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Abstract

Tenorio, Gabriel Lins; Caarls, Wouter (Advisor). Applications
of Deep Learning for Crop Monitoring: Classification of
Crop Type, Health and Maturity. Rio de Janeiro, 2019. 112p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.

Crop efficiency can be improved by continually monitoring their state
and making decisions based on their analysis. The data for analysis can
be obtained through images sensors and the monitoring process can be
automated by using image recognition algorithms with different levels of
complexity. Some of the most successful algorithms are related to supervised
Deep Learning approaches which use a form of Convolutional Neural
Networks (CNNs). In this master’s dissertation, we employ supervised deep
learning models for classification, regression, object detection, and semantic
segmentation in crop monitoring tasks, using image samples obtained
through three different levels: Satellites, Unmanned Aerial Vehicles (UAVs)
and Unmanned Ground Vehicles (UGVs). Both satellites and UAVs levels
involve the use of multispectral images. For the first level, we implement a
CNN model based on transfer learning to classify vegetative species. We also
improve the transfer learning performance by a newly proposed statistical
analysis method. Next, for the second level, we implement a multi-task
semantic segmentation algorithm to detect sugarcane crops and infer their
state (e.g. crop health and age). The algorithm also detects the surrounding
vegetation, being relevant in the search for weeds. In the third level, we
implement a Single Shot Multibox detector algorithm to detect tomato
clusters. To evaluate the cluster’s state, we use two different approaches:
an implementation based on image segmentation and a supervised CNN
regressor capable of estimating their maturity. In order to quantify the
tomato clusters in videos at different maturation stages, we employ a Region
of Interest implementation and also a proposed tracking system which uses
temporal information. For all the three levels, we present solutions and
results that outperform state-of-the art baselines.

Keywords
Deep learning; Convolutional neural networks; Transfer learning;

Pixel-wise semantic segmentation; Precision agriculture;
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Resumo

Tenorio, Gabriel Lins; Caarls, Wouter. Aplicações de Aprendi-
zado Profundo no Monitoramento de Culturas: Classifica-
ção de Tipo, Saúde e Amadurecimento de Culturas. Rio
de Janeiro, 2019. 112p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.

A eficiência de culturas pode ser aprimorada monitorando-se suas condi-
ções de forma contínua e tomando-se decisões baseadas em suas análises.
Os dados para análise podem ser obtidos através de sensores de imagens e
o processo de monitoramento pode ser automatizado utilizando-se algorit-
mos de reconhecimento de imagem com diferentes níveis de complexidade.
Alguns dos algoritmos de maior êxito estão relacionados a abordagens su-
pervisionadas de aprendizagem profunda (Deep Learning) as quais utilizam
formas de Redes Neurais de Convolucionais (CNNs). Nesta dissertação de
mestrado, empregaram-se modelos de aprendizagem profunda supervisiona-
dos para classificação, regressão, detecção de objetos e segmentação semân-
tica em tarefas de monitoramento de culturas, utilizando-se amostras de
imagens obtidas através de três níveis distintos: Satélites, Veículos Aéreos
Não Tripulados (UAVs) e Robôs Terrestres Móveis (MLRs). Ambos satélites
e UAVs envolvem o uso de imagens multiespectrais. Para o primeiro nível,
implementou-se um modelo CNN baseado em Transfer Learning para a
classificação de espécies vegetativas. Aprimorou-se o desempenho de apren-
dizagem do transfer learning através de um método de análise estatística
recentemente proposto. Na sequência, para o segundo nível, implementou-se
um algoritmo segmentação semântica multitarefa para a detecção de lavou-
ras de cana-de-açúcar e identificação de seus estados (por exemplo, saúde
e idade da cultura). O algoritmo também detecta a vegetação ao redor das
lavouras, sendo relevante na busca por ervas daninhas. No terceiro nível,
implementou-se um algoritmo Single Shot Multibox Detector para detecção
de cachos de tomate. De forma a avaliar o estado dos cachos, utilizaram-se
duas abordagens diferentes: uma implementação baseada em segmentação
de imagens e uma CNN supervisionada adaptada para cálculos de regressão
capaz de estimar a maturação dos cachos de tomate. De forma a quanti-
ficar cachos de tomate em vídeos para diferentes estágios de maturação,
empregou-se uma implementação de Região de Interesse e propôs-se um sis-
tema de rastreamento o qual utiliza informações temporais. Para todos os
três níveis, apresentaram-se soluções e resultados os quais superam as linhas
de base do estado da arte.
Palavras-chave
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Imagination is more important than knowl-
edge. For knowledge is limited, whereas imag-
ination embraces the entire world, stimulating
progress, giving birth to evolution.

Albert Einstein, “ What Life Means to Einstein”.
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1
Introduction

For many decades crop monitoring has been done periodically by farmers,
aiming as the main tasks, to identify crop growing problems, health and
diseases as well as find other plants that impair the crop development. Usually
visual perception is not sufficient to verify the crop state, being necessary the
farmer’s approach and touch, which takes time in large-scale environments and
is impractical in hard-to-reach areas. In such cases, there is the possibility of
applying unmanned remote systems that are machines equipped with sensors
capable of collecting massive amounts of data from different view points. Some
of the unmanned systems use multispectral cameras that help to provide better
representations of vegetation areas [2, 3, 4]. A few examples of these systems are
Satellites, Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles
(UGVs) which differ in terms of captured image level. The Fig. 1.1 shows an
example of sugarcane crop image taken from three different imagery levels.

(a) (b) (c)

Figure 1.1: Example of three different imagery levels for sugarcane crop:
(a) Satellites; (b) UAVs; (c) UGVs.

Regarding conventional satellite imagery, UAVs encompass a smaller
sampling area, but have higher update speed for scene capture. On the other
hand, compared to scenes captured by UGVs, UAVs encompass larger areas
and have more agility to capture images. Compared to the other two imagery
levels, UGVs imagery provides a higher target resolution due to the proximity
of the camera to the target and below the canopy.

In this master’s dissertation, we employ the different systems (Satellites,
UAVs and UGVs) in, respectively, three monitoring applications: vegetation
species, sugarcane crop and tomato clusters. The use of the remote systems
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Chapter 1. Introduction 20

can provide a higher monitoring frequency, resulting in a continuous crop
monitoring, which may help in obtaining a more precise and faster crop analysis
and diagnosis. The monitoring process can be automated by implementing
algorithms that can vary from statistical methods, common image processing
methods up to the most advanced supervised learning techniques [5, 6, 7, 8, 9].
As a consequence, farmers can obtain better agricultural crop management
and make decisions to increase the crop efficiency, decrease the crop loss and
improve the production.

With the current constant improvement in Graphics Processing Units
(GPUs) and the development of supervised Deep Learning (DL) architectures,
applications involving DL in image recognition have been proven to be very
successful [10]. DL approaches that involve raw image data as input make use
of Convolutional Neural Networks (CNNs). Some relevant types of supervised
models that use convolutional architectures are binary classification, regres-
sion, object detection and semantic segmentation. The binary classification
gives the probability of a given image to belong to predefined classes (e.g.
vegetation species) while the regression learns how to estimate and interpo-
late single or multiple output values for an input image in a given task (e.g.
estimate fruit maturity). Object detection uses regression to locate (through
predefined geometric shapes) and binary classification to classify multiple ob-
jects in the image. Semantic segmentation is able to divide the image into
smaller semantically similar regions, classifying an image at the pixel level.

1.1
Research Theme

The initial ideas of this research theme were based on a project1 to be
developed in the Pontifical Catholic University of Rio de Janeiro. The project
is about the development of an agricultural inspection system as well the
design and construction an autonomous Unmanned Aerial Vehicle (UAV), fed
by solar energy, as a tool for long term environmental monitoring missions.
One of the tasks executed by the autonomous vehicle takes into account
the image capturing of vegetation areas, which are transmitted in real time
to a monitoring central. The information is then processed with the use of
computers and algorithms that identify and classify plant species. During the
master’s degree the UAV was not available, but a public dataset was found
and used in the first step of the research project. It provided multispectral
vegetation images, captured by a satellite. Then, we followed the classification

1VANT autônomo, alimentado por energia solar, para missões de monitoramento de
longa duração. Executing Institution: Pontifical Catholic University of Rio de Janeiro –
PUC- Rio. FAPERJ Notice Nº 04/2016
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Chapter 1. Introduction 21

task of plant species by using supervised deep learning algorithms (Chapter
2).

Next, we received an invitation to participate in the “Vision-based con-
trol with applications to robotic systems” project, that took place in Norway as
well in Brazil, where the collaboration project2 between the Brazilian (PUC-
Rio) and Norwegian (NMBU) universities has supported all travel expenses
for the three events. During the first participation, the development project
of the Norwegians’ autonomous modular robots (Thorvald) was presented and
a growing need for intelligent monitoring of agricultural fields to accompany
this autonomy was observed. We implemented image processing algorithms to
identify the health in strawberry leaves using the Normalized Difference Veg-
etation Index (NDVI) [11] by producing composed resultant images between
a pair of infrared and color cameras. During the second visit, we collected the
first Dataset, through the use of a UAV, from a sugarcane farm located in
Presidente Prudente in São Paulo state in Southeast Brazil where we verified
agricultural challenges and proposed solutions based on deep learning (Chap-
ter 3). We also collected new data in a different location at Embrapa’s Farm at
Rio de Janeiro of Southeast Brazil to perform new tests of the proposed solu-
tions. The third visit made it possible to collect the second Dataset captured
on a tomato farm (greenhouse) located in the municipality of Vestfold county
in Norway where we applied deep learning algorithms and proposed computa-
tional techniques to help to improve the production efficiency (Chapter 4).

1.2
Contributions of this Dissertation

We investigate the possibilities of employing Deep Learning models for
image recognition in three different datasets at the three imagery levels,
combining existing techniques and practical applications. Additionally, we
present different approaches and methodologies for these models, towards crop
monitoring applications. We also provide a literature review for the relevant
types of supervised models mentioned.

This project is divided into three sub-projects, whose main contributions
are shown below. The first sub-project resulted in a paper publication in an
international conference3 while the second and third sub-project are intended
to be submitted and published in journals.

2UTFORSK Partnership Programme from The Norwegian Centre for International
Cooperation in Education (SIU), project number UTF-2016-long-term/10097.

3ICAART 2019, "11th International Conference on Agents and Artificial Intelligence",
2019. Available: http://www.icaart.org/?y=2019 [May 15, 2019].

http://www.icaart.org/?y=2019
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Sub-project 1

– Verify the ability of CNNs to learn how to classify plant species from
scarce satellite imagery;

– Propose a statistical dispersion method, based on the interclass stan-
dard deviation, to improve transfer learning performance by providing
information on the learning limit to be transferred;

– Implement a distributed learning method to increase CNN convergence
speed in CPUs.

Sub-project 2

– Examine the learning of DL pixel-wise semantic segmentation algorithms
applied to sugarcane crops using images from UAVs.

– Verify how to preprocess different color bands images from a pair of
cameras to train the DL model;

– Propose a multi-task configuration for the semantic segmentation algo-
rithm to identify the soil, the surrounding vegetation and the sugarcane
crops, inferring their health and age.

Sub-project 3

– Check feasibility of DL object detection algorithms to locate cherry
tomato clusters in videos;

– Implement CNN regression models and image analysis segmentation
techniques to estimate the fruit’s maturity;

– Implement a method based on region of interest and propose a tracking
system that uses temporal information to count the number of tomato
clusters in image sequences.

1.3
Background

In other to better understand the concepts explained in this project, we
recommend some Deep Learning books for beginners and intermediate readers
in this area. The first recommendation is available online [12]. The second and
third recommendations are, respectively, the classic [13] and the current [14]
deep learning books.
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1.3.1
Supervised Models

The image processing algorithms implemented in this project involve the
use of supervised models. The term supervised learning means that the models
are able to learn, through training steps, mathematical functions capable of
mapping input-output pairs based on training examples (labelled dataset)
[15, 16]. The quality of the function is defined by the model’s architecture
while their parameters are adjusted (updated) during training by minimizing
loss functions to decrease the errors between the output mapped and the output
labelled for each input. Before the training process, the labeled data is usually
split into training (DTr), validation (DVal) and test (DTs). During the training
phase, the models are trained with DTr and evaluated with DVal. After the
training, the inference model is obtained which allows to perform predictions
on the DTs and evaluate the model’s generalization capacity.

1.3.2
Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural network architectures,
commonly applied to image datasets, that have convolutional layers. Each
convolutional layer is filled with parallel filter banks (also called trainable
kernels) in which parameters are updated during the training phase. To
understand how the convolution process works, first we need to verify how
the kernels are applied to an input volume (e.g. RGB image). Each kernel
can be represented by a 3x3xN cell grid (matrix 3x3 with N channels), where
each value in this cell is trainable and its number of channels is equal to
the number of channels of the input volume. Each kernel can be interpreted
as a sliding window that, mathematically, performs a weighted multiplication
through the entire input volume and its channels, covering all the image pixels
and producing an output volume. Another trainable parameter is the bias, a
scalar value that adds a constant number to all the pixels in the kernels. Each
kernel produces an output volume and each one is stacked, forming the feature
maps. In practice, all the kernels sliding windows and the bias are applied
in parallel at once, which performs a convolution. This convolution process is
illustrated in Fig. 1.2.

In order to learn how to solve a given image-recognition task from a
labelled dataset, CNNs use these parallel filter banks and auxiliary operators
to filter the images in the search of specific patterns (features). Fig. 1.3 shows
an example of CNN.

The trainable filters assist in obtaining models robust to image ad-
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Figure 1.2: Example of a convolution process applied to an input volume V
(RGB image), for the first convolutional layer, using two kernels (represented
by the W0 and W1 yellow cell grids) and their respective bias b0 and b1. In this
example we assume zero padding, therefore the input dimensions (w and h) do
not change after the convolution process. The sliding windows are represented
in red. The thick and dotted lines represent, respectively, the production of the
output volumes for the (W0 + b0 ·J3)∗V and (W1 + b1 ·J3)∗V operations (J3 is
a 3x3x3 matrix of ones). The output volumes are stacked together, producing
feature maps that become the new input volume for the next convolutional
layer.

verse conditions (e.g. illumination variation, noise and non-homogeneous back-
grounds) given as challenges in image processing tasks. Some feature levels ex-
amples are the generic, low-level and high-level features. The generic features
can be illustrated as color blobs, edges and corners that are present in distinct
datasets. The low-level features can be understood as textures that may be
different between datasets while the high level features are more abstract and
often specific to a dataset.

In common CNNs (e.g. VGG-16 [10]), after the last convolutional layer a
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Figure 1.3: Example of an usual Convolutional Neural Network. The convo-
lutions represent the parallel filter banks while the subsampling represent the
auxiliary operators. The features obtained at each convolutional layers are are
indicated as feature maps.

fully connected layer is attached which role is to combine the feature maps and
predict the input data referring to predefined targets. An example of predefined
targets are the predefined classes used in classification tasks where each input
image is related to a binary number.

1.4
Organization of the Thesis

This master’s thesis is organized in three main chapters, where each
chapter is related to a sub-project. In the first sub-project (chapter 2), we
implement a supervised classifier based on a pre-trained CNN that allows the
transfer of existing knowledge to a new task. The objective of the classifier is
to identify plant species in a complex and unbalanced multispectral satellite
image dataset. We overcome these challenges by employing data augmentation
and fine-tuning of the CNN. In order to fine-tune the classifier effectively,
the amount of parameters to be transferred and frozen is chosen by a newly
proposed statistical method based on the analysis of the CNN convolutional
layers.

In the following sub-project (chapter 3), we implement a supervised
semantic segmentation algorithm, originally designed to perform pixel-wise
classification for a single target. In this sub-project, we obtain multispectral
image samples of sugarcane fields, with the use of a pair of cameras embedded
in a UAV. We employ computer vision and image analysis algorithms to pre-
process the data, obtaining a dataset that helps to improve the learning of the
model and consequently improve the segmentation performance. The dataset
consists of multi-labelled images containing the information of class (sugarcane,
soil and other plants), sugarcane health (healthy, stressed) and the time since
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the crop was cut. We adapted the original semantic segmentation algorithm
by giving it the ability to learn the three tasks (two classifications and one
regression) in a single model, to increase memory efficiency and convergence
speed compared to the learning of three independent models.

