

Adrian Manresa Pérez

Machine Learning to Predict High-cost Hospitalizations

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em Engenharia de Produção of PUC-Rio in partial fulfillment of the requirements for the degree of Mestre em Engenharia de Produção.

> Advisor : Prof. Fernanda Araujo Baião Amorim Co-advisor: Prof. Silvio Hamacher

Rio de Janeiro March 2020

Adrian Manresa Pérez

Machine Learning to Predict High-cost Hospitalizations

Dissertation presented to the Programa de Pós–graduação em Engenharia de Produção of PUC-Rio in partial fulfillment of the requirements for the degree of Mestre em Engenharia de Produção. Approved by the Examination Committee.

> **Prof. Fernanda Araujo Baião Amorim** Advisor Departamento de Engenharia Industrial – PUC-Rio

> **Prof. Silvio Hamacher** Co-advisor Departamento de Engenharia Industrial – PUC-Rio

> > Prof. Fernando Augusto Bozza FIOCRUZ

Prof. Julia Lima Fleck Departamento de Engenharia Industrial – PUC-Rio

Rio de Janeiro, March the 20th, 2020

All rights reserved.

Adrian Manresa Pérez

Bachelor in Industrial Engineering by the Technological University of Havana José Antonio Echeverría (Havana, Cuba) in 2016.

Bibliographic data

Manresa Pérez, Adrian

Machine Learning to Predict High-cost Hospitalizations / Adrian Manresa Pérez; advisor: Fernanda Araujo Baião Amorim; co-advisor: Silvio Hamacher. – 2020.

147 f.: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Industrial, 2020.

Inclui bibliografia

1. Engenharia Industrial – Teses. 2. Custo em Saúde;. 3. Aprendizado de Máquina;. 4. Modelos Preditivos.. I. Amorim, Fernanda Araujo Baião. II. Hamacher, Silvio. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Industrial. IV. Título.

CDD: 658.5

PUC-Rio - Certificação Digital Nº 1813286/CA

To my parents, for their support and encouragement.

Acknowledgments

First of all, I wish to acknowledge the support of all my family, especially the dedication and the great love that I have always received from my parents. They give me all the confidence and comprehension I need to fight for my dreams. They are my strength, my guide, the engine of my life. Thanks to my sister for her love and happiness, and for taking care of our parents during this time that I have been away.

Then I wish to thank the most lovely, comprehensive, and intelligent woman I know: my wife. Thanks for putting a smile on my face every day, for being my friend, my inspiration, for enjoying my dreams, for making them real. Thanks for the immense help with this thesis and for always being my safe place. Thanks to my wife's family, especially to his parents and brother. They have made me part of the family since day one, always offering me their love and unconditional support.

I am so grateful to my advisors, Professor Fernanda Baião and Silvio Hamacher, for trusting me and giving me the opportunity of doing this interesting work. They have provided me excellent guidance during my master's studies, contributing to my formation, and to accomplish the goals of this thesis.

I wish to express my deepest gratitude to the Cuban family I found here. In special to Julio, Kirenia, David, Lorena, Rocio, Emilio, Daylis, Randy, Adila, and Félix, and to those that arrive later, Madaine, Raul, Gretel, and Anabel. Thanks for being my family in Rio de Janeiro and for being there for everything.

I would also like to thank to my colleagues and friends from DEI and the Tecgraf Institute, for all the moments that we share together, especially to Bianca, Leonardo, Amanda, Leila, Igor, and Iuri.

I am truly thankful to Pontifical Catholic University of Rio de Janeiro, for giving me the opportunity of pursuing my master's degree and for the excellent professors I had here.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This study was also finaced by PUC-Rio, and by the Brazilian Agency FAPERJ under grant E-26/200.878/2019.

Abstract

Manresa Pérez, Adrian; Amorim, Fernanda Araujo Baião (Advisor); Hamacher, Silvio (Co-Advisor). Machine Learning to Predict High-cost Hospitalizations. Rio de Janeiro, 2020. 147p. Dissertação de mestrado – Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Healthcare providers are evolving their management models, developing proactive programs to improve the quality and efficiency of their health services, considering the available historical information. Proactive strategies seek not only to prevent and detect diseases but also to enhance hospitalization outcomes. In this sense, one of the most challenging tasks is to identify which patients should be included in proactive health programs. To this end, forecasting and modeling cost-related variables are among the most widely used approaches for identifying such patients, since these variables are potential indicators of the patients' hospitalization risk, their severity, and their medical resources consumption. Most of the existing research works in this area aim to model cost variables from an overall perspective and predict cost variations for specific periods. In contrast, this work focuses on predicting the costs of a particular event. Specifically, this thesis prescribes a solution for identifying high-cost hospitalizations, to support health service managers in their proactive actions. To this end, the Design Science Research (DSR) methodology was combined with the Data Science life cycle in a real scenario of a health consulting company. The data provided describes patients' hospitalizations through their demographic characteristics and their medical resource consumption. Different statistical and Machine Learning techniques were used to predict high-cost hospitalizations, such as Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Trees (CART), Random Forest (RF), and Extreme Gradient Boosting (XGB). The experimental results showed that RF and XGB presented the best performance, reaching an Area Under the Curve Precision-Recall (AUCPR) of 0.732 and 0.644, respectively. In the case of RF, the model was able to detect, on average, 72% of the high-cost hospitalizations with a 33% of Precision, which represents 78.7% of the total cost generated by the high-cost hospitalizations. Moreover, the obtained results showed that the use of prior cost and aggregated variables of resource consumption increased the model's ability to predict high-cost hospitalizations.

Keywords

Healthcare Cost; Machine Learning; Predictive Model.

Resumo

Manresa Pérez, Adrian; Amorim, Fernanda Araujo Baião; Hamacher, Silvio. Aplicação de Técnicas de Aprendizado de Máquina para a Predição de Internações de Alto Custo. Rio de Janeiro, 2020. 147p. Dissertação de Mestrado – Departamento de Engenharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

Empresas do ramo da Saúde vêm evoluindo seus modelos de gestão, desenvolvendo programas proativos para melhorar a qualidade e a eficiência dos seus serviços considerando informações históricas. Estratégias proativas buscam prevenir e detectar doenças precocemente e também melhorar os resultados das internações. Nesse sentido, uma tarefa desafiadora é identificar quais pacientes devem ser incluídos em programas proativos de saúde. Para isso, a previsão e a modelagem de variáveis relacionadas aos custos estão entre as abordagens mais amplamente utilizadas, uma vez que essas variáveis são potenciais indicadores do risco, da gravidade e do consumo de recursos médicos de uma internação. A maioria das pesquisas nesta área têm como foco modelar variáveis de custo em uma perspectiva geral e prever variações de custos para períodos específicos. Por outro lado, este trabalho se concentra na previsão dos custos de um evento específico. Em particular, esta dissertação prescreve uma solução para a predição de internações de alto custo, visando dar apoio a gestores de serviços em saúde em suas ações proativas. Para esse fim, foi seguida a metodologia de pesquisa Design Science Research (DSR), aliada ao ciclo de vida de projeto de Ciência de Dados, sobre um cenário real de uma empresa de consultoria em saúde. Os dados fornecidos descrevem internações de pacientes através de suas características demográficas e do histórico de consumo de recursos médicos. Diferentes técnicas estatísticas e de Aprendizado de Máquina foram aplicadas, como Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Trees (CART), Random Forest (RF) e Extreme Gradient Boosting (XGB). Os resultados experimentais evidenciaram que as técnicas RF e XGB apresentaram o melhor desempenho, atingindo AUCPR de 0,732 e 0,644, respectivamente. O modelo de predição da técnica RF foi capaz de detectar até 72%, em média, das internações de alto custo com 33% de precisão, o que representa 78,7% do custo total gerado por tais internações. Além disso, os resultados monstraram que o uso de custo prévio e variáveis agregadas de consumo de recursos aumentaram a capacidade de predição do modelo.

Palavras-chave

Custo em Saúde; Aprendizado de Máquina; Modelos Preditivos.

Table of contents

1	Introduction	15
2	Related Works on Modeling Healthcare Cost and Resource Consumption Variables	19
2.1	Perspectives when modeling healthcare cost variables	19
2.2	Features used to explain healthcare cost variables	20
2.3	Statistical and Machine Learning techniques applied to health cost predictions	22
0		
3	Scientific Methodology and Theoretical Foundations	25
3.1	DS Paradigm	25
3.2	Data Science Life Cycle	27
	1 Business understanding	28
	2 Data Understanding	29
	3 Data Preparation	31
	4 Data Modeling	35
	5 Evaluation	48
	6 Deployment	49
3.3	The Data Science Life Cycle within the DSR Cycles.	49
4 4.1	Application of a DSR methodology to predict high-cost hospitalizations First DSR cycle: Data Exploration and Prediction of high-cost hospi-	51
	talizations over sample data.	51
4.1.	1 Business Understanding	52
4.1.	2 Data Understanding	52
4.1.	3 Data Preparation	59
4.1.	4 Data Modeling	60
4.1.	5 Evaluation	62
4.2	Second DSR cycle: Prediction of high-cost hospitalizations over the	
	complete dataset	64
4.2.	8	65
4.2.	2 Data Understanding	66
4.2.	2.1 Defining the class variable	69
4.2.	3 Data Preparation	71
4.2.	4 Data Modeling	72
4.2.	4.1 Evaluating ML Techniques Performance among all Admission Sub-	
	group	73
4.2.	4.2 Evaluating ML Techniques Performance for each Admission Subgroup	74
4.2.	o	76
4.2.		77
4.2.	5.1 Visualizing the predictions	77
4.2.	5.2 Analyzing Individual Cases	79
4.2.	5.3 Analyzing from an Economic Perspective	81

5 5.1	Conclusions Suggestions for future works	84 85
Bibl	iography	87
А	Dictionary of variables	97
В	Correlation Matrix	105
C C.1 C.2		106 106 114
D	Detailed description of the data set by subgroups	116
Е	Learning analysis of cycle 2	119

List of figures

Figure 3.1	DSR cycles [1].	27
Figure 3.2	Data Science Life Cycle [2].	28
Figure 3.3	Resampling technique for imbalanced data. a) up-	
sampli	ng and down-sampling. b) SMOTE and ROSE	33
Figure 3.4	Contingency Table for McNemar's test.	42
Figure 3.5	Confusion Matrix	42
Figure 3.6	Effect of optimizing one of the two errors FP or FN .	44
Figure 3.7	ROC plot.	46
Figure 3.8	PR plot.	47
Figure 3.9	DSR and Data Science Life Cycles	50
Figure 4.1	First Cycle of the DSR and Data Science Methodology	51
Figure 4.2	Quality Filter Procedure.	53
Figure 4.3	Pareto Graph for the Hospitalization cost.	54
Figure 4.4	Proportion of high-cost hospitalizations for the 12 most	
-	nt "Admission Group".	58
~	Heatmap of predictors' correlation.	58
~	ROC curve for LASSO model using the "Aggregated"	
	t. The red dot indicates the optimum threshold that	
0	tes the confusion matrix in table 4.5.	62
-	Variable importance for LASSO model using the "Ag-	
0 0	ed" dataset. X-axis represents the absolute value of the	60
	le coefficient.	63
-	"Hospitalization Cost" for the 12 most frequent "Admis-	C 4
	roups". The y-axis is in logarithm (base 10) scale	64
-	Second Cycle of the DSR and Data Science Methodology	65 67
~	Data quality and reduction filters for the entire dataset.	67
-	"Hospitalization Cost" for the 10 most frequent "Admis-	
	ubgroup". The y-axis is in logarithm (base 10) scale for	68
	visualization. "Hospitalization Cost" for the 10 most frequent "Admis-	00
0	ubgroup". The green point are the residual hospitaliza-	
	The y-axis is in logarithm (base 10) scale for better visu-	
alizatio	· · · · · · · · · · · · · · · · · · ·	69
	"Hospitalization cost class" definition for each "Admis-	09
-	ubgroup" of the "Admission Group" named "SISTEMA	
	STIVO E ANEXOS".	70
	"Admission Subgroup" frequency and average cost. The	10
~	ers in the x-axis represent each "Admission Subgroup" (see	
	dix D for a detailed description).	72
	Overall ML technique performance across dataset.	73
-	Overall "Admission Subgroup" performance using RF	10
and X		74

Figure 4.17 Variable importance. Top Graph, "Admission Subgroup"	
22 with RF without resampling technique. Bottom Graph,	
"Admission Subgroup" 33 using XGB and SMOTE.	77
Figure 4.18 Classification predictions for the testing folds during the	
CV procedure of "Admission Subgroup" 22. The blue dashed	
line represent the high-cost boundary for this subgroup.	78
Figure 4.19 Classification predictions for the testing folds during the	
CV procedure of "Admission Subgroup" 33. The blue dashed	
line represent the high-cost boundary for this subgroup.	79
Figure 4.20 Cost distribution for each "Admission Procedure" within	
the $FARINGE$ subgroup (only procedures with more than 10	
hospitalizations are shown). The blue dashed line represents the	
high-cost boundary defined at subgroup level.	83
Figure C.1 Hyperparameter tuning for RR and both dataset "Tem-	
poral" and "Aggregated"	106
Figure C.2 Hyperparameter tuning for LASSO and both dataset	
"Temporal" and "Aggregated"	107
Figure C.3 Hyperparameter tuning for CART and both dataset	
"Temporal" and "Aggregated"	107

List of tables

	Examples of past cost variables used in the literature to	
-	et future costs.	21
	Summary of related works on predicting high-cost in the neare field.	23
Table 4.1	Group of variables	53
Table 4.2	Descriptive statistics for numeric variables.	56
Table 4.3	Descriptive statistics for binary variables.	57
Table 4.4	Feature Engineering. Aggregated Medical Resource Con-	
sump	tion variables.	60
Table 4.5	Experimental Scenarios and results	61
Table 4.6	Group of variables whole dataset	67
Table 4.7	Feature Engineering. Aggregated Medical Resource Con-	
sump	tion variables.	71
Table 4.8	Experimental Scenarios	73
Table 4.9	Summary of performance of best models for "Admission	
Subgr	coup" 22 and 33.	76
Table 4.10	Predictors' characteristics for extreme misclassifications	
in bot	th subgroups.	80
Table 4.11	Cost analysis of models' performance for "Admission	
Subgr	coups" numbers 22 and 33.	82
Table A.1	Dictionary of Variables.	104
	Spearman's rank correlation coefficient for numeric vari-	105
ables.		105
Table B.2	Cramer's correlation coeficient for categorical variables.	105
Table C.1	Machine Learning techniques hyperparameters for cylce 1.	106
Table C.2	Variable coefficients, RR for "Temporal dataset"	108
Table C.3	Variable coefficients, RR for "Aggregated dataset"	109
Table C.4	Variable coefficients, LASSO for "Temporal dataset"	111
Table C.5	Variable coefficients, LASSO for "Aggregated dataset"	113
	Mc Nemar's test to compare homogenity in the errors	
	g ML techniques (first cycle).	115
	"Admission Subgroup" number and correponding names,	
Total	frequency, High-cost frequency and proportion.	116
Table E.1	Machine Learning techniques hyperparameters for cylce 2.	120
Table E.2	Performance results for all scenarios tested in "Asmission	0
	coup" 22 and 33.	121
0	Mc Nemar's test to compare homogenity in the errors	
	g ML techniques (second cycle).	124

List of Abreviations

AUROC – Area Under the Receiver Operating Characteristics AUCPR – Area Under the Precision Recall curve CART – Classification and Regression Tree CRISP-DM – Cross Industry Standard Process for Data Mining CV – Cross-Validation DMAIC – Define, Measure, Analyze, Improve, Control DS – Design Science DSR – Design Science Research FP – False Positive FPR – False Positive Rate FN – False Negative **GBM** – Gradient Boosting Machine KNNs – K-Nearest Neighbors KDD – Knowledge Discovery in Databases KNNs – K-nearest neighbors LASSO – Least Absolute Shrinkage and Selection Operator LR – Logistic Regression ML – Machine Lerning MCC – Matthews Correlation Coefficient MLE – Maximum Likelihood Estimation PPV – Positive Predicted Value PR – Precision-Recall RF – Random Forest ROC – Receiver Operating Characteristic **ROSE** – Random Over Sampling Examples RR – Ridge Regression SEMMA – Sample, Explore, Modify, Model, Assess SMOTE – Synthetic Minority Over-Sampling Technique TN – True Negative

TNR – True Negative Rate

- TP True Positive
- TPR True Positive Rate
- XGB Extreme Gradient Boosting

I believe in intuitions and inspirations. I sometimes feel that I am right. I do not know that I am.

Albert Einstein

1 Introduction

Organizations have been serving as sources of large amounts of data with the capability to transform their entire business processes. This data provides insights on processes behaviors and could serve as a guide to create business value and to assist decision-making processes [3]. Particularly the Healthcare industry manages an extensive amount of data from a wide variety of sources, such as traditional interviews, clinical and laboratory processes, medical equipment, hospital bills, pharmacy deliveries, insurance companies, wearable devices for telemonitoring, etc. [4].

In the last decades, data-driven approaches and techniques (such as forecasting, optimization, simulation, machine learning, process mining, etc.) have increasingly become the focus of academic and corporate investigations in the Health field because of its capacity to provide enhanced visibility of the operations and to improve performance [5, 6].

In this direction, current healthcare systems face a variety of challenges, including financial demands for cost optimization and proper use of resources, aging populations, and an always increasing demand for health services. Proper use of the vast amount of data generated in health organizations is becoming the approach for meeting these challenges, and thus improve the quality and efficiency of their services [7]. Furthermore, healthcare systems are changing their vision of health models from a reactive to a proactive approach [8], with the objective of improving patient health, reduce the risk of hospitalizations, shorten the in-hospital stay, avoid readmissions and optimize the allocation of available resources. The proactive strategy attempts to create a commitment between caregivers and patients, where both take an active role in managing the patient's health. For that, the healthcare providers should design health models to prevent and early detect diseases, and also improve the hospitalization's outcomes. Moreover, the continuous increase of health expenses is one of the most critical problems in the world [9-11], especially when it is not reflected in better health but is caused by inefficient services as unnecessary medical tests, frequent readmissions and high-cost of patented prescription drugs [12, 13].

One of the most challenging tasks to address these problems is to

correctly identify patients who may incur high expenses and thus should be part of a proactive health plan to receive appropriate care and to optimize the allocation of existing resources [14]. The selection of this group of people involves the analysis of a large number of variables and data available for each patient. This overwhelming amount of information makes this task a real challenge for doctors and health managers, compromising the effectiveness of this critical decision [8]. A first step in identifying the target patients could be to analyze the patient's expected cost since it has been widely used as an indicator of the patient severity, of a high complexity hospitalization, or of high resource consumption [9].

In healthcare systems, costs may refer to the overall cost of a patient during a determined period, or the specific cost a patient will generate when hospitalized. The latter refers, for example, to the value charged to a patient (or insurance company) when admitted into the hospital to perform a scheduled surgery. In both cases, cost values present high variability caused by a variety of factors, such as the type of procedure, insurance plan, hospital characteristics, patient medical record, etc. In this context, forecasting and modeling cost variables are valuable but also challenging tasks, which results are of huge importance for all actors involved. For the beneficiaries, knowing their future health expenses would allow them to make a better choice of insurance plans [15], and even guide them to adopt proactive strategies to reduce health risks. Health service providers will benefit by identifying highly complex patients and thus allow them to take preventive actions and prioritize the limited medical resources [16]. Also, the insurance providers will improve accountability and their business planning to attract new members and also manage the existing ones via preventive care [10].

The present dissertation is developed in conjunction with a Health Consulting organization that serves as a connection for diverse corporations with healthcare providers and health insurers. The organization's goals are to reduce waste of resources and enhance financial health, acting as an efficient and centralized healthcare manager. One of their strengths is the ability to customize their final products. For that, they have improved their capability to obtain the raw data generated by the involved companies and transform it into valuable information, thus aggregating value to their services.

Recently, the organization got involved in designing a proactive plan, for which the identification of suitable patients is a key issue. For the organization, there are two situations of interest to implement the named plan, with a long and short-term vision. The first, as a strategic plan, seeks to analyze the whole population within the organization and is focused, for example, on detecting and treating chronic diseases. In contrast, the second situation is more operational and emerges at the moment that a patient is already admitted to a hospital institution, which is the focus of the present research. Here the problem is to identify patients deserving special attention to avoid unexpected behaviors in their health condition and increased complexity of the medical procedure.

Thus, the problem addressed in this research is "how to detect an unexpected high-cost of a patient treatment during his/her hospitalization"? Hence, the main objective of this dissertation is to predict, at the moment of a hospitalization, which patients may incur an unexpected high-cost hospitalization.

For this purpose, statistical and Machine Learning (ML) models were considered to predict high-cost hospitalizations. The study was performed on a database of patients' hospitalizations provided by the organization, which has information about their demographic characteristics, their record of medical resource consumption for three years before the last hospital admission, and the motive and procedures of it. The complementary objectives of this research are:

- Perform a literature review to identify the main concepts and variables used in previous researches to model healthcare costs and medical resource consumption.
- Define the variable that describes unexpected cost in this research context.
- Implement statistical and ML techniques to model healthcare costs and to make predictions.

This research contributes primarily to the development of a predictive model that is both relevant and rigorous. Relevant because it prescribes a solution to a real problem in a notable context and rigorous because it has a foundation supported in the existing literature, which provides the necessary knowledge to conduct the research. Furthermore, it contributes to the academic field by addressing the cost modeling task from a different perspective, not considering the continuous cost variable in a temporal fashion, but instead forecasting whether and unexpected costs can occur in a specific event. Besides, the work method followed in this research combines the application of the Design Science Research (DSR) methodology with the Data Science life cycle in a real scenario of a health consulting organization, thus extending the boundaries of the Design Science (DS) theory and practice. Moreover, the empirical evaluation of statistical and ML techniques in a Brazilian database of patient's in-hospital admissions is a novel approach for predicting high-cost hospitalizations in the country.

Following Chapter 1, this thesis is structured as follows: Chapter 2 presents the main status and contributions in the literature to model healthcare costs and medical resource consumption; Chapter 3 describes the scientific methodology followed in this research to develop a Data Science approach for predicting high-cost hospitalizations; in Chapter 4 the results and procedure explaining the ML model's development is described; finally, Chapter 5 presents conclusions and future works.

Related Works on Modeling Healthcare Cost and Resource Consumption Variables

This chapter describes the research works found in the literature regarding the development of predictive models in the healthcare field, specifically to model cost and resource consumption data.

We first explain how the perspectives of previous investigations in this field differ from the methodology followed by the present study. Despite the different possibilities to address the problem, past work findings still contribute to the base knowledge of this dissertation. In this sense, the different types of explanatory variables used and their characteristics, the statistical and ML techniques, as well as the methods followed to evaluate them, are summarized.

The related studies reviewed were selected from two recent systematic literature reviews on the topic. Wammes et al. [17] reviewed studies on the characteristics and healthcare utilization patterns of high-cost users, whereas Morid et al. [16] analyzed supervised learning methods used for predicting healthcare costs. From a total of 60 papers analyzed by both, 14 were selected after filtering out the works that did not focus on cost prediction, i.e., the ones that just intended to describe the characteristics of high-cost patients.

2.1 Perspectives when modeling healthcare cost variables

As stated in Chapter 1, this thesis prescribes a solution for the demand of a Health Consulting organization, which aims to create a proactive plan that aggregates value to their services. The proposed solution seeks to model healthcare costs as the methodology to identify suitable patients that will integrate the named plan. In this context, the objective is to build a predictive model to detect high-cost hospitalizations when a patient is already admitted to a hospital, that is, the cost modeling procedure is intended for a specific event. In contrast, related works which also model healthcare costs do not look to a particular event in the patient's record, but intend to forecast whether they will increase their expenses for a defined period [9,18]. For example, Sushmita et al. [19] aim to predict health costs in four future scenarios (3, 6, 9, and 12 months). Lahiri et al. [15] predict whether or not the individual's healthcare

2

expense will rise in the following year.

Moreover, previous investigations model the cost variable as a numeric value or create discrete variables that characterize the problem under study. The study of Duncan et al. [10] exemplify the use of the continuous cost variable, where the objective is to predict next year's total expenditures using last year's information. On the other hand, the discretization of the cost variable is a characteristic of researches aiming to identify likely patients to incur in high-expenses, where a classification model is more appropriated. Discretization approaches go from binary split to cost bucketing [11]. In the later, researchers aim to isolate high-cost hospitalizations by grouping observations in a manner that the total sum of the hospitalizations' cost within each bucket is nearly the same. The bucketing approach implemented by Guo et al. [14] intends to group patients by degree of severity considering their health expenses, and then asses the risk of a patient transition from a less costly bucket to a higher one.

2.2 Features used to explain healthcare cost variables

Different types of variables have been used as inputs of predictive models to explain the behavior of costs in the healthcare field. Variables encountered in this context relate to patients' medical conditions and different types of medical resource consumption, where the latter present challenging characteristics regarding their data distribution. Resource consumption data is typically sparse (mostly zero-valued indicating no use of resources), with few observations presenting extreme values. In other words, this data is characterized by highly non-Gaussian distributions, with a median value nearly to zero and a heavy right-hand tail. This poses great difficulties to classical statistical methods, which has led to novel statistical approaches and the introduction of more advanced ML techniques [19].

Clinical variables have been used to show the effect of specific characteristics and patients' conditions on cost prediction [16], and also Kuo et al. [20] tested pharmacy-related features. In addition, since the main objective of cost predicting scenarios is to propose a correct medical intervention, models with higher interpretability of the medical variables are preferred in the literature. On the other hand, there have been studies that confirm relevant results using features of prior costs to predict future expenses [11, 19, 21]. Cost information could give a global picture of the patient's health, capturing its behavior of health resource consumption and medical conditions. Table 2.1 shows examples of prior cost variables used in the literature.

Source	Past cost inputs		
	Professional costs		
D l [24]	Pharmacy costs		
Duncan et al. $[21]$	Outpatient costs		
	Inpatient costs		
Sushmita et al. [19]	Total cost		
Frees et al. [22]	Total cost		
Kuo et al. [20]	Total medication cost		
	Monthly cost		
	Total pharmacy cost		
	Total medical cost		
	Total cost		
Bertsimas et al. [11]	Total cost in the last 6 months		
	Total in last 3 month		
	Number of months above average		
	Cost of the highest month		

Table 2.1: Examples of past cost variables used in the literature to predict future costs.

The work of Bertsimas et al. [11] was the earliest research found that intends to model past cost variables by creating a set of related features to capture hidden patterns in cost time series. Their objective was to reflect in the variables not only the aggregated cost value but to model behaviors of past hospitalizations, indicating whether there was a constant increase in the resource consumption or if the temporal series present abrupt changes that may indicate an acute event. Recently, Morid et al. [23] developed more advanced approaches to model this type of behavior in past hospitalizations using their corresponding cost. The authors argue that there may be two situations of interest, one where a patient shows a constant high-cost consumption, which may indicate the presence of a chronic condition and thus is likely to incur high-cost in the future. The second situation refers to patients with a lowcost profile who suddenly have a spike in their temporal cost series due to an exceptional situation (e.g., accident or pregnancy), while still maintaining a low risk of high future costs. In these conditions, relying solely on aggregated values of past costs may prevent the correct identification of these patterns. For that, they proposed a method to extract temporal patterns from a patient time series data using change point detection methods [24].

2.3

Statistical and Machine Learning techniques applied to health cost predictions

Different data-driven approaches to model health costs have been used in the literature, such as rule-based methods, statistical models, and machine learning techniques [16]. Rule-based models require a vast knowledge domain of the theme under study and are used mostly to create risk-based models [19]. On the other hand, statistical models and machine learning algorithms are powerful tools for detecting the relationships between the diverse variables involved and have been widely used to model healthcare costs from different perspectives.

Table 2.2 presents a review of statistical and ML techniques used in prior studies to predict high-cost hospitalizations, detailing the objectives pursued, the approach followed to define the outcome, the set of variables used to explain healthcare cost, and the evaluation metrics employed to assess predictive model performance.

In general, the objectives pursued refer to model cost from a temporal perspective, where predictive models are trained on the data related to the oldest events, and then tested in the newest set of samples. Moreover, the definition of high-cost patients is made by analyzing the cost distribution of the global population under study and defining patients included in the highest percentiles as such. On the other hand, a very heterogeneous set of predictors have been tested to explain healthcare cost, including demographic and administrative information, medical diagnosis and resource consumption, medical check-ups, insurance profiles, and self-reported health status.

A variety of predictive techniques have been employed, with the oldest researches relying on the statistical ones aiming to assess the relationship between the predictors and the outcome variable. In contrast, novel approaches use ML techniques, taking advantage of their predictive power to forecast healthcare expenditures. In the two more recent works reported in this study, the results obtained with the ANN and the RNN outperforms the other techniques [9, 18]. Finally, evaluation metrics used in the literature intends to measure model performance from an overall perspective (e.g., AUROC and Accuracy) and also from a cost view, using variations of the classic metrics specified in terms of costs (e.g., Cost Capture (CC)).

In summary, the related works found in the literature and presented in this Chapter, address the healthcare cost predictions from a perspective different from the research objective of this study. They focus on the temporal variations of health expenses and medical resource consumption. In contrast,

Table 2.2: Summary of related works on predicting high-cost in the healthcare field.

ield. Paper	Objectives	Response Vari-	Tuno of Var!	Statistical and ML	Evaluation Metrics
Paper	Objectives	able	Type of Vari- ables	Techniques	Evaluation Metrics
Kim and Park [9]	Predict high-cost patients	Patients whose costs are in the upper 10% of the subsequent years expenditure distribution	Medical check-up, insurance eligibil- ity, diagnosis, and health care uti- lization	Logistic Regression (LR), Random Forest (RF), Artificial Neural Network (ANN)	Area Under the Receiver Operating Characteristic Curve (AUROC), Cost Capture (CC) (equals to Sensitivity in terms of cost)
Yang et al. [18]	Predict future health expendi- tures in 4 time scenarios (1, 3, 6, 12 month)	The upper decile of the population cost distribution	Administrative insurance claims from the Medicaid program	Linear Regression (LR), Least Abso- lute Shrinkage and Selection Operator (LASSO), Gradient Boosting Machine (GBM), Recurrent Neural Network (RNN)	R ² , Root Mean Square Error (RMSE)
Tamang et al. [25]	Predictfuturehigh-costpatientswithin1yearintheupperdecileofthedistribution	The upper decile of the population cost distribution	Demographic, healthcare utiliza- tion, procedures codes, pharmacy	LR, Elastic-net (EN)	CC
Chang et al. [26]	Predict patients being consistent high-cost users	Patients with plan-specific in the top 20% of medical costs across 2008 and 2009	Demographic, costs, diagnosis codes, procedures codes, pharmacy	LR	AUROC, Sensitivity, Positive Predicted Value (PPV), Negative Pre- dicted Value (NPV)
Duncan et al. [10]	Predict next-year total costs	Continuous cost variable	Demographic, procedures, claim cost	LR, LASSO, Mul- tivariate Adaptive Regression Splines (MARS), RF, Regres- sion Tree (RT) M5, GBM	R ² , Trunc R ² , Mean Absolute Error (MAE), Trunc MAE
Robst [27]	Predict future persistent high- cost cases for 5 scenarios in a 6-year time frame	Individual costs being in the top 1% of expenditure distribution	Demographic, di- agnosis codes, in- surance payments	LR	Accuracy
Boscardin et al. [28]	Predict new high cost individuals	Total annual costs within the top 10 % of the popula- tion	Demographic, self-reported health status, health services use	Step-wise multivari- able LR	AUROC
Sushmita et al. [19]	Predict future cost value in 4 scenar- ios (3, 6, 9, 12 month)	Continuous cost variable	Demographic, procedures, previ- ous cost	RT M5, RF regression	MAE, RMSE
IzadShenas et al. [29]	Identify high-cost patients	Patients in the top 5 percentile among the general population	Medical Expenditure Panel Survey (MEPS)*	DecisionTrees (DT) (C5.0 CHAID), ANN	Accuracy, G-mean, AU-ROC
Lahiri, Agar- wal [15]	Predict whether patients may in- crease healthcare expenses for the subsequent year	Continuous cost variable	Demographic, procedures, phar- macy, previous cost	GBM, Conditional Inference Tree (CIT), ANN, Support Vector Machine (SVM), LR, Naive Bayes (NB)	False Negative Rate (FNR), Flse Positive Rate (FPR)
Fleishman and Co- nen [30]	Predict whether a patient will incur in high medical expenditures fos a specific year	Patients in the upper expenditure decile	MEPS	LR	Bayesian information cri- terion (BIC), AUROC
Bertsimas et al. [11]	Classify cost bucket and esti- mate next year total costs	Continuouscostvariable &costbucketing(5bucketsequaltotal cost)	Demographic, procedures, previ- ous cost	DT, Clustering	Hit Ratio, Absolute Prediction Error, R^2
Cohen et al. [31]	Predict the likeli- hood of incurring high levels of med- ical expenditures in a subsequent year	Patients in the top decile of the expenditure distribution	MEPS	LR	Accuracy, Sensitivity Specificity
Crawford et al. [32]	Predict increase of medical costs for specific diseases in a year	Patients in the top 15% of the expen- diture distribution	Demographic, healthcare costs, medical events	ANN	AUROC, Sensitivity, Specificity

*: https://www.ahrq.gov/data/meps.html

as stated in the Introduction, this research aims to identify whether a patient would incur an unexpected high-cost hospitalization; thus, the focus is on a specific event. Moreover, past studies use as response variable either the continuous cost variable or discretizes it to label high-cost patients. The discretization approaches consider the entire population for the high-cost definition; however, this study refines this definition considering high-cost hospitalizations within groups of medical procedures with common characteristics.

3 Scientific Methodology and Theoretical Foundations

This chapter describes the scientific methodology followed in this research. A detailed description of the steps performed to conduct scientific research is provided. Moreover, the work method adopted to guide the study is outlined, including theoretical foundations on the techniques applied.

3.1 DS Paradigm

There are different paradigms to guide scientific research which can be classified according to their purpose and research goals [33]. On the one hand, Natural and Social Sciences (known as explanatory science [34]) have as their mission the search for the truth, aiming to describe, explain, and predict to advance the knowledge in a given area [35]. Natural Sciences are those motivated to understand complex phenomena, to discover and to explain their behavior (e.g., Physics, Chemistry, and Biology); while Social Sciences seek to describe and reflect on human beings, their actions and social relations (e.g., Anthropology, Economics, and Politics).

On the other hand, the Design Science(DS) paradigm emerges to guide research studies aiming to find solutions to given problems or to design and create artifacts that improve the daily routine of professionals [33]. DS prescribes solutions to real problems in different domains (e.g., Medicine, Engineering, and Management), thus reducing the existing gap between theory and practice [34]. Furthermore, DS emphasizes the connection between knowledge and practice by showing that it is possible to produce scientific knowledge by designing useful artifacts. In this sense this paradigm is intended for situation where studies focused in the design, conception and problem solving cannot rely solely on the paradigms of natural and social sciences. This limitation occurs because the goals of traditional science are to explore, to describe and to explain, but in this scenario the objectives are to prescribe solutions and methods for solving a given problem or designing new artifacts [34]. In this context, the DS paradigm was adopted in this research work as the scientific methodology to guide the development of a Machine Learning (ML) model to automatically predict high-cost hospitalizations. In order to guarantee the reliability of results, the main points to conduct this research work are described as follows, following the structure proposed by Dresch et al. [33].

The reasons and objectives of the research are the starting point and, in this context, the motivation comes from the need to give a solution to a practical problem, and it is concerned with prescribing solutions and designing artifacts. These steps were defined in the introduction, establishing the motivation, study problem, and the research goals.

