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Abstract

Manresa Pérez, Adrian; Amorim, Fernanda Araujo Baião (Advisor);
Hamacher, Silvio (Co-Advisor). Machine Learning to Predict
High-cost Hospitalizations. Rio de Janeiro, 2020. 147p. Disser-
tação de mestrado – Departamento de Engenharia Industrial, Pon-
tifícia Universidade Católica do Rio de Janeiro.

Healthcare providers are evolving their management models, developing
proactive programs to improve the quality and efficiency of their health
services, considering the available historical information. Proactive stra-
tegies seek not only to prevent and detect diseases but also to enhance
hospitalization outcomes. In this sense, one of the most challenging tasks is
to identify which patients should be included in proactive health programs.
To this end, forecasting and modeling cost-related variables are among
the most widely used approaches for identifying such patients, since these
variables are potential indicators of the patients’ hospitalization risk, their
severity, and their medical resources consumption. Most of the existing
research works in this area aim to model cost variables from an overall
perspective and predict cost variations for specific periods. In contrast,
this work focuses on predicting the costs of a particular event. Specifically,
this thesis prescribes a solution for identifying high-cost hospitalizations,
to support health service managers in their proactive actions. To this
end, the Design Science Research (DSR) methodology was combined
with the Data Science life cycle in a real scenario of a health consulting
company. The data provided describes patients’ hospitalizations through
their demographic characteristics and their medical resource consumption.
Different statistical and Machine Learning techniques were used to predict
high-cost hospitalizations, such as Ridge Regression (RR), Least Absolute
Shrinkage and Selection Operator (LASSO), Classification and Regression
Trees (CART), Random Forest (RF), and Extreme Gradient Boosting
(XGB). The experimental results showed that RF and XGB presented
the best performance, reaching an Area Under the Curve Precision-Recall
(AUCPR) of 0.732 and 0.644, respectively. In the case of RF, the model
was able to detect, on average, 72% of the high-cost hospitalizations
with a 33% of Precision, which represents 78.7% of the total cost gene-
rated by the high-cost hospitalizations. Moreover, the obtained results
showed that the use of prior cost and aggregated variables of resource con-
sumption increased the model’s ability to predict high-cost hospitalizations.

Keywords
Healthcare Cost; Machine Learning; Predictive Model.
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Resumo

Manresa Pérez, Adrian; Amorim, Fernanda Araujo Baião; Hama-
cher, Silvio. Aplicação de Técnicas de Aprendizado de Má-
quina para a Predição de Internações de Alto Custo. Rio
de Janeiro, 2020. 147p. Dissertação de Mestrado – Departamento
de Engenharia Industrial, Pontifícia Universidade Católica do Rio
de Janeiro.

Empresas do ramo da Saúde vêm evoluindo seus modelos de gestão, de-
senvolvendo programas proativos para melhorar a qualidade e a eficiência
dos seus serviços considerando informações históricas. Estratégias proativas
buscam prevenir e detectar doenças precocemente e também melhorar os
resultados das internações. Nesse sentido, uma tarefa desafiadora é identi-
ficar quais pacientes devem ser incluídos em programas proativos de saúde.
Para isso, a previsão e a modelagem de variáveis relacionadas aos custos
estão entre as abordagens mais amplamente utilizadas, uma vez que essas
variáveis sào potenciais indicadores do risco, da gravidade e do consumo
de recursos médicos de uma internação. A maioria das pesquisas nesta área
têm como foco modelar variáveis de custo em uma perspectiva geral e prever
variações de custos para períodos específicos. Por outro lado, este trabalho
se concentra na previsão dos custos de um evento específico. Em particu-
lar, esta dissertação prescreve uma solução para a predição de internações
de alto custo, visando dar apoio a gestores de serviços em saúde em suas
ações proativas. Para esse fim, foi seguida a metodologia de pesquisa De-
sign Science Research (DSR), aliada ao ciclo de vida de projeto de Ciência
de Dados, sobre um cenário real de uma empresa de consultoria em saúde.
Os dados fornecidos descrevem internações de pacientes através de suas ca-
racterísticas demográficas e do histórico de consumo de recursos médicos.
Diferentes técnicas estatísticas e de Aprendizado de Máquina foram aplica-
das, como Ridge Regression (RR), Least Absolute Shrinkage and Selection
Operator (LASSO), Classification and Regression Trees (CART), Random
Forest (RF) e Extreme Gradient Boosting (XGB). Os resultados experi-
mentais evidenciaram que as técnicas RF e XGB apresentaram o melhor
desempenho, atingindo AUCPR de 0,732 e 0,644, respectivamente. O mo-
delo de predição da técnica RF foi capaz de detectar até 72%, em média, das
internações de alto custo com 33% de precisão, o que representa 78,7% do
custo total gerado por tais internações. Além disso, os resultados monstra-
ram que o uso de custo prévio e variáveis agregadas de consumo de recursos
aumentaram a capacidade de predição do modelo.
Palavras-chave

Custo em Saúde; Aprendizado de Máquina; Modelos Preditivos.
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1
Introduction

Organizations have been serving as sources of large amounts of data
with the capability to transform their entire business processes. This data
provides insights on processes behaviors and could serve as a guide to create
business value and to assist decision-making processes [3]. Particularly the
Healthcare industry manages an extensive amount of data from a wide variety
of sources, such as traditional interviews, clinical and laboratory processes,
medical equipment, hospital bills, pharmacy deliveries, insurance companies,
wearable devices for telemonitoring, etc. [4].

In the last decades, data-driven approaches and techniques (such as
forecasting, optimization, simulation, machine learning, process mining, etc.)
have increasingly become the focus of academic and corporate investigations
in the Health field because of its capacity to provide enhanced visibility of the
operations and to improve performance [5, 6].

In this direction, current healthcare systems face a variety of challenges,
including financial demands for cost optimization and proper use of resources,
aging populations, and an always increasing demand for health services.
Proper use of the vast amount of data generated in health organizations is
becoming the approach for meeting these challenges, and thus improve the
quality and efficiency of their services [7]. Furthermore, healthcare systems
are changing their vision of health models from a reactive to a proactive
approach [8], with the objective of improving patient health, reduce the risk of
hospitalizations, shorten the in-hospital stay, avoid readmissions and optimize
the allocation of available resources. The proactive strategy attempts to create
a commitment between caregivers and patients, where both take an active role
in managing the patient’s health. For that, the healthcare providers should
design health models to prevent and early detect diseases, and also improve
the hospitalization’s outcomes. Moreover, the continuous increase of health
expenses is one of the most critical problems in the world [9–11], especially
when it is not reflected in better health but is caused by inefficient services
as unnecessary medical tests, frequent readmissions and high-cost of patented
prescription drugs [12,13].

One of the most challenging tasks to address these problems is to
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Chapter 1. Introduction 16

correctly identify patients who may incur high expenses and thus should be
part of a proactive health plan to receive appropriate care and to optimize
the allocation of existing resources [14]. The selection of this group of people
involves the analysis of a large number of variables and data available for
each patient. This overwhelming amount of information makes this task a real
challenge for doctors and health managers, compromising the effectiveness of
this critical decision [8]. A first step in identifying the target patients could
be to analyze the patient’s expected cost since it has been widely used as an
indicator of the patient severity, of a high complexity hospitalization, or of
high resource consumption [9].

In healthcare systems, costs may refer to the overall cost of a patient
during a determined period, or the specific cost a patient will generate when
hospitalized. The latter refers, for example, to the value charged to a patient (or
insurance company) when admitted into the hospital to perform a scheduled
surgery. In both cases, cost values present high variability caused by a variety of
factors, such as the type of procedure, insurance plan, hospital characteristics,
patient medical record, etc. In this context, forecasting and modeling cost
variables are valuable but also challenging tasks, which results are of huge
importance for all actors involved. For the beneficiaries, knowing their future
health expenses would allow them to make a better choice of insurance plans
[15], and even guide them to adopt proactive strategies to reduce health risks.
Health service providers will benefit by identifying highly complex patients and
thus allow them to take preventive actions and prioritize the limited medical
resources [16]. Also, the insurance providers will improve accountability and
their business planning to attract new members and also manage the existing
ones via preventive care [10].

The present dissertation is developed in conjunction with a Health
Consulting organization that serves as a connection for diverse corporations
with healthcare providers and health insurers. The organization’s goals are to
reduce waste of resources and enhance financial health, acting as an efficient
and centralized healthcare manager. One of their strengths is the ability to
customize their final products. For that, they have improved their capability
to obtain the raw data generated by the involved companies and transform it
into valuable information, thus aggregating value to their services.

Recently, the organization got involved in designing a proactive plan, for
which the identification of suitable patients is a key issue. For the organization,
there are two situations of interest to implement the named plan, with a
long and short-term vision. The first, as a strategic plan, seeks to analyze
the whole population within the organization and is focused, for example,
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Chapter 1. Introduction 17

on detecting and treating chronic diseases. In contrast, the second situation is
more operational and emerges at the moment that a patient is already admitted
to a hospital institution, which is the focus of the present research. Here the
problem is to identify patients deserving special attention to avoid unexpected
behaviors in their health condition and increased complexity of the medical
procedure.

Thus, the problem addressed in this research is "how to detect an unex-
pected high-cost of a patient treatment during his/her hospitalization"? Hence,
the main objective of this dissertation is to predict, at the moment of a hospi-
talization, which patients may incur an unexpected high-cost hospitalization.

For this purpose, statistical and Machine Learning (ML) models were
considered to predict high-cost hospitalizations. The study was performed on
a database of patients’ hospitalizations provided by the organization, which has
information about their demographic characteristics, their record of medical
resource consumption for three years before the last hospital admission, and
the motive and procedures of it. The complementary objectives of this research
are:

– Perform a literature review to identify the main concepts and variables
used in previous researches to model healthcare costs and medical
resource consumption.

– Define the variable that describes unexpected cost in this research
context.

– Implement statistical and ML techniques to model healthcare costs and
to make predictions.

This research contributes primarily to the development of a predictive
model that is both relevant and rigorous. Relevant because it prescribes a
solution to a real problem in a notable context and rigorous because it has a
foundation supported in the existing literature, which provides the necessary
knowledge to conduct the research. Furthermore, it contributes to the academic
field by addressing the cost modeling task from a different perspective, not
considering the continuous cost variable in a temporal fashion, but instead
forecasting whether and unexpected costs can occur in a specific event. Besides,
the work method followed in this research combines the application of the
Design Science Research (DSR) methodology with the Data Science life cycle
in a real scenario of a health consulting organization, thus extending the
boundaries of the Design Science (DS) theory and practice. Moreover, the
empirical evaluation of statistical and ML techniques in a Brazilian database
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Chapter 1. Introduction 18

of patient’s in-hospital admissions is a novel approach for predicting high-cost
hospitalizations in the country.

Following Chapter 1, this thesis is structured as follows: Chapter 2
presents the main status and contributions in the literature to model health-
care costs and medical resource consumption; Chapter 3 describes the scien-
tific methodology followed in this research to develop a Data Science approach
for predicting high-cost hospitalizations; in Chapter 4 the results and proce-
dure explaining the ML model’s development is described; finally, Chapter 5
presents conclusions and future works.
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2
Related Works on Modeling Healthcare Cost and Resource
Consumption Variables

This chapter describes the research works found in the literature regard-
ing the development of predictive models in the healthcare field, specifically
to model cost and resource consumption data.

We first explain how the perspectives of previous investigations in this
field differ from the methodology followed by the present study. Despite the
different possibilities to address the problem, past work findings still contribute
to the base knowledge of this dissertation. In this sense, the different types of
explanatory variables used and their characteristics, the statistical and ML
techniques, as well as the methods followed to evaluate them, are summarized.

The related studies reviewed were selected from two recent systematic
literature reviews on the topic. Wammes et al. [17] reviewed studies on the
characteristics and healthcare utilization patterns of high-cost users, whereas
Morid et al. [16] analyzed supervised learning methods used for predicting
healthcare costs. From a total of 60 papers analyzed by both, 14 were selected
after filtering out the works that did not focus on cost prediction, i.e., the ones
that just intended to describe the characteristics of high-cost patients.

2.1
Perspectives when modeling healthcare cost variables

As stated in Chapter 1, this thesis prescribes a solution for the demand
of a Health Consulting organization, which aims to create a proactive plan
that aggregates value to their services. The proposed solution seeks to model
healthcare costs as the methodology to identify suitable patients that will
integrate the named plan. In this context, the objective is to build a predictive
model to detect high-cost hospitalizations when a patient is already admitted
to a hospital, that is, the cost modeling procedure is intended for a specific
event. In contrast, related works which also model healthcare costs do not look
to a particular event in the patient’s record, but intend to forecast whether they
will increase their expenses for a defined period [9,18]. For example, Sushmita
et al. [19] aim to predict health costs in four future scenarios (3, 6, 9, and 12
months). Lahiri et al. [15] predict whether or not the individual’s healthcare
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Chapter 2. Related Works on Modeling Healthcare Cost and Resource
Consumption Variables 20

expense will rise in the following year.
Moreover, previous investigations model the cost variable as a numeric

value or create discrete variables that characterize the problem under study.
The study of Duncan et al. [10] exemplify the use of the continuous cost
variable, where the objective is to predict next year’s total expenditures using
last year’s information. On the other hand, the discretization of the cost
variable is a characteristic of researches aiming to identify likely patients to
incur in high-expenses, where a classification model is more appropriated.
Discretization approaches go from binary split to cost bucketing [11]. In
the later, researchers aim to isolate high-cost hospitalizations by grouping
observations in a manner that the total sum of the hospitalizations’ cost within
each bucket is nearly the same. The bucketing approach implemented by Guo
et al. [14] intends to group patients by degree of severity considering their
health expenses, and then asses the risk of a patient transition from a less
costly bucket to a higher one.

2.2
Features used to explain healthcare cost variables

Different types of variables have been used as inputs of predictive
models to explain the behavior of costs in the healthcare field. Variables
encountered in this context relate to patients’ medical conditions and different
types of medical resource consumption, where the latter present challenging
characteristics regarding their data distribution. Resource consumption data
is typically sparse (mostly zero-valued indicating no use of resources), with
few observations presenting extreme values. In other words, this data is
characterized by highly non-Gaussian distributions, with a median value nearly
to zero and a heavy right-hand tail. This poses great difficulties to classical
statistical methods, which has led to novel statistical approaches and the
introduction of more advanced ML techniques [19].

Clinical variables have been used to show the effect of specific character-
istics and patients’ conditions on cost prediction [16], and also Kuo et al. [20]
tested pharmacy-related features. In addition, since the main objective of cost
predicting scenarios is to propose a correct medical intervention, models with
higher interpretability of the medical variables are preferred in the literature.
On the other hand, there have been studies that confirm relevant results using
features of prior costs to predict future expenses [11,19,21]. Cost information
could give a global picture of the patient’s health, capturing its behavior of
health resource consumption and medical conditions. Table 2.1 shows examples
of prior cost variables used in the literature.
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Table 2.1: Examples of past cost variables used in the literature to predict
future costs.

Source Past cost inputs

Duncan et al. [21]

Professional costs
Pharmacy costs
Outpatient costs
Inpatient costs

Sushmita et al. [19] Total cost
Frees et al. [22] Total cost
Kuo et al. [20] Total medication cost

Bertsimas et al. [11]

Monthly cost
Total pharmacy cost
Total medical cost
Total cost
Total cost in the last 6 months
Total in last 3 month
Number of months above average
Cost of the highest month

The work of Bertsimas et al. [11] was the earliest research found that
intends to model past cost variables by creating a set of related features to
capture hidden patterns in cost time series. Their objective was to reflect in
the variables not only the aggregated cost value but to model behaviors of
past hospitalizations, indicating whether there was a constant increase in the
resource consumption or if the temporal series present abrupt changes that may
indicate an acute event. Recently, Morid et al. [23] developed more advanced
approaches to model this type of behavior in past hospitalizations using their
corresponding cost. The authors argue that there may be two situations of
interest, one where a patient shows a constant high-cost consumption, which
may indicate the presence of a chronic condition and thus is likely to incur
high-cost in the future. The second situation refers to patients with a low-
cost profile who suddenly have a spike in their temporal cost series due to an
exceptional situation (e.g., accident or pregnancy), while still maintaining a
low risk of high future costs. In these conditions, relying solely on aggregated
values of past costs may prevent the correct identification of these patterns.
For that, they proposed a method to extract temporal patterns from a patient
time series data using change point detection methods [24].
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2.3
Statistical and Machine Learning techniques applied to health cost pre-
dictions

Different data-driven approaches to model health costs have been used
in the literature, such as rule-based methods, statistical models, and machine
learning techniques [16]. Rule-based models require a vast knowledge domain of
the theme under study and are used mostly to create risk-based models [19].
On the other hand, statistical models and machine learning algorithms are
powerful tools for detecting the relationships between the diverse variables
involved and have been widely used to model healthcare costs from different
perspectives.

Table 2.2 presents a review of statistical and ML techniques used in prior
studies to predict high-cost hospitalizations, detailing the objectives pursued,
the approach followed to define the outcome, the set of variables used to explain
healthcare cost, and the evaluation metrics employed to assess predictive model
performance.

In general, the objectives pursued refer to model cost from a temporal
perspective, where predictive models are trained on the data related to the
oldest events, and then tested in the newest set of samples. Moreover, the
definition of high-cost patients is made by analyzing the cost distribution
of the global population under study and defining patients included in the
highest percentiles as such. On the other hand, a very heterogeneous set of
predictors have been tested to explain healthcare cost, including demographic
and administrative information, medical diagnosis and resource consumption,
medical check-ups, insurance profiles, and self-reported health status.

A variety of predictive techniques have been employed, with the oldest
researches relying on the statistical ones aiming to assess the relationship
between the predictors and the outcome variable. In contrast, novel approaches
use ML techniques, taking advantage of their predictive power to forecast
healthcare expenditures. In the two more recent works reported in this study,
the results obtained with the ANN and the RNN outperforms the other
techniques [9, 18]. Finally, evaluation metrics used in the literature intends
to measure model performance from an overall perspective (e.g., AUROC and
Accuracy) and also from a cost view, using variations of the classic metrics
specified in terms of costs (e.g., Cost Capture (CC)).

In summary, the related works found in the literature and presented in
this Chapter, address the healthcare cost predictions from a perspective dif-
ferent from the research objective of this study. They focus on the temporal
variations of health expenses and medical resource consumption. In contrast,
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Table 2.2: Summary of related works on predicting high-cost in the healthcare
field.
Paper Objectives Response Vari-

able
Type of Vari-
ables

Statistical and ML
Techniques

Evaluation Metrics

Kim and
Park [9]

Predict high-cost
patients

Patients whose
costs are in the
upper 10% of
the subsequent
years expenditure
distribution

Medical check-up,
insurance eligibil-
ity, diagnosis, and
health care uti-
lization

Logistic Regression
(LR), Random Forest
(RF), Artificial Neural
Network (ANN)

Area Under the Receiver
Operating Characteristic
Curve (AUROC), Cost
Capture (CC) (equals to
Sensitivity in terms of
cost)

Yang et al.
[18]

Predict future
health expendi-
tures in 4 time
scenarios (1, 3, 6,
12 month)

The upper decile
of the population
cost distribution

Administrative
insurance claims
from the Medicaid
program

Linear Regression
(LR), Least Abso-
lute Shrinkage and
Selection Operator
(LASSO), Gradient
Boosting Machine
(GBM), Recurrent
Neural Network
(RNN)

R2, Root Mean Square
Error (RMSE)

Tamang et
al. [25]

Predict future
high-cost patients
within 1 year
in the upper
decile of the cost
distribution

The upper decile
of the population
cost distribution

Demographic,
healthcare utiliza-
tion, procedures
codes, pharmacy

LR, Elastic-net (EN) CC

Chang et
al. [26]

Predict patients
being consistent
high-cost users

Patients with
plan-specific in
the top 20% of
medical costs
across 2008 and
2009

Demographic,
costs, diagnosis
codes, procedures
codes, pharmacy

LR AUROC, Sensitivity,
Positive Predicted Value
(PPV), Negative Pre-
dicted Value (NPV)

Duncan et
al. [10]

Predict next-year
total costs

Continuous cost
variable

Demographic,
procedures, claim
cost

LR, LASSO, Mul-
tivariate Adaptive
Regression Splines
(MARS), RF, Regres-
sion Tree (RT) M5,
GBM

R2, Trunc R2, Mean
Absolute Error (MAE),
Trunc MAE

Robst [27] Predict future
persistent high-
cost cases for 5
scenarios in a
6-year time frame

Individual costs
being in the top
1% of expenditure
distribution

Demographic, di-
agnosis codes, in-
surance payments

LR Accuracy

Boscardin
et al. [28]

Predict new high
cost individuals

Total annual costs
within the top 10
% of the popula-
tion

Demographic,
self-reported
health status,
health services use

Step-wise multivari-
able LR

AUROC

Sushmita
et al. [19]

Predict future cost
value in 4 scenar-
ios (3, 6, 9, 12
month)

Continuous cost
variable

Demographic,
procedures, previ-
ous cost

RT M5, RF regression MAE, RMSE

IzadShenas
et al. [29]

Identify high-cost
patients

Patients in the
top 5 percentile
among the general
population

Medical
Expenditure
Panel Survey
(MEPS)*

DecisionTrees (DT)
(C5.0 CHAID), ANN

Accuracy, G-mean, AU-
ROC

Lahiri,
Agar-
wal [15]

Predict whether
patients may in-
crease healthcare
expenses for the
subsequent year

Continuous cost
variable

Demographic,
procedures, phar-
macy, previous
cost

GBM, Conditional
Inference Tree (CIT),
ANN, Support Vector
Machine (SVM), LR,
Naive Bayes (NB)

False Negative Rate
(FNR), Flse Positive
Rate (FPR)

Fleishman
and Co-
hen [30]

Predict whether a
patient will incur
in high medical
expenditures fos a
specific year

Patients in the
upper expenditure
decile

MEPS LR Bayesian information cri-
terion (BIC), AUROC

Bertsimas
et al. [11]

Classify cost
bucket and esti-
mate next year
total costs

Continuous cost
variable & cost
bucketing (5
buckets equal
total cost)

Demographic,
procedures, previ-
ous cost

DT, Clustering Hit Ratio, Absolute Pre-
diction Error, R2

Cohen et
al. [31]

Predict the likeli-
hood of incurring
high levels of med-
ical expenditures
in a subsequent
year

Patients in the
top decile of
the expenditure
distribution

MEPS LR Accuracy, Sensitivity,
Specificity

Crawford
et al. [32]

Predict increase of
medical costs for
specific diseases in
a year

Patients in the top
15% of the expen-
diture distribution

Demographic,
healthcare costs,
medical events

ANN AUROC, Sensitivity,
Specificity

*: https://www.ahrq.gov/data/meps.html
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as stated in the Introduction, this research aims to identify whether a patient
would incur an unexpected high-cost hospitalization; thus, the focus is on a
specific event. Moreover, past studies use as response variable either the contin-
uous cost variable or discretizes it to label high-cost patients. The discretization
approaches consider the entire population for the high-cost definition; however,
this study refines this definition considering high-cost hospitalizations within
groups of medical procedures with common characteristics.
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3
Scientific Methodology and Theoretical Foundations

This chapter describes the scientific methodology followed in this re-
search. A detailed description of the steps performed to conduct scientific re-
search is provided. Moreover, the work method adopted to guide the study is
outlined, including theoretical foundations on the techniques applied.

