed well in the task of discerning between
instances of object of interest and the background. In the reported experiments
[49], CSVMs outperformed other deep learning based approaches for small
training sample sizes. This characteristic motivated the inclusion of CSVM in
this study.

Analogous to a traditional CNN, a CSVM architecture is composed of a
set of convolutional and pooling layers followed by a classification layer at the
end [49]. But in contrast to CNN, CSVM does not rely on the backpropagation
algorithm for training, it trains the set of linear SVMs in a layerwise fashion.
The description of each layer of CSVM for the task of image classification is
presented in the following.

– SVM Convolutional Layer: this layer uses a set of linear SVMs as
convolutional filters for generating the feature maps. Likekise, the weights
of these filters are learned in a forward supervised way [49]. The training
process of the CSVM model is summarized in Figure 8.
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Construction of 
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Training the 

SVMs filter banks

Generation of
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OutputInput data

Figure 8: SVM convolutional layer. The procedure starts with the construction
of a training set, followed by the training of SVM filter banks and ends with
the generation of the convolutional feature maps.

Construction of training set

Let’s assume henceforth that positive images contain the object of
interest, whereas the negative ones correspond to the complementary
class in a binary classification problem. For each training image, patches
of size (h1, h1, c) are randomly selected, where h1 corresponds to the
spatial dimensions, and c is the number of bands of the input data. Each
selected patch is flattened into a vector of size d = h1 × h1 × c. The
vectors obtained this way form the set of samples available for training
a bunch of SVMs filters in the next step (see Figure 9).

Positive samples

Negative samples

Input data Extract patches Concatenation Global training set

Input data HxWxC

Patch size h1xh1

Vector dimension

h1xh1xc

y = 1

y = -1

Figure 9: Generation of training set for the first convolutional layer of CSVM.

Training the SVMs filter bank

In this stage, an ensemble of SVMs is trained. The diversity among the
SVMs in the ensemble is obtained by training each each one of them upon
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a different random subset of the samples collected as explained before.
The subsets are composed of n samples per class, which are randomly
selected from the global training set. The weights of the m SVMs
filters obtained after training are grouped into a tensor of dimensions
(h1 × h1 × c × m).

Generation of feature maps

In this step, each training sample is convolved with the SVMs filters
to generate features maps (see Figure 10). Then, they are fed to a
pooling layer followed by a non linear activation function and by a batch
normalization layer. The output is the input for the next convolution
layer. The same procedure is adopted to build each layer.

Convolution

SVM1

SVM2

SVMm

Feat map 1

Feat map 2

Feat map  m

For each patch

Training samples

Figure 10: Feature maps obtained from the first convolutional layer of CSVM.

Feature maps
Mean of each 

feature map

Pooled over

4 quadrants

Mean of each

quadrant

Concatenation Feature vector

Feat map 1

Feat map 2

Feat map  m

Train the final

SVM

Figure 11: Creation of the training set for the final classifier.
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– Reduction layer: this layer performs the same function as the spatial
pooling in CNNs. It is applied after the convolutional layer and reduces
the spatial size of the feature maps by selecting the most representative
features for the next layers.

– Feature generation and classification: at this step features are
extracted from each patch, which are then fed to a binary SVM
classifier.A five dimensional feature vector is computed from each feature
map. The first element is given by the mean of the entire feature map.
The next four elements are obtained by first splitting each feature into
four quadrants and then averaging each one, as illustrated in Figure 11.
Thus, the dimension of the complete feature vector computed for each
patch is (4 × m) + m), where m is the number of SVMs in each layer.
This process is applied to each training and test sample. Finally, the
SVM assigns the final class label (1, -1).
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4
METHODS

This chapter complements the description presented in chapter 3
about the methods evaluated in this work for deforestation detection: Early
Fusion (EF), Siamese Network (SN), and Convolutional SVM (CSVM).
Implementation details, as well as the particular setups, are clarified in the
following sections.

For all three methods, the inputs are pairs of co-registered patches of two
optical images acquired at different dates, denoted henceforth T1 and T2. The
classification result is assigned to the patch central pixel. A sliding window
approach is adopted to classify all pixels of the target site.

4.1
Early Fusion (EF)

EF is a CNN based model composed of a series of convolutions and
pooling layers, followed by fully connected (FC) layers, whereby the last one
is a Softmax layer having as many outputs as the number of classes. Softmax
assigns posterior probability values to each class in a classification problem,
which add up to 1. For deforestation detection, this layer has two outputs,
related with the "deforestation" and "no-deforestation" classes and the final
label is assigned based on the class corresponding to the maximum probability.