The next step defines the scientific methods that will help to reach the proposed goals. The abductive method is considered a creative process, searching for explanatory hypotheses to a given phenomenon or situation, thus allowing the introduction of a new idea [33]. Research under the DS paradigm relies on the abductive scientific method when proposing solutions; however, it is not restricted to it. For example, when the researcher uses previous knowledge to build and evaluate the artifact, the deductive method [36] could be more suitable. Then, the research conducted could be guided by more than one scientific method, depending on the current step and goals being developed.

Once the scientific approach is established, it is time to define the research method, which ensures that the investigation will provide a solution to the research problem. The Design Science Research (DSR) method arises under the DS paradigm as a way to create knowledge in the form of a prescription (when solving a particular real problem) or a design (when building a new artifact).

DSR can be used to create and evaluate design artifacts (such as frameworks, models, methods and instantiations) with scientific rigor [37]. It aims to solve problems which are relevant to practice, while the development and evaluation process should contribute to the state of the art. According to Hevner [1], DSR is inherently iterative and comprises three core research cycles (Design, Relevance and Rigor), as illustrated in Figure 3.1. The main tasks are developed around the central Design Cycle, where the artifacts are built, evaluated, and refined using the succeeding feedback. The Relevance Cycle constitutes a bridge between the environment (people, organizations, and technology) and the DS activities, where the environment provides the opportunities and requirements to design the artifact, and also establishes the acceptance criteria for the evaluation of the research result. The Rigor Cycle relates to the scientific foundations, experience, and expertise that compose the base knowledge of the research project. Also, the Rigor cycle ensures that the designs produced are research contributions, hence guaranteeing its innovation.

The last step of the DS paradigm is to compose the work method, which is the methodological guidelines with the logical steps to reach the goals of the

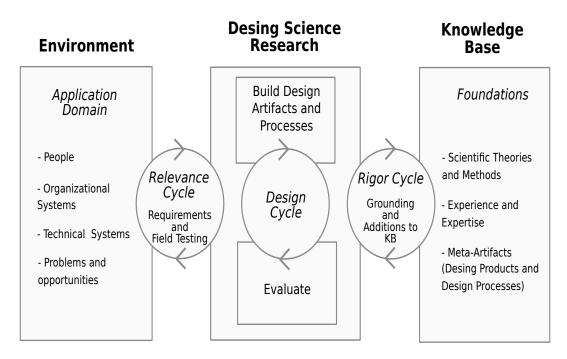


Figure 3.1: DSR cycles [1].

study. This method provides clarity and transparency to the research process and ensures its later reproducibility. In the context of the present research, the work method will represent the life cycle of a Data Science project, and will be based on a framework to conduct a predictive analytic (data mining) process, the CRoss Industry Standard Process for Data Mining (CRISP-DM) [2]; which will be detailed in the following Section.

3.2 Data Science Life Cycle

Different approaches have already been proposed to group data science activities within frameworks that standardizes the steps of the entire process. Examples of the most comprehensive frameworks are the Knowledge Discovery in Databases (KDD) process by Fayyad [38], the Sample, Explore, Modify, Model, Assess (SEMMA) process from the SAS Institute [39], and the Cross Industry Standard Process for Data Mining (CRISP-DM) [40]. These frameworks have the common purpose of guiding the development of methods for making sense of raw data by applying data-mining techniques for pattern discovery and extraction [38]. Hence, due to the generality of these approaches, they could be considered equivalent to the purpose of this research. In this sense, the CRISP-DM process, defined by its creators [2] as "... a comprehensive data mining methodology and process model that provides (...) with a complete blueprint for conducting a data mining project", was followed. CRISP-DM phases are shown in Figure 3.2, where it is important to notice the cyclical nature and the interactions between the core stages of the process, allowing the inclusion of the new experiences gained during the design process to refine and trigger further business questions.

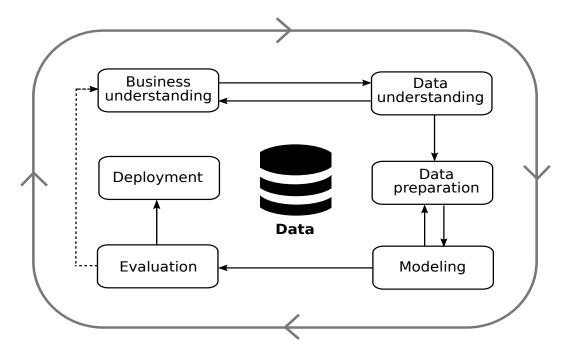


Figure 3.2: Data Science Life Cycle [2].

3.2.1 Business understanding

This phase focuses on finding and understanding the questions of interest from a business perspective, and transforming these demands into a data mining problem definition. This first phase is related to the DSR's Relevance Cycle, due to the information exchange with the environment (organization and stakeholders), and is decisive to make all the subsequent decisions during the project. From this cooperation, the researcher needs to compose a set of success criteria (metrics) to know what a "good" model will look like and thus ensure that the answers to the problem would assist a decision-making process. Within this phase, there are three tasks described next.

a) Determine business objectives

Make the main objectives of the business to be pursued explicit, as well as the related questions that the organization wishes to address and thus avoid giving answers to incorrect questions.

b) Evaluate the situation

This task includes planning the resources available, discovering which data will be accessible to meet the proposed goals, and listing all the assumptions coming from the characteristics of the data.

c) Determine the data mining goals

The business objectives are transformed into data mining goals, stating what is going to be done, how, and with which data. If this goal transformation is not successful, the business objectives should be redefined. The success measure for the data mining results should also be defined, indicating the metrics and levels of acceptance.

3.2.2 Data Understanding

The data understanding phase includes collecting the available data, describing its characteristics to get familiar with it, discovering initial insights and identifying data quality issues.

This phase interacts with the previous phase (Business understanding) as it is possible to reformulate or refine research questions and objectives after getting familiar with the available data.

It is also the beginning of the so-called Internal Cycle of Data Science [41] (which also includes Data Preparation and Data Modeling). In this research context, the Internal Cycle of Data Science is the core process of the Design Cycle within the DSR methodology.

The Data Understanding phase comprises the tasks explained next.

a) Collect and describe data

Here the first step is to load and integrate the data coming from different sources and to report any issue encountered in the process, to avoid future errors on replications of the project. Once the data is accessible, the analyst should describe the properties of the acquired data, examining the format, the number of records and variables, in order to check whether it satisfies the project specifications.

b) Explore data

This step comprises a deep understanding of all variables in the data set. The analyst elaborates a report outlining the findings of the exploratory analysis and potential hypotheses, which will also serve as a guide to define the actions to be undertaken in the next phase (Data Preparation). Related tasks are the analysis of descriptive statistical metrics for individual variables, assessment of relationships (correlations) between pairs of variables, and the use of visual techniques (graphs, tables, histograms) to analyze more complex relationships between variables.

The descriptive analysis of each variable is carried out by calculating the following statistics regarding their data distribution: for quantitative variables, the median and interquartile range (i.e., the difference between 1st quartile and the 3rd quartile) or mean and standard deviation; for the qualitative variables, the frequency and proportions are calculated.

A correlation analysis evaluates the relationship between pairs of variables. In the present research, for continuous variables, the correlation was measured using the Spearman's rank correlation coefficient (r_s) [42], which is the Pearson's product-moment correlation coefficient but between rank variables (r_x, r_y) , thus being robust when extreme values are present and do not make any assumption of the data distribution [43]. r_s is defined as:

$$r_s = \frac{cov(r_x, r_y)}{\sigma(r_x)\sigma(r_y)} \tag{3-1}$$

where $cov(r_x, r_y)$ is the covariance [44] of the rank variables and $\sigma(r_x)$, $\sigma(r_y)$ their standard deviation. r_s is a measure of the strengths and direction of the monotonic¹ relationship between two variables and can take values from -1 to 1, where the closer r_s is to zero, the weaker is the association between the ranks.

The association between categorical variables, in the present research, was measured using the Cramér's V coefficient (V_c) [45], which is an extension of the phi coefficient $(\varphi)^2$ for categorical variables with more than two classes. V_c measures the strength of the association between two variables after conducting the chi-squared (χ^2) test of independence. V_c ranges from 0 to 1, with higher values indicating higher strengths of association, and is defined as [46]:

$$V_c = \sqrt{\frac{\varphi^2}{L-1}} \tag{3-2}$$

where $\varphi^2 = \chi^2/N$ (N is the sample size), and L is the smaller value of either the number of columns or the number of rows of the contingency table.

After the correlation analysis, highly-correlated variables are further investigated using visualization techniques such as scatter plots (to display

¹It is less restrictive than linear

²Pearson's product-moment correlation coefficient for binary variables

relationships between numerical variables) or bar plots (to depict categorical variables proportions).

c) Assess data quality

At this point, the analyst examines the quality of the data. The previous task could point to some problems such as the presence of outliers, attributes with redundant meanings or missing values. Outliers, in this case, refer to an observation or set of observations which appears to be inconsistent with the remainder of the data distribution typically caused by imputation or human errors, and consequently, need to be removed. Moreover, it is also necessary to check the plausibility of values and any suspicious data, such as miscodes or spelling mistakes. All issues should be reported and discussed with the business stakeholders to agree on the treatment that they will receive.

When predicting cost

3.2.3 Data Preparation

The data preparation phase comprises all activities to construct the data set to be mined, using the knowledge obtained in the previous phases. The objective is that the final data set meets all the input requirements of the modeling techniques to be used in the next phase (Data Modeling) of the Data Science life cycle. It is also possible to cycle back and forth between data understanding and data preparation activities as required by learning more of the data set and performing additional operations on it. Tasks within this phase include selecting, cleansing, constructing, integrating and formatting data.

a) Select data

In this task, the goal is to select both records and attributes that will be used in the posterior analysis. The selection criteria are based on the data mining goals, as well as on quality and technical constraints. All explanations that justifies data inclusion or exclusion should be reported and validated by business stakeholders.

In addition, this task applies sampling techniques following two purposes: to split the data set into subsets for model learning and for model evaluation, and to overcome class imbalance issues due to the occurrence of rare events.

The objective of splitting the data set is to obtain fair evaluations of the model's performance, by ensuring that observations used for evaluation were not considered during the training phase. An effective approach is to partition the whole data set into three parts: training, validation, and test sets. The training set is used for model learning, during which a validation procedure is conducted (using the validation set) to assess the performance of ML models (during the hyper-parameter tuning and model selection) and to avoid overfitting the model to the training data. Then, the test set is used for evaluating the learned model, to estimate the effectiveness of the model on previously unseen data.

This approach has some drawbacks, especially when the sample is not large. Several authors [47–49] have pointed out that the use of a test set limits the number of examples for the training process, and its size may not have sufficient power or precision to make reasonable judgments.

In this context, resampling techniques emerge as a solution for obtaining honest estimates of the model's performance during the training phase without requiring and extra test set. Generally, resampling techniques operate in a repeated process, where a subset of samples is used to fit a model, and the remaining samples are used to measure its efficacy. Once the iterations are finished, the results are aggregated and summarized. Examples of resampling techniques are the k-fold Cross-Validation (CV) [48], Monte Carlo CV [50] and the Bootstrap [51], differing on how subsamples are chosen. Deciding the resampling technique could be a tough task, often relying on the bias-variance trade-off. The bias is the difference between the average estimation and the true values, while the variance relates to uncertainty (noise); it is the effect of obtaining different results when repeating the resampling procedure.

The k-fold CV (and its variant, repeated k-fold CV) presents good bias and variance properties, and reasonable computational cost [52, 53]. In the kfold CV procedure, the samples are randomly partitioned into k sets (folds) of approximately equal size. Then, 1-1/k of the samples are used to fit the model, and the remaining 1/k samples (not used for training) is predicted and used to estimate performance measures. This procedure is repeated k times, using each fold for prediction exactly in one of the k iterations. Then the error estimations are summarized, usually providing the mean and standard deviation. The repeated k-fold CV follows the same procedure, but it is repeated a defined number of times, aiming to reduce the variance.

Another aspect to consider when using resampling techniques is the way the samples are selected to be part of each set. Random sampling is the usual technique, but in some cases it is crucial to account for the outcome variable distribution when splitting the data, meaning that it is desirable to make the training and validation sets as homogeneous as possible. A solution is to use stratified random sampling, which applies random sampling within subgroups; e.g., the outcome classes in classification problems, and in regression problems, the numeric response could be broken into similar groups, and then the randomization is executed within these groups.

As pointed out before, sampling techniques are also used to deal with class imbalance problems. A significant difference in the relative frequencies of the classes can have a notable impact on the effectiveness of the model because it tends to focus on the prevalent class and to ignore the rare events. There are different approaches to overcome class imbalance, including altering the probability cutoff when making class predictions and modifying case weights [54] and prior probabilities [55] during the training process. Moreover, when the class imbalance problem is known in advance, a useful method to reduce its impact is to sample the training set to have roughly equal event rates (i.e., to balance the class frequencies). Solutions following this approach include a variety of techniques to sample the data, such as random oversampling (upsampling) the rare class, random undersampling (down-sampling) the prevalent class, and generating new artificial examples with some similarities with the observations belonging to the minority class. Both up-sampling and downsampling approaches present drawbacks: undersampling discards valuable data by reducing the sampling size, while oversampling may increase the likelihood of overfitting since observations are duplicated [56]. Figure 3.3 a) illustrates the behavior of these techniques.

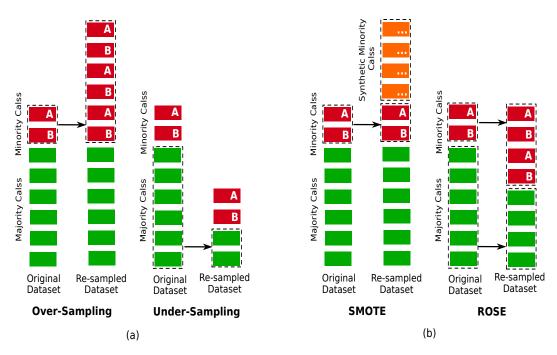


Figure 3.3: Resampling technique for imbalanced data. a) up-sampling and down-sampling. b) SMOTE and ROSE

In order to address these disadvantages, other approaches create synthetic observations by creating a set of artificial events of the minority class instead of simply increasing their multiplicity, hence having the desired effect of causing the classifier to identify larger decision regions associated to the minority class [57], such as the Synthetic Minority Over-Sampling Technique (SMOTE) [57] and Random Over Sampling Examples (ROSE) [58] (see Figure 3.3 b). SMOTE uses both up-sampling and down-sampling, depending on the class; however, the up-sampling is conducted by creating synthetic observations. First, it selects a random data point of the minority class and its K-Nearest Neighbors (KNNs) to create the new observation as a random combination of the predictors of the selected data point and its neighbors. Besides, it is possible to down-sample the prevalent class in order to help balance the training set. ROSE combines oversampling and undersampling by generating an augmented sample of data (especially the rare class). The procedure is to draw with equal probability an observation belonging to one of the two classes and generate a new example in its neighborhood [59]. This technique ensures that the same attention is addressed to both classes during the resampling procedure, hence helping the classifier in estimating a more accurate classification rule. If the training set is sampled to be balanced, the validation set should not, because it must reflect the imbalance so that honest estimates of future performance can be computed. Researches on the effectiveness of using sampling procedures to overcome skewed class distributions agree that these techniques mitigate the imbalance issue in many cases [60, 61], but there is no clear winner among the various approaches, as modeling techniques can react differently to sampling in different data sets.

b) Clean data

Data cleansing techniques aim to solve each quality problem outlined in the data understanding phase. To do that, the analyst could either select a clean subset of data (i.e., discard the mistaken observations), drop zero or near-zero variance predictors across samples (i.e., predictors values constant or almost constant), apply imputations techniques to estimate missing data or standardize predictors' spelling. This task is essential to ensure reliable data mining results and subsequent analysis.

c) Construct and format data

The next step after getting the data cleaned is to undertake operations related to developing entirely new records or composing derived attributes (i.e., feature engineering). New observations may be necessary for scenarios where the objectives of the data mining problem and the ML technique require examples that are not available in the original data. In contrast, derived attributes are constructed from the existing ones in order to reduce the number of input variables and to ease the model process. Another possibility is to perform single-attribute transformations, which include binning, standardization, normalization, and creation of dummy variables.

3.2.4 Data Modeling

In the final step of the Internal Cycle of Data Science, various modeling techniques are selected and implemented. As stated before, due to algorithms' specific requirements in the data format, it may be necessary to step back to the data preparation stage. The related tasks are the selection of the modeling technique, the creation of models, and the assessment of models.

a) Select and build the modeling technique

The first step is to choose and report one or more ML models to address the problem under study, together with all its requirements and assumptions. ML techniques can be grouped following different criteria (e.g., their learning style or their functional similarity, that is, similar methodologies to solve a problem).

The first grouping criterion is useful to get an idea of the roles of the input data and the model preparation process, clearly distinguishing what types of techniques can be used according to the characteristics of the problem. The most commonly used are supervised and unsupervised learning, but there are others, such as semi-supervised and reinforcement learning. In supervised learning, the value of the response variable is known in advance (labeled data), so the objective is to learn patterns in the data from examples, to be able to generalize and predict the outcome variable in future observations. In unsupervised learning, the result is not known beforehand (unlabeled data), thus there is no predefined target; therefore, its objective is to model the underlying structure or distribution in the data [62]. On the other hand, ML techniques can also be grouped by problem categories (functional similarities), such as classification, regression, clustering, and association rules. According to this dissertation's objective, the research can be classified as a supervised learning problem, precisely a binary classification problem, since the target variable is categorical with two possibles labels (i.e., high and low-cost).

The specific algorithms $chosen^3$ to solve the problem under study are

 $^{^{3}}$ The algorithms were selected guided by those used in the related works, see table 2.2.

Logistic Regression (LR), Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Tree (CART), Random Forest (RF) and Extreme Gradient Boosting (XGB). In the following subsections, these algorithms are described in detail.

– Logistic Regression (LR)

LR estimates the relationship between a dependent categorical variable $Y \in \{0, 1\}$ and an independent one X. Like ordinary linear regression, it falls into a larger class of techniques called Generalized Linear Models (GLMs) that comprise many different probability distributions (named link functions). For LR, the logistic function is used to meet the characteristics of this problem, and is defined as [63]:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$
(3-3)

where the term p(X) represents the conditional probability Pr(Y = 1|X), and β_0 , β_1 are the unknown regression coefficients. In the case of LR, β_0 and β_1 are estimated using the Maximum Likelihood Estimation (MLE) method [64]. After some manipulations on equation 3-3 we obtain the link function called *logit* (log-odds):

$$\ln\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X \tag{3-4}$$

where p(X)/[1 - p(X)] is called the *odds*, and its values range between 0 and ∞ (both exclusive). Values close to the extremes indicate very low and very high probabilities of falling into a specific class of the response variable $\left(Pr(Y = 1|X)\right)$, respectively. Then, from equation 3-4 is clear that the LR model 3-3 has a *logit* that is linear in X, but it is important to emphasize that it is the logarithm of the *odds* that is a linear function of the predictors, so the interpretation of the coefficient values is also a function of this relationship. Hence, increasing X by one unit changes the *log-odds* by β_1 or equivalently it multiplies the odds by e^{β_1} .

- Ridge Regression and Lasso

MLE estimator for logistic regression often does poorly in both prediction and interpretation [65]. These weak predictions are mainly caused by the ratio between the number of observations n and preditors p (e.g., n not much larger than p or p > n), resulting in great variability in the MLE fit. Also, the presence of non-informative and highly correlated features leads to unnecessary complexity and unstable parameter estimates of the fitted model [53, 66]. In this context, regularizations (shrinkage) methods emerge as methodologies to improve the fitting procedure of simple linear regression.

RR adds a shrinkage penalty to the objective function of the MLE method, the log-likelihood function $\ell(\beta_0, \beta_j)$ [66], as follows:

$$\ell^{\lambda}(\beta_0, \beta_j) = \ell(\beta_0, \beta_j) - \lambda \sum_{j=1}^p \beta_j^2$$
(3-5)

where λ is a tuning parameter to be determined from the data (within the validation procedure). The second term of the equation $\lambda \sum_{j=1}^{p} \beta_j^2$ is the shrinkage penalty, which increases as the values of β_j grow, having the effect of shrinking penalty the estimates of β_j towards zero. The ridge parameter λ controls the amount of shrinkage, when $\lambda = 0$ the resulting estimates will be the ordinary MLE, whereas if $\lambda \to \infty$ all β_j tend to 0.

The RR could shrink all of the coefficients towards zero, but it will not set any of them exactly to zero. This may be a challenge for model interpretation in settings in which the number of variables p is quite large, and a coefficient with a value near 0 may be misleading [65]. In this context, the LASSO technique appears as an alternative to the RR to overcome this limitation. LASSO formulation is similar to the RR in 3-5, being the penalty term the only difference [67]:

$$\ell^{\lambda}(\beta_0, \beta_j) = \ell(\beta_0, \beta_j) - \lambda \sum_{j=1}^p |\beta_j|$$
(3-6)

In the case of the LASSO, the penalty $\lambda \sum_{j=1}^{p} |\beta_j|$ has the effect of forcing some of the coefficient estimates to be exactly equal to zero when λ is sufficiently large, thus performing variable selection. An important observation of the RR and LASSO techniques is that unlike the ordinary MLE, the estimates are not scale equivariant (i.e., the scale of the predictors affect the coefficient estimates) [53]. Therefore it is best to apply RR and LASSO after standardizing the predictors, so that they would have zero mean and unitary standard deviation [67].

- Classification and Regression Tree

Tree-based models seek to partition the data into smaller groups that are more homogenous with respect to the response [68]. To construct a decision tree, the first step is to divide the p predictor' space into r distinct and nonoverlapping regions, and then, to make the same prediction for each observation that falls within a region. The first step is performed following the recursive binary splitting approach [69], which consists in searching the predictor and its split value that partitions the data into two groups optimizing a specific measure. In the case of classification trees, the splitting criterion could be the Gini index (G):

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$
(3-7)

where \hat{p}_{mk} represents the proportion of training observations in the m^{th} region that are from the k^{th} class. Equation 3-7 results in small values when all \hat{p}_{mk} 's are close to 0 or 1, which means that the node contains most of the observations coming from a class. For this reason the Ginix index is referred to as a measure of the node purity. Other measure used as splitting criterion is the Cross-entropy (C), given by:

$$c = -\sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk})$$
(3-8)

The Cross-entropy has a behavior similar to the Gini index, the closer are all \hat{p}_{mk} values to 0 or 1, the smaller is the Cross-entropy.

Following one of this criteria, the splitting process continues within each newly created partition until some stop condition is met, such as the minimum number of samples in a node or the maximum tree depth. This approach can lead to large trees that are likely to over-fit the training data, leading to too complex trees that have poor test set performance. This approach can lead to large trees that are likely to over-fit the training data, leading to too complex trees that are likely to over-fit the training data, leading to too complex trees that have poor test set performance. To overcome this issue, after growing a deep tree, it is pruned back using a cost-complexity pruning approach proposed by [68], where the purity criterion (Gini Index or Crossentropy) is penalized by a factor of the total number of terminal nodes in the tree. At last, in the classification setting, predictions are made classifying each observation to the most commonly occurring class of training observations in the region to which it belongs.

- Random Forest

Traditional decision-tree based algorithms suffer from high variance⁴ [69]. This unwanted behavior is caused because the splitting variable and the exact position of the cutpoint fully depend on the distribution of the observations in the learning set. Then, as the recursive partitioning approach is used to

⁴Instability to small changes in the learning data.

build the tree, little variation in data could change the first split variable or the cutpoint, leading to an entirely new tree structure. RF overcomes the variability generated by a single tree using the bagging⁵ method [70], which is based on the fact that averaging over a set of observations, reduces the variance. The bagging procedure randomly draws different bootstrap samples from the learning set, and individual trees are grown on each sample. Then, the resulting predictions are averaged, and for the classification case, is calculated following the majority vote approach, which is to take the most commonly occurring class among all predictions. Also, these tree-based ensemble procedures do not have a pruning step, and so the trees grow deeply, resulting in individual trees with high variance and low bias. The advantage is that the resulting prediction combines the output of a diverse set of trees that are instable but produce unbiased predictions [69].

The RF algorithm [71] generalizes the bagging procedure, allowing to restrict the number of candidate predictors. In RF, the set of predictors to select from is randomly limited at each split, thus producing decorrelated (i.e., diverse) trees. Less correlated⁶ trees help reduce the variance of the predicted values since trees with more diverse structures are created [52]. Bagging is considered a special case of RF, where the number of randomly selected splitting variables equals the entire set of variables.

The RF algorithm has a set of parameters to be configured as their optimal values depend on the data. As stated by Breiman [71], the randomness (diversity) added to a model should reflect a balance between correlation and the strength of the trees. This trade-off is reflected in the optimization of three hyper-parameters⁷, the number of candidate variables at each split (n_{try}) , the sample size (n_{sample}) , and the node size (n_{node}) . In the case of n_{try} , low values lead to more diverse trees and hence produce better stability when aggregating the result. However, it comes at the cost of low average performance (e.g., accuracy) as the selected variables are likely to be suboptimal. To set n_{sample} is to determine the number of observations sampled for training each tree. As with n_{try} , decreasing the value of n_{sample} decreases the model variance, but since fewer observations are used for training single trees their performance worsens. Moreover, it is necessary to determine if the procedure of selecting the n_{sample} is made with or without replacement. Researches [72] on this topic may suggest that there is no significant difference sampling scheme when the optimal value of n_{sample} is used. Nevertheless, Janitza et al. [73] argues

⁵Bootstrap Aggregation.

 $^{^{6}\}mathrm{Lower}$ correlation is achieved by adding a source of randomness when growing the decision trees.

⁷Tuned during the cross-validation procedure.

that, in fact, sampling with replacement introduces a variables selection bias when there are categorical variables with more than two categories. The other hyper-parameter, the n_{node} , specifies the minimum number of observations in a terminal node; therefore, it determines the depth of the tree, serving as stopping criterion during the tree construction process.

Moreover, in the RF algorithm, the number of trees (n_{tree}) and the splitting rule needs to be set beforehand. Setting the n_{tree} is challenging since it highly depends on the dataset properties and the computational time available. As a recommended path to set the n_{tree} , related researches [74] suggest to inspect the performance⁸ estimation during the validation procedure, showing the behavior for a growing number of trees. On the other hand, there are options to set the splitting rule, like the conditional inference forests, which assess the p-values of statistical tests for both, the variable selection and split value [75], or the randomized splitting rule introduced by Geurts et al. [76], where only a randomly selected subset of possible splitting values is considered. These different choices intend to overcome a selection preference resulting from the Gini index criterion originally proposed [71]. Using the Gini index favors the selection of variables with many possible splits, such as the continuous variables over the binary one [77].

- Extreme Gradient Boosting

Analogously to bagging and RF, boosting is an ensemble algorithm seeking to improve the performance of individual models (e.g., CART). However, boosting algorithms seek models that complement one another, turning a weak learner⁹ into a strong one, whereas bagging and RF build independent models that are not aware of the performance of the others [78].

The first implemented algorithm of boosting, known as Adaptative Boosting (AdaBoost) [79], trains classifiers on weighted versions of the training sample, giving higher weight to cases that are currently misclassified. Then the final model is defined to be a linear combination of the classifiers from each stage and the final prediction, a weighted sum of the model's predictions. Further improvements over the AdaBoost algorithm led to a generalization named Gradient Boosting Machine (GBM) [80], which transforms the boosting definition to an optimization problem. The major difference between AdaBoost and GBM is the approach to identify the faults of weak learners. While the AdaBoost model uses high weights to misclassified data points, GBM uses gradients to minimize a loss function¹⁰. This generalization allows arbitrary

 $^{^8\}mathrm{Performance}$ is measured using a metric of interes

⁹Models that performs barely better than chance, e.g., decision stump

¹⁰Determines the error between the prediction and the observed value

differentiable loss functions to be used, expanding the technique beyond binary classification problems to support regression and multi-class classification.

XGB is an improved implementation GBM since it enhances the costly process of estimating the potential loss for all possible splits when growing additive decision trees. This improvement is carried out using the distribution of all data points in a leaf, and with this information, reduce the search space of all possible splits [81]. The XGB implementation has a set of hyper-parameters to be tunned, like the number of boosting iteration (n_{rounds}) , the learning rate (eta), the maximum tree depth each tree can grow (max_{depth}) , the minimum loss reduction required to make a further partition (gamma), the number of predictors to be subsampled each time a tree is trained $(n_{predictor})$ and the subsample ratio of the training instances (n_{rows}) .

b) Assess the model

Once the ML techniques are applied, the different experimental scenarios are evaluated and compared, defining the best parameter configuration for the data set and the technique with the best overall performance. There are two primary purposes when evaluating the learned models, one side is focused on defining which one perform better based on statistical significance tests, and the other side of the evaluation process relies on specific metrics to measure model performance.

The first point of view is interested in selecting models based on the estimated performance for which it is necessary to know whether there is a statistically significant difference among them. In this research, the McNemar's test [82] is used to compare the predictions of two models to each other. The McNemar's test is a non-parametric statistical test for paired comparisons that can be applied to compare the performance of two ML classifiers [83]. The null hypothesis states that the two algorithms should have the same error rate, and it is applied to paired nominal data based on a version of 2x2 contingency table, where a χ^2 test for goodness of fit is applied. The contingency table contains the number of hitz and misclassifications of both models, as depicted in Figure 3.4.

On the other hand, there are an extensive number of metrics to measure models performance especially for classifiers (i.e., the response variable is categorical), which can be grouped into three families, qualitative, rank-based, and probabilities-based metrics [84].

- Qualitative metrics

Metrics with a qualitative understanding of the errors aims to find a model that minimizes the number of faults. These types of metrics can be

		Model B					
		Incorrect	Correct				
Model A	Incorrect	misclassified by both	misclassified by Model A				
		Model A and Model B	but not by Model B				
	Correct	misclassified by Model B	misclassified by neither				
		but not by Model A	Model A nor Model B				

Figure 3.4: Contingency Table for McNemar's test.

derived from a confusion matrix, as illustrated in Figure 3.5 for a binary classification problem.

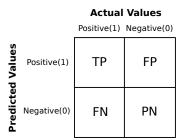


Figure 3.5: Confusion Matrix

In the matrix, rows display the predicted class and columns the real class value, and in both, positive and negative refers to the classes of the response variable. Besides, each cell represents either a success or a mistake in the prediction as follows:

- *True Positive (TP)*: actual positives observations that are correctly predicted as positives
- False Positive (FP): actual negatives observations that are wrongly predicted as positives
- *True Negative (TN)*: actual negatives observations that are correctly predicted as negatives
- False Negative (FN): actual positives observations that are wrongly predicted as negatives

Among the most common metrics are Accuracy, Sensitivity, Positive Predicted Value (PPV), F-measure and Matthews Correlation Coefficient (MCC). Accuracy, possibly the most used metric in the ML field [84], is a simple measure of the proportions of all samples classified correctly:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
(3-9)

42

In the context of databases with unbalanced classes, Accuracy does not provide a fair estimate of the model performance, for example, in a dataset with 1% of the observations belonging to the positive class, a useless classifier¹¹ will obtain an accuracy of 99%. In this case another metric that can be useful because it consider information from both classes is the geometric mean (G-mean) [85] of the True Positive Rate [TPR = TP/(TP + FN)] and the True Negative Rate¹² [TNR = TN/(TN + FP)], defined as:

$$G\text{-mean} = \sqrt{TPR \times TNR} \tag{3-10}$$

Using G-mean ensures, unlike Accuracy¹³, that poor performance in prediction of the positive examples will lead to a low G-mean value, even if the negative examples are correctly classified.

Moreover, there are metrics focused on single classes (positive class) separately, such as Sensitivity and PPV. Sensitivity¹⁴ is the fraction of total positive instances correctly classified as positive, and PPV¹⁵ is the proportion of correctly classified instances among the ones classified as positive:

$$Sensitivity = \frac{TP}{TP + FN} \tag{3-11}$$

$$PPV = \frac{TP}{TP + FP} \tag{3-12}$$

The equations 3-11 and 3-12 show two perspectives, first if looking for model's Sensitivity, the objective may be reducing the FN, and second when looking for model's PPV the aim is to reduce the FP. These two values, (FN and FP), are known as the classifier errors and has the opposite effect on each other. This effect is shown in Figure 3.6, where it also appears another metric that balances and combines Sensitivity and PPV in one value, the F-measure (F_{β}) [86]. It is defined as the weighted harmonic mean of Sensitivity and PPV:

$$F_{\beta} = \frac{(1+\beta^2) \times TP}{(1+\beta^2) \times TP + \beta^2 \times FN + FP}$$

$$F_{\beta} = \frac{(1+\beta^2) \times Sensitivity \times PPV}{\beta^2 \times PPV + Sensitivity}$$
(3-13)

- $^{13}\mathrm{Arithmetic}$ mean between TPR and TNR.
- ¹⁴Also known as TPR or Recall.

¹¹Classify all observations as negative.

¹²Also known as Specificity.

¹⁵Also known as *Precision*.

Where β is a parameter that controls the influence of Sensitivity and PPV in the score. As illustrated in Figure 3.6 common values of β are 1 to seek weights equilibrium, 0.5 to favor PPV and 2 to augment Sensitivity's influence.

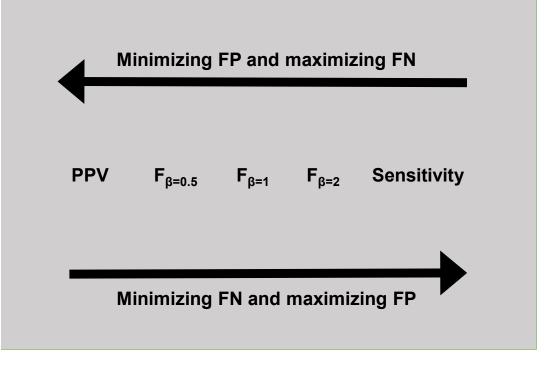


Figure 3.6: Effect of optimizing one of the two errors FP or FN.

One issue with the F-measure (also true for Sensitivity and PPV) is that it depends on which class is defined as the positive, changing its value depending on this decision. The Matthews Correlation Coefficient (MCC) [87] overcomes this issue. Besides, it is unaffected by the unbalanced datasets and takes into account all ratios of the four confusion matrix categories (TP, FP, TN, FN). MCC is a contingency matrix method of calculating φ (see Section 3.2.2) between the actual and predicted values (Powers2011), and can be derived from the Confusion Matrix as:

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$$
(3-14)

MCC values ranges in the interval [-1, 1], where a value of 0 is the performance of a useless classifier, and extreme values are related to perfect classification (1) and to total misclassification (-1).

All the measures described above depend on an arbitrarily selected

classification threshold¹⁶. In other words, these metrics do not account for the magnitude of the error, for example, if the decision threshold is set to 0.5, the difference between the predicted probabilities of two observation (e.g., 0.1 and 0.4) are not reflected in this kind of metrics, both will be classified with the same label.

- Rank-based metrics

Another important family of performance measures is based on ranks (separability) of predictions. These metrics are not committed to a specific threshold as the previously discussed qualitative metrics; then, it is possible to have a good classifier in terms of rankings and yield bad accuracy as a particular threshold is selected to separate the classes. Rank-based metrics use the ordering given by the predicted score¹⁷ to rank the instances. The ranking is made according to the decreasing order of the predicted score for an observation being positive, and then, this list is compared to the real class label in the test set. It is common to use graphical techniques to summarize the classification performance, such as Receiver Operating Characteristic (ROC) curve [88] and the Precision-Recall (PR) curve [89].