3.1
DS Paradigm

There are different paradigms to guide scientific research which can be
classified according to their purpose and research goals [33]. On the one hand,
Natural and Social Sciences (known as explanatory science [34]) have as their
mission the search for the truth, aiming to describe, explain, and predict
to advance the knowledge in a given area [35]. Natural Sciences are those
motivated to understand complex phenomena, to discover and to explain their
behavior (e.g., Physics, Chemistry, and Biology); while Social Sciences seek to
describe and reflect on human beings, their actions and social relations (e.g.,
Anthropology, Economics, and Politics).

On the other hand, the Design Science(DS) paradigm emerges to guide
research studies aiming to find solutions to given problems or to design and cre-
ate artifacts that improve the daily routine of professionals [33]. DS prescribes
solutions to real problems in different domains (e.g., Medicine, Engineering,
and Management), thus reducing the existing gap between theory and prac-
tice [34]. Furthermore, DS emphasizes the connection between knowledge and
practice by showing that it is possible to produce scientific knowledge by de-
signing useful artifacts. In this sense this paradigm is intended for situation
where studies focused in the design, conception and problem solving cannot
rely solely on the paradigms of natural and social sciences. This limitation
occurs because the goals of traditional science are to explore, to describe and
to explain, but in this scenario the objectives are to prescribe solutions and
methods for solving a given problem or designing new artifacts [34]. In this
context, the DS paradigm was adopted in this research work as the scientific
methodology to guide the development of a Machine Learning (ML) model to
automatically predict high-cost hospitalizations. In order to guarantee the re-
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liability of results, the main points to conduct this research work are described
as follows, following the structure proposed by Dresch et al. [33].

The reasons and objectives of the research are the starting point and,
in this context, the motivation comes from the need to give a solution
to a practical problem, and it is concerned with prescribing solutions and
designing artifacts. These steps were defined in the introduction, establishing
the motivation, study problem, and the research goals.

The next step defines the scientific methods that will help to reach
the proposed goals. The abductive method is considered a creative process,
searching for explanatory hypotheses to a given phenomenon or situation, thus
allowing the introduction of a new idea [33]. Research under the DS paradigm
relies on the abductive scientific method when proposing solutions; however,
it is not restricted to it. For example, when the researcher uses previous
knowledge to build and evaluate the artifact, the deductive method [36] could
be more suitable. Then, the research conducted could be guided by more than
one scientific method, depending on the current step and goals being developed.

Once the scientific approach is established, it is time to define the research
method, which ensures that the investigation will provide a solution to the
research problem. The Design Science Research (DSR) method arises under
the DS paradigm as a way to create knowledge in the form of a prescription
(when solving a particular real problem) or a design (when building a new
artifact).

DSR can be used to create and evaluate design artifacts (such as
frameworks, models, methods and instantiations) with scientific rigor [37]. It
aims to solve problems which are relevant to practice, while the development
and evaluation process should contribute to the state of the art. According
to Hevner [1], DSR is inherently iterative and comprises three core research
cycles (Design, Relevance and Rigor), as illustrated in Figure 3.1. The main
tasks are developed around the central Design Cycle, where the artifacts are
built, evaluated, and refined using the succeeding feedback. The Relevance
Cycle constitutes a bridge between the environment (people, organizations,
and technology) and the DS activities, where the environment provides the
opportunities and requirements to design the artifact, and also establishes the
acceptance criteria for the evaluation of the research result. The Rigor Cycle
relates to the scientific foundations, experience, and expertise that compose the
base knowledge of the research project. Also, the Rigor cycle ensures that the
designs produced are research contributions, hence guaranteeing its innovation.

The last step of the DS paradigm is to compose the work method, which
is the methodological guidelines with the logical steps to reach the goals of the
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Figure 3.1: DSR cycles [1].

study. This method provides clarity and transparency to the research process
and ensures its later reproducibility. In the context of the present research, the
work method will represent the life cycle of a Data Science project, and will be
based on a framework to conduct a predictive analytic (data mining) process,
the CRoss Industry Standard Process for Data Mining (CRISP-DM) [2]; which
will be detailed in the following Section.

3.2
Data Science Life Cycle

Different approaches have already been proposed to group data science
activities within frameworks that standardizes the steps of the entire process.
Examples of the most comprehensive frameworks are the Knowledge Discov-
ery in Databases (KDD) process by Fayyad [38], the Sample, Explore, Modify,
Model, Assess (SEMMA) process from the SAS Institute [39], and the Cross
Industry Standard Process for Data Mining (CRISP-DM) [40]. These frame-
works have the common purpose of guiding the development of methods for
making sense of raw data by applying data-mining techniques for pattern dis-
covery and extraction [38]. Hence, due to the generality of these approaches,
they could be considered equivalent to the purpose of this research. In this
sense, the CRISP-DM process, defined by its creators [2] as "... a compre-
hensive data mining methodology and process model that provides (...) with a
complete blueprint for conducting a data mining project", was followed.
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CRISP-DM phases are shown in Figure 3.2, where it is important to
notice the cyclical nature and the interactions between the core stages of the
process, allowing the inclusion of the new experiences gained during the design
process to refine and trigger further business questions.

Data 
understanding

Business 
understanding

Deployment

ModelingEvaluation

Data
preparation

Data

Figure 3.2: Data Science Life Cycle [2].

3.2.1
Business understanding

This phase focuses on finding and understanding the questions of inter-
est from a business perspective, and transforming these demands into a data
mining problem definition. This first phase is related to the DSR’s Relevance
Cycle, due to the information exchange with the environment (organization
and stakeholders), and is decisive to make all the subsequent decisions during
the project. From this cooperation, the researcher needs to compose a set
of success criteria (metrics) to know what a "good" model will look like and
thus ensure that the answers to the problem would assist a decision-making
process. Within this phase, there are three tasks described next.

a) Determine business objectives
Make the main objectives of the business to be pursued explicit, as well

as the related questions that the organization wishes to address and thus avoid
giving answers to incorrect questions.
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b) Evaluate the situation
This task includes planning the resources available, discovering which

data will be accessible to meet the proposed goals, and listing all the assump-
tions coming from the characteristics of the data.

c) Determine the data mining goals
The business objectives are transformed into data mining goals, stating

what is going to be done, how, and with which data. If this goal transformation
is not successful, the business objectives should be redefined. The success
measure for the data mining results should also be defined, indicating the
metrics and levels of acceptance.

3.2.2
Data Understanding

The data understanding phase includes collecting the available data,
describing its characteristics to get familiar with it, discovering initial insights
and identifying data quality issues.

This phase interacts with the previous phase (Business understanding)
as it is possible to reformulate or refine research questions and objectives after
getting familiar with the available data.

It is also the beginning of the so-called Internal Cycle of Data Science [41]
(which also includes Data Preparation and Data Modeling). In this research
context, the Internal Cycle of Data Science is the core process of the Design
Cycle within the DSR methodology.

The Data Understanding phase comprises the tasks explained next.

a) Collect and describe data
Here the first step is to load and integrate the data coming from different

sources and to report any issue encountered in the process, to avoid future
errors on replications of the project. Once the data is accessible, the analyst
should describe the properties of the acquired data, examining the format,
the number of records and variables, in order to check whether it satisfies the
project specifications.

b) Explore data
This step comprises a deep understanding of all variables in the data

set. The analyst elaborates a report outlining the findings of the exploratory
analysis and potential hypotheses, which will also serve as a guide to define
the actions to be undertaken in the next phase (Data Preparation). Related
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tasks are the analysis of descriptive statistical metrics for individual variables,
assessment of relationships (correlations) between pairs of variables, and the
use of visual techniques (graphs, tables, histograms) to analyze more complex
relationships between variables.

The descriptive analysis of each variable is carried out by calculating the
following statistics regarding their data distribution: for quantitative variables,
the median and interquartile range (i.e., the difference between 1st quartile and
the 3rd quartile) or mean and standard deviation; for the qualitative variables,
the frequency and proportions are calculated.

A correlation analysis evaluates the relationship between pairs of vari-
ables. In the present research, for continuous variables, the correlation was
measured using the Spearman’s rank correlation coefficient (rs) [42], which is
the Pearson’s product-moment correlation coefficient but between rank vari-
ables (rx, ry), thus being robust when extreme values are present and do not
make any assumption of the data distribution [43]. rs is defined as:

rs = cov(rx, ry)
σ(rx)σ(ry)

(3-1)

where cov(rx, ry) is the covariance [44] of the rank variables and σ(rx), σ(ry)
their standard deviation. rs is a measure of the strengths and direction of the
monotonic1 relationship between two variables and can take values from -1 to
1, where the closer rs is to zero, the weaker is the association between the
ranks.

The association between categorical variables, in the present research,
was measured using the Cramér’s V coefficient (Vc) [45], which is an extension
of the phi coefficient (ϕ)2 for categorical variables with more than two classes.
Vc measures the strength of the association between two variables after
conducting the chi-squared (χ2) test of independence. Vc ranges from 0 to
1, with higher values indicating higher strengths of association, and is defined
as [46]:

Vc =
√

ϕ2

L− 1 (3-2)

where ϕ2 = χ2/N (N is the sample size), and L is the smaller value of either
the number of columns or the number of rows of the contingency table.

After the correlation analysis, highly-correlated variables are further
investigated using visualization techniques such as scatter plots (to display

1It is less restrictive than linear
2Pearson’s product-moment correlation coefficient for binary variables
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relationships between numerical variables) or bar plots (to depict categorical
variables proportions).

c) Assess data quality
At this point, the analyst examines the quality of the data. The previous

task could point to some problems such as the presence of outliers, attributes
with redundant meanings or missing values. Outliers, in this case, refer to an
observation or set of observations which appears to be inconsistent with the
remainder of the data distribution typically caused by imputation or human
errors, and consequently, need to be removed. Moreover, it is also necessary to
check the plausibility of values and any suspicious data, such as miscodes or
spelling mistakes. All issues should be reported and discussed with the business
stakeholders to agree on the treatment that they will receive.

When predicting cost

3.2.3
Data Preparation

The data preparation phase comprises all activities to construct the
data set to be mined, using the knowledge obtained in the previous phases.
The objective is that the final data set meets all the input requirements of
the modeling techniques to be used in the next phase (Data Modeling) of the
Data Science life cycle. It is also possible to cycle back and forth between data
understanding and data preparation activities as required by learning more
of the data set and performing additional operations on it. Tasks within this
phase include selecting, cleansing, constructing, integrating and formatting
data.

a) Select data
In this task, the goal is to select both records and attributes that will

be used in the posterior analysis. The selection criteria are based on the data
mining goals, as well as on quality and technical constraints. All explanations
that justifies data inclusion or exclusion should be reported and validated by
business stakeholders.

In addition, this task applies sampling techniques following two purposes:
to split the data set into subsets for model learning and for model evaluation,
and to overcome class imbalance issues due to the occurrence of rare events.

The objective of splitting the data set is to obtain fair evaluations of
the model’s performance, by ensuring that observations used for evaluation
were not considered during the training phase. An effective approach is to
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partition the whole data set into three parts: training, validation, and test
sets. The training set is used for model learning, during which a validation
procedure is conducted (using the validation set) to assess the performance
of ML models (during the hyper-parameter tuning and model selection) and
to avoid overfitting the model to the training data. Then, the test set is used
for evaluating the learned model, to estimate the effectiveness of the model on
previously unseen data.

This approach has some drawbacks, especially when the sample is not
large. Several authors [47–49] have pointed out that the use of a test set limits
the number of examples for the training process, and its size may not have
sufficient power or precision to make reasonable judgments.

In this context, resampling techniques emerge as a solution for obtaining
honest estimates of the model’s performance during the training phase without
requiring and extra test set. Generally, resampling techniques operate in a
repeated process, where a subset of samples is used to fit a model, and the
remaining samples are used to measure its efficacy. Once the iterations are
finished, the results are aggregated and summarized. Examples of resampling
techniques are the k-fold Cross-Validation (CV) [48], Monte Carlo CV [50]
and the Bootstrap [51], differing on how subsamples are chosen. Deciding the
resampling technique could be a tough task, often relying on the bias-variance
trade-off. The bias is the difference between the average estimation and the
true values, while the variance relates to uncertainty (noise); it is the effect of
obtaining different results when repeating the resampling procedure.

The k-fold CV (and its variant, repeated k-fold CV) presents good bias
and variance properties, and reasonable computational cost [52, 53]. In the k-
fold CV procedure, the samples are randomly partitioned into k sets (folds) of
approximately equal size. Then, 1−1/k of the samples are used to fit the model,
and the remaining 1/k samples (not used for training) is predicted and used to
estimate performance measures. This procedure is repeated k times, using each
fold for prediction exactly in one of the k iterations. Then the error estimations
are summarized, usually providing the mean and standard deviation. The
repeated k-fold CV follows the same procedure, but it is repeated a defined
number of times, aiming to reduce the variance.

Another aspect to consider when using resampling techniques is the way
the samples are selected to be part of each set. Random sampling is the
usual technique, but in some cases it is crucial to account for the outcome
variable distribution when splitting the data, meaning that it is desirable to
make the training and validation sets as homogeneous as possible. A solution
is to use stratified random sampling, which applies random sampling within
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subgroups; e.g., the outcome classes in classification problems, and in regression
problems, the numeric response could be broken into similar groups, and then
the randomization is executed within these groups.

As pointed out before, sampling techniques are also used to deal with
class imbalance problems. A significant difference in the relative frequencies of
the classes can have a notable impact on the effectiveness of the model because
it tends to focus on the prevalent class and to ignore the rare events. There
are different approaches to overcome class imbalance, including altering the
probability cutoff when making class predictions and modifying case weights
[54] and prior probabilities [55] during the training process. Moreover, when
the class imbalance problem is known in advance, a useful method to reduce
its impact is to sample the training set to have roughly equal event rates (i.e.,
to balance the class frequencies). Solutions following this approach include a
variety of techniques to sample the data, such as random oversampling (up-
sampling) the rare class, random undersampling (down-sampling) the prevalent
class, and generating new artificial examples with some similarities with the
observations belonging to the minority class. Both up-sampling and down-
sampling approaches present drawbacks: undersampling discards valuable data
by reducing the sampling size, while oversampling may increase the likelihood
of overfitting since observations are duplicated [56]. Figure 3.3 a) illustrates
the behavior of these techniques.
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Figure 3.3: Resampling technique for imbalanced data. a) up-sampling and
down-sampling. b) SMOTE and ROSE
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In order to address these disadvantages, other approaches create syn-
thetic observations by creating a set of artificial events of the minority class
instead of simply increasing their multiplicity, hence having the desired effect
of causing the classifier to identify larger decision regions associated to the
minority class [57], such as the Synthetic Minority Over-Sampling Technique
(SMOTE) [57] and Random Over Sampling Examples (ROSE) [58] (see Fig-
ure 3.3 b)). SMOTE uses both up-sampling and down-sampling, depending
on the class; however, the up-sampling is conducted by creating synthetic
observations. First, it selects a random data point of the minority class and
its K-Nearest Neighbors (KNNs) to create the new observation as a random
combination of the predictors of the selected data point and its neighbors.
Besides, it is possible to down-sample the prevalent class in order to help
balance the training set. ROSE combines oversampling and undersampling
by generating an augmented sample of data (especially the rare class). The
procedure is to draw with equal probability an observation belonging to one
of the two classes and generate a new example in its neighborhood [59]. This
technique ensures that the same attention is addressed to both classes during
the resampling procedure, hence helping the classifier in estimating a more
accurate classification rule. If the training set is sampled to be balanced, the
validation set should not, because it must reflect the imbalance so that honest
estimates of future performance can be computed. Researches on the effective-
ness of using sampling procedures to overcome skewed class distributions agree
that these techniques mitigate the imbalance issue in many cases [60, 61], but
there is no clear winner among the various approaches, as modeling techniques
can react differently to sampling in different data sets.

b) Clean data
Data cleansing techniques aim to solve each quality problem outlined

in the data understanding phase. To do that, the analyst could either select
a clean subset of data (i.e., discard the mistaken observations), drop zero or
near-zero variance predictors across samples (i.e., predictors values constant
or almost constant), apply imputations techniques to estimate missing data or
standardize predictors’ spelling. This task is essential to ensure reliable data
mining results and subsequent analysis.

c) Construct and format data
The next step after getting the data cleaned is to undertake operations

related to developing entirely new records or composing derived attributes
(i.e., feature engineering). New observations may be necessary for scenarios

DBD
PUC-Rio - Certificação Digital Nº 1812856/CA

DBD
PUC-Rio - Certificação Digital Nº 1813286/CA



Chapter 3. Scientific Methodology and Theoretical Foundations 35

where the objectives of the data mining problem and the ML technique re-
quire examples that are not available in the original data. In contrast, derived
attributes are constructed from the existing ones in order to reduce the number
of input variables and to ease the model process. Another possibility is to per-
form single-attribute transformations, which include binning, standardization,
normalization, and creation of dummy variables.

3.2.4
Data Modeling

In the final step of the Internal Cycle of Data Science, various modeling
techniques are selected and implemented. As stated before, due to algorithms’
specific requirements in the data format, it may be necessary to step back to
the data preparation stage. The related tasks are the selection of the modeling
technique, the creation of models, and the assessment of models.

a) Select and build the modeling technique
The first step is to choose and report one or more ML models to address

the problem under study, together with all its requirements and assumptions.
ML techniques can be grouped following different criteria (e.g., their learning
style or their functional similarity, that is, similar methodologies to solve a
problem).

The first grouping criterion is useful to get an idea of the roles of the
input data and the model preparation process, clearly distinguishing what
types of techniques can be used according to the characteristics of the problem.
The most commonly used are supervised and unsupervised learning, but there
are others, such as semi-supervised and reinforcement learning. In supervised
learning, the value of the response variable is known in advance (labeled
data), so the objective is to learn patterns in the data from examples, to be
able to generalize and predict the outcome variable in future observations. In
unsupervised learning, the result is not known beforehand (unlabeled data),
thus there is no predefined target; therefore, its objective is to model the
underlying structure or distribution in the data [62]. On the other hand, ML
techniques can also be grouped by problem categories (functional similarities),
such as classification, regression, clustering, and association rules. According
to this dissertation’s objective, the research can be classified as a supervised
learning problem, precisely a binary classification problem, since the target
variable is categorical with two possibles labels (i.e., high and low-cost).

The specific algorithms chosen3 to solve the problem under study are
3The algorithms were selected guided by those used in the related works, see table 2.2.
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Logistic Regression (LR), Ridge Regression (RR), Least Absolute Shrinkage
and Selection Operator (LASSO), Classification and Regression Tree (CART),
Random Forest (RF) and Extreme Gradient Boosting (XGB). In the following
subsections, these algorithms are described in detail.

– Logistic Regression (LR)

LR estimates the relationship between a dependent categorical variable
Y ∈ {0; 1} and an independent one X. Like ordinary linear regression, it falls
into a larger class of techniques called Generalized Linear Models (GLMs) that
comprise many different probability distributions (named link functions). For
LR, the logistic function is used to meet the characteristics of this problem,
and is defined as [63]:

p(X) = eβ0+β1X

1 + eβ0+β1X
(3-3)

where the term p(X) represents the conditional probability Pr(Y = 1|X), and
β0, β1 are the unknown regression coefficients. In the case of LR, β0 and β1

are estimated using the Maximum Likelihood Estimation (MLE) method [64].
After some manipulations on equation 3-3 we obtain the link function called
logit (log-odds):

ln
(

p(X)
1− p(X)

)
= β0 + β1X (3-4)

where p(X)/[1 − p(X)] is called the odds, and its values range between 0
and ∞ (both exclusive). Values close to the extremes indicate very low and
very high probabilities of falling into a specific class of the response variable(
Pr(Y = 1|X)

)
, respectively. Then, from equation 3-4 is clear that the LR

model 3-3 has a logit that is linear in X, but it is important to emphasize that
it is the logarithm of the odds that is a linear function of the predictors, so the
interpretation of the coefficient values is also a function of this relationship.
Hence, increasing X by one unit changes the log-odds by β1 or equivalently it
multiplies the odds by eβ1 .

– Ridge Regression and Lasso

MLE estimator for logistic regression often does poorly in both prediction and
interpretation [65]. These weak predictions are mainly caused by the ratio
between the number of observations n and preditors p (e.g., n not much larger
than p or p > n), resulting in great variability in the MLE fit. Also, the
presence of non-informative and highly correlated features leads to unnecessary
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complexity and unstable parameter estimates of the fitted model [53, 66]. In
this context, regularizations (shrinkage) methods emerge as methodologies to
improve the fitting procedure of simple linear regression.

RR adds a shrinkage penalty to the objective function of the MLE
method, the log-likelihood function `(β0, βj) [66], as follows:

`λ(β0, βj) = `(β0, βj)− λ
p∑
j=1

β2
j (3-5)

where λ is a tuning parameter to be determined from the data (within the
validation procedure). The second term of the equation λ

∑p
j=1 β

2
j is the

shrinkage penalty, which increases as the values of βj grow, having the effect
of shrinking penalty the estimates of βj towards zero. The ridge parameter λ
controls the amount of shrinkage, when λ = 0 the resulting estimates will be
the ordinary MLE, whereas if λ→∞ all βj tend to 0.

The RR could shrink all of the coefficients towards zero, but it will not set
any of them exactly to zero. This may be a challenge for model interpretation
in settings in which the number of variables p is quite large, and a coefficient
with a value near 0 may be misleading [65]. In this context, the LASSO
technique appears as an alternative to the RR to overcome this limitation.
LASSO formulation is similar to the RR in 3-5, being the penalty term the
only difference [67]:

`λ(β0, βj) = `(β0, βj)− λ
p∑
j=1
|βj| (3-6)

In the case of the LASSO, the penalty λ∑p
j=1 |βj| has the effect of forcing some

of the coefficient estimates to be exactly equal to zero when λ is sufficiently
large, thus performing variable selection. An important observation of the RR
and LASSO techniques is that unlike the ordinary MLE, the estimates are
not scale equivariant (i.e., the scale of the predictors affect the coefficient
estimates) [53]. Therefore it is best to apply RR and LASSO after standardizing
the predictors, so that they would have zero mean and unitary standard
deviation [67].

– Classification and Regression Tree

Tree-based models seek to partition the data into smaller groups that are
more homogenous with respect to the response [68]. To construct a decision
tree, the first step is to divide the p predictor’ space into r distinct and non-
overlapping regions, and then, to make the same prediction for each observation
that falls within a region. The first step is performed following the recursive
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binary splitting approach [69], which consists in searching the predictor and
its split value that partitions the data into two groups optimizing a specific
measure. In the case of classification trees, the splitting criterion could be the
Gini index (G):

G =
K∑
k=1

p̂mk(1− p̂mk) (3-7)

where p̂mk represents the proportion of training observations in the mth region
that are from the kth class. Equation 3-7 results in small values when all
p̂mk’s are close to 0 or 1, which means that the node contains most of the
observations coming from a class. For this reason the Ginix index is referred
to as a measure of the node purity. Other measure used as splitting criterion
is the Cross-entropy (C), given by:

c = −
K∑
k=1

p̂mk log(p̂mk) (3-8)

The Cross-entropy has a behavior similar to the Gini index, the closer
are all p̂mk values to 0 or 1, the smaller is the Cross-entropy.