The EF architecture used in this thesis was inspired on the CNN model
proposed in [38] used for detecting changes in urban areas with good reported
performance. The architecture involves the concatenation of both images,
before applying the CNN model. Hence, the two images (T1 and T2) are
stacked along their spectral dimension to generate a unique input image for
patch extraction. Then, each patch is a tensor of size h-by-h-by-2c, denoting
the patch height, width and depth respectively. The procedure is illustrated in
Figure 12.

4.2
Siamese Network (SN)

As explained in chapter 3, a SN architecture contains two identical
subnetworks that estimate the similarity between two inputs. The architecture
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Image T1

Image T2

Concatenation Extract patches CNN model
Deforestation/

No-Deforestation

Figure 12: EF method. Images at different dates (T1 and T2) are concatenated
to produce an image pair; then, patches are extracted and fed to the CNN
model.

used in this work was brought from [38], also applied for urban changing
detection. In this method, both input images are treated independently and
each SN subnetwork receives as input one patch cropped from corregistered
image pair (T1 and T2). The features obtained from each SN subnetwork are
concatenated to produce the final feature vector. This vector is also followed
by two (FC) layers, where the last one is a Softmax layer with two outputs
that assigns it to a class: "deforestation" and "no-deforestation". This process
is summarized in Figure 13.

Image T1

Image T2

Concatenation

CNN model

Deforestation /

No-Deforestation

Extract patches

Extract patches CNN model

Shared

weights

Figure 13: Siamese network. Patches of each image (T1 and T2) are extracted
and fed to the CNN model independently. The two branches in the network
share exactly the same architecture and parameters values.

4.3
Convolutional SVM (CSVM)

Similar to the EF method, the two input images (T1 and T2) are
concatenated along their spectral dimension. Again, as in EF, in the CSVM
approach we classify patches of size h-by-h-by-2c whose classification output is
assigned to the patch central pixel. Next, we describe how the method proposed
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by Bazi and Melgani [49] for image classification was adapted in this work for
pixel-wise deforestation detection.

Construction of training set

Following patches extraction, the training set is created for learning
the SVMs filters. Then, the input patches are divide into nonoverlapping
rectangular sections, which are mini-patches of size h1-by-h1-by-2c. Next, they
are vectorized to form the global training set. This procedure is showed in
Figure 14 -a.

Training the SVMs filter bank

After the creation of the global training set, subsets of m random selected
samples are created to train m SVMs filter. These m subsets are composed of
n samples per class, which are randomly selected from the global training set.
In our study, the value of n corresponds to the ratio of number of training
samples and the amount of SVMs filters (see Figure 14-b).

Training 

patches

Vectorize 

mini-patches
Concatenation

Global training set 

Deforestation

Deforestation

No

Deforestation

Select n samples 

randomly (per class)
Train m SVMs

Extract 

mini-patches

(a) Construction of training set for CSVM. (b) Training the SVMs filter bank.

Figure 14: Procedure to train the SVMs filter bank. Mini-patches are extracted
from input patches and they are vectorized to compose the training set of
SVMs.

Generation of feature maps

In this step, the input patch pairs are convolved with the learned SVM
filters to generate the feature maps, which are fed to a pooling layer followed by
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a non linear activation function. The output is the input to the next convolution
layer. The procedure is repeated until the desired number of layer is reached
(see Figure 15).

Convolution

SVM1

SVM2

SVMm

Feat map 1

Feat map 2

Feat map  m

For each patch

Pooling+ No linear 

activation function
Feature maps

Feat map 1

Feat map 2

Feat map  m

Figure 15: Generation of feature maps.

Classification

As mentioned before, the feature maps obtained in the last layer are fed
again to a final binary SVM classifier that identifies the class label to each patch
central pixel, either as "deforestation" or "no-deforestation". In contrast to the
original CSVM, where a vector of means was obtained, the feature descriptor
is a vector obtained after flattening the output of each convolutional layer.
This procedure was carried out after experimental analysis where the results
presented a better performance as well as a reduction in the inference time.
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5
EXPERIMENTAL ANALYSIS

This chapter reports experiments carried out to evaluate the methods
introduced in the previous chapter. First, the datasets used in the experiments
are presented. Then, the experimental protocol and the parameter setup are
detailed. Finally, the results obtained in all experiments are reported and
discussed.

5.1
Datasets

Two study areas from the Brazilan Biomes were selected to evaluate the
methods. The first one is an Amazon region, and the second one is in Cerrado.
The detailed description of each one is presented in the following.

5.1.1
Amazon Biome

The first study area corresponds to a region of the Amazon Biome, more
specifically localized in the Pará State, Brazil, centered on coordinates of 3°
17’ 23" South and 50° 55’ 08" West, Figure 16. Pará state comprises 26% of
Brazilian Amazon [50] and most of it is covered with dense tropical rainforest.
This territory has faced a significant deforestation process, and its progress
has been tracked and monitored by PRODES [31].