In the last sub-project (chapter 4), we collect terrestrial tomato cluster
videos and capture a certain proportion of snapshots in each video to build the
dataset. The samples are labelled in two ways: cluster position coordinates in
the image and maturity level of each cluster. In order to detect the clusters in
the image, we implement a supervised object detection model. For the maturity
level estimate, the solution follows a supervised CNN and an image analysis
implementation. The CNN, originally designed for classification, is modified
to produce a regression output (continuous value) while the image analysis
method employs image segmentation. In order to count the tomato clusters
in videos for the different maturation levels, we first combine the detection
and evaluations approaches. Next, we employ a region of interest approach
that counts each instance whenever the object crosses a vertical line. In order
to obtain a result robust to occlusion and capable of distinguishing different
clusters, we propose a tracking algorithm that identifies unique clusters based
on their coordinates and maturity levels.
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Improving Transfer Learning Performance: an Application in
the Classification of Remote Sensing Data[1]

Keywords: Deep Learning, Convolutional Neural Networks, Transfer
Learning, Fine Tuning, Data Augmentation, Distributed learning, Cross Vali-
dation, Remote Sensing, Vegetation Monitoring.

Abstract: The present paper aims to train and analyze Convolutional
Neural Networks (CNN or ConvNets) capable of classifying plant species of a
certain region for applications in an environmental monitoring system. In order
to achieve this for a limited training dataset, the samples were expanded with
the use of a data generator algorithm. Next, transfer learning and fine tuning
methods were applied with pre-trained networks. With the purpose of choosing
the best layers to be transferred, a statistical dispersion method was proposed.
Through a distributed training method, the training speed and performance
for the CNN in CPUs was improved. After tuning the parameters of interest in
the resulting network by the cross-validation method, the learning capacity of
the network was verified. The obtained results indicate an accuracy of about
97%, which was acquired transferring the pre-trained first seven convolutional
layers of the VGG-16 network to a new sixteen-layer convolutional network in
which the final training was performed. This represents an improvement over
the state of the art, which had an accuracy of 91% on the same dataset.

2.1
Introduction

Vegetation monitoring can be done by farmers to distinguish plants, check
planting failures and verify vegetation health and growth. The visual distinc-
tion of plants is useful to identify unwanted plants (weed) that deteriorate
the health of several species of vegetation [5]. Such monitoring can be difficult
when the plantation area is large or when it is fenced by plants. A possible
solution is the use of a remote sensing monitoring system using images from
satellites.

Some satellites use multispectral sensors which provide images of the vis-
ible and invisible spectrum. The reflectance of a plant at a certain wavelength
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depends on the flux of radiation that reaches it and on the flux that is re-
flected. This second variable is conventionally observed in the intensity levels
of a plant image in the invisible spectrum of light, as the near infrared spec-
trum is reflected by the cell structure of plants with high magnitude, varying
between different plants [2].

The dataset analyzed in this work was obtained through photo captures
taken by the RapidEye German satellite system, which provides multispectral
data. The dataset contains images from different areas containing four classes
of plants: agriculture, arboreal vegetation, herbaceous vegetation and shrubby
vegetation, present in the Serra do Cipo region in the central area of southern
Brazil [17]. For this task, the green, red and near-infrared bands are appropriate
for distinguishing the classes of interest [17]. Each image taken by the satellite
contains various plant species, making it necessary to consult specialists for
separating and classifying them. Thus, a class distribution of the dataset with
1311 multispectral scenes is obtained.

The recognition of the specie’s patterns was one of the main difficulties
discussed by the original authors regarding the interpretation of the images
contained in the dataset, given their complex intraclass variance and interclass
similarity [17]. These issues make the sample preparation and separation
into groups costly and limited. As a consequence, there are complex and
unbalanced samples so that classification algorithms such as usual ANN
(Artificial Neural Networks), SVM (Support Vector Machine) and decision-
tree provide unsatisfactory results for this task. However, literature shows that
deep learning approaches (i.e. Convolutional Neural Network - CNN ) and other
methods (i.e. data augmentation, transfer learning and fine tuning), have a
much better performance in these cases, because they allow to model and train
a classifier, (e.g. distinguishing vegetation) using images as inputs, even with
scarcity and complexity of data [10]. In this paper, we begin by describing
CNN deep learning models and the motivation to use transfer learning and
fine-tuning methods. Then, the solution strategy for the classification task
is presented along with approaches called data augmentation and cross-
validation, to deal with few and unbalanced data. We also show in theory
and experimentally how hyperparameters for the model, the methods and
the approaches described affect the training performance. In order to train
the model with different layer topologies, a statistical dispersion method is
proposed to evaluate each convolutive layer of the model and help to choose
which layers are the best to be transferred to the fine tune model.

To increase considerably the training speed for the CNN in a CPU,
parallelism operators and a distributed learning method were used, which
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simulates larger minibatches by dividing the data through workers. Our
experiments are then compared to baselines and state of the art approaches,
indicating superior results.

2.2
Theoretical Framework

The convolutional neural network is a type of deep learning architecture that
has recently stood out in the image recognition field achieving a very high
accuracy [10]. The inputs of a CNN classifier are given by digital images, in
the form of tensors, that are brought to feature extractors. Each extractor
performs operations, through filters, in parallel to extract features from the
images starting from more generic, low-level features and culminating in higher
level features that are more specific to the dataset. A second Neural Network is
conventionally placed after the last convolutional layer to operate as a classifier.

As the complexity of the images increases, there is a need to change
CNN hyperparameters. However, as the number of convolutional layers, the
filter size and number of CNN filters are increased, the computational cost
increases significantly [18]. This effect adds difficulties in experimental research
involving real applications, such as those requiring rapid scenario changes 1,2

being necessary to explore the architecture’s parallelism capacity.
An approach called Transfer Learning (TL) [19] may decrease the number

of required operations allowing the transfer of learning, acquired in one
problem, to another problem with similar characteristics. What makes TL more
effective is the possibility of using pre-trained networks such as VGGNet [20],
GoogleNet [21], ResNet [22] and AlexNet [23], which stood out in the challenges
of the Large Scale Visual Recognition Challenge (ILSVRC - ImageNet) for
object detection and image recognition [24].

In models that require more specific classification, as in the scope of this
paper, there is a need for Fine-Tuning (FT ) the model, freezing some layers of
the pre-trained networks and constructing convolutional layers on top of them.

1Drive.ai, "Building the Brain of Self-Driving Vehicles", 2018. Available:
https://www.drive.ai/ [January 29, 2018].

2Descartes Labs, "A data refinery, built to understand our planet", 2017. Available:
https://www.descarteslabs.com/ [August 15, 2017]

https://www.drive.ai/
https://www.descarteslabs.com/
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Figure 2.1: Group of four classes: AGR, FOR, HRB and SHR

Table 2.1: Original Species Samples.
Species #Samples Proportion (%)
AGR 47 3.58
FOR 962 73.37
HRB 191 14.57
SHR 111 8.46
Total 1311 100

2.3
Solution Strategy

2.3.1
Preparation of Data and Data Augmentation

The dataset used for the network training 3 was found in the paper by
(K. Nogueira et al. 2016) which also uses the artifice of convolutional networks
for the classification of four distinct vegetative species, as shown in Fig. 2.1.
The resolution of each image is 64 x 64 pixels.

The dataset has unbalanced and scarce samples making it difficult to
develop the classification model. Table 2.1 shows the distribution of samples
between classes.

Some approaches can be used to train neural networks with unbalanced
data avoiding the problem of limited generalization, such as penalizing with
higher weights the errors of classification of classes with less samples. Another
approach makes it possible to increase the amount of data of each class
proportionally, thus balancing the data. In this article, the second approach
was chosen to solve the problem of data scarcity. Another advantage of the
data increase in a neural network is that it acts as a regularizer, making the
model more robust, preventing overfitting [25] and improving the performance
of unbalanced models [26].

3The dataset is available for download at http://www.patreo.dcc.ufmg.br/2017/11/12/brazilian-
cerrado-savanna-scenes-dataset/ [December 6, 2018].

http://www.patreo.dcc.ufmg.br/2017/11/12/brazilian-cerrado-savanna-scenes-dataset/
http://www.patreo.dcc.ufmg.br/2017/11/12/brazilian-cerrado-savanna-scenes-dataset/
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Table 2.2: Balanced classes samples generated using Keras ImageDataGener-
ator in each new training.

Species # Training Samples # Test Samples
AGR 1770 540
FOR 1770 540
HRB 1770 540
SHR 1770 540
Total 7080 2160

Figure 2.2: Examples of transformations performed by the Keras ImageData-
Generator in a single image.

Through the ImageDataGenerator from the python deep learning library
keras, it becomes possible to generate new images from the dataset with ran-
dom transformations applied to an image. We used the following transforma-
tions: width and height displacement, shear range, zoom, horizontal rotation,
and brightness adjustment. Figure 2.2 illustrates four examples of random
transformations in a single image. Before increasing the data, the original
dataset is divided into training and test sets, respectively, 75% and 25% of
the samples. The same sets are used in all experiments. Then, in each new
training, the original training set is balanced, proportionally to each class,
through data augmentation. After each training, the test set is also expanded
proportionally. Table 2.2 illustrates the increase of data using the image gen-
erator for the training and test sets.

2.3.2
Pre-trained Network and Transfer Learning

The training of many-layered convolutional networks, based on the
random initialization of weights, requires a high computational cost due to
the amount of parallel operations that feature extractor filters perform. Using
pre-trained networks it is possible to minimize this cost initializing pre-trained
weights and bias thereby reaching the convergence of the model much earlier.
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Figure 2.3: VGG-16 network architecture. The codes next to the dotted lines
indicate the frozen layers in the experiments.

There are several models of pretrained networks such as VGGNet, GoogleNet,
ResNet and AlexNet. In this paper, the VGG-16 network was chosen, because
it stands out for its uniform and effective architecture for applications involving
image classification. The sixteen layers of the VGG-16 network use only 3× 3
convolution order and 2 × 2 order pooling. Convolution is an image filtering
process that aims to detect patterns creating feature maps. The pooling process
reduces the spatial size of the features discovered by the convolution layers.
Fig. 2.3 shows the architecture of the VGG-16 networks [10].

The VGG-16 network is pre-trained using the ImageNet database [27].
This database has about fourteen million high quality natural images with
more than a thousand labeled categories, that is, classes with their proper
titles.

Transfer learning is a technique that uses pre-trained networks which
take the generic features of images, such as color blobs, edges and corners in
the first layers. At each subsequent layer, the characteristics taken from the
images become more and more specific with the training datasets which can be
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obtained, for example, from the imagenet database. After the training step, the
classification layers of the pre-trained network (layers 14 to 16) are removed,
keeping the previous ones frozen (fixed). The images of the target dataset are
executed in this truncated network in order to produce bottleneck features.
These features are used to train a new classifier and obtain the prediction of
the target dataset classes.

Our target dataset has few samples, besides being very different from the
pre-trained network’s dataset, so truncating the last layer of that network may
not be enough to obtain a satisfactory accuracy. This is because features taken
from the layers closest to the output are not useful for the classification of the
model. One solution to this problem is fine tuning which allows the lower Y
layers of the transfer-learning network to be frozen extracting characteristics
from these layers and after the last layer, new convolution and classification
layers can be added. A new training of the resulting network can be performed,
taking into account that the weights and bias of the Y layers are fixed. Freezing
more layers results in a network with lower accuracy in exchange for a training
that requires less computational complexity, as the training of a network with
less convolutional layers demands less complexity to be calculated. In addition
to the freezing of layers, the fine tuning method is also related to the tuning
of the hyperparameters of the resulting network.

2.3.3
Cross-Validation

In order to evaluate the learning algorithm and how it responds to the
data augmentation, a cross-validation metric is used. The cross validation
divides the samples of the increased training set into different training and
validation samples by making combinations between them. A specific case
of cross-validation is the k-Fold cross-validation method, which divides the
samples into kf subsets at random and without repetition, using all the data
in that division. The convolutional neural network model is trained kf times,
where in each training a single subset is selected for the test and kf − 1
subsets for the training. The method is commonly used in Machine Learning
applications with 10 folds (kf = 10) aiming at adjusting the generalization of
the algorithm [28]. In order to obtain a resulting accuracy, the average of the
kf trainings is calculated.
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2.3.4
CNN Layer Statistical Analysis

The output of each CNN layer is a feature map. Interpreting the feature
maps in-between the layers may show how well and in which layers the model
is learning the specific features of each class. However, they are not trivially
interpretable and consequently it is difficult to choose the best layers to be
frozen.

Some algorithms for dimensionally reduction (i.e. PCA or t-SNE) can
lead us to check whether, in a certain convolutional layer, the features of each
class was separated by reducing the dimensionally to two features and drawing
a scatter plot [29, 30]. However, in some cases, it is difficult to verify whether
the CNN has been able to separate the features or whether the algorithm has
been able to reduce the dimension correctly. Another algorithm that can be
used to interpret the features maps in CNNs is called DeepResolve [31]. It is
based on a gradient-ascent method and does not require inputs by calculating a
class-specific optimal “image”H for each class in each layer [20]. This method’s
output provides helpful information to analyze and decide which layers are
important to be frozen.

We propose a simpler statistical analysis of each convolutional layer by
calculating the mean of the between-class standard deviation vector, for each
layer, which is calculated between the mean feature maps of all classes.

Each three-dimensional feature map matrix is reshaped into a single
dimension of vector (feature vector). The standard deviation vector previously
mentioned is given by (2-1):

~Sm =

√√√√√∑N
n=1

(
~Cn,m − ~Cm

)2

N − 1 , ~Sm ∈ RNm
≥0 , (2-1)

where ~Cn,m is the mean feature vector between all the images from class
n in convolutional layer m and ~Cm is the mean vector between the classes in
a given layer. Those terms can be calculated by (2-2):

~Cnm =
∑Jn

j=1
~Fjn,m

Jn

, ~Cm =
∑N

n=1
~Cn,m

N
,

{
~Cn,m ,

~Cm

}
∈ RNm , (2-2)

where ~Fjnm denotes the feature vector from class n in a layer m of image j and
Jn is the number of images in a given class n. Replacing the equations (2-2) in
equation (2-1), we calculate the vector ~Sm and the scalar mean MSm (2-3).

MSm = ~̄Sm , MSm ∈ R≥0 (2-3)
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The number of classes is four (N = 4) and the maximum number of
convolutional layers is thirteen (m = [1, 2, ..13]). It is expected that the mean
of the inter-class standard deviation in each layer (MSm) increases because
higher layers extract more specific features, which should therefore exhibit
larger inter-class variance. This variable could tell which is the appropriate
convolutional layer that should be frozen and then perform a new training.
For example, if the variable decreases considerably in a given layer, this means
that the features are getting worse on the new domain (they are too specific
to the original domain), and therefore it is not useful to freeze that layer.

2.3.5
Distributed Training Using Large Minibatches

In order to take advantage of the computational power of a multi-core
CPU and increase the training speed effectively, a distributed training method
was used. The method proposed by [32] simulates large minibatches of size kn
by dividing the batches of the dataset through k workers not compromising,
until a certain point, the model’s accuracy. In order to maintain the same
behavior as a regular minibatch of size n, the method uses a linear scaling rule
which consists in multiplying the learning rate (η) by the number of workers
(k). An assumption is made for this rule to take effect as shown in equation
2-4.

∇l(x,wt+j) ≈ ∇l(x,wt), where j < k . (2-4)
The first term ∇l(x,wt+j) represents the gradient of the loss function for

a sample x and weights wt+j at the training iteration t + j. The gradient is
used in the minibatch Stochastic Gradient Descent (SGD) with a learning rate
η and small minibatch of size n [32]. For the large minibatch, the loss is only
calculated using the second term ∇l(x,wt). With the previous assumption and
setting a new learning rate (η̂) proportional to the number workers (η̂ = kη),
the SGD updates from small and large minibatch is similar [32]. As an effect,
increasing the batch size should not substantially affect the loss function
optimization. As described by the authors, the assumption is not true at the
beginning of the training when the weights are changing quickly. To solve this
problem a gradual warmup is used, starting the training from a base learning
rate η and increasing this value constantly until it reaches the learning rate η̂
proportional to k after 5 epochs [32]. Additionally, the learning rate is divided
by 10 at the 30th, 60th and 80th epochs, similar to [22].
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2.4
Experiments

The experiments performed in this work were carried out on two Intel®

Xeon® Platinum 8160 CPUs with 24 cores each (96 threads in total) and
192GB of RAM that made possible the application of the distributed training
and considerably increase the training speed.

The implemented model was simulated in the Keras framework with
Intel® Tensorflow backend that allows the use of dataflow programming.
Also, Intel® MKL-DNN that accelerates the Deep Learning framework on
Intel® processors (allowing the use of Load Balance System Optimization4

(LBSO) parameters) and the open source framework Horovod (as a base of
the distributed training) were used.