ROC graphs are two-dimensional plots, where the x-axis represents the Sensitivity (see 3-11), and the y-axis denotes the False Positive Rate¹⁸ (FPR) [FPR = FP/(TN + FP)]. Each point in the plot results from the confusion matrix created with the ranking list of the classifier's score for each instance in the test set. Then, the complete plot is created changing the decision threshold to decide which class an observation belongs to, thus having a different confusion matrix for each pair Sensitivity and FPR.

Figure 3.7 shows an example of the ROC Graph. In the ROC space, a good classifier should reach as close to the top left corner as possible, corresponding to a perfect classification. In contrast, the diagonal that connects the lower-left corner (0, 0) and the top-right one (1, 1) indicates a random performance. The point (0, 0) reflects a scenario where all classifications belongs to the negative class (i.e., TP = FP = 0, caused by a high threshold). On the other hand, the point (1, 1) indicates the opposite, all classifications correspond to the positive class (i.e., FN = TN = 0, as a consequence of a very low threshold).

Comparing classifiers visually through a ROC plot can be difficult, given that curves can overlap and even cross each other, not making clear whether

 $^{^{16}}$ Cutoff of the predicted probabilities to define to which class an observation belongs, being the default value in most techniques 0.5.

 ¹⁷Refers to a numeric value that depicts the degree at which an instance pertains to class.
 ¹⁸Is the proportion of negative observations incorrectly classified as positive.

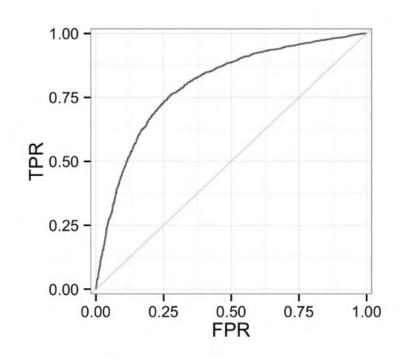


Figure 3.7: ROC plot.

the performance of one classifier dominates another in all the operating points. A solution is to reduce ROC performance to a single scalar value representing the expected performance. This value is known as the Area Under the Receiver Operating Characteristics (AUROC) curve, which values range in the interval [0, 1]. Therefore, a perfect classification would have an AUROC of 1 and an unuseful classifier (over the diagonal in the ROC plot) a value of 0.5. Both the ROC curve and AUROC measures how well the model is capable of distinguishing between classes (i.e., separability capacity). Moreover, AUROC is equivalent to the probability that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance [90].

In the context of class imbalance, ROC graphs may provide unreliable (i.e., optimistic) estimates of the models' performance, as change in the class distributions do not reflect in the TPR and FPR [89,91]. Saito and Rehmsmeier [92], suggest that the PR curve is more informative than the ROC Graph to evaluate binary classifiers in datasets with imbalanced classes, because they display the susceptibility of classifiers to the characteristics of the data. Different from ROC, the PR Graph plots the precision (PPV) of the classifier as a function of the recall (i.e.,Sensitivity), as depicted in Figure 3.8¹⁹. In other words, the PR Graph describes the behavior of precision at different

¹⁹Note that PR curve do not consider True Negative observations, hence the correct identification of the negative class must not play an important role in the study, in order to use this Graph as a model performance estimation.

degrees of recall. The Graph 3.8 shows that the PR curve has a negative slope, as precision decrease while recall increases. Then, unlike the ROC plot, the perfect classifier would be at the top right, representing the best trade-off between precision and recall. In addition, the baseline performance is not fixed like in the ROC plot but depends on the proportion of the positive class. It is also possible to summarize the PR Graph into a single value the Area Under the Precision-Recall (AUCPR) curve and can be interpreted as the expected precision when varying recall from 0 to 1.

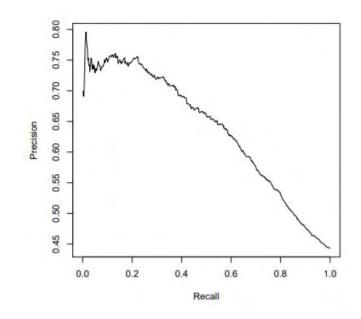


Figure 3.8: PR plot.

- Probability-based metrics

The other family of metrics is based on the predicted probabilities. However, instead of ranking them as the ROC and PR curves, the purpose is to quantify the uncertainty in a classifier's predictions [84]. Probability-based metrics measure not only when a model makes a mistake but also express to what extent they fail. Among these metrics are the Logarithmic Loss (LogLoss) and the Brier Score and are described below.

The LogLoss, also known as cross-entropy, is defined as the negative of the logarithm of the likelihood function [93] (see 3-8). This metric captures the extent to which predicted probabilities differ from the class label. Then, the Log loss value increases as the predicted probability diverges from the actual label, having a perfect classification value of 0.

On the other hand, the Brier Score [94], unlike the LogLoss (Measures the entire probability distribution), is focused on the positive class, being more suitable to estimate models performance with imbalanced classes. It is computed as the Mean Squared Error (MSE):

$$Brier = \frac{1}{N} \times \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$
(3-15)

where \hat{y}_i is the predicted probability for the observation *i*, y_i is the actual outcome of the class (1 for the positive class and 0 for the negative) and N is the number of instance in the test set. The Brier Score, as a loss function, the lower its value is, the better the model's performance. Its values reflects the confidence in which the classifier asserts its prediction, i.e., if the classifier predicts the wrong class with high probability, it would be heavily penalized.

3.2.5 Evaluation

Once the Internal Cycle of Data Science ends, having selected the best models with optimized configurations, it is time to interpret and assess the results according to the data mining success criteria defined in the business understanding phase. This phase also relates to the Design Cycle in the DSR framework, where after the model building task, a scientific evaluation of the artifact is carried out. Tasks within this stage are, evaluate results, review the learning process, and determine the next steps.

a) Evaluate the results

This task aims to evaluate how well the model met the business objectives defined in Section 3.2.1. The evaluation also allows for discovering new information, further constrains and insights for future research directions. The outcome of this task is a report summarizing the results in terms of business success criteria.

b) Review the learning process

This review seeks to ensure that the learning process followed all the constraints and assumptions coming from the data characteristics and the modeling techniques. One crucial aspect is to check whether the attributes used as input are going to be available for futures deployments.

c) Determine the next steps

At this point, it is necessary to determine whether the project is finished or further iterations of the internal cycle of data science are required or even refine the data mining objective.

3.2.6 Deployment

The last stage, but not necessarily the end of the Data Science Cycle (note the cycle nature in Figure 3.2), aims to deploy the resulting model in a real context and receive the subsequent feedback from the field. This phase describes the interaction between the Design Cycle and the Relevance Cycle (denoted in Figure 3.1 as Field testing). Usually, it is the end-customer who is in charge of the deployment activities. Still, they need to understand all the model's characteristics in advance, for which a technical report is generated, listing all the requirements and adjustment necessaries.

The resulting feedback could feed into the earlier phases of Business understanding or any of the phases of the Internal Cycle of Data Science. In the case of Business understanding, this feedback is represented by the outer arrow that encompasses the entire cycle, being then a natural path to future works. On the other hand, feedback directed towards the three stages of the internal Cycle of Data Science may suggest modifications to refine the actual model or to correct any issue encountered during the deployment phase.

3.3 The Data Science Life Cycle within the DSR Cycles.

This Section aims to integrate the DSR's framework proposed by Hevner [1] with the work method described in the previous Section. The DSR approach can be extended to the Data Science field [95,96], and therefore integrate with the proposed work method, the Data Science Life Cycle (see Section 3.2). The integration takes place through an iterative and evaluative scheme in order to diagnose, design, implement, and evolve data science artifacts.

The methodology to be followed, as outlined in this chapter, is summarized in Figure 3.9, where each phase of the work method is linked to a DSR cycle. The central cycle (Design) draws inputs (business understanding) from the contextual environment regarding problem identification and business requirements. It encompasses the stages of the internal cycle of data science and evaluation to design, develop, and improve the ML models in an iterative process by incorporating the field testing feedback. During this process, each time that the initial objective gets revised, a new design process (DSR cycle) is initiated²⁰. Furthermore, the design cycle uses the current knowledge to support their theoretical research foundations and, at the same time, contributes with the resulting innovations.

 $^{^{20}\}mathrm{It}$ is worth noticing that the possible design cycles results are not intended to be compared, instead they relate the process of improvement in the design process.

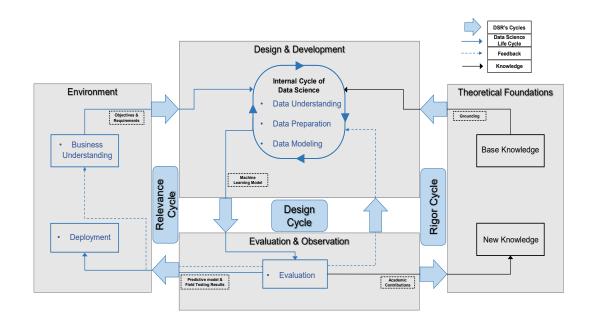


Figure 3.9: DSR and Data Science Life Cycles

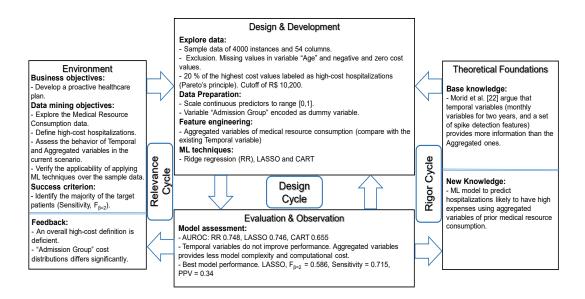
4 Application of a DSR methodology to predict high-cost hospitalizations

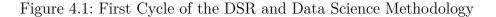
This Chapter describes a Data Science project proposed to address the problem of predicting high-cost hospitalizations in private hospital units, located all over Brazil. The project was developed in conjunction with a Health Consulting organization that servers as a broker from its clients to healthcare providers and health insurers. As explained in Chapter 3, the proposed process followed the integration of the Design Science Research (DSR) framework and the Data Science Life Cycle, as depicted in Figure 3.9. The application of the DSR framework consisted of two cycles, described in the following Sections.

4.1

First DSR cycle: Data Exploration and Prediction of high-cost hospitalizations over sample data.

Figure 4.1 summarizes the activities and results obtained when instantiating the First cycle of DSR framework presented in the previous Chapter. The following subsections will describe each phase of this First cycle, in detail.





4.1.1 Business Understanding

From the organization perspective, there is a necessity to identify a group of patients to be included in a proactive health plan so as to reduce the cost spent to treat these patients. As stated in Chapter 1, a solution to this situation would be to analyze the expected cost of hospitalizations. In this context, the objectives of this First cycle are: (i) to explore the available sample data; (ii) to precisely define what is a high-cost hospitalization, and (iii) to apply some Machine Learning (ML) techniques so as to investigate their potential to build models that predict such high-cost hospitalizations. The organization expects to have a predictive model that captures most of the high-cost hospitalizations, controlling the amount of low-cost admissions misclassified. In other words, they seek a trade-off between a high quantity of correctly identified high-cost hospitalizations and a low quantity of misclassifications, with an emphasis on the first criterion. The success criterion can be translated as the maximization of the F_{β} metric (see equation 3-13) with $\beta = 2$, thus giving more importance to Sensitivity. In addition, individual metrics such as the Sensitivity and Positive Predicted Value (PPV), together with the corresponding confusion matrix complements the performances evaluation process.

4.1.2 Data Understanding

At the first moment of the research project, the organization provided us with a dataset containing a representative sample of the whole population under their services, on which this First cycle was developed¹. The dataset contains 4000 rows and 54 columns, where each row represents a patient hospitalization. Each column in the dataset is a variable, which can be grouped in (see table 4.1): demographic characteristics of the patients, past medical resource consumption variables and the variables related to the hospitalization itself, including the target variable "Hospitalization Cost"². It is worth noticing that the variables related to the patient's past medical resource consumption were collected throughout the three years before the hospitalization in a temporal fashion. There were different time frequencies depending on the feature; for example, the number of exams and consultations were collected biannually (i.e., for each semester), image exams were collected monthly, while the rest of variables was collected annually.

¹It is worth noticing that the use of a sample on this First cycle is due to the organization's data availability and is not a requisite of the proposed methodology.

²Appendix A presents the data dictionary with all variables names, data types, and detailed descriptions.

Medical Resource Consumption	Patient Hospitalization					
Ordinary exams	Admission Group					
Image exams	Admission Type					
Psychological consults	Flag Surgery					
Scheduled consults	Hospitalization Cost					
Emergency consults						
Hemodialysis therapies						
Pulsotherapies						
Transplant						
Chronic disease						
	Ordinary exams Image exams Psychological consults Scheduled consults Emergency consults Hemodialysis therapies Pulsotherapies Transplant					

Table 4.1: Group of variables

A first analysis of the dataset revealed inconsistencies related to data quality that should be addressed. Figure 4.2 shows the first steps conducted to filter out data which did not meet quality specifications. First, blank values (missing values) in the "Age" variable were detected (which, according to the organization, could be due to newborn patients without a birth date registered or even an error coming from the health insurance). Then, since it was not possible to distinguish whether the missing value was related to a newborn on to an error, those observations were removed. The second issue was the existence of hospitalizations with negative or zero values in the "Hospitalization Cost" variable (this occurs when there is a refund from the hospital). Again, those observations were removed.

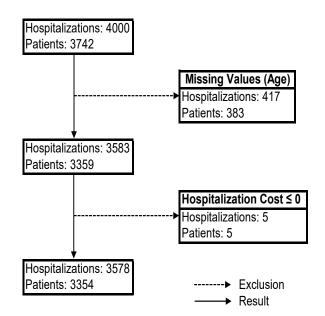


Figure 4.2: Quality Filter Procedure.

Moreover, "Hospitalization Cost" is a continuous variable indicating, as its name suggests, the monetary value associated with the patient's hospitalization expenses. In order to accomplish the business goals, it is necessary to first define what should be considered as a high-cost hospitalization. The following analysis uses the Pareto³ principle [97] to create the binary outcome variable (1 indicates high-cost and 0 low-cost). This approach follows the definitions encountered in the literature review (see section 2.1), where the definition is made considering the whole population and hospitalizations cost belonging to the upper percentiles of the cost distribution are defined as high-cost hospitalizations. In Graph 4.3, the x-axis represents each row of the dataset grouped in 10 bins⁴ (each bin roughly represents 10% of the dataset), the bars (left y-axis) represent the absolute "Hospitalization Cost" for each bin; finally, the plot line represents the cumulative percentage "Hospitalization Cost" (right y-axis).

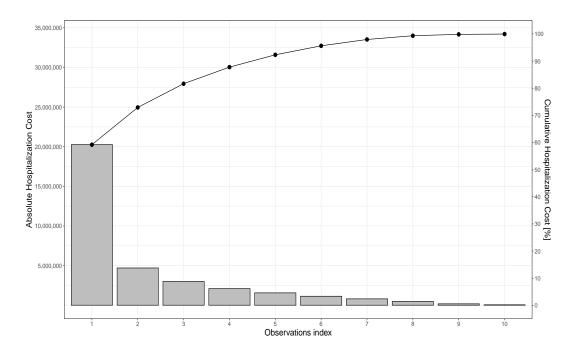


Figure 4.3: Pareto Graph for the Hospitalization cost.

As depicted in Graph 4.3, the application of the Pareto principle selects the first two bins (20% of rows), which account for approximately 80% of the total cost. Therefore, these 20% of the observations with the highest cost values were defined as high-cost hospitalizations, set in a new variable named "Hospitalization cost class". The lowest value labeled as high-cost was R\$ 10, 200.

Once the dataset contains the desired information with the response variable defined according to the business requirement, the next step is to

 $^{^3 {\}rm The}$ Pareto principle states that, for many events, roughly 80% of the effects come from 20% of the causes.

 $^{^{4}}$ The observations were grouped for better visualization, each bin contains 350 rows except the last one which has 428 for a total of 3578 rows.

explore and analyze the set of variables. Tables 4.2 and 4.3 summarize each numeric and binary variable, respectively, regarding their overall distribution for each value of the response variable.

The numeric variables describe the medical resource consumption of patients in the past (except "Age"), and are characterized by having little variability, and most of the values are zero. This is a common behavior for this type of variable, as reported in related studies [98]. We observe extreme cases of variables that are completely zeroed, such as "Pulsotherapies" (in the three years) and "Transplant", which were then disconsidered in the study. Moreover, for some of the temporal variables ("Scheduled consult", "Emergency consults", "Ordinary exams" and "Image exams"), there is an increase in the median medical resource consumption on the dates closer to the hospital admission, which might suggest some positive trend in the resource usage followed by a more significant event, the hospitalization.

Table 4.2 also shows the variables' distribution within each group of the "Hospitalization cost class", which could throw the first hints in understanding the behavior of high and low-cost hospitalizations. However, the variables' distributions seem quite similar among the groups, with the most notable difference belonging to the number of "Ordinary exams" during the first semester before the hospitalization. This difference suggests that regarding the median value, patients with high-cost hospitalizations made more "Ordinary exams" than those with low-cost hospitalizations.⁵

The binary variables (see table 4.3) also favor the "No" label, indicating little use of resources. Another aspect of the data is that there are almost equal amounts of surgical and clinical hospitalizations, and most of them (73%) were admitted by appointment (scheduled). Furthermore, among the high-cost hospitalizations, 69% are surgeries, while clinic hospitalizations are mostly low-cost.

The "Admission Group" variable groups hospitalizations according to the type of procedure carried out during the in-hospital stay (e.g., digestive, musculoskeletal and urinary systems). Graph 4.4 shows the proportion of highcost hospitalizations of the 12 most frequent admission groups⁶ within the dataset. As depicted in the plot, there is an interesting difference in proportions among the groups, being significantly higher for hospitalizations related to procedures of the digestive (3rd), musculoskeletal (4th) and the urinary (10th) systems, where high-costs hospitalizations represent 31%, 41% and 44% of the total number of hospitalizations, respectively.

⁵Note that this is an exploratory analysis and the analysis is based on visual and numeric comparison, without applying any statistical test.

 $^{^6\}mathrm{Those}$ 12 groups account for 78% of the observations, out of the 34 groups in total

Table 4.2: Descriptive statistics for numeric variables.						
	Tatal	Hospitalization Cost Class				
Variables (median [IQR])	Total	High-cost	Low-cost			
Age	34 [25 - 44]	37 [29 - 49]	33 [24 - 43]			
Transplant_total	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Scheduled consult						
Consult_semester1	3 [1 - 6]	4 [1 - 6]	3 [1 - 6]			
Consult_semester2	1 [0 - 3]	1 [0 - 4]	0 [0 - 3]			
Consult_semester3	0 [0 - 2]	0 [0 - 2]	0 [0 - 1]			
Consult_semester4	0 [0 - 0]	0 [0 - 1]	0 [0 - 0]			
Consult_semester5	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Consult_semester6	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Emergency consults						
Emergency_year1	1 [0 - 3]	1 [0 - 4]	1 [0 - 3]			
Emergency_year2	0 [0 - 1]	0 [0 - 1]	0 [0 - 1]			
Emergency_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Ordinary exams						
Exam_semester1	7 [0 - 20]	12 [1 - 28]	6 [0 - 18]			
Exam_semester2	0 [0 - 9]	0 [0 - 15]	0 [0 - 8]			
Exam_semester3	0 [0 - 2]	0 [0 - 4]	0 [0 - 1]			
Exam_semester4	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Exam_semester5	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Exam_semester6	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Hemodialysis therapy						
Hemodialysis_year1	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Hemodialysis_year2	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Hemodialysis_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Image exams						
Image_month1	0 [0 - 1]	0 [0 - 1]	0 [0 - 1]			
Image_month2	0 [0 - 1]	0 [0 - 1]	0 [0 - 1]			
Image_month3	0 [0 - 0]	0 [0 - 1]	0 [0 - 0]			
Pulsotherapies						
Pulsotherapies_year1	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Pulsotherapies_year2	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Pulsotherapies_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Cardiovascular procedurec						
Cardiovascular_year1	0 [0 - 0]	0 [0 - 1]	0 [0 - 0]			
Cardiovascular_year2	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Cardiovascular_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Diabetes procedure						
Diabetes_year1	0 [0 - 0]	0 [0 - 1]	0 [0 - 0]			
Diabetes_year2	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Diabetes_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Chronic Obstructive procedure						
Obstructive_year1	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Obstructive_year2	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Obstructive_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Neoplasm procedure						
Neoplasm_year1	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Neoplasm_year2	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Neoplasm_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Chronic Musculoskeletal procedure						
Musculoskeletal_year1	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
Musculoskeletal_year2	0 0 0	0 0 0	0 0 - 0			
Musculoskeletal_year3	0 [0 - 0]	0 [0 - 0]	0 [0 - 0]			
·						

Table 4.2: Descriptive statistics for numeric variables.

Table 4.3: Descriptive	for binary variables.				
	m · 1	Hospitalization Cost Class			
Variables [count (column %)]	Total	High-cost	Low-cost		
Total dataset	3578(100)	715(20)	2863 (80)		
Flag_Surgery					
Clinic	1,706(48)	220 (31)	1,486(52)		
Surgery	1,872(52)	495 (69)	1,377(48)		
Flag_Genetic			. ,		
No	3,541 (99)	701 (98)	2,840 (99)		
Yes	37 (1)	14 (2)	23 (1)		
Cardiovascular_flag					
No	2,769(77)	456 (64)	2,313(81)		
Yes	809 (23)	259 (36)	550(19)		
Diabetes_flag					
No	2,716(76)	440 (62)	2,276(79)		
Yes	862 (24)	275 (38)	587 (21)		
Obstructive flag	. ,				
No	3,429(96)	650 (91)	2,779(97)		
Yes	149 (4)	65 (9)	84 (3)		
Neoplasm_flag					
No	3,509(98)	691(97)	2,818 (98)		
Yes	69(2)	24 (3)	45 (2)		
Musculoskeletal flag					
No	3,208(90)	602 (84)	2,606(91)		
Yes	370(10)	113 (16)	257 (9)		
Flag_psycho_year1					
No	3,392(95)	667(93)	2,725 (95)		
Yes	186(5)	48 (7)	138 (5)		
Flag_psycho_year2					
No	3,510(98)	700 (98)	2,810(98)		
Yes	68 (2)	15 (2)	53 (2)		
Flag-psycho_year3					
No	3,558 (99)	711 (99)	2,847 (99)		
Yes	20 (1)	4 (1)	16 (1)		
Gender	× /		<u> </u>		
Female	2,070(58)	371 (52)	1,699(59)		
Male	1,508(42)	344 (48)	1,164(41)		
Admission_Type	/	. ,			
Scheduled	2,598(73)	525 (73)	2,073(72)		
Emergency	980 (27)	190 (27)	790 (28)		
	. /	· · · ·	· /		

Table 4.3: Descriptive statistics for binary variables.

The association between the variables was assessed through a correlation analysis. The heatmap in Figure 4.5 presents the correlation among pairs of variables according to the Spearman's rank correlation coefficient (see equation 3-1)⁷. The variables are not highly correlated to each other, in general. The most notable pairs of variables regarding the Spearman's coefficient are the temporal variables of "Scheduled consults" and "Ordinary exams", which are moderately correlated. The association among variables of the same type is related to a temporal effect that, in the context of this research, may indicate an increase or decrease in the usage of a specific medical resource. On the other hand, those types of exams and consults may have a medical association that the execution of one leads to the other (i.e., correlation coefficient between "Exam_semester6" and "Consult_semester6" equals 0.762).

⁷Appendix B presents the entire correlation matrix

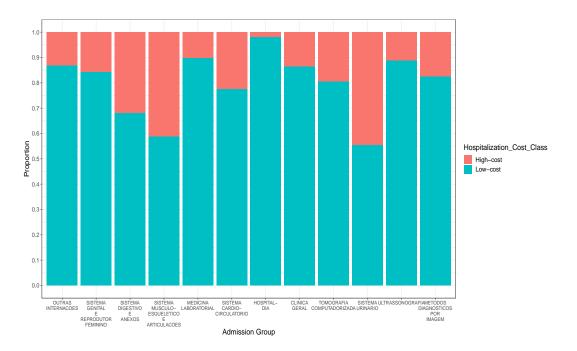


Figure 4.4: Proportion of high-cost hospitalizations for the 12 most frequent "Admission Group".

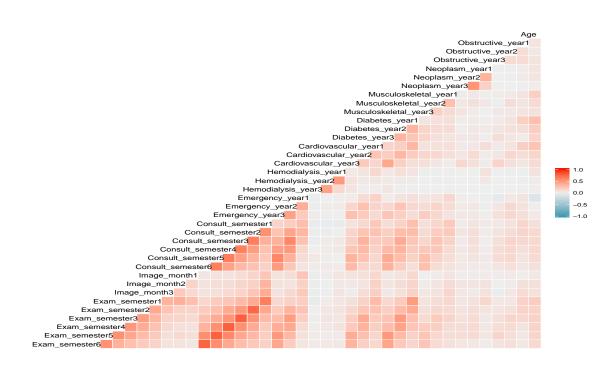


Figure 4.5: Heatmap of predictors' correlation.

4.1.3 Data Preparation

After the exploratory analysis the data is prepared according to the business and the ML technique requirements. As mentioned before, the rows with missing values or "Hospitalization Cost" values under zero were removed. Also, there are numeric variables that present extreme values indicating the presence of outliers; in agreement with the organization domain experts, those values were not removed since, in the context of this study, they are useful for the predictive task.

As explained in Subsection 4.1.2, the variables related to past medical resource consumption present different granularities. According to Modrid et al. [23], using temporal variables with a higher granularity (e.g., each individual exam taken in the past three years) could improve the ML model's performance, since this variables expose more information than using aggregated variables (e.g., the sum of exams in the past three years). Although the available variables do not present the degree of granularity showed in the referred study (monthly variables through two years), each set of temporal variables was aggregated into a variable that summarizes the whole period. Thus enabling further experiments comparing the "Temporal dataset" (i.e., the dataset comprising the variables with higher granularity) against the "Aggregated dataset" (i.e., the dataset comprising the aggregated variables). Table 4.4 describes the creation of the new aggregated variables. In general, counting variables were created by summing up numerical temporal variables (e.g., bi-annual count of elective consults), and binary variables were created by applying an OR operator to the corresponding binary temporal variables (e.g., Psychological consults). A particular case is the set of temporal variables related to Chronic diseases, which values, as described in the data dictionary (Appendix A), correspond to the sum of procedure complexities that the patient has taken each year for a specific disease (1 for simple procedures, 3 for medium-complex procedures, and 6 for complex procedures). This variable could lead to some misinterpretations, e.g., a value of 6 for a particular disease in a year could indicate six simple procedures, two medium-complex procedures, or even one complex procedure. Therefore, a binary variable was created, indicating whether there was at least one procedure (of any complexity) in any of the three years.

These new aggregated variables are a linear combination of the temporal ones, and then it is expected that they are highly correlated. Therefore both temporal and aggregated variables will not improve the model's performance if they are used together but increase the complexity and computational cost. Also, the main objective is to test whether temporal variables provides more

Medical Resource Con-	Actual granularity	New aggregated variable	New aggregated value		
sumption		name			
Exams	bi-annual count	Exams total	sum of semester counts		
Image exams	monthly (3 month) count	Image exams total	sum of monthly counts		
Psychological consults	annual flag	Psychological consults flag	1: if any annual flag = 1; 0: otherwise		
Elective consults	ective consults bi-annual count Elective consults total		sum of semester counts		
Emergency consults	annual count	Emergency consults total	sum of annual counts		
Hemodialysis	annual count	Hemodialysis total	sum of annual counts		
Pulsotherapies	annual count	Pulsotherapies total	sum of annual counts		
Chronic disease	annual cumulative sum	Chronic disease flag	1 : if any annual cumulative sum > 0; 0 : otherwise		

 Table 4.4: Feature Engineering. Aggregated Medical Resource Consumption

 variables.

information than aggregated. Hence, two data sets are created (temporal and aggregated) for each set of variables, and both datasets use the common variables of "Patients Characteristics" and "Patient Hospitalization" (see table 4.1).

The numeric variables in the dataset describe the patient's age, the number of particular events before the hospitalization, and the existence of a complex procedure for a "Chronic disease". Therefore, in order to avoid different scales among the dataset variables (which could further impact the predictive techniques), the predictors were equally scaled into the range [0, 1] using the equation⁸:

$$x'_{i} = \frac{x_{i} - \min(X)}{\max(X) - \min(X)} \tag{4-1}$$

where x'_i and x_i are the scaled and original *i* value of predictor *X*, respectively. Moreover, the variable "Admission Group" is categorical, and was transformed into a "dummy" variable as an input requirement for the predictive models. Then, as the "Admission Group" have 34 categories, 34 binary variables are created.

4.1.4 Data Modeling

Once the dataset is prepared according to the ML techniques and the business specifications, an experiment route is designed considering different scenarios. First, for the learning procedure, the available data was divided for training and validation, using 5-fold cross-validation with a stratified random sampling splitting approach. Then, six scenarios were considered, which includes the two sets of variables discussed in the previous Section (named "Temporal" and "Aggregated") and three ML techniques (see Appendix C for

 $^{^{8}\}mathrm{The}$ scaling process was performed during the cross-validation procedure, aiming to provide reliable results.

a detailed description of the ML techniques settings). Table 4.5 summarizes those scenarios.

Table 4.5: Experimental Scenarios and results

Scenario	Machine Learning technique	Dataset	AUROC	\mathbf{F} -score($\beta = 2$)	Sensitivity	\mathbf{PPV}	Threshold	\mathbf{TP}	\mathbf{FP}	\mathbf{FN}	TN
1 2	Ridge Regression	Temporal Aggregated	$0.740 \\ 0.748$	$0.586 \\ 0.586$	0.712 0.709	$\begin{array}{c} 0.344 \\ 0.346 \end{array}$	$0.189 \\ 0.185$	$\begin{array}{c} 102 \\ 101 \end{array}$	194 192	41 42	378 381
$\frac{3}{4}$	LASSO Regression	Temporal Aggregated	$0.740 \\ 0.746$	$0.585 \\ 0.586$	0.713 0.715	$\begin{array}{c} 0.340 \\ 0.340 \end{array}$	0.180 0.179	102 102	198 198	41 41	374 374
5 6	CART	Temporal Aggregated	$0.666 \\ 0.655$	$0.497 \\ 0.509$	$0.571 \\ 0.615$	$\begin{array}{c} 0.328\\ 0.301 \end{array}$	$0.166 \\ 0.139$	82 88	$\begin{array}{c} 170 \\ 214 \end{array}$	$\frac{61}{55}$	402 358

Each row of table 4.5 describes a scenario and their corresponding results⁹. The performance was evaluated first for each scenario from an overall perspective using AUROC, to select later the threshold¹⁰ that minimizes the distance between the ROC curve and the top-left corner in the ROC Graph in Figure 4.6 (Sensitivity = Specificity =1). Then, for this optimum threshold, it is presented the corresponding confusion matrix with the derived metrics of interest ($F_{\beta=2}$, Sensitivity, and PPV). The first comparison seeks to define whether it is better to use the "Temporal" or "Aggregated" dataset comparing the error rates of each pair of models. The comparison is performed assessing the statistical difference between the two models errors¹¹. For RR and LASSO, the p-values were higher than the significant threshold 0.05, indicating insufficient evidence to reject the null hypothesis (H_0) that the two models have the same error rates. This statistical interpretation indicates that the dataset with the temporal variables does not improve significantly the performance of the models. Therefore the dataset with aggregated variables is preferred, and thus the complexity of the models and future computational costs are reduced. However, was detected a statistical difference in the performance when using the CART technique, which indicates that the error rates are different, and the results in the contingency table indicate that CART with the "Temporal" dataset performs better. The behavior is also reflected in the confusion matrix (table 4.5), which indicates that the detected difference in the error rates relates to the FP. This result does not change the conclusion that the "Aggregated" data set is preferred, because the model with the "Temporal" variables only outperforms the one with the "Aggregate" variables with respect to the PPV, which is not the priority of the organization.

Among the ML techniques, CART had the poor performance regarding the AUROC, while LASSO and Ridge regression perform similarly. In this

 $^{^{9}\}mathrm{All}$ values including the Confusion Matrix cells correspond to the average value across the CV iterations.

 $^{^{10}{\}rm The}$ limit value above which the predicted probability of being of the positive class classifies an observation as such.

¹¹Refer to Appendix C for all details of the learning process and the statistical test carried out for the models' evaluation.

context, LASSO regression is defined as the best model (using the "Aggregated" data set) over the Ridge, due to its ability to zero the coefficients of the variables that do not aggregate information and thus reduce the complexity of the model. According to the confusion matrix, the model is correctly predicting on average more than 71% of the truly high-cost hospitalizations (102 on average), which is the main concern of the organization. However, this comes to the cost of a 34% of precision (PPV), in other words, to accomplish a 71% of detection, the model wrongly classifies as high-cost the 34,6% (FPR) of the truly low-cost hospitalizations.

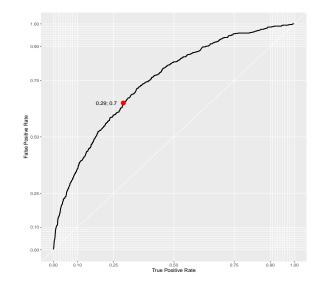


Figure 4.6: ROC curve for LASSO model using the "Aggregated" dataset. The red dot indicates the optimum threshold that generates the confusion matrix in table 4.5.

4.1.5 Evaluation

The evaluation phase defines whether the business goals are achieved, or further refinement of the design cycle is necessary before the artifact's deployment. First, we assess the relative contribution of each variable considered in the model to the final prediction. For that, the importance of each variable is extracted from the trained model (in the case of LASSO for classification, this importance refers to the magnitude¹² of the coefficients in the penalized logistic regression).

Figure 4.7 displays the top 20 variables, sorted in decreasing order of their coefficients magnitude. By analyzing the Graph, the organization domain

¹²Note that magnitude here refers to the size of the effect but do not relate if there is a positive or negative association with the log-odds. See Appendix C for a description of the coefficient.

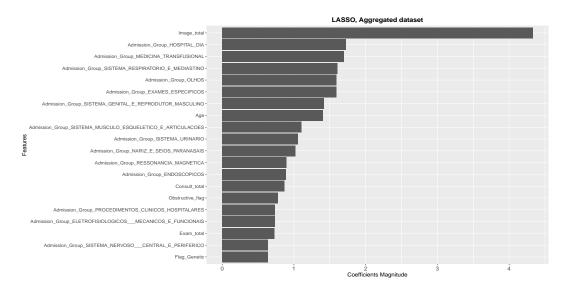


Figure 4.7: Variable importance for LASSO model using the "Aggregated" dataset. X-axis represents the absolute value of the variable coefficient.

expert noticed some interesting results that were not expected. First, the high association of the "HOSPITAL_DIA" group. From the domain expert perspective, this "Admission Group" has little significance since patients do not get admitted for more than one day and have a relatively low cost. The unexpected result also contrasts with the Graph 4.4, where this group of hospitalizations actually have a low proportion of high-cost, and also the three "Admission Group" pointed in Section 4.1.2 with the highest proportions have low importance in the fitted model. The discrepancies in the exploratory analysis results and the domain expert business knowledge with respect to the individual effect of the predictors are not conclusive since interactions among variables can occur, but it deserves further analysis in order to understand this behavior. To do that, the original cost variable ("Hospitalization Cost") is again analyzed, but this time by "Admission Group" instead of the whole dataset.