The reference change map used in our experiments refers to the
deforestation occurred between August 2016 and August 2017. This
information was downloaded from the INPE site, which is freely available
at the PRODES database 1. For this reference the following considerations
were taken into account:

– Some polygons were not considered because they refer to areas deforested
in previous years.

– A buffer of two pixels around the polygons of class "deforestation" was not
considered for the training, validation and test. The reason was to avoid
the impact of inaccuracies that may have occurred as photointerpreters
delineated these polygons.

1Available at: http://terrabrasilis.dpi.inpe.br/map/deforestation
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Figure 16: Region of the Brazilian Amazon, located in the Pará State, Brazil.
NIR − G − B composition of the study area at dates T1 (a) and T2 (b). c)
Deforestation reference from 2016 to 2017.

– Areas lower than 6.25 ha (69 pixels) were also not considered in our
evaluation because PRODES data does not record deforestation areas
smaller than that.

The dataset comprises a pair of Landsat 8-OLI, with 30m spatial
resolution. The images were acquired from the United States Geological Survey
(USGS) Earth Resources Observation and Science Center. Additionally, each
scene was atmospherically corrected to each scene, and then, we clipped
them to the target area. The final images are 1100 × 2600 pixels large with
seven spectral bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR-1, and
SWIR-2). The first image is from August 2nd, 2016 and the second one from
July 20th, 2017 (Figure 16). These dates were selected based on PRODES
reference date, which computes the annual deforestation rate from August
1st of each year, during the dry season (June to September), when the cloud
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cover, a major problem over all BLA region, is minimum.

5.1.2
Cerrado Biome

The second study area belongs to the Brazilian Cerrado biome, localized
in the Maranhão State, Brazil, centered on coordinates of 4° 58’ 53" S and
43° 49’ 41" W. Figure 17 illustrates this study area. Maranhão State contains
64% of Cerrado vegetation and has suffered a significant agricultural expansion,
most of it over native vegetation [51]. The deforestation in this biome has been
also monitored by PRODES2.The dataset also comprises a pair of Landsat
8-OLI images with seven spectral bands, pre-processed in the same way as
in the Amazon dataset. The size of the images is 1717 × 1442 pixels. For
this database, the first image is from September 3rd, 2017 and the second
one is from September 22th, 2018. Due to the reference provided by PRODES
was also obtained during the dry season, the reference used in this case does
not contain all the deforested areas. Then, the reference had the following
adaptations:

– Some areas that suffered a deforestation after the PRODES report
were included in the reference. The added polygons were reviewed and
approved by an expert photointerpreter. The final reference change map
of the Cerrado is presented in Figure 17.

– A buffer of two pixels around the samples of class "deforestation" was not
considered in our evaluation to avoid the aforesaid inaccuracy problem
along the borders.

– Areas lower than 1 ha (11 pixels) were not considered in the computation
of the accuracy metrics because PRODES data does not consider
deforested areas smaller than this value.

5.2
Experimental Setup

For all the methods, two optical images acquired at different dates were
used. In addition, the Normalized Difference Vegetation Index (NDVI) was
calculated, as given in Equation 5-1. This index quantifies the presence and
quality of vegetation and it is calculated using bands 5 and 4 for Landsat
8, corresponding to the spectral reflectance measurements acquired in the
near-infrared and red regions.

2Available at: http://www.obt.inpe.br/cerrado/
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Figure 17: Region of the Brazilian Cerrado biome, located in the Maranhão
State, Brazil.NIRGB composition of the study area at dates T1 (a) and T1
(b). c) Deforestation reference from 2017 to 2018.

NDV I = NIR − Red

NIR + Red
(5-1)

The NDVI was stacked along the spectral dimension of the corresponding
images, resulting in images with eight bands. Then, the spectral bands of each
image were normalized to zero mean and unit variance.

The input to EF and CSVM was a tensor of size of 15-by-15-by-16, for
SN a tensor of size of 15-by-15-by-8 in each branch and for SVM a vector of
size of 15 × 15 × 16. The patches were extracted following the overlapping
sliding windows procedure with stride of three. The patch size and the stride
size were selected empirically. In all methods, the input is an image patch and
the classification outcome is assigned to the patch central pixel.

Similar to [39], the input images were divided into tiles. Then, from the
Amazon and Cerrado databases, 15 tiles were obtained as shown in Figure 18
and Figure 19 respectively. From each image, four tiles were used for training,
two tiles for validation, and nine tiles for testing.