The experiments used transfer learning freezing Y layers, denoted "FL-
Y", and fine tuning. Freezing of the layers below 13 (FL-13), 10 (FL-10) and 7
(FL-7) were performed as depicted in Fig. 2.3. It is relevant to notice that all
the convolutional layers in the FL-13 experiment are frozen which means that
fine tuning method has no effect. For all experiments, the softmax function
was used in the output layer composed of four neurons, which provides the
degree of certainty of an input image in relation to each of the four specified
classes. The class that contains the highest value is chosen to represent the
input image.

The impacts of variations of the hyperparameters of interest, within
predefined ranges of values, on the training time and resulting accuracy of the
model were analyzed in all experiments. These analyses considered variations
in parameters such as dropout, number of epochs and base learning rate. Also,
the number of workers (k) and LBSO parameters such as intra-operation
parallelism (maximum number of threads to run an operator) and inter-
operation parallelism (maximum number of operators that can be executed
in parallel) were evaluated for the model’s accuracy. Other parameters such
as pooling size and convolution filter size were kept fixed in order to avoid
incompatibility with the architecture of the pre-trained networks. For k-
fold cross-validation the value of kf = 10 was used, which results in better
performance in comparison to lower values of kf . The SGD optimization
algorithm was used for the all the training experiments.

Table 2.3 presents the range of values in which the hyperparameters of
interest were evaluated and the optimal values obtained experimentally.

4Boosting Deep Learning Training & Inference Performance on Intel® Xeon® and Intel®
Xeon Phi™ Processors, 2018. Available: https://software.intel.com/en-us/articles/boosting-
deep-learning-training-inference-performance-on-xeon-and-xeon-phi [November 5, 2018]

https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi/
https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi/
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Table 2.3: Variation of hyperparameters of Interest (keeping the batch size
fixed n = 32).

Parameter Range of Values
Min Max Optimal*

Dropout 0% 70% 50%
# Epochs 35 650 100
Base LR (η) 10−5 10−3 10−5

# Workers (k) 1 12 5
Intra-op 2 48 19
Inter-op 0 4 2
Simul. Batch Size (kn) 32 384 160
Frozen Layers 7 13 7

*The optimal value is the best estimate found for the parameter of interest

Table 2.4: Topologies of the FL− 13, FL− 10 and FL− 17 experiments.
FL-13 FL-10 FL-7

Convolutional Layers - 3 6
Filters - 128x3 512x6

Classification Layers 2 1 2
Neurons 512-256 512 512-256

Dropout (%) 0-0 0.3 0.5-0

The three experiments that provided the best results from the hyparam-
eters adjustments and freezing of the layers below 13 (FL− 13), 10 (FL− 10)
and 7 (FL−7) were selected. As discussed previously, each convolutional layer
of the pre-trained network that is not frozen (learning not transferred) must
be added in the fine-tuning network. The three best experiments and their
topologies are shown in Table 2.4.

2.5
Results and Discussions

In order to evaluate the performance of the model with the different
analyzed topologies, the three best experiment configurations of each topology
were compared. Additionally, the full training experiment was done. Each
experiment was performed ten times, calculating the uncertainty of the results
and obtaining more precise accuracy values. Table 2.5 indicates the total
simulation time of the training performed, through 10-fold cross-validation,
and the resulting accuracy of each experiment. It is important to note that in
the original dataset, the proportion of the class with more samples is 73.37%.
Considering this observation, it is considered that values of weighted accuracy
around 73% are unsatisfactory, because the classifier should be better than
chance. To obtain results that are comparable to the original paper, the overall
test accuracy of the experiments was also weighted by each class proportion. At
each fold of the k-Fold cross-validation method, the model was saved to obtain
the class prediction and the normalized confusion matrix on the augmented test
set. The diagonal elements of this matrix show the normalized true positive
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Table 2.5: Results FL− 13, FL− 10, FL− 7 and FL− 0.
Experiment Training Overall Test Overall Test

Time* Accuracy Accuracy
(Weighted)

FL− 13 15 min → 4 min 45.1± 1.9 % 79.43± 1.3 %
FL− 10 50 min → 12 min 81.8± 1.4 % 76.7± 1.2 %
FL− 7 183 min → 37 min 97.3± 0.9 % 97.1± 1.0 %
FL− 0 567 min 55.7± 2.1 % 77.6± 1.6 %

*The values indicates the decrease (→) of the training time when using the Intel
MKL-DNN as opposed to default TensorFlow

predictions of each class which are then weighted by each class proportion
and added. This procedure is repeated kf times and after that the overall test
accuracy was calculated. Table 2.6 shows the confusion matrices of experiments
FL-13, FL-10 and FL-7.

Table 2.6: Normalized confusion matrix FL-13, FL-10 and FL-7 experiments.
The columns indicate the predict class for the test set.

AGR FOR HRB SHR
AGR 0.3 0.26 0.26 0.19
FOR 0.01 0.99 0.00 0.00
HRB 0.26 0.21 0.23 0.30
SHR 0.20 0.29 0.23 0.28

AGR FOR HRB SHR
0.85 0.04 0.09 0.02
0.03 0.73 0.05 0.18
0.01 0.00 0.94 0.05
0.01 0.00 0.24 0.75

AGR FOR HRB SHR
0.99 0.01 0.00 0.00
0.00 0.97 0.01 0.02
0.00 0.01 0.99 0.01
0.00 0.01 0.03 0.96

In order to evaluate the training time of the experiment that demands
most computational power (FL-7 ) varying some hyperparameters for the
distributed learning (intra-op and k) and keeping the other optimal values
fixed (as show in Table 2.3), the Table 2.7 was generated. For all the variations
expressed, the model’s loss function presents similar behavior and final values.

It is noted from the results presented in Tables 2.5 and 2.6 that the
experiment FL-13 has high uncertainty, regarding the achieved accuracy values
and it is also unreliable because the most predictions were just in a single
class. As noted earlier, the pre-trained network learned from different datasets
that are distinct when compared to the dataset employed in this paper.
Consequently, only the lower-level features are useful for classifying the specific
vegetative species of interest accurately.

Increasing the number of workers and intra-op, as shown in Table 2.7,

Table 2.7: Training time comparison when varying some hyperparameters using
Intel MKL-DNN.

Hyperparameter Values
# Intra-op 20 48 19 12
# workers (k) 1 2 5 8
Simul. Batch Size (kn) 32 64 160 384
Training Time (min) 1598 903 37 69
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Figure 2.4: Mean of the inter-class standard deviation (MSm) in each convolu-
tional layer for the FL-(13,10 and 7) experiments.

decreases the training time considerably, but at certain point (k > 8) the
model’s performance decreases. Also, a proportionally low value for intra-op in
relation to k increases the training time and, as a limitation, the multiplication
of (k · Intra-op) should be less than or equal to the number of total threads
(k · Intra-op ≤ 96). The best trade-off between performance and training time
was obtained when balancing intra-op and k values as shown in the highlighted
column in Table 2.7.

As discussed and described previously, it is also possible to use a
statistical method to find the most suitable layer to be frozen and train the
deep learning model. Figure 2.4 shows a chart that contains the mean of the
inter-class standard deviation in each layer (MSm) for each experiment.

Looking at the lightest bars, it can be seen that after the 9th convolutional
layer the MSm value remains low, which confirms that the model can’t find
useful features that distinguish the classes. So, we may choose to freeze all
layers that are part of the 9th layer’s max-pooling block and below, leading to
the FL− 10 model.

Alternatively, observing that MSm has a maximum at the 6th layer, it is
logical to freeze until there. Again, fixing the boundary to the max pooling
block leads to the FL− 7 model.

The FL−10 and FL−7 experiments provided superior results compared
to the FL − 13 experiment that does not use fine tuning. The expressive
gain of accuracy of the FL − 7 and reliability (the true class prediction is
more distributed through the classes) of the experiment FL-10 are due to the
ability of the convolutional networks, added in these experiments, to learn
the more specific features of the dataset used, which was expected for these
configurations. In relation to the training time, it can be seen that it tripled
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with the addition of three convolution layers (FL−13 experiment to FL−10)
and tripled again by doubling the convolution layers (FL−10 to FL−7). This
proves the expectation of computational complexity attributed to training a
network with more convolutional layers.

The superior results can also be observed when looking at the mean
interclass standard deviations in Figure 2.4. Both FL − 10 (dark grey bars)
and FL−7 (black bars) show higher deviations for the deeper layers, but only
FL− 7 maintains the upward trend of separability.

It is important to note that, for the target dataset, freezing less and less
layers results in better results, but in addition to the computational cost, the
chances of obtaining poor results are even greater with data augmentation.
This is due to, with this decrease, the architecture is increasingly approaching
the full training model (i.e., starting from scratch) having a much larger
number of parameters to be trained and possibly overfitting the model during
the training [10]. In order to confirm this statement, the experiment FL − 0
(training from scratch) was made and the results are shown in table 2.5. For
this experiment, in the training phase, the model’s training and validation
accuracies presented very high values, but in the testing phase the overall test
accuracy value was very low, which indicates an overfitting of the data.

The baseline accuracies for this dataset prediction proposed by the
original authors were less than 82.5%, using different techniques as BIC [33],
CCV [34], GCH [35] and UNSER [36] as seen in Table 2.8.

Table 2.8: Comparison to baselines and deep learning models for the test set.
Technique Weighted

Accuracy Technique Weighted
Accuracy

CCV 80.6± 2.3% BIC 85.5± 1.4%
GCH 80.1± 2.4% Fine Tuning (original paper) 90.54± 1.8%
UNSER 80.3± 0.2% Fine Tuning (FL-7) 97.1± 1.1%

The best accuracy obtained by the authors of the article used as in-
spiration was 90.5 ± 1.8%. In the mentioned paper, the AlexNet pre-trained
network architecture with fine tuning and layer freezing was used, but without
data augmentation [17]. The architecture of the AlexNet network is different
from the one used in the present article having a smaller number of parameters
and greater complexity of operations. The results obtained with VGG-16 and
the auxiliary methods specified above have shown to be promising (accuracy
about 97%) in relation to those with differentiated architecture. The possible
differences in results are related to the use of data augmentation and the VGG-
16 network in having fixed parameters such as pooling size and convolution
filter size. In this way, with the change of the other hyperparameters, the im-
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pacts of these variations are more effectively realized, resulting in a satisfactory
fine-tuning.

2.6
Conclusions and Future Work

This paper used methods that have helped convolutional networks to
learn more effectively the specific characteristics of vegetative species groups.
The data augmentation method was essential in achieving effective accuracy
by balancing the data to prevent overfitting, while transfer learning accelerated
the training process of the network, smartly, by skipping training steps. The
fine-tuning approach enabled to truncate any layers of the transfer-learning
network and the insertion of convolutional layers, to distinguish the classes
with higher accuracy. The statistical analysis proposed helps to choose which
layers should be frozen avoiding unnecessary extra experimental tests for the
correct choice.

The distributed learning (training the model by dividing the dataset
between workers) and the tuning of the parallel operators (LSBO parameters)
have shown the possibilities to train a convolutional network in a CPU with
high training speed. It is relevant to notice that the maximum number of
workers that resulted in good performance is limited, perhaps due to the small
dataset.

The final result which indicates an accuracy of about 97% is relevant for
applications involving remote sensing for the classification of vegetation species
whose images are derived from satellites.

The classification model implemented may not work well if the camera
is not multispectral, being an essential equipment for the plant classification
task. Also, for satisfactory training and inference results, the dataset must be
divided into small tiles to reduce the number of classes present in each image.

The theoretical and experimental study of solutions for implementing a
classifier using unbalanced data have great importance for future work, since
most environmental monitoring applications rely on disproportionate class
data. It is intended to apply the concepts and experiences learned in new
datasets with more classes and more data. Also, for future work, pixel-wise
semantic segmentation deep learning models [9, 37, 38] may be used to classify
the plants species which makes it possible to classify whole images containing
multiple classes at the same time and without being necessary to crop them
into small tiles.
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3
Sugarcane Monitoring using Pixel-Wise Semantic Segmenta-
tion

Keywords: Deep Learning; Convolutional Neural Networks; Pixel-wise
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Abstract: This paper consists in developing a vegetation monitoring
system capable of detecting sugarcane crops, estimating their health levels
and their age range through pixel-wise semantic segmentation. Also, the
system detects soil and other species of plants which may include invasive
species (weeds). The system formulation involves obtaining sugarcane samples
using remote sensing images captured by a pair of cameras embedded in an
Unmanned Aerial Vehicle. In order to preprocess the data, Image Analysis
(e.g., image segmentation) and Computer Vision (e.g., camera calibration,
obtaining corresponding features and image transformations) strategies were
applied. The data obtained through the methods described are then combined
to produce samples that are intended to improve the semantic segmentation.
The research project also involves sample labeling to train a Convolutional
Neural Network (CNN) used as a baseline and the main Fully-CNN encoder-
decoder segmentation algorithm. To address the multiple target segmentation
problem, we propose a multi-task configuration for the Fully-CNN model.
After training the models, reaching satisfactory convergence with auxiliary
techniques (e.g., data augmentation and early stopping), we verified that the
main algorithm outperformed the baseline showing accuracy values between
86% and 94% and intersection over union between 0.74 and 0.81 for all the
classification tasks. For the regression task evaluation, it indicates a Root
Mean Square Error of 1.22. Using images obtained from a different equipment
in a different location, we verify the visual performance of the classification
algorithm.
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3.1
Introduction

Traditional vegetation monitoring is based on manual acquisition of
terrestrial data at predefined time intervals. The numerical data obtained is
generally analyzed by statistical algorithms aiming to identify the vegetation
change, evaluate the agricultural efficiency and identify its determinant factors
[39, 40]. The terrestrial data to be obtained is costly and demands time, despite
the sparse availability of data which negatively affects the statistical results in
large areas [39]. With the current ease of accessing remote sensing equipment
(e.g. Satellites and Unmanned Aerial Vehicles), the data, in the format of
images, can be quickly collected, allowing not only real-time, but also a more
robust vegetation analysis. The aerial high-resolution images obtained make
it possible for the analysis to more precisely cover large regions. This data
analysis can help farmers to obtain better agricultural crop management and
make decisions to improve its efficiency.

Remote sensing cameras embedded on specific Unmanned Aerial Vehicles
(UAVs) provide multispectral images which contains both visible and invisible
spectral bands that can be combined to produce better representations for
identifying the vegetation properties. The Normalized Difference Vegetation
Index (NDVI) is a representation that consist of the composition of the images
taken in both spectra, where the visible captures the absorption and the
invisible the reflection of the light incident on the vegetation [2, 3]. This index
can be used to identify vegetation, estimate vegetation health and biomass and
locate diseases in the vegetation for prevention or early treatment [3, 4]. Some
disadvantages of using the standalone NDVI are related to its susceptibility
to variables such as plant type, soil moisure, and amount of rainfall, leading
to possibly noisy results being necessary to employ algorithms that deal with
uncertainty [41, 42, 43].

Besides the image processing involving NDVI for vegetation monitoring,
current applications such as detecting plant diseases and identifying unwanted
plants (weeds) generally use Supervised Machine Learning (SML) techniques,
helping to enhance the crop efficiency [6, 8]. These plants when growing outside
their native habitat can cause damage to the local vegetation and impair
its development. Multispectral images with the aid of SML algorithms can
simplify the identification of weeds growth by segmenting the image for later
application of localized herbicides [8]. In the field of machine learning, the
algorithms that stand out in image recognition are deep learning models that
uses Convolutional Neural Networks (CNNs) which provide outstanding results
in countless distinct tasks [10]. In vegetation monitoring, these deep learning
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algorithms use trainable filters applied to images from real environments or
NDVI images to mitigate the noise and remove information that it considers
irrelevant to solve a given task. Therefore, the monitoring can be done with a
higher precision.

In this research, we collected aerial image samples from a sugarcane farm
located in Presidente Prudente in São Paulo state in Southeast Brazil. In
some Brazilian regions, the sugarcane vegetation is present in extensive areas
and the sugarcane crop has a relevant importance in the renewable and clean
production of ethanol energy, therefore improving the crop efficiency can bring
benefits to the environment and the farm itself [40, 44]. The data were obtained
by a pair of color cameras embedded in an UAV, providing RGB and RGB + IR
images. We begin by describing the sugarcane dataset and the collected crop
information for different areas. Then, we present computer vision methods
to calibrate the cameras, find the correspondences between the pair of images
and apply transformations to combine them. In order to pre-process the images
aiming to obtain label data, a method to correct the white balance between
sequential images is proposed. Next we describe the desired targets for each
region in the image, such as vegetation classification, their health state and
their age range. After labeling the data (creating image masks), we divide
each image into smaller parts to deal with variable aspect ratio caused by the
image pair matching. We implemented supervised algorithms, such as, a CNN
as a baseline and an Encoder-Decoder segmentation architecture as the main
model, proposing a configuration to achieve multiple task goals for training
and inference. Our experiments take into account the training of the models
using the combined RGB and RGB + IR as well as the individual RGB images.
We also employ data augmentation and early stop techniques to improve the
final results, avoiding overfitting.