The Graph in Figure 4.8 exhibits the distribution of the "Hospitalization Cost" within each "Admission Group," and the blue dashed line represent the high-cost cutoff (R\$ 10, 200) defined using Pareto's principle in Section 4.1.2. From the Graph, it turns out that hospitalizations for each "Admission Group" have different cost distribution, mainly the "HOSPITAL_DIA" group, which has the lowest median cost value (as pointed out by the domain expert). Then according to the high-cost definition, for this group just a few values are above the defined cut-off, which can explain why it receives a high coefficient in the fitted model. On the other hand, the groups with the larger proportions of high-cost hospitalizations are because the cutoff line is under their 75 percentile.

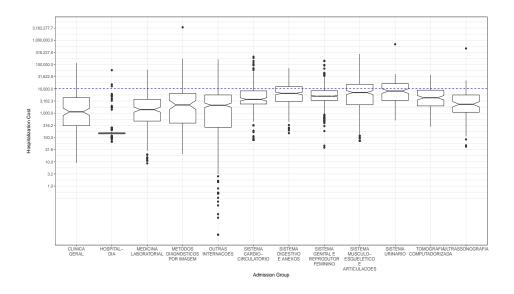


Figure 4.8: "Hospitalization Cost" for the 12 most frequent "Admission Groups". The y-axis is in logarithm (base 10) scale

The behavior observed in the previous analysis indicates that the definition of high-cost hospitalization following the Pareto's principle is not adequate in this context. The point is that the cost value of a hospitalization should not be used to define high-cost among different admission motives, which costs distributions differ depending on the nature of the procedures performed. This conclusion was reached in agreement with the organization, so it was decided to redefine the response variable, and that a new cycle should be initiated. Also, at this point in the study, the entire dataset comprising all the population attended by the organization is available and would be used in the following cycle.

4.2

Second DSR cycle: Prediction of high-cost hospitalizations over the complete dataset

Figure 4.9 summarizes the activities and results obtained when instantiating the Second cycle of DSR framework presented in the previous Chapter. It is important to notice important differences when compared to the overview of the First cycle, presented in Figure 4.1:

- The entire data set with all the hospitalizations is now available¹³, including new variables regarding past hospitalizations.
- Residual hospitalizations and "Admission Subgroup" out of the scope of the study were removed.

¹³The data set with all the hospitalizations was under development when the project started, thus a sample was provided to conduct the First DSR cycle.

- High-cost hospitalizations were defined at the "Admission Subgroup" level, applying an outlier detection approach.
- New variables were created for prior costs.
- Predictive models built for each "Admission Subgroup".

As in the First cycle, the following Subsections describe each phase of this Second DSR cycle, in detail.

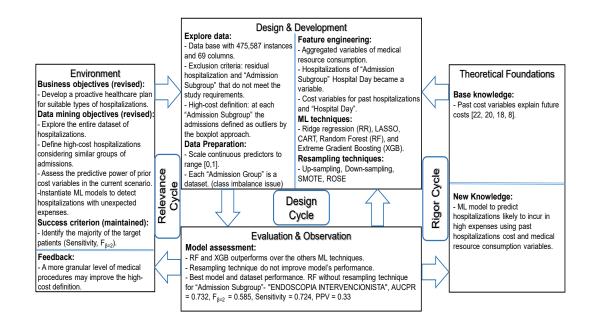


Figure 4.9: Second Cycle of the DSR and Data Science Methodology

4.2.1 Business Understanding

The development of this cycle, as stated at the end of Section 4.1.5, followed the need to redefine the concept of a "high-cost hospitalization", as well as to consider the complete dataset made available by the organization. In this context, the objectives of the Second cycle are: (i) to explore the new dataset, with the entire population of hospitalizations of the past 3 years; (ii) to evolve the precise definition of a high-cost hospitalization considering similar groups of admissions (that is, hospitalization with a high risk of incurring in unexpected high-cost, given its admission group), and (iii) to build ML models that successfully predict such high-cost hospitalizations. The organization expectation is to have predictive models that capture most of the high-cost hospitalizations (with a high risk of having an unexpected high-cost considering the hospitalizations of the same admission group), while at the same time reducing the number of low-cost hospitalizations that are misclassified as high-cost. As in the First cycle the success criterion is measured maximizing the F_{β} metric (see equation 3-13) with $\beta = 2$. In addition, the Sensitivity and PPV, together with the corresponding confusion matrix complements the performances evaluation process.

The need for evolving the definition of a high-cost hospitalization arose from the conclusion, obtained in the First DSR cycle, that it is necessary to stop analyzing the cost in isolation. The magnitude of the cost value is not enough, since the cost distributions vary a lot among distinct admission groups. Instead, it would be more useful to predict which hospitalizations have an unexpected cost according to some reference value. The next Section will address this definition.

4.2.2 Data Understanding

The complete dataset containing the entire population has 475, 587 hospitalizations of a total of 269, 976 patients, and 69 features describing characteristics of the hospitalizations at the moment of the admission (e.g., "Admission Subgroup", "Flag Surgery", "Admission Type") and a set of medicals events in the past three years. As can be noticed, there are more features compared to the sample data used in the First DSR cycle. The new features are from the group of past medical resource consumption, and denote the number of physiotherapies consults and past hospitalizations for the same patient. In addition, there is a new variable that gathers related hospitalizations at a more granular level in relation to the "Admission Group", which is called "Admission Subgroup"¹⁴. This information is displayed in table 4.6 and more detailed in the dictionary of variables in Appendix A.

To start the analysis of the new dataset, the same data selection filters of the First DSR cycle were applied. Also, duplicated registries were encountered and removed (see Figure 4.10). Graph 4.11 illustrates the behavior of the hospitalization cost for each "Admission Subgroup". To do that, the box-plots were substituted by the hospitalization's instances represented as dots, and plotted with some random dispersal (jitter) to avoid overlapping. The idea is to observe if there are unknown patterns in the cost variable distribution.

Graph 4.11 plots the "Hospitalization Cost" of the 10 most frequent "Admission Subgroup". The distribution cost of each subgroup presented a set of observations in the lower extreme of their distributions, which are

 $^{^{14}\}mathrm{There}$ is a total of 37 groups and 196 subgroups.

Patient Characteristics	Medical Resource Consumption	Patient Hospitalization		
Gender	Ordinary exams	Admission Group		
Age	Image exams	Admission Type		
	Psychological consults	Flag Surgery		
	Scheduled consults	Hospitalization Cost		
	Emergency consults	*Admission Subgroup		
	Hemodialysis therapies			
	Pulsotherapies			
	Transplant			
	Chronic disease			
	*Physiotherapies consults			
	*Surgical hospitalizations			
	*Clinical hospitalizations			

Table 4.6: Group of variables whole dataset

*New variables.

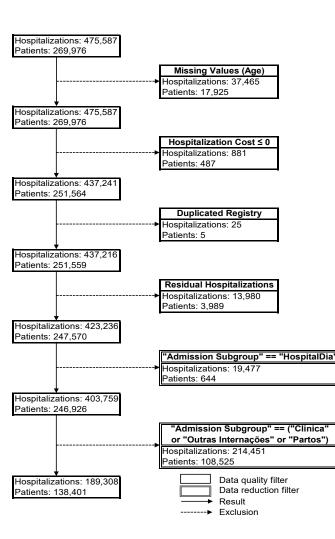


Figure 4.10: Data quality and reduction filters for the entire dataset.

significantly different from their median value (including values very close to zero). This behavior is more notable in subgroups with higher variability, such as "OUTRAS INTERNACOES" (where the median value is R\$ 2,550, and 25 % of the hospitalizations with the lowest costs are between R\$ 0.01 and R\$ 304). In a further analysis, the domain expert of the organization concluded that this is due to the existence of residual hospitalizations in the dataset. From the organization perspective, residual hospitalizations are delayed payments whose registries appear as individual hospitalizations while, in reality, they represent residual payments that could not be linked to the original hospitalization. In other words, they are part of some hospitalization that happened before, with no link to the original one. Then, in agreement with the organization domain expert, the residual hospitalizations within each "Admission Subgroup" were removed.

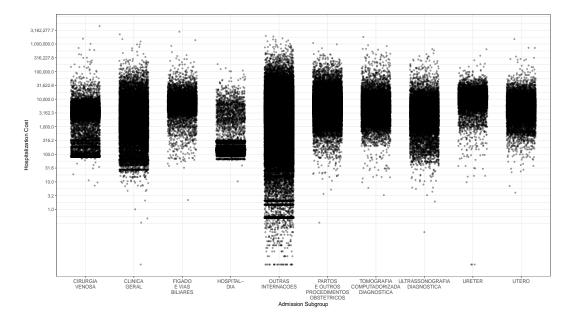


Figure 4.11: "Hospitalization Cost" for the 10 most frequent "Admission Subgroup". The y-axis is in logarithm (base 10) scale for better visualization.

In order to detect those residual hospitalizations, an outlier detection procedure was performed in the lower extreme of each subgroup distribution. The outlier definition followed the boxplot approach, where every point lower than the resulting difference between the 25 percentile and 1.5 times the IQR is identified as an outlier. One issue with this approach is that the distributions of cost are heavily right-skewed¹⁵, thus most subgroups do not present outliers following the previous definition. Thus, we first apply a

¹⁵This is a characteristic of cost data in the healthcare context, just a minority of the population generate large expenses.

logarithmic transformation of the "Hospitalization Cost" variable (to decrease the skew) and then apply the outlier definition described above. Graph 4.12 depicts the resulting residual observations for the 10 most frequent "Admission Subgroup", which were then removed. Figure 4.10 shows the amount of removed data.

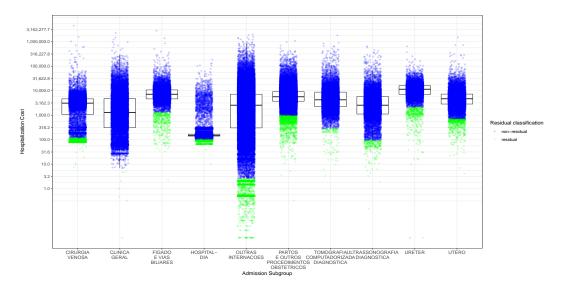


Figure 4.12: "Hospitalization Cost" for the 10 most frequent "Admission Subgroup". The green point are the residual hospitalizations. The y-axis is in logarithm (base 10) scale for better visualization.

At this point, the organization domain experts analyzed the "Admission Subgroup" categories, searching for inconsistencies with the research goals, and concluded that some of them should not be considered. First, the subgroups named "Clinica", "Outras Internações" and "Partos" should be discarded because they group very heterogeneous sets of procedures (note their variability in Graph 4.12). Second, the subgroup "HospitalDia" ("Daily Hospital") should be discarded as hospitalizations, for the purposes of the current research, since they typically refer to procedures that do not require the patient to be admitted for more than one day. However, they could be an important indicator for some possible hospitalization of the same patient in the future. Thus, the observations of this subgroup were removed and this event was transformed into a new variable, as described in the next Section. The subgroup removal procedure is one of the data reduction steps described in Figure 4.10.

4.2.2.1 Defining the class variable

The task redefines the "Hospitalization cost class" variable, setting which hospitalizations should be considered as high- or low-cost for the data modeling phase. In this Second DSR cycle, a high-cost hospitalization is defined as the one having an unexpected much higher cost when compared to similar hospitalizations.

For this purpose, the "Admission Subgroup" variable was used as a grouping criterion, thus resulting in more homogeneous subsets of hospitalizations. Each subset has a distinct threshold (or cutoff) value for defining high-cost hospitalizations, set by applying an outlier detection procedure that is analogous to the one adopted to define residual hospitalizations, but this time looking in the upper extreme of the cost distribution. The rationale for this definition is that these outliers effectively represent hospitalizations which costs are unexpectedly high. Graph 4.13 illustrates the different cutoff values for each "Admission Subgroup" of the "Admission Group" named "SISTEMA DIGES-TIVO E ANEXOS" ("Digestive System and Annexes").

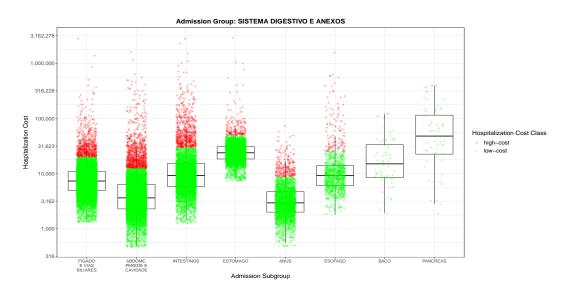


Figure 4.13: "Hospitalization cost class" definition for each "Admission Subgroup" of the "Admission Group" named "SISTEMA DIGESTIVO E ANEXOS".

The described approach for defining high-cost hospitalizations generates new challenges to the project that should be addressed in the preparation phase. For example, as depicted in Graph 4.13, the same cost value could represent both high-cost and low-cost hospitalizations for different subgroups. Moreover, the definition of high-cost hospitalizations as outliers significantly reduces the number of observations belonging to the high-cost category, thus creating a class imbalance issue, as pictured in the two subgroups to the right of Graph 4.13 (see Appendix D table D for a detailed description of each "Admission Subgroup").

4.2.3 Data Preparation

The preparation phase in this Second DSR cycle followed most tasks performed in the First cycle. All observations meeting the exclusion criteria described in the previous sections were removed, and the presence of outliers in this context refers to values that could have valuable information, thus were not removed. Also, according to the conclusion reached in the First cycle that temporal variables do not improve the model's performance, only aggregated variables are considered in the Second cycle.

 Table 4.7: Feature Engineering. Aggregated Medical Resource Consumption

 variables.

Medical Resource Consump-	Actual granularity	New aggregated variable name	New aggregated value
tion			
Physiotherapy	annual count	Physiotherapy total	sum of annual counts
Surgery hospitalization	bi-annual count	Surgery hospitalization total	sum of semester counts
Surgery hospitalization cost	bi-annual sum	Surgery hospitalization cost total	sum of semester costs
Clinic hospitalization	bi-annual count	Clinic hospitalization total	sum of semester counts
Clinic hospitalization cost	bi-annual sum	Clinic hospitalization cost total	sum of semester costs
Hospital-Dia	bi-annual count	Hospital-Dia total	sum of semester counts
Hospital-Dia cost	bi-annual sum	Hospital-Dia cost total	sum of semester costs

In addition to creating the aggregated variables as described in Table 4.4, a new variable was created to represent the number of "Day-Hospital" hospitalizations that occurred in the past. Also, for each variable describing past hospitalizations of a specific type ("Surgical", "Clinical", and "Day-Hospital") a new variable was created to denote the cost incurred for its corresponding type, as an attempt to break ties among admissions with the same amount of past hospitalizations¹⁶ (Table 4.7 complements the variable aggregations previously described in Table 4.4). Moreover, as in the First cycle, all predictors were scaled into a range [0, 1].

On the other hand, to address the challenges caused by the redefinition of a high-cost hospitalization (described in Subsection 4.2.2), the predictive models will be built at the "Admission Subgroup" level, thus each subgroup will be treated as a different dataset. This decision, in agreement with the organization domain expert, also addresses the need for prioritizing groups of hospitalizations by their frequency, their cost variability or their average cost. Figure 4.14 displays the frequency and average cost for all "Admission Subgroup" with more than 800 hospitalizations. The 47 most frequent subgroups, which account for 88% of the hospitalizations, will be the object of study.¹⁷

 $^{^{16}{\}rm Previous}$ related works argue that past costs variables are valuable predictors of futures cost (see Section 2.2).

¹⁷Appendix D, Table D, provides a characterization of the "Admission Subgroup".

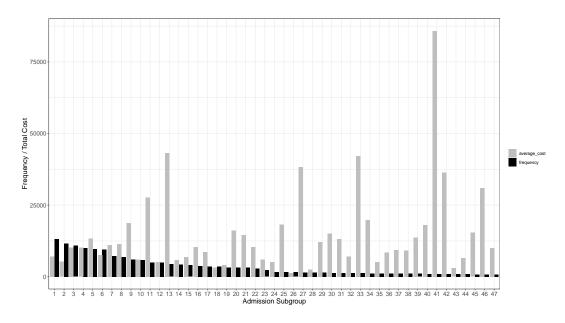


Figure 4.14: "Admission Subgroup" frequency and average cost. The numbers in the x-axis represent each "Admission Subgroup" (see Appendix D for a detailed description).

4.2.4 Data Modeling

The learning procedure for all the models in this Second DSR cycle also applied a 5-fold cross validation methodology approach with a stratified random sampling splitting criterion, as in the First DSR cycle. The experiment design comprised a wider variety of scenarios, including other ML techniques and also resampling techniques to treat the class imbalance issue (which is more evident at the "Admission Subgroup" level). It is worth noting that both the resampling technique and data scaling were performed during the CV procedure to the training folds, in order to avoid bias in the subsequent performance metrics. Table 4.8 summarizes these scenarios and Appendix E provides detailed information about the hyperparameters settings for each ML technique.

Model assessment was different from that of the First design cycle, because of the great number of scenarios conducted in this experiment¹⁸. In summary, the experiment results evaluated: (i) the overall performance of the ML techniques on all subgroups; (ii) the performance of the best ML techniques for all the subgroups under study; (iii) the predictors contribution to the final prediction. The performance results are presented in the following subsections.

¹⁸Note that for the 47 "Admission Subgroup", 5 ML techniques were trained, each one testing the 4 resampling technique plus the scenario without any, and a set of specific parameters for each ML technique (details in Appendix E) for a total of 1175 scenarios.

Resampling Technique
Up-sampling
Down-sampling
SMOTE
ROSE

 Table 4.8: Experimental Scenarios

4.2.4.1 Evaluating ML Techniques Performance among all Admission Subgroup

First, the performance of each ML technique on all datasets was analyzed. Figure 4.15 shows the results from this analysis, summarizing the performance of each ML technique for the best scenario on each dataset. For each combination of "Admission Subgroup" and ML technique, the "best scenario" was defined by the resampling method and specific set of hyperparameters that produced the highest AUCPR. This metric provides and overall measurement of the model performance, and may be interpreted as the average Precision (PPV) when varying the Sensitivity from 0 to 1 at different probabilities thresholds.

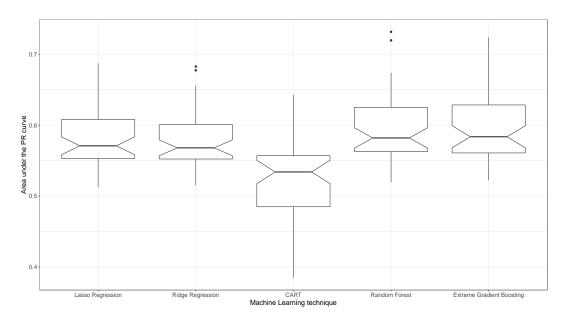


Figure 4.15: Overall ML technique performance across dataset.

The boxplot in Figure 4.15 illustrates that the RF and XGB models had a better overall performance, showing a right-skewed distribution with median

AUCPR of 0.582 and 0.584, respectively¹⁹, and maximum values reaching 0.732 in the case of RF. In contrast, the CART technique presented the lowest median AUCPR (0.534), with a left-skewed distribution and a higher variability among all datasets. It is worth noticing that, in order to compare the magnitude of the models' performance considering AUCPR, the baseline model (i.e., one that predicts both classes randomly) performance depends on the positive (high-cost) class proportion in the dataset. Since the analysis intends to relate an overall performance, a median high-cost proportion of 0.07 with a median frequency of 1638 hospitalizations among all datasets is considered as a baseline model.

4.2.4.2 Evaluating ML Techniques Performance for each Admission Subgroup

The next analysis aimed to compare the results of the best ML techniques. For that, the stripchart²⁰ in Figure 4.16 depicts the AUCPR of the best 5 (for each resampling technique) RF and XGB models, for each "Admission Subgroup"²¹. Grey dots represent the results of XGB, while black dots depict the RF results. Also, the average values and ranges are pictured with a horizontal and a vertical line, respectively.

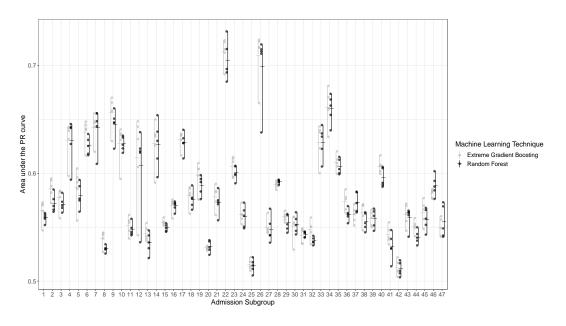


Figure 4.16: Overall "Admission Subgroup" performance using RF and XGB.

¹⁹The Notch displays the confidence interval around the median calculated as $median \pm 1.58 \times IQR/\sqrt{n}$, where n is the number of samples. Although, not an statistical test non overlapping notch suggest strong evidence that the median values are significantly different. ²⁰Unidimensional scatterplot.

²¹The corresponding subgroup name for each number in the x-axis is provided in Appendix D.

Graph 4.16 evidences a great variability in the results for each subgroup, showing different behaviors of the resampling techniques. The lower median (AUCPR = 0.561) performance corresponds to the ROSE technique, and the highest values were obtained using either SMOTE or no resampling technique, with a median performance of 0.573 and 0.576, respectively. There also seems to be no clear winner among the two ML techniques, since they both outperform each other in different datasets.

Moreover, two "Admission Subgroup" stand out over the rest, both presenting AUCPR over 0.70. The "Admission Subgroup" number 22 (named "EN-DOSCOPIA INTERVENCIONISTA") has a higher AUCPR value of 0.732 (reached for the RF technique without any resampling technique), which is a considerable improvement compared with a baseline model for this subgroup of 0.113 (2803 observations). On the other hand, in the "Admission Subgroup" number 26 (named "APARELHOS GESSADOS") the best performance corresponds to the XGB technique using the SMOTE resampling procedure, achieving an AUCPR of 0.724 with a ratio of 0.174 high-cost in 1562 hospitalizations.

Although these two subgroups distinguished by the performance obtained, as depicted in Figure 4.14, their average costs are not that interesting for the business goals, mainly for the subgroup 26, which has one of the lowest frequencies and average costs. On the other hand, the "Admission Subgroup" number 33 (named "ACESSOS VASCULARES") presents an elevated average cost. Thus, despite not having a prominent performance, subgroup 33 is a candidate of interest for the study. Its best performance was achieved with XGB and the SMOTE resampling techniques. The AUCPR reached 0.644 and is compared with a baseline model with a performance equal to the subgroup high-cost proportion of 0.106 (1244 observations). The performance metrics and the confusion matrix for subgroups numbers 22 and 33 are provided in Table 4.9.

An interesting conclusion for these subgroups is that both RF and XGB techniques achieve high performances without any resampling technique to deal with the class imbalance problem. This behavior highlights the ability of these two ML algorithms, but also suggests that the techniques used for the imbalance issue were not the most appropriate in this context. Therefore, others could be tested to further refine the models.

In Table 4.9, the highest values for AUCPR are highlighted, and among them stands out the results for the subgroup 22 where the value for $F_{\beta=2}$ almost reach 0.60, with which the model is correctly predicting more than 70 % of the high-cost hospitalizations with around 30 % of precision. These performance rates, and the absolute values depicted in their corresponding confusion matrix,

Dataset	Scenario	AUCPR	Threshold	$F_{\beta=2}$	Sensitivity	PPV	TP	FP	FN	TN
	RF									
	none	0.732	0.159	0.585	0.724	0.330	45	92	17	406
	up	0.715	0.383	0.590	0.724	0.339	45	89	17	410
	down	0.697	0.519	0.585	0.750	0.310	47	107	16	392
	SMOTE	0.685	0.337	0.572	0.702	0.328	44	91	19	407
	ROSE	0.694	0.528	0.544	0.606	0.387	38	84	25	414
22	XGB									
	none	0.722	0.116	0.587	0.708	0.348	44	86	18	413
	up	0.723	0.436	0.576	0.737	0.307	46	104	16	394
	down	0.712	0.506	0.568	0.737	0.296	46	109	16	389
	SMOTE	0.715	0.170	0.579	0.769	0.291	48	117	14	381
	ROSE	0.692	0.945	0.563	0.771	0.271	48	284	14	215
	RF									
	none	0.637	0.183	0.464	0.552	0.283	15	38	12	185
	up	0.634	0.358	0.486	0.751	0.202	20	79	7	143
	down	0.623	0.471	0.480	0.733	0.202	19	77	7	145
	SMOTE	0.645	0.310	0.483	0.636	0.246	17	53	10	170
	ROSE	0.606	0.344	0.415	0.916	0.130	24	166	2	57
33	XGB									
	none	0.640	0.089	0.478	0.660	0.228	17	60	9	163
	up	0.638	0.416	0.466	0.636	0.225	17	58	10	164
	down	0.623	0.507	0.449	0.681	0.190	18	77	8	146
	SMOTE	0.644	0.197	0.494	0.697	0.228	18	63	8	159
	ROSE	0.600	0.001	0.432	0.632	0.191	17	89	10	133

Table 4.9: Summary of performance of best models for "Admission Subgroup" 22 and 33.

are within the expected results from the organization perspective to be able to carry out the proactive health plan.

4.2.4.3 Evaluating Variable Importance for the best ML Models

In addition, once the model is trained, another possible approach for understanding the high-cost hospitalizations is to analyze the predictors' ability (importance) to explain the response variable. In Graph 4.17 the predictors' importance are ranked for the best results of the two datasets selecting the scenario with the highest $F_{\beta=2}$.

For both RF and XGB, the variable's importance relate to the Impurity Gain (according to the Gini Index) obtained when splitting a tree node on a specific variable. It is interesting that, for both subgroups, the "Admission Type" variable (Scheduled or Emergency) appears in the first positions. This behavior may be caused because the proportions of the "Hospitalizations Cost Class" labels are dominant within the two classes of this variable. In fact, for subgroup 22, emergency admissions have a higher proportion of high-cost hospitalizations (almost 50%), while the majority (93%) of scheduled hospitalizations are of low-cost. It is also worth noting that the new features created in Section 4.2.3, which are related to the past hospitalizations (Surgical, Clinical and Day-Hospital) and their respective costs, provide valuable information for

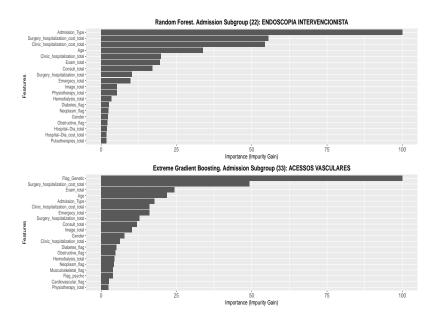


Figure 4.17: Variable importance. Top Graph, "Admission Subgroup" 22 with RF without resampling technique. Bottom Graph, "Admission Subgroup" 33 using XGB and SMOTE.

the learning process.

4.2.5 Evaluation

The model evaluation phase delimits the frontier between the Design and Relevance cycles (see Figure 3.9). It designs the point, in the project pathway, where the model design and development are assessed from the organization perspective as the testing field to decide whether additional model refinements are needed. For that, further analyses of the resulting models performance are conducted, this time trying to understand particular cases where the errors are being made, and also their impact.

4.2.5.1 Visualizing the predictions

First, the best performance scenario for subgroup 22 is considered (RF with none resampling technique). For that, Figure 4.18 displays the classification predictions for each testing fold during the CV iterations. The colored dots differentiate the classes predicted by the model, and the blue dashed line denotes the high-cost cutoff value (which divides the observations in their real classes). Then, for example, a red dot (predicted as a high-cost hospitalization) above the blue line indicates a true positive (TP); a red dot below the blue line indicates a false positive (FP); a green dot (predicted as a low-cost hospitalization).

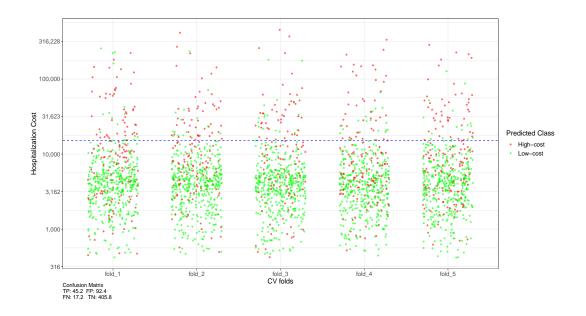


Figure 4.18: Classification predictions for the testing folds during the CV procedure of "Admission Subgroup" 22. The blue dashed line represent the high-cost boundary for this subgroup.

pitalization) below the blue line indicates a true negative (TN); and a green dot above the blue line indicates a false negative (FN). Figure 4.18 effectivelly shows each cell of the Confusion Matrix in contrast with the continuous variable "Hospitalization Cost", making hits and misclassifications explicit. It is worth noting that the Confusion Matrix values are calculated as the average of the classification's results across the CV folds, allowing to test the model using all observations once. In other words, as depicted in Figure 4.18, the CV procedure permits to test the trained model on different patterns of data, increasing the confidence of the performance estimates. In this subgroup, the majority of the high-cost hospitalizations are correctly classified, except for the first fold where, among the five highest costs, just two were predicted as such. Also, an unexpected behavior was observed in the lower extreme of the cost distribution for all folds, where high-cost classifications are wrongly made.

On the other hand, the best performance scenario for subgroup 33 is depicted in Figure 4.19 (XGB using SMOTE). Similar behaviors in the errors are also reflected in this subgroup, although it is good to note that apparently fewer mistakes are made in the area where the hospitalizations have the highest cost. It also highlights the correct detection of the two most expensive hospitalizations, the largest being over 3 million. Then, those observations would be further analyzed, providing some characteristics of the most important predictors (see Figure 4.17).

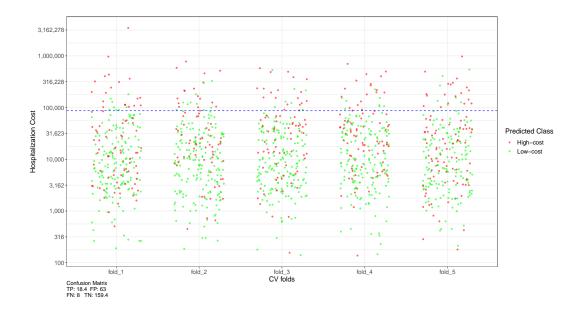


Figure 4.19: Classification predictions for the testing folds during the CV procedure of "Admission Subgroup" 33. The blue dashed line represent the high-cost boundary for this subgroup.

4.2.5.2 Analyzing Individual Cases

Table 4.10 summarizes the analysis for the FN with the highest cost value (which is referred to as "FN-high") and for the FP with the lowest cost value ("FP-low"). It shows the distribution (median and IQR for continuous variables and count and proportion % for binary) of the four most important variables for each model considering the group of observations correctly predicted as low-cost (TN) and as high-cost (TP). It is expected that the value of FN-high should correspond to the TN distribution, while the value of FP-low should be within the TP distribution.²²

For subgroup 22, the analysis of the FN-high and FP-low cases is presented as follows. With regard to the "Admission_Type (Emergency)" variable, both FN-high and FP-low were "Scheduled" admissions (i.e., not "Emergency"). The observations that the model correctly classifies as highcost (TP) are half scheduled and half emergency admissions, while all lowcost hospitalizations correctly classified (TN) were "Scheduled". For the "Age" variable, it is interesting to notice that FN-high was a 92 years-old patient, staying out of both correctly classified distributions (TP and TN).

With regard to the "Clinic_hospitalizations_cost_total" variable (which refers to the total cost of past clinical hospitalizations), FP-low indeed pre-

²²This behavior does not necessarily occur with this analysis because the variables can be used on different occasions and several times in tree-based models.

Fold	Variable	median count [%]	[IQR]	Fold	Variable	median [[%]	IQR]	count
	ission_Type (Emergency)				Flag_Genetic (Yes)			
FN-h	igh	Scheduled			FN-high	No		
TP		23 [50%]		E.L. F	TP	2 [10.5%]		
Fold_1 TN		0 [0%]		Fold_5	TN	3 [2.1%]		
FP-le	wc	Scheduled			FP-low	No		
TP		24 [53%]		D 11 4	TP	3 [16.7%]		
Fold_3 TN		0 [0%]		Fold_4	TN	1 [0.6%]		
	ery_hospitalization_cost_total				Surgery_hospitalization_cost_total			
FN-h	igh	0			FN-high	20	63.36	
TP		11,861 [0-1	48,996]		TP	146,506	[0-811	,758]
Fold_1 TN		0 [0-2,	360]	Fold_5	TN	6,617	0-27,7	27]
FP-le	W	0			FP-low	20	3189	
TP		23,563 [0-	62,813]		TP	44,482 [2,	126-28	8,360
Fold_3 TN		0 [0-2,0	675]	Fold_4	TN	5,676	0-27,8	10
Clini	c_hospitalization_cost_total				Exam_total			-
FN-h	igh	0			FN-high		67	
TP		8,858 [0-6	55,534		TP	115 46-254	1]	
Fold_1 TN		0 [0-	0]	Fold_5	TN	43 [17-88]	-	
FP-le	W	1,38	0		FP-low		20	
TP		0 [0-29.	580		TP	100 30-226	5]	
Fold_3 TN		0 [0-	0]	Fold_4	TN	40 [9-110]		
Age				-	Age			
FN-h	igh	92			FN-high		65	
TP	<u> </u>	42 22	-64]		TP	48	34-67	
Fold_1 TN		53 44	-59]	Fold_5	TN	46	35-57	
FP-le	W	35			FP-low		38	
TP		53 40	-59]		TP	47 [34-58	
Fold_3 TN		51 [41-		Fold_4	TN		30-56	

Table 4.10: Predictors' characteristics for extreme misclassifications in both subgroups.

sented some of the characteristics of the TP observations since its value of 1,380 is in the TP range of [0 - 29,580] (comprising 75 % of the high-cost observations), while 75 % of the TN observations had no cost of past clinical hospitalizations (value = 0). Therefore, it makes sense for the model to classify FP-low as a high-cost hospitalization, even though this is not correct.

For subgroup 33, the analysis of the FN-high and FP-low cases is more inconclusive, since TP and TN distributions are quite similar for most variables. One reason that justifies the model prediction relates to the total cost of past surgical hospitalization ("Surgery_hospitalization_cost_total" variable) of FP-low, which is valued (203, 189), thus fitting in the TP distribution (with 75 % ranging in [2, 126 - 288, 360]), rather than on the TN distribution (with 75 % ranging in [0 - 27, 727]).

In summary, this analysis of individual cases provided some insights into the characteristics that differentiate the extreme misclassified observations. The FP-low cases seem to present characteristics of a high-cost hospitalization. A possible explanation is that it represents a residual hospitalization, since the method used to detect and eventually remove those hospitalizations was an approximation. This should be further investigated by the company domain experts and, for future model refinements, it is worth reviewing this aspect. In the case of FN-high, the issue seems to be not a confusion among classes, but rather behaviors that differed from both classes, therefore remaining as uncovered patterns. Further analysis should analyze those observations separately in order to understand their characteristics and even the high-cost definition.

4.2.5.3 Analyzing from an Economic Perspective

From a business perspective, it is interesting to analyze the results of the classification model from an economic point of view. In theory, the patients selected as having a risk of incurring unexpected high-costs would require dedicated attention in order to reduce the forecasted high expenses and, of course, improve the health care service and thus patient's health quality. In this context, a crucial analysis would be to assess the amount of cost reduction this proactive plan would potentially achieved, thus providing an economic evaluation of the model's performance. However, at the current phase of the project, it was not possible to address both the expected hospitalization cost reduction and the expenses caused by the proactive attention. Despite this, a naive proposal for a possible evaluation from an economic perspective was developed, and its implementation proposed as future works.