Following one of this criteria, the splitting process continues within each
newly created partition until some stop condition is met, such as the minimum
number of samples in a node or the maximum tree depth. This approach
can lead to large trees that are likely to over-fit the training data, leading
to too complex trees that have poor test set performance. This approach can
lead to large trees that are likely to over-fit the training data, leading to too
complex trees that have poor test set performance. To overcome this issue,
after growing a deep tree, it is pruned back using a cost-complexity pruning
approach proposed by [68], where the purity criterion (Gini Index or Cross-
entropy) is penalized by a factor of the total number of terminal nodes in the
tree. At last, in the classification setting, predictions are made classifying each
observation to the most commonly occurring class of training observations in
the region to which it belongs.

– Random Forest

Traditional decision-tree based algorithms suffer from high variance4 [69]. This
unwanted behavior is caused because the splitting variable and the exact
position of the cutpoint fully depend on the distribution of the observations
in the learning set. Then, as the recursive partitioning approach is used to

4Instability to small changes in the learning data.

DBD
PUC-Rio - Certificação Digital Nº 1812856/CA

DBD
PUC-Rio - Certificação Digital Nº 1813286/CA



Chapter 3. Scientific Methodology and Theoretical Foundations 39

build the tree, little variation in data could change the first split variable or
the cutpoint, leading to an entirely new tree structure. RF overcomes the
variability generated by a single tree using the bagging5 method [70], which is
based on the fact that averaging over a set of observations, reduces the variance.
The bagging procedure randomly draws different bootstrap samples from the
learning set, and individual trees are grown on each sample. Then, the resulting
predictions are averaged, and for the classification case, is calculated following
the majority vote approach, which is to take the most commonly occurring
class among all predictions. Also, these tree-based ensemble procedures do
not have a pruning step, and so the trees grow deeply, resulting in individual
trees with high variance and low bias. The advantage is that the resulting
prediction combines the output of a diverse set of trees that are instable but
produce unbiased predictions [69].

The RF algorithm [71] generalizes the bagging procedure, allowing to
restrict the number of candidate predictors. In RF, the set of predictors to
select from is randomly limited at each split, thus producing decorrelated
(i.e., diverse) trees. Less correlated6 trees help reduce the variance of the
predicted values since trees with more diverse structures are created [52].
Bagging is considered a special case of RF, where the number of randomly
selected splitting variables equals the entire set of variables.

The RF algorithm has a set of parameters to be configured as their
optimal values depend on the data. As stated by Breiman [71], the randomness
(diversity) added to a model should reflect a balance between correlation and
the strength of the trees. This trade-off is reflected in the optimization of three
hyper-parameters7, the number of candidate variables at each split (ntry), the
sample size (nsample), and the node size (nnode). In the case of ntry, low values
lead to more diverse trees and hence produce better stability when aggregating
the result. However, it comes at the cost of low average performance (e.g.,
accuracy) as the selected variables are likely to be suboptimal. To set nsample
is to determine the number of observations sampled for training each tree. As
with ntry, decreasing the value of nsample decreases the model variance, but
since fewer observations are used for training single trees their performance
worsens. Moreover, it is necessary to determine if the procedure of selecting
the nsample is made with or without replacement. Researches [72] on this topic
may suggest that there is no significant difference sampling scheme when
the optimal value of nsample is used. Nevertheless, Janitza et al. [73] argues

5Bootstrap Aggregation.
6Lower correlation is achieved by adding a source of randomness when growing the

decision trees.
7Tuned during the cross-validation procedure.
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that, in fact, sampling with replacement introduces a variables selection bias
when there are categorical variables with more than two categories. The other
hyper-parameter, the nnode, specifies the minimum number of observations in
a terminal node; therefore, it determines the depth of the tree, serving as
stopping criterion during the tree construction process.

Moreover, in the RF algorithm, the number of trees (ntree) and the
splitting rule needs to be set beforehand. Setting the ntree is challenging since it
highly depends on the dataset properties and the computational time available.
As a recommended path to set the ntree, related researches [74] suggest to
inspect the performance8 estimation during the validation procedure, showing
the behavior for a growing number of trees. On the other hand, there are
options to set the splitting rule, like the conditional inference forests, which
assess the p-values of statistical tests for both, the variable selection and split
value [75], or the randomized splitting rule introduced by Geurts et al. [76],
where only a randomly selected subset of possible splitting values is considered.
These different choices intend to overcome a selection preference resulting from
the Gini index criterion originally proposed [71]. Using the Gini index favors
the selection of variables with many possible splits, such as the continuous
variables over the binary one [77].

– Extreme Gradient Boosting

Analogously to bagging and RF, boosting is an ensemble algorithm seek-
ing to improve the performance of individual models (e.g., CART). However,
boosting algorithms seek models that complement one another, turning a weak
learner9 into a strong one, whereas bagging and RF build independent models
that are not aware of the performance of the others [78].

The first implemented algorithm of boosting, known as Adaptative
Boosting (AdaBoost) [79], trains classifiers on weighted versions of the training
sample, giving higher weight to cases that are currently misclassified. Then the
final model is defined to be a linear combination of the classifiers from each
stage and the final prediction, a weighted sum of the model’s predictions.
Further improvements over the AdaBoost algorithm led to a generalization
named Gradient Boosting Machine (GBM) [80], which transforms the boosting
definition to an optimization problem. The major difference between AdaBoost
and GBM is the approach to identify the faults of weak learners. While the
AdaBoost model uses high weights to misclassified data points, GBM uses
gradients to minimize a loss function10. This generalization allows arbitrary

8Performance is measured using a metric of interes
9Models that performs barely better than chance, e.g., decision stump

10Determines the error between the prediction and the observed value
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differentiable loss functions to be used, expanding the technique beyond binary
classification problems to support regression and multi-class classification.

XGB is an improved implementation GBM since it enhances the costly
process of estimating the potential loss for all possible splits when growing ad-
ditive decision trees. This improvement is carried out using the distribution of
all data points in a leaf, and with this information, reduce the search space of
all possible splits [81]. The XGB implementation has a set of hyper-parameters
to be tunned, like the number of boosting iteration (nrounds), the learning rate
(eta), the maximum tree depth each tree can grow (maxdepth), the minimum
loss reduction required to make a further partition (gamma), the number of
predictors to be subsampled each time a tree is trained (npredictor) and the
subsample ratio of the training instances (nrows).

b) Assess the model
Once the ML techniques are applied, the different experimental scenarios

are evaluated and compared, defining the best parameter configuration for the
data set and the technique with the best overall performance. There are two
primary purposes when evaluating the learned models, one side is focused on
defining which one perform better based on statistical significance tests, and
the other side of the evaluation process relies on specific metrics to measure
model performance.

The first point of view is interested in selecting models based on the
estimated performance for which it is necessary to know whether there is a
statistically significant difference among them. In this research, the McNemar’s
test [82] is used to compare the predictions of two models to each other. The
McNemar’s test is a non-parametric statistical test for paired comparisons that
can be applied to compare the performance of two ML classifiers [83]. The null
hypothesis states that the two algorithms should have the same error rate,
and it is applied to paired nominal data based on a version of 2x2 contingency
table, where a χ2 test for goodness of fit is applied. The contingency table
contains the number of hitz and misclassifications of both models, as depicted
in Figure 3.4.

On the other hand, there are an extensive number of metrics to measure
models performance especially for classifiers (i.e., the response variable is
categorical), which can be grouped into three families, qualitative, rank-based,
and probabilities-based metrics [84].

– Qualitative metrics

Metrics with a qualitative understanding of the errors aims to find a
model that minimizes the number of faults. These types of metrics can be
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Figure 3.4: Contingency Table for McNemar’s test.

derived from a confusion matrix, as illustrated in Figure 3.5 for a binary
classification problem.
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Figure 3.5: Confusion Matrix

In the matrix, rows display the predicted class and columns the real class
value, and in both, positive and negative refers to the classes of the response
variable. Besides, each cell represents either a success or a mistake in the
prediction as follows:

– True Positive (TP): actual positives observations that are correctly
predicted as positives

– False Positive (FP): actual negatives observations that are wrongly
predicted as positives

– True Negative (TN): actual negatives observations that are correctly
predicted as negatives

– False Negative (FN): actual positives observations that are wrongly
predicted as negatives

Among the most common metrics are Accuracy, Sensitivity, Positive
Predicted Value (PPV), F-measure and Matthews Correlation Coefficient
(MCC). Accuracy, possibly the most used metric in the ML field [84], is a
simple measure of the proportions of all samples classified correctly:

Accuracy = TP + TN

TP + TN + FP + FN
(3-9)

DBD
PUC-Rio - Certificação Digital Nº 1812856/CA

DBD
PUC-Rio - Certificação Digital Nº 1813286/CA



Chapter 3. Scientific Methodology and Theoretical Foundations 43

In the context of databases with unbalanced classes, Accuracy does not provide
a fair estimate of the model performance, for example, in a dataset with 1% of
the observations belonging to the positive class, a useless classifier11 will obtain
an accuracy of 99%. In this case another metric that can be useful because it
consider information from both classes is the geometric mean (G-mean) [85]
of the True Positive Rate [TPR = TP/(TP + FN)] and the True Negative
Rate12 [TNR = TN/(TN + FP )], defined as:

G-mean =
√
TPR× TNR (3-10)

Using G-mean ensures, unlike Accuracy13, that poor performance in prediction
of the positive examples will lead to a low G-mean value, even if the negative
examples are correctly classified.

Moreover, there are metrics focused on single classes (positive class)
separately, such as Sensitivity and PPV. Sensitivity14 is the fraction of total
positive instances correctly classified as positive, and PPV15 is the proportion
of correctly classified instances among the ones classified as positive:

Sensitivity = TP

TP + FN
(3-11)

PPV = TP

TP + FP
(3-12)

The equations 3-11 and 3-12 show two perspectives, first if looking for model’s
Sensitivity, the objective may be reducing the FN, and second when looking
for model’s PPV the aim is to reduce the FP. These two values, (FN and
FP), are known as the classifier errors and has the opposite effect on each
other. This effect is shown in Figure 3.6, where it also appears another metric
that balances and combines Sensitivity and PPV in one value, the F-measure
(Fβ) [86]. It is defined as the weighted harmonic mean of Sensitivity and PPV:

Fβ = (1 + β2)× TP
(1 + β2)× TP + β2 × FN + FP

Fβ = (1 + β2)× Sensitivity × PPV
β2 × PPV + Sensitivity

(3-13)

11Classify all observations as negative.
12Also known as Specificity.
13Arithmetic mean between TPR and TNR.
14Also known as TPR or Recall.
15Also known as Precision.
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Where β is a parameter that controls the influence of Sensitivity and PPV in
the score. As illustrated in Figure 3.6 common values of β are 1 to seek weights
equilibrium, 0.5 to favor PPV and 2 to augment Sensitivity’s influence.

PPV Fβ=0.5 Fβ=1 Fβ=2 Sensitivity

Minimizing FP and maximizing FN

Minimizing FN and maximizing FP

Figure 3.6: Effect of optimizing one of the two errors FP or FN.

One issue with the F-measure (also true for Sensitivity and PPV) is
that it depends on which class is defined as the positive, changing its value
depending on this decision. The Matthews Correlation Coefficient (MCC) [87]
overcomes this issue. Besides, it is unaffected by the unbalanced datasets and
takes into account all ratios of the four confusion matrix categories (TP,
FP, TN, FN). MCC is a contingency matrix method of calculating ϕ (see
Section 3.2.2) between the actual and predicted values (Powers2011), and can
be derived from the Confusion Matrix as:

MCC = TP × TN − FP × FN√
(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

(3-14)

MCC values ranges int he interval [−1, 1], where a value of 0 is the performance
of a useless classifier, and extreme values are related to perfect classification
(1) and to total misclassification (-1).

All the measures described above depend on an arbitrarily selected
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classification threshold16. In other words, these metrics do not account for
the magnitude of the error, for example, if the decision threshold is set to 0.5,
the difference between the predicted probabilities of two observation (e.g., 0.1
and 0.4) are not reflected in this kind of metrics, both will be classified with
the same label.

– Rank-based metrics

Another important family of performance measures is based on ranks
(separability) of predictions. These metrics are not committed to a specific
threshold as the previously discussed qualitative metrics; then, it is possible
to have a good classifier in terms of rankings and yield bad accuracy as a
particular threshold is selected to separate the classes. Rank-based metrics
use the ordering given by the predicted score17 to rank the instances. The
ranking is made according to the decreasing order of the predicted score for
an observation being positive, and then, this list is compared to the real class
label in the test set. It is common to use graphical techniques to summarize the
classification performance, such as Receiver Operating Characteristic (ROC)
curve [88] and the Precision-Recall (PR) curve [89].

ROC graphs are two-dimensional plots, where the x-axis represents the
Sensitivity (see 3-11), and the y-axis denotes the False Positive Rate18 (FPR)
[FPR = FP/(TN + FP)]. Each point in the plot results from the confusion
matrix created with the ranking list of the classifier’s score for each instance
in the test set. Then, the complete plot is created changing the decision
threshold to decide which class an observation belongs to, thus having a
different confusion matrix for each pair Sensitivity and FPR.

Figure 3.7 shows an example of the ROC Graph. In the ROC space,
a good classifier should reach as close to the top left corner as possible,
corresponding to a perfect classification. In contrast, the diagonal that connects
the lower-left corner (0, 0) and the top-right one (1, 1) indicates a random
performance. The point (0, 0) reflects a scenario where all classifications
belongs to the negative class (i.e., TP = FP = 0, caused by a high threshold).
On the other hand, the point (1, 1) indicates the opposite, all classifications
correspond to the positive class (i.e., FN = TN = 0, as a consequence of a very
low threshold).

Comparing classifiers visually through a ROC plot can be difficult, given
that curves can overlap and even cross each other, not making clear whether

16Cutoff of the predicted probabilities to define to which class an observation belongs,
being the default value in most techniques 0.5.

17Refers to a numeric value that depicts the degree at which an instance pertains to class.
18Is the proportion of negative observations incorrectly classified as positive.
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Figure 3.7: ROC plot.

the performance of one classifier dominates another in all the operating points.
A solution is to reduce ROC performance to a single scalar value representing
the expected performance. This value is known as the Area Under the Receiver
Operating Characteristics (AUROC) curve, which values range in the interval
[0, 1]. Therefore, a perfect classification would have an AUROC of 1 and an
unuseful classifier (over the diagonal in the ROC plot) a value of 0.5. Both
the ROC curve and AUROC measures how well the model is capable of
distinguishing between classes (i.e., separability capacity). Moreover, AUROC
is equivalent to the probability that the classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative instance [90].

In the context of class imbalance, ROC graphs may provide unreliable
(i.e., optimistic) estimates of the models’ performance, as change in the class
distributions do not reflect in the TPR and FPR [89,91]. Saito and Rehmsmeier
[92], suggest that the PR curve is more informative than the ROC Graph
to evaluate binary classifiers in datasets with imbalanced classes, because
they display the susceptibility of classifiers to the characteristics of the data.
Different from ROC, the PR Graph plots the precision (PPV) of the classifier
as a function of the recall (i.e.,Sensitivity), as depicted in Figure 3.819. In
other words, the PR Graph describes the behavior of precision at different

19Note that PR curve do not consider True Negative observations, hence the correct
identification of the negative class must not play an important role in the study, in order to
use this Graph as a model performance estimation.
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degrees of recall. The Graph 3.8 shows that the PR curve has a negative slope,
as precision decrease while recall increases. Then, unlike the ROC plot, the
perfect classifier would be at the top right, representing the best trade-off
between precision and recall. In addition, the baseline performance is not fixed
like in the ROC plot but depends on the proportion of the positive class. It is
also possible to summarize the PR Graph into a single value the Area Under
the Precision-Recall (AUCPR) curve and can be interpreted as the expected
precision when varying recall from 0 to 1.
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Figure 3.8: PR plot.

– Probability-based metrics

The other family of metrics is based on the predicted probabilities.
However, instead of ranking them as the ROC and PR curves, the purpose is
to quantify the uncertainty in a classifier’s predictions [84]. Probability-based
metrics measure not only when a model makes a mistake but also express to
what extent they fail. Among these metrics are the Logarithmic Loss (LogLoss)
and the Brier Score and are described below.

The LogLoss, also known as cross-entropy, is defined as the negative of
the logarithm of the likelihood function [93] (see 3-8). This metric captures the
extent to which predicted probabilities differ from the class label. Then, the
Log loss value increases as the predicted probability diverges from the actual
label, having a perfect classification value of 0.

On the other hand, the Brier Score [94], unlike the LogLoss (Measures
the entire probability distribution), is focused on the positive class, being
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more suitable to estimate models performance with imbalanced classes. It is
computed as the Mean Squared Error (MSE):

Brier = 1
N
×

N∑
i=1

(ŷi − yi)2 (3-15)

where ŷi is the predicted probability for the observation i, yi is the actual
outcome of the class (1 for the positive class and 0 for the negative) and N
is the number of instance in the test set. The Brier Score, as a loss function,
the lower its value is, the better the model’s performance. Its values reflects
the confidence in which the classifier asserts its prediction, i.e., if the classifier
predicts the wrong class with high probability, it would be heavily penalized.

3.2.5
Evaluation

Once the Internal Cycle of Data Science ends, having selected the best
models with optimized configurations, it is time to interpret and assess the
results according to the data mining success criteria defined in the business
understanding phase. This phase also relates to the Design Cycle in the DSR
framework, where after the model building task, a scientific evaluation of the
artifact is carried out. Tasks within this stage are, evaluate results, review the
learning process, and determine the next steps.

a) Evaluate the results
This task aims to evaluate how well the model met the business objec-

tives defined in Section 3.2.1. The evaluation also allows for discovering new
information, further constrains and insights for future research directions. The
outcome of this task is a report summarizing the results in terms of business
success criteria.

b) Review the learning process
This review seeks to ensure that the learning process followed all the

constraints and assumptions coming from the data characteristics and the
modeling techniques. One crucial aspect is to check whether the attributes
used as input are going to be available for futures deployments.

c) Determine the next steps
At this point, it is necessary to determine whether the project is finished

or further iterations of the internal cycle of data science are required or even
refine the data mining objective.
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3.2.6
Deployment

The last stage, but not necessarily the end of the Data Science Cycle
(note the cycle nature in Figure 3.2), aims to deploy the resulting model in
a real context and receive the subsequent feedback from the field. This phase
describes the interaction between the Design Cycle and the Relevance Cycle
(denoted in Figure 3.1 as Field testing). Usually, it is the end-customer who is
in charge of the deployment activities. Still, they need to understand all the
model’s characteristics in advance, for which a technical report is generated,
listing all the requirements and adjustment necessaries.

The resulting feedback could feed into the earlier phases of Business
understanding or any of the phases of the Internal Cycle of Data Science. In
the case of Business understanding, this feedback is represented by the outer
arrow that encompasses the entire cycle, being then a natural path to future
works. On the other hand, feedback directed towards the three stages of the
internal Cycle of Data Science may suggest modifications to refine the actual
model or to correct any issue encountered during the deployment phase.

3.3
The Data Science Life Cycle within the DSR Cycles.

This Section aims to integrate the DSR’s framework proposed by Hevner
[1] with the work method described in the previous Section. The DSR approach
can be extended to the Data Science field [95,96], and therefore integrate with
the proposed work method, the Data Science Life Cycle (see Section 3.2) . The
integration takes place through an iterative and evaluative scheme in order to
diagnose, design, implement, and evolve data science artifacts.

The methodology to be followed, as outlined in this chapter, is summa-
rized in Figure 3.9, where each phase of the work method is linked to a DSR
cycle. The central cycle (Design) draws inputs (business understanding) from
the contextual environment regarding problem identification and business re-
quirements. It encompasses the stages of the internal cycle of data science and
evaluation to design, develop, and improve the ML models in an iterative pro-
cess by incorporating the field testing feedback. During this process, each time
that the initial objective gets revised, a new design process (DSR cycle) is ini-
tiated20. Furthermore, the design cycle uses the current knowledge to support
their theoretical research foundations and, at the same time, contributes with
the resulting innovations.

20It is worth noticing that the possible design cycles results are not intended to be
compared, instead they relate the process of improvement in the design process.
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Figure 3.9: DSR and Data Science Life Cycles
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4
Application of a DSR methodology to predict high-cost hos-
pitalizations

This Chapter describes a Data Science project proposed to address
the problem of predicting high-cost hospitalizations in private hospital units,
located all over Brazil. The project was developed in conjunction with a Health
Consulting organization that servers as a broker from its clients to healthcare
providers and health insurers. As explained in Chapter 3, the proposed process
followed the integration of the Design Science Research (DSR) framework and
the Data Science Life Cycle, as depicted in Figure 3.9. The application of the
DSR framework consisted of two cycles, described in the following Sections.

4.1
First DSR cycle: Data Exploration and Prediction of high-cost hospital-
izations over sample data.

Figure 4.1 summarizes the activities and results obtained when instan-
tiating the First cycle of DSR framework presented in the previous Chapter.
The following subsections will describe each phase of this First cycle, in detail.
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Consumption data.
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current scenario.
- Verify the applicability of applying 
ML techniques over the sample data.
Success criterion:
- Identify the majority of the target 
patients (Sensitivity, Fβ=2).

Explore data:
- Sample data of 4000 instances and 54 columns.
- Exclusion. Missing values in variable “Age” and negative and zero cost 
values.
- 20 % of the highest cost values labeled as high-cost hospitalizations 
(Pareto’s principle). Cutoff of R$ 10,200.
Data Preparation:
- Scale continuous predictors to range [0,1].
- Variable “Admission Group” encoded as dummy variable.
Feature engineering:
- Aggregated variables of medical resource consumption (compare with the 
existing Temporal variable)
ML techniques:
- Ridge regression (RR), LASSO and CART

Model assessment:
- AUROC: RR 0.748, LASSO 0.746, CART 0.655
- Temporal variables do not improve performance. Aggregated variables 
provides less model complexity and computational cost.
- Best model performance. LASSO, Fβ=2 = 0.586, Sensitivity = 0.715,    
PPV = 0.34

Base knowledge:
- Morid et al. [22] argue that 
temporal variables (monthly 
variables for two years, and a set 
of spike detection features) 
provides more information than the 
Aggregated ones.

New Knowledge:
- ML model to predict 
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variables of prior medical resource 
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- An overall high-cost definition is 
deficient.
- “Admission Group” cost 
distributions differs significantly. 

Figure 4.1: First Cycle of the DSR and Data Science Methodology
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4.1.1
Business Understanding

From the organization perspective, there is a necessity to identify a group
of patients to be included in a proactive health plan so as to reduce the cost
spent to treat these patients. As stated in Chapter 1, a solution to this situation
would be to analyze the expected cost of hospitalizations. In this context, the
objectives of this First cycle are: (i) to explore the available sample data; (ii)
to precisely define what is a high-cost hospitalization, and (iii) to apply some
Machine Learning (ML) techniques so as to investigate their potential to build
models that predict such high-cost hospitalizations. The organization expects
to have a predictive model that captures most of the high-cost hospitalizations,
controlling the amount of low-cost admissions misclassified. In other words,
they seek a trade-off between a high quantity of correctly identified high-cost
hospitalizations and a low quantity of misclassifications, with an emphasis on
the first criterion. The success criterion can be translated as the maximization
of the Fβ metric (see equation 3-13) with β = 2, thus giving more importance to
Sensitivity. In addition, individual metrics such as the Sensitivity and Positive
Predicted Value (PPV), together with the corresponding confusion matrix
complements the performances evaluation process.