3.2
Background

Image segmentation is an image analysis technique applied to digital
images to simplify their representation by splitting the image into different
coherent regions (e.g. regions that are related by brightness, color and texture),
aiming to ease its analysis [45]. A fundamental example is color segmentation
which uses logical operators (thresholds) to divide the image into sets of pixels,
based on the pixel intensities. The thresholds can be chosen manually by
analyzing the image histogram and verifying the behavior of the processed
image or using statistical algorithms, such as Otsu’s method to find optimal
thresholds values [46]. In this paper, this technique is used as a initial
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point to obtain the labels for the supervised models implemented. The main
drawback of color segmentation is the susceptibility to factors as variations
in luminosity and the noise due to non-homogeneous backgrounds which
are common in images captured in real environments. Some unsupervised
segmentation methods are robust to these factors, such as the region-based
and edge-based watershed transform, the texture-based Gabor filters and the
diffusion based feature space [7, 47, 48].

A current way to segment images that has been highlighted in the field
of image recognition is semantic image segmentation. Differently from the
segmentation methods previously described, semantic segmentation is done
through supervised algorithms to split the image into regions that share
semantic characteristics. In order to achieve this, these algorithms are firstly
trained with labelled image data (masks based on predefined classes), then an
inference model is obtained to classify each pixel in the image. The supervised
algorithms that provide the most relevant segmentation results involve deep
learning CNNs models with different architectures, such as SegNet, U-Net
and Deep Lab which differ superficially in relation to complex operations,
speed in terms of inference and robustness to image adverse conditions as well
handling multiple classes [9, 37, 38]. In this paper, we opted to use the SegNet
architecture that is described in details in Sec.3.4.1.

3.3
Dataset

In this section we begin by describing the data acquisition system
for obtaining image samples at different planting areas. Next, we present
approaches to preprocess and label the data to obtain the resultant dataset to
be used by the supervised algorithms.

3.3.1
Image Data Acquisition Setup

With the purpose of obtaining the dataset samples, two color cameras
were used. The first camera is a DJI Phantom 3 camera (CRGB) that provides
RGB images (IRGB). The second camera, a modified Canon Powershot S
(C(RGB+IR)), produces RGB + IR images (I(RGB+IR)) due to removal of the
infrared low-pass filter. The cameras were attached to the Phantom 3 UAV at
an angle perpendicular to the ground.
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3.3.2
Study of Crop Field in Different Areas

The image samples collected by the UAV’s embedded cameras comprise
three sugarcane vegetation areas. For each area, a specialist provided the
respective crop information. Additionally, the GPS coordinates of each image
captured were saved to remotely identify the Geo-position of each crop
condition. The coordinate of each image can be visualized in geobrowsers (e.g.
Google Earth). Fig.3.1 and Fig.3.2 show the GPS coordinates of all the samples
collected, visualised in Google Earth geobrowser.

Figure 3.1: Samples location using the camera’s Global Positioning System.

Figure 3.2: Samples location in the three areas (zoomed in) using the camera’s
Global Positioning System. Each area contains a set of images captured.

3.3.2.1
Area 1

The information obtained for the first area indicates low and medium
height sugarcane crops. Additionally, the crops in this area are considered
healthy. The Fig.3.3 shows the samples location in the first area.
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Figure 3.3: GPS coordinates for the first area. The left and right parts of the
images are, respectively, the low and medium height crops.

3.3.2.2
Area 2

The vegetation in this area contains stressed low and medium height
sugarcane crops. Other species of plants may also be observed in the samples.
The present crops were being destroyed by Cigarrinha plague and they also
have red streak and black rot diseases. The Fig.3.4 shows the samples location
collected in this area.

Figure 3.4: GPS coordinates for the second area. The sugarcane health is not
clearly visible, since the images captured by the satellites represent a different
time.

3.3.2.3
Area 3

The third area contains both stressed and healthy medium height crops.
Also, other plant species are present in greater quantity. The Fig.3.5 shows the
samples location in the last area.
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Figure 3.5: GPS coordinates for the third area. The left and right part of the
images shows, respectively, the sugarcane crops and the other plant species

3.3.3
Image preprocessing and Labeling

In order to prepare the dataset, the image samples were processed with
computer vision and image analysis algorithms. Initially, the cameras were
calibrated to correct the image distortion and improve the image registration.
Also, for the color images, the white balance and exposure were adjusted
to provide coherence between images from the same area. After the image
registration, the red band images of each camera were concatenated, producing
two-band resultant images (IR(R+IR)). The initial labeling was done through
color segmentation using a proposed NDVI variation denoted NDVIl that is
produced by combining the two image bands. These masks were improved using
a manual segmentation annotation tool that is fed with the IR(R+IR) images
and the initial masks. The Fig. 3.6 shows the processing flowchart of the image
preprocessing and labeling.

3.3.3.1
Geometric Camera Calibration

When using different cameras, the images obtained at the same time are
geometrically dissimilar, mainly due to the lens distortion that may hinder the
joint processing. Camera calibration uses mathematical equations to estimate
the camera’s sensor and lens parameters [49, 50]. The equation’s constants
are the intrinsic, extrinsic and distortion coefficients that are obtained after
matching world point coordinates to their corresponding image points by
sampling multiple images and fitting the points to the equations [51]. These
samples are obtained by taking pictures of a flat calibration pattern (e.g.
chessboard) in multiple perspectives. One of the benefits of camera calibration
is to use the lens distortion parameters to mitigate the radial and tangential
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Figure 3.6: Image processing and labeling flow chart. The green color indicates
the processes applied to both cameras, while the blue color to the RGB images,
the yellow to the NDVI′ and the orange color to the R(R + IR) images.

distortion in the images, obtaining rectified images. The color camera used
in this paper has a wide-angle lens, being necessary to use more radial
distortion coefficients to rectify the produced image. Fig. 3.7 shows an example
of the differences between the image overlap (produced by matching and
concatenating the red band images of each camera) when aligning the distorted
and rectified image pairs.

As expected, there is no distortion at the center of both overlapping
images (a,b), but the radial distortion is highly noticeable at the borders of the
image (a). It is also noticeable that due to the misalignment, the image (a) is
blurred at various regions outside the center. Therefore, the image rectification
is essential for joint processing.

After rectifying all images from both cameras (obtaining Î(RGB+IR) and
ÎRGB), the joint processing was performed efficiently.

3.3.3.2
Image Matching and Alignment

In order to obtain the registration between the rectified images of both
image pairs (Î(RGB+IR) and ÎRGB), firstly we use the feature-based SIFT
matching algorithm to find the corresponding points between the image pairs
and the RANSAC algorithm to filter the mismatched points [52, 53]. The
SIFT algorithm stand out for its robustness to illumination changes, rotation,
translation and scaling that exist between the image pairs. After finding the
correspondences, a homography transformation matrix is estimated to map
each pixel from Î(RGB+IR) to ÎRGB in order to align the image pairs (obtaining
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(a)

(b)

Figure 3.7: Example of the differences between the image overlap when
aligning the distorted (a) and rectified (b) image pairs. The radial distortion
is especially noticeable in the bad alignment in the camera (a)

ÎT
(RGB+IR)) and also decrease the difference in depths and perspective [54]. Then,
for each pair, the first channel is concatenated (ÎR and ÎT

(R+IR)) to produce a
two-channel resultant image IR(R+IR). The Fig.3.8 and 3.9 show an example
of, respectively, the images matching and the resultant image generated from
the transformation and concatenation.

It is important to highlight that the regions outside the intersection
between the pairs should be discarded after the registration, as exemplified
in Fig. 3.10.
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Figure 3.8: Example of image matching between RGB and RGB+IR images
using the SIFT and RANSAC algorithms.

Figure 3.9: Resulting image after applying a transformation matrix to the
Î(RGB+IR), obtaining ÎT

(RGB+IR) and concatenating the ÎRGB and ÎT
(RGB+IR) first

channels (obtaining a IR(R+IR) image).

(a) (b)

Figure 3.10: Two examples of image alignment after registration (a) and (b).
The regions outside the intersection (transparent green) are removed by fitting
the regions of intersection in a crop rectangle tool.

3.3.3.3
Illumination Correction

The samples obtained with the color camera were affected by a varying
exposure and different white balances. These effects results in images with
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color and intensity inconsistencies which may interfere in the crop health
identification. In order to solve this problem, we implemented an algorithm
to mitigate the color and intensity offsets between sequential rectified images.
In each of the three experimental areas, a sequence of images is followed and
the previous image It−1 in the sequence has some similar regions with the
current image It. The similar regions between the images in the sequence
should have approximately the same pixel intensity mean for all channels.
We take advantage of the sequences to use the SIFT and RANSAC algorithms
to find four pairs of correspondences with the best matches between It−1 and
It. Then, for each image pair, the algorithm uses the corresponding points to
find polygonal regions Rt−1 and Rt (sub-images) as shown in Fig.3.11.

(a)

(b)

Figure 3.11: Illustration of the algorithm proposed to correct white balance.
The first left and the right RGB images (a) represent, respectively, the previous
and the current image in a sequence. The color points shown in the figure are
examples of the best four pair of correspondences between the images used to
calculate the polygonal regions. The second left and right images (b) represent
an example of the illustration with real images.

Next, the algorithm calculates the mean of the pixels intensity of each
channel inside the regions (Rt−1 and Rt) to find constants of proportionality
between the sub-images. The constants of all channels (~k(RGB)) are calculated
using

~k(RGB) = Rt−1

Rt

, ~k(RGB) ∈ R3
≥0 (3-1)
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After obtaining ~k(RGB), the current image channels in the sequence are
multiplied by the constants, balancing the pixel intensity and colors. The
process is repeated for the whole image sequences.

3.3.3.4
Initial Labeling

As mentioned earlier, some advantages of NDVI images are related to the
vegetation identification and its health estimation. Using the resultant images
IR(R+IR) we calculate the index using a proposed NDVIl equation variation
(Eq.3-3) that produces different results than the NDVI. The difference is due
to the inability to separate the Red band to the IR band in the first channel of
camera C(RGB+IR). Therefore, when subtracting the first channel of ÎT

(RGB+IR)

by the first channel of ÎRGB results in an impure NIR (NIRl) as expressed

NIRl = ÎT
(R+IR) − ÎR , (3-2)

NDVIl = NIRl − ÎR

NIRl + ÎR
=

[ÎT
(R+IR) − ÎR]− ÎR

[ÎT
(R+IR) − ÎR] + ÎR

=
ÎT

(R+IR) − 2 · ÎR

ÎT
(R+IR)

,

− 2 < NDVIl ≤ 1
(3-3)

The initial labelling is done using a color segmentation algorithm applied
to the NDVIl images. We implemented a script commanded by a horizontal bar
to manually choose appropriate segmentation thresholds capable of separating
the vegetation to the soil, obtaining the initial masks. In a logical form, the
pixels intensities above the threshold are set to 1 corresponding to vegetation
and others to 0 corresponding to soil.

3.3.3.5
Manual Label Fine Tuning

The initial masks only provide the labeling for the vegetation and soil,
therefore the sugarcane and the other plants are labelled as the same class.
Also, as a consequence of the color segmentation method, the initial masks
obtained are noisy. In order to separate the sugarcane from the other plants
and obtain the final class masks, we fine tune the initial masks using an
image annotation tool that can also denoise the masks [55]. The tool provides
options during the labeling to, by means of predefined targets, manually draw
a polygon around the region of interest or use superpixels for the task. As a
result, the pixels intensity values on the initial masks related to the regions of
IR(R+IR) containing other plants are replaced with value 2.
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Next, the sugarcane crop health masks can be created by initially copying
the class masks and setting the other plants and soil regions pixels to 0 as
the health information is not relevant for the two classes. Then, deploying the
labeling tool, the pixel intensity related to the crop’s health masks are replaced
with 2 when the region information indicates stressed crop and leaving the
remaining sugarcane region pixels equal to 1 which indicates healthy crop. The
same process is done to create the time since last cut masks (cuttime masks),
but considering a higher number of targets which are then normalized. The
table 3.1 illustrates the possible values for the created masks.

Table 3.1: Possible values for the created masks.
Mask Type Targets Possible Values

Class Soil; Sugarcane; Other Plants Int( 0; 1; 2 )
Health X; Healthy; Stressed Int( 0; 1; 2 )

Time since last cut (Cuttime) 0 to 15 months Float( 0.0 to 1.0 )

3.3.4
Resulting Dataset

The Dataset samples consist of IR(R+IR) high-resolution processed images
from the three experimental areas and their respective segmentation masks
assigned to class, health and cuttime. As previously expressed, the direct NDVI
calculation is not feasible for the data collected, thus we concatenate the ÎR

and ÎT
(R+IR) images expecting that the supervised algorithm could deal with

this calculation issue.
Due to the ÎT

(R+IR) images produced after the rectangular intersection crop
(exemplified in Fig.3.10), the concatenated images result in high aspect ratio
variation. Therefore, resizing all the images in order to feed the segmentation
supervised model with the same shape data, produces poor resolution per
image and may worsen the learning performance. To avoid this interference,
we cropped the IR(R+IR) images and their respective masks into 400x400 pixels
tiles. This division also considerably increases the number of input images and
retains the original global resolution. The same approach is done for the binary
CNN classifier (baseline), but cropping the images into 64x64 pixels. This
division into small tiles is necessary to decrease the interclass relationship and
improve the baseline performance. Table 3.2 shows the image dataset produced
after cropping the IR(R+IR) into tiles for the segmentation and baseline models,
while table 3.3 shows its division into training, validation and test.
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Table 3.2: Sugarcane Dataset per area and after cropping for the two models.
Area # Processed Image # Images after cropping
1 31 Supervised Model Baseline Model
2 15 Segmentation (Encoder-Decoder) Baseline (CNN)
3 18 Tiles 400x400 px Tiles 64x64 px
Total 64 821 20952

Table 3.3: Sugarcane Dataset for the two models, divided into training,
validation and test.
Supervised Model # Input Images # Training Images # Val. Images # Test Images
Segmentation 821 587 (71.50%) 117 (14.25%) 117 (14.25%)
Baseline 20952 14980 (71.50%) 2986 (14.25%) 2986 (14.25%)

3.4
Methodology

The methodology employed consists of using a semantic segmentation
algorithm, originally designed for classification, and proposing a multi-task
configuration that can handle a regression and multiple classification tasks
simultaneously. The proof of concept that inspired this configuration was done
through an implemented baseline which is presented in this section. We also
present auxiliary techniques used in the model optimization.

3.4.1
Pixel-Wise Semantic Segmentation Algorithm

The Segmentation Network (SegNet) is a deep learning supervised al-
gorithm developed for pixel-wise semantic segmentation [9]. Its architecture is
efficient in terms of memory for inference which is relevant in real applications.
The SegNet is composed of encoder and decoder networks that share informa-
tion with each other through corresponding encoder and decoder blocks. Be-
sides the shared information, each corresponding encoder and decoder output
has the same shape (same width, height and depth), except the last decoder
which depth size is the number of pre-defined classes Nc. The encoder net-
work employs the VGG-16 pre-trained CNN as a feature extractor, removing
the fully connected layers which drastically reduces the number of trainable
parameters (about 9 times) [20]. In each encoder block there are mainly convo-
lutions and max-pooling operators. The convolutions use trainable filter banks
to produce feature maps while the max-pooling calculates the features maxima
location aiming to produce slightly shift-invariant features. The indices of the
maxima location of each encoder block, extracted from the max-pooling oper-
ation, are passed to the corresponding decoder block. After the final encoder
block, the features maps obtained are non-linearly up-sampled by the first de-
coder block operator using the corresponding encoder indices, producing sparse
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feature maps. Compared to usual bilinear upsampling, the upsampling method
used in this architecture is relevant to mitigate the loss of spatial resolution
of the feature maps when using many convolutional layers and max-pooling
[9]. Similar to the encoder blocks, the decoder blocks uses convolution layers
which, in this case, produces dense feature maps from the sparse features. The
decoder process is repeated consecutively using the output of the previous de-
coder block and the max-pooling indices, up to the final block. Right after this
block, a Softmax layer is attached with the objective of classifying each pixel
individually (i.e. pixel-wise classification) by generating a Nc channels image
containing probabilities. Then, the channels indices of the pixels with the high-
est probability (in the depth dimension of the image) are used to generate the
output mask. Fig.3.12 shows the SegNet architecture.