The objective is to measure the model's mistakes, not in number of patients, but considering costs. In terms of the cells of the Confusion Matrix, and having prior knowledge of the expected cost reduction (Cr) and the healthcare plan costs (Cp) for each subgroup, the following procedure was designed. Let A be the set of hospitalizations (i) for each "Admission Subgroup", then $\forall i \in A$:

If $X_i = TP$, then $C^i_{final} = C^i_{real} - C_r + C_p$; If $X_i = TN$, then $C^i_{final} = C^i_{real}$; If $X_i = FP$, then $C^i_{final} = C^i_{real} + C_p$; If $X_i = FN$, then $C^i_{final} = C^i_{real} + (C^i_{real} - C_r + C_p)$;

where X_i is the class predicted by the ML model for hospitalization *i*, and C_{final}^i the expected cost after the model is used for predictions and the proactive plan successfully carry out. Then, the overall cost reduction for a specific "Admission Subgroup" equals $\sum_i C_{final}^i$ and is compared with the total cost without applying the proactive plan $\sum_i C_{real}^i$. Note that if the predicted class is a FN the referred C_{final}^i is an analogy of the opportunity cost for not detecting a high-cost patient, represented by the term $(C_{real}^i - C_r + C_p)$.

In addition to the proposed analysis, it is possible to still provide an economic evaluation of the models' performance using the available information. Table 4.11 presents for both subgroups, the cost (average across the five folds) proportion for the correctly identified (TP-cost) high-cost hospitalization. In both cases, almost 80% of the total cost related to the high-cost hospitalizations were identified. In other words, from table 4.9 the best results for the subgroup 22 shows that the 72.4% (Sensitivity) of the high-cost admission were correctly predicted, which represents the 78.7% of the total cost of those hospitalizations. Then it is possible to argue that the ML model is predicting the majority of the positive class and the ones with the highest cost. The models' achievements and the conclusions reached from the economic perspective corroborates the accomplishment of the organization's expectations.

Table 4.11: Cost analysis of models' performance for "Admission Subgroups" numbers 22 and 33.

Admission	TP	total	TP + FN	\mathbf{TP}	\mathbf{FP}	total	TP + FP	FP
Subgroup	\mathbf{cost}		total cost	%	cost		total cost	%
22	2,756	5,476	3,504,420	78.7	533	,043	3,289,519	16.2
36	5,269	9,644	$6,\!622,\!624$	79.6	$1,\!35$	2,491	$6,\!622,\!624$	20.4

The last economic analysis closes the evaluation phase of the developed models, with significant results meeting the proposed business goals. The advances made in the labeling of the "Hospitalizations Cost Class" provide an improvement to the ML technique performance, and also allowed a better understanding of the problem and context of the study. It showed that the inherent characteristics of each hospitalization's group related to medical concerns are crucial when modeling cost and medical resource consumption variables. Also, the priority analysis demonstrated that there are subgroups in which cost values are naturally a few times bigger than others, but a small cost variability does not make them suitable for building a predictive model.

With the related scenario and the clear improvements obtained, the organization got involved in a project to create one more variable describing a level even more specific to group hospitalizations. This variable is specifically related to the medical procedure performed within the hospitalization, and it turns out that for the same "Admission Subgroup", there may be different procedures. As the construction of the variable is an ongoing project, this feature was not used in this thesis project. However, the organization provides a sample of this variable ("Admission Procedure" from now on) for one subgroup, in order to investigate whether the cost variability within it is significant, as was corroborated in the case of "Admission Group", see Figure 4.8. The following plot illustrates this analysis for the "Admission Subgroup" named "FARINGE" (pharynx).

The Graph illustrates a similar behavior when analyzing the subgroups in Section 4.2.2, showing a relevant cost variability among procedures of the same subgroup. Actually, with the high-cost definition at the subgroup level, for the second and the second to last (left to right) procedure, there are

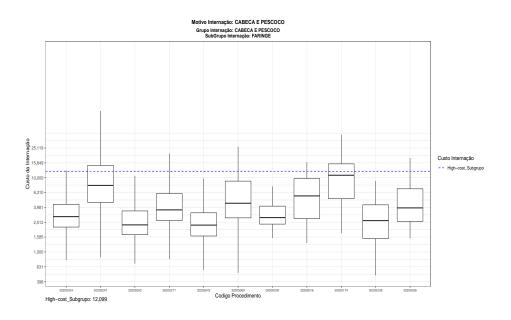


Figure 4.20: Cost distribution for each "Admission Procedure" within the *FARINGE* subgroup (only procedures with more than 10 hospitalizations are shown). The blue dashed line represents the high-cost boundary defined at subgroup level.

hospitalizations under the 75 percentile that were labeled as high-cost, which contradicts the actual definitions for detecting unexpected admissions. With this behavior, it is evident that further analyses are necessary even to consider a new labeling strategy or a data splitting criterion for predictive model building. As in the First cycle, these decisions imply the beginning of a new cycle, but this time would be part of the suggested future works, which also give continuity to the ongoing project with the organization.

5 Conclusions

This thesis proposed a solution to identify high-cost hospitalizations, which may integrate the proactive plan of a Health Consulting organization. The proposed approach was developed as a Data Science project and model cost variables as indicators of the patients' hospitalization risk, their severity, and their medical resources consumption. In this context, this study built predictive models using statistical and ML techniques to detect high-cost hospitalizations learned from a historical database of patient's admissions in the past 3 years, comprising also their records of medical resource consumption. Methodologically, the development of this research was guided by the integration of a Data Science Life cycle with the DSR methodology. Two cycles were conducted for the design and development of the predictive models.

During the First design cycle, important insights into the characteristics of the problem and the data were found. The response variable "Hospitalization Cost Class" was defined to label procedures with unexpectedly high expenses, considering the characteristics of the procedures performed during the in-hospital admission. Therefore, this definition should be done at a grouping level, in which the medical characteristics of all the procedures are similar. This high-cost definition prevented bias in selecting naturally expensive procedures as such. During the Second design cycle, the definition of a highcost hospitalization was improved, which led to enhanced predictive models. The final definition considered the "Admission Subgroup" variable as the finest granular level available in the dataset, and an outlier detection procedure was applied to label as high-cost hospitalizations all the unexpectedly high valued observations within each subgroup distribution.

On the other hand, predictors describing the medical resource consumption were aggregated summarizing their temporal behavior. The "aggregated" set of features reached similar results when compared to the "temporal" set, while also leading to less complex predictive models with improved interpretability. In addition, variables related to previous hospitalizations cost provided additional valuable information to predict future high-cost hospitalizations.

Regarding the performance of the predictive models, better results were

achieved when splitting the population into admission subgroups, ranked by their frequency and average cost. In summary, the Random Forest (RF) and the Extreme Gradient Boosting (XGB) techniques produced models with higher performance, reaching an AUCPR of 0.732 and 0.644 when assessed over a dataset with a 0.113 and 0.106 proportion of the high-cost class, respectively. This performance was achieved for "Admission Subgroups" "ENDOSCOPIA INTERVENCIONISTA" (Interventional Endoscopy) and "ACESSOS VASCU-LARES" (Vascular Accesses), respectively. The predictive models using RF detected 72,4% of the high-cost hospitalizations with a 33% of Precision, meeting the business expectations since the majority of the unexpected expenses were identified, even paying an acceptable cost for misclassifications. Moreover, in terms of the cost value, the correctly predicted high-cost hospitalizations represent 78.7% of all the real ones. In contrast, hospitalizations misclassified as high-cost.

Further analysis of the misclassifications made by the models evidenced the existence of False Positive observations in the lower extreme of the cost distribution, which may indicate residual hospitalizations. Also, identified False Negative observations in the upper extreme correspond to hospitalizations with characteristics that are very different from the existing patterns present in the learning dataset.

5.1 Suggestions for future works

This thesis was developed as part of a project with a Health Consulting company, and accomplished the First phase of the planned research. Hence, in the following, future works related to further improvement of the whole process are provided, which implementation requires that a new DSR cycle be initiated.

First, as concluded at the end of the Second cycle and with the new variable of "Admission Procedures" being collected by the organization, it would be possible and necessary to assess whether the definition of a high-cost hospitalization needs refinement. Furthermore, as residual hospitalizations cause possible misclassifications in the lower extreme of the cost distribution, the definition of those could be improved, searching for a minimum expected cost value for each type of procedure, and then using it as a threshold for filtering the lower observations.

Regarding the modeling phase, further improvement can be made. The resampling techniques used to overcome the class imbalance issue did not improve the performance of ML techniques, which highlights the ability of the predictive models in this scenario but also indicates that these techniques may not be the most appropriate in this context. A racing method should be conducted to select the most appropriate strategy for the given unbalanced task, as proposed by DalPozzolo et al. [99]. Moreover, the ML techniques employed can be further improved, expanding the search space of the hyperparameter tunning process. This may become time-consuming, requiring great computational resources. Hence, instead of using a grid or random search strategy, Kuhn [100] proposed a futility analysis during the CV procedure to reduce the training time by adaptively resampling candidate values and the clearly sub-optimal ones are discarded.

The economic analysis conducted to assess the predictive model performance in this context did not account for the missed high-cost hospitalizations (i.e., FN), which are of interest to the organization. The method proposed in section 4.2.5.3 could be implemented to address this issue. This procedure uses two values that were not available at the time of this project, the expected hospitalization cost reduction, and expenses caused by the proactive attention. However, its purpose is to assess the amount of cost reduced by the pretended proactive plan and also has an economic evaluation of the model's performance accounting for all hits and misclassifications.

Bibliography

- HEVNER, A. R., A Three Cycle View of Design Science Research A Three Cycle View of Design Science Research. Scandinavian Journal of Information Systems, 19(2):87–92, 2007.
- [2] SHEARER, C.. The CRISP-DM model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5(4):13-22, 2000.
- [3] BATARSEH, F. A.; LATIF, E. A.. Assessing the Quality of Service Using Big Data Analytics: With Application to Healthcare. Big Data Research, 4(October):13-24, 2016.
- [4] CARVALHO, J. V.; ROCHA, Á.; VASCONCELOS, J. ; ABREU, A.. A health data analytics maturity model for hospitals information systems. International Journal of Information Management, 46:278–285, 2019.
- [5] FOSSO WAMBA, S.; AKTER, S.; EDWARDS, A.; CHOPIN, G.; GNAN-ZOU, D.. How 'big data' can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165:234–246, 2015.
- [6] MANS, R. S.; VAN DER AALST, W. M. P. ; VANWERSCH, R. J. B.. Process Mining in Healthcare. SpringerBriefs in Business Process Management. Springer International Publishing, Cham, 2015.
- [7] GALETSI, P.; KATSALIAKI, K. ; KUMAR, S.. Big data analytics in health sector: Theoretical framework, techniques and prospects. International Journal of Information Management, 50:206–216, feb 2020.
- [8] PANICACCI, S.; DONATI, M.; FANUCCI, L.; BELLIN, I.; PROFILI, F. ; FRANCESCONI, P.. Population Health Management Exploiting Machine Learning Algorithms to Identify High-Risk Patients. In: 2018 IEEE 31ST INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), p. 298–303. IEEE, 2018.

- [9] KIM, Y. J.; PARK, H.. Improving Prediction of High-Cost Health Care Users with Medical Check-Up Data. Big Data, 7(3):163–175, sep 2019.
- [10] DUNCAN, I.; LOGINOV, M. ; LUDKOVSKI, M.. Testing Alternative Regression Frameworks for Predictive Modeling of Health Care Costs. North American Actuarial Journal, 20(1):65–87, jan 2016.
- [11] BERTSIMAS, D.; BJARNADÓTTIR, M. V.; KANE, M. A.; KRYDER, J. C.; PANDEY, R.; VEMPALA, S. ; WANG, G. Algorithmic Prediction of Health-Care Costs. Operations Research, 56(6):1382–1392, dec 2008.
- [12] CARROLL, A. E.. The High Costs of Unnecessary Care. JAMA, 318(18):1748–1749, nov 2017.
- [13] LYU, H.; XU, T.; BROTMAN, D.; MAYER-BLACKWELL, B.; COOPER,
 M.; DANIEL, M.; WICK, E. C.; SAINI, V.; BROWNLEE, S. ; MAKARY,
 M. A.. Overtreatment in the United States. PLOS ONE, 12(9), sep 2017.
- [14] GUO, X.; GANDY, W.; COBERLEY, C.; POPE, J.; RULA, E. ; WELLS, A.. Predicting Health Care Cost Transitions Using a Multidimensional Adaptive Prediction Process. Population Health Management, 18(4):290-299, aug 2015.
- [15] LAHIRI, B.; AGARWAL, N.. Predicting Healthcare Expenditure Increase for an Individual from Medicare Data. p. 8, 2014.
- [16] MORID, M. A.; KAWAMOTO, K.; AULT, T.; DORIUS, J. ; ABDELRAH-MAN, S.. Supervised Learning Methods for Predicting Healthcare Costs: Systematic Literature Review and Empirical Evaluation. AMIAnAnnual Symposium proceedings, 2017:1312–1321, 2017.
- [17] WAMMES, J. J. G.; VAN DER WEES, P. J.; TANKE, M. A. C.; WESTERT,
 G. P. ; JEURISSEN, P. P. T.. Systematic review of high-cost patients' characteristics and healthcare utilisation. BMJ Open, 8(9):e023113, sep 2018.
- [18] YANG, C.; DELCHER, C.; SHENKMAN, E.; RANKA, S.. Machine learning approaches for predicting high cost high need patient expenditures in health care. BioMedical Engineering OnLine, 17(S1):131, nov 2018.

- [19] SUSHMITA, S.; NEWMAN, S.; MARQUARDT, J.; RAM, P.; PRASAD, V.; COCK, M. D. ; TEREDESAI, A.. Population Cost Prediction on Public Healthcare Datasets. In: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DIGITAL HEALTH 2015 - DH '15, p. 87–94, New York, New York, USA, 2015. ACM Press.
- [20] KUO, R. N.; DONG, Y. H.; LIU, J. P.; CHANG, C. H.; SHAU, W. Y. ; LAI, M. S.. Predicting healthcare utilization using a pharmacybased metric with the WHO's anatomic therapeutic chemical algorithm. Medical Care, 49(11):1031–1039, 2011.
- [21] DUNCAN, I.; LOGINOV, M. ; LUDKOVSKI, M.. Testing Alternative Regression Frameworks for Predictive Modeling of Health Care Costs. North American Actuarial Journal, 20(1):65–87, jan 2016.
- [22] FREES, E. W.; JIN, X.; LIN, X.. Actuarial Applications of Multivariate Two-Part Regression Models. Annals of Actuarial Science, 7(2):258–287, 2013.
- [23] MORID, M. A.; SHENG, O. R. L.; KAWAMOTO, K.; AULT, T.; DORIUS, J. ; ABDELRAHMAN, S.. Healthcare cost prediction: Leveraging fine-grain temporal patterns. In: JOURNAL OF BIOMEDICAL IN-FORMATICS, volumen 91, p. 103113. mar 2019.
- [24] AMINIKHANGHAHI, S.; COOK, D. J. A survey of methods for time series change point detection. Knowledge and Information Systems, 51(2):339–367, may 2017.
- [25] TAMANG, S.; MILSTEIN, A.; SØRENSEN, H. T.; PEDERSEN, L.; MACKEY, L.; BETTERTON, J. R.; JANSON, L.; SHAH, N.. Predicting patient 'cost blooms' in Denmark: A longitudinal populationbased study. BMJ Open, 7(1), 2017.
- [26] CHANG, H. Y.; BOYD, C. M.; LEFF, B.; LEMKE, K. W.; BODYCOMBE,
 D. P. ; WEINER, J. P.. Identifying Consistent High-cost Users in a Health Plan: Comparison of Alternative Prediction Models. Medical Care, 54(9):852-859, sep 2016.
- [27] ROBST, J.. Developing Models to Predict Persistent High-Cost Cases in Florida Medicaid. Population Health Management, 18(6):467-476, dec 2015.

- [28] BOSCARDIN, C. K.; GONZALES, R.; BRADLEY, K. L. ; RAVEN, M. C.. Predicting cost of care using self-reported health status data. BMC Health Services Research, 15(1):406, sep 2015.
- [29] IZAD SHENAS, S. A.; RAAHEMI, B.; HOSSEIN TEKIEH, M.; KUZIEM-SKY, C.. Identifying high-cost patients using data mining techniques and a small set of non-trivial attributes. Computers in Biology and Medicine, 53:9–18, oct 2014.
- [30] FLEISHMAN, J. A.; COHEN, J. W. Using information on clinical conditions to predict high-cost patients. Health Services Research, 45(2):532–552, apr 2010.
- [31] COHEN, S. B.; EZZATI-RICE, T. ; YU, W.. The utility of extended longitudinal profiles in predicting future health care expenditures. Medical Care, 44(5 SUPPL.):145–53, may 2006.
- [32] CRAWFORD, A. G.; FUHR, J. P.; CLARKE, J. ; HUBBS, B.. Comparative effectiveness of total population versus disease-specific neural network models in predicting medical costs. Disease Management, 8(5):277-287, oct 2005.
- [33] DRESCH, A.; LACERDA, D. P. ; ANTUNES, J. A. V.. Design science research: A method for science and technology advancement. Springer International Publishing, jan 2015.
- [34] VAN AKEN, J. E.. Management Research Based on the Paradigm of the Design Sciences: The Quest for Field-Tested and Grounded Technological Rules. Journal of Management Studies, 41(2):219-246, feb 2004.
- [35] DENYER, D.; TRANFIELD, D.; VAN AKEN, J. E.. Developing design propositions through research synthesis. Organization Studies, 29(3):393-413, mar 2008.
- [36] CHALMERS, A. F. A. F. What is this thing called science? Hackett Pub, 1999.
- [37] HEVNER, A. R.; MARCH, S. T.; PARK, J. ; RAM, S.. Design science in information systems research. MIS Quarterly: Management Information Systems, 28(1):75–105, 2004.
- [38] FAYYAD, U.; PIATETSKY-SHAPIRO, G. ; SMYTH, P.. From data mining to knowledge discovery in databases. Al Magazine, 17(3):37–53, 1996.

- [39] SAS INSTITUTE INC. SAS Help Center: Introduction to SEMMA, 2019.
- [40] NISBET, R.; MINER, G.; YALE, K.. Handbook of statistical analysis and data mining applications. Elsevier Inc., nov 2018.
- [41] SHCHERBAKOV, M.; SHCHERBAKOVA, N.; BREBELS, A.; JANOVSKY, T. ; KAMAEV, V.. Lean Data Science Research Life Cycle: A Concept for Data Analysis Software Development. In: COMMU-NICATIONS IN COMPUTER AND INFORMATION SCIENCE, volumen 466 CCIS, p. 708–716. Springer Verlag, 2014.
- [42] SPEARMAN, C.. The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 15(1):72, jan 1904.
- [43] MUKAKA, M. M.. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3):69–71, 2012.
- [44] RICE, J. A.. Mathematical Statistics and Data Analysis, Third Edition. Belmont, CA: Duxbury Press, third edition, 2007.
- [45] CRAMÉR, H.. Mathematical methods of statitics. Princeton University Press, 1946.
- [46] ALLEN, M.. Cramér's V. In: THE SAGE ENCYCLOPEDIA OF COM-MUNICATION RESEARCH METHODS. SAGE Publications, Inc, jul 2017.
- [47] HAWKINS, D. M.; BASAK, S. C. ; MILLS, D.. Assessing model fit by cross-validation. In: JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, volumen 43, p. 579–586, 2003.
- [48] MOLINARO, A. M.; SIMON, R. ; PFEIFFER, R. M. Prediction error estimation: A comparison of resampling methods. Bioinformatics, 21(15):3301-3307, aug 2005.
- [49] KIM, J. H.. Estimating classification error rate: Repeated crossvalidation, repeated hold-out and bootstrap. Computational Statistics and Data Analysis, 53(11):3735–3745, sep 2009.
- [50] XU, Q. S.; LIANG, Y. Z. Monte Carlo cross validation. Chemometrics and Intelligent Laboratory Systems, 56(1):1–11, apr 2001.

- [51] EFRON, B.. Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the American Statistical Association, 78(382):316–331, 1983.
- [52] KUHN, M.; JOHNSON, K. Applied Predictive Modeling. Springer New York, New York, NY, 2013.
- [53] JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated, 2014.
- [54] TING, K. M.. An instance-weighting method to induce costsensitive trees. IEEE Transactions on Knowledge and Data Engineering, 14(3):659–665, may 2002.
- [55] WEISS, G. M.; PROVOST, F.. The Effect of Class Distribution on Classifier Learning. Training, 2001.
- [56] MCCARTHY, K.; ZABAR, B. ; WEISS, G. Does cost-sensitive learning beat sampling for classifying rare classes? In: PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON UTILITY-BASED DATA MINING, UBDM '05, p. 69–77, 2005.
- [57] CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O. ; KEGELMEYER, W. P.. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, jan 2002.
- [58] MENARDI, G.; TORELLI, N.. Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28(1):92–122, 2014.
- [59] TANTITHAMTHAVORN, C.; HASSAN, A. E. ; MATSUMOTO, K.. The Impact of Class Rebalancing Techniques on the Performance and Interpretation of Defect Prediction Models. IEEE Transactions on Software Engineering, 2018.
- [60] BUREZ, J.; VAN DEN POEL, D.. Handling class imbalance in customer churn prediction. Expert Systems with Applications, 36(3 PART 1):4626-4636, 2009.
- [61] JEATRAKUL, P.; WONG, K. W.; FUNG, C. C.. Classification of Imbalanced Data by Combining the Complementary Neural Network and SMOTE Algorithm. In: LECTURE NOTES IN COMPUTER SCI-ENCE, volumen 6444 LNCS, p. 152–159. 2010.

- [62] HASTIE, T.; TIBSHIRANI, R. ; FRIEDMAN, J.. The Elements of Statistical Learning, volumen 27 de Springer Series in Statistics. Springer New York, New York, NY, 2009.
- [63] DOBSON, A. J.; BARNETT, A. G.: An Introduction to Generalized Linear Models. SAGE Publications, Inc., 2455 Teller Road, Thousand Oaks California 91320 United States of America, fourth edition, 2018.
- [64] ROSSI, R. J.. Mathematical Statistics : An Introduction to Likelihood Based Inference. 2018.
- [65] ZOU, H.; HASTIE, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 67(2):301–320, 2005.
- [66] CESSIE, S. L.; HOUWELINGEN, J. C. V.. Ridge Estimators in Logistic Regression. Applied Statistics, 41(1):191, 1992.
- [67] TIBSHIRANI, R.. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267-288, 1996.
- [68] BREIMAN, L.; FRIEDMAN, J.; OLSHEN, R. ; STONE, C.. Classification and Regression Trees. Chapman and Hall/CRC, New York, NY, first edit edition, 1984.
- [69] STROBL, C.; MALLEY, J.; TUTZ, G.. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests. Psychological Methods, 14(4):323–348, dec 2009.
- [70] BREIMAN, L.: Bagging Predictors. Technical report, 1996.
- [71] BREIMAN, L. Random forests. Machine Learning, 45(1):5–32, 2001.
- [72] MARTÍNEZ MUÑOZ, G.; SUÁREZ, A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognition, 43(1):143–152, jan 2010.
- [73] JANITZA, S.; BINDER, H.; BOULESTEIX, A. L. Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical applications. Biometrical Journal, 58(3):447-473, may 2016.

- [74] PROBST, P.; BOULESTEIX, A. L.. To tune or not to tune the number of trees in random forest. Journal of Machine Learning Research, 18:1–8, 2018.
- [75] HOTHORN, T.; HORNIK, K. ; ZEILEIS, A.. Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3):651–674, 2006.
- [76] GEURTS, P.; ERNST, D. ; WEHENKEL, L. Extremely randomized trees. Machine Learning, 63(1):3–42, apr 2006.
- [77] PROBST, P.; WRIGHT, M. N. ; BOULESTEIX, A. L. Hyperparameters and tuning strategies for random forest, may 2019.
- [78] WITTEK, P. Boosting. In: QUANTUM MACHINE LEARNING, p. 89–95. Elsevier, 2014.
- [79] FREUND, Y.; SCHAPIRE, R. E.. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
- [80] FRIEDMAN, J. H.. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5):1189–1232, oct 2001.
- [81] CHEN, T.; GUESTRIN, C.. XGBoost: A scalable tree boosting system. In: PROCEEDINGS OF THE ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, volumen 13-17-Augu, p. 785–794. Association for Computing Machinery, aug 2016.
- [82] MCNEMAR, Q.. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153-157, jun 1947.
- [83] DIETTERICH, T. G. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10(7):1895–1923, oct 1998.
- [84] FERRI, C.; HERNÁNDEZ-ORALLO, J.; MODROIU, R. An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30(1):27–38, jan 2009.
- [85] KUBAT, M.; MATWIN, S.. Addressing the Curse of Imbalanced Training Sets: One Sided Selection. In: INTERNATIONAL CON-FERENCE ON MACHINE LEARNING, volumen 97, p. 179–186, 1997.

- [86] BAEZA YATES, R. A.; RIBEIRO NETO, B.. Modern Information Retrieval. ACM Press, New York, 1999.
- [87] CHICCO, D.; JURMAN, G.. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):6, jan 2020.
- [88] FAWCETT, T.. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.
- [89] DAVIS, J.; GOADRICH, M.. The relationship between precisionrecall and ROC curves. In: ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES, volumen 148, p. 233-240, 2006.
- [90] FERNÁNDEZ, A.; GARCÍA, S.; GALAR, M.; PRATI, R. C.; KRAWCZYK, B. ; HERRERA, F.. Learning from Imbalanced Data Sets. Springer International Publishing, 2018.
- [91] HANCZAR, B.; HUA, J.; SIMA, C.; WEINSTEIN, J.; BITTNER, M. ; DOUGHERTY, E. R.. Small-sample precision of ROC-related estimates. Bioinformatics, 26(6):822–830, mar 2010.
- [92] SAITO, T.; REHMSMEIER, M.. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE, 10(3), mar 2015.
- [93] MURPHY, K. P.. Machine Learning A Probabilistic Perspective. MIT Press Journals, London, 2012.
- [94] BRIER, G. W.. Verification Forecast Expressed in Terms of Probability. Monthly Weather Review, 78(1):1–3, jan 1950.
- [95] MULLARKEY, M. T.; HEVNER, A. R.; GRANDON GILL, T. ; DUTTA, K.. Citizen Data Scientist: A Design Science Research Method for the Conduct of Data Science Projects. In: LECTURE NOTES IN COMPUTER SCIENCE, volumen 11491 LNCS, p. 191–205. Springer Verlag, 2019.
- [96] BRAHMA, A.; CHATTERJEE, S. ; LI, Y.. Designing a Machine Learning Model to Predict Cardiovascular Disease Without Any Blood Test. In: LECTURE NOTES IN COMPUTER SCIENCE, volumen 11491 LNCS, p. 125–139. Springer Verlag, 2019.
- [97] NEWMAN, M. E.. Power laws, Pareto distributions and Zipf's law. Contemporary Physics, 46(5):323–351, sep 2005.

- [98] NEELON, B.; O'MALLEY, A. J.. Two-Part Models for Zero-Modified Count and Semicontinuous Data. In: HEALTH SERVICES EVALUA-TION, chapter 28, p. 695–716. Springer, New York, NY, 2019.
- [99] DAL POZZOLO, A.; CAELEN, O.; WATERSCHOOT, S.; BONTEMPI, G.. Racing for Unbalanced Methods Selection. In: LECTURE NOTES IN COMPUTER SCIENCE, volumen 8206 LNCS, p. 24–31. 2013.
- [100] KUHN, M.. Futility Analysis in the Cross-Validation of Machine Learning Models. may 2014.

A Dictionary of variables

Category	Name	Data type	Description
Patient Char-	Gender	binary (logi-	Number identifying the gender of a pa-
acteristics		cal)	tient [if 0: Female, if 1: Male]
Patient Char-	Age	number	Age in the hospitalization date
acteristics		(interger)	
Patient Hos-	Admission	character	Hospitalization Group according to
pitalization	Group	(varchar)	CBHPM *
Patient Hos-	Admission	character	Hospitalization Subgroup according to
pitalization	Subgroup	(varchar)	CBHPM *
Patient Hos-	Admission	binary (logi-	The way a patient was admitted [if 0:
pitalization	Type	cal)	Scheduled, if 1: Emergency]
Patient Hos-	Flag Surgery	binary (logi-	Whether a surgery was performed dur-
pitalization		cal)	ing the hospitalization [if 0: Clinical, if
			1: Surgery]
Patient Hos-	Hospitalization	number	Hospitalization total cost
pitalization	$\cos t$	(float)	
Patient Hos-	Hospitalization	binary (logi-	High-cost definition [if 0: low-cost, if
pitalization	cost class	cal)	1:high-cost]
Medical	Flag Genetic	binary (logi-	Existence of Cytogenetic or Molecular
Resource		cal)	Genetics examas (CBHPM) 3 years be-
Consumption			fore the hospitalization [if 0: No, if 1:
			Yes]
Medical	Exam	number	Number of exam claims (common and
Resource	semester6	(interger)	special) performed from the 30th to the
Consumption			36th month before hospitalization
Medical	Exam	number	Number of exam claims (common and
Resource	semester5	(interger)	special) performed from the 24th to the
Consumption			30th month before hospitalization
Medical	Exam	number	Number of exam claims (common and
Resource	semester4	(interger)	special) performed from the 18th to the
Consumption			24th month before hospitalization
Medical	Exam	number	Number of exam claims (common and
Resource	semester3	(interger)	special) performed from the 12th to the
Consumption			18th month before hospitalization
Medical	Exam	number	Number of exam claims (common and
Resource	semester2	(interger)	special) performed from the 6th to the
Consumption			12th month before hospitalization

Medical	Exam	number	Number of exam claims (common and
Resource	semester1	(interger)	special) performed from the 1st to the
Consumption Medical	Exam total	number	6th month before hospitalization Total number of exam claims (common
Resource	Exam total		· · · · · · · · · · · · · · · · · · ·
		(interger)	and special) 3 years before the hospi- talization
Consumption Medical	T	number	
Resource	Image		Number of imaging tests performed in the 3rd month before hospitalization
Consumption	month3	(interger)	the 3rd month before hospitalization
Medical	Image	number	Number of imaging tests performed in
Resource	month2		the 2nd month before hospitalization
	montil2	(interger)	the 2nd month before hospitalization
Consumption	T		Number of incoming to the second in
Medical	Image	number	Number of imaging tests performed in
Resource	month1	(interger)	the month of hospitalization
Consumption	T 4 4 1	,	
Medical	Image total	number	Total number of imaging exams per-
Resource		(interger)	formed 3 months before the intention
Consumption		1 /1 .	
Medical	Flag psycho	binary (logi-	Existence of claims from psychologi-
Resource	year3	cal)	cal consultations carried out in the 3rd
Consumption			year before hospitalization
Medical	Flag psycho	binary (logi-	Existence of claims from psychological
Resource	year2	cal)	consultations carried out in the 2nd
Consumption			year before hospitalization
Medical	Flag psycho	binary (logi-	Existence of claims from psychological
Resource	year1	cal)	consultations carried out in the 1st year
Consumption			before hospitalization
Medical	Flag psycho	binary (logi-	Existence of claims for psychological
Resource		cal)	consultations carried out in the 3rd
Consumption			year before hospitalization [if 0: No, if
			1: Yes]
Medical	Consult	number	Number of claims for elective consulta-
Resource	semester6	(interger)	tions carried out from the 30th to the
Consumption			36th month before hospitalization
Medical	Consult	number	Number of claims for elective consulta-
Resource	semester5	(interger)	tions carried out from the 24th to the
Consumption			30th month before hospitalization
Medical	Consult	number	Number of claims for elective consulta-
Resource	semester4	(interger)	tions carried out from the 18th to the
Consumption			24th month before hospitalization
Medical	Consult	number	Number of claims for elective consulta-
Resource	semester3	(interger)	tions carried out from the 12th to the
Consumption			18th month before hospitalization
Medical	Consult	number	Number of claims for elective consulta-
Resource	semester2	(interger)	tions carried out from the 6th to the
Consumption			12th month before hospitalization

Medical	Consult	number	Number of claims for elective consulta-
Resource	semester1	(interger)	tions carried out from the 1st to the 6th
Consumption			month before hospitalization
Medical	Consult total	number	Total number of elective consultation
Resource		(interger)	claims made 3 years before the hospi-
Consumption			talization
Medical	Emergency	number	Number of the hospitalizations to the
Resource	year3	(interger)	Emergency Room in the 3rd year before
Consumption		())	the hospitalization
Medical	Emergency	number	Number of the hospitalizations to the
Resource	year2	(interger)	Emergency Room in the 2nd year be-
Consumption			fore the hospitalization
Medical	Emergency	number	Number of the hospitalizations to the
Resource	year1	(interger)	Emergency Room in the 1st year before
Consumption			the hospitalization
Medical	Emergecy to-	number	Total number of Emergency Room en-
Resource	tal	(interger)	tries 3 years before the hospitalization
Consumption			
Medical	Hemodialysis	number	Number of hemodialysis performed in
Resource	year3	(interger)	the 3rd year before hospitalization
Consumption			
Medical	Hemodialysis	number	Number of hemodialysis performed in
Resource	year2	(interger)	the 2nd year before hospitalization
Consumption			
Medical	Hemodialysis	number	Number of hemodialysis performed in
Resource	year1	(interger)	the 1st year before hospitalization
Consumption			
Medical	Hemodialysis	number	Total number of hemodialysis per-
Resource	total	(interger)	formed 3 years before the hospitaliza-
Consumption			tion
Medical	Pulsotherapies	number	Number of pulse therapies performed in
Resource	year3	(interger)	the 3rd year before hospitalization
Consumption			
Medical	Pulsotherapies	number	Number of pulse therapies performed in
Resource	year2	(interger)	the 2nd year before hospitalization
Consumption			
Medical	Pulsotherapies	number	Number of pulse therapies performed in
Resource	year1	(interger)	the 1st year before hospitalization
Consumption			
Medical	Pulsotherapies	number	Total number of pulse therapies per-
Resource	total	(interger)	formed 3 years before hospitalization
Consumption			
Medical	Transplant	number	Total number of transplants performed
Resource	total	(interger)	before hospitalization
Consumption			