4.1.2
Data Understanding

At the first moment of the research project, the organization provided
us with a dataset containing a representative sample of the whole population
under their services, on which this First cycle was developed1. The dataset
contains 4000 rows and 54 columns, where each row represents a patient
hospitalization. Each column in the dataset is a variable, which can be grouped
in (see table 4.1): demographic characteristics of the patients, past medical
resource consumption variables and the variables related to the hospitalization
itself, including the target variable "Hospitalization Cost"2. It is worth noticing
that the variables related to the patient’s past medical resource consumption
were collected throughout the three years before the hospitalization in a
temporal fashion. There were different time frequencies depending on the
feature; for example, the number of exams and consultations were collected bi-
annually (i.e., for each semester), image exams were collected monthly, while
the rest of variables was collected annually.

1It is worth noticing that the use of a sample on this First cycle is due to the organization’s
data availability and is not a requisite of the proposed methodology.

2Appendix A presents the data dictionary with all variables names, data types, and
detailed descriptions.
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Table 4.1: Group of variables
Patient Characteristics Medical Resource Consumption Patient Hospitalization
Gender Ordinary exams Admission Group
Age Image exams Admission Type

Psychological consults Flag Surgery
Scheduled consults Hospitalization Cost
Emergency consults
Hemodialysis therapies
Pulsotherapies
Transplant
Chronic disease

A first analysis of the dataset revealed inconsistencies related to data
quality that should be addressed. Figure 4.2 shows the first steps conducted
to filter out data which did not meet quality specifications. First, blank values
(missing values) in the "Age" variable were detected (which, according to the
organization, could be due to newborn patients without a birth date registered
or even an error coming from the health insurance). Then, since it was not
possible to distinguish whether the missing value was related to a newborn
on to an error, those observations were removed. The second issue was the
existence of hospitalizations with negative or zero values in the "Hospitalization
Cost" variable (this occurs when there is a refund from the hospital). Again,
those observations were removed.

Hospitalizations: 4000
Patients: 3742

Missing Values (Age)
Hospitalizations: 417
Patients: 383

Hospitalizations: 3583
Patients: 3359

Hospitalizations: 3578
Patients: 3354 Exclusion

Result

Hospitalization Cost ≤ 0
Hospitalizations: 5
Patients: 5

Figure 4.2: Quality Filter Procedure.

Moreover, "Hospitalization Cost" is a continuous variable indicating, as
its name suggests, the monetary value associated with the patient’s hospitaliza-
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tion expenses. In order to accomplish the business goals, it is necessary to first
define what should be considered as a high-cost hospitalization. The following
analysis uses the Pareto3 principle [97] to create the binary outcome variable
(1 indicates high-cost and 0 low-cost). This approach follows the definitions
encountered in the literature review (see section 2.1), where the definition is
made considering the whole population and hospitalizations cost belonging to
the upper percentiles of the cost distribution are defined as high-cost hospital-
izations. In Graph 4.3, the x-axis represents each row of the dataset grouped in
10 bins4 (each bin roughly represents 10% of the dataset), the bars (left y-axis)
represent the absolute "Hospitalization Cost" for each bin; finally, the plot line
represents the cumulative percentage "Hospitalization Cost" (right y-axis).
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Figure 4.3: Pareto Graph for the Hospitalization cost.

As depicted in Graph 4.3, the application of the Pareto principle selects
the first two bins (20% of rows), which account for approximately 80% of
the total cost. Therefore, these 20% of the observations with the highest
cost values were defined as high-cost hospitalizations, set in a new variable
named "Hospitalization cost class". The lowest value labeled as high-cost was
R$ 10, 200.

Once the dataset contains the desired information with the response
variable defined according to the business requirement, the next step is to

3The Pareto principle states that, for many events, roughly 80% of the effects come from
20% of the causes.

4The observations were grouped for better visualization, each bin contains 350 rows
except the last one which has 428 for a total of 3578 rows.
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explore and analyze the set of variables. Tables 4.2 and 4.3 summarize each
numeric and binary variable, respectively, regarding their overall distribution
for each value of the response variable.

The numeric variables describe the medical resource consumption of
patients in the past (except "Age"), and are characterized by having little
variability, and most of the values are zero. This is a common behavior for this
type of variable, as reported in related studies [98]. We observe extreme cases
of variables that are completely zeroed, such as "Pulsotherapies" (in the three
years) and "Transplant", which were then disconsidered in the study. Moreover,
for some of the temporal variables ("Scheduled consult", "Emergency consults",
"Ordinary exams" and "Image exams"), there is an increase in the median
medical resource consumption on the dates closer to the hospital admission,
which might suggest some positive trend in the resource usage followed by a
more significant event, the hospitalization.

Table 4.2 also shows the variables’ distribution within each group of the
"Hospitalization cost class", which could throw the first hints in understanding
the behavior of high and low-cost hospitalizations. However, the variables’
distributions seem quite similar among the groups, with the most notable
difference belonging to the number of "Ordinary exams" during the first
semester before the hospitalization. This difference suggests that regarding the
median value, patients with high-cost hospitalizations made more "Ordinary
exams" than those with low-cost hospitalizations.5

The binary variables (see table 4.3) also favor the "No" label, indicating
little use of resources. Another aspect of the data is that there are almost
equal amounts of surgical and clinical hospitalizations, and most of them (73%)
were admitted by appointment (scheduled). Furthermore, among the high-cost
hospitalizations, 69% are surgeries, while clinic hospitalizations are mostly low-
cost.

The "Admission Group" variable groups hospitalizations according to
the type of procedure carried out during the in-hospital stay (e.g., digestive,
musculoskeletal and urinary systems). Graph 4.4 shows the proportion of high-
cost hospitalizations of the 12 most frequent admission groups6 within the
dataset. As depicted in the plot, there is an interesting difference in proportions
among the groups, being significantly higher for hospitalizations related to
procedures of the digestive (3rd), musculoskeletal (4th) and the urinary (10th)
systems, where high-costs hospitalizations represent 31%, 41% and 44% of the
total number of hospitalizations, respectively.

5Note that this is an exploratory analysis and the analysis is based on visual and numeric
comparison, without applying any statistical test.

6Those 12 groups account for 78% of the observations, out of the 34 groups in total
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Table 4.2: Descriptive statistics for numeric variables.
Total

Hospitalization Cost Class
Variables (median [IQR]) High-cost Low-cost
Age 34 [25 - 44] 37 [29 - 49] 33 [24 - 43]
Transplant_total 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Scheduled consult
Consult_semester1 3 [1 - 6] 4 [1 - 6] 3 [1 - 6]
Consult_semester2 1 [0 - 3] 1 [0 - 4] 0 [0 - 3]
Consult_semester3 0 [0 - 2] 0 [0 - 2] 0 [0 - 1]
Consult_semester4 0 [0 - 0] 0 [0 - 1] 0 [0 - 0]
Consult_semester5 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Consult_semester6 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Emergency consults
Emergency_year1 1 [0 - 3] 1 [0 - 4] 1 [0 - 3]
Emergency_year2 0 [0 - 1] 0 [0 - 1] 0 [0 - 1]
Emergency_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Ordinary exams
Exam_semester1 7 [0 - 20] 12 [1 - 28] 6 [0 - 18]
Exam_semester2 0 [0 - 9] 0 [0 - 15] 0 [0 - 8]
Exam_semester3 0 [0 - 2] 0 [0 - 4] 0 [0 - 1]
Exam_semester4 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Exam_semester5 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Exam_semester6 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Hemodialysis therapy
Hemodialysis_year1 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Hemodialysis_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Hemodialysis_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Image exams
Image_month1 0 [0 - 1] 0 [0 - 1] 0 [0 - 1]
Image_month2 0 [0 - 1] 0 [0 - 1] 0 [0 - 1]
Image_month3 0 [0 - 0] 0 [0 - 1] 0 [0 - 0]

Pulsotherapies
Pulsotherapies_year1 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Pulsotherapies_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Pulsotherapies_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Cardiovascular procedurec
Cardiovascular_year1 0 [0 - 0] 0 [0 - 1] 0 [0 - 0]
Cardiovascular_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Cardiovascular_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Diabetes procedure
Diabetes_year1 0 [0 - 0] 0 [0 - 1] 0 [0 - 0]
Diabetes_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Diabetes_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Chronic Obstructive procedure
Obstructive_year1 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Obstructive_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Obstructive_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Neoplasm procedure
Neoplasm_year1 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Neoplasm_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Neoplasm_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]

Chronic Musculoskeletal procedure
Musculoskeletal_year1 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Musculoskeletal_year2 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
Musculoskeletal_year3 0 [0 - 0] 0 [0 - 0] 0 [0 - 0]
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Table 4.3: Descriptive statistics for binary variables.
Total

Hospitalization Cost Class
Variables [count (column %)] High-cost Low-cost
Total dataset 3578 (100) 715 (20) 2863 (80)

Flag_Surgery
Clinic 1,706 (48) 220 (31) 1,486 (52)
Surgery 1,872 (52) 495 (69) 1,377 (48)

Flag_Genetic
No 3,541 (99) 701 (98) 2,840 (99)
Yes 37 (1) 14 (2) 23 (1)

Cardiovascular_flag
No 2,769 (77) 456 (64) 2,313 (81)
Yes 809 (23) 259 (36) 550 (19)

Diabetes_flag
No 2,716 (76) 440 (62) 2,276 (79)
Yes 862 (24) 275 (38) 587 (21)

Obstructive_flag
No 3,429 (96) 650 (91) 2,779 (97)
Yes 149 (4) 65 (9) 84 (3)

Neoplasm_flag
No 3,509 (98) 691 (97) 2,818 (98)
Yes 69 (2) 24 (3) 45 (2)

Musculoskeletal_flag
No 3,208 (90) 602 (84) 2,606 (91)
Yes 370 (10) 113 (16) 257 (9)

Flag_psycho_year1
No 3,392 (95) 667 (93) 2,725 (95)
Yes 186 (5) 48 (7) 138 (5)

Flag_psycho_year2
No 3,510 (98) 700 (98) 2,810 (98)
Yes 68 (2) 15 (2) 53 (2)

Flag-psycho_year3
No 3,558 (99) 711 (99) 2,847 (99)
Yes 20 (1) 4 (1) 16 (1)

Gender
Female 2,070 (58) 371 (52) 1,699 (59)
Male 1,508 (42) 344 (48) 1,164 (41)

Admission_Type
Scheduled 2,598 (73) 525 (73) 2,073 (72)
Emergency 980 (27) 190 (27) 790 (28)

The association between the variables was assessed through a correlation
analysis. The heatmap in Figure 4.5 presents the correlation among pairs of
variables according to the Spearman’s rank correlation coefficient (see equation
3-1)7. The variables are not highly correlated to each other, in general. The
most notable pairs of variables regarding the Spearman’s coefficient are the
temporal variables of "Scheduled consults" and "Ordinary exams", which are
moderately correlated. The association among variables of the same type is
related to a temporal effect that, in the context of this research, may indicate
an increase or decrease in the usage of a specific medical resource. On the other
hand, those types of exams and consults may have a medical association that
the execution of one leads to the other (i.e., correlation coefficient between
"Exam_semester6" and "Consult_semester6" equals 0.762).

7Appendix B presents the entire correlation matrix
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4.1.3
Data Preparation

After the exploratory analysis the data is prepared according to the
business and the ML technique requirements. As mentioned before, the rows
with missing values or "Hospitalization Cost" values under zero were removed.
Also, there are numeric variables that present extreme values indicating the
presence of outliers; in agreement with the organization domain experts, those
values were not removed since, in the context of this study, they are useful for
the predictive task.

As explained in Subsection 4.1.2, the variables related to past medical
resource consumption present different granularities. According to Modrid et
al. [23], using temporal variables with a higher granularity (e.g., each individ-
ual exam taken in the past three years) could improve the ML model’s per-
formance, since this variables expose more information than using aggregated
variables (e.g., the sum of exams in the past three years).Although the avail-
able variables do not present the degree of granularity showed in the referred
study (monthly variables through two years), each set of temporal variables was
aggregated into a variable that summarizes the whole period. Thus enabling
further experiments comparing the "Temporal dataset" (i.e., the dataset com-
prising the variables with higher granularity) against the "Aggregated dataset"
(i.e., the dataset comprising the aggregated variables). Table 4.4 describes the
creation of the new aggregated variables. In general, counting variables were
created by summing up numerical temporal variables (e.g., bi-annual count
of elective consults), and binary variables were created by applying an OR
operator to the corresponding binary temporal variables (e.g., Psychological
consults). A particular case is the set of temporal variables related to Chronic
diseases, which values, as described in the data dictionary (Appendix A), cor-
respond to the sum of procedure complexities that the patient has taken each
year for a specific disease (1 for simple procedures, 3 for medium-complex pro-
cedures, and 6 for complex procedures). This variable could lead to some mis-
interpretations, e.g., a value of 6 for a particular disease in a year could indicate
six simple procedures, two medium-complex procedures, or even one complex
procedure. Therefore, a binary variable was created, indicating whether there
was at least one procedure (of any complexity) in any of the three years.

These new aggregated variables are a linear combination of the temporal
ones, and then it is expected that they are highly correlated. Therefore both
temporal and aggregated variables will not improve the model’s performance
if they are used together but increase the complexity and computational cost.
Also, the main objective is to test whether temporal variables provides more
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Table 4.4: Feature Engineering. Aggregated Medical Resource Consumption
variables.
Medical Resource Con-
sumption

Actual granularity New aggregated variable
name

New aggregated value

Exams bi-annual count Exams total sum of semester counts
Image exams monthly (3 month) count Image exams total sum of monthly counts

Psychological consults annual flag Psychological consults flag
1 : if any annual flag = 1;
0 : otherwise

Elective consults bi-annual count Elective consults total sum of semester counts
Emergency consults annual count Emergency consults total sum of annual counts
Hemodialysis annual count Hemodialysis total sum of annual counts
Pulsotherapies annual count Pulsotherapies total sum of annual counts

Chronic disease annual cumulative sum Chronic disease flag
1 : if any annual cumulative sum > 0;
0 : otherwise

information than aggregated. Hence, two data sets are created (temporal and
aggregated) for each set of variables, and both datasets use the common
variables of "Patients Characteristics" and "Patient Hospitalization" (see table
4.1).

The numeric variables in the dataset describe the patient’s age, the
number of particular events before the hospitalization, and the existence of a
complex procedure for a "Chronic disease". Therefore, in order to avoid different
scales among the dataset variables (which could further impact the predictive
techniques), the predictors were equally scaled into the range [0, 1] using the
equation8:

x′
i = xi −min(X)

max(X)−min(X) (4-1)

where x′
i and xi are the scaled and original i value of predictor X, respectively.

Moreover, the variable "Admission Group" is categorical, and was transformed
into a "dummy" variable as an input requirement for the predictive models.
Then, as the "Admission Group" have 34 categories, 34 binary variables are
created.

4.1.4
Data Modeling

Once the dataset is prepared according to the ML techniques and the
business specifications, an experiment route is designed considering different
scenarios. First, for the learning procedure, the available data was divided
for training and validation, using 5-fold cross-validation with a stratified ran-
dom sampling splitting approach. Then, six scenarios were considered, which
includes the two sets of variables discussed in the previous Section (named
"Temporal" and "Aggregated") and three ML techniques (see Appendix C for

8The scaling process was performed during the cross-validation procedure, aiming to
provide reliable results.
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a detailed description of the ML techniques settings). Table 4.5 summarizes
those scenarios.

Table 4.5: Experimental Scenarios and results
Scenario Machine Learning technique Dataset AUROC F-score(β = 2) Sensitivity PPV Threshold TP FP FN TN

1
Ridge Regression

Temporal 0.740 0.586 0.712 0.344 0.189 102 194 41 378
2 Aggregated 0.748 0.586 0.709 0.346 0.185 101 192 42 381
3

LASSO Regression
Temporal 0.740 0.585 0.713 0.340 0.180 102 198 41 374

4 Aggregated 0.746 0.586 0.715 0.340 0.179 102 198 41 374
5

CART
Temporal 0.666 0.497 0.571 0.328 0.166 82 170 61 402

6 Aggregated 0.655 0.509 0.615 0.301 0.139 88 214 55 358

Each row of table 4.5 describes a scenario and their corresponding
results9. The performance was evaluated first for each scenario from an overall
perspective using AUROC, to select later the threshold10 that minimizes
the distance between the ROC curve and the top-left corner in the ROC
Graph in Figure 4.6 (Sensitivity = Specificity =1). Then, for this optimum
threshold, it is presented the corresponding confusion matrix with the derived
metrics of interest (Fβ=2, Sensitivity, and PPV). The first comparison seeks
to define whether it is better to use the "Temporal" or "Aggregated" dataset
comparing the error rates of each pair of models. The comparison is performed
assessing the statistical difference between the two models errors11. For RR and
LASSO, the p-values were higher than the significant threshold 0.05, indicating
insufficient evidence to reject the null hypothesis (H0) that the two models have
the same error rates. This statistical interpretation indicates that the dataset
with the temporal variables does not improve significantly the performance of
the models. Therefore the dataset with aggregated variables is preferred, and
thus the complexity of the models and future computational costs are reduced.
However, was detected a statistical difference in the performance when using
the CART technique, which indicates that the error rates are different, and
the results in the contingency table indicate that CART with the "Temporal"
dataset performs better. The behavior is also reflected in the confusion matrix
(table 4.5), which indicates that the detected difference in the error rates relates
to the FP. This result does not change the conclusion that the "Aggregated"
data set is preferred, because the model with the "Temporal" variables only
outperforms the one with the "Aggregate" variables with respect to the PPV,
which is not the priority of the organization.

Among the ML techniques, CART had the poor performance regarding
the AUROC, while LASSO and Ridge regression perform similarly. In this

9All values including the Confusion Matrix cells correspond to the average value across
the CV iterations.

10The limit value above which the predicted probability of being of the positive class
classifies an observation as such.

11Refer to Appendix C for all details of the learning process and the statistical test carried
out for the models’ evaluation.
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context, LASSO regression is defined as the best model (using the "Aggregated"
data set) over the Ridge, due to its ability to zero the coefficients of the
variables that do not aggregate information and thus reduce the complexity of
the model. According to the confusion matrix, the model is correctly predicting
on average more than 71% of the truly high-cost hospitalizations (102 on
average), which is the main concern of the organization. However, this comes
to the cost of a 34% of precision (PPV), in other words, to accomplish a 71%
of detection, the model wrongly classifies as high-cost the 34,6% (FPR) of the
truly low-cost hospitalizations.
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Figure 4.6: ROC curve for LASSO model using the "Aggregated" dataset. The
red dot indicates the optimum threshold that generates the confusion matrix
in table 4.5.

4.1.5
Evaluation

The evaluation phase defines whether the business goals are achieved, or
further refinement of the design cycle is necessary before the artifact’s deploy-
ment. First, we assess the relative contribution of each variable considered in
the model to the final prediction. For that, the importance of each variable
is extracted from the trained model (in the case of LASSO for classification,
this importance refers to the magnitude12 of the coefficients in the penalized
logistic regression).

Figure 4.7 displays the top 20 variables, sorted in decreasing order of
their coefficients magnitude. By analyzing the Graph, the organization domain

12Note that magnitude here refers to the size of the effect but do not relate if there is a
positive or negative association with the log-odds. See Appendix C for a description of the
coefficient.
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Figure 4.7: Variable importance for LASSO model using the "Aggregated"
dataset. X-axis represents the absolute value of the variable coefficient.

expert noticed some interesting results that were not expected. First, the
high association of the "HOSPITAL_DIA" group. From the domain expert
perspective, this "Admission Group" has little significance since patients do
not get admitted for more than one day and have a relatively low cost.
The unexpected result also contrasts with the Graph 4.4, where this group
of hospitalizations actually have a low proportion of high-cost, and also the
three "Admission Group" pointed in Section 4.1.2 with the highest proportions
have low importance in the fitted model. The discrepancies in the exploratory
analysis results and the domain expert business knowledge with respect to the
individual effect of the predictors are not conclusive since interactions among
variables can occur, but it deserves further analysis in order to understand
this behavior. To do that, the original cost variable ("Hospitalization Cost")
is again analyzed, but this time by "Admission Group" instead of the whole
dataset.

The Graph in Figure 4.8 exhibits the distribution of the "Hospitalization
Cost" within each "Admission Group," and the blue dashed line represent the
high-cost cutoff (R$ 10, 200) defined using Pareto’s principle in Section 4.1.2.
From the Graph, it turns out that hospitalizations for each "Admission Group"
have different cost distribution, mainly the "HOSPITAL_DIA" group, which
has the lowest median cost value (as pointed out by the domain expert). Then
according to the high-cost definition, for this group just a few values are above
the defined cut-off, which can explain why it receives a high coefficient in the
fitted model. On the other hand, the groups with the larger proportions of high-
cost hospitalizations are because the cutoff line is under their 75 percentile.
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Figure 4.8: "Hospitalization Cost" for the 12 most frequent "Admission
Groups". The y-axis is in logarithm (base 10) scale

The behavior observed in the previous analysis indicates that the defini-
tion of high-cost hospitalization following the Pareto’s principle is not adequate
in this context. The point is that the cost value of a hospitalization should not
be used to define high-cost among different admission motives, which costs
distributions differ depending on the nature of the procedures performed. This
conclusion was reached in agreement with the organization, so it was decided to
redefine the response variable, and that a new cycle should be initiated. Also,
at this point in the study, the entire dataset comprising all the population
attended by the organization is available and would be used in the following
cycle.

4.2
Second DSR cycle: Prediction of high-cost hospitalizations over the
complete dataset

Figure 4.9 summarizes the activities and results obtained when instanti-
ating the Second cycle of DSR framework presented in the previous Chapter.
It is important to notice important differences when compared to the overview
of the First cycle, presented in Figure 4.1:

– The entire data set with all the hospitalizations is now available13,
including new variables regarding past hospitalizations.

– Residual hospitalizations and "Admission Subgroup" out of the scope of
the study were removed.

13The data set with all the hospitalizations was under development when the project
started, thus a sample was provided to conduct the First DSR cycle.
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– High-cost hospitalizations were defined at the "Admission Subgroup"
level, applying an outlier detection approach.

– New variables were created for prior costs.

– Predictive models built for each "Admission Subgroup".

As in the First cycle, the following Subsections describe each phase of
this Second DSR cycle, in detail.

Design & Development

Evaluation & Observation

Environment Theoretical Foundations

Design 
CycleR

el
ev

an
ce

 
C

yc
le

R
ig

or
 C

yc
le

Business objectives (revised):
- Develop a proactive healthcare plan 
for suitable types of hospitalizations.
Data mining objectives (revised): 
- Explore the entire dataset of 
hospitalizations.
- Define high-cost hospitalizations 
considering similar groups of 
admissions.
- Assess the predictive power of prior 
cost variables in the current scenario.
-Instantiate ML models to detect 
hospitalizations with unexpected 
expenses.
Success criterion (maintained):
- Identify the majority of the target 
patients (Sensitivity, Fβ=2).