Figure 3.12: SegNet deep learning architecture. The encoder and decoder
networks are composed by 5 blocks each, containing 3x3 convolutions and
2x2 max-pooling or upsampling operators. The total number of convolutions
in the full architecture is 26, being split in 13 for each network. The dashed
lines represent the max-pooling indices calculated in the encoder blocks that
are passed to the corresponding decoder blocks.

Two other important operators that follow the convolutions are the
activation function ReLU and Batch Normalization (BN) [56]. The ReLU forces
the outputs of each convolution to be positive while the BN adds trainable
parameters to perform a partial or full normalization on the features maps
in each minibatch [57]. As an effect, the BN increases the convergence speed
and also acts as a regularizer by passively adding noise to each layer, reducing
overfiting during training. Before the first convolution in the encoder network,
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the input image is normalized using a Local Response Normalization [58].
Both encoder and decoder networks are trained simultaneously aiming

at minimizing the multi-class cross entropy loss function. The encoder network
also takes advantage of the pre-trained network to use the pre-trained weights
as a starting point and consequently increase the convergence speed.

In order to allow the SegNet to estimate the time since last cut, it needs
to perform a regression task. Therefore, we replaced the Softmax layer by a
Sigmoid layer and rather than producing NC channels images in this layer, we
only produce single channel images. Also, to complete the regression, the loss
function is replaced by the Mean Square Error function.

3.4.2
Baseline Algorithm

As a baseline to accomplish the task, we adopted the VGG-16 convolu-
tional neural network (identical to the encoder network) adapting it to work as
a multi-task learning model. The objective to use this adapted model is to, for
a given input, produce task-specific outputs (e.g. class, health and cuttime).
After the last VGG-16 convolution, task-specific layers are attached (dense
layers followed by classification and regression layers) as shown in Fig. 3.13.

Figure 3.13: VGG-16 CNN adapted as a multi-task learning model. The
VGG-16 block represents the original VGG-16 convolutional layers while the
following layers are modified. The red and green classification layers perform
the classification of, respectively, vegetation class and health. The regression
layer (blue) performs the time since last cut estimate.

Each ground truth class mask used to train and evaluate the model for
the classification tasks is converted into a single numerical discrete value by
taking the value that most repeats in the given mask. Therefore, tile masks
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that have more than one class are converted into a single class. Also, each
regression ground truth mask is converted by calculating the mean of the
numerical continuous values in the given mask.

For the multi-task training configuration, we adopted alternating training
in which the trainable parameter updates of the shared layers (VGG-16
convolutional layers) are affected by the three targets, however, the dense, the
classification and the regression layers are trained only for the related targets.
The trainable parameters are updated aiming in minimizing alternately three
loss functions: two Multi-Class Cross Entropy for binary the classification and
one Mean Square Error for the regression. At each training step, one of the
three loss functions is chosen randomly to be minimized.

It is important to notice that, unlike the SegNet, this model does not
provide segmented images as output in the inference stage because the results
for a given image tile (64x64 pixels) are three single numbers. In order to
produce an approximate effect as the SegNet model (i.e. masks), the single
numbers are multiplied by the identity matrix that has the same resolution as
the input image. This is feasible, since the tiles are quite small.

3.4.3
SegNet Multi-Task Model

In scientific researches related to semantic segmentation, some multi-task
model configurations for the SegNet architecture were proposed. For example,
[59] proposed a SegNet cascade configuration for mutually related tasks to
produce a distance prediction and a segmentation mask. Another example is
[60] that proposed a SegNet configuration in which a shared encoder network
and three decoder networks are trained to perform a depth regression, a
semantic and an instance segmentation tasks. Both configurations are trained
aiming to minimize a specific multi-task loss. Analogously to the baseline
implemented and based on [59, 60], we proposed a SegNet configuration to
work as a multi-task learning model using the encoder network as the shared
layers and three decoders to perform both one regression and two semantic
segmentation tasks as shown in Fig.3.14. Our implementation is trained using
multiple single-task loss functions, which allows different minibatch sizes to be
chosen and adjusted in each task. The idea of our configuration is to encode
the images to produce the features common to the tasks and decode them
separately for each specify task.

For each input image the model outputs three image masks, but they
differ in relation to their pixel data type as the labels discussed in 3.3.3.5.
Similar to the baseline, the same loss functions and alternating training are
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Figure 3.14: SegNet deep learning architecture adapted to work as a multi-task
learning model. The encoder network and the max-pooling indices are shared
among the three decoders. The output masks, presented in Tab. 3.1, are listed
in order (left to right) related to vegetation classification, health classification
and time since last cut estimate tasks.

employed in the model. At each alternating training step, a task-specific loss
function is randomly chosen to be minimized and the predetermined minibatch
size for the current task is selected. The encoder network training is affected
by the three tasks while each decoder network is individually affected. During
training, the encoder network may eventually learn to extract features giving
more emphasis to one task over others. However, due to the nature of the
dataset and the pre-trained weights transferred in the encoder network, the
relevant features to be extracted by the encoder network are more likely to
have an intersection between the different tasks, thus making this approach
more efficient. With respect to the decoder network, its learning is focused for
each specific task.

Compared to the training of three individual encoder and decoder
networks, the proposed configuration (a shared encoder and three individual
decoders) uses less memory on training as well in inference and needs less
learning iterations due to the considerable reduction of training parameters.

3.4.4
Auxiliary Techniques

To improve the model optimization, we implemented Data Augmentation
and Early Stopping techniques.
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3.4.4.1
Data Augmentation

This technique allows the application of random transformations in the
images and their respective masks during training, aiming to prevent overfiting.
In this paper, we use random image rotation and horizontal mirroring.

3.4.4.2
Early Stopping

In order to avoid the increase of generalization error, we use the early
stopping method that monitors the loss functions and stops the training before
the overfitting point. For our multi-task models, this technique will stop the
training using the loss function that has the least decay rate so that a task
does not worsen the shared trainable parameters.

3.5
Experiments

The experiments in this paper were performed in Clusters with NVIDIA®

Tesla P100TM GPUs with 16GB vRAMmemory each, that boosted the training
and evaluation speed of the implemented models.

To verify the learning capacity of the Multi-Task algorithms, they were
trained separately for both IR(R+IR) and IRGB pre-processed images. Also, to
produce comparable results, the IRGB input images use the same regions of
intersection mentioned in Fig.3.10 (Section 3.3.3.2). The evaluation metrics for
the classification tasks used in this project were the per class pixel-accuracy
(PAcc) and the Intersection over the Union (IoU) represented in equations 3-4
and 4-9.

PAcc = TP + TN

TP + TN + FP + FN

, PAcc ∈ R : 0 ≤ PAcc ≤ 1 , (3-4)

The PAcc represents the percentage of pixels which were correctly predicted for
a class in a given image. For the baseline, it represents the true classification
predictions for each image.

IoU = Area of Intersection

Area of Union
, IoU ∈ R : 0 ≤ IoU ≤ 1 , (3-5)

The IoU is calculated by dividing the pixels area that intersects and the
complementary pixels area between the predicted per-class binary mask and
its related ground truth. This metric was only used to evaluate the supervised
segmentation model.

DBD
PUC-Rio - Certificação Digital Nº 1712499/CA



Chapter 3. Sugarcane Monitoring using Pixel-Wise Semantic Segmentation 62

To evaluate the regression tasks, only the Root Mean Square Error
(RMSE) (expressed in Eq.4-11) was used.

RMSE = Nmonths ·
√

1
n

Σn
i=1(cuttimeesti

− cuttimegti
)2 , RMSE ∈ R≥0 , (3-6)

Where cuttimeesti
and cuttimegti

represents the pairs of estimated and ground
truth continuous values in a given mask. The Nmonths is the multiplicative
constant for the number of months (time since last cut variable).

3.6
Results and Discussions

For supervised semantic segmentation models, the number of steps is
usually chosen and observed, rather than choosing the number of epochs. With
the early stop criteria adopted, the segmentation models finished the training
at 22000 steps when training with the I(RGB+IR) images and 26000 steps for
IRGB images, both cases using minibatches of size 6 for the classification tasks.
The regression task presented a better loss function behavior when using a
minibatch of size 4. The training times for the two training cases were about,
respectively, 9 and 10 hours.

Tables 3.4 and 3.5 show the generalization of each model (i.e. test set
prediction) using the metrics defined in Section 3.5.

To verify the generalization of each model (i.e. test set prediction), the
metric equations expressed early were used and the comparative tables 3.4 and
3.5 were built.

Table 3.4: Results when training with the IR(R+IR) images. The Acc and IoU
values are the mean values that take into account all the images related to a
given class. The RMSE represents the mean of the error prediction.

Baseline Model
Class Health Cuttime

Metrics Sugarcane Soil Other Plants Healhy Stressed Other
Acc 0.76 0.71 0.79 0.56 0.52 0.60 -
RMSE - - - - - - 5.39

Main Model
Acc 0.91 0.92 0.94 0.87 0.92 0.86 -
IoU 0.78 0.80 0.81 0.80 0.79 0.74 -
RMSE - - - - - - 1.22

It can be noticed in table 3.4 that the baseline model was capable of
classifying the plants with reasonable accuracy. However the performance for
health classification and cuttime estimate was not satisfactory. In table 3.5 the
vegetation classification performance for the baseline was similar for sugarcane,
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Table 3.5: Results when training with the IRGB images. The Acc and IoU values
are the mean values that take into account all the images related to a given
class. The RMSE represents the mean of the error prediction.

Baseline Model
Class Health Cuttime

Metrics Sugarcane Soil Other Plants Healhy Stressed Other
Acc 0.78 0.80 0.51 0.31 0.35 0.41 -
RMSE - - - - - - 12.31

Main Model
Acc 0.94 0.93 0.84 0.39 0.40 0.45 -
IoU 0.80 0.80 0.73 0.27 0.22 0.23 -
RMSE - - - - - - 6.23

increased for soil and decreased drastically for other plants. Also, the health
classification and cuttime estimate performance got worse.

For the semantic segmentation model, the accuracy per class for the clas-
sifications as well the regression results were satisfactory in table 3.4, outper-
forming the baselines which shows the robustness of the SegNet architecture
for the determined tasks. In Tab.3.5, when comparing the trained semantic
segmentation models, the vegetation classification was similar for sugarcane
and soil, but got worse for other plants. Also, the model trained for health
and cuttime when using the IRGB presented poor results due to the indefinite
oscillation of the loss functions over the iterations. This effect may indicate
the importance of the infrared band for the designated tasks.

In addition to the numerical results, we initially discuss a visual example
of the baseline output when inferring each small image tile separately, joining
the tiles and forming the original shape segmented image (Fig. 3.15).

A possible source of the low visual performance in Fig.3.15 is that the
ground truth information was transformed to provide a single number for each
image tile, discarding much information (e.g. when the crop is narrow). Also,
differently from the segmentation model, the interclass variance, even reduced
by the small tiles division, made the CNN model assign a single class to the
input image when more than one class was present.

Next, we verify some semantic segmentation results when inferring each
image tile on the test set separately as shown in Figs. 3.16 and 3.17.

In the outputs related to the IR(R+IR) images in Fig. 3.16, the semantic
segmentation results were close to the ground truth, but in general the results
were affected by small noises. Despite the noises, after joining the tiles together
to produce the original shape image these noises may become imperceptible.
When analyzing the cuttime visual results for the IR(R+IR) images it can be
observed that the regression masks obtained for this task are slightly blurred
because the values predicted are continuous and the ground truth provided
were integers. The sugarcane growth is not necessarily equal for the whole

DBD
PUC-Rio - Certificação Digital Nº 1712499/CA



Chapter 3. Sugarcane Monitoring using Pixel-Wise Semantic Segmentation 64

(a)

(b) (c)

Figure 3.15: Baseline visual results. The first image (a) represents an input
presented to the baseline. The left (b) and the right (c) image masks indicates,
respectively, the ground truth (before being transformed) and the predicted
masks.

plantation area leading to slightly different estimated cuttimes. Therefore, the
prediction effect discussed is expected since the model should be capable of
interpolating the cut-time values between the crops.

In Fig.3.17, which presents the results of the model trained with IRGB,
the classifications of sugarcane and soil were close to the ground truth, but also
presented some noise. Also, it can be noticed that the other plants classification
was not so precise.
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Class Health

Time since last cut

Figure 3.16: Semantic segmentation visual results for the model trained with
the IR(R+IR) images. In the caption, the classifications for Class and Health
are given by the expressed colors while the time since last cut estimate is given
in a discretized grayscale.
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Class

Figure 3.17: Semantic segmentation visual results for the model trained with
the IRGB images. The results shown are related to the sugarcane classification
only.

DBD
PUC-Rio - Certificação Digital Nº 1712499/CA



Chapter 3. Sugarcane Monitoring using Pixel-Wise Semantic Segmentation 67

3.6.1
Additional Results

In order to reaffirm the previous generalization results, we captured new
sugarcane, soil and other plants images from a different location at Embrapa’s
Farm at Rio de Janeiro of Southeast Brazil. This time, a different drone with a
color camera was available, thus only the RGB model for the first classification
task was tested. The visual results are shown in the figures 3.18, 3.19 and 3.20.

Figure 3.18: Segmentation results on different varieties of sugarcane.

Figure 3.19: Segmentation results on cornfield.

The model was trained with a different dataset, but it could identify
reasonably well a large area of “Sugarcane”, “Soil” and “Other plants” for the
Empraba’s images samples. The cornfield and vegetable garden was correctly
classified as other plants. This is an interesting result due factors, such as, the
drone flew at different height compared to the original dataset; the images were
not rectified; the cameras are different; the ground composition and climate
are different due to the vegetation location.

DBD
PUC-Rio - Certificação Digital Nº 1712499/CA



Chapter 3. Sugarcane Monitoring using Pixel-Wise Semantic Segmentation 68

Figure 3.20: Segmentation results on vegetable garden.

3.7
Conclusions and Future Work

In this paper we presented real information collected in sugarcane farms.
We presented techniques to preprocess the data to improve the dataset used
by the supervised models. Our vegetation monitoring solution for sugarcane
farms provides relevant and precise information (multi-task segmented images)
for sugarcane crop analysis. Using an UAV and an embedded computer (or
remotely), the vegetation images can be captured in fractions of seconds and
the crop information can be quickly obtained.

As shown in the results, due to the advantages of the visible and invisible
bands for vegetation, the concatenation of the Red and the Red+IR bands
was essential to provide good performance for health and cuttime. The results
using the multi-task SegNet algorithm for images was relevant for vegetation
segmentation tasks involving remote sensing images from UAVs.

Some ways to improve the results is to enhance the masks, although when
the dataset is large enough the supervised model should be capable of dealing
with this type of noise.

For future work we pretend to use the GPS coordinates to send ground
robots to the location and collect data, such as, physical samples of vegetation.
Also, it is intended to apply this technique to different vegetation classes and
sugarcane varieties.
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4
Automatic Visual Estimation of Tomato Cluster Maturity in
Plant Rows
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Abstract: The present paper aims to implement image processing
algorithms to accelerate and facilitate the evaluation of the harvest condition in
tomato farms. In order to achieve this, two different Deep Learning models are
trained and combined with counting methods to produce a harvest monitoring
system for embedded applications using an Intel® Movidius Compute StickTM 1.
The first model detects the location of cherry tomato clusters, while the
second estimates the fruit’s maturity. The results are compared to a baseline
implementation based on segmentation. Next, a multiple counting method
based on region of interest is applied to the detected clusters in videos to count
the tomatoes at different maturation stages. In order to produce a more robust
counting, a tracking system is implemented which uses temporal information to
find the unique tomato clusters in videos. In the evaluation stage, the obtained
location results indicates an IoU of about 89% when using the MobileNetV1
as a feature extractor and choosing the appropriate location anchors. The
maturity estimation results indicates better performance for the supervised
algorithm as compared to the baseline, providing a root mean square error
of 7.709 · 10−2. The best results were obtained when combining the fully
learned solution with the tracking system, correctly counting the majority of
the tomato clusters at multiple maturation stages.

4.1
Introduction

The large demand for fruits brings challenges to farmers, such as opti-
mizing the costs and effectiveness of manual labor for harvesting and reducing
the percentage of fruit loss which contributes to the quality of the final product
[61]. Hiring more seasonal manual workers or paying overtime may improve the

1Intel® Movidius Compute StickTM

Available: https://software.intel.com/en-us/neural-compute-stick [January 1, 2019]

https://software.intel.com/en-us/neural-compute-stick
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production, but increases the costs or affects the workers health at the farm
[62] when working for extended hours. The effectiveness of manual harvesting
and the percentage of fruit loss are linked to the monitoring and control of the
fruit maturation during harvest [61].