As both datasets are highly unbalanced (see Figures 16-c and 17-c), a
data augmentation on deforestation samples was adopted. Each training pair
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Figure 18: Distribution of the Amazon database. The region was divided into
fifteen tiles. Four tiles was used for training (1, 7, 9, 13). Two for validation (5,
12). The rest of the them were used for testing (2, 3, 4, 6, 8, 10, 11, 14, 15).

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Figure 19: Distribution of the Cerrado database. The region was divided into
fifteen tiles. Four tiles was used for training (1, 5, 12, 13). Two for validation
(6, 10). The rest of the them were used for testing (2, 3, 4, 7, 8, 9, 11, 14, 15).

was rotated 90° and flipped over the horizontal and vertical axis. Likewise, an
under-sampling technique on the majority class was applied in order to balance
the number of training pairs for both classes. Just part of all "no-deforestation"
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samples available in the training tiles was randomly selected for training and
validation, to balance both classes.

Table 1 and Table 2 present the number of available patches pairs
of training, validation and test for the Amazon and Cerrado databases.
Tables also present the number of patches obtained after apply the balancing
procedure for both classes, "deforestation" and "no-deforestation".

Table 1: Number of samples in the training, validation and test sets for
Amazon database.

Set Tiles
Available

Def.
Samples

Available
No-def.
Samples

Balanced
Samples
(per class)

Total
Samples

Training 1, 7, 9, 13 2706 78431 8118 16236
Validation 5, 12 963 39697 2889 5778

Test 2, 3, 4, 6, 8,
10, 11, 14, 15

40392 1675608 - 1716000

Table 2: Number of samples in the training, validation and test sets for
Cerrado database.

Set Tiles
Available

Def.
Samples

Available
No-def.
Samples

Balanced
Samples
(per class)

Total
Samples

Training 1, 5, 12, 13 4182 65717 12546 25092
Validation 6, 10 663 34658 1989 3978

Test 2, 3, 4, 7, 8,
9, 11, 14, 15

68983 1416278 - 1485261

The network architectures used to implement the EF and SN
approaches was adapted from [37] and [38]. The architecture is composed
of three convolutional layers (Conv) with ReLU as activation function, two
Max-pooling (MaxPool) layers and two Fully Connected layers (FC), being
the last one a softmax with two outputs, associated to "deforestation" and
"no-deforestation" classes. The kernels and output size of each layer are
illustrated in Figure 20. For training we used the following setup: batch size
equals to 32 with 100 number of epochs, early stopping to break after 10
epochs without improvement (over the validation set) and a dropout with
rate set to 0.2 in the last fully connected layer. In contrast to [38], where
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Average Stochastic Gradient Descent (ASGD) was used, in this work the
Adam optimizer was employed, which presented a better performance in the
preliminary experiments with learning rate of 10−3 and weight decay of 0.9.
As loss function we used the binary cross entropy.
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Figure 20: Architecture of EF and SN.

For the CSVM approach, the architecture comprised three convolutional
layers (Conv) with ReLU activation function and three Max-pooling
(MaxPool) layers. The output size from each layer is illustrated in Figure 21.
In this method and for the baseline, the validation samples were added to
the training set. For the computation of the weights of the SVM filters, the
multicore Liblinear software package [52] was used. The parameter setup of
the CSVM was: stride equal to one for the Conv and MaxPool layers, 12
SVMs used in each Conv layer. The global training was splitted between the
number of SVM, in such a way that each SVM has the same number samples
for both classes. The size of the mini-patches used for learning the SVMs was
equal to 3 × 3 × 16 for the first convolutional layer and 3 × 3 × 12 for the
second and third layers. These parameters were selected after experimental
analysis. Finally, the estimation of the penalty parameter C for each SVM was
performed via a threefold cross-validation procedure in the range [10−1, 103].

The buffer of both references was obtained applying the morphological
dilation, using a disk as structuring elements with radius equal to two. This
buffer creates an outer edge, and the patches with the central pixel in this
region were not considered for training and validation samples, as well as to
obtain the metrics from the test set.
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Figure 21: Architecture of CSVM.

Influence of the number of training samples

In order to evaluate the influence of the number of training samples, three
additional scenarios were considered, using training samples from a single tile,
from two tiles, from three tiles and the initial training set from four tiles,
denoted as N1, N2, N3, and N4 respectively. The tiles used in each scenario
were selected based on the condition N1 < N2 < N3 < N4. For EF and SN
methods, validation set (val) was used to stop the training once the loss starts
to increase (early stopping), but for CSVM and SVM the samples in this set
were added to training set (tr). The number of training samples for the Amazon
and Cerrado databases are presented in Table 3 and Table 4, respectively.

Table 3: Training tiles used for the Amazon database.