Explore data:
- Data base with 475,587 instances 
and 69 columns.
- Exclusion criteria: residual 
hospitalization and “Admission 
Subgroup” that do not meet the 
study requirements.
- High-cost definition: at each 
“Admission Subgroup” the 
admissions defined as outliers by 
the boxplot approach.
Data Preparation:
- Scale continuous predictors to 
range [0,1].
- Each “Admission Group” is a 
dataset. (class imbalance issue)

Model assessment:
- RF and XGB outperforms over the others ML techniques. 
- Resampling technique do not improve model’s performance.
- Best model and dataset performance. RF without resampling technique 
for “Admission Subgroup”- "ENDOSCOPIA INTERVENCIONISTA", AUCPR 
= 0.732, Fβ=2 = 0.585, Sensitivity = 0.724, PPV = 0.33

Base knowledge:
- Past cost variables explain future 
costs [22, 20, 18, 8].

New Knowledge:
- ML model to predict 
hospitalizations likely to incur in 
high expenses using past 
hospitalizations cost and medical 
resource consumption variables. 

Feedback:
- A more granular level of medical 
procedures may improve the high-
cost definition.

Feature engineering:
- Aggregated variables of medical 
resource consumption.
- Hospitalizations of “Admission 
Subgroup” Hospital Day became a 
variable.
- Cost variables for past hospitalizations 
and “Hospital Day”.
ML techniques:
- Ridge regression (RR), LASSO,  
CART, Random Forest (RF), and 
Extreme Gradient Boosting (XGB).
Resampling techniques: 
- Up-sampling, Down-sampling, 
SMOTE, ROSE 

Figure 4.9: Second Cycle of the DSR and Data Science Methodology

4.2.1
Business Understanding

The development of this cycle, as stated at the end of Section 4.1.5,
followed the need to redefine the concept of a "high-cost hospitalization", as
well as to consider the complete dataset made available by the organization.
In this context, the objectives of the Second cycle are: (i) to explore the new
dataset, with the entire population of hospitalizations of the past 3 years; (ii)
to evolve the precise definition of a high-cost hospitalization considering similar
groups of admissions (that is, hospitalization with a high risk of incurring in
unexpected high-cost, given its admission group), and (iii) to build ML models
that successfully predict such high-cost hospitalizations. The organization
expectation is to have predictive models that capture most of the high-cost
hospitalizations (with a high risk of having an unexpected high-cost considering
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the hospitalizations of the same admission group), while at the same time
reducing the number of low-cost hospitalizations that are misclassified as
high-cost. As in the First cycle the success criterion is measured maximizing
the Fβ metric (see equation 3-13) with β = 2. In addition, the Sensitivity
and PPV, together with the corresponding confusion matrix complements the
performances evaluation process.

The need for evolving the definition of a high-cost hospitalization arose
from the conclusion, obtained in the First DSR cycle, that it is necessary
to stop analyzing the cost in isolation. The magnitude of the cost value is
not enough, since the cost distributions vary a lot among distinct admission
groups. Instead, it would be more useful to predict which hospitalizations have
an unexpected cost according to some reference value. The next Section will
address this definition.

4.2.2
Data Understanding

The complete dataset containing the entire population has 475, 587 hospi-
talizations of a total of 269, 976 patients, and 69 features describing character-
istics of the hospitalizations at the moment of the admission (e.g., "Admission
Subgroup", "Flag Surgery", "Admission Type") and a set of medicals events
in the past three years. As can be noticed, there are more features compared
to the sample data used in the First DSR cycle. The new features are from
the group of past medical resource consumption, and denote the number of
physiotherapies consults and past hospitalizations for the same patient. In ad-
dition, there is a new variable that gathers related hospitalizations at a more
granular level in relation to the "Admission Group", which is called "Admission
Subgroup"14. This information is displayed in table 4.6 and more detailed in
the dictionary of variables in Appendix A.

To start the analysis of the new dataset, the same data selection filters of
the First DSR cycle were applied. Also, duplicated registries were encountered
and removed (see Figure 4.10). Graph 4.11 illustrates the behavior of the
hospitalization cost for each "Admission Subgroup". To do that, the box-plots
were substituted by the hospitalization’s instances represented as dots, and
plotted with some random dispersal (jitter) to avoid overlapping. The idea is
to observe if there are unknown patterns in the cost variable distribution.

Graph 4.11 plots the "Hospitalization Cost" of the 10 most frequent
"Admission Subgroup". The distribution cost of each subgroup presented a
set of observations in the lower extreme of their distributions, which are

14There is a total of 37 groups and 196 subgroups.
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Table 4.6: Group of variables whole dataset
Patient Characteristics Medical Resource Consumption Patient Hospitalization

Gender Ordinary exams Admission Group
Age Image exams Admission Type

Psychological consults Flag Surgery
Scheduled consults Hospitalization Cost
Emergency consults *Admission Subgroup
Hemodialysis therapies
Pulsotherapies
Transplant
Chronic disease
*Physiotherapies consults
*Surgical hospitalizations
*Clinical hospitalizations

*New variables.

Hospitalizations: 475,587
Patients: 269,976

Missing Values (Age)
Hospitalizations: 37,465
Patients: 17,925

Hospitalizations: 475,587
Patients: 269,976

Hospitalization Cost ≤ 0
Hospitalizations: 881
Patients: 487

Hospitalizations: 437,241
Patients: 251,564

Duplicated Registry
Hospitalizations: 25
Patients: 5

Hospitalizations: 437,216
Patients: 251,559

Residual Hospitalizations
Hospitalizations: 13,980 
Patients: 3,989

Hospitalizations: 423,236 
Patients: 247,570

Hospitalizations: 403,759 
Patients: 246,926

Data quality filterHospitalizations: 189,308 
Patients: 138,401 Data reduction filter

Result
Exclusion

"Admission Subgroup" == ("Clinica" 
or "Outras Internações" or "Partos")

Hospitalizations: 214,451 
Patients: 108,525

"Admission Subgroup" == "HospitalDia"
Hospitalizations: 19,477 
Patients: 644

Figure 4.10: Data quality and reduction filters for the entire dataset.
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significantly different from their median value (including values very close
to zero). This behavior is more notable in subgroups with higher variability,
such as "OUTRAS INTERNACOES" (where the median value is R$ 2, 550,
and 25 % of the hospitalizations with the lowest costs are between R$ 0.01
and R$ 304). In a further analysis, the domain expert of the organization
concluded that this is due to the existence of residual hospitalizations in
the dataset. From the organization perspective, residual hospitalizations are
delayed payments whose registries appear as individual hospitalizations while,
in reality, they represent residual payments that could not be linked to the
original hospitalization. In other words, they are part of some hospitalization
that happened before, with no link to the original one. Then, in agreement
with the organization domain expert, the residual hospitalizations within each
"Admission Subgroup" were removed.
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Figure 4.11: "Hospitalization Cost" for the 10 most frequent "Admission
Subgroup". The y-axis is in logarithm (base 10) scale for better visualization.

In order to detect those residual hospitalizations, an outlier detection
procedure was performed in the lower extreme of each subgroup distribution.
The outlier definition followed the boxplot approach, where every point lower
than the resulting difference between the 25 percentile and 1.5 times the
IQR is identified as an outlier. One issue with this approach is that the
distributions of cost are heavily right-skewed15, thus most subgroups do not
present outliers following the previous definition. Thus, we first apply a

15This is a characteristic of cost data in the healthcare context, just a minority of the
population generate large expenses.
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logarithmic transformation of the "Hospitalization Cost" variable (to decrease
the skew) and then apply the outlier definition described above. Graph 4.12
depicts the resulting residual observations for the 10 most frequent "Admission
Subgroup", which were then removed. Figure 4.10 shows the amount of removed
data.
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Figure 4.12: "Hospitalization Cost" for the 10 most frequent "Admission
Subgroup". The green point are the residual hospitalizations. The y-axis is
in logarithm (base 10) scale for better visualization.

At this point, the organization domain experts analyzed the "Admission
Subgroup" categories, searching for inconsistencies with the research goals, and
concluded that some of them should not be considered. First, the subgroups
named "Clinica", "Outras Internações" and "Partos" should be discarded be-
cause they group very heterogeneous sets of procedures (note their variability
in Graph 4.12). Second, the subgroup "HospitalDia" ("Daily Hospital") should
be discarded as hospitalizations, for the purposes of the current research, since
they typically refer to procedures that do not require the patient to be ad-
mitted for more than one day. However, they could be an important indicator
for some possible hospitalization of the same patient in the future. Thus, the
observations of this subgroup were removed and this event was transformed
into a new variable, as described in the next Section. The subgroup removal
procedure is one of the data reduction steps described in Figure 4.10.

4.2.2.1
Defining the class variable

The task redefines the "Hospitalization cost class" variable, setting which
hospitalizations should be considered as high- or low-cost for the data modeling
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phase. In this Second DSR cycle, a high-cost hospitalization is defined as
the one having an unexpected much higher cost when compared to similar
hospitalizations.

For this purpose, the "Admission Subgroup" variable was used as a group-
ing criterion, thus resulting in more homogeneous subsets of hospitalizations.
Each subset has a distinct threshold (or cutoff) value for defining high-cost hos-
pitalizations, set by applying an outlier detection procedure that is analogous
to the one adopted to define residual hospitalizations, but this time looking
in the upper extreme of the cost distribution. The rationale for this defini-
tion is that these outliers effectively represent hospitalizations which costs are
unexpectedly high. Graph 4.13 illustrates the different cutoff values for each
"Admission Subgroup" of the "Admission Group" named "SISTEMA DIGES-
TIVO E ANEXOS" ("Digestive System and Annexes").
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Figure 4.13: "Hospitalization cost class" definition for each "Admission
Subgroup" of the "Admission Group" named "SISTEMA DIGESTIVO E
ANEXOS".

The described approach for defining high-cost hospitalizations generates
new challenges to the project that should be addressed in the preparation
phase. For example, as depicted in Graph 4.13, the same cost value could
represent both high-cost and low-cost hospitalizations for different subgroups.
Moreover, the definition of high-cost hospitalizations as outliers significantly
reduces the number of observations belonging to the high-cost category, thus
creating a class imbalance issue, as pictured in the two subgroups to the right
of Graph 4.13 (see Appendix D table D for a detailed description of each
"Admission Subgroup").
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4.2.3
Data Preparation

The preparation phase in this Second DSR cycle followed most tasks
performed in the First cycle. All observations meeting the exclusion criteria
described in the previous sections were removed, and the presence of outliers
in this context refers to values that could have valuable information, thus were
not removed. Also, according to the conclusion reached in the First cycle that
temporal variables do not improve the model’s performance, only aggregated
variables are considered in the Second cycle.

Table 4.7: Feature Engineering. Aggregated Medical Resource Consumption
variables.
Medical Resource Consump-
tion

Actual granularity New aggregated variable name New aggregated value

Physiotherapy annual count Physiotherapy total sum of annual counts
Surgery hospitalization bi-annual count Surgery hospitalization total sum of semester counts
Surgery hospitalization cost bi-annual sum Surgery hospitalization cost total sum of semester costs
Clinic hospitalization bi-annual count Clinic hospitalization total sum of semester counts
Clinic hospitalization cost bi-annual sum Clinic hospitalization cost total sum of semester costs
Hospital-Dia bi-annual count Hospital-Dia total sum of semester counts
Hospital-Dia cost bi-annual sum Hospital-Dia cost total sum of semester costs

In addition to creating the aggregated variables as described in Table 4.4,
a new variable was created to represent the number of "Day-Hospital" hospi-
talizations that occurred in the past. Also, for each variable describing past
hospitalizations of a specific type ("Surgical", "Clinical", and "Day-Hospital")
a new variable was created to denote the cost incurred for its corresponding
type, as an attempt to break ties among admissions with the same amount of
past hospitalizations16 (Table 4.7 complements the variable aggregations pre-
viously described in Table 4.4). Moreover, as in the First cycle, all predictors
were scaled into a range [0, 1].

On the other hand, to address the challenges caused by the redefinition
of a high-cost hospitalization (described in Subsection 4.2.2), the predictive
models will be built at the "Admission Subgroup" level, thus each subgroup
will be treated as a different dataset. This decision, in agreement with the
organization domain expert, also addresses the need for prioritizing groups of
hospitalizations by their frequency, their cost variability or their average cost.
Figure 4.14 displays the frequency and average cost for all "Admission Sub-
group" with more than 800 hospitalizations. The 47 most frequent subgroups,
which account for 88% of the hospitalizations, will be the object of study.17

16Previous related works argue that past costs variables are valuable predictors of futures
cost (see Section 2.2).

17Appendix D, Table D, provides a characterization of the "Admission Subgroup".
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Figure 4.14: "Admission Subgroup" frequency and average cost. The numbers in
the x-axis represent each "Admission Subgroup" (see Appendix D for a detailed
description).

4.2.4
Data Modeling

The learning procedure for all the models in this Second DSR cycle
also applied a 5-fold cross validation methodology approach with a stratified
random sampling splitting criterion, as in the First DSR cycle. The experiment
design comprised a wider variety of scenarios, including other ML techniques
and also resampling techniques to treat the class imbalance issue (which is
more evident at the "Admission Subgroup" level). It is worth noting that
both the resampling technique and data scaling were performed during the
CV procedure to the training folds, in order to avoid bias in the subsequent
performance metrics. Table 4.8 summarizes these scenarios and Appendix E
provides detailed information about the hyperparameters settings for each ML
technique.

Model assessment was different from that of the First design cycle,
because of the great number of scenarios conducted in this experiment18. In
summary, the experiment results evaluated: (i) the overall performance of the
ML techniques on all subgroups; (ii) the performance of the best ML techniques
for all the subgroups under study; (iii) the predictors contribution to the final
prediction. The performance results are presented in the following subsections.

18Note that for the 47 "Admission Subgroup", 5 ML techniques were trained, each one
testing the 4 resampling technique plus the scenario without any, and a set of specific
parameters for each ML technique (details in Appendix E) for a total of 1175 scenarios.
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Table 4.8: Experimental Scenarios

Machine Learning technique Resampling Technique
Ridge Regression Up-sampling
Lasso Regression Down-sampling
CART SMOTE
Random Forest ROSE
Extreme Gradient Boosting

4.2.4.1
Evaluating ML Techniques Performance among all Admission Subgroup

First, the performance of each ML technique on all datasets was analyzed.
Figure 4.15 shows the results from this analysis, summarizing the performance
of each ML technique for the best scenario on each dataset. For each com-
bination of "Admission Subgroup" and ML technique, the "best scenario" was
defined by the resampling method and specific set of hyperparameters that pro-
duced the highest AUCPR. This metric provides and overall measurement of
the model performance, and may be interpreted as the average Precision (PPV)
when varying the Sensitivity from 0 to 1 at different probabilities thresholds.
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Figure 4.15: Overall ML technique performance across dataset.

The boxplot in Figure 4.15 illustrates that the RF and XGB models had
a better overall performance, showing a right-skewed distribution with median
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AUCPR of 0.582 and 0.584, respectively19, and maximum values reaching 0.732
in the case of RF. In contrast, the CART technique presented the lowest median
AUCPR (0.534), with a left-skewed distribution and a higher variability among
all datasets. It is worth noticing that, in order to compare the magnitude of
the models’ performance considering AUCPR, the baseline model (i.e., one
that predicts both classes randomly) performance depends on the positive
(high-cost) class proportion in the dataset. Since the analysis intends to relate
an overall performance, a median high-cost proportion of 0.07 with a median
frequency of 1638 hospitalizations among all datasets is considered as a baseline
model.

4.2.4.2
Evaluating ML Techniques Performance for each Admission Subgroup

The next analysis aimed to compare the results of the best ML tech-
niques. For that, the stripchart20 in Figure 4.16 depicts the AUCPR of the
best 5 (for each resampling technique) RF and XGB models, for each "Admis-
sion Subgroup"21. Grey dots represent the results of XGB, while black dots
depict the RF results. Also, the average values and ranges are pictured with a
horizontal and a vertical line, respectively.
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Figure 4.16: Overall "Admission Subgroup" performance using RF and XGB.

19The Notch displays the confidence interval around the median calculated as median±
1.58 × IQR/

√
n, where n is the number of samples. Although, not an statistical test non

overlapping notch suggest strong evidence that the median values are significantly different.
20Unidimensional scatterplot.
21The corresponding subgroup name for each number in the x-axis is provided in Appendix

D.

DBD
PUC-Rio - Certificação Digital Nº 1812856/CA

DBD
PUC-Rio - Certificação Digital Nº 1813286/CA



Chapter 4. Application of a DSR methodology to predict high-cost
hospitalizations 75

Graph 4.16 evidences a great variability in the results for each subgroup,
showing different behaviors of the resampling techniques. The lower median
(AUCPR = 0.561) performance corresponds to the ROSE technique, and the
highest values were obtained using either SMOTE or no resampling technique,
with a median performance of 0.573 and 0.576, respectively. There also seems to
be no clear winner among the two ML techniques, since they both outperform
each other in different datasets.

Moreover, two "Admission Subgroup" stand out over the rest, both pre-
senting AUCPR over 0.70. The "Admission Subgroup" number 22 (named "EN-
DOSCOPIA INTERVENCIONISTA") has a higher AUCPR value of 0.732
(reached for the RF technique without any resampling technique), which is a
considerable improvement compared with a baseline model for this subgroup
of 0.113 (2803 observations). On the other hand, in the "Admission Subgroup"
number 26 (named "APARELHOS GESSADOS") the best performance corre-
sponds to the XGB technique using the SMOTE resampling procedure, achiev-
ing an AUCPR of 0.724 with a ratio of 0.174 high-cost in 1562 hospitalizations.

Although these two subgroups distinguished by the performance ob-
tained, as depicted in Figure 4.14, their average costs are not that interesting
for the business goals, mainly for the subgroup 26, which has one of the lowest
frequencies and average costs. On the other hand, the "Admission Subgroup"
number 33 (named "ACESSOS VASCULARES") presents an elevated aver-
age cost. Thus, despite not having a prominent performance, subgroup 33 is
a candidate of interest for the study. Its best performance was achieved with
XGB and the SMOTE resampling techniques. The AUCPR reached 0.644 and
is compared with a baseline model with a performance equal to the subgroup
high-cost proportion of 0.106 (1244 observations). The performance metrics
and the confusion matrix for subgroups numbers 22 and 33 are provided in
Table 4.9.

An interesting conclusion for these subgroups is that both RF and XGB
techniques achieve high performances without any resampling technique to
deal with the class imbalance problem. This behavior highlights the ability
of these two ML algorithms, but also suggests that the techniques used for
the imbalance issue were not the most appropriate in this context. Therefore,
others could be tested to further refine the models.

In Table 4.9, the highest values for AUCPR are highlighted, and among
them stands out the results for the subgroup 22 where the value for Fβ=2 almost
reach 0.60, with which the model is correctly predicting more than 70 % of the
high-cost hospitalizations with around 30 % of precision. These performance
rates, and the absolute values depicted in their corresponding confusion matrix,
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Table 4.9: Summary of performance of best models for "Admission Subgroup"
22 and 33.
Dataset Scenario AUCPR Threshold Fβ=2 Sensitivity PPV TP FP FN TN

22

RF
none 0.732 0.159 0.585 0.724 0.330 45 92 17 406
up 0.715 0.383 0.590 0.724 0.339 45 89 17 410
down 0.697 0.519 0.585 0.750 0.310 47 107 16 392
SMOTE 0.685 0.337 0.572 0.702 0.328 44 91 19 407
ROSE 0.694 0.528 0.544 0.606 0.387 38 84 25 414

XGB
none 0.722 0.116 0.587 0.708 0.348 44 86 18 413
up 0.723 0.436 0.576 0.737 0.307 46 104 16 394
down 0.712 0.506 0.568 0.737 0.296 46 109 16 389
SMOTE 0.715 0.170 0.579 0.769 0.291 48 117 14 381
ROSE 0.692 0.945 0.563 0.771 0.271 48 284 14 215

33

RF
none 0.637 0.183 0.464 0.552 0.283 15 38 12 185
up 0.634 0.358 0.486 0.751 0.202 20 79 7 143
down 0.623 0.471 0.480 0.733 0.202 19 77 7 145
SMOTE 0.645 0.310 0.483 0.636 0.246 17 53 10 170
ROSE 0.606 0.344 0.415 0.916 0.130 24 166 2 57
XGB
none 0.640 0.089 0.478 0.660 0.228 17 60 9 163
up 0.638 0.416 0.466 0.636 0.225 17 58 10 164
down 0.623 0.507 0.449 0.681 0.190 18 77 8 146
SMOTE 0.644 0.197 0.494 0.697 0.228 18 63 8 159
ROSE 0.600 0.001 0.432 0.632 0.191 17 89 10 133

are within the expected results from the organization perspective to be able
to carry out the proactive health plan.

4.2.4.3
Evaluating Variable Importance for the best ML Models

In addition, once the model is trained, another possible approach for
understanding the high-cost hospitalizations is to analyze the predictors’
ability (importance) to explain the response variable. In Graph 4.17 the
predictors’ importance are ranked for the best results of the two datasets
selecting the scenario with the highest Fβ=2.

For both RF and XGB, the variable’s importance relate to the Impu-
rity Gain (according to the Gini Index) obtained when splitting a tree node
on a specific variable. It is interesting that, for both subgroups, the "Admis-
sion Type" variable (Scheduled or Emergency) appears in the first positions.
This behavior may be caused because the proportions of the "Hospitalizations
Cost Class" labels are dominant within the two classes of this variable. In fact,
for subgroup 22, emergency admissions have a higher proportion of high-cost
hospitalizations (almost 50%), while the majority (93%) of scheduled hospital-
izations are of low-cost. It is also worth noting that the new features created in
Section 4.2.3, which are related to the past hospitalizations (Surgical, Clinical
and Day-Hospital) and their respective costs, provide valuable information for
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Figure 4.17: Variable importance. Top Graph, "Admission Subgroup" 22 with
RF without resampling technique. Bottom Graph, "Admission Subgroup" 33
using XGB and SMOTE.

the learning process.

4.2.5
Evaluation

The model evaluation phase delimits the frontier between the Design and
Relevance cycles (see Figure 3.9). It designs the point, in the project pathway,
where the model design and development are assessed from the organization
perspective as the testing field to decide whether additional model refinements
are needed. For that, further analyses of the resulting models performance are
conducted, this time trying to understand particular cases where the errors are
being made, and also their impact.

4.2.5.1
Visualizing the predictions

First, the best performance scenario for subgroup 22 is considered (RF
with none resampling technique). For that, Figure 4.18 displays the classifi-
cation predictions for each testing fold during the CV iterations. The colored
dots differentiate the classes predicted by the model, and the blue dashed line
denotes the high-cost cutoff value (which divides the observations in their real
classes). Then, for example, a red dot (predicted as a high-cost hospitalization)
above the blue line indicates a true positive (TP); a red dot below the blue
line indicates a false positive (FP); a green dot (predicted as a low-cost hos-
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Figure 4.18: Classification predictions for the testing folds during the CV
procedure of "Admission Subgroup" 22. The blue dashed line represent the
high-cost boundary for this subgroup.

pitalization) below the blue line indicates a true negative (TN); and a green
dot above the blue line indicates a false negative (FN). Figure 4.18 effectiv-
elly shows each cell of the Confusion Matrix in contrast with the continuous
variable "Hospitalization Cost", making hits and misclassifications explicit. It
is worth noting that the Confusion Matrix values are calculated as the average
of the classification’s results across the CV folds, allowing to test the model
using all observations once. In other words, as depicted in Figure 4.18, the
CV procedure permits to test the trained model on different patterns of data,
increasing the confidence of the performance estimates. In this subgroup, the
majority of the high-cost hospitalizations are correctly classified, except for the
first fold where, among the five highest costs, just two were predicted as such.
Also, an unexpected behavior was observed in the lower extreme of the cost
distribution for all folds, where high-cost classifications are wrongly made.