Fruit harvesting is a time-consuming task because each worker needs
to observe and touch the fruits in order to evaluate their maturation and
decide whether to harvest on the current or next days. Some technological
methods use custom non-destructive crop monitoring sensors aiming to solve
this problem by measuring the fruit ripeness [63, 64]. The detection is based
on fruit reactions that take time to take effect and is prone other to dependent
variables (e.g. climate change and fruit variety) that lower the robustness.
Researchers have implemented a system that uses a harvesting robot that is
divided into a vision system which calculates tomato cluster stalk position
and an end-effector to harvest the fruit, but they do not estimate the ripeness
[65, 66].

Some variety of cherry tomatoes are considered ready for harvest when
the skin changes its color from greenish to reddish (i.e. red, yellow or orange)
or the tomato closest to the stem comes out in hand. However, in some farms,
these fruits may not be harvested individually, being necessary to harvest the
entire cluster after manually estimating the ripeness that takes into account
all the tomatoes on that cluster. Each cluster is packed to be sold in the
supermarket even when the maturities are mixed (i.e. red tomatoes with a
certain proportion of green ones).

We implemented a robust system to monitor the maturity in cherry
tomato clusters on plant rows, that only requires an RGB camera and an
embedded computer, being relatively cheap and easily attached to embedded
systems for statistical data collection or even automatic harvest. The system is
based on supervised Deep Learning (DL) techniques, being able to generalize
its response to different fruits when feeding the system with new labeled data.

The dataset used in this work was collected from video snapshots
captured on a tomato farm located at municipality in Vestfold county in
Norway (greenhouse). The videos were taken covering three different plant
rows which contained multiple tomato clusters in different light conditions,
shapes, positions, different levels of maturation and quantity of tomatoes in
each cluster.

Our system is divided into two supervised deep learning subsystems and
two counting subsystems. The first supervised subsystem is an object detection
model that learns, through regression, how to fit bounding boxes around the
tomato clusters (i.e. locate the clusters) after feeding the algorithm mainly
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with ground truth locations (labels manually obtained) and a set of default
bounding boxes (i.e. anchors) ratios. We used a pre-trained convolutional
neural network to act as a basis for the feature extractor for the object
detector. This leads to some advantages and drawbacks (e.g. location precision;
class accuracy; training and inference speed), depending on the network choice
and the dataset. The second supervised subsystem is a regression model that
learns, from manually labelled examples, how to estimate the maturation rate.
This subsystem implemented uses transfer learning techniques to successfully
estimate the maturation of tomato cluster data from few samples. We also
implemented a variation for the second subsystem that uses an image analysis
technique to segment each tomato cluster and, using the segmented pixels,
mathematically estimate the maturation. Instead of dividing the maturation
into discrete values and indicate whether a tomato cluster is ripe or unripe,
we use continuous values to express how ripe a cluster is.

The location and the maturation estimation subsystems are combined to
provide the clusters locations and maturation rates in videos for the application
of two possible counting subsystems. The first counting subsystem uses a line
of interest and a region of interest to count each tomato cluster found inside
the region. The second counting subsystem implemented is tracking algorithm
that separates the different clusters using their coordinates in the image and
their maturation information in multiple frames.

Based on the information collected by the system, it is possible to
quickly identify the best tomato plantation row for the harvest in a given day.
Additionally, due to the possibility of fast data collection, the continual data
collection can be used in the analysis for harvest prediction in the following
days and to identify possible tomato growing problems.

4.2
Background

Classical image processing methods (i.e. computer vision and image
analysis) for image recognition (also know as image classification), with the aid
of supervised machine learning techniques, brought many impressive results in
the past, such as real time face detection and pedestrian detection [67, 68].
Due to image conditions (e.g. changes in light and camera perceptive; noisy
image) the image processing part affects the generalization of the supervised
algorithm around the specific data. Also, when attempting to apply the same
combined algorithm to different data (e.g. to detect animals), the image
processing part should be modified in order to work properly, because the
image features (e.g. shape, colors and texture) are very distinct. In these
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applications, this occurs because the supervised algorithm used is mainly
dependent on features extracted by the computer vision and image analysis
methods. Another drawback is that, for the standard supervised algorithm to
work accurately on images, it needs to be fed with a massive amount of labeled
features and does not work well when applied to raw pixels.

Deep convolutional neural networks are supervised algorithms predomi-
nantly applied to images and have been widely used since the advances in GPU
technology enabled their success at the ImageNet Large Scale Visual Recog-
nition Challenge [23]. They have been developed for many image recognition
tasks (e.g. classify, locate or even segment the images) with outstanding re-
sults. Differently from the previous methods, the CNNs are techniques that do
not need heavy pre-processing specific to the dataset because they learn how
to process the image and generalize to new data. Convolution is a parallel op-
eration that uses multiple kernels (trainable filters) that learns how to extract
images features. Subsequently, max-pooling simplifies the image by calculating
the image max response using predefined square-cell grids. Commonly, CNNs
are divided into many convolutions layers followed by operations (e.g. max-
pooling) in which the first layers extract low-level features such as edges and
blobs. The next layers extract mid-level features such as texture, up to high
level-features (specific features to the dataset). The number of feature maps
generated in each layer is proportional to the (predefined) number of kernels
for that layer. After the last convolutional layer, a conventional neural network
is usually attached by means of a fully connected layer. The neural network is
composed of neurons, which each have trainable parameters, that learns how
to combine the features maps of the last convolutions layer to predict results
(e.g. classification, regression or both).

Standalone CNNs can solve the image recognition problem due to the
robust advanced and parallel operations, but the machine intelligence, in this
case, does not learn how to understand scenes. In other words, the machine is
not able to classify and locate different objects in the same scene by itself as
humans do. Researchers have developed methods based on CNNs (i.e. Regions
with CNN features [69]) to improve the scene understanding issue in machines,
aiming in real time applications (R-CNN [69], Fast-RCNN [70] and Faster-
RCNN [71]). The first R-CNN method is divided into two different stages:
the first one is the generation of image regions, using image segmentation, to
find regions with high indication of being an object (i.e. region proposals)
in each image. Then, for each region proposal (RP) it makes rectangular
crops evolving each region and calculates features maps using convolutional
neural networks. Next, using a pre-trained classifier on the same dataset, the
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method classifies these features according to the predefined targets. Due to
the the high number of regions generated and consecutively high number of
convolutions, the algorithm was too slow for training and inference to be used
in real time applications. The second method (Fast-R-CNN), is also divided
into two stages, uses convolutions blocks (i.e. convolutions and their auxiliary
operations) in the entire image, obtaining feature map directly. Then, it uses
a Region of Interest (RoI) pooling layer that uses the RP locations to crop
the feature maps into smaller features to train a two-headed neural network
(i.e. a regressor to learn the object coordinates and a classifier to learn the
predefined classes, both in the same network). The regressing part uses an
objectness score method to evaluate whether the cropped feature map is an
object or not, while the classifier identities the respective class of that object.
This method highly improves the processing speed (by a factor of 25) due to
the considerably smaller amount of convolutions applied. The third method
(Faster-R-CNN) improves the results and speed (around 10 times faster than
the Fast-RCNN) based on the previous methods concept, but removing the
RP locations and adding an intermediate region proposal network (RPN).
The RPN is pre-trained using a set of reference bounding boxes with different
shapes (called anchors) to learn how to extract RPs from the image, making the
final algorithm an end-to-end learning method. The final algorithm shares the
RPN convolution layers with the previous method (Fast-RCNN) to learn the
object location and class. Sharing layers optimizes the training and processing
speed. The previous methods can detect objects reasonably well, but the
inference time in videos is still too slow in usual GPUs (around 5 frames per
second for the fastest method) for real time applications. Important algorithms
in the research area were developed to solve these problems, highlighting "You
Only Look Once" (YOLO) and "Single Shot MultiBox Detector" (SSD) [72, 73]
that could mix the two stages into a parallel stage. The first algorithm can
increase the frames per second (FPS) on inference up to 150, but compromises
the accuracy of the results. The second algorithm highly improves the accuracy,
but inferring at 22− 60 FPS which is enough for real time applications. In the
SSD algorithm, starting from the first convolutional block and following to
the last block, the feature maps decrease in terms of resolution, but increases
in terms of depth. For each feature map extracted from the convolutions at
different layers, the algorithm uses a shared regressor and a layer dedicated
classifier. Consequently, the object detection is done at multiple scales being
able to handle objects at different sizes [73]. In order to label a dataset for the
SSD model, each object to be detected must have a class identification and its
coordinates position in the image. As with the other methods, in the trainig
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stage, SSD also uses anchors to learn the bounding box coordinate offsets at
multiple scales, based initially on which anchors correspond to a given label
object (i.e. ground truth information). The SSD architecture is explained in
more detail in Sec.4.3.2.

4.3
Method

In this section, we begin by describing how the data were collected and
labelled to be used in our different approaches for tomato clusters location
and their maturity estimation. In sequence, we describe the model for object
detection and the baseline for the estimation followed by the main regression
model. Next, we discuss the implementations for counting the clusters in
videos.

4.3.1
Preparing and Labeling the Dataset

The color cameras were coupled to a pipe rail trolley in order to record the
videos on the farm by following a unidirectional horizontal movement, covering
a different plant row in each video. After recording the videos, a certain number
of snapshots were taken, as shown in Table 4.1. The snapshots are used to train
supervised deep learning algorithms and measure their performance while for
the final counting algorithm all intermediate frames are used as well.

Table 4.1: Snapshots taken for each video at 30 FPS
Video Length Total Number Number of Proportion of
Name of Frames Snapshots Taken Snapshots Taken
Video 1 2 min 44 s 4920 118 2.398%
Video 2 1 min 28 s 2640 63 2.386%
Video 3 1 min 43 s 3090 73 2.362%

The images obtained from the snapshots are then mixed and labelled
for the supervised methods for fruit detection and the maturation estimate.
The major differences between the videos are the expressive changes in light
conditions and the distances and angles between the camera and the fruits.

4.3.1.1
Fruit Detection

The labeling of images for object detection is commonly made with a
graphical image annotation tool (e.g. LabelImg, used in this paper 2), which

2Tzutalin. LabelImg. Git code (2015).
Available: https://github.com/tzutalin/labelImg [August 3, 2018]

https://github.com/tzutalin/labelImg
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is used to pack each object inside a rectangle (bounding box). After manually
drawing a rectangle around the object of interest, the tool asks for a target
for that object, which in this paper indicates a cherry tomato cluster. Each
annotation made generates a new instance, and the dataset size is the number
of all instances. After labeling all the clusters separately, the dataset is divided
into training and validation sets as shown in Table 4.2. The remaining data is
used to test the model’s performance.

Table 4.2: Dataset separated into training and validation sets for object
detection
Total Number Number of Training Training Number of Validation
of Snapshots Training Snapshots Proportion Validation Snapshots Proportion
254 203 79.92% 26 10.24%

4.3.1.2
Fruit Maturation Estimate

For each tomato cluster labelled as an object to be detected, we give a
rank score between 0 and 1. The rank is related to the level of maturation for
a cluster, calculated by equation 4-1.

rank = NRT

NRT +NGT

(4-1)

Where NRT and NGT are the number of, respectively, Reddish and Greenish
Tomatoes in a cluster, counted manually. A continuous value for the level of
maturation is useful and easily tunable, so the farmer can choose thresholds
to classify the clusters into n different maturation stages (e.g. red, mixed and
green tomato clusters).

After labeling all the instances extracted by cropping each tomato cluster
in the snapshots, the dataset is divided into training and validation as shown in
Tab. 4.3. The remaining data is separated to test the algorithm’s performance.

Table 4.3: Dataset separated into training and validation sets for rank estimate
Total Number Number of Training Number of Validation
of Clusters Training Clusters Proportion Validation Clusters Proportion
2550 2046 80.23% 255 10.00%

4.3.2
Supervised Algorithm for Cluster Detection

In order to locate and detect multiple tomato clusters in the same
image, taking into account the processing speed and accuracy, we trained the
SSD object detection algorithm [73]. The SSD allows the use of pre-trained

DBD
PUC-Rio - Certificação Digital Nº 1712499/CA



Chapter 4. Automatic Visual Estimation of Tomato Cluster Maturity in Plant
Rows 77

networks to form the convolutional base. There is a trade-off between speed
and accuracy due to the different pre-trained architectures (e.g. VGGNet [20],
ResNet [22], MobileNet [74] and AlexNet [23]) amount of trainable parameters
and operations. We opted to use the MobileNet V1 [74] architecture as the
base of the SSD because it has optimized convolution operations and good
performance, therefore it can be used in real time applications. The MobileNet
V1 has 28 layers formed by 13 convolution alternate blocks, being the main
operations in the block the Depthwise Separable Convolutions (DSC). The
basic idea of this convolution is to mitigate the computational cost generated
through parallel operations by separating the heavy multiplications operations
in two sums with lighter multiplications each. The DSC is divided into
two different convolution layers: Depthwhise Convolution (used for filtering)
and Pointwise Convolution (used to combine features). Instead of applying
convolutions to whole images and feature maps channels at the same time,
the depthwise convolutions layer applies smaller convolutions in each channel
separately, producing features with the same number of channels as its input
which are then stacked together. The pointwise convolution layer takes the
pile of features and applies convolutions with kernels 1x1 (i.e. filtering pixel by
pixel) for all the channels at once, creating linear combinations between the
feature maps [74]. These operations are not only faster, but also significantly
reduce the quantity of trainable parameters of the model.

As mentioned before, the SSD model uses a shared regressor and layer
dedicated classifiers to accomplish the object detection task. In order to train
the algorithm for this task, the model needs to minimize a weighted combined
loss function (i.e. multibox loss) that is divided into a location loss and a
confidence loss. The multibox loss function is minimized by updating the
SSD trainable parameters using backpropagation [75]. The first loss function
measures how close the predicted bounding box coordinates (based on the set
of anchors) are from the ground truth. The second loss function computes
how confident the model is in relation to the class predicted, given the ground
truth, in a predicted bounding box [73]. In this paper we used the detector to
find a single class, therefore the confident loss function is simplified. During
the training phase, the SSD uses initially a matching strategy that finds the
best set of anchors to be used for each ground truth to train the network [73].
The regression part of the model predicts the bounding box offset coordinates
(∆(cx, cy, w, h)) based on the best anchors found. For multiple bounding boxes
in the same image, the anchors are handled based on a matching approach [76].

The pre-trained network to be used as a base for the feature extraction is
usually split in two parts and the layers depth of each part is chosen manually.
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After obtaining the features maps generated by the first part, a layer that
contains the regressor and a convolutional classifier is applied. The same logic
is applied to the second part and consecutively to auxiliary convolutional layers
as shown in Fig.4.1. As a consequence, multiple bounding boxes pointing to
the same object, at different scales, are generated for each predicted class. The
results are combined using non-maximum suppression to remove the detections
with location and detection scores lower than predefined thresholds.

Figure 4.1: SSD architecture for generic pre-trained network used as base
(feature extractor). The schematic illustrates the pre-trained network division
in two parts, where each part is used to extract features that are passed to the
first two respective regressors and classifiers. The next feature extractors are
auxiliary convolutional layers in which features produced are passed to more
respective regressors and classifiers. The multiple locations and classifications
for the same object are combined to calculate the final detections.

4.3.3
Cluster Evaluation

After obtaining the bounding boxes for each cluster of tomatoes, it is in-
tended to identify how ripe the clusters are. In order to complete this task, two
different approaches were implemented and tested. The first approach consists
in implementing a segmentation algorithm, based on the Ohta and Otsu algo-
rithms [46, 77] to calculate the level of maturation using the segmented pixel
areas. The second approach is related to the use of CNNs adapted to provide
a regression output which role is to estimate the level of maturation. In both
cases, the methods are applied to each cluster sub-image inside the bounding
boxes.

4.3.3.1
Image Analysis Method

The main idea to use image analysis algorithms is to separate by
segmentation the reddish and greenish tomatoes in a real environment, taking
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advantage of the theirs colors and filtering the agricultural background. The
major advantage of these algorithms is the possibility of its direct application
without the need for labeling, training the data and availability of GPUs.

An usual image segmentation technique used in image analysis is called
color segmentation, which allows the separation of an image into different sets
of pixels delimited by thresholds chosen from the image histogram. It could
be used to separate objects in the image such as the reddish and greenish
tomatoes. However the same threshold to segment a similar object varies
depending on factors such as background noise, light conditions and variations
in object color. A practical and efficient solution is to use adaptive threshold
algorithms (e.g. Otsu [46]) for image segmentation. Another considerable
problem concerns the complex background of a tomato farm, with color
intensities (green leaves colors) close to the color of the green tomatoes.
A method that segments red and green fruits under complex agricultural
background combines the previous technique and also changes the color space
from RGB to that of Ohta and Wei, which is more robust to light change and
mitigates the background disturbance [46, 77, 78]. As discussed by the authors,
the best Ohta and Wei features for fruit extraction are I ′2 and IW [78]. The
equations 4-2 and 4-3 represents the features IW and I ′2 that combine the Red
(R), Green (G) and Blue (B) channels of the RGB color space. The equations
are applied to the tomato clusters sub-images inside the bounding boxes.