Medical	Cardiovascular	numbor	Cardiovascular Sentinel Counter per-
Resource	vear3		1
Consumption	years	(interger)	formed in the 3rd year before the hos-
Medical	Cardiovascular	numbor	pitalization
Resource			Cardiovascular Sentinel Counter per-
	year2	(interger)	formed in the 2nd year before the hos-
Consumption		1	pitalization
Medical	Cardiovascular		Cardiovascular Sentinel Counter per-
Resource	year1	(interger)	formed in the 1st year before the hos-
Consumption	<u> </u>	1. (1	pitalization
Medical	Cardiovascular	binary (logi-	Existence of Cardiovascular Sentinel
Resource	flag	cal)	performed up to 3rd year before hos-
Consumption			pitalization [if 0: No, if 1: Yes]
Medical	Diabetes	number	Diabetes Sentinel Counter performed in
Resource	year3	(interger)	the 3rd year before the hospitalization
Consumption			
Medical	Diabetes	number	Diabetes Sentinel Counter performed in
Resource	year2	(interger)	the 2nd year before the hospitalization
Consumption			
Medical	Diabetes	number	Diabetes Sentinel Counter performed in
Resource	year1	(interger)	the 1st year before the hospitalization
Consumption			
Medical	Diabetes flag	binary (logi-	Existence of Diabetes Sentinel per-
Resource		cal)	formed up to 3rd year before hospital-
Consumption			ization [if 0: No, if 1: Yes]
Medical	Musculoskeletal	number	Musculoskeletal Sentinel Counter per-
Resource	year3	(interger)	formed in the 3rd year before the hos-
Consumption			pitalization
Medical	Musculoskeletal	number	Musculoskeletal Sentinel Counter per-
Resource	year2	(interger)	formed in the 2nd year before the hos-
Consumption			pitalization
Medical	Musculoskeletal	number	Musculoskeletal Sentinel Counter per-
Resource	year1	(interger)	formed in the 1st year before the hos-
Consumption			pitalization
Medical	Musculoskeletal	binary (logi-	Existence of Musculoskeletal Sentinel
Resource	flag	cal)	performed up to 3rd year before hos-
Consumption			pitalization [if 0: No, if 1: Yes]
Medical	Neoplasm	number	Neoplasm Sentinel Counter performed
Resource	year3	(interger)	in the 3rd year before the hospitaliza-
Consumption		- ,	tion
Medical	Neoplasm	number	Neoplasm Sentinel Counter performed
Resource	year2	(interger)	in the 2nd year before the hospitaliza-
Consumption	~	,	tion
Medical	Neoplasm	number	Neoplasm Sentinel Counter performed
Resource	year1	(interger)	in the 1st year before the hospitaliza-
Consumption	v		tion

Medical	Neoplasm	binary (logi-	Existence of Neoplasm Sentinel per-
Resource	flag	cal)	formed up to 3rd year before hospital-
Consumption	-	,	ization [if 0: No, if 1: Yes]
Medical	Obstructive	number	Obstructive Sentinel Counter per-
Resource	year3	(interger)	formed in the 3rd year before the hos-
Consumption	•		pitalization
Medical	Obstructive	number	Obstructive Sentinel Counter per-
Resource	year2	(interger)	formed in the 2nd year before the hos-
Consumption		,	pitalization
Medical	Obstructive	number	Obstructive Sentinel Counter per-
Resource	year1	(interger)	formed in the 1st year before the hos-
Consumption			pitalization
Medical	Obstructive	binary (logi-	Existence of Obstructive Sentinel per-
Resource	flag	cal)	formed up to 3rd year before hospital-
Consumption	-	,	ization [if 0: No, if 1: Yes]
Medical	Physiotherapy	number	Number of Physiotherapy sessions per-
Resource	year3	(interger)	formed in the 3rd year before hospital-
Consumption	·		ization
Medical	Physiotherapy	number	Number of Physiotherapy sessions per-
Resource	year2	(interger)	formed in the 2nd year before hospital-
Consumption			ization
Medical	Physiotherapy	number	Number of Physiotherapy sessions per-
Resource	year1	(interger)	formed in the 1st year before hospital-
Consumption			ization
Medical	Physiotherapy	number	Total number of Physiotherapy sessions
Resource	total	(interger)	performed in the 3 years before the
Consumption			hospitalization
Medical	Surgery hos-	number	Number of surgical the hospitalizations
Resource	pitalization	(interger)	performed from the 30th to the 36th
Consumption	semester6		month before the hospitalization
Medical	Surgery hos-	number	Number of surgical the hospitalizations
Resource	pitalization	(interger)	performed from the 24th to the 30th
Consumption	semester5		month before the hospitalization
Medical	Surgery hos-	number	Number of surgical the hospitalizations
Resource	pitalization	(interger)	performed from the 18th to the 24th
Consumption	semester4		month before the hospitalization
Medical	Surgery hos-	number	Number of surgical the hospitalizations
Resource	pitalization	(interger)	performed from the 12th to the 18th
Consumption	semester3		month before the hospitalization
Medical	Surgery hos-	number	Number of surgical the hospitalizations
Resource	pitalization	(interger)	performed from the 6th to the 12th
Consumption	semester2		month before the hospitalization
Medical	Surgery hos-	number	Number of surgical the hospitalizations
Resource	pitalization	(interger)	performed from the 1st to the 6th

Medical	Surgery hos-	number	Sum of the number of surgical the hos-
Resource	pitalization	(interger)	pitalizations in the last 3 years before
Consumption	total		the hospitalization
Medical	Surgery	number	Cost of surgical the hospitalizations
Resource	hospitaliza-	(interger)	performed from the 30 th to the 36 th
Consumption	tion cost		month before the hospitalization
	semester6		
Medical	Surgery	number	Cost of surgical the hospitalizations
Resource	hospitaliza-	(interger)	performed from the 24th to the 30th
Consumption	tion cost		month before the hospitalization
	semester5		
Medical	Surgery	number	Cost of surgical the hospitalizations
Resource	hospitaliza-	(interger)	performed from the 18th to the 24th
Consumption	tion cost		month before the hospitalization
	semester4		
Medical	Surgery	number	Cost of surgical the hospitalizations
Resource	hospitaliza-	(interger)	performed from the 12th to the 18th
Consumption	tion cost		month before the hospitalization
	semester3		
Medical	Surgery	number	Cost of surgical the hospitalizations
Resource	hospitaliza-	(interger)	performed from the 6th to the 12th
Consumption	tion cost		month before the hospitalization
	semester2		
Medical	Surgery	number	Cost of surgical the hospitalizations
Resource	hospitaliza-	(interger)	performed from the 1st to the 6th
Consumption	tion cost		month before the hospitalization
	semester1		
Medical	Surgery hos-	number	Sum of the cost of surgical the hospi-
Resource	pitalization	(interger)	talizations in the last 3 years before the
Consumption	cost total		hospitalization
Medical	Clinic hos-	number	Number of clinical the hospitalization
Resource	pitalization	(interger)	performed from the 30th to the 36th
Consumption	semester6		month before the hospitalization
Medical	Clinic hos-	number	Number of clinical the hospitalization
Resource	pitalization	(interger)	performed from the 24th to the 30th
Consumption	semester5		month before the hospitalization
Medical	Clinic hos-	number	Number of clinical the hospitalization
Resource	pitalization	(interger)	performed from the 18th to the 24th
Consumption	semester4		month before the hospitalization
Medical	Clinic hos-	number	Number of clinical the hospitalization
Resource	pitalization	(interger)	performed from the 12th to the 18th
Consumption	semester3		month before the hospitalization
Medical	Clinic hos-	number	Number of clinical the hospitalization
Resource	pitalization	(interger)	performed from the 6th to the 12th
Consumption	semester2		month before the hospitalization

Medical	Clinic hos-	number	Number of clinical the hegritalization
Resource			Number of clinical the hospitalization
	pitalization	(interger)	performed from the 1st to the 6th
Consumption	semester1	1	month before the hospitalization
Medical	Clinic hospi-	number	Sum of the number of clinical hospital-
Resource	talization to-	(interger)	izations in the last 3 years before the
Consumption	tal		hospitalization
Medical	Clinic hos-	number	Cost of clinical the hospitalizations per-
Resource	pitaliza-	(interger)	formed from the 30th to the 36th month
Consumption	tion cost		before the hospitalization
	semester6		
Medical	Clinic hos-	number	Cost of clinical the hospitalizations per-
Resource	pitaliza-	(interger)	formed from the 24 th to the 30 th month
Consumption	tion cost		before the hospitalization
	semester5		
Medical	Clinic hos-	number	Cost of clinical the hospitalizations per-
Resource	pitaliza-	(interger)	formed from the 18th to the 24th month $$
Consumption	tion cost		before the hospitalization
	semester4		
Medical	Clinic hos-	number	Cost of clinical the hospitalizations per-
Resource	pitaliza-	(interger)	formed from the 12th to the 18th month
Consumption	tion cost		before the hospitalization
	semester3		
Medical	Clinic hos-	number	Cost of clinical the hospitalizations per-
Resource	pitaliza-	(interger)	formed from the 6th to the 12th month
Consumption	tion cost		before the hospitalization
	semester2		
Medical	Clinic hos-	number	Cost of clinical the hospitalizations per-
Resource	pitaliza-	(interger)	formed from the 1st to the 6th month
Consumption	tion cost		before the hospitalization
	semester1		
Medical	Clinic hos-	number	Sum of the cost of clinical hospitaliza-
Resource	pitalization	(interger)	tions in the last 3 years before the hos-
Consumption	cost total		pitalization
Medical	Day-Hospital	number	Number of Day-Hospital the hospital-
Resource	semestre6	(interger)	izations performed from the 30th to the
Consumption			36th month before the hospitalization
Medical	Day-Hospital	number	Number of Day-Hospital the hospital-
Resource	semestre5	(interger)	izations performed from the 24th to the
Consumption		、	30th month before the hospitalization
Medical	Day-Hospital	number	Number of Day-Hospital the hospital-
Resource	semestre4	(interger)	izations performed from the 18th to the
Consumption		(- 0 -)	24th month before the hospitalization
Medical	Day-Hospital	number	Number of Day-Hospital the hospital-
Resource	semestre3	(interger)	izations performed from the 12th to the
Consumption	5011050100	(18th month before the hospitalization

Medical	Day-Hospital	number	Number of Day-Hospital the hospital-
Resource	semestre2	(interger)	izations performed from the 6th to the
Consumption			12th month before the hospitalization
Medical	Day-Hospital	number	Number of Day-Hospital the hospital-
Resource	semestre1	(interger)	izations performed from the 1st to the
Consumption			6th month before the hospitalization
Medical	Day-Hospital	number	Sum of the number of Day-Hospital
Resource	total	(interger)	hospitalizations in the last 3 years be-
Consumption			fore the hospitalization
Medical	Day-	number	Cost of Day-Hospital the hospitaliza-
Resource	Hospital cost	(interger)	tions performed from the 30th to the
Consumption	semester6		36th month before the hospitalization
Medical	Day-	number	Cost of Day-Hospital the hospitaliza-
Resource	Hospital cost	(interger)	tions performed from the 24th to the
Consumption	semester5		30th month before the hospitalization
Medical	Day-	number	Cost of Day-Hospital the hospitaliza-
Resource	Hospital cost	(interger)	tions performed from the 18th to the
Consumption	semester4		24th month before the hospitalization
Medical	Day-	number	Cost of Day-Hospital the hospitaliza-
Resource	Hospital cost	(interger)	tions performed from the 12th to the
Consumption	semester3		18th month before the hospitalization
Medical	Day-	number	Cost of Day-Hospital the hospitaliza-
Resource	Hospital cost	(interger)	tions performed from the 6th to the
Consumption	semester2		12th month before the hospitalization
Medical	Day-	number	Cost of Day-Hospital the hospitaliza-
Resource	Hospital cost	(interger)	tions performed from the 1st to the 6th
Consumption	semester1		month before the hospitalization
Medical	Day-Hospital	number	Sum of the cost of Day-Hospital hospi-
Resource	cost total	(interger)	talizations in the last 3 years before the
Consumption			hospitalization
	m 11		

Table A.1: Dictionary of	of Variables.
--------------------------	---------------

B Correlation

Matrix

Table B.1: Spearman's rank correlation coefficient for numeric variables.

	_		~				$\sim r$					N .				~-					~ ~	· • •											~			~•	
E	and or t	Easen armenter 3	Ensen	Examination (Easter.	Eases armenter	Image month1	Integr month2	lenage month1	Consult	Consult semaniar?	Consult	Concedit armentary	Concell armenter 2	Concell armenter1	Tauregeau yeard	Taurgane	Lauregene venel	House diel	-Honord Lab	Meneral State	-Karlines	var2	Ter line	The later	Dislation year2	Dislates ymr1	Managalani yumr2	Maria and	your1	Statute and	Neugalanan year2	Neuplace year1	Obsirarii yeer3	-OLstrartie	-Obstraction	+Age
Econo :		0.52	9.33	0.27	3.20	0.16	6-97	6.07	6.91	6.76	0.54	0.20	6.29	6.22	6.16	0.41	0.20	0.65	0.65	0.54	0.65	0.33	0.18	0.12	0.42	0.32	0.14	0.24	0.11	0.04	0.05	0.01	0.02	0.06	0.04	0.04	0.12
	3		3.53	0.11	3.30	3.21	6.35	6.12	6.08	6.51	6.77	0.58	0.20	6.11	8.19	0.29	0.31	0.07	0.82	0.02	0.85	0.38	0.27	0.11	0.49	0.33	0.17	0.21	0.13	3.13	3.13	3.11	3.01	0.11	3.09	3.01	3.11
Eners 1	5	0.53		3.25	0.38	9.25	6.12	6.39	6-37	6.31	6.53	6.77	6.33	6.39	6.20	0.37	0.40	0.30	0.84	0.65	0.56	0.11	0.31	0.19	0.29	0.44	0.23	0.13	0.18	0.13	3.09	0.11	3.01	3.09	0.12	3.65	3.14
Enam 0.3		0.41	3.49		3.46	0.33	6.15	6.15	0.12	6.27	0.39	6.52	0.75	0.52	0.30	0.29	0.45	0.14	0.84	0.65	0.65	0.19	0.39	0.20	0.25	0.44	0.17	0.11	0.20	0.14	3.04	0.12	3.01	3.09	3.15	0.13	8.17
Energian 17		4.10	0.38	3.56		1.29	0.23	6.17	6.15	6.35	6.77	0.75	6.96	673	6.00	6.30	6.11	6.35	0.00	0.02	0.00	0.13	0.31	0.15	0.14	0.29	0.10	0.04	0.13	8.12	1.02	3.13	3.06	3.00	1.04	3.15	3.14
Eners 0.1		0.21	9.23	0.33	1.00		0.10	0.36	6.77	617	6.30	6.77	6.30	6.29	0.47	0.12	0.54	0.14	0.00	0.00	0.00	0.00	0.17	0.30	0.17	0.13	0.0	0.02	0.13	8.13	3.00	0.02	0.13	3.01	3.00	0.15	
		0.09	0.12	0.12		0.3D		0.21	0.12			0.12		0.24	0.74															0.14							
			9.14		0.25			0.21		613.1	eas.	0.14	0.16			0.05	0.14	0.22	0.04	-0.01	0.06	0.69	0.25	0.15	0.65	0.09	0.17	0.05	0.00		9.05	0.05	0.00	-0.64	0.05	0.11	1.04
menth2	-	0.12	0.09	0.15	0.17	0.36	6.21	*	6.16	6-07	6.39	6.10	6.14	6.17	6.33	9.17	9.17	0.36	4.42	0.00	0.65	0.65	0.85	0.36	0.06	0.19	0.15	6.62	0.65	8.11	0.06	0.06	0.06	0.05	0.00	0.08	0.04
Image 0.0 months	4	0.08	0.07	0.12	3.15	0.27	6.13	6.16		6-35	6.36	6-37	6.10	6.14	6.23	0.06	0.09	0.31	4.42	0.62	0.85	0.06	0.09	0.13	0.84	0.04	0.14	0.00	0.02	4.05	0.05	0.02	0.02	0.02	0.03	0.00	0.04
Convall 0.1		0.51	0.51	0.27	3.20	9.13	6.07	6.07	6-35		643	6.43	6.31	625	6.17	0.28	0.23	0.05	0.12	0.65	0.85	0.30	0.15	0.11	0.35	0.39	0.09	0.27	0.13	0.00	0.01	0.03	3.00	0.00	3.09	3.00	0.04
Conval 1.1		4.17	9.22	9.29	9.27	3.20	6-34	6.39	6.96	643		643	6.0	6.13	631	0.58	0.36	6.50	0.65	0.14	0.00	0.32	0.25	0.13	0.39	0.28	0.14	0.27	0.15	3.13	3.03	3.06	0.03	0.11	a.u	3.06	4.11
Concell 0.1	0	0.58	0.77	9.53	0.39	0.23	613	6.10	6.97	0.63	6.63		642	0.47	6.26	0.45	0.28	0.13	0.00	0.82	0.54	0.13	0.11	0.17	0.30	0.34	0.39	0.22	0.22	a.m	0.01	0.04	9.00	0.10	0.13	0.09	0.13
Canadi 0.1 armenter.1	•	0.10	4.53	0.78	4.50	4.30	6.16	6.14	6.10	6.31	6.65	6.62		6.63	6.35	0.36	0.54	0.25	4.42	0.62	0.54	0.17	0.35	0.20	0.22	0.34	0.34	0.14	0.25	0.14	4.61	4.09	9.66	0.04	4.14	0.13	0.12
		0.31	0.39	0.52	0.73	0.39	6.24	6.17	6.14	6.25	6.33	0.47	6.63		6.53	0.25	0.42	0.32	4.42	4.42	0.00	0.15	0.25	0.25	0.17	0.28	0.29	0.11	0.19	0.21	0.00	0.09	3.03	3.06	0.10	0.14	0.12
Canada 1.1	4	0.19	0.20	0.30	3.40	0.43	6.34	6.33	6.23	6.17	0.21	6.26	0.33	6.53		0.14	0.30	0.27	4.43	4.43	-6-94	0.87	0.13	0.22	0.09	0.14	0.27	0.09	0.14	0.21	0.02	0.06	0.03	0.04	0.06	0.14	0.09
Transie 1		0.15	9.37	0.29	3.20	0.12	6-97	6-97	6.56	0.24	6.58	0.45	0.36	6.25	0.14		0.41	0.30	0.82	0.84	0.50	0.37	0.30	0.11	0.15	0.17	0.13	0.13	0.13	1.04	0.03	4.65	3.65	1.04	0.13	1.04	0.03
nementari Energynaký yeari Energynaký yeari Energynaký yeari		0.31	3.00	3.56	0.31	3.16	6.12	6.07	6.39	6.23	0.36	0.05	0.58	0.42	0.20	0.44		0.37	4.02	0.82	0.82	0.14	0.26	0.11	0.11	0.14	0.13	0.11	0.13	3.11	3.03	3.01	-0.64	3.00	3.13	0.02	3.05
year2		0.07	3.10	0.18	1.10	0.08	0.22	0.16	6.24	6.00	0.10	6.13	6.75	6.12	0.27	6.30	6.17		4.02	0.00	0.02	0.07	0.11	0.94	0.07	0.04	0.54	0.00	0.02	2.11	100	3.00	1.00	0.02	1.01	2.00	0.10
		0.02	0.01	0.01	1.00	0.54	0.02	0.02	4.02	0.02	0.00	0.00	4.02	4.02	4.01	0.02	4.02			0.44	0.12	0.00	-631	0.51	0.00	6.01	431	0.00	0.00	401	3.00	0.00	0.00	0.00	3.00	0.01	0.00
year1		0.02	3.03	3.03	1.00	0.02	0.00	0.00	6.02	0.03	0.00	0.02	0.02	4.02	4.01	0.03	0.02	10.04	· 0.44	0.44	0.12	0.87	0.55	0.05	0.05	0.03	0.01	-6-31	-6-31	401	0.00	3.00	0.00	0.00		-0.01	0.00
year2			3.05	3.00	3.00		0.04	6.30	6.00	6.33	0.01					0.00		0.00			0.54	0.85	0.05		0.65		0.64				0.00		0.05	0.00	0.00		0.00
year1	a.	8.63				3.35			6-35		6.30	631	631	6.50	-0.01		0.02	0.01	0.12	0.48		0.65		0.13		6.09		-6-31	-631	3.00	3.00	-0.01	0.02	3.00	-0.81	-0.14	0.02
year2 Hennedddy year1 Cardionddi year1		0.58	0.21	3.19	9.13	0.08	6-32	6-33	6.36	6.30	6.31	6.23	6.17	613	6.97	0.37	0.11	0.02	0.85	0.17	0.65		0.32	0.11	0.40	0.17	0.13	0.04	0.04	3.62	0.13	3.04	3.62	3.15	3.04	3.05	8.11
Cardinesis year2	#	8.27	0.34	9.29	0.21	0.17	6.10	6-35	6-39	0.12	6.25	0.31	6.35	6.23	6.13	6.20	0.36	0.11	4.81	0.64	0.65	0.32		0.31	0.19	0.32	0.19	0.14	0.11	3.09	0.05	0.12	0.02	0.04	0.13	0.10	0.15
Cardinadel	2	0.14	0.19	0.20	0.25	0.30	0.18	0.16	6.13	0.11	6.13	6.17	6.20	6.23	0.22	0.11	0.14	0.36	0.04	0.65	0.13	0.14	0.31		0.15	0.18	0.31	0.06	0.08	0.09	0.03	0.01	0.09	0.03	0.06	0.18	0.25
Dishetest.t year2 Dishetest.t	3	0.49	0.29	0.23	0.18	0.12	6.03	6.06	0.04	0.33	0.39	0.30	0.22	6.17	0.09	0.23	0.13	0.82	0.05	0.65	0.04	0.40	0.29	0.15		0.33	0.23	0.15	0.08	0.06	0.03	0.05	0.00	0.10	0.00	0.02	0.15
Distantial		0.30	0.01	0.28	0.29	0.21	6.39	6.10	6.00	0.20	0.24	6.31	0.35	6.28	6.16	0.17	0.31	0.06	4.41	0.65	0.09	0.17	0.32	0.18	0.33		0.33	0.15	0.11	0.10	0.00	0.04	0.03	4.00	0.08	0.09	0.19
pear2		0.17	3.23	0.27	0.39	9.47	6.17	6.15	6.14	6-39	6.16	0.20	0.21	6.29	6.27	0.30	0.13	0.08	4.01	0.85	0.56	0.20	0.19	0.31	0.25	0.11		0.05	0.04	0.09	3.00	3.03	0.00	3.03	3.06	0.17	0.27
year1 Marrielaki	64.2	0.23	0.19	0.11	0.0×	9.97	6-03	6-32	6-30	6.27	6.27	6.22	6.14	6.11	6.99	0.29	0.11	0.65	0.00	4.41	-6-31	0.08	0.14	0.06	0.15	0.15	0.65		0.14	0.11	0.04	0.02	0.00	0.03	9.04	0.00	0.04
year1 Manual shi	64.al	0.13	0.18	3.20	0.13	3.16	6-97	6-35	6-32	6.16	6.13	6.23	6.25	6.19	6.14	0.13	0.15	0.47	0.00	4.41	-6-91	0.84	0.13	0.58	0.58	0.11	0.54	0.14		9.27	4.04	1.04	3.04	-0.44	0.10	4.65	0.11
year2 Manual ski	and a	3.16	3.16	2.14	0.12	0.13	0.14	0.11	6-35	6-97	6.10	0.11	0.16	6.21	0.21	0.06	0.11	0.11	4.01	4.01	0.00	0.62	0.09	0.09	0.06	0.11	0.59	0.11	9.27		0.02	3.03	3.65	3.02	3.02	3.06	0.14
year1		3.10	3.00	0.00	1.07	4.45	6.91		6.01	2.31	6.01	6.04	6.93	6.03	6.92				0.00	0.00	0.00		0.00					0.04	0.01	1.00		4.55		1.00	1.00	0.00	3.00
year1 Neuplandi year3 Neuplandi			0.11	0.12		1.07	6.03		5.07	0.01				0.00	2.52		0.00	0.00	0.00	0.00	2.21	0.00	0.12	0.00	0.00	0.01	0.03	0.03	0.04	1.00				3.00	-0.65	3.03	1.00
year2		0.01	3.01	3.01		0.13	6.07	1.00					2.27								0.17						0.64				9.00						
Neuplands: year1	~				1. m				6-32	6-32	6-33	6-32		633	6-33	0.14	-3.01	6.14	0.00	0.14	0.85	0.10	0.10	0.09	0.14	0.63	0.4%	0.05	0.01	0.00	9.17	9.35		-0.14	-0.14	3.02	3.06
Ohnizue idea year2		a.11	3.09	3.09	0.06	0.01	.0.02	6-31	6.92	6-02	6.11	0.10	0.08	6.06	631	0.08	0.65	4.05	0.00	0.00	0.00	0.15	0.54	0.65	0.20	0.05	0.63	0.03	-631	0.00	0.00	0.00	-0.14		am	0.55	3.06
Ohnizue ibe		0.09	0.12	3.15	0.04	4.65	6-51	6-32	6-33	6.55	6.13	6.13	6.14	6.10	6.54	0.13	0.13	0.54	0.00	0.00	-6-31	0.08	0.13	0.06	0.65	0.54	0.54	0.01	0.13	3.03	3.00	-0.01	-0.11	0.11	1	0.10	3.01
Obstruction year1		0.01	0.05	0.13	9.12	9.12	6.11	6.34	6-31	6-33	6.36	6.39	6.13	6.14	6.14	0.08	0.07	0.06	4.61	-0.01	-6-31	0.85	0.10	0.18	0.62	0.09	0.17	0.65	0.65	3.06	0.81	0.03	0.02	0.10	0.10	4	0.06
Age 0.1	3	0.11	3.16	0.17	3.14	3.19	6-3×	6-3×	6-31	6-3×	6.11	6.12	6.12	6.12	639	0.85	0.84	-0.10	0.84	0.82	0.87	0.11	0.15	0.25	0.15	0.19	0.37	0.04	0.11	0.14	3.66	3.06	3.06	3.06	3.01	3.06	1-

Table B.2:	Cramer's	correlation	coeficient	for	categorical	variables.

	Gender	Flag	Admissio		Flag	Flag	Flag	Admission
		Genetic	Туре	Surgery	psycho	psycho	psycho	Group
					year3	year2	year1	_
Gender	-	0.02	0.00	0.01	0.01	0.01	0.05	0.38
Flag Ge-	0.02	-	0.04	0.02	0.01	0.03	0.04	0.12
netic								
Admission	0.00	0.04	-	0.17	0.00	0.05	0.07	0.43
Type								
Flag	0.01	0.02	0.17	-	0.02	0.01	0.08	0.97
Surgery								
Flag psy-	0.01	0.01	0.00	0.02	-	0.29	0.15	0.11
cho year3								
Flag psy-	0.01	0.03	0.05	0.01	0.29	-	0.39	0.14
cho year2								
Flag psy-	0.05	0.04	0.07	0.08	0.15	0.39	-	0.29
cho year1								
Admission	0.38	0.12	0.43	0.97	0.11	0.14	0.29	-
Group								

С				
Learning	analysis	of	cycle	1

All the ML technique were implemented in the R programming language using, the "caret" package. Also, create table with package and the use. Table C.1 depicts the ML techniques used and their corresponding hyperparameters settings.

Table C.1: Machine Learning tech	Table C.1: Machine Learning techniques hyperparameters for cylce 1.						
Machine Learning technique	$Hyperparameters^*$	Value					
Dilar Democrier	Mixing Percentage	0					
Ridge Regression	Regularization Parameter	default					
LASSO Regression	Mixing Percentage	1					
LASSO Regression	Regularization Parameter	default					
CART	Complexity Parameter	default					

*Hyperparameters according to the "glmnet" and "rpart" packages of the R programming language

Figures C.1, C.2 and C.3 show the optimization of the hyperparameters during the CV procedure for RR, LASSO and CART, respectively.

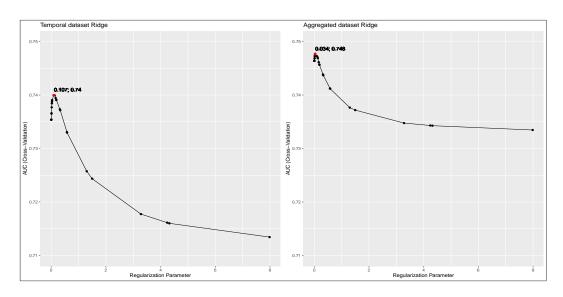


Figure C.1: Hyperparameter tuning for RR and both dataset "Temporal" and "Aggregated"

C.1

Variables Coefficient for RR and LASSO	/ariables	Coefficient	for	RR	and	LASSO
--	-----------	-------------	-----	----	-----	-------

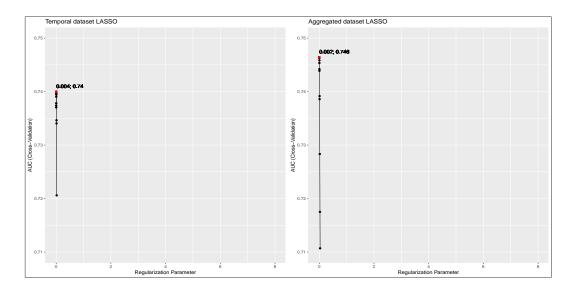


Figure C.2: Hyperparameter tuning for LASSO and both dataset "Temporal" and "Aggregated"

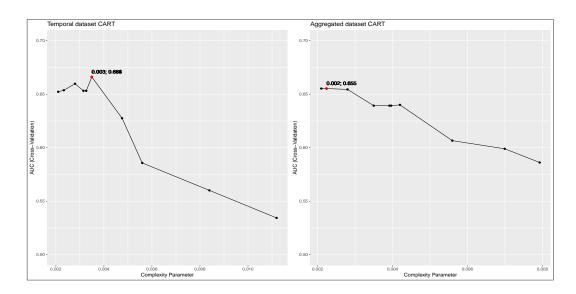


Figure C.3: Hyperparameter tuning for CART and both dataset "Temporal" and "Aggregated"

Variables	Coefficients
Intercept	2.36
Gender	-0.15
Admission Type	-0.06
Exam semester6	0.08
Exam semester5	-0.18
Exam semester4	-0.44
Exam semester3	-0.26
Exam semester2	-0.33
Exam semester1	-1.05
Image month3	-1.41
Image month2	-1.08
Image month1	-1.90
Flag psycho year3	0.26
Flag psycho year2	0.08
Flag psycho year1	-0.28
Consult semester6	-0.93
Consult semester5	0.20
Consult semester4	0.18
Consult semester3	0.06
Consult semester2	-0.17
Consult semester1	0.19
Emergency year3	0.24
Emergency year2	-0.06
Emergency year1	-0.39
Hemodialysis year3	-2.01
Hemodialysis year2	-1.41
Hemodialysis year1	0.35
Cardiovascular year3	0.29
Cardiovascular year2	-0.31
Cardiovascular year1	-4.42
Diabetes year3	-0.61
Diabetes year2	0.06
Diabetes year1	-1.85
Musculoskeletal year3	0.46
Musculoskeletal year2	0.69
Musculoskeletal year1	0.12
Neoplasm year3	1.14
Neoplasm year2	-0.93
Neoplasm year1	-1.46
Obstructive year3	-1.40
Obstructive year2	-1.02
Obstructive year1	-2.23
Age	-0.95
Admission Group CABECA E PESCOCO	-0.95

Table C.2: Variable coefficients, RR for "Temporal dataset"

Admission Group CLINICA GERAL	0.08
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-	0.47
CIONAIS	
Admission Group ENDOSCOPICOS	0.54
Admission Group EXAMES ESPECIFICOS	0.78
Admission Group HOSPITAL DIA	0.70
Admission Group MEDICINA LABORATORIAL	0.25
Admission Group MEDICINA NUCLEAR	0.68
Admission Group MEDICINA TRANSFUSIONAL	-1.13
Admission Group METODOS DIAGNOSTICOS POR IMAGEM	-0.03
Admission Group NARIZ E SEIOS PARANASAIS	-0.64
Admission Group OLHOS	0.76
Admission Group ORELHA	-0.19
Admission Group OUTRAS INTERNACOES	0.14
Admission Group OUTROS	0.61
Admission Group OUTROS PROCEDIMENTOS INVASIVOS	-0.11
Admission Group PAREDE TORACICA	-0.07
Admission Group PELE E TECIDO CELULAR SUBCUTANEO	0.22
ANEXOS	
Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-	-0.23
AIS	
Admission Group PROCEDIMENTOS CLINICOS HOSPITA-	-0.35
LARES	
Admission Group RESSONANCIA MAGNETICA	0.58
Admission Group SISTEMA CARDIO CIRCULATORIO	0.04
Admission Group SISTEMA DIGESTIVO E ANEXOS	-0.38
Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-	0.21
NINO	
Admission Group SISTEMA GENITAL E REPRODUTOR MAS-	0.67
CULINO	
Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-	-0.70
ULACOES	
Admission Group SISTEMA NERVOSO CENTRAL E PER-	-0.41
IFERICO	
Admission Group SISTEMA RESPIRATORIO E MEDIASTINO	-1.15
Admission Group SISTEMA URINARIO	-0.71
Admission Group TESTES PARA DIAGNOSTICOS	0.69
Admission Group TOMOGRAFIA COMPUTADORIZADA	-0.11
Admission Group TRATAMENTOS ESPECIAIS	0.78
Admission Group ULTRASSONOGRAFIA	0.31
Flag Surgery	-0.30

Table C.3: Variable coefficients, RR for "Aggregated dataset"

Variables	Coefficients
Intercept	2.65
Flag Genetic	-0.58

Cardiovascular flag	-0.32
Diabetes flag	-0.46
Musculoskeletal flag	-0.14
Neoplasm flag	-0.30
Obstructive flag	-0.71
Flag Surgery	-0.35
Exam total	-0.35
Consult total	0.72
Image total	-3.73
Emergecy total	-0.37
Hemodialysis total	-0.52
Age	-0.32
Admission Type	-0.12
Gender	-0.12
Admission Group CABECA E PESCOCO	-0.20
Admission Group CLINICA GERAL	0.07
	0.07
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN- CIONAIS	0.78
	0.77
Admission Group ENDOSCOPICOS Admission Group EXAMES ESPECIFICOS	1.30
Admission Group HOSPITAL DIA	
Admission Group MEDICINA LABORATORIAL	1.08
Admission Group MEDICINA LABORATORIAL Admission Group MEDICINA NUCLEAR	1.21
Admission Group MEDICINA TRANSFUSIONAL	-1.49
Admission Group MEDICINA TRANSFUSIONAL Admission Group METODOS DIAGNOSTICOS POR IMAGEM	-0.06
Admission Group NARIZ E SEIOS PARANASAIS	-0.84
Admission Group OLHOS	1.21
Admission Group ORELHA	-0.40
Admission Group OUTRAS INTERNACOES	0.13
Admission Group OUTROS	0.13
Admission Group OUTROS PROCEDIMENTOS INVASIVOS	
-	-0.18
Admission Group PAREDE TORACICA	-0.09
Admission Group PELE E TECIDO CELULAR SUBCUTANEO ANEXOS	0.34
Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-	-0.44
Admission Group FROCEDIMENTOS CLINICOS AMBOLATORI- AIS	-0.44
	-0.60
Admission Group PROCEDIMENTOS CLINICOS HOSPITA- LARES	-0.00
Admission Group RESSONANCIA MAGNETICA	0.86
Admission Group SISTEMA CARDIO CIRCULATORIO	0.04
Admission Group SISTEMA DIGESTIVO E ANEXOS	-0.49
Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-	0.23
NINO	1.08
Admission Group SISTEMA GENITAL E REPRODUTOR MAS- CULINO	1.08
	1

Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-	-0.91
ULACOES	
Admission Group SISTEMA NERVOSO CENTRAL E PER-	-0.54
IFERICO	
Admission Group SISTEMA RESPIRATORIO E MEDIASTINO	-1.42
Admission Group SISTEMA URINARIO	-0.90
Admission Group TESTES PARA DIAGNOSTICOS	1.12
Admission Group TOMOGRAFIA COMPUTADORIZADA	-0.14
Admission Group TRATAMENTOS ESPECIAIS	1.29
Admission Group ULTRASSONOGRAFIA	0.40

Table C.4: Variable coefficients, LASSO for "Temporal dataset"