On the other hand, the best performance scenario for subgroup 33
is depicted in Figure 4.19 (XGB using SMOTE). Similar behaviors in the
errors are also reflected in this subgroup, although it is good to note that
apparently fewer mistakes are made in the area where the hospitalizations
have the highest cost. It also highlights the correct detection of the two
most expensive hospitalizations, the largest being over 3 million. Then, those
observations would be further analyzed, providing some characteristics of the
most important predictors (see Figure 4.17).
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Figure 4.19: Classification predictions for the testing folds during the CV
procedure of "Admission Subgroup" 33. The blue dashed line represent the
high-cost boundary for this subgroup.

4.2.5.2
Analyzing Individual Cases

Table 4.10 summarizes the analysis for the FN with the highest cost value
(which is referred to as "FN-high") and for the FP with the lowest cost value
("FP-low"). It shows the distribution (median and IQR for continuous variables
and count and proportion % for binary) of the four most important variables
for each model considering the group of observations correctly predicted as
low-cost (TN) and as high-cost (TP). It is expected that the value of FN-high
should correspond to the TN distribution, while the value of FP-low should be
within the TP distribution.22

For subgroup 22, the analysis of the FN-high and FP-low cases is
presented as follows. With regard to the "Admission_Type (Emergency)"
variable, both FN-high and FP-low were "Scheduled" admissions (i.e., not
"Emergency"). The observations that the model correctly classifies as high-
cost (TP) are half scheduled and half emergency admissions, while all low-
cost hospitalizations correctly classified (TN) were "Scheduled". For the "Age"
variable, it is interesting to notice that FN-high was a 92 years-old patient,
staying out of both correctly classified distributions (TP and TN).

With regard to the "Clinic_hospitalizations_cost_total" variable (which
refers to the total cost of past clinical hospitalizations), FP-low indeed pre-

22This behavior does not necessarily occur with this analysis because the variables can be
used on different occasions and several times in tree-based models.
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Table 4.10: Predictors’ characteristics for extreme misclassifications in both
subgroups.

Subgroup 22: "ENDOSCOPIA INTERVENCIONISTA" Subgroup 33: "ACESSOS VASCULARES" [b]
Fold Variable median [IQR]

count [%]
Fold Variable median [IQR] count

[%]
Admission_Type (Emergency) Flag_Genetic (Yes)

Fold_1

FN-high Scheduled

Fold_5

FN-high No
TP 23 [50%] TP 2 [10.5%]
TN 0 [0%] TN 3 [2.1%]

Fold_3

FP-low Scheduled

Fold_4

FP-low No
TP 24 [53%] TP 3 [16.7%]
TN 0 [0%] TN 1 [0.6%]
Surgery_hospitalization_cost_total Surgery_hospitalization_cost_total

Fold_1

FN-high 0

Fold_5

FN-high 2063.36
TP 11,861 [0-148,996] TP 146,506 [0-811,758]
TN 0 [0-2,360] TN 6,617 [0-27,727]

Fold_3

FP-low 0

Fold_4

FP-low 203189
TP 23,563 [0-62,813] TP 44,482 [2,126-288,360]
TN 0 [0-2,675] TN 5,676 [0-27,810]
Clinic_hospitalization_cost_total Exam_total

Fold_1

FN-high 0

Fold_5

FN-high 67
TP 8,858 [0-65,534] TP 115 [46-254]
TN 0 [0-0] TN 43 [17-88]

Fold_3

FP-low 1,380

Fold_4

FP-low 20
TP 0 [0-29,580] TP 100 [30-226]
TN 0 [0-0] TN 40 [9-110]
Age Age

Fold_1

FN-high 92

Fold_5

FN-high 65
TP 42 [22-64] TP 48 [34-67]
TN 53 [44-59] TN 46 [35-57]

Fold_3

FP-low 35

Fold_4

FP-low 38
TP 53 [40-59] TP 47 [34-58]
TN 51 [41-59] TN 45 [30-56]

sented some of the characteristics of the TP observations since its value of
1, 380 is in the TP range of [0 − 29, 580] (comprising 75 % of the high-cost
observations), while 75 % of the TN observations had no cost of past clinical
hospitalizations (value = 0). Therefore, it makes sense for the model to classify
FP-low as a high-cost hospitalization, even though this is not correct.

For subgroup 33, the analysis of the FN-high and FP-low cases is more
inconclusive, since TP and TN distributions are quite similar for most vari-
ables. One reason that justifies the model prediction relates to the total cost of
past surgical hospitalization ("Surgery_hospitalization_cost_total" variable)
of FP-low, which is valued (203, 189), thus fitting in the TP distribution (with
75 % ranging in [2, 126− 288, 360]), rather than on the TN distribution (with
75 % ranging in [0− 27, 727]).

In summary, this analysis of individual cases provided some insights into
the characteristics that differentiate the extreme misclassified observations.
The FP-low cases seem to present characteristics of a high-cost hospitalization.
A possible explanation is that it represents a residual hospitalization, since the
method used to detect and eventually remove those hospitalizations was an
approximation. This should be further investigated by the company domain
experts and, for future model refinements, it is worth reviewing this aspect. In
the case of FN-high, the issue seems to be not a confusion among classes,
but rather behaviors that differed from both classes, therefore remaining
as uncovered patterns. Further analysis should analyze those observations
separately in order to understand their characteristics and even the high-cost
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definition.

4.2.5.3
Analyzing from an Economic Perspective

From a business perspective, it is interesting to analyze the results of the
classification model from an economic point of view. In theory, the patients
selected as having a risk of incurring unexpected high-costs would require
dedicated attention in order to reduce the forecasted high expenses and, of
course, improve the health care service and thus patient’s health quality. In
this context, a crucial analysis would be to assess the amount of cost reduction
this proactive plan would potentially achieved, thus providing an economic
evaluation of the model’s performance. However, at the current phase of the
project, it was not possible to address both the expected hospitalization cost
reduction and the expenses caused by the proactive attention. Despite this,
a naive proposal for a possible evaluation from an economic perspective was
developed, and its implementation proposed as future works.

The objective is to measure the model’s mistakes, not in number of pa-
tients, but considering costs. In terms of the cells of the Confusion Matrix, and
having prior knowledge of the expected cost reduction (Cr) and the healthcare
plan costs (Cp) for each subgroup, the following procedure was designed. Let
A be the set of hospitalizations (i) for each "Admission Subgroup", then ∀i ∈ A:

If Xi = TP , then Ci
final = Ci

real − Cr + Cp;
If Xi = TN , then Ci

final = Ci
real;

If Xi = FP , then Ci
final = Ci

real + Cp;
If Xi = FN , then Ci

final = Ci
real + (Ci

real − Cr + Cp);

where Xi is the class predicted by the ML model for hospitalization i,
and Ci

final the expected cost after the model is used for predictions and the
proactive plan successfully carry out. Then, the overall cost reduction for a
specific "Admission Subgroup" equals ∑iC

i
final and is compared with the total

cost without applying the proactive plan ∑iC
i
real. Note that if the predicted

class is a FN the referred Ci
final is an analogy of the opportunity cost for not

detecting a high-cost patient, represented by the term (Ci
real − Cr + Cp).

In addition to the proposed analysis, it is possible to still provide an eco-
nomic evaluation of the models’ performance using the available information.
Table 4.11 presents for both subgroups, the cost (average across the five folds)
proportion for the correctly identified (TP-cost) high-cost hospitalization. In
both cases, almost 80% of the total cost related to the high-cost hospitaliza-
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tions were identified. In other words, from table 4.9 the best results for the
subgroup 22 shows that the 72.4% (Sensitivity) of the high-cost admission
were correctly predicted, which represents the 78.7% of the total cost of those
hospitalizations. Then it is possible to argue that the ML model is predicting
the majority of the positive class and the ones with the highest cost. The mod-
els’ achievements and the conclusions reached from the economic perspective
corroborates the accomplishment of the organization’s expectations.

Table 4.11: Cost analysis of models’ performance for "Admission Subgroups"
numbers 22 and 33.
Admission
Subgroup

TP total
cost

TP + FN
total cost

TP
%

FP total
cost

TP + FP
total cost

FP
%

22 2,756,476 3,504,420 78.7 533,043 3,289,519 16.2
36 5,269,644 6,622,624 79.6 1,352,491 6,622,624 20.4

The last economic analysis closes the evaluation phase of the developed
models, with significant results meeting the proposed business goals. The
advances made in the labeling of the "Hospitalizations Cost Class" provide
an improvement to the ML technique performance, and also allowed a better
understanding of the problem and context of the study. It showed that the
inherent characteristics of each hospitalization’s group related to medical
concerns are crucial when modeling cost and medical resource consumption
variables. Also, the priority analysis demonstrated that there are subgroups
in which cost values are naturally a few times bigger than others, but a small
cost variability does not make them suitable for building a predictive model.

With the related scenario and the clear improvements obtained, the
organization got involved in a project to create one more variable describing a
level even more specific to group hospitalizations. This variable is specifically
related to the medical procedure performed within the hospitalization, and
it turns out that for the same "Admission Subgroup", there may be different
procedures. As the construction of the variable is an ongoing project, this
feature was not used in this thesis project. However, the organization provides a
sample of this variable ("Admission Procedure" from now on) for one subgroup,
in order to investigate whether the cost variability within it is significant, as was
corroborated in the case of "Admission Group", see Figure 4.8. The following
plot illustrates this analysis for the "Admission Subgroup" named "FARINGE"
(pharynx).

The Graph illustrates a similar behavior when analyzing the subgroups
in Section 4.2.2, showing a relevant cost variability among procedures of the
same subgroup. Actually, with the high-cost definition at the subgroup level,
for the second and the second to last (left to right) procedure, there are
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Figure 4.20: Cost distribution for each "Admission Procedure" within the
FARINGE subgroup (only procedures with more than 10 hospitalizations are
shown). The blue dashed line represents the high-cost boundary defined at
subgroup level.

hospitalizations under the 75 percentile that were labeled as high-cost, which
contradicts the actual definitions for detecting unexpected admissions. With
this behavior, it is evident that further analyses are necessary even to consider a
new labeling strategy or a data splitting criterion for predictive model building.
As in the First cycle, these decisions imply the beginning of a new cycle,
but this time would be part of the suggested future works, which also give
continuity to the ongoing project with the organization.
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5
Conclusions

This thesis proposed a solution to identify high-cost hospitalizations,
which may integrate the proactive plan of a Health Consulting organization.
The proposed approach was developed as a Data Science project and model
cost variables as indicators of the patients’ hospitalization risk, their sever-
ity, and their medical resources consumption. In this context, this study built
predictive models using statistical and ML techniques to detect high-cost hos-
pitalizations learned from a historical database of patient’s admissions in the
past 3 years, comprising also their records of medical resource consumption.
Methodologically, the development of this research was guided by the integra-
tion of a Data Science Life cycle with the DSR methodology. Two cycles were
conducted for the design and development of the predictive models.

During the First design cycle, important insights into the characteristics
of the problem and the data were found. The response variable "Hospital-
ization Cost Class" was defined to label procedures with unexpectedly high
expenses, considering the characteristics of the procedures performed during
the in-hospital admission. Therefore, this definition should be done at a group-
ing level, in which the medical characteristics of all the procedures are sim-
ilar. This high-cost definition prevented bias in selecting naturally expensive
procedures as such. During the Second design cycle, the definition of a high-
cost hospitalization was improved, which led to enhanced predictive models.
The final definition considered the "Admission Subgroup" variable as the finest
granular level available in the dataset, and an outlier detection procedure was
applied to label as high-cost hospitalizations all the unexpectedly high valued
observations within each subgroup distribution.

On the other hand, predictors describing the medical resource consump-
tion were aggregated summarizing their temporal behavior. The "aggregated"
set of features reached similar results when compared to the "temporal" set,
while also leading to less complex predictive models with improved inter-
pretability. In addition, variables related to previous hospitalizations cost pro-
vided additional valuable information to predict future high-cost hospitaliza-
tions.

Regarding the performance of the predictive models, better results were
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achieved when splitting the population into admission subgroups, ranked by
their frequency and average cost. In summary, the Random Forest (RF) and the
Extreme Gradient Boosting (XGB) techniques produced models with higher
performance, reaching an AUCPR of 0.732 and 0.644 when assessed over a
dataset with a 0.113 and 0.106 proportion of the high-cost class, respectively.
This performance was achieved for "Admission Subgroups" "ENDOSCOPIA
INTERVENCIONISTA" (Interventional Endoscopy) and "ACESSOS VASCU-
LARES" (Vascular Accesses), respectively. The predictive models using RF de-
tected 72,4% of the high-cost hospitalizations with a 33% of Precision, meeting
the business expectations since the majority of the unexpected expenses were
identified, even paying an acceptable cost for misclassifications. Moreover, in
terms of the cost value, the correctly predicted high-cost hospitalizations rep-
resent 78.7% of all the real ones. In contrast, hospitalizations misclassified as
high-cost represent 16.2% of the total cost of all those that were classified as
high-cost.

Further analysis of the misclassifications made by the models evidenced
the existence of False Positive observations in the lower extreme of the cost
distribution, which may indicate residual hospitalizations. Also, identified False
Negative observations in the upper extreme correspond to hospitalizations with
characteristics that are very different from the existing patterns present in the
learning dataset.

5.1
Suggestions for future works

This thesis was developed as part of a project with a Health Consulting
company, and accomplished the First phase of the planned research. Hence,
in the following, future works related to further improvement of the whole
process are provided, which implementation requires that a new DSR cycle be
initiated.

First, as concluded at the end of the Second cycle and with the new
variable of "Admission Procedures" being collected by the organization, it
would be possible and necessary to assess whether the definition of a high-
cost hospitalization needs refinement. Furthermore, as residual hospitalizations
cause possible misclassifications in the lower extreme of the cost distribution,
the definition of those could be improved, searching for a minimum expected
cost value for each type of procedure, and then using it as a threshold for
filtering the lower observations.

Regarding the modeling phase, further improvement can be made. The
resampling techniques used to overcome the class imbalance issue did not im-
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prove the performance of ML techniques, which highlights the ability of the
predictive models in this scenario but also indicates that these techniques may
not be the most appropriate in this context. A racing method should be con-
ducted to select the most appropriate strategy for the given unbalanced task,
as proposed by DalPozzolo et al. [99]. Moreover, the ML techniques employed
can be further improved, expanding the search space of the hyperparameter
tunning process. This may become time-consuming, requiring great compu-
tational resources. Hence, instead of using a grid or random search strategy,
Kuhn [100] proposed a futility analysis during the CV procedure to reduce
the training time by adaptively resampling candidate values and the clearly
sub-optimal ones are discarded.

The economic analysis conducted to assess the predictive model perfor-
mance in this context did not account for the missed high-cost hospitalizations
(i.e., FN), which are of interest to the organization. The method proposed in
section 4.2.5.3 could be implemented to address this issue. This procedure
uses two values that were not available at the time of this project, the ex-
pected hospitalization cost reduction, and expenses caused by the proactive
attention. However, its purpose is to assess the amount of cost reduced by the
pretended proactive plan and also has an economic evaluation of the model’s
performance accounting for all hits and misclassifications.
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A
Dictionary of variables

Category Name Data type Description
Patient Char-
acteristics

Gender binary (logi-
cal)

Number identifying the gender of a pa-
tient [if 0: Female, if 1: Male]

Patient Char-
acteristics

Age number
(interger)

Age in the hospitalization date

Patient Hos-
pitalization

Admission
Group

character
(varchar)

Hospitalization Group according to
CBHPM *

Patient Hos-
pitalization

Admission
Subgroup

character
(varchar)

Hospitalization Subgroup according to
CBHPM *

Patient Hos-
pitalization

Admission
Type

binary (logi-
cal)

The way a patient was admitted [if 0:
Scheduled, if 1: Emergency]

Patient Hos-
pitalization

Flag Surgery binary (logi-
cal)

Whether a surgery was performed dur-
ing the hospitalization [if 0: Clinical, if
1: Surgery]

Patient Hos-
pitalization

Hospitalization
cost

number
(float)

Hospitalization total cost

Patient Hos-
pitalization

Hospitalization
cost class

binary (logi-
cal)

High-cost definition [if 0: low-cost, if
1:high-cost]

Medical
Resource
Consumption

Flag Genetic binary (logi-
cal)

Existence of Cytogenetic or Molecular
Genetics examas (CBHPM) 3 years be-
fore the hospitalization [if 0: No, if 1:
Yes]

Medical
Resource
Consumption

Exam
semester6

number
(interger)

Number of exam claims (common and
special) performed from the 30th to the
36th month before hospitalization

Medical
Resource
Consumption

Exam
semester5

number
(interger)

Number of exam claims (common and
special) performed from the 24th to the
30th month before hospitalization

Medical
Resource
Consumption

Exam
semester4

number
(interger)

Number of exam claims (common and
special) performed from the 18th to the
24th month before hospitalization

Medical
Resource
Consumption

Exam
semester3

number
(interger)

Number of exam claims (common and
special) performed from the 12th to the
18th month before hospitalization

Medical
Resource
Consumption

Exam
semester2

number
(interger)

Number of exam claims (common and
special) performed from the 6th to the
12th month before hospitalization
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Appendix A. Dictionary of variables 98

Medical
Resource
Consumption

Exam
semester1

number
(interger)

Number of exam claims (common and
special) performed from the 1st to the
6th month before hospitalization

Medical
Resource
Consumption

Exam total number
(interger)

Total number of exam claims (common
and special) 3 years before the hospi-
talization

Medical
Resource
Consumption

Image
month3

number
(interger)

Number of imaging tests performed in
the 3rd month before hospitalization

Medical
Resource
Consumption

Image
month2

number
(interger)

Number of imaging tests performed in
the 2nd month before hospitalization

Medical
Resource
Consumption

Image
month1

number
(interger)

Number of imaging tests performed in
the month of hospitalization

Medical
Resource
Consumption

Image total number
(interger)

Total number of imaging exams per-
formed 3 months before the intention

Medical
Resource
Consumption

Flag psycho
year3

binary (logi-
cal)

Existence of claims from psychologi-
cal consultations carried out in the 3rd
year before hospitalization

Medical
Resource
Consumption

Flag psycho
year2

binary (logi-
cal)

Existence of claims from psychological
consultations carried out in the 2nd
year before hospitalization

Medical
Resource
Consumption

Flag psycho
year1

binary (logi-
cal)

Existence of claims from psychological
consultations carried out in the 1st year
before hospitalization

Medical
Resource
Consumption

Flag psycho binary (logi-
cal)

Existence of claims for psychological
consultations carried out in the 3rd
year before hospitalization [if 0: No, if
1: Yes]

Medical
Resource
Consumption

Consult
semester6

number
(interger)

Number of claims for elective consulta-
tions carried out from the 30th to the
36th month before hospitalization

Medical
Resource
Consumption

Consult
semester5

number
(interger)

Number of claims for elective consulta-
tions carried out from the 24th to the
30th month before hospitalization

Medical
Resource
Consumption

Consult
semester4

number
(interger)

Number of claims for elective consulta-
tions carried out from the 18th to the
24th month before hospitalization

Medical
Resource
Consumption

Consult
semester3

number
(interger)

Number of claims for elective consulta-
tions carried out from the 12th to the
18th month before hospitalization

Medical
Resource
Consumption

Consult
semester2

number
(interger)

Number of claims for elective consulta-
tions carried out from the 6th to the
12th month before hospitalization
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Appendix A. Dictionary of variables 99

Medical
Resource
Consumption

Consult
semester1

number
(interger)

Number of claims for elective consulta-
tions carried out from the 1st to the 6th
month before hospitalization

Medical
Resource
Consumption

Consult total number
(interger)

Total number of elective consultation
claims made 3 years before the hospi-
talization

Medical
Resource
Consumption

Emergency
year3

number
(interger)

Number of the hospitalizations to the
Emergency Room in the 3rd year before
the hospitalization

Medical
Resource
Consumption

Emergency
year2

number
(interger)

Number of the hospitalizations to the
Emergency Room in the 2nd year be-
fore the hospitalization

Medical
Resource
Consumption

Emergency
year1

number
(interger)

Number of the hospitalizations to the
Emergency Room in the 1st year before
the hospitalization

Medical
Resource
Consumption

Emergecy to-
tal

number
(interger)

Total number of Emergency Room en-
tries 3 years before the hospitalization

Medical
Resource
Consumption

Hemodialysis
year3

number
(interger)

Number of hemodialysis performed in
the 3rd year before hospitalization

Medical
Resource
Consumption

Hemodialysis
year2

number
(interger)

Number of hemodialysis performed in
the 2nd year before hospitalization

Medical
Resource
Consumption

Hemodialysis
year1

number
(interger)

Number of hemodialysis performed in
the 1st year before hospitalization

Medical
Resource
Consumption

Hemodialysis
total

number
(interger)

Total number of hemodialysis per-
formed 3 years before the hospitaliza-
tion

Medical
Resource
Consumption

Pulsotherapies
year3

number
(interger)

Number of pulsetherapies performed in
the 3rd year before hospitalization

Medical
Resource
Consumption

Pulsotherapies
year2

number
(interger)

Number of pulsetherapies performed in
the 2nd year before hospitalization

Medical
Resource
Consumption

Pulsotherapies
year1

number
(interger)

Number of pulsetherapies performed in
the 1st year before hospitalization

Medical
Resource
Consumption

Pulsotherapies
total

number
(interger)

Total number of pulsetherapies per-
formed 3 years before hospitalization

Medical
Resource
Consumption

Transplant
total

number
(interger)

Total number of transplants performed
before hospitalization
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Medical
Resource
Consumption

Cardiovascular
year3

number
(interger)

Cardiovascular Sentinel Counter per-
formed in the 3rd year before the hos-
pitalization

Medical
Resource
Consumption

Cardiovascular
year2

number
(interger)

Cardiovascular Sentinel Counter per-
formed in the 2nd year before the hos-
pitalization

Medical
Resource
Consumption

Cardiovascular
year1

number
(interger)

Cardiovascular Sentinel Counter per-
formed in the 1st year before the hos-
pitalization

Medical
Resource
Consumption

Cardiovascular
flag

binary (logi-
cal)

Existence of Cardiovascular Sentinel
performed up to 3rd year before hos-
pitalization [if 0: No, if 1: Yes]

Medical
Resource
Consumption

Diabetes
year3

number
(interger)

Diabetes Sentinel Counter performed in
the 3rd year before the hospitalization

Medical
Resource
Consumption

Diabetes
year2

number
(interger)

Diabetes Sentinel Counter performed in
the 2nd year before the hospitalization

Medical
Resource
Consumption

Diabetes
year1

number
(interger)

Diabetes Sentinel Counter performed in
the 1st year before the hospitalization

Medical
Resource
Consumption

Diabetes flag binary (logi-
cal)

Existence of Diabetes Sentinel per-
formed up to 3rd year before hospital-
ization [if 0: No, if 1: Yes]

Medical
Resource
Consumption

Musculoskeletal
year3

number
(interger)

Musculoskeletal Sentinel Counter per-
formed in the 3rd year before the hos-
pitalization

Medical
Resource
Consumption

Musculoskeletal
year2

number
(interger)

Musculoskeletal Sentinel Counter per-
formed in the 2nd year before the hos-
pitalization

Medical
Resource
Consumption

Musculoskeletal
year1

number
(interger)