IW = R−G (4-2)
Subtracting the R and G channels results in an image with only reddish
tomatoes and low background noise.

I ′2 = R−B (4-3)
Subtracting the R and B channels maintains the reddish and greenish tomatoes
and removes part of the background. For this feature, the contrast level between
the green tomatoes and the background is highly noticeable.

After changing the color space, the adaptive threshold is applied to the
features IW and I ′2. It is relevant to notice that the adaptive thresholds have
improved results when applied to smaller areas, as the ones cropped using
the bounding boxes coordinates, because the intra-class variance, used to find
the best thresholds, becomes a well behaved function facilitating the search
of the optimal thresholds for the color segmentation. In order to remove noise
and filter the remains of the background, we applied a Gaussian filter and
opening morphology algorithm to each feature. At the end, the first feature
IW segmented and filtered provides a mask of the reddish tomatoes, while the
feature I ′2 segmented provides a mask of the whole tomato cluster. Subtracting
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both results in a mask of the greenish tomatoes as shown in Fig.4.2 example.

4.2(a): Im 4.2(b): IW 4.2(c): IW mask 4.2(d): I ′
2 4.2(e): I ′

2mask

4.2(f): I ′
2mask −

IW mask

Figure 4.2: Intermediate images generated applying the mathematical equa-
tions (Eq. 4-2 - 4-3) and the auxiliary operations. The first image (a) is the
original image used in this example. The second (b) and fourth (d) images are
the IW and I ′2 outputs. The third (c) and fifth (e) images are the masks of each
output after applying the segmentation algorithm. The last image (f) shows
the masks subtracted.

After obtaining the masks for the reddish and greenish tomatoes, the
maturity level (rank) can be calculated by equation 4-4.

rank = NRT P

NRT P +NGT P

(4-4)

where NRT P and NGT P are the number of, respectively, Reddish and
Greenish Tomato Pixels.

4.3.3.2
Supervised Deep Learning Method

In order to estimate the maturation levels more robustly, we use CNNs
that, in simple words, learns how to filter efficiently the images contained inside
the bounding boxes extracting features that it considers important. Instead of
training the CNN from scratch, we use the VGG-16 and MobileNet pre-trained
networks [20, 74]. The VGG-16 and MobileNet architecture differs mainly in
terms of convolutional operations, number of convolutional layers and number
of trainable parameters which results in a trade-off between performance and
training/inference speed. The VGG-16 usually provides better generalization
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compared to MobileNet, but takes much more time training and processing
images [79]. Also, a transfer learning [19] technique is used, which allows the
transferring of pre-trained parameters learned on the first "Y" layers. Next, we
use a fine tuning method that permits the freezing of layers, marking the "Y"
layers as non-trainable (frozen) and the next layers are marked as trainable
during model learning. The advantages of using transfer learning are the faster
training time and the significant lower number of trainable parameters which
also prevents overfiting.

The original pre-trained networks were trained using the ImageNet
dataset for the Large Scale Visual Recognition Challenge [24] which contains
a thousand classes used for binary classification. The pre-trained output layer
contains a number of neurons equal to the number of classes and it uses the
softmax activation function applied to the layer, therefore the classification of
a given input image is made choosing the neuron with higher activation. As
mentioned before, for maturation estimate, we are looking for a continuous
value instead of a binary value. Thus, we modified the output layer for
regression, keeping a single neuron and changing the activation function to
sigmoid. Consequently, the output value of this neuron varies between 0 and
1 according to the maturation rate range. The Fig.4.3 shows the pre-trained
models adapted for regression.

Figure 4.3: Pre-trained architecture adapted as a regression model. The pre-
trained network block represents the original convolutional layers while the
following layers are modified. The red box indicates the original neurons for a
classification task and the blue box indicates a single neuron that is used for
the regression.

Other modifications that needs to be done to convert the classification
model into a regression model are the loss function and the metric. The
loss function is optimized during training to decrease the errors between the
maturation values predicted by the model and the ground truth values. The
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metric is used to measure the model’s performance. We use the Mean Square
Error (MSE) regression loss function as shown in equation 4-5.

MSE = 1
bz Σbz

i=1e
2 , e ∈ Rn , bz ∈ Z>0 , (4-5)

where e is the training error and bz is the number of samples used per training
step (batch size). The metric we use for evaluation in this regression task is the
Root Mean Square Error (RMSE). While the MSE is applied to the training
set, the RMSE is applied to the validation and test sets.

4.3.4
Tracking Clusters in Videos

In order to track individually each tomato cluster in videos, we have
implemented a logic algorithm that takes advantage of each cluster centroid
coordinates (x, y) related to the image and its rank computed in the last N
frames of video. Our tracking algorithm, based on multiple frames, brings
advantages, such as occlusion robustness and multiple counting avoidance for
the same cluster.

We use a Degree of Compatibility (DoC) computed using a weighted
Euclidean Distance (wED), as shown is Eq.4-6, to measure how closely matched
the clusters in the current frame (IC ) are to the all the clusters being tracked
in the last N frames (CC ). The IC with the lowest DoC value (BC) and below
are added to the CC list and receive an identification (id). Also, the number
of times (nTimes) that each IC was found in CC is counted and the referent
CC centroid and rank are updated. The rank update is based on a smoothed
equation which gives more emphasis to the rank of the newest clusters found
in the list, but also considers the oldest ranks as shown in Eq.4-7. In order to
save all the different clusters tracked in the video, the tracking system saves
each unique cluster of the CC list when each is matched over N/2 times. The
algorithm 1 shows a pseudo code for the tracking system.

DoCij = wED([CC i.x,CC i.y,CC i.rank] · aw, [IC j.x, IC j.y, IC j.rank] · aw)

=
√

[(CC .x− IC .x) · ax]2 + [(CC .y − IC .y) · ay]2 + [(CC .r − IC .r) · ar]2 ,
(4-6)

where ax, ay and ar are weighted values (between 0 and 1) that are manually
chosen to give more emphasis to the clusters chosen elements and ~aw =
[ax, ay, ar]. The centroids and ranks elements are normalized to provide values
between 0 and 1.

SmoothRank = CC i.rank · (CC id.nTimes− 1) + BC similar.rank
CC i.nTimes (4-7)
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4.3.5
Counting Clusters in Videos

In order to count quantitatively the number of tomatoes clusters in videos
at different maturation stages, we established thresholds for the maturation
levels to divide it into the following stages: Red, Mixed and Green Clusters.
The Red and Mixed Clusters are considered ripe while the Green Cluster is
not ready for harvest. Table 4.4 shows the thresholds chosen in the division.

We implemented two different methods to count the tomato clusters.
The first method counts the clusters using a Region of Interest (ROI) while
the second method uses the tracking system. Both methods uses the cluster
detection algorithm to locate and extract each cluster from the image and the
cluster evaluation algorithms to estimate the ripeness.

4.3.5.1
Method 1: Using a Region of Interest

As mentioned before, the clusters image sequence from the videos are
constantly moving to the left which facilitates the application of methods based
on region of interest to count the objects at each frame. The first method uses
an object counting API, proposed by [80], in which the cumulative counting
mode uses a vertical line of interest to count one or more objects whenever
it pass between a region around the line (i.e. Region Of Interest (ROI)).
Mathematically, the method considers an object to be counted when the center
line of the bounding box is aligned with the line of interest around an arbitrary
deviation (∆R) as shown in Fig. 4.4.

4.3.5.2
Method 2: Using the Tracking System

The second method takes advantage of the tracking system using the
clusters id information to count the number of unique tomato clusters at the
mentioned maturation stages.

4.3.5.3
Ratio of Ripe Clusters

In order to evaluate the maturation of an entire row (using the three
maturation stages), we calculate a ratio (rT ) as expressed in equation 4-8.

rT = R +M

R +M +G
, {R,G,B} ∈ Z , (4-8)

where R, M and G are the number of, respectively, Red, Mixed and
Green tomatoes clusters.
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Algorithm 1: Tracking algorithm implemented
1 function Cluster Tracking (IC ,CC );
Inputs : ImageClusters (IC - Clusters in the Current Image);

CurrentClusters (CC - Clusters tracked in the Current N
frames)
Output: Clusters Tracked (CT - All the clusters tracked)

2 for all CC do
3 BestDoC = − 8
4 BestCluster = [ ]
5 for all IC do
6 DoC = wED([CC .xi,CC .yi,CC .ranki] ·

~aw, [IC .xj, IC .yj, IC .rankj] · ~aw )
7 if DoC < BestDoC then
8 BestDoC = DoC
9 BestCluster = CC i

10 if BestDoC < threshold1 then
11 BestCluster.id = CC i.id
12 Increment the nTimes (number of times) the CC i was found
13 CC i.centroid← BestCluster.centroid
14 CC i.rank← SmoothRank(BestCluster.rank,CC i.nTimes)
15 Remove BestCluster from the IC list

16 for all IC do
17 if IC j appears in the three quarter of the image (3/4 · width)

then
18 for all CC do
19 DoC = wED([CC .xi,CC .yi,CC .ranki] ·

~aw, [IC .xj, IC .yj, IC .rankj] · ~aw )
20 if DoC > threshold2 then
21 ICj gets a new id
22 add ICj to the CC list

23 for all CC do
24 if CCi was matched N frames ago then
25 Remove the CC i from the CC list
26 if CC i.nTimes > N/2 then
27 add CC i to the CT list

28 return CT ;

Table 4.4: Range of values to separate the maturation rates into three matu-
ration stages.

Condition Cluster Classification
rank ≥ 70% Red Cluster
30% ≤ rank < 70% Mixed Cluster
rank < 30% Green Cluster
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Figure 4.4: Example of the TensorFlow Object Counting API in Cumulative
Counting Mode. The line of interest is fixed in the vertical and horizontal
positions while the bounding box center line moves according to the objects
centroid.

4.4
Experiments

The supervised experiments performed in this work were carried out
on NVIDIA® Geforce P100TM GPU, that made possible the parallelization
of CNN’s operations, considerably increasing the speed at which the training
was done. For the supervised algorithms at inference stage on the test set and
on the videos we used Intel® CoreTM i7 CPU and Intel® Movidius Compute
StickTM .

The experiments are divided into location, level of maturation estimate
and clusters counting. The two first kind of experiments were done separately
while the last kind was combinedly done.

4.4.1
Object Detection Experiments

The detection experiments were based on the TensorFlow API for object
detection which made possible to handle the detection behavior in different
experienced configurations. We analyzed the impacts of two CNNs and its
features extractors (CNN layers) used as a base of the location algorithm.
Also, we tested different values for the training hyperparameters which led
to better detection results. The default bounding box generator (anchor
generator) hyperparameters were chosen properly to allow the algorithm to
learn to detect tomato clusters at different shapes and in partial occlusion. We
prioritize the choice of anchors with higher relevant vertical ratio (≥ 1), due
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to the most common cluster’s shape (height greater than width). However, for
partial occlusion cases the algorithm should be able to detect most part of the
clusters, so also we also chose lower vertical ratio values (≤ 0.5). The two best
configurations are presented on Table 4.5.

Table 4.5: Best two configurations for the detection model.
Configuration Experiment

E1 E2
Base CNN VGG16 MobileNet V1
Base CNN Layers (First Part) 1− 4th Conv. 1− 6th DSC
Base CNN Layers (Second Part) 4− 5th Conv. −
Anchor generator aspect ratios 0.33; 0.5; 1.0; 2.0; 3.0 0.33; 0.5; 1.0; 2.0; 3.0
Batch size 1 1
Initial LR (η) 10−5 10−4

Epochs 120 100

In order to reduce the oscillation of errors during training given the high
quantity of tomato clusters per image (around 10) we chose lower values for
the batch size. The same effect occurs for the learning rate, being necessary for
the algorithm to converge by taking smaller steps. As a consequence, a greater
number of training epochs is required.

Additionally, we applied data augmentation algorithms to the training set
to avoid overfitting at the training phase by increasing the amount of trainable
data, which improves the network’s ability to locate objects in the test set. The
two transformations used were horizontal flip and random crop. The second
transformation was also helpful to detect smaller tomato clusters in images.

4.4.2
Level of Maturation Experiments

The image analysis experiments followed a tuning of the Gaussian filter
hyperparameters and the structure element kernels sizes for the opening
morphology, aiming to obtain suitable segmentation for the IW and I ′2 features.

For the supervised method, the VGG-16 [20] and MobileNet [74] networks
were used in our experiments by transferring their pre-trained parameters
and keeping some layers frozen (non-trainable) to train the regression model.
Similar to [1], we verified and chose the suitable number of layers to be frozen
("Y") for each pre-trained model. All the supervised experiments were made
using the sigmoid function for the output neuron that is attached to the last
regression layer.
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4.4.3
Counting Experiments

After obtaining the object detection and level of maturation best config-
urations, we combine these algorithms to be used by the counting methods in
videos. Differently from the previous experiments where the test data was used,
the counting experiments uses the whole three videos as samples. The data de-
pends on the location algorithm to find the tomato clusters so the maturation
can be estimated. The ground truth in this case is obtained by counting man-
ually the number of detected tomatoes in each video at the three maturation
stages. Thus, the undetected clusters are discarded from the experiments.

The number of counting experiments for each video is given by the
combination of the detection algorithm, the level of maturation algorithms
and counting method as shown in Table 4.6.

Table 4.6: Experiments for each video.
Object Detection Level of Maturation Counting Method Base # Experiment
Deep Learning (DL) Image Analysis (IA) ROI (M1) DIR: (DL+IA+M1)

Tracking (M2) DIT: (DL+IA+M2)
Deep Learning (DL) ROI (M1) DDR: (DL+DL+M1)

Tracking (M2) DDT: (DL+DL+M2)

Also, for the counting methods, we made pre-experiments varying some
of their hyperparameters. The tracking DoC hyperparameters (ax, ay, aR) were
tuned sufficiently so the tracking system provides satisfactory visual results in
the videos. The most representative cluster information evaluated when using
the fully supervised algorithm was the maturation rate while for the image
analysis method was the vertical component of the centroid. This is due to the
higher robustness of the regression model to evaluate the clusters maturation.
We verified that the deviation values (∆R) for the ROI method must not be
low because the algorithm would miss an expressive amount of bounding boxes
due to the pixel shift between frames that may be larger than the deviation.
The opposite effect occurs when using a larger value for the deviation, leading
to multiple counting for the same object. The Table 4.7 shows the range of
values for the base counting pre-experiments.
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Table 4.7: Range of values for the hyperparameters in the pre-experiments.
Counting Hyperparameter Range of Values
Method Base Min Max Optimal*
Tracking ax 0 0.6 0.2
(for DL) ay 0 0.6 0.5

aR 0 1 0.6
Tracking ax 0 0.8 0.3
(for IA) ay 0 1 0.5

aR 0 1 0.3
ROI ∆R (pixels) 1 50 0.6

*The optimal value is the best estimate found for the hyperparameters

4.4.4
Movidius Experiments

For the Movidius experiments, we evaluate the inference speed for
the regression, the object detection and the combined models. In order to
achieve this in the Intel® Movidius Compute StickTM , we initially convert the
Tensorflow models to the Caffe framework using a converter implementation3

and exporting the trained parameters from the Tensorflow model to the
converted model. The Movidius sdk version used (ncsdk v2) allows the upload
of multiple graphs to a single neural stick by allocating the model’s graphs
with FIFOs, being feasible to group the combined model.

4.5
Results and Discussions

In the results section, we present the partial results for cluster location
and level of maturation estimate. Then, for the combined approaches, we show
the complete results. The processing time for embedded applications and the
additional results are presented and discussed.

4.5.1
Object Detection Results

In order to evaluate the object detection algorithm performance on the
test set, we used the Intersection over Union (IoU) metric. The metric to
measure the class performance is not necessary because we are only interested
in locating the tomato cluster class. The IoU calculates how close a predicted
bounding box is to the ground truth, using Eq.4-9. The method is illustrated
in Fig. 4.5. When the boxes are closely matched, the IoU assumes values close
to 1, but when they are closely unmatched it assumes values close to 0. Also,

3tensorflow2caffe
Available: https://github.com/lFatality/tensorflow2caffe [January 22, 2019]

https://github.com/lFatality/tensorflow2caffe
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whether the model predicts part of the image that is not correctly a pre-
determined class, the IoU assumes value 0.