Training
Set

Tiles
Available

Def.
Samples

Available
No-def.
Samples

Balanced
Samples
(per class)

Total
Samples
(tr+val)

1 Tile 13 239 20306 717 1434+5778
2 Tiles 1, 13 709 40515 2127 4254+5778
3 Tiles 1, 7, 13 1807 59102 5421 10842+5778
4 Tiles 1, 7, 9, 13 2706 78431 8118 16236+5778
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Table 4: Training tiles used for the Cerrado database.

Training
Set

Tiles
Available

Def.
Samples

Available
No-def.
Samples

Balanced
Samples
(per class)

Total
Samples
(tr+val)

1 Tile 5 671 17370 2013 4026+3978
2 Tiles 5, 13 1240 33760 3720 7440+3978
3 Tiles 1, 5, 13 2287 50273 6861 13722+3978
4 Tiles 1, 5, 12, 13 4182 65717 12546 25092+3978

5.3
Accuracy Assessment

The metrics selected to evaluate the results were F1-Score, Overall
Accuracy (OA) and Alert Area (AA). These metrics are obtained from
the Confusion matrix (CM), which is a common scheme to measure the
performance of a classification algorithm. Each row of the matrix represents
the predicted class sample,s while the columns represent the actual samples of
each class. Table 5 shows a typical CM for a binary classification problem.

Table 5: Confusion matrix for a binary classification problem.

Actual
positive (P )

Actual
negative (N)

Predicted
positive

tp fp

Predicted
negative

fn tn

True positives (tp) are defined as the correct classifications of the
interest class, False positives (fp) refer to the samples erroneously assigned
to the interest class. Analogously, true negatives (tn) and false negatives (fn)
correspond to samples correctly and incorrectly assigned to the complementary
class, respectively. P and N correspond to the total samples of the positive
and negative classes to predict, which in this work represent the "deforestation"
and "no-deforestation" classes respectively.

– Overall Accuracy (OA): is a global metric that indicates the percent
of samples correctly classified with respect to the total samples. This
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metrics is expressed as a percent, and it varies in a range of 0 to 1, being
0% the worst classification and 100% a perfect classification. It is defined
by:

OA = tp + tn

P + N
× 100 (5-2)

– Precision, also known as Correctness, represents the proportion of
samples assigned by the classifier to the interest class, which truly belongs
to the that class.

Precision = tp

tp + fp
(5-3)

– Recall, also known as Completeness, gives the proportion of all samples
of the interest class recognized by the classifier as such:

Recall = tp

tp + fn
(5-4)

– F1-score: is given by the harmonic mean of Precision and Recall and it
also varies in a range of 0 to 1. This metric is defined by:

F1 − score = 2 × Precision × Recall

Precision + Recall
× 100 (5-5)

– Alert Area: this metric is computed to measure portion of the area being
monitored that comprises the samples classified as the interest class. The
above with the aim to quantify how much the methods reduce the human
effort during the photointerpreter tasks. We defined this metric by the
rate of tp and fp between the total P and N samples in the test set.

AA = tp + fp

P + N
× 100 (5-6)

5.4
Results

The experimental results are presented in the following subsections, first
for Amazon, then for Cerrado. For both databases, we ran five times each
experiment and the results presented a variance about ±1 .
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5.4.0.1
Amazon Biome

Figure 22 summarizes the results of the experiments on the Amazon
biome in terms of F1-score for the deforestation class. The Figure shows
that SN and EF achieved the best performance in terms of F1-score in all
experiments. As expected, the methods improved their performance as the
number of training samples increased. However, CSVM was only able to reach
the baseline performance in the last experiment, when four tiles were used
for training. It presented low scores in comparison with the other methods,
as well as different behavior in each scenario. Using a single tile for training,
the performance was similar after the second and the third layer; using two
and four tiles for training, the best performance was obtained after the second
layer and using three tiles for training, the performance decreased as more
layers were added.

The F1-score recorded in the first scenario, using a single tile for training
was equal to 46%, 51% and 53%, 40%, 43%, 43.5% for SVM, EF, SN and
CSVM (after the first layer (L1), second layer (L2) and third layer (L3)),
respectively. EF and SN outperformed SVM in 5% and 7%, respectively, but
not CSVM. When two, three and four tiles were taken for training, the SN and
EF presented better performance than SVM and CSVM, with a gain margin
of about 10%. With four training tiles, EF and SN outperformed SVM in 13%
and 11%, respectively.
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Figure 22: F1-score of Amazon Biome obtained from SVM, EF, SN, and CSVM
using one, two, three, and four tiles for training.