Variables	Coefficients
Intercept	2.79
Gender	-0.17
Admission Type	-0.07
Exam semester6	0.00
Exam semester5	0.00
Exam semester4	-0.15
Exam semester3	0.00
Exam semester2	-0.21
Exam semester1	-1.16
Image month3	-1.47
Image month2	-0.90
Image month1	-2.40
Flag psycho year3	0.16
Flag psycho year2	0.00
Flag psycho year1	-0.47
Consult semester6	-0.92
Consult semester5	0.00
Consult semester4	0.00
Consult semester3	0.00
Consult semester2	0.00
Consult semester1	0.21
Emergency year3	0.00
Emergency year2	0.00
Emergency year1	-0.41
Hemodialysis year3	-2.12
Hemodialysis year2	-1.37
Hemodialysis year1	0.00
Cardiovascular year3	0.00
Cardiovascular year2	0.00
Cardiovascular year1	-7.30
Diabetes year3	-0.17
Diabetes year2	0.00

Diabetes year1	-2.21
Musculoskeletal year3	0.00
Musculoskeletal year2	0.70
Musculoskeletal year1	0.00
Neoplasm year3	0.06
Neoplasm year2	-0.04
Neoplasm year1	-1.81
Obstructive year3	-0.67
Obstructive year2	-0.38
Obstructive year1	-2.67
Age	-1.53
Admission Group CABECA E PESCOCO	-0.35
Admission Group CLINICA GERAL	0.00
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-	0.14
CIONAIS	
Admission Group ENDOSCOPICOS	0.69
Admission Group EXAMES ESPECIFICOS	0.79
Admission Group HOSPITAL DIA	1.47
Admission Group MEDICINA LABORATORIAL	0.14
Admission Group MEDICINA NUCLEAR	0.00
Admission Group MEDICINA TRANSFUSIONAL	-1.53
Admission Group METODOS DIAGNOSTICOS POR IMAGEM	0.00
Admission Group NARIZ E SEIOS PARANASAIS	-0.93
Admission Group OLHOS	1.32
Admission Group ORELHA	0.00
Admission Group OUTRAS INTERNACOES	0.00
Admission Group OUTROS	0.00
Admission Group OUTROS PROCEDIMENTOS INVASIVOS	-0.11
Admission Group PAREDE TORACICA	0.00
Admission Group PELE E TECIDO CELULAR SUBCUTANEO ANEXOS	0.04
Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-	-0.28
AIS Admission Group PROCEDIMENTOS CLINICOS HOSPITA- LARES	-0.59
Admission Group RESSONANCIA MAGNETICA	0.49
Admission Group SISTEMA CARDIO CIRCULATORIO	0.49
Admission Group SISTEMA CARDIO CIRCOLATORIO Admission Group SISTEMA DIGESTIVO E ANEXOS	-0.57
Admission Group SISTEMA DIGESTIVO E ANEXOS Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-	0.15
NINO	0.15
Admission Group SISTEMA GENITAL E REPRODUTOR MAS- CULINO	1.02
Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-	-1.04
ULACOES	
Admission Group SISTEMA NERVOSO CENTRAL E PER- IFERICO	-0.50

Admission Group SISTEMA RESPIRATORIO E MEDIASTINO	-1.51
Admission Group SISTEMA URINARIO	-1.00
Admission Group TESTES PARA DIAGNOSTICOS	0.00
Admission Group TOMOGRAFIA COMPUTADORIZADA	-0.19
Admission Group TRATAMENTOS ESPECIAIS	0.00
Admission Group ULTRASSONOGRAFIA	0.23
Flag Surgery	-0.39

Table C.5: Variable coefficients, LASSO for "Aggregated dataset" $\,$

Variables	Coefficients
Intercept	2.86
Flag Genetic	-0.64
Cardiovascular flag	-0.34
Diabetes flag	-0.53
Musculoskeletal flag	-0.08
Neoplasm flag	-0.25
Obstructive flag	-0.77
Flag Surgery	-0.34
Exam total	-0.73
Consult total	0.87
Image total	-4.33
Emergecy total	-0.41
Hemodialysis total	-0.51
Age	-1.40
Admission Type	-0.13
Gender	-0.22
Admission Group CABECA E PESCOCO	-0.47
Admission Group CLINICA GERAL	0.00
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-	0.73
CIONAIS	
Admission Group ENDOSCOPICOS	0.89
Admission Group EXAMES ESPECIFICOS	1.59
Admission Group HOSPITAL DIA	1.72
Admission Group MEDICINA LABORATORIAL	0.27
Admission Group MEDICINA NUCLEAR	0.41
Admission Group MEDICINA TRANSFUSIONAL	-1.69
Admission Group METODOS DIAGNOSTICOS POR IMAGEM	-0.06
Admission Group NARIZ E SEIOS PARANASAIS	-1.02
Admission Group OLHOS	1.59
Admission Group ORELHA	-0.42
Admission Group OUTRAS INTERNACOES	0.05
Admission Group OUTROS	0.00
Admission Group OUTROS PROCEDIMENTOS INVASIVOS	-0.23
Admission Group PAREDE TORACICA	-0.05

0.23
-0.54
-0.54
-0.74
0.89
0.00
-0.62
0.16
1.42
-1.11
-0.64
-1.61
-1.06
0.00
-0.17
0.19
0.37

C.2

Statistical	test	to	compare	predictive	models.
-------------	------	----	---------	------------	---------

A	B Statistic p- Correct IncorrectIncorrectCor				tCorrect		
		χ^2	value	A &	A &	A &	A &
				Cor-	Cor-	Incor-	Incor-
				rect	rect	rect	rect
				В	В	В	В
RR tem-	RR ag-	0.3	0.575	2,277	134	1,043	124
poral	gregated						
RR tem-	LASSO	2.1	0.146	2,315	67	1,110	86
poral	temporal						
RR tem-	LASSO	1.0	0.315	2,249	134	1,043	152
poral	aggre-						
	gated						
RR tem-	CART	0.3	0.587	1,919	500	677	482
poral	temporal						
RR tem-	CART	33.8	0.000	1,894	337	840	507
poral	aggre-						
	gated				1.2.1	1.000	1.0.0
RR ag-	LASSO	2.7	0.101	2,251	131	1,036	160
gregated	temporal	11.0	0.001	2.264	10	1.1.10	· -
RR ag-	LASSO	11.0	0.001	2,364	19	1,148	47
gregated	aggre-						
DD	gated	0.1	0.010	1.0.40	4 - 1	000	4.00
RR ag-	CART	0.1	0.819	1,948	471	696	463
gregated	temporal	20.0	0.000	1.000	220	0.90	500
RR ag-	CART	38.2	0.000	1,902	329	838	509
gregated	aggre-						
LASSO	gated LASSO	0.0	1.000	0.026	147	1.040	146
		0.0	1.000	2,236	147	1,049	140
temporal	aggre- gated						
LASSO	CART	1.3	0.251	1,908	511	685	474
temporal	temporal	1.0	0.201	1,900	511	000	474
LASSO	CART	27.3	0.000	1,894	337	859	488
temporal	aggre-	21.0	0.000	1,004	001	005	400
temporar	gated						
LASSO	CART	1.3	0.251	1,936	483	712	447
aggre-	temporal			1,000	100		
gated							
LASSO	CART	26.8	0.000	1,882	349	846	501
aggre-	aggre-			,			
gated	gated						
CART	CART	45.3	0.000	1,939	292	867	480
temporal	aggre-			,			
	gated						
L		1	I	1	L		

Table C.6: Mc Nemar's test to compare homogenity in the errors among ML techniques (first cycle).

D Detailed description of the data set by subgroups

Table D.1: "Admission Subgroup" number and correponding names,Total frequency, High-cost frequency and proportion.

Number	"Admission Subgroup" de-	Frequency	High-cost	High-cost
	scription		frequency	(%)
1	genital sistema genital e reprodu-	13,234	1,069	8.1
	tor feminino utero			
2	cardiovascular sistema cardio-	$11,\!591$	621	5.4
	circulatorio cirurgia venosa			
3	digestivo sistema digestivo e	10,823	649	6.0
	anexos figado e vias biliares			
4	outros outros procedimentos inva-	9,969	1,206	12.1
	sivos bloqueios anestesicos de ner-			
	vos e estimulos neurovasculares			
5	urinario sistema urinario ureter	9,750	397	4.1
6	digestivo sistema digestivo e	9,506	941	9.9
	anexos abdome, pare de e cavidade			
7	pele pele e tecido celular subcuta-	$7,\!157$	733	10.2
	neo / an exos procedimentos			
8	osteomuscular sistema musculo-	6,958	294	4.2
	esqueletico e articula-			
	$\cos procedimentos$ videoartro-			
	scopicos de joelho			
9	digestivo sistema digestivo e	5,954	647	10.9
	anexos intestinos			
10	cabeca e pescoco cabeca e	5,821	614	10.5
	pescoco faringe			
11	digestivo sistema digestivo e	5,037	173	3.4
	anexos estomago			
12	cabeca e pescoco olhos cristalino	4,936	310	6.3
13	osteomuscular sistema musculo-	4,346	184	4.2
	esqueletico e articulacoes coluna			
	vertebral			
14	urinario sistema urinario bexiga	4,308	463	10.7
15	cabeca e pescoco nariz e seios	4,014	378	9.4
	paranasais nariz			

1.0		2 01 4		
16	sistema nervoso sistema nervoso -	3,814	360	9.4
	central e periferico nervos periferi-			
	cos	2.622	200	10 -
17	mamas parede toracica mamas	3,623	380	10.5
18	genital sistema genital e reprodu-	3,526	323	9.2
	tor masculino penis			
19	digestivo sistema digestivo e	3,236	237	7.3
	anexos anus			
20	osteomuscular sistema musculo-	$3,\!183$	127	4.0
	esqueletico e articula-			
	coes procedimentos videoartro-			
	scopicos de ombro			
21	cabeca e pescoco nariz e seios	$3,\!171$	245	7.7
	paranasais seios paranasais			
22	digestivo endoscopicos endoscopia	2,803	312	11.1
	intervencionista			
23	osteomuscular sistema musculo-	2,264	236	10.4
	esqueletico e articulacoes tendoes,			
	bursas e sinovias			
24	genital sistema genital e reprodu-	1,698	137	8.1
	tor masculino testiculo			
25	osteomuscular sistema musculo-	1,638	62	3.8
	esqueletico e articulacoes joelho			
26	osteomuscular sistema musculo-	1,562	272	17.4
	esqueletico e articula-	,		
	coes aparelhos gessados			
27	cardiovascular sistema cardio-	1,501	86	5.7
	circulatorio hemodinamica -			
	cardiologia intervencionista (pro-			
	cedimentos terapeuticos)			
28	genital sistema genital e reprodu-	1,457	87	6.0
	tor masculino cordao espermatico	,		
29	osteomuscular sistema musculo-	1,450	110	7.6
	esqueletico e articulacoes pe)		
30	cardiovascular sistema cardio-	1,364	110	8.1
	circulatorio hemodinamica -	_,		0.1
	cardiologia intervencionista (pro-			
	cedimentos diagnosticos)			
31	cabeca e pescoco cabeca e	1,281	62	4.8
01	pescoco tireoide	1,201	02	1.0
32	osteomuscular sistema musculo-	1,271	107	8.4
52	esqueletico e articulacoes mao	±,211	101	.
33	cardiovascular sistema cardio-	1,244	132	10.6
55	circulatorio acessos vasculares	1,244	102	10.0
34		1 179	116	0.0
94		1,172	110	9.9
	anexos esofago			

35	cabeca e pescoco $ olhos $ cornea	1,143	112	9.8
36	genital sistema genital e reprodu-	1,124	61	5.4
	tor feminino ovarios			
37	genital sistema genital e reprodu-	1,098	66	6.0
	tor feminino cavidade e paredes			
	pelvicas			
38	cabeca e pescoco orelha orelha me-	$1,\!097$	118	10.8
	dia			
39	osteomuscular sistema musculo-	1,025	71	6.9
	esqueletico e articula-			
	coes tornozelo			
40	urinario sistema urinario rim,	1,003	64	6.4
	bacinete e supra-renal			
41	sistema nervoso sistema nervoso -	984	58	5.9
	central e periferico encefalo			
42	cabeca e pescoco cabeca e	969	57	5.9
	pescoco cirurgia reparadora e			
	funcional da face			
43	osteomuscular sistema musculo-	963	79	8.2
	esqueletico e articula coes retirada			
	de material de sintese			
44	genital sistema genital e reprodu-	928	49	5.3
	tor feminino tubas			
45	genital sistema genital e reprodu-	839	58	6.9
	tor masculino prostata e vesiculas			
	seminais			
46	osteomuscular sistema musculo-	838	45	5.4
	esqueletico e articula-			
	$\cos articulacao \cos-femoral$			
47	osteomuscular sistema musculo-	800	47	5.9
	esqueletico e articula-			
	coes antebraco			

E				
Learning	analysis	of	cycle	2

Table E.1: N	Machine L	earning techniques hyperpa	rameters for cylce 2.
Machine	Caret	Hyperparameters	Value
Learning	\mathbf{method}	l	
technique			
Ridge Regres-	"glmnet"	Mixing Percentage	1
sion			
	-	Regularization Parameter	default
LASSO	"glmnet"	Mixing Percentage	0
Regression			
	-	Regularization Parameter	default
CART	"rpart"	Complexity Parameter	default
Random For- est (random search)	"ranger"	Number of Tree	500, 1000
	-	Number of candi-	Sample with replacement [1
		date variables at	- total_variables]
		each split	
	-	Node split criterion	Sample with replacement
			["gini_index", "extra_tree"]
	-	Minimum size of ter-	Sample with replacement [1
		minal nodes	- $\min(20, \text{ total_rows})]$
Extreme	"xgbTree	^e Maximum depth of a	[1 - 5]
Gradient		tree (max_depth)	
Boosting			
(grid search)			
	-	the number of deci-	[50, 150, 250, 350,
		sion trees (nrounds)	450]
	-	Learning rate (eta)	[0.3, 0.4]
	-	Minimum loss reduc-	0 (default)
		tion to split node	
		(gamma)	
	-	Subsample ratio of	0.6 (default)
		columns (colsam-	
		ple_bytree	
	-	Minimum sum of	1 (default)
		instance weight to	
		split node	
	-	Subsample ratio of	[0.5, 0.8, 1]
		instances	

Table E.1:	Machine	Learning techniques l	hyperparameters	for cylce 2.
Anchino	Carot	Hyporparamo	tors	Value

•										Ē				
Admissino Subgroup	Imbalance technique	ML tech- nique	ML pa- rameter	AUKOC	AUCPR	Optimum TP thresh- old		Z	Z	Ч 2	TNR	Лdd	ЯЧТ	
22	none	ridge		0.817	0.677	0.108 4	49 151	13	348	0.550	0.792	0.248	0.698	0.964
22	dn	ridge		0.817	0.671	0.487 4	49 140	13	358	0.561	0.788	0.261	0.719	0.964
22	down	ridge	1	0.809	0.665	0.488 4	48 142	15	356	0.545	0.766	0.253	0.715	0.961
22	smote	ridge		0.783	0.647	0.414 4	40 88	23	410	0.526	0.635	0.312	0.823	0.947
22	rose	ridge		0.196	0.424	0.363 6	62 498	0	0	0.384	0.997	0.111	0.000	0.500
22	none	lasso	1	0.799	0.678	0.087 4	41 90	21	408	0.543	0.660	0.318	0.819	0.951
22	dn	lasso	1	0.802	0.676	0.404 4	47 140	16	359	0.537	0.750	0.252	0.720	0.958
22	down	lasso	1	0.798	0.675	0.405 4	47 144	16	355	0.535	0.750	0.250	0.712	0.958
22	smote	lasso	1	0.787	0.655	0.370 4	41 105	21	393	0.522	0.660	0.283	0.789	0.949
22	rose	lasso	1	0.217	0.424	0.091 6	62 498	0	0	0.384	0.997	0.111	0.000	0.000
22	none	random	500	0.848	0.732	0.159 4	45 92	17	406	0.585	0.724	0.330	0.815	0.959
		forest												
22	dn	random	500	0.847	0.715	0.383 4	45 89	17	410	0.590	0.724	0.339	0.822	0.960
		forest												
22	down	random	500	0.834	0.697	0.519 4	47 107	, 16	392	0.585	0.750	0.310	0.786	0.962
		forest												
22	smote	random	500	0.833	0.685	0.337 4	44 91	19	407	0.572	0.702	0.328	0.817	0.956
		forest												
22	rose	random	500	0.817	0.694	0.528 3	38 84	25	414	0.544	0.606	0.387	0.831	0.947
		forest												

Table E.2: Performance results for all scenarios tested in "Asmission Subgroup^{*} 22 and 33.

PUC-Rio - Certificação Digital Nº 1813286/CA

Appendix E. Learning analysis of cycle 2

1813286/CA
Digital Nº
 Certificação D
PUC-Rio -

22	none	${ m xgbTree}$	-	0.846	0.722	0.116	44	86	18	413	0.587	0.708	0.348	0.828	0.958
22	dn	xgbTree	I	0.837	0.723	0.436	46	104	16	394	0.576	0.737	0.307	0.791	0.960
22	down	xgbTree	1	0.833	0.712	0.506	46	109	16	389	0.568	0.737	0.296	0.781	0.960
22	smote	xgbTree	1	0.832	0.715	0.170	48	117	14	381	0.579	0.769	0.291	0.765	0.964
22	rose	xgbTree	1	0.816	0.692	0.945	48	284	14	215	0.563	0.771	0.271	0.431	0.870
22	none	rpart	information	0.774	0.643	0.098	37	65	25	433	0.532	0.600	0.367	0.870	0.946
22	dn	rpart	gini	0.784	0.619	0.643	42	62	20	419	0.570	0.676	0.350	0.842	0.954
22	down	rpart	gini	0.789	0.516	0.700	41	95	22	403	0.536	0.654	0.312	0.809	0.949
22	smote	rpart	information	0.764	0.599	0.182	37	27	25	421	0.510	0.593	0.326	0.846	0.943
22	rose	rpart	information	0.547	0.049	0.833	55	404	×	94	0.497	0.879	0.181	0.188	0.925
33	none	ridge	1	0.697	0.605	0.095	19	100	4	122	0.422	0.719	0.159	0.549	0.943
33	dn	ridge	1	0.693	0.604	0.468	19	100	×	123	0.415	0.704	0.157	0.551	0.941
33	down	ridge	1	0.703	0.607	0.436	20	100	7	123	0.440	0.750	0.165	0.551	0.950
33	smote	ridge	1	0.688	0.598	0.370	17	72	10	150	0.431	0.636	0.189	0.674	0.940
33	\mathbf{rose}	ridge	I	0.314	0.447	0.434	26	222	0	0	0.370	0.992	0.105	0.000	0.000
33	none	lasso	1	0.715	0.605	0.082	20	102	9	120	0.448	0.772	0.167	0.540	0.952
33	dn	lasso	1	0.720	0.613	0.429	20	97	7	125	0.446	0.750	0.170	0.564	0.951
33	down	lasso	1	0.704	0.606	0.433	19	88	4	134	0.447	0.720	0.178	0.603	0.948
33	smote	lasso	1	0.688	0.594	0.326	18	87	6	136	0.424	0.673	0.171	0.610	0.941
33	\mathbf{rose}	lasso	1	0.357	0.452	0.261	26	222	0	0	0.370	0.992	0.105	0.001	0.500
33	none	random	500	0.747	0.637	0.183	15	38	12	185	0.464	0.552	0.283	0.831	0.940
		forest													
33	dn	random	500	0.764	0.634	0.358	20	79	2	143	0.486	0.751	0.202	0.644	0.956
		forest													
33	down	random	500	0.753	0.623	0.471	19	27	4	145	0.480	0.733	0.202	0.653	0.955
		forest													

1813286/CA
å
Digital
Certificação
PUC-Rio -

33	smote	random	500	0.754	0.645	0.310	17	53	10	170	0.483	0.636	0.246	0.763	0.947
		forest													
33	rose	random	500	0.684	0.606	0.344	24	166	2	57	0.415	0.916	0.130	0.254	0.970
		forest													
33	none	xgbTree	1	0.727	0.640	0.089	17	09	6	163	0.478	0.660	0.228	0.732	0.948
33	dn	xgbTree	I	0.733	0.638	0.416	17	58	10	164	0.466	0.636	0.225	0.737	0.945
33	down	xgbTree	1	0.732	0.623	0.507	18	22	×	146	0.449	0.681	0.190	0.655	0.946
33	smote	xgbTree	1	0.757	0.644	0.197	18	63	×	159	0.494	0.697	0.228	0.717	0.952
33	rose	xgbTree	1	0.691	0.600	0.001	17	89	10	133	0.432	0.632	0.191	0.599	0.935
33	none	rpart	information	0.631	0.520	0.067	13	48	14	174	0.384	0.477	0.216	0.784	0.927
33	dn	rpart	gini	0.740	0.566	0.270	19	83	4	139	0.469	0.733	0.192	0.627	0.954
33	down	rpart	information 0.682	0.682	0.449	0.286	20	105	9	118	0.450	0.765	0.170	0.529	0.953
33	smote	rpart	information	0.696	0.550	0.196	15	58	11	164	0.424	0.566	0.212	0.739	0.936
33	rose	rpart	gini	0.602	0.344	0.000	26	222	0	0	0.370	0.993	0.105	0.001	0.500

Admission	Α	В	Statistic	p-	Correct	Incorrec	t Incorrec	t Correct
Sub-			χ^2	value	A &	A &	A &	A &
group					Cor-	Cor-	Incor-	Incor-
					rect	rect	rect	rect
					В	В	В	В
22	RR none	RR up	12.7	0.0004	1,912	124	694	73
22	RR none	${ m RR}~{ m down}$	4.8	0.0287	1,875	146	672	110
22	RR none	RR smote	139.6	0.0000	1,872	375	443	113
22	RR none	RR rose	1548.8	0.0000	246	66	752	1,739
22	RR none	LASSO none	183.1	0.0000	1,930	317	501	55
22	RR none	LASSO up	4.7	0.0302	1,827	200	618	158
22	RR none	LASSO down	1.3	0.2603	1,822	185	633	163
22	RR none	LASSO smote	76.7	0.0000	1,853	319	499	132
22	RR none	LASSO rose	1551.5	0.0000	246	65	753	1,739
22	RR none	RF none	150.8	0.0000	1,880	375	443	105
22	RR none	RF up	138.9	0.0000	1,831	443	375	154
22	RR none	RF down	93.7	0.0000	1,862	330	488	123
22	RR none	RF smote	145.7	0.0000	1,873	381	437	112
22	RR none	RF rose	129.4	0.0000	1,834	425	393	151
22	RR none	XGB none	166.0	0.0000	1,867	417	401	118
22	RR none	XGB up	81.3	0.0000	1,811	389	429	174
22	RR none	XGB down	59.7	0.0000	1,781	394	424	204
22	RR none	XGB smote	40.3	0.0000	1,748	398	420	237
22	RR none	XGB rose	397.7	0.0000	1,083	230	588	902
22	RR none	CART none	211.8	0.0000	1,851	502	316	134
22	RR none	CART up	182.9	0.0000	1,863	445	373	122
22	RR none	CART down	86.5	0.0000	1,786	434	384	199
22	RR none	CART smote	140.4	0.0000	1,805	487	331	180

Table E.3: Mc Nemar's test to compare homogenity in the errors among ML techniques (second cycle).

22	RR none	CART	982.2	0.0000	580	163	655	1,405
		rose		0.0501	1.010	100		101
22	RR up	RR down	0.8	0.3591	1,912	109	658	124
22	RR up	RR smote	96.5	0.0000	1,913	334	433	123
22	RR up	RR rose	1597.8	0.0000	245	67	700	1,791
22	RR up	LASSO	117.0	0.0000	1,953	294	473	83
		none			,			
22	RR up	LASSO	0.2	0.6611	1,865	162	605	171
		up						
22	RR up	LASSO	2.4	0.1181	1,861	146	621	175
	1	down			,			
22	RR up	LASSO	43.2	0.0000	1,893	279	488	143
		smote						
22	RR up	LASSO	1600.5	0.0000	245	66	701	1,791
	Ture up	rose	1000.0	0.0000	210		101	1,101
22	RR up	RF none	102.6	0.0000	1,914	341	426	122
22	RR up	RF up	102.0	0.0000	1,886	388	379	150
22	RR up	RF down	54.4	0.0000	1,893	299	468	143
22	-	RF	96.5		, , , , , , , , , , , , , , , , , , , ,			
22	RR up	smote	90.5	0.0000	1,901	353	414	135
22	RR up	RF rose	87.5	0.0000	1,866	393	374	170
22	RR up	XGB none	123.5	0.0000	1,913	371	396	123
22	RR up	XGB up	52.3	0.0000	1,864	336	431	172
22	RR up	XGB	34.6	0.0000	1,830	345	422	206
		down			,			
22	RR up	XGB	19.9	0.0000	1,793	353	414	243
		smote						
22	RR up	XGB	463.4	0.0000	1,112	201	566	924
		rose						
22	RR up	CART	167.8	0.0000	1,897	456	311	139
		none						
22	RR up	CART	136.5	0.0000	1,903	405	362	133
	1	up						
22	RR up	CART	57.0	0.0000	1,834	386	381	202
	Tore up	down	0110		1,001	000	001	-0-
22	RR up	CART	100.3	0.0000	1,840	452	315	196
	Tere up	smote	100.0	0.0000	1,010	102	010	100
22	RR up	CART	1045.2	0.0000	591	152	615	1,445
	lineap	rose	1010.2			102	010	1,110
22	RR down	RR	109.6	0.0000	1,903	344	438	118
	100 down	smote			1,000	5.1	100	110
22	RR down	RR rose	1571.0	0.0000	238	74	708	1,783
22	RR down	LASSO	121.7	0.0000	1,926	321	461	95
	1010 GOWII	none	141.1		1,020	521	101	30
		none						

22	RR down	LASSO up	0.1	0.8120	1,803	224	558	218
22	RR down	LASSO down	0.6	0.4254	1,881	126	656	140
22	RR down	LASSO smote	47.6	0.0000	1,860	312	470	161
22	RR down	LASSO rose	1573.6	0.0000	238	73	709	1,783
22	RR down	RF none	119.1	0.0000	1,910	345	437	111
22	RR down	RF up	117.4	0.0000	1,877	397	385	144
22	RR down	RF down	64.9	0.0000	1,884	308	474	137
22	RR down	RF smote	109.2	0.0000	1,891	363	419	130
22	RR down	RF rose	101.4	0.0000	1,863	396	386	158
22	RR down	XGB none	135.4	0.0000	1,899	385	397	122
22	RR down	XGB up	59.9	0.0000	1,846	354	428	175
22	RR down	XGB down	42.4	0.0000	1,822	353	429	199
22	RR down	XGB smote	26.6	0.0000	1,794	352	430	227
22	RR down	XGB rose	423.6	0.0000	1,077	236	546	944
22	RR down	CART none	188.2	0.0000	1,896	457	325	125
22	RR down	CART up	153.5	0.0000	1,898	410	372	123
22	RR down	CART down	63.3	0.0000	1,811	409	373	210
22	RR down	CART smote	111.3	0.0000	1,829	463	319	192
22	RR down	CART rose	990.7	0.0000	559	184	598	1,462
22	RR smote	RR rose	1727.6	0.0000	197	115	441	2,050
22	RR smote	LASSO none	0.0	1.0000	2,069	178	378	178
22	RR smote	LASSO up	109.5	0.0000	1,918	109	447	329
22	RR smote	LASSO down	121.0	0.0000	1,891	116	440	356
22	RR smote	LASSO smote	28.1	0.0000	2,112	60	496	135
22	RR smote	LASSO rose	1730.2	0.0000	197	114	442	2,050

22	RR smote	RF none	0.1	0.7202	2,060	195	361	187
22	RR smote	RF up	1.6	0.2040	2,051	223	333	196
22	RR smote	RF down	7.1	0.0077	2,014	178	378	233
22	RR smote	RF smote	0.1	0.7345	2,094	160	396	153
22	RR smote	RF rose	0.3	0.5823	2,053	206	350	194
22	RR smote	XGB none	3.2	0.0722	2,065	219	337	182
22	RR smote	XGB up	4.9	0.0274	2,006	194	362	241
22	RR smote	XGB down	10.4	0.0012	1,969	206	350	278
22	RR smote	XGB smote	18.4	0.0000	1,925	221	335	322
22	RR smote	XGB rose	682.2	0.0000	1,142	171	385	1,105
22	RR smote	CART	27.6	0.0000	2,100	253	303	147
22	RR smote	CART up	8.9	0.0029	2,075	233	323	172
22	RR smote	CART down	1.4	0.2397	1,989	231	325	258
22	RR smote	CART smote	4.1	0.0417	2,036	256	300	211
22	RR smote	CART rose	1250.8	0.0000	592	151	405	1,655
22	RR rose	LASSO none	1742.1	0.0000	206	2,041	450	106
22	RR rose	LASSO up	1570.2	0.0000	234	1,793	698	78
22	RR rose	LASSO down	1550.3	0.0000	234	1,773	718	78
22	RR rose	LASSO smote	1667.9	0.0000	206	1,966	525	106
22	RR rose	LASSO rose	0.0	1.0000	311	-	2,491	1
22	RR rose	RF none	1781.5	0.0000	225	2,030	461	87
22	RR rose	RF up	1802.0	0.0000	226	2,048	443	86
22	RR rose	RF down	1734.1	0.0000	234	1,958	533	78
22	RR rose	RF smote	1770.4	0.0000	219	2,035	456	93
22	RR rose	RF rose	1725.2	0.0000	188	2,071	420	124

22	RR rose	XGB	1803.5	0.0000	221	2,063	428	91
22		none	1005.5	0.0000	221	2,005	420	51
22	RR rose	XGB up	1735.3	0.0000	230	1,970	521	82
22	RR rose	XGB	1710.4	0.0000	230	1,945	546	82
		down						
22	RR rose	XGB	1698.6	0.0000	240	1,906	585	72
		smote						
22	RR rose	XGB	871.8	0.0000	239	1,074	1,417	73
		rose						
22	RR rose	CART	1816.5	0.0000	187	2,166	325	125
		none						
22	RR rose	CART	1810.7	0.0000	211	2,097	394	101
		up						
22	RR rose	CART	1712.2	0.0000	204	2,016	475	108
		down						
22	RR rose	CART	1753.1	0.0000	185	2,107	384	127
		smote						
22	RR rose	CART	363.3	0.0000	273	470	2,021	39
		rose						
22	LASSO	LASSO	134.7	0.0000	1,959	68	488	288
	none	up						
22	LASSO	LASSO	146.5	0.0000	1,932	75	481	315
	none	down						
22	LASSO	LASSO	15.7	0.0001	2,035	137	419	212
	none	smote						
22	LASSO	LASSO	1743.1	0.0000	205	106	450	2,042
	none	rose						
22	LASSO	RF none	0.1	0.7129	2,070	185	371	177
	none							
22	LASSO	RF up	1.6	0.2029	2,052	222	334	195
	none							
22	LASSO	RF down	8.6	0.0035	2,049	143	413	198
	none							
22	LASSO	RF	0.1	0.7467	2,078	176	380	169
	none	smote						
22	LASSO	RF rose	0.3	0.5842	2,051	208	348	196
	none	NOD		0.0/=0	0.101	100	0-0	4.4.6
22	LASSO	XGB	3.9	0.0472	2,101	183	373	146
00	none	none	4.0	0.0000	2.000	100		0.15
22	LASSO	XGB up	4.8	0.0289	2,002	198	358	245
00	none	VOD	11.0	0.0000	1.001	104	0.00	000
22	LASSO	XGB	11.0	0.0009	1,981	194	362	266
	none	down	10.4	0.0000	1.005	0.01	0.05	000
22	LASSO	XGB	18.4	0.0000	1,925	221	335	322
	none	smote						

22	LASSO	XGB	693.1	0.0000	1,152	161	395	1,095
	none	rose						
22	LASSO	CART	28.4	0.0000	2,106	247	309	141
	none	none						
22	LASSO	CART	10.2	0.0014	2,101	207	349	146
	none	up						
22	LASSO	CART	1.5	0.2249	2,004	216	340	243
	none	down						
22	LASSO	CART	4.2	0.0413	2,037	255	301	210
	none	smote						
22	LASSO	CART	1287.9	0.0000	618	125	431	1,629
	none	rose						,
22	LASSO	LASSO	1.0	0.3098	1,842	165	611	185
	up	down						
22	LASSO	LASSO	62.6	0.0000	1,934	238	538	93
	up	smote			,			
22	LASSO	LASSO	1571.2	0.0000	233	78	698	1,794
	up	rose						,
22	LASSO	RF none	102.6	0.0000	1,890	365	411	137
	up				,			
22	LASSO	RF up	110.6	0.0000	1,877	397	379	150
	up	r			_,		0.0	
22	LASSO	RF down	61.5	0.0000	1,891	301	475	136
	up							
22	LASSO	RF	115.8	0.0000	1,920	334	442	107
	up	smote	11010		1,010	001		101
22	LASSO	RF rose	90.1	0.0000	1,847	412	364	180
	up	101 1000	0011		1,011		001	100
22	LASSO	XGB	133.5	0.0000	1,910	374	402	117
	up	none	100.0	0.0000	1,010	011	102	111
22	LASSO	XGB up	57.0	0.0000	1,854	346	430	173
	up	nob up	01.0		1,001	010	100	110
22	LASSO	XGB	38.2	0.0000	1,818	357	419	209
	up	down	00.2		1,010		110	-00
22	LASSO	XGB	23.2	0.0000	1,787	359	417	240
	up	smote			1,101	000		- 10
22	LASSO	XGB	446.7	0.0000	1,101	212	564	926
	up	rose						020
22	LASSO	CART	180.9	0.0000	1,898	455	321	129
	up	none	100.0		1,000	100	021	120
22	LASSO	CART	145.5	0.0000	1,898	410	366	129
	up	up	1 10.0		1,000		000	120
22	LASSO	CART	63.4	0.0000	1,833	387	389	194
	up	down	00.1		1,000		000	101
22	LASSO	CART	116.4	0.0000	1,860	432	344	167
	up	smote	110.1		1,000	102	FFO	101
	լսբ	SHIULE						

22	LASSO up	CART rose	1032.7	0.0000	588	155	621	1,439
22	LASSO	LASSO	61.5	0.0000	1,871	301	495	136
22	down	smote	01.0	0.0000	1,071	501	450	100
22	LASSO	LASSO	1551.3	0.0000	233	78	718	1,774
	down	rose						,
22	LASSO	RF none	120.6	0.0000	1,878	377	419	129
	down				, í			
22	LASSO	RF up	123.5	0.0000	1,854	420	376	153
	down	1			,			
22	LASSO	RF down	73.1	0.0000	1,868	324	472	139
	down				, í			
22	LASSO	RF	119.4	0.0000	1,877	377	419	130
	down	smote			, í			
22	LASSO	RF rose	113.3	0.0000	1,855	404	392	152
	down				,	-		-
22	LASSO	XGB	144.5	0.0000	1,882	402	394	125
	down	none			_,			
22	LASSO	XGB up	65.9	0.0000	1,824	376	420	183
	down	nob up	00.0	0.0000	1,0-1	010		100
22	LASSO	XGB	47.1	0.0000	1,795	380	416	212
	down	down	11.1	0.0000	1,100	000	110	
22	LASSO	XGB	31.7	0.0000	1,776	370	426	231
	down	smote	01.1	0.0000	1,110	010	120	201
22	LASSO	XGB	420.5	0.0000	1,089	224	572	918
	down	rose	120.0	0.0000	1,000		012	010
22	LASSO	CART	201.7	0.0000	1,885	468	328	122
	down	none	-01.1	0.0000	1,000	100	0_0	
22	LASSO	CART	160.4	0.0000	1,877	431	365	130
	down	up	10011	0.0000	1,011	101	000	100
22	LASSO	CART	70.8	0.0000	1,796	424	372	211
	down	down			,			
22	LASSO	CART	124.3	0.0000	1,825	467	329	182
	down	smote			, í			
22	LASSO	CART	989.6	0.0000	569	174	622	1,438
	down	rose						,
22	LASSO	LASSO	1668.9	0.0000	205	106	525	1,967
	smote	rose						,
22	LASSO	RF none	15.9	0.0001	2,002	253	378	170
	smote				, í			
22	LASSO	RF up	22.0	0.0000	1,991	283	348	181
	smote	T.			,			
22	LASSO	RF down	0.9	0.3385	1,985	207	424	187
	smote				,			
22	LASSO	RF	20.1	0.0000	2,050	204	427	122
	smote	smote			_,000	-0-		