IoU = Area of Overlap
Area of Union , IoU ∈ R : 0 ≤ IoU ≤ 1 , (4-9)

Figure 4.5: Intersection over Union (IoU) for bounding boxes. The green color
on the left image represents the area of overlap, while on the right image it
represents the area of union.

The final IoU value for the test set is given by the mean of all the IoU
as shown in Eq. 4-10.

IoUfinal =
∑Npred

i=1 IoUi

Npred

, IoUfinal ∈ R : 0 ≤ IoUfinal ≤ 1 , (4-10)

where Npred is the number of predicted objects.
We also checked the sensitivity of the object predictions for the test set

(excluding the non-object predictions because this penalty is already calculated
by the IoU). The location results for each experiment is shown on Table 4.8.

Table 4.8: Location results for the test set which contains 175 samples.
Experiment Correct Matches IoU
VGG-16 157 (89.71%) 0.776
MobileNetV1 CNN 168 (96.00%) 0.892

The results show that the performance for the location algorithm using
the initial layers of the MobileNetV1 CNN as a feature extractor was better
than the VGG-16. The VGG-16 has much more trainable parameters, more
effective convolutions and usually provides better results, but in this appli-
cation MobileNet has excellent results even with its faster convolutions. As
mentioned, the object detection algorithm was only used to locate a single
class (cluster or non-cluster) which seems to have helped MobileNet to extract
features.
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4.5.2
Level of Maturation Results

Firstly, we evaluate some examples of the image analysis visual results
for common and extreme cases of the segmentation algorithm performance.
The figures 4.6, 4.7 and 4.8 display relevant results to be analyzed.

(a) (b) (c)

Figure 4.6: Segmentation visual results: (a) Original Image; (b) Red and (c)
Green Tomatoes Segmentation with Overlay.

It can be observed that for all the examples, the red tomatoes were cor-
rectly segmented by the algorithm with very little amount of false positive
pixels and false negative only in the case of specular reflection (Fig 4.7(e)).
The segmentation for the greenish tomatoes in the figures 4.6 and 4.7 per-
formed less well due to the complex background. However, the green tomatoes
segmentation on the darker images (Fig. 4.8) was not satisfactory.

In order to evaluate quantitatively the supervised and image analysis
methods we use the Root Mean Square Error (RMSE) metric to verify the
maturation errors on the test set. The RMSE is calculated by

RMSE =
√

1
n

Σn
i=1(rankest − rankgt)2 , RMSE ∈ R≥0 , (4-11)

where rankest and rankgt are the estimated and ground truth maturation rates.
The metric is applied to all the n clusters on test set. The comparative RMSE
results are shown in Table 4.9

Table 4.9: Level of maturation comparative results.
Method RMSE
Image Analysis

2.153 · 10−1

Supervised (DL)
MobileNetV1 2.522 · 10−1

VGG16 7.709 · 10−2
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The table shows that the image analysis performance for maturation
estimation was slightly better than the deep learning result involving the
Mobilenet pre-trained CNN. This is possibly linked to two factors: firstly as
discussed earlier, the image analysis method can segment very well the red
tomatoes and reasonably well the green tomatoes. Secondly the use of the
faster CNN in exchange for accuracy may not have been convenient to solve
this task efficiently. On the other hand, the RMSE value for the VGG16 pre-
trained results was about 3 times smaller than the image analysis method,
showing that this supervised model is much more robust in adverse image
conditions.

We also compare the maturation estimate (rank) distribution for the
test set between the image analysis method and the VGG16 model, providing
a scatter plot graph (Fig. 4.9).

The blue straight line indicates the rank linear relationship between the
two methods. The vertical green lines represent their standard deviations. It
can be noticed that the rank values for the supervised algorithm are more
distributed while the values for image analysis are more concentrated to rank
values above 0.8 (rankIA > 0.8). Also, for low rank values (ranksup < 0.4)
the standard deviation is high because the image analysis does not segment
precisely all the green tomatoes and consequently, in most cases, the estimate
tends to higher values. The results are similar for both methods when the rank
is between 0.7 and 0.9 (0.7 < ranksup < 0.9) with low deviation.

4.5.3
Counting Results

In order to evaluate the experimental results, we first discuss the individ-
ual tomato clusters counting at the three denominated stages for each video
presented in Tables 4.10 to 4.13. Then, we augment the discretization of the
maturation stage from 3 to 10 and analyze the histogram results for each video
using the best counting method.

Table 4.10: DIR results (DL+IA+M1).
Video Ground Truth Predicted

Red Mixed Green rT Red Mixed Green rT
1 98 48 18 89% 100 (+2) 5 (-43) 7 (-11) 90% (+1%)
2 51 17 10 87% 41 (-10) 2 (-15) 5 (-5) 90% (+3%)
3 50 25 11 87% 41 (-9) 7 (-18) 3 (-8) 87% (+0%)

The DIR results shows that the rT ratios for all the videos were very
close to the ground truth (defined in Sec.4.4.3), but the individual clusters
counting errors were very high. In the worst case for video 1, even with low
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Table 4.11: DIT results (DL+IA+M2).
Video Ground Truth Predicted

Red Mixed Green rT Red Mixed Green rT
1 98 48 18 89% 137 (+39) 8 (-40) 9 (-9) 94% (+5%)
2 51 17 10 87% 61 (+10) 4 (-13) 5 (-5) 93% (+6%)
3 50 25 11 87% 69 (+19) 10 (-15) 3 (-8) 96% (+9%)

Table 4.12: DDR results (DL+DL+M1).
Video Ground Truth Predicted

Red Mixed Green rT Red Mixed Green rT
1 98 48 18 89% 66 (-32) 31 (-17) 19 (+1) 84% (-5%)
2 51 17 10 87% 33 (-18) 8 (-9) 5 (-5) 89% (+2%)
3 50 25 11 87% 30 (-20) 13 (-12) 10 (-1) 81% (-6%)

Table 4.13: DDT results (DL+DL+M2).
Video Ground Truth Predicted

Red Mixed Green rT Red Mixed Green rT
1 98 48 18 89% 95 (-3) 44 (-4) 15 (-3) 90% (+1%)
2 51 17 10 87% 48 (-3) 16 (-1) 7 (-3) 90% (+3%)
3 50 25 11 87% 50 (+0) 24 (-1) 9 (-2) 89% (+2%)

rT error, the algorithm missed 43 mixed and 11 green clusters. The combined
algorithm could only provide good counting results for the red clusters in video
1 and green clusters in video 2. After changing the counting method from ROI
to Tracking (DIT), the individual counting results got worse resulting in a
worse rT. On the other hand, the DIT sum of all individual clusters is much
closer to the ground truth for all the videos than DIR. It indicates that the
tracking algorithms loses less tomatoes in general, but the segmentation was
not enough to separate the maturation stages correctly.

In general, the DDR counting results seems to be better than the DIT
and worse than DIR. However, the DDR results are more distributed along the
maturation stages providing better counting for the mixed and green clusters.

When comparing the last counting results (DDT) to DIR, it can be
noticed that the DDT shows similar rT values for the videos 1 and 2, but
a slightly loss on precision for the ratio in video 3. However the individual
counting was very precise which provides a much more reliable rT and,
consequently superior results than all the other experiments. The Table 4.13
also shows that DDT had null counting error in the best case (on video 3) and
four counting errors in the worst case (on video 1, the longest video).

The following histograms (Fig. 4.10, 4.11 and 4.12) represent the matu-
ration estimate results that were discretized in one decimal for the two best
counting experiments (DIT and DDT configurations) in each video. Expanding
the range of values could help to identify in more details the counting errors
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Video Average Continuous
Maturity
DIT DDT

1 84.12% 68.39%
2 84.58% 71.49%
3 83.77% 66.43%

Table 4.14: Average Continuous Maturity for the DIT and DDT configurations
for each video.

previously presented when using the image analysis method versus when using
the deep learning model. The greenish area of the histogram is related to the
green clusters, the yellowish is related to the mixed clusters and the reddish is
related to the red clusters. The sum of all the clusters inside an area is similar
to the values presented on the tables of the experiments which use the tracking
algorithm (DIT and DDT).

In the three histograms, the experiments using the image analysis meth-
ods show that there is a tendency in choosing higher values for the rank
(rank ≥ 0.9) instead of more values in the range 0.6 ≤ rank ≤ 0.8 (as the
deep learning results do) due to the reasonable segmentation for the greenish,
but great segmentation results for the reddish tomatoes.

For videos 1 and 2, the image analysis used as a base of the counting
method, could provide better low ranking results (rank < 0.3). So we analyzed
the two videos and noticed that the presence of lighter greenish clusters is
greater than the presence in video 3 in which the clusters have a higher contrast
with regard to the agricultural background and, consequently improves the
segmentation results.

For the videos 1 and 3, in general, the counting results are well distributed
for both methods, showing a greater number of correspondences. However, the
correspondences proportion between the methods for each discretized rank is
still low due to the higher counting loss in DIT when the tracking tries to find
the unique clusters with the less precise rank estimate.

In order to decide precisely which plant row the harvest should start
and which should be skipped, we can calculate and verify the average of the
row continuous maturity (instead of discrete values) for the two best counting
configurations (DDT and DIT) as shown in table 4.14.

Based on the results using the DIT configuration, the decision is not
clearly highlighted because this configuration leads to high ranking values
which affects negatively the average continous maturity. On the other hand,
when analysing the best configuration results (DDT) we can infer that the
harvest should follow the row sequence 2, 1 to 3.
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4.5.4
Processing Time Results

To verify the possibility of employing the model in embedded applica-
tions, we evaluated the inference time when using a desktop which CPU com-
pared to the Neural Compute Stick. The processing results are shown in Table
4.15.

Table 4.15: Average inference time results. The frame per second (FPS) shown
is the frame processing average of all the three videos. For the regression model
inference, each image represents a tomato cluster.

Model Average Inference Ratios
Desktop CPU Movidius

Regression 18 images/s 6 images/s
Object Detection 15.29 FPS 4.53 FPS
Combined 3.47 FPS 1.12 FPS

It can be noticed that the performance for the neural stick is reasonable
for the object detection, but a bit slow for the combined model. This effect
is a consequence of the regression model which has an expressive number of
parameters that limits the processing FPS even for the Desktop CPU. To solve
this problem, a parallelization of neural compute sticks could be made which
should increase the inference speed or another embedded solution could be
used (e.g. Movidius Compute Stick 2TM , NVIDIA® JetsonTM 4).

4.5.5
Additional Results

We also verified some tracking results for occlusion cases in the videos
and their impacts on maturation rate when using the DDT configuration. The
results are shown in the figures 4.13-4.16.

It can be noticed that the object detection algorithm on Fig. 4.13
predicted the bounding boxes even with occlusion, but the maturation rank
was affected when the occlusion was occurring which decreased the rank
value for a while. On the other hand, our tracking algorithm uses the rank
information between 20 frames and calculates a smoothed maturation function
which mitigates this rank discrepancy.

Besides the same effect happens on Fig. 4.14, the rank estimate was
higher in the first image because of the cluster behind, but the rank discrepancy
is also mitgated by the tracking algorithm.

4NVIDIA® JetsonTM

Available: https://www.nvidia.com.br/object/jetson-tk1-embedded-dev-kit-br.html [March
29, 2019]

https://www.nvidia.com.br/object/jetson-tk1-embedded-dev-kit-br.html
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The Fig. 4.15 results shows a moment when the object detection algo-
rithm loses the detection due to occlusion, then detects the cluster again. The
tracking system could identify correctly the two detections as the same cluster.
An important point is that in the uncropped image, five other clusters were
being tracked.

The Fig. 4.16 results shows the same cluster present in 4.15 passing
through a second occlusion, losing the detection and having the rank affected
by the green cluster. However, the tracking task succeeded.
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4.7(a): Tomato Cluster 4.7(b): Red Tomatoes
Segmented

4.7(c): Green Toma-
toes Segmented

4.7(d): Tomato Cluster 4.7(e): Red Tomatoes
Segmented

4.7(f): Green Toma-
toes Segmented

4.7(g): Tomato Cluster 4.7(h): Red Tomatoes
Segmented

4.7(i): Green Tomatoes
Segmented

Figure 4.7: Examples of satisfactory segmentation partial results.
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Figure 4.8: Examples of unsatisfactory segmentation results for red and green
tomatoes.

Figure 4.9: Scatter plot for maturation estimate. The x-axis represents the
supervised rank estimate (ranksup) and the y-axis represents the rank using
image analysis (rankIA).

Figure 4.10: Comparative histogram for the DIT and DDT experiments for
video 1.
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Figure 4.11: Comparative histogram for the DIT and DDT experiments for
video 2.

Figure 4.12: Comparative histogram for the DIT and DDT experiments for
video 3.

Figure 4.13: DDT results showing correct cluster detection in the presence of
occlusion.
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Figure 4.14: DDT results showing cluster rank discrepancy mitigation through
the tracking algorithm.

Figure 4.15: DDT results showing loss and re-acquisition of a cluster by the
tracking algorithm.

Figure 4.16: DDT results showing multiple losses and re-acquisition of a cluster
by the tracking algorithm.
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4.6
Conclusions and Future Work

In this paper, different approaches for fruit monitoring were implemented
and tested proving its effectiveness. The supervised techniques showed the
robustness to adverse conditions as well the precision of the convolutional
neural networks for object detection and regression, when tuned properly. The
object detection model could locate precisely the majority of tomato clusters on
the test set. The baseline implementation based on segmentation was relevant
to identify the tomato ripeness based on their appearance for clusters that
contains mostly red tomatoes, but not so accurate for some mixed and green
clusters. However, when using a CNN as a regressor for the same task, the
maturity estimation was quite precise.

The counting system in videos based on region of interest is a simple and
fast method to count objects, but it has limitations which lowers its precision.
On the other hand, when the system was based on tracking, the algorithm was
able to successfully identify the different clusters and consequently perform
the counting with higher precision.

The processing speed, in general, is high and could help the farmer to
identify the maturation quickly and with some consistency, improving the
harvest efficiency. The system implemented could also be used together with
ground robots for harvesting by informing the robot whether a cluster is ready
for harvest or not. The robot may work for extended hours in different climates
which would considerably accelerate production.

Training two separate supervised models (a detector and a regressor)
has the advantage of being able to combine different architectures and easily
observing the individual results as well the possibility to tune each one more
precisely, but it is less efficient in terms of computational cost compared to a
single model that performs both tasks. Besides the object location and class,
the object detection algorithm can be adapted to provide the maturation rate
by substituting the multiple classification layers for regression layers and also
changing the loss function and the metrics. This approach was not considered
in this paper because the VGG16 performed better for maturity estimate and
MobileNetV1 perfomed better for cluster location, but the approach can be
considered for other different CNNs architetures [21, 22, 23].

Also, the use of recurrent networks for instance segmentation could be
tested for detection and tracking. Using supervised instance segmentation
algorithms, it is possible to detect and segment each object sequentially and
give different id for each one, being also robust to occlusion [81].

Instead of using regression or segmentation to estimate the maturation,
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pixel-wise semantic segmentation deep learning algorithms could be used for
this task, being robust to image adverse conditions (e.g. SegNet[9], U-Net [38]
and DeepLab [37] )

For future work, the tracking system could also be improved by using
additional information to identify unique clusters such as the prediction of the
next position of a given cluster based on adaptive Kalman filters, similar to
the object tracking implementation by [82].
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5
General Conclusions and Future Work

In this project, we presented the feasibility of supervised deep learning
models in real applications for crop monitoring at three imagery levels. Both
the literature and our own experiments show how the DL algorithms stood
out in the areas of image recognition. We presented relevant results that can
facilitate and improve the farmer’s work environment leading to higher crop
efficiency.

In the first sub-project, a newly proposed statistical analysis method
and auxiliary mechanisms were implemented to improve the effectiveness
of CNNs in transferring trainable parameters from different domains and
learning the specific characteristics of vegetative species groups with high
accuracy. The second sub-project used a semantic segmentation adapted model
implementation, capable of providing multiple distinct but related information
at once which is relevant for sugarcane crop analysis. The third sub-project
uses object detection and CNN regression models to successfully locate tomato
clusters and estimate their maturity. The counting system developed based on
tracking was able to successfully identify the unique clusters and consequently
perform the counting with high precision.

For future work we intend to integrate the UAVs and UGVs systems
together which may improve the crop monitoring. The remote sensing UAVs
can provide the crop health information while the UGVs can move to the
intended location and identify the source of the problem (e.g. types of plants
diseases and pest infestation).

It is intended to monitor the changes of the crop over time via remote
sensing images and use this information to train models, such as CNNs with
sequential approaches and recurrent neural networks (e.g. Long Short-Term
Memory[83]) to predict the crop efficiency using images which makes it possible
to take early decisions and manage resources such as irrigation and fertilization
[84, 85].
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