The results in terms of Overall Accuracy (OA) are presented in Figure 23.
Similar to the F1-score, the results improved when the number of training tiles
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increased. In all scenarios, scores above 90% were achieved. The scores of EF
and SN went from about 95%, for one tile, to 98% when four tiles were used,
while SVM and CSVM remained in the range of 94% and 96%. Again, CSVM
presented lower scores in comparison to other methods and its performance was
similar to F1-score in each scenario. However, the higher values for OA were
related to the higher number of no-deforestation samples that were correctly
classified. Indeed, about 97% of the test area corresponds to "no-deforestation".
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Figure 23: Overall Accuracy of Amazon Biome obtained from SVM, EF, SN,
and CSVM using one, two, three, and four tiles for training.

Figures 24, 25, and 26 show the NIR-G-B composition (Near Infrared,
Green and Blue bands) at both dates (T1 and T2), the reference and the
probability maps of the second, sixth and, fourteenth tiles, respectively. These
tiles are part of the test set. Columns correspond to methods SVM, EF, SN,
and CSVM (after layer 2) and rows correspond to the output of each one
using one, two, three and four tiles for training. Blue color represents the lowest
probability of deforestation, while Red color represents the highest probability.

As in the F1-score and OA plots, the probability maps improved and the
salt-and-pepper effect reduces as the number of training tiles increased. In the
first scenario, when a single tile for training was used, SVM presented more
false deforestation detection, followed by CSVM, causing a more noticeable
salt-and-pepper effect. However, the CSVM was more confident in comparison
to SVM, which delivered more probability values in an intermediate range.
Actually, among all tested methods, SVM was the most uncertain in its results.
Similar to CSVM, the probability output of EF and SN were close to one
(deforestation) and zero (no-deforestation). Hence, these methods were more
confident about their predictions. Besides, all methods presented probabilistic
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values in the intermediate range mainly close to the polygon borders, which
could result from inaccuracies in the delimitation of deforested areas in the
reference.

Figure 24: Predicted maps of the second tile obtained from SVM, EF, SN and
CSVM using one, two, three, and four tiles for training.
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Figure 25: Predicted maps of the sixth tile obtained from SVM, EF, SN and
CSVM using one, two, three, and four tiles for training.

DBD
PUC-Rio - Certificação Digital Nº 1721745/CA



Chapter 5. EXPERIMENTAL ANALYSIS 51

Figure 26: Predicted maps of fourteenth tile obtained from SVM, EF, SN and
CSVM using one, two, three, and four tiles for training.

Next, we evaluate the use of the methods as an alarm scheme. In this
scheme, the underlying classifier would indicate areas where deforestation is
likely to have occurred. A photointerpreter would then visually analyze on
the image, or an inspector could be sent to the indicated areas to check what
was real deforestation and what was just false alarm. The main benefit of this
procedure would be to restrict the human effort to just a portion of the area
being monitored. On the other hand, in this scheme part of the deforested
areas could not be detected by the classifier and would go unnoticed. Thus,
two metrics are critical in this analysis: first, the proportion of monitored
area flagged as potentially deforested and, second, the proportion of total
deforestation concentrated in the areas indicated by the classifier. The first
metric is defined in Equation 5-6, whereas the second metric is the Recall

defined in Equation 5-4.
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Both metrics will depend on the deforestation probability value assigned
by the classifier above which a site should deserve attention. The higher this
threshold, the smaller the area under alarm and the smaller the Recall. The
appropriate threshold value will be determined by the operational demands at
each time and each region.

Therefore, the following analysis focuses on the behavior of these two
metrics as the deforestation probability threshold varies.

Specifically, we present the curves Recall versus Alert Area for each
method. Each point in the curve corresponds to a threshold imposed on the
deforestation probability produced by each tested method. Small area to be
observed at a high Recall, is the desired profile.

In the first case, using one tile for training, all methods achieved Recall

values of about 90% when looking only at 10% of the whole imaged area. It
means that the 90% of the true deforestation correctly identified are contained
in the 10% of the image. Hence, instead of looking at the entire image, the
analyst would only have to focus on 10% of it, reducing the human work in
90% .

As expected, as Recall increased the area to be observed also increased.
But, in this particular case, CSVM (after the third layer) presented the best
results, when the Recall was between 88% and 96% (see Figure 27-a). However,
we didn’t manage to record values for CSVM when Recall exceeded 96%
because the corresponding threshold values in such case were very close to
zero, all samples were classified as deforestation and the area to be observed
went up to 100% as can be observed in Figure 27-b.
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Figure 27: Recall vs Area classified as deforested for Amazon biome using one
tile for training.
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Using two, three, and four tiles for training, all methods presented a
similar profile until 96% Recall but, after this value, SVM presented the best
performance. It managed to classify more deforested samples correctly, with
minimum increase in the area to be observed. Analogous to results for one
training tile, when thresholds values are very close to zero, all samples were
classified as deforestation and the Recall became 100%, as well as the area to
be observed.