Musculoskeletal Sentinel Counter per-
formed in the 1st year before the hos-
pitalization

Medical
Resource
Consumption

Musculoskeletal
flag

binary (logi-
cal)

Existence of Musculoskeletal Sentinel
performed up to 3rd year before hos-
pitalization [if 0: No, if 1: Yes]

Medical
Resource
Consumption

Neoplasm
year3

number
(interger)

Neoplasm Sentinel Counter performed
in the 3rd year before the hospitaliza-
tion

Medical
Resource
Consumption

Neoplasm
year2

number
(interger)

Neoplasm Sentinel Counter performed
in the 2nd year before the hospitaliza-
tion

Medical
Resource
Consumption

Neoplasm
year1

number
(interger)

Neoplasm Sentinel Counter performed
in the 1st year before the hospitaliza-
tion
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Medical
Resource
Consumption

Neoplasm
flag

binary (logi-
cal)

Existence of Neoplasm Sentinel per-
formed up to 3rd year before hospital-
ization [if 0: No, if 1: Yes]

Medical
Resource
Consumption

Obstructive
year3

number
(interger)

Obstructive Sentinel Counter per-
formed in the 3rd year before the hos-
pitalization

Medical
Resource
Consumption

Obstructive
year2

number
(interger)

Obstructive Sentinel Counter per-
formed in the 2nd year before the hos-
pitalization

Medical
Resource
Consumption

Obstructive
year1

number
(interger)

Obstructive Sentinel Counter per-
formed in the 1st year before the hos-
pitalization

Medical
Resource
Consumption

Obstructive
flag

binary (logi-
cal)

Existence of Obstructive Sentinel per-
formed up to 3rd year before hospital-
ization [if 0: No, if 1: Yes]

Medical
Resource
Consumption

Physiotherapy
year3

number
(interger)

Number of Physiotherapy sessions per-
formed in the 3rd year before hospital-
ization

Medical
Resource
Consumption

Physiotherapy
year2

number
(interger)

Number of Physiotherapy sessions per-
formed in the 2nd year before hospital-
ization

Medical
Resource
Consumption

Physiotherapy
year1

number
(interger)

Number of Physiotherapy sessions per-
formed in the 1st year before hospital-
ization

Medical
Resource
Consumption

Physiotherapy
total

number
(interger)

Total number of Physiotherapy sessions
performed in the 3 years before the
hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
semester6

number
(interger)

Number of surgical the hospitalizations
performed from the 30th to the 36th
month before the hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
semester5

number
(interger)

Number of surgical the hospitalizations
performed from the 24th to the 30th
month before the hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
semester4

number
(interger)

Number of surgical the hospitalizations
performed from the 18th to the 24th
month before the hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
semester3

number
(interger)

Number of surgical the hospitalizations
performed from the 12th to the 18th
month before the hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
semester2

number
(interger)

Number of surgical the hospitalizations
performed from the 6th to the 12th
month before the hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
semester1

number
(interger)

Number of surgical the hospitalizations
performed from the 1st to the 6th
month before the hospitalization
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Medical
Resource
Consumption

Surgery hos-
pitalization
total

number
(interger)

Sum of the number of surgical the hos-
pitalizations in the last 3 years before
the hospitalization

Medical
Resource
Consumption

Surgery
hospitaliza-
tion cost
semester6

number
(interger)

Cost of surgical the hospitalizations
performed from the 30th to the 36th
month before the hospitalization

Medical
Resource
Consumption

Surgery
hospitaliza-
tion cost
semester5

number
(interger)

Cost of surgical the hospitalizations
performed from the 24th to the 30th
month before the hospitalization

Medical
Resource
Consumption

Surgery
hospitaliza-
tion cost
semester4

number
(interger)

Cost of surgical the hospitalizations
performed from the 18th to the 24th
month before the hospitalization

Medical
Resource
Consumption

Surgery
hospitaliza-
tion cost
semester3

number
(interger)

Cost of surgical the hospitalizations
performed from the 12th to the 18th
month before the hospitalization

Medical
Resource
Consumption

Surgery
hospitaliza-
tion cost
semester2

number
(interger)

Cost of surgical the hospitalizations
performed from the 6th to the 12th
month before the hospitalization

Medical
Resource
Consumption

Surgery
hospitaliza-
tion cost
semester1

number
(interger)

Cost of surgical the hospitalizations
performed from the 1st to the 6th
month before the hospitalization

Medical
Resource
Consumption

Surgery hos-
pitalization
cost total

number
(interger)

Sum of the cost of surgical the hospi-
talizations in the last 3 years before the
hospitalization

Medical
Resource
Consumption

Clinic hos-
pitalization
semester6

number
(interger)

Number of clinical the hospitalization
performed from the 30th to the 36th
month before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitalization
semester5

number
(interger)

Number of clinical the hospitalization
performed from the 24th to the 30th
month before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitalization
semester4

number
(interger)

Number of clinical the hospitalization
performed from the 18th to the 24th
month before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitalization
semester3

number
(interger)

Number of clinical the hospitalization
performed from the 12th to the 18th
month before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitalization
semester2

number
(interger)

Number of clinical the hospitalization
performed from the 6th to the 12th
month before the hospitalization
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Medical
Resource
Consumption

Clinic hos-
pitalization
semester1

number
(interger)

Number of clinical the hospitalization
performed from the 1st to the 6th
month before the hospitalization

Medical
Resource
Consumption

Clinic hospi-
talization to-
tal

number
(interger)

Sum of the number of clinical hospital-
izations in the last 3 years before the
hospitalization

Medical
Resource
Consumption

Clinic hos-
pitaliza-
tion cost
semester6

number
(interger)

Cost of clinical the hospitalizations per-
formed from the 30th to the 36th month
before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitaliza-
tion cost
semester5

number
(interger)

Cost of clinical the hospitalizations per-
formed from the 24th to the 30th month
before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitaliza-
tion cost
semester4

number
(interger)

Cost of clinical the hospitalizations per-
formed from the 18th to the 24th month
before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitaliza-
tion cost
semester3

number
(interger)

Cost of clinical the hospitalizations per-
formed from the 12th to the 18th month
before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitaliza-
tion cost
semester2

number
(interger)

Cost of clinical the hospitalizations per-
formed from the 6th to the 12th month
before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitaliza-
tion cost
semester1

number
(interger)

Cost of clinical the hospitalizations per-
formed from the 1st to the 6th month
before the hospitalization

Medical
Resource
Consumption

Clinic hos-
pitalization
cost total

number
(interger)

Sum of the cost of clinical hospitaliza-
tions in the last 3 years before the hos-
pitalization

Medical
Resource
Consumption

Day-Hospital
semestre6

number
(interger)

Number of Day-Hospital the hospital-
izations performed from the 30th to the
36th month before the hospitalization

Medical
Resource
Consumption

Day-Hospital
semestre5

number
(interger)

Number of Day-Hospital the hospital-
izations performed from the 24th to the
30th month before the hospitalization

Medical
Resource
Consumption

Day-Hospital
semestre4

number
(interger)

Number of Day-Hospital the hospital-
izations performed from the 18th to the
24th month before the hospitalization

Medical
Resource
Consumption

Day-Hospital
semestre3

number
(interger)

Number of Day-Hospital the hospital-
izations performed from the 12th to the
18th month before the hospitalization
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Medical
Resource
Consumption

Day-Hospital
semestre2

number
(interger)

Number of Day-Hospital the hospital-
izations performed from the 6th to the
12th month before the hospitalization

Medical
Resource
Consumption

Day-Hospital
semestre1

number
(interger)

Number of Day-Hospital the hospital-
izations performed from the 1st to the
6th month before the hospitalization

Medical
Resource
Consumption

Day-Hospital
total

number
(interger)

Sum of the number of Day-Hospital
hospitalizations in the last 3 years be-
fore the hospitalization

Medical
Resource
Consumption

Day-
Hospital cost
semester6

number
(interger)

Cost of Day-Hospital the hospitaliza-
tions performed from the 30th to the
36th month before the hospitalization

Medical
Resource
Consumption

Day-
Hospital cost
semester5

number
(interger)

Cost of Day-Hospital the hospitaliza-
tions performed from the 24th to the
30th month before the hospitalization

Medical
Resource
Consumption

Day-
Hospital cost
semester4

number
(interger)

Cost of Day-Hospital the hospitaliza-
tions performed from the 18th to the
24th month before the hospitalization

Medical
Resource
Consumption

Day-
Hospital cost
semester3

number
(interger)

Cost of Day-Hospital the hospitaliza-
tions performed from the 12th to the
18th month before the hospitalization

Medical
Resource
Consumption

Day-
Hospital cost
semester2

number
(interger)

Cost of Day-Hospital the hospitaliza-
tions performed from the 6th to the
12th month before the hospitalization

Medical
Resource
Consumption

Day-
Hospital cost
semester1

number
(interger)

Cost of Day-Hospital the hospitaliza-
tions performed from the 1st to the 6th
month before the hospitalization

Medical
Resource
Consumption

Day-Hospital
cost total

number
(interger)

Sum of the cost of Day-Hospital hospi-
talizations in the last 3 years before the
hospitalization

Table A.1: Dictionary of Variables.
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B
Correlation Matrix

Table B.1: Spearman’s rank correlation coefficient for numeric variables.
Exam
semester6

Exam
semester5

Exam
semester4

Exam
semester3

Exam
semester2

Exam
semester1

Image
month3

Image
month2

Image
month1

Consult
semester6

Consult
semester5

Consult
semester4

Consult
semester3

Consult
semester2

Consult
semester1

Emergency
year3

Emergency
year2

Emergency
year1

Hemodialysis
year3

Hemodialysis
year2

Hemodialysis
year1

Cardiovascular
year3

Cardiovascular
year2

Cardiovascular
year1

Diabetes
year3

Diabetes
year2

Diabetes
year1

Musculoskeletal
year3

Musculoskeletal
year2

Musculoskeletal
year1

Neoplasm
year3

Neoplasm
year2

Neoplasm
year1

Obstructive
year3

Obstructive
year2

Obstructive
year1

Age

Exam
semester6

- 0.52 0.35 0.27 0.20 0.16 0.07 0.07 0.04 0.76 0.54 0.40 0.29 0.22 0.16 0.41 0.20 0.05 0.03 0.04 0.03 0.33 0.18 0.12 0.42 0.22 0.14 0.24 0.11 0.08 0.05 0.04 0.02 0.06 0.08 0.04 0.12

Exam
semester5

0.52 - 0.53 0.41 0.30 0.21 0.09 0.12 0.08 0.54 0.77 0.58 0.40 0.31 0.19 0.49 0.31 0.07 0.02 0.02 0.03 0.38 0.27 0.14 0.49 0.30 0.17 0.23 0.13 0.10 0.10 0.11 0.04 0.14 0.09 0.04 0.14

Exam
semester4

0.35 0.53 - 0.49 0.38 0.25 0.12 0.09 0.07 0.34 0.53 0.77 0.53 0.39 0.20 0.37 0.40 0.10 0.01 0.03 0.06 0.21 0.34 0.19 0.29 0.44 0.23 0.19 0.18 0.10 0.09 0.11 0.04 0.09 0.12 0.05 0.16

Exam
semester3

0.27 0.41 0.49 - 0.46 0.33 0.15 0.15 0.12 0.27 0.39 0.52 0.78 0.52 0.30 0.29 0.46 0.18 0.01 0.05 0.05 0.19 0.39 0.20 0.25 0.48 0.27 0.11 0.20 0.14 0.08 0.12 0.04 0.09 0.15 0.13 0.17

Exam
semester2

0.20 0.30 0.38 0.46 - 0.39 0.25 0.17 0.15 0.20 0.27 0.39 0.50 0.73 0.40 0.20 0.34 0.25 0.00 0.05 0.06 0.13 0.24 0.25 0.18 0.29 0.39 0.08 0.13 0.12 0.07 0.10 0.06 0.06 0.08 0.15 0.16

Exam
semester1

0.16 0.21 0.25 0.33 0.39 - 0.35 0.36 0.27 0.13 0.20 0.23 0.30 0.39 0.63 0.12 0.16 0.18 -0.04 0.02 0.05 0.08 0.17 0.30 0.12 0.21 0.47 0.07 0.10 0.13 0.05 0.07 0.13 0.04 0.05 0.15 0.19

Image
month3

0.07 0.09 0.12 0.15 0.25 0.35 - 0.21 0.12 0.07 0.08 0.12 0.16 0.24 0.38 0.07 0.12 0.22 -0.02 -0.01 0.06 0.02 0.10 0.18 0.03 0.09 0.17 0.05 0.07 0.14 0.04 0.03 0.07 -0.02 0.04 0.11 0.08

Image
month2

0.07 0.12 0.09 0.15 0.17 0.36 0.21 - 0.16 0.07 0.09 0.10 0.14 0.17 0.33 0.07 0.07 0.16 -0.02 0.00 0.03 0.03 0.05 0.16 0.06 0.10 0.15 0.02 0.05 0.11 0.06 0.06 0.06 0.01 0.02 0.08 0.08

Image
month1

0.04 0.08 0.07 0.12 0.15 0.27 0.12 0.16 - 0.05 0.06 0.07 0.10 0.14 0.23 0.06 0.09 0.24 -0.02 0.02 0.05 0.06 0.09 0.13 0.04 0.06 0.14 0.00 0.02 0.05 0.01 0.02 0.02 0.02 0.03 0.01 0.04

Consult
semester6

0.76 0.54 0.34 0.27 0.20 0.13 0.07 0.07 0.05 - 0.62 0.43 0.31 0.25 0.17 0.48 0.23 0.05 0.02 0.03 0.03 0.30 0.15 0.11 0.35 0.20 0.09 0.27 0.10 0.07 0.04 0.03 0.02 0.05 0.09 0.05 0.08

Consult
semester5

0.54 0.77 0.53 0.39 0.27 0.20 0.08 0.09 0.06 0.62 - 0.63 0.45 0.33 0.21 0.58 0.36 0.10 0.03 0.01 0.00 0.34 0.25 0.13 0.39 0.28 0.16 0.27 0.15 0.10 0.03 0.06 0.03 0.11 0.13 0.06 0.11

Consult
semester4

0.40 0.58 0.77 0.52 0.39 0.23 0.12 0.10 0.07 0.43 0.63 - 0.62 0.47 0.26 0.45 0.48 0.13 0.00 0.02 0.04 0.23 0.31 0.17 0.30 0.34 0.20 0.22 0.22 0.11 0.04 0.08 0.02 0.10 0.13 0.09 0.12

Consult
semester3

0.29 0.40 0.53 0.78 0.50 0.30 0.16 0.14 0.10 0.31 0.45 0.62 - 0.63 0.35 0.36 0.58 0.25 -0.02 0.02 0.04 0.17 0.35 0.20 0.22 0.38 0.24 0.14 0.25 0.16 0.03 0.09 0.01 0.08 0.14 0.13 0.12

Consult
semester2

0.22 0.31 0.39 0.52 0.73 0.39 0.24 0.17 0.14 0.25 0.33 0.47 0.63 - 0.53 0.25 0.42 0.32 -0.02 -0.02 0.00 0.15 0.25 0.25 0.17 0.28 0.29 0.11 0.19 0.21 0.05 0.09 0.03 0.06 0.10 0.14 0.12

Consult
semester1

0.16 0.19 0.20 0.30 0.40 0.63 0.38 0.33 0.23 0.17 0.21 0.26 0.35 0.53 - 0.14 0.20 0.27 -0.03 -0.03 -0.04 0.07 0.13 0.22 0.09 0.16 0.27 0.09 0.14 0.21 0.02 0.06 0.03 0.04 0.06 0.14 0.09

Emergency
year3

0.41 0.49 0.37 0.29 0.20 0.12 0.07 0.07 0.06 0.48 0.58 0.45 0.36 0.25 0.14 - 0.44 0.20 0.02 0.01 0.00 0.27 0.20 0.11 0.23 0.17 0.10 0.19 0.13 0.06 0.03 0.03 0.01 0.08 0.13 0.08 0.03

Emergency
year2

0.20 0.31 0.40 0.46 0.34 0.16 0.12 0.07 0.09 0.23 0.36 0.48 0.58 0.42 0.20 0.44 - 0.37 -0.02 0.02 0.02 0.14 0.26 0.14 0.13 0.24 0.13 0.11 0.15 0.11 0.03 0.04 -0.01 0.05 0.13 0.07 0.01

Emergency
year1

0.05 0.07 0.10 0.18 0.25 0.18 0.22 0.16 0.24 0.05 0.10 0.13 0.25 0.32 0.27 0.20 0.37 - -0.02 0.00 0.01 0.02 0.11 0.16 0.02 0.06 0.08 0.05 0.07 0.13 0.01 0.00 0.01 -0.05 0.04 0.06 -0.10

Hemodialysis
year3

0.03 0.02 0.01 0.01 0.00 -0.04 -0.02 -0.02 -0.02 0.02 0.03 0.00 -0.02 -0.02 -0.03 0.02 -0.02 -0.02 - 0.44 0.12 0.05 -0.01 0.01 0.05 -0.01 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.01

Hemodialysis
year2

0.04 0.02 0.03 0.05 0.05 0.02 -0.01 0.00 0.02 0.03 0.01 0.02 0.02 -0.02 -0.03 0.01 0.02 0.00 0.44 - 0.48 0.07 0.04 0.05 0.03 0.03 0.03 -0.01 -0.01 -0.01 0.00 0.00 0.04 0.00 0.00 -0.01 0.02

Hemodialysis
year1

0.03 0.03 0.06 0.05 0.06 0.05 0.06 0.03 0.05 0.03 0.00 0.04 0.04 0.00 -0.04 0.00 0.02 0.01 0.12 0.48 - 0.03 0.05 0.13 0.04 0.09 0.06 -0.01 -0.01 0.00 0.00 -0.01 0.07 0.00 -0.01 -0.01 0.07

Cardiovascular
year3

0.33 0.38 0.21 0.19 0.13 0.08 0.02 0.03 0.06 0.30 0.34 0.23 0.17 0.15 0.07 0.27 0.14 0.02 0.05 0.07 0.03 - 0.22 0.14 0.40 0.17 0.10 0.08 0.04 0.02 0.13 0.08 0.02 0.15 0.08 0.05 0.11

Cardiovascular
year2

0.18 0.27 0.34 0.39 0.24 0.17 0.10 0.05 0.09 0.15 0.25 0.31 0.35 0.25 0.13 0.20 0.26 0.11 -0.01 0.04 0.05 0.22 - 0.24 0.19 0.32 0.19 0.14 0.13 0.09 0.05 0.12 0.02 0.04 0.13 0.10 0.15

Cardiovascular
year1

0.12 0.14 0.19 0.20 0.25 0.30 0.18 0.16 0.13 0.11 0.13 0.17 0.20 0.25 0.22 0.11 0.14 0.16 0.01 0.05 0.13 0.14 0.24 - 0.15 0.18 0.31 0.06 0.08 0.09 0.03 0.04 0.09 0.03 0.06 0.18 0.25

Diabetes
year3

0.42 0.49 0.29 0.25 0.18 0.12 0.03 0.06 0.04 0.35 0.39 0.30 0.22 0.17 0.09 0.23 0.13 0.02 0.05 0.03 0.04 0.40 0.19 0.15 - 0.33 0.23 0.15 0.08 0.06 0.03 0.05 0.01 0.10 0.05 0.02 0.15

Diabetes
year2

0.22 0.30 0.44 0.48 0.29 0.21 0.09 0.10 0.06 0.20 0.28 0.34 0.38 0.28 0.16 0.17 0.24 0.06 -0.01 0.03 0.09 0.17 0.32 0.18 0.33 - 0.33 0.15 0.11 0.10 0.01 0.04 0.03 0.05 0.08 0.09 0.19

Diabetes
year1

0.14 0.17 0.23 0.27 0.39 0.47 0.17 0.15 0.14 0.09 0.16 0.20 0.24 0.29 0.27 0.10 0.13 0.08 -0.01 0.03 0.06 0.10 0.19 0.31 0.23 0.33 - 0.05 0.08 0.09 0.02 0.03 0.01 0.03 0.06 0.17 0.27

Musculoskeletal
year3

0.24 0.23 0.19 0.11 0.08 0.07 0.05 0.02 0.00 0.27 0.27 0.22 0.14 0.11 0.09 0.19 0.11 0.05 0.00 -0.01 -0.01 0.08 0.14 0.06 0.15 0.15 0.05 - 0.18 0.11 0.06 0.02 0.00 0.03 0.04 0.05 0.08

Musculoskeletal
year2

0.11 0.13 0.18 0.20 0.13 0.10 0.07 0.05 0.02 0.10 0.15 0.22 0.25 0.19 0.14 0.13 0.15 0.07 0.00 -0.01 -0.01 0.04 0.13 0.08 0.08 0.11 0.08 0.18 - 0.27 0.04 0.08 0.04 -0.01 0.10 0.05 0.11

Musculoskeletal
year1

0.08 0.10 0.10 0.14 0.12 0.13 0.14 0.11 0.05 0.07 0.10 0.11 0.16 0.21 0.21 0.06 0.11 0.13 -0.01 -0.01 0.00 0.02 0.09 0.09 0.06 0.10 0.09 0.11 0.27 - 0.02 0.03 0.01 0.02 0.03 0.06 0.18

Neoplasm
year3

0.05 0.10 0.09 0.08 0.07 0.05 0.04 0.06 0.01 0.04 0.03 0.04 0.03 0.05 0.02 0.03 0.03 0.01 0.00 0.00 0.00 0.13 0.05 0.03 0.03 0.01 0.02 0.06 0.04 0.02 - 0.51 0.17 0.00 0.00 -0.01 0.01

Neoplasm
year2

0.04 0.11 0.11 0.12 0.10 0.07 0.03 0.06 0.02 0.03 0.06 0.08 0.09 0.09 0.06 0.03 0.04 0.00 0.00 0.00 -0.01 0.08 0.12 0.04 0.05 0.04 0.03 0.02 0.08 0.03 0.51 - 0.35 0.00 -0.01 0.03 0.06

Neoplasm
year1

0.02 0.04 0.04 0.04 0.06 0.13 0.07 0.06 0.02 0.02 0.03 0.02 0.01 0.03 0.03 0.01 -0.01 0.01 0.00 0.04 0.07 0.02 0.02 0.09 0.01 0.03 0.01 0.00 0.04 0.01 0.17 0.35 - -0.01 -0.01 0.02 0.06

Obstructive
year3

0.06 0.14 0.09 0.09 0.06 0.04 -0.02 0.01 0.02 0.05 0.11 0.10 0.08 0.06 0.04 0.08 0.05 -0.05 0.00 0.00 0.00 0.15 0.04 0.03 0.10 0.05 0.03 0.03 -0.01 0.02 0.00 0.00 -0.01 - 0.11 0.10 0.06

Obstructive
year2

0.08 0.09 0.12 0.15 0.08 0.05 0.04 0.02 0.03 0.09 0.13 0.13 0.14 0.10 0.06 0.13 0.13 0.04 0.00 0.00 -0.01 0.08 0.13 0.06 0.05 0.08 0.06 0.04 0.10 0.03 0.00 -0.01 -0.01 0.11 - 0.10 0.04

Obstructive
year1

0.04 0.04 0.05 0.13 0.15 0.15 0.11 0.08 0.01 0.05 0.06 0.09 0.13 0.14 0.14 0.08 0.07 0.06 -0.01 -0.01 -0.01 0.05 0.10 0.18 0.02 0.09 0.17 0.05 0.05 0.06 -0.01 0.03 0.02 0.10 0.10 - 0.06

Age 0.12 0.14 0.16 0.17 0.16 0.19 0.08 0.08 0.04 0.08 0.11 0.12 0.12 0.12 0.09 0.03 0.01 -0.10 0.01 0.02 0.07 0.11 0.15 0.25 0.15 0.19 0.27 0.08 0.11 0.18 0.01 0.06 0.06 0.06 0.04 0.06 -

Table B.2: Cramer’s correlation coeficient for categorical variables.
Gender Flag

Genetic
Admission
Type

Flag
Surgery

Flag
psycho
year3

Flag
psycho
year2

Flag
psycho
year1

Admission
Group

Gender - 0.02 0.00 0.01 0.01 0.01 0.05 0.38
Flag Ge-
netic

0.02 - 0.04 0.02 0.01 0.03 0.04 0.12

Admission
Type

0.00 0.04 - 0.17 0.00 0.05 0.07 0.43

Flag
Surgery

0.01 0.02 0.17 - 0.02 0.01 0.08 0.97

Flag psy-
cho year3

0.01 0.01 0.00 0.02 - 0.29 0.15 0.11

Flag psy-
cho year2

0.01 0.03 0.05 0.01 0.29 - 0.39 0.14

Flag psy-
cho year1

0.05 0.04 0.07 0.08 0.15 0.39 - 0.29

Admission
Group

0.38 0.12 0.43 0.97 0.11 0.14 0.29 -
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C
Learning analysis of cycle 1

All the ML technique were implemented in the R programming language using, the "caret"
package. Also, create table with package and the use. Table C.1 depicts the ML techniques

used and their corresponding hyperparameters settings.