			1		1			
22	LASSO	RF rose	16.3	0.0001	1,988	271	360	184
	smote							
22	LASSO	XGB	28.7	0.0000	2,013	271	360	159
	smote	none	1.0	0.0001	1.0.01	222	202	011
22	LASSO	XGB up	1.6	0.2031	1,961	239	392	211
- 22	smote	VOD		0.0004	1.020	2.10		240
22	LASSO	XGB	0.0	0.9284	1,926	249	382	246
- 22	smote	down	1.1	0.0055	1.005	0.01	070	207
22	LASSO	XGB	1.1	0.2855	1,885	261	370	287
	smote	smote			1.100	105		1.044
22	LASSO	XGB	599.0	0.0000	1,128	185	446	1,044
	smote	rose						
22	LASSO	CART	68.8	0.0000	2,027	326	305	145
	smote	none						
22	LASSO	CART	40.7	0.0000	2,016	292	339	156
	smote	up						
22	LASSO	CART	4.3	0.0378	1,940	280	351	232
	smote	down						
22	LASSO	CART	30.3	0.0000	1,998	294	337	174
	smote	smote						
22	LASSO	CART	1172.6	0.0000	588	155	476	$1,\!584$
	smote	rose						
22	LASSO	RF none	1784.1	0.0000	225	2,030	462	86
	rose							
22	LASSO	RF up	1803.0	0.0000	225	2,049	443	86
	rose							
22	LASSO	RF down	1735.1	0.0000	233	1,959	533	78
	rose							
22	LASSO	\mathbf{RF}	1771.4	0.0000	218	2,036	456	93
	rose	smote						
22	LASSO	RF rose	1727.8	0.0000	188	2,071	421	123
	rose							
22	LASSO	XGB	1804.5	0.0000	220	2,064	428	91
	rose	none						
22	LASSO	XGB up	1736.3	0.0000	229	1,971	521	82
	rose							
22	LASSO	XGB	1711.4	0.0000	229	1,946	546	82
	rose	down						
22	LASSO	XGB	1699.6	0.0000	239	1,907	585	72
	rose	smote						
22	LASSO	XGB	874.3	0.0000	239	1,074	1,418	72
	rose	rose						
22	LASSO	CART	1817.5	0.0000	186	2,167	325	125
	rose	none						
22	LASSO	CART	1811.7	0.0000	210	2,098	394	101
	rose	up						

22	LASSO	CART	1713.2	0.0000	203	2,017	475	108
22	rose LASSO	down CART	1754.1	0.0000	184	2,108	384	127
	rose	smote						
22	LASSO	CART	365.7	0.0000	273	470	2,022	38
	rose	rose						
22	RF none	RF up	1.2	0.2724	2,130	144	404	125
22	RF none	RF down	14.7	0.0001	2,093	99	449	162
22	RF none	RF	0.0	1.0000	2,134	120	428	121
		smote						
22	RF none	RF rose	0.0	0.8831	2,049	210	338	206
22	RF none	XGB	3.2	0.0725	2,148	136	412	107
		none						
22	RF none	XGB up	9.5	0.0021	2,074	126	422	181
22	RF none	XGB	19.3	0.0000	2,053	122	426	202
		down						
22	RF none	XGB	27.4	0.0000	1,988	158	390	267
		smote						
22	RF none	XGB	688.6	0.0000	1,141	172	376	1,114
		rose						
22	RF none	CART	26.9	0.0000	2,129	224	324	126
		none						
22	RF none	CART	9.1	0.0025	2,133	175	373	122
		up						
22	RF none	CART	2.8	0.0935	2,032	188	360	223
		down						
22	RF none	CART	2.9	0.0872	2,052	240	308	203
		smote						
22	RF none	CART	1287.0	0.0000	612	131	417	1,643
		rose						
22	RF up	RF down	21.6	0.0000	2,081	111	418	193
22	RF up	RF	1.2	0.2758	2,112	142	387	162
		smote						
22	RF up	RF rose	0.4	0.5135	2,037	222	307	237
22	RF up	XGB	0.4	0.5422	2,170	114	415	104
		none						
22	RF up	XGB up	24.4	0.0000	2,128	72	457	146
22	RF up	XGB	32.8	0.0000	2,078	97	432	196
		down						
22	RF up	XGB	40.9	0.0000	2,013	133	396	261
	-	smote						
22	RF up	XGB	726.2	0.0000	1,159	154	375	1,115
	-	rose						
22	RF up	CART	22.3	0.0000	2,177	176	353	97
	-	none						

22	RF up	CART up	4.2	0.0407	2,161	147	382	113
22	RF up	CART down	7.8	0.0052	2,067	153	376	207
22	RF up	CART smote	0.7	0.3881	2,089	203	326	185
22	RF up	CART rose	1333.8	0.0000	631	112	417	1,643
22	RF down	RF smote	11.9	0.0006	2,066	188	423	126
22	RF down	RF rose	10.1	0.0015	2,009	250	361	183
22	RF down	XGB none	30.9	0.0000	2,104	180	431	88
22	RF down	XGB up	0.1	0.7042	2,026	174	437	166
22	RF down	XGB down	0.8	0.3763	2,020	155	456	172
22	RF down	XGB smote	4.4	0.0351	1,941	205	406	251
22	RF down	XGB rose	656.1	0.0000	1,165	148	463	1,027
22	RF down	CART none	62.9	0.0000	2,069	284	327	123
22	RF down	CART up	39.1	0.0000	2,081	227	384	111
22	RF down	CART down	1.6	0.2061	1,978	242	369	214
22	RF down	CART smote	20.4	0.0000	2,002	290	321	190
22	RF down	CART rose	1251.8	0.0000	630	113	498	1,562
22	RF smote	RF rose	0.0	0.8413	2,057	202	347	197
22	RF smote	XGB none	2.9	0.0875	2,125	159	390	129
22	RF smote	XGB up	8.0	0.0046	2,052	148	401	202
22	RF smote	XGB down	15.2	0.0001	2,015	160	389	239
22	RF smote	XGB smote	26.6	0.0000	1,985	161	388	269
22	RF smote	XGB rose	707.4	0.0000	1,159	154	395	1,095
22	RF smote	CART none	26.6	0.0000	2,123	230	319	131
22	RF smote	CART up	8.7	0.0032	2,119	189	360	135

22	RF	CART	2.6	0.1065	2,028	192	357	226
	smote	down						
22	RF	CART	3.5	0.0603	2,079	213	336	175
	smote	smote						
22	RF	CART	1303.7	0.0000	624	119	430	1,630
	smote	rose						
22	RF rose	XGB	1.4	0.2319	2,070	214	330	189
		none						
22	RF rose	XGB up	6.6	0.0104	1,973	227	317	286
22	RF rose	XGB	12.9	0.0003	1,949	226	318	310
		down						
22	RF rose	XGB	21.1	0.0000	1,905	241	303	354
		smote						
22	RF rose	XGB	759.4	0.0000	1,198	115	429	1,061
		rose			,		-)
22	RF rose	CART	20.4	0.0000	2,094	259	285	165
		none			,			
22	RF rose	CART	5.4	0.0202	2,070	238	306	189
		up			_,			
22	RF rose	CART	2.5	0.1137	1,951	269	275	308
		down			_,			
22	RF rose	CART	2.0	0.1609	2,015	277	267	244
		smote			_,			
22	RF rose	CART	1332.9	0.0000	640	103	441	1,619
		rose						,
22	XGB	XGB up	29.4	0.0000	2,125	75	444	159
	none	1			,			
22	XGB	XGB	42.7	0.0000	2,093	82	437	191
	none	down			,			
22	XGB	XGB	43.9	0.0000	2,001	145	374	283
	none	smote						
22	XGB	XGB	757.0	0.0000	1,177	136	383	1,107
	none	rose	_					, - ,
22	XGB	CART	14.5	0.0001	2,159	194	325	125
	none	none			,			-
22	XGB	CART	1.8	0.1813	2,148	160	359	136
	none	up					-	
22	XGB	CART	10.0	0.0016	2,053	167	352	231
	none	down						
22	XGB	CART	0.1	0.7327	2,078	214	305	206
	none	smote			,			
22	XGB	CART	1348.3	0.0000	634	109	410	1,650
	none	rose						-,
22	XGB up	XGB	2.0	0.1551	2,045	130	473	155
	= ap			1	_,			_00

22	XGB up	XGB smote	7.8	0.0052	1,993	153	450	207
22	XGB up	XGB	629.5	0.0000	1,133	180	423	1,067
22	XGB up	rose CART	65.5	0.0000	2,100	253	350	100
22	XGB up	none CART up	33.9	0.0000	2,085	223	380	115
22	XGB up	CART down	1.0	0.3272	2,022	198	405	178
22	XGB up	CART smote	19.2	0.0000	2,030	262	341	170
22	XGB up	CART rose	1237.6	0.0000	615	128	475	1,585
22	XGB down	XGB smote	1.9	0.1703	1,952	194	434	223
22	XGB down	XGB rose	603.7	0.0000	1,130	183	445	1,045
22	XGB down	CART none	78.3	0.0000	2,064	289	339	111
22	XGB down	CART up	47.0	0.0000	2,056	252	376	119
22	XGB down	CART down	4.3	0.0374	1,974	246	382	201
22	XGB	CART	27.6	0.0000	1,990	302	326	185
22	down XGB	smote CART	1193.3	0.0000	601	142	486	1,574
22	down XGB	rose XGB	542.1	0.0000	1,091	222	435	1,055
22	XGB	rose CART	85.0	0.0000	2,000	353	304	146
22	smote XGB	none CART	55.9	0.0000	1,995	313	344	151
22	smote XGB	up CART	10.3	0.0013	1,924	296	361	222
22	smote XGB	down CART	40.3	0.0000	1,958	334	323	188
22	smote XGB	smote CART	1158.3	0.0000	596	147	510	1,550
22	smote XGB	rose CART	759.2	0.0000	1,122	1,231	259	191
22	rose XGB	none CART	732.4	0.0000	1,136	1,172	318	177
22	rose XGB	up CART	634.8	0.0000	1,120	1,100	390	193
	rose	down						

22	XGB	CART	682.7	0.0000	1,102	1,190	300	211
22	rose	smote				2.4	1 150	201
22	XGB rose	CART rose	507.5	0.0000	709	34	1,456	604
22	CART	CART	7.7	0.0055	2,205	103	347	148
	none	up						
22	CART	CART	51.1	0.0000	2,116	104	346	237
	none	down			,			
22	CART	CART	10.3	0.0014	2,147	145	305	206
	none	smote			,			
22	CART	CART	1352.6	0.0000	591	152	298	1,762
	none	rose	1002.0	0.0000		10-	-00	1,101
22	CART	CART	18.4	0.0000	2,058	162	333	250
22	up	down	10.1	0.0000	2,000	102	000	200
22	CART	CART	0.6	0.4416	2,110	182	313	198
22		smote	0.0	0.4410	2,110	102	515	150
22	up CART	CART	1327.2	0.0000	604	139	356	1 704
22			1327.2	0.0000	004	139	550	1,704
00	ир	rose	10.7	0.0011	0.001	071	910	100
22	CART	CART	10.7	0.0011	2,021	271	312	199
	down	smote	1244.2			105	110	1 01 1
22	CART	CART	1244.2	0.0000	606	137	446	$1,\!614$
	down	rose						
22	CART	CART	1275.3	0.0000	578	165	346	1,714
	smote	rose						
33	RR up	RR down	0.2	0.6831	634	78	460	72
33	RR up	RR smote	59.3	0.0000	634	200	338	72
33	RR up	RR rose	504.6	0.0000	92	39	499	614
33	RR up	LASSO	0.1	0.8052	630	72	466	76
	-	none						
33	RR up	LASSO	2.3	0.1306	637	89	449	69
	1	up						
33	RR up	LASSO	19.6	0.0000	647	119	419	59
	1010 ap	down	1010	0.0000		110	110	00
33	RR up	LASSO	12.5	0.0004	592	175	363	114
00	Tere up	smote	12.0	0.0001	002	110	000	111
33	RR up	LASSO	502.0	0.0000	92	40	498	614
55	Int up		502.0	0.0000	92	40	490	014
22	DD un	rose	202 7	0.0000	644	252	105	60
33	RR up	RF none	202.7	0.0000	644 568	353	185	62
33	RR up	RF up	30.3	0.0000	568	247	291	138
33	RR up	RF down	35.9	0.0000	577	246	292	129
33	RR up	RF smote	138.3	0.0000	636	296	242	70
33	RR up	RF rose	237.2	0.0000	364	40	498	342
33	RR up	XGB	84.2	0.0000	580	321	217	126
		none						

33	RR up	XGB up	85.5	0.0000	578	326	212	128
33	RR up	XGB down	27.9	0.0000	541	277	261	165
33	RR up	XGB smote	73.4	0.0000	572	317	221	134
33	RR up	XGB rose	4.9	0.0276	529	222	316	177
33	RR up	CART none	110.4	0.0000	585	350	188	121
33	RR up	CART up	16.3	0.0001	518	276	262	188
33	RR up	CART down	0.5	0.4883	431	258	280	275
33	RR up	CART smote	86.6	0.0000	593	304	234	113
33	RR up	CART rose	503.6	0.0000	93	39	499	613
33	RR down	RR smote	52.7	0.0000	634	200	332	78
33	RR down	RR rose	519.9	0.0000	98	33	499	614
33	RR down	LASSO none	0.6	0.4564	634	68	464	78
33	RR down	LASSO up	1.1	0.2885	644	82	450	68
33	RR down	LASSO down	28.7	0.0000	690	76	456	22
33	RR down	LASSO smote	11.6	0.0007	614	153	379	98
33	RR down	LASSO rose	517.3	0.0000	98	34	498	614
33	RR down	RF none	184.6	0.0000	636	361	171	76
33	RR down	RF up	29.0	0.0000	584	231	301	128
33	RR down	RF down	33.3	0.0000	586	237	295	126
33	RR down	RF smote	124.3	0.0000	629	303	229	83
33	RR down	RF rose	233.3	0.0000	356	48	484	356
33	RR down	XGB none	83.2	0.0000	594	307	225	118
33	RR down	XGB up	82.2	0.0000	586	318	214	126
33	RR down	XGB down	24.9	0.0000	544	274	258	168
33	RR down	XGB smote	70.9	0.0000	582	307	225	130
33	RR down	XGB rose	3.3	0.0704	511	240	292	201

33	RR down	CART none	104.2	0.0000	587	348	184	125
33	RR down	CART	14.6	0.0001	529	265	267	183
22		up		0.0005		2.12	200	
33	RR down	CART down	1.0	0.3285	447	242	290	265
33	RR down	CART	79.7	0.0000	592	305	227	120
33	RR down	smote CART rose	517.3	0.0000	98	34	498	614
33	RR smote	RR rose	616.8	0.0000	83	48	362	751
33	RR smote	LASSO none	58.4	0.0000	621	81	329	213
33	RR smote	LASSO up	40.3	0.0000	638	88	322	196
33	RR smote	LASSO down	18.0	0.0000	675	91	319	159
33	RR smote	LASSO smote	39.2	0.0000	745	22	388	89
33	RR smote	LASSO rose	614.3	0.0000	83	49	361	751
33	RR smote	RF none	72.7	0.0000	735	262	148	99
33	RR smote	RF up	0.8	0.3627	629	186	224	205
33	RR smote	RF down	0.3	0.6112	635	188	222	199
33	RR smote	RF smote	28.5	0.0000	718	214	196	116
33	RR smote	RF rose	337.1	0.0000	346	58	352	488
33	RR smote	XGB none	11.3	0.0008	675	226	184	159
33	RR smote	XGB up	12.0	0.0005	670	234	176	164
33	RR smote	XGB down	0.5	0.4814	599	219	191	235
33	RR smote	XGB smote	7.4	0.0066	664	225	185	170
33	RR smote	XGB rose	16.5	0.0000	589	162	248	245
33	RR smote	CART none	25.2	0.0000	686	249	161	148
33	RR	CART	3.2	0.0745	575	219	191	259
	smote	up						

33	RR	CART	35.4	0.0000	469	220	190	365
აა	smote	down	00.4	0.0000	409	220	190	305
33	RR	CART	10.6	0.0011	685	212	198	149
00	smote	smote	10.0	0.0011	000	212	150	145
33	RR	CART	617.3	0.0000	85	47	363	749
00	smote	rose	017.5	0.0000	00	41	505	145
33	RR rose	LASSO	514.9	0.0000	101	601	512	30
55	nn iose	none	514.9	0.0000	101	001	512	30
33	RR rose	LASSO	533.8	0.0000	98	628	485	33
00	Int lose		000.0	0.0000	30	020	400	- 55
33	RR rose	up LASSO	566.9	0.0000	94	672	441	37
55	nn iose	down	500.9	0.0000	94	072	441	57
33	RR rose	LASSO	558.5	0.0000	88	679	434	43
აა	nn Iose	smote	000.0	0.0000	00	079	434	40
33	RR rose	LASSO	0.0	1.0000	130	2	1 111	1
99	nn rose		0.0	1.0000	130	2	1,111	1
33	RR rose	rose RF none	760.4	0.0000	72	925	188	59
33	RR rose	RF up	622.0	0.0000	98	717	396	33
33	RR rose	RF down	626.6	0.0000	96	727	386	35
33	RR rose	RF smote	713.5	0.0000	83	849	264	48
33	RR rose	RF rose	250.8	0.0000	120	284	829	11
33	RR rose	XGB	687.6	0.0000	86	815	298	45
		none						
33	RR rose	XGB up	685.8	0.0000	83	821	292	48
33	RR rose	XGB	610.4	0.0000	89	729	384	42
		down						
33	RR rose	XGB	683.8	0.0000	91	798	315	40
		smote						
33	RR rose	XGB	535.1	0.0000	83	668	445	48
		rose						
33	RR rose	CART	686.0	0.0000	63	872	241	68
		none						
33	RR rose	CART	597.9	0.0000	96	698	415	35
		up						
33	RR rose	CART	500.4	0.0000	100	589	524	31
		down						
33	RR rose	CART	665.0	0.0000	74	823	290	57
		smote						
33	RR rose	CART	0.0	1.0000	130	2	1,111	1
		rose					,	
33	LASSO	LASSO	8.3	0.0040	682	44	498	20
	none	up						-0
33	LASSO	LASSO	30.5	0.0000	669	97	445	33
~~		down						

					,			
33	LASSO	LASSO	15.3	0.0001	601	166	376	101
	none	smote						
33	LASSO	LASSO	512.3	0.0000	101	31	511	601
	none	rose						
33	LASSO	RF none	213.4	0.0000	647	350	192	55
	none							
33	LASSO	RF up	36.8	0.0000	588	227	315	114
	none		45 1	0.0000	600	220	200	
33	LASSO	RF down	45.1	0.0000	603	220	322	99
2.2	none	DE	159.9	0.0000	C A C	200	250	FC
33	LASSO	RF	153.3	0.0000	646	286	256	56
33	none LASSO	smote RF rose	250.6	0.0000	377	27	515	325
J J		RF rose	230.0	0.0000	311	21	515	520
33	none LASSO	XGB	94.9	0.0000	595	306	236	107
00	none	none	54.5	0.0000	090	500	250	107
33	LASSO	XGB up	92.2	0.0000	584	320	222	118
00	none	AGD up	32.2	0.0000	004	520	222	110
33	LASSO	XGB	32.3	0.0000	555	263	279	147
00	none	down	02.0	0.0000	000	200	215	141
33	LASSO	XGB	84.2	0.0000	590	299	243	112
00	none	smote	01.2	0.0000	000	200	210	112
33	LASSO	XGB	5.6	0.0179	521	230	312	181
	none	rose		0.0110		-00	012	101
33	LASSO	CART	117.8	0.0000	590	345	197	112
	none	none						
33	LASSO	CART	19.3	0.0000	534	260	282	168
	none	up						
33	LASSO	CART	0.3	0.5851	454	235	307	248
	none	down						
33	LASSO	CART	97.8	0.0000	607	290	252	95
	none	smote						
33	LASSO	CART	512.3	0.0000	101	31	511	601
	none	rose						
33	LASSO	LASSO	13.1	0.0003	688	78	440	38
	up	down						
33	LASSO	LASSO	6.2	0.0126	618	149	369	108
	up	smote						
33	LASSO	LASSO	531.2	0.0000	98	34	484	628
	up	rose						
33	LASSO	RF none	183.6	0.0000	663	334	184	63
	up							
33	LASSO	RF up	23.0	0.0000	602	213	305	124
	up							
33	LASSO	RF down	28.2	0.0000	611	212	306	115
	up							

33	LASSO	RF	125.1	0.0000	661	271	247	65
	up	smote						
33	LASSO	RF rose	266.9	0.0000	372	32	486	354
	up							
33	LASSO	XGB	77.4	0.0000	618	283	235	108
	up	none						
33	LASSO	XGB up	75.3	0.0000	607	297	221	119
	up							
33	LASSO	XGB	20.6	0.0000	571	247	271	155
	up	down						
33	LASSO	XGB	67.1	0.0000	612	277	241	114
	up	smote						
33	LASSO	XGB	1.4	0.2388	531	220	298	195
	up	rose				-		
33	LASSO	CART	97.2	0.0000	608	327	191	118
00	up	none	01.2		000	021	101	110
33	LASSO	CART	10.8	0.0010	553	241	277	173
00			10.0	0.0010	000	271	211	110
33	up LASSO	up CART	2.7	0.1014	466	223	295	260
J J			2.1	0.1014	400	223	290	200
33	up LASSO	down CART	77.9	0.0000	626	271	247	100
33			11.9	0.0000	020	271	247	100
0.0	up	smote	501.0	0.0000	00		40.4	690
33	LASSO	CART	531.2	0.0000	98	34	484	628
	up	rose			071			
33	LASSO	LASSO	0.0	1.0000	651	116	362	115
	down	smote						
33	LASSO	LASSO	564.4	0.0000	94	38	440	672
	down	rose		_				
33	LASSO	RF none	137.4	0.0000	689	308	170	77
	down							
33	LASSO	RF up	7.0	0.0081	626	189	289	140
	down							
33	LASSO	RF down	9.6	0.0020	631	192	286	135
	down							
33	LASSO	\mathbf{RF}	79.1	0.0000	677	255	223	89
	down	smote						
33	LASSO	RF rose	294.8	0.0000	364	40	438	402
	down							
33	LASSO	XGB	47.4	0.0000	644	257	221	122
	down	none						
33	LASSO	XGB up	47.4	0.0000	637	267	211	129
	down							
33	LASSO	XGB	6.3	0.0118	587	231	247	179
	down	down		_		-	-	
33	LASSO	XGB	38.3	0.0000	633	256	222	133
	down	smote						100

33	LASSO	XGB	0.5	0.4930	550	201	277	216
	down	rose						
33	LASSO	CART	67.0	0.0000	640	295	183	126
	down	none						
33	LASSO	CART	1.8	0.1770	580	214	264	186
	down	up						
33	LASSO	CART	11.4	0.0007	474	215	263	292
	down	down	45.0	0.0000	0.15	250	220	101
33	LASSO	CART	45.3	0.0000	645	252	226	121
0.0	down	smote	504.4	0.0000	0.4	20	4.40	670
33	LASSO	CART	564.4	0.0000	94	38	440	672
	down	rose	550.0	0.0000	00	4.4	499	670
33	LASSO	LASSO	556.0	0.0000	88	44	433	679
	smote	rose	127.3	0.0000	676	201	150	01
33	LASSO	RF none	127.3	0.0000	676	321	156	91
33	smote LASSO	DE un	5.8	0.0159	601	214	263	166
99		RF up	5.8	0.0159	001	214	205	100
33	smote LASSO	RF down	7.7	0.0056	598	225	252	169
99	smote	RF down	1.1	0.0050	598	220	232	109
33	LASSO	RF	73.7	0.0000	667	265	212	100
55	smote	smote	13.1	0.0000	007	205	212	100
33	LASSO	RF rose	268.0	0.0000	341	63	414	426
55	smote	101 1050	200.0	0.0000	041	05	414	420
33	LASSO	XGB	42.3	0.0000	625	276	201	142
00	smote	none	12.0	0.0000	020	210	201	1 12
33	LASSO	XGB up	43.5	0.0000	623	281	196	144
	smote	nob ap	1010			-01	100	
33	LASSO	XGB	5.4	0.0204	560	258	219	207
	smote	down					-	
33	LASSO	XGB	36.6	0.0000	628	261	216	139
	smote	smote						
33	LASSO	XGB	0.5	0.4663	547	204	273	220
	smote	rose						
33	LASSO	CART	62.0	0.0000	626	309	168	141
	smote	none						
33	LASSO	CART	1.5	0.2279	548	246	231	219
	smote	up						
33	LASSO	CART	10.7	0.0010	452	237	240	315
	smote	down						
33	LASSO	CART	45.0	0.0000	647	250	227	120
	smote	smote						
33	LASSO	CART	557.5	0.0000	89	43	434	678
	smote	rose						
33	LASSO	RF none	757.9	0.0000	72	925	187	60
	rose							

33	LASSO rose	RF up	619.3	0.0000	98	717	395	34
33	LASSO	RF down	624.0	0.0000	96	727	385	36
	rose							
33	LASSO	RF	710.9	0.0000	83	849	263	49
	rose	smote						
33	LASSO	RF rose	248.1	0.0000	120	284	828	12
	rose							
33	LASSO	XGB	685.0	0.0000	86	815	297	46
	rose	none						
33	LASSO	XGB up	683.3	0.0000	83	821	291	49
	rose							
33	LASSO	XGB	607.8	0.0000	89	729	383	43
	rose	down	601.0	0.0000	01	700	014	41
33	LASSO	XGB	681.2	0.0000	91	798	314	41
2.2	rose	smote	F20 7	0.0000	0.9	669	4.4.4	40
33	LASSO	XGB	532.7	0.0000	83	668	444	49
33	rose LASSO	rose CART	682.1	0.0000	62	873	239	70
99	rose	none	082.1	0.0000	02	013	239	70
33	LASSO	CART	595.3	0.0000	96	698	414	36
55	rose	up	090.0	0.0000	50	030	414	50
33	LASSO	CART	497.8	0.0000	100	589	523	32
00	rose	down	10110	0.0000	100	000	020	02
33	LASSO	CART	664.0	0.0000	75	822	290	57
	rose	smote						
33	LASSO	CART	0.0	1.0000	130	2	1,110	2
	rose	rose						
33	RF none	RF up	107.8	0.0000	754	61	186	243
33	RF none	RF down	95.3	0.0000	753	70	177	244
33	RF none	RF	22.6	0.0000	874	58	189	123
		smote						
33	RF none	RF rose	502.8	0.0000	352	52	195	645
33	RF none	XGB	31.6	0.0000	806	95	152	191
		none						
33	RF none	XGB up	26.7	0.0000	792	112	135	205
33	RF none	XGB	95.1	0.0000	741	77	170	256
		down						
33	RF none	XGB	36.9	0.0000	788	101	146	209
		smote						
33	RF none	XGB	150.8	0.0000	675	76	171	322
0.0		rose	155	0.0001	0.4.2		150	4 10 4
33	RF none	CART	15.5	0.0001	846	89	158	151
22	DE.	none	117.0	0.0000	700	70	175	075
33	RF none	CART	117.6	0.0000	722	72	175	275
		up						

33	RF none	CART down	211.3	0.0000	620	69	178	377
33	RF none	CART smote	31.2	0.0000	790	107	140	207
33	RF none	CART rose	759.4	0.0000	73	59	188	924
33	RF up	RF down	0.2	0.6735	681	142	287	134
33	RF up	RF smote	51.6	0.0000	743	189	240	72
33	RF up	RF rose	301.8	0.0000	331	73	356	484
33	RF up	XGB none	32.5	0.0000	747	154	275	68
33	RF up	XGB up	35.4	0.0000	750	154	275	65
33	RF up	XGB down	0.0	0.9040	679	139	290	136
33	RF up	XGB smote	21.5	0.0000	728	161	268	87
33	RF up	XGB rose	8.6	0.0033	553	198	231	262
33	RF up	CART none	45.1	0.0000	718	217	212	97
33	RF up	CART up	1.3	0.2506	653	141	288	162
33	RF up	CART down	40.5	0.0000	559	130	299	256
33	RF up	CART smote	19.9	0.0000	691	206	223	124
33	RF up	CART rose	619.3	0.0000	98	34	395	717
33	RF down	RF smote	44.0	0.0000	745	187	234	78
33	RF down	RF rose	338.0	0.0000	355	49	372	468
33	RF down	XGB none	18.9	0.0000	705	196	225	118
33	RF down	XGB up	19.3	0.0000	698	206	215	125
33	RF down	XGB down	0.0	0.8323	642	176	245	181
33	RF down	XGB smote	12.6	0.0004	689	200	221	134
33	RF down	XGB rose	14.0	0.0002	607	144	277	216
33	RF down	CART none	35.2	0.0000	704	231	190	119
33	RF down	CART up	2.5	0.1147	651	143	278	172

33	RF down	CART	43.8	0.0000	554	135	286	269
		down						
33	RF down	CART	16.3	0.0001	697	200	221	126
		smote						
33	RF down	CART	624.0	0.0000	96	36	385	727
		rose						
33	RF	RF rose	445.1	0.0000	356	48	264	576
	smote	VOD	0.4	0.0004	700	110	10.4	1.40
33	RF	XGB	3.4	0.0664	783	118	194	149
	smote	none	0.5	0.1100		101	101	150
33	RF	XGB up	2.5	0.1129	773	131	181	159
	smote	VOD	97.0	0.0000	700	110	200	000
33	RF	XGB	37.8	0.0000	706	112	200	226
22	smote	down VCD	6.6	0.0104	776	119	100	156
33	RF	XGB	6.6	0.0104	776	113	199	156
33	smote RF	smote XGB	81.6	0.0000	643	108	204	200
99			81.0	0.0000	045	108	204	289
33	smote RF	rose CART	0.0	0.8983	811	124	188	121
აა	smote		0.0	0.0905	011	124	100	121
33	RF	none CART	54.9	0.0000	692	102	210	240
55	smote	up	54.9	0.0000	092	102	210	240
33	RF	CART	128.1	0.0000	582	107	205	350
00	smote	down	120.1	0.0000	502	107	200	550
33	RF	CART	4.2	0.0403	777	120	192	155
00	smote	smote	1.2	0.0100		120	102	100
33	RF	CART	710.9	0.0000	83	49	263	849
	smote	rose						0.00
33	RF rose	XGB	375.6	0.0000	325	576	264	79
		none						
33	RF rose	XGB up	370.5	0.0000	318	586	254	86
33	RF rose	XGB	294.1	0.0000	321	497	343	83
		down						
33	RF rose	XGB	379.7	0.0000	338	551	289	66
		smote						
33	RF rose	XGB	270.2	0.0000	356	395	445	48
		rose						
33	RF rose	CART	391.8	0.0000	311	624	216	93
		none						
33	RF rose	CART	265.5	0.0000	314	480	360	90
		up						
33	RF rose	CART	146.4	0.0000	271	418	422	133
		down						
33	RF rose	CART	375.3	0.0000	328	569	271	76
		smote						

33	RF rose	CART rose	248.1	0.0000	120	12	828	284
33	XGB	XGB up	0.0	0.8699	828	76	267	73
	none	1						
33	XGB	XGB	22.6	0.0000	711	107	236	190
	none	down						
33	XGB	XGB	0.6	0.4412	793	96	247	108
	none	smote						
33	XGB	XGB	47.0	0.0000	590	161	182	311
	none	rose						
33	XGB	CART	4.4	0.0354	795	140	203	106
	none	none						
33	XGB	CART	35.2	0.0000	688	106	237	213
	none	up						
33	XGB	CART	110.7	0.0000	594	95	248	307
	none	down						
33	XGB	CART	0.0	0.8616	751	146	197	150
	none	smote						
33	XGB	CART	686.6	0.0000	87	45	298	814
	none	rose						
33	XGB up	XGB	23.8	0.0000	709	109	231	195
	110D up	down	-0.0			100	-01	100
33	XGB up	XGB	1.0	0.3234	796	93	247	108
	110D up	smote	1.0	0.0201		00		100
33	XGB up	XGB	47.2	0.0000	583	168	172	321
	110D up	rose				100		0-1
33	XGB up	CART	3.3	0.0684	784	151	189	120
		none						
33	XGB up	CART	36.7	0.0000	687	107	233	217
	110D up	up				101	-00	
33	XGB up	CART	105.8	0.0000	580	109	231	324
	or	down						
33	XGB up	CART	0.1	0.7259	754	143	197	150
		smote						
33	XGB up	CART	684.8	0.0000	84	48	292	820
	110D up	rose	00110			10		0-0
33	XGB	XGB	15.3	0.0001	693	196	230	125
	down	smote	10.0	010001		100	-00	
33	XGB	XGB	9.2	0.0024	548	203	223	270
00	down	rose	0.2	0.0021	010	200		210
33	XGB	CART	38.6	0.0000	702	233	193	116
~~	down	none						110
33	XGB	CART	1.5	0.2267	625	169	257	193
~~	down	up				100		100
33	XGB	CART	39.9	0.0000	548	141	285	270
	down	down					_00	210

33	XGB	CART	15.6	0.0001	663	234	192	155
	down	smote						
33	XGB	CART	609.4	0.0000	90	42	384	728
	down	rose						
33	XGB	XGB	38.3	0.0000	575	176	179	314
	smote	rose						
33	XGB	CART	7.1	0.0078	769	166	189	120
	smote	none						
33	XGB	CART	26.5	0.0000	675	119	236	214
	smote	up						
33	XGB	CART	93.8	0.0000	578	111	244	311
	smote	down						
33	XGB	CART	0.2	0.6831	746	151	204	143
	smote	smote						
33	XGB	CART	682.8	0.0000	92	40	315	797
	smote	rose						
33	XGB	CART	69.5	0.0000	602	333	160	149
	rose	none						
33	XGB	CART	4.2	0.0416	560	234	259	191
	rose	up						
33	XGB	CART	8.1	0.0045	490	199	294	261
	rose	down						
33	XGB	CART	44.9	0.0000	590	307	186	161
	rose	smote						
33	XGB	CART	532.7	0.0000	83	49	444	668
	rose	rose						
33	CART	CART	74.5	0.0000	733	61	248	202
	none	up						
33	CART	CART	128.3	0.0000	578	111	198	357
	none	down						
33	CART	CART	4.4	0.0356	761	136	173	174
	none	smote						
33	CART	CART	683.5	0.0000	63	69	240	872
	none	rose						
33	CART	CART	30.5	0.0000	564	125	325	230
	up	down						
33	CART	CART	30.5	0.0000	675	222	228	119
	up	smote						
33	CART	CART	596.9	0.0000	97	35	415	697
	up	rose						
33	CART	CART	94.8	0.0000	567	330	225	122
	down	smote						
33	CART	CART	499.4	0.0000	101	31	524	588
	down	rose						
33	CART	CART	664.0	0.0000	75	57	290	822
	smote	rose						