80 85 90 95 100
0

10

20

30

40

50

60

70

80
(a)

SVM
Early Fusion
Siamese Network
CSVM 1 Layer
CSVM 2 Layer
CSVM 3 Layer

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
(b)2 Tiles for training

Figure 28: Recall vs Area classified as deforested for Amazon biome using two
tiles for training.
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Figure 29: Recall vs Area classified as deforested for Amazon biome using three
tiles for training.
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Figure 30: Recall vs Area classified as deforested for Amazon biome using four
tiles for training.

5.4.0.2
Cerrado Biome

The results for Cerrado in terms of F1-score and OA is summarized
in Figures 31 and 32, respectively. Similar to the Amazon database, EF and
SN presented the best performance in all experiments. Using a single tile for
training, EF and SN outperformed SVM in 3% and 2% respectively. The best
performance achieve by CSVM was 51%, which was obtained after the first
layer. However, it did not reach the baseline. Using two tiles for training,
EF outperformed SVM with a larger difference, about 7%, and also SN, but
with a slight difference of 1%. In this case, SVM outperformed CSVM in 9%.
Using three tiles for training, EF and SN outperformed SVM in 5% and 3%,
respectively, and CSVM in the second layer came very close to SVM. In the
last scenario, using four training tiles, the DL based methods were better than
SVM. EF and SN and CSVM (first layer) achieved F1-score of 77% 78% and
76%, overcoming SVM in 2%, 3%, and 1% respectively.
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Figure 31: F1-score of Cerrado Biome obtained from SVM, EF, SN, and CSVM
using one, two, three, and four tiles for training.

In terms of OA, the results presented a similar trend observed on
F1-score. Scores above 90% were achieved in all scenarios. However, EF
and SN obtained the best performance in all the experiments. Analogous to
the experiments on the Amazon database, CSVM presented lower scores in
comparison with other methods. Only in the last case, using four training
tiles, CSVM matched SVM at 97%. As in the Amazon experiments, the higher
values achieved in term of OA were related to the higher number of correctly
classified no-deforestation samples.
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Figure 32: Overall Accuracy of Cerrado Biome obtained from SVM, EF, SN,
and CSVM using one, two, three, and four tiles for training.

Figures 33, 34, and 35 show the NIR-G-B composition (Near Infrared,
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Green and Blue bands) at both dates (T1 and T2), the reference and the
probability maps of the second, sixth and, fourteenth tiles, respectively. Again,
columns correspond to methods SVM, EF, SN, and CSVM (after layer 1) and
rows correspond to the results one, two, three and four training tiles. Blue
represents the lowest probability of deforestation, while Red represents the
highest probability.

Like the results recorded on Amazon database, the probability maps
improve and the salt-and-pepper effect reduces as the number of tiles for
training increase. If we observe the first scenario, where a single tile is used
for training, all maps present a large number of false positives and a notable
salt-and-pepper effect. Likewise, EF, SN, and CSVM are more confident,
assigning values close to one for pixels of class "deforestation", and values close
to zero to pixels of "no-deforestation" class. Contrarily, the probability maps
delivered by SVM contain pixels with probability values in the intermediate
range.

As observed in the previous experiment series, the probability maps show
that all methods are less confident, i.e., present probability values around 50%,
close to the borders of the reference polygons. As mentioned before, this is
possibly related to inaccuracies in the delimitation of deforestation polygons
in the reference.
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Figure 33: Predicted maps of the second tile obtained from SVM, EF, SN and
CSVM using one, two, three, and four tiles for training.
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Figure 34: Predicted maps of the eighth tile obtained from SVM, EF, SN and
CSVM using one, two, three, and four tiles for training.
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Figure 35: Predicted maps of the eleventh tile obtained from SVM, EF, SN
and CSVM using one, two, three, and four tiles for training.

The analysis under the perspective of an alarm system are presented
in Figures 36, 37, 38, and 39 for one, two, three and four training tiles,
respectively. For this database, in the four scenarios, the best performance
was obtained by EF. Although with a single training tile the performance was
similar for all methods, EF was slightly superior. Using two tiles for training,
EF, also was also the best perfoming method, followed by CSVM and SVM,
which presented very similar results. Finally, using three and four tiles for
training, EF and CSVM achieved better results: they correctly classified more
samples of deforested class and the area to be observed is lower. According
to the graphs at 95% of Recall, the area to be observed is reduced to 10%
of the entire image (see Figures 36-a, 37-a, 38-a, and 39-a). In the same case
of the Amazon database, for threshold values close to zero, all samples are
classified as deforestation class, the value of Recall is about 100% and the area
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to be observed is the entire image, as can be seen in Figures 36-b, 37-b, 38-b,
and 39-b.
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Figure 36: Recall vs Area classified as deforested for Cerrado biome using one
tile for training.
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Figure 37: Recall vs Area classified as deforested for Cerrado biome using two
tiles for training.

DBD
PUC-Rio - Certificação Digital Nº 1721745/CA



Chapter 5. EXPERIMENTAL ANALYSIS 61

85 90 95 100
0

10

20

30

40

50
(a)

SVM
Early Fusion
Siamese Network
CSVM 1 Layer
CSVM 2 Layer
CSVM 3 Layer

70 80 90 100
0

0.2

0.4

0.6

0.8

1
(b)3 Tiles for training

Figure 38: Recall vs Area classified as deforested for Cerrado biome using three
tiles for training.
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Figure 39: Recall vs Area classified as deforested for Cerrado biome using four
tiles for training.
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6
CONCLUSIONS

This work reported an evaluation of three state-of-the-art deep learning
techniques for deforestation detection: Early Fusion (EF), Siamese Network
(SN) and Convolutional SVM (CSVM). Additionally, the performance of these
methods was compared against a baseline based on probabilistic Support
Vector Machine (SVM), which is one of most popular machine learning
techniques for change detection.

Experiments were carried out using two areas of the Brazilian biomes.
The first one corresponds to a region of the Amazon biome, and the second one
corresponds to the Cerrado biome. The references used in this work were taken
from the Amazon Deforestation Monitoring Project (PRODES) developed
by the National Institute for Space Research (INPE). The methodology
employed to accomplish this task involves significant human intervention. This
dissertation aimed at reducing human intervention, assessing state-of-the-art
method towards a more automatic deforestation detection.

The experimental analysis relied on two LANDSAT 8/OLI optical images
acquired at dates about one year apart from each other. Four different scenarios
were considered, using one, two, three, and four tiles training.

EF and SN presented the best performance in most experiments. In few
cases, CSVM outperformed SVM. The accuracy obtained by EF and SN in
experiments were up to 95% in terms of Overall Accuracy (OA) and up to
63% in terms of F1-score for Amazon, and up to 97% in terms of OA and
78% in terms of F1-score for Cerrado, demonstrating the capacity of the deep
learning methods to detect deforestation. As expected, the performance of all
methods increased with the number of training samples. This trend was more
remarkable for EF and SN .

Besides, the probability maps indicated that EF, SN and CSVM were
more confident in their outcomes. Most posterior probabilities delivered by
these methods were concentrated close to one and zero, for deforestation and
non-deforestation, respectively, whereas the posteriors computed by SVM took
intermediate values over comparatively many areas.

The main motivation for including CSVM in this study was the good
performance reported in a recent paper under small training sample size.
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The experimental analysis did not confirm this expectation. Indeed, in our
experiments CSVM was consistently outperformed by EF and SN, and in few
cases also by SVM.

Regarding CSVM, some additional experiments for the final classification
layer were performed. The first one was the usage of the flattening feature
maps obtained after each convolutional layer to train the binary SVM, instead
of pooling them over four quadrants and calculate the means. The second
experiment involved the selection of the final classifier. We tested a Softmax
layer classifier and SVM with an RBF (Radial Basis Function) and a linear
kernel. However, the best results were obtained using a linear kernel.

It is worth to mention that despite CSVM did not overcome the
baseline in most cases, it presents an advantage concerning EF and SN, it
is a CPU-based method, then it does not require GPU to carry out the
experiments. GPU is much more costly, and it relies on powerful supplementary
equipment to support it.

Although the evaluated methods were tested deforestation detection,
they can be easily adapted to other change detection applications. These
methods are effective research directions to monitor and control environmental
issues that nowadays is of paramount importance.

Future directions

Future works are intended to fine-tune the hyperparameters of the tested
methods in order to reduce the false deforestation rate, as well as to evaluate
others deep architectures, such as Fully Convolutional Networks (FCN) and
Recurrent Neural Networks (RNN).

An additional consideration is to explore other loss functions, for
instance, with focus on optimizing a function in terms of Recall and area
with deforested regions to be observed. This, with the goal of reduce the
visual inspection for the analyst to identify the deforested areas with a better
accuracy.

Another investigation direction relates to the usage of freely available
data of other sensors. An attractive alternative is the Sentinel-2 data that
provides better temporal and spatial accuracy than LANDSAT-8. Also,
the usage of Synthetic Aperture Radar (SAR) would allow monitoring
deforestation independent on weather conditions. Indeed, the Brazilian biomes
are covered by clouds most of the year, which prevents the use of optical data.
Under these conditions, SAR data becomes an attractive alternative.

A critical issue is still the amount of training samples required by deep
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learning based methods to achieve their full potential. Techniques based on
domain adaptation seem another promising research direction to mitigate this
hindrance.
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