Table C.1: Machine Learning techniques hyperparameters for cylce 1.
Machine Learning technique Hyperparameters* Value

Ridge Regression
Mixing Percentage 0

Regularization Parameter default

LASSO Regression Mixing Percentage 1
Regularization Parameter default

CART Complexity Parameter default
*Hyperparameters according to the "glmnet" and "rpart" packages of the R programming language

Figures C.1, C.2 and C.3 show the optimization of the hyperparameters during the CV
procedure for RR, LASSO and CART, respectively.
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Figure C.1: Hyperparameter tuning for RR and both dataset "Temporal" and
"Aggregated"

C.1
Variables Coefficient for RR and LASSO
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Figure C.2: Hyperparameter tuning for LASSO and both dataset "Temporal"
and "Aggregated"
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Figure C.3: Hyperparameter tuning for CART and both dataset "Temporal"
and "Aggregated"
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Appendix C. Learning analysis of cycle 1 108

Table C.2: Variable coefficients, RR for "Temporal dataset"

Variables Coefficients
Intercept 2.36
Gender -0.15
Admission Type -0.06
Exam semester6 0.08
Exam semester5 -0.18
Exam semester4 -0.44
Exam semester3 -0.26
Exam semester2 -0.33
Exam semester1 -1.05
Image month3 -1.41
Image month2 -1.08
Image month1 -1.90
Flag psycho year3 0.26
Flag psycho year2 0.08
Flag psycho year1 -0.28
Consult semester6 -0.93
Consult semester5 0.20
Consult semester4 0.18
Consult semester3 0.06
Consult semester2 -0.17
Consult semester1 0.19
Emergency year3 0.24
Emergency year2 -0.06
Emergency year1 -0.39
Hemodialysis year3 -2.01
Hemodialysis year2 -1.41
Hemodialysis year1 0.35
Cardiovascular year3 0.29
Cardiovascular year2 -0.31
Cardiovascular year1 -4.42
Diabetes year3 -0.61
Diabetes year2 0.06
Diabetes year1 -1.85
Musculoskeletal year3 0.46
Musculoskeletal year2 0.69
Musculoskeletal year1 0.12
Neoplasm year3 1.14
Neoplasm year2 -0.93
Neoplasm year1 -1.46
Obstructive year3 -1.02
Obstructive year2 -1.06
Obstructive year1 -2.23
Age -0.95
Admission Group CABECA E PESCOCO -0.21
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Appendix C. Learning analysis of cycle 1 109

Admission Group CLINICA GERAL 0.08
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-
CIONAIS

0.47

Admission Group ENDOSCOPICOS 0.54
Admission Group EXAMES ESPECIFICOS 0.78
Admission Group HOSPITAL DIA 0.70
Admission Group MEDICINA LABORATORIAL 0.25
Admission Group MEDICINA NUCLEAR 0.68
Admission Group MEDICINA TRANSFUSIONAL -1.13
Admission Group METODOS DIAGNOSTICOS POR IMAGEM -0.03
Admission Group NARIZ E SEIOS PARANASAIS -0.64
Admission Group OLHOS 0.76
Admission Group ORELHA -0.19
Admission Group OUTRAS INTERNACOES 0.14
Admission Group OUTROS 0.61
Admission Group OUTROS PROCEDIMENTOS INVASIVOS -0.11
Admission Group PAREDE TORACICA -0.07
Admission Group PELE E TECIDO CELULAR SUBCUTANEO
ANEXOS

0.22

Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-
AIS

-0.23

Admission Group PROCEDIMENTOS CLINICOS HOSPITA-
LARES

-0.35

Admission Group RESSONANCIA MAGNETICA 0.58
Admission Group SISTEMA CARDIO CIRCULATORIO 0.04
Admission Group SISTEMA DIGESTIVO E ANEXOS -0.38
Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-
NINO

0.21

Admission Group SISTEMA GENITAL E REPRODUTOR MAS-
CULINO

0.67

Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-
ULACOES

-0.70

Admission Group SISTEMA NERVOSO CENTRAL E PER-
IFERICO

-0.41

Admission Group SISTEMA RESPIRATORIO E MEDIASTINO -1.15
Admission Group SISTEMA URINARIO -0.71
Admission Group TESTES PARA DIAGNOSTICOS 0.69
Admission Group TOMOGRAFIA COMPUTADORIZADA -0.11
Admission Group TRATAMENTOS ESPECIAIS 0.78
Admission Group ULTRASSONOGRAFIA 0.31
Flag Surgery -0.30

Table C.3: Variable coefficients, RR for "Aggregated dataset"

Variables Coefficients
Intercept 2.65
Flag Genetic -0.58
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Appendix C. Learning analysis of cycle 1 110

Cardiovascular flag -0.32
Diabetes flag -0.46
Musculoskeletal flag -0.14
Neoplasm flag -0.30
Obstructive flag -0.71
Flag Surgery -0.35
Exam total -0.86
Consult total 0.72
Image total -3.73
Emergecy total -0.37
Hemodialysis total -0.52
Age -1.17
Admission Type -0.12
Gender -0.20
Admission Group CABECA E PESCOCO -0.35
Admission Group CLINICA GERAL 0.07
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-
CIONAIS

0.78

Admission Group ENDOSCOPICOS 0.77
Admission Group EXAMES ESPECIFICOS 1.30
Admission Group HOSPITAL DIA 1.08
Admission Group MEDICINA LABORATORIAL 0.32
Admission Group MEDICINA NUCLEAR 1.21
Admission Group MEDICINA TRANSFUSIONAL -1.49
Admission Group METODOS DIAGNOSTICOS POR IMAGEM -0.06
Admission Group NARIZ E SEIOS PARANASAIS -0.84
Admission Group OLHOS 1.21
Admission Group ORELHA -0.40
Admission Group OUTRAS INTERNACOES 0.13
Admission Group OUTROS 0.99
Admission Group OUTROS PROCEDIMENTOS INVASIVOS -0.18
Admission Group PAREDE TORACICA -0.09
Admission Group PELE E TECIDO CELULAR SUBCUTANEO
ANEXOS

0.34

Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-
AIS

-0.44

Admission Group PROCEDIMENTOS CLINICOS HOSPITA-
LARES

-0.60

Admission Group RESSONANCIA MAGNETICA 0.86
Admission Group SISTEMA CARDIO CIRCULATORIO 0.04
Admission Group SISTEMA DIGESTIVO E ANEXOS -0.49
Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-
NINO

0.23

Admission Group SISTEMA GENITAL E REPRODUTOR MAS-
CULINO

1.08
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Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-
ULACOES

-0.91

Admission Group SISTEMA NERVOSO CENTRAL E PER-
IFERICO

-0.54

Admission Group SISTEMA RESPIRATORIO E MEDIASTINO -1.42
Admission Group SISTEMA URINARIO -0.90
Admission Group TESTES PARA DIAGNOSTICOS 1.12
Admission Group TOMOGRAFIA COMPUTADORIZADA -0.14
Admission Group TRATAMENTOS ESPECIAIS 1.29
Admission Group ULTRASSONOGRAFIA 0.40

Table C.4: Variable coefficients, LASSO for "Temporal dataset"

Variables Coefficients
Intercept 2.79
Gender -0.17
Admission Type -0.07
Exam semester6 0.00
Exam semester5 0.00
Exam semester4 -0.15
Exam semester3 0.00
Exam semester2 -0.21
Exam semester1 -1.16
Image month3 -1.47
Image month2 -0.90
Image month1 -2.40
Flag psycho year3 0.16
Flag psycho year2 0.00
Flag psycho year1 -0.47
Consult semester6 -0.92
Consult semester5 0.00
Consult semester4 0.00
Consult semester3 0.00
Consult semester2 0.00
Consult semester1 0.21
Emergency year3 0.00
Emergency year2 0.00
Emergency year1 -0.41
Hemodialysis year3 -2.12
Hemodialysis year2 -1.37
Hemodialysis year1 0.00
Cardiovascular year3 0.00
Cardiovascular year2 0.00
Cardiovascular year1 -7.30
Diabetes year3 -0.17
Diabetes year2 0.00
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Diabetes year1 -2.21
Musculoskeletal year3 0.00
Musculoskeletal year2 0.70
Musculoskeletal year1 0.00
Neoplasm year3 0.06
Neoplasm year2 -0.04
Neoplasm year1 -1.81
Obstructive year3 -0.67
Obstructive year2 -0.38
Obstructive year1 -2.67
Age -1.53
Admission Group CABECA E PESCOCO -0.35
Admission Group CLINICA GERAL 0.00
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-
CIONAIS

0.14

Admission Group ENDOSCOPICOS 0.69
Admission Group EXAMES ESPECIFICOS 0.79
Admission Group HOSPITAL DIA 1.47
Admission Group MEDICINA LABORATORIAL 0.14
Admission Group MEDICINA NUCLEAR 0.00
Admission Group MEDICINA TRANSFUSIONAL -1.53
Admission Group METODOS DIAGNOSTICOS POR IMAGEM 0.00
Admission Group NARIZ E SEIOS PARANASAIS -0.93
Admission Group OLHOS 1.32
Admission Group ORELHA 0.00
Admission Group OUTRAS INTERNACOES 0.00
Admission Group OUTROS 0.00
Admission Group OUTROS PROCEDIMENTOS INVASIVOS -0.11
Admission Group PAREDE TORACICA 0.00
Admission Group PELE E TECIDO CELULAR SUBCUTANEO
ANEXOS

0.04

Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-
AIS

-0.28

Admission Group PROCEDIMENTOS CLINICOS HOSPITA-
LARES

-0.59

Admission Group RESSONANCIA MAGNETICA 0.49
Admission Group SISTEMA CARDIO CIRCULATORIO 0.00
Admission Group SISTEMA DIGESTIVO E ANEXOS -0.57
Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-
NINO

0.15

Admission Group SISTEMA GENITAL E REPRODUTOR MAS-
CULINO

1.02

Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-
ULACOES

-1.04

Admission Group SISTEMA NERVOSO CENTRAL E PER-
IFERICO

-0.50
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Admission Group SISTEMA RESPIRATORIO E MEDIASTINO -1.51
Admission Group SISTEMA URINARIO -1.00
Admission Group TESTES PARA DIAGNOSTICOS 0.00
Admission Group TOMOGRAFIA COMPUTADORIZADA -0.19
Admission Group TRATAMENTOS ESPECIAIS 0.00
Admission Group ULTRASSONOGRAFIA 0.23
Flag Surgery -0.39

Table C.5: Variable coefficients, LASSO for "Aggregated dataset"

Variables Coefficients
Intercept 2.86
Flag Genetic -0.64
Cardiovascular flag -0.34
Diabetes flag -0.53
Musculoskeletal flag -0.08
Neoplasm flag -0.25
Obstructive flag -0.77
Flag Surgery -0.34
Exam total -0.73
Consult total 0.87
Image total -4.33
Emergecy total -0.41
Hemodialysis total -0.51
Age -1.40
Admission Type -0.13
Gender -0.22
Admission Group CABECA E PESCOCO -0.47
Admission Group CLINICA GERAL 0.00
Admission Group ELETROFISIOLOGICOS MECANICOS E FUN-
CIONAIS

0.73

Admission Group ENDOSCOPICOS 0.89
Admission Group EXAMES ESPECIFICOS 1.59
Admission Group HOSPITAL DIA 1.72
Admission Group MEDICINA LABORATORIAL 0.27
Admission Group MEDICINA NUCLEAR 0.41
Admission Group MEDICINA TRANSFUSIONAL -1.69
Admission Group METODOS DIAGNOSTICOS POR IMAGEM -0.06
Admission Group NARIZ E SEIOS PARANASAIS -1.02
Admission Group OLHOS 1.59
Admission Group ORELHA -0.42
Admission Group OUTRAS INTERNACOES 0.05
Admission Group OUTROS 0.00
Admission Group OUTROS PROCEDIMENTOS INVASIVOS -0.23
Admission Group PAREDE TORACICA -0.05
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Admission Group PELE E TECIDO CELULAR SUBCUTANEO
ANEXOS

0.23

Admission Group PROCEDIMENTOS CLINICOS AMBULATORI-
AIS

-0.54

Admission Group PROCEDIMENTOS CLINICOS HOSPITA-
LARES

-0.74

Admission Group RESSONANCIA MAGNETICA 0.89
Admission Group SISTEMA CARDIO CIRCULATORIO 0.00
Admission Group SISTEMA DIGESTIVO E ANEXOS -0.62
Admission Group SISTEMA GENITAL E REPRODUTOR FEMI-
NINO

0.16

Admission Group SISTEMA GENITAL E REPRODUTOR MAS-
CULINO

1.42

Admission Group SISTEMA MUSCULO ESQUELETICO E ARTIC-
ULACOES

-1.11

Admission Group SISTEMA NERVOSO CENTRAL E PER-
IFERICO

-0.64

Admission Group SISTEMA RESPIRATORIO E MEDIASTINO -1.61
Admission Group SISTEMA URINARIO -1.06
Admission Group TESTES PARA DIAGNOSTICOS 0.00
Admission Group TOMOGRAFIA COMPUTADORIZADA -0.17
Admission Group TRATAMENTOS ESPECIAIS 0.19
Admission Group ULTRASSONOGRAFIA 0.37

C.2
Statistical test to compare predictive models.
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Table C.6: Mc Nemar’s test to compare homogenity in the errors among ML
techniques (first cycle).
A B Statistic

χ2
p-
value

Correct
A &
Cor-
rect
B

Incorrect
A &
Cor-
rect
B

Incorrect
A &
Incor-
rect
B

Correct
A &
Incor-
rect
B

RR tem-
poral

RR ag-
gregated

0.3 0.575 2,277 134 1,043 124

RR tem-
poral

LASSO
temporal

2.1 0.146 2,315 67 1,110 86

RR tem-
poral

LASSO
aggre-
gated

1.0 0.315 2,249 134 1,043 152

RR tem-
poral

CART
temporal

0.3 0.587 1,919 500 677 482

RR tem-
poral

CART
aggre-
gated

33.8 0.000 1,894 337 840 507

RR ag-
gregated

LASSO
temporal

2.7 0.101 2,251 131 1,036 160

RR ag-
gregated

LASSO
aggre-
gated

11.0 0.001 2,364 19 1,148 47

RR ag-
gregated

CART
temporal

0.1 0.819 1,948 471 696 463

RR ag-
gregated

CART
aggre-
gated

38.2 0.000 1,902 329 838 509

LASSO
temporal

LASSO
aggre-
gated

0.0 1.000 2,236 147 1,049 146

LASSO
temporal

CART
temporal

1.3 0.251 1,908 511 685 474

LASSO
temporal

CART
aggre-
gated

27.3 0.000 1,894 337 859 488

LASSO
aggre-
gated

CART
temporal

1.3 0.251 1,936 483 712 447

LASSO
aggre-
gated

CART
aggre-
gated

26.8 0.000 1,882 349 846 501

CART
temporal

CART
aggre-
gated

45.3 0.000 1,939 292 867 480
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D
Detailed description of the data set by subgroups

Table D.1: "Admission Subgroup" number and correponding names,
Total frequency, High-cost frequency and proportion.

Number "Admission Subgroup" de-
scription

Frequency High-cost
frequency

High-cost
(%)

1 genital|sistema genital e reprodu-
tor feminino|utero

13,234 1,069 8.1

2 cardiovascular|sistema cardio-
circulatorio|cirurgia venosa

11,591 621 5.4

3 digestivo|sistema digestivo e
anexos|figado e vias biliares

10,823 649 6.0

4 outros|outros procedimentos inva-
sivos|bloqueios anestesicos de ner-
vos e estimulos neurovasculares

9,969 1,206 12.1

5 urinario|sistema urinario|ureter 9,750 397 4.1
6 digestivo|sistema digestivo e

anexos|abdome, parede e cavidade
9,506 941 9.9

7 pele|pele e tecido celular subcuta-
neo / anexos|procedimentos

7,157 733 10.2

8 osteomuscular|sistema musculo-
esqueletico e articula-
coes|procedimentos videoartro-
scopicos de joelho

6,958 294 4.2

9 digestivo|sistema digestivo e
anexos|intestinos

5,954 647 10.9

10 cabeca e pescoco|cabeca e
pescoco|faringe

5,821 614 10.5

11 digestivo|sistema digestivo e
anexos|estomago

5,037 173 3.4

12 cabeca e pescoco|olhos|cristalino 4,936 310 6.3
13 osteomuscular|sistema musculo-

esqueletico e articulacoes|coluna
vertebral

4,346 184 4.2

14 urinario|sistema urinario|bexiga 4,308 463 10.7
15 cabeca e pescoco|nariz e seios

paranasais|nariz
4,014 378 9.4
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16 sistema nervoso|sistema nervoso -
central e periferico|nervos periferi-
cos

3,814 360 9.4

17 mamas|parede toracica|mamas 3,623 380 10.5
18 genital|sistema genital e reprodu-

tor masculino|penis
3,526 323 9.2

19 digestivo|sistema digestivo e
anexos|anus

3,236 237 7.3

20 osteomuscular|sistema musculo-
esqueletico e articula-
coes|procedimentos videoartro-
scopicos de ombro

3,183 127 4.0

21 cabeca e pescoco|nariz e seios
paranasais|seios paranasais

3,171 245 7.7

22 digestivo|endoscopicos|endoscopia
intervencionista

2,803 312 11.1

23 osteomuscular|sistema musculo-
esqueletico e articulacoes|tendoes,
bursas e sinovias

2,264 236 10.4

24 genital|sistema genital e reprodu-
tor masculino|testiculo

1,698 137 8.1

25 osteomuscular|sistema musculo-
esqueletico e articulacoes|joelho

1,638 62 3.8

26 osteomuscular|sistema musculo-
esqueletico e articula-
coes|aparelhos gessados

1,562 272 17.4

27 cardiovascular|sistema cardio-
circulatorio|hemodinamica -
cardiologia intervencionista (pro-
cedimentos terapeuticos)

1,501 86 5.7

28 genital|sistema genital e reprodu-
tor masculino|cordao espermatico

1,457 87 6.0

29 osteomuscular|sistema musculo-
esqueletico e articulacoes|pe

1,450 110 7.6

30 cardiovascular|sistema cardio-
circulatorio|hemodinamica -
cardiologia intervencionista (pro-
cedimentos diagnosticos)

1,364 110 8.1

31 cabeca e pescoco|cabeca e
pescoco|tireoide

1,281 62 4.8

32 osteomuscular|sistema musculo-
esqueletico e articulacoes|mao

1,271 107 8.4

33 cardiovascular|sistema cardio-
circulatorio|acessos vasculares

1,244 132 10.6

34 digestivo|sistema digestivo e
anexos|esofago

1,172 116 9.9
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35 cabeca e pescoco|olhos|cornea 1,143 112 9.8
36 genital|sistema genital e reprodu-

tor feminino|ovarios
1,124 61 5.4

37 genital|sistema genital e reprodu-
tor feminino|cavidade e paredes
pelvicas

1,098 66 6.0

38 cabeca e pescoco|orelha|orelha me-
dia

1,097 118 10.8

39 osteomuscular|sistema musculo-
esqueletico e articula-
coes|tornozelo

1,025 71 6.9

40 urinario|sistema urinario|rim,
bacinete e supra-renal

1,003 64 6.4

41 sistema nervoso|sistema nervoso -
central e periferico|encefalo

984 58 5.9

42 cabeca e pescoco|cabeca e
pescoco|cirurgia reparadora e
funcional da face

969 57 5.9

43 osteomuscular|sistema musculo-
esqueletico e articulacoes|retirada
de material de sintese

963 79 8.2

44 genital|sistema genital e reprodu-
tor feminino|tubas

928 49 5.3

45 genital|sistema genital e reprodu-
tor masculino|prostata e vesiculas
seminais

839 58 6.9

46 osteomuscular|sistema musculo-
esqueletico e articula-
coes|articulacao coxo-femoral

838 45 5.4

47 osteomuscular|sistema musculo-
esqueletico e articula-
coes|antebraco

800 47 5.9
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Learning analysis of cycle 2
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Table E.1: Machine Learning techniques hyperparameters for cylce 2.
Machine
Learning
technique

Caret
method

Hyperparameters Value

Ridge Regres-
sion

"glmnet" Mixing Percentage 1

Regularization Parameter default
LASSO
Regression

"glmnet" Mixing Percentage 0

Regularization Parameter default
CART "rpart" Complexity Parameter default
Random For-
est (random
search)

"ranger" Number of Tree 500, 1000

Number of candi-
date variables at
each split

Sample with replacement [1
- total_variables]

Node split criterion Sample with replacement
["gini_index", "extra_tree"]

Minimum size of ter-
minal nodes

Sample with replacement [1
- min(20, total_rows)]

Extreme
Gradient
Boosting
(grid search)

"xgbTree"Maximum depth of a
tree (max_depth)

[1 - 5]

the number of deci-
sion trees (nrounds)

[50, 150, 250, 350,
450]

Learning rate (eta) [0.3, 0.4]
Minimum loss reduc-
tion to split node
(gamma)

0 (default)

Subsample ratio of
columns (colsam-
ple_bytree

0.6 (default)

Minimum sum of
instance weight to
split node

1 (default)

Subsample ratio of
instances

[0.5, 0.8, 1]
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Table E.3: Mc Nemar’s test to compare homogenity in the errors
among ML techniques (second cycle).

Admission
Sub-
group

A B Statistic
χ2

p-
value

Correct
A &
Cor-
rect
B

Incorrect
A &
Cor-
rect
B

Incorrect
A &
Incor-
rect
B

Correct
A &
Incor-
rect
B

22 RR none RR up 12.7 0.0004 1,912 124 694 73
22 RR none RR down 4.8 0.0287 1,875 146 672 110
22 RR none RR

smote
139.6 0.0000 1,872 375 443 113

22 RR none RR rose 1548.8 0.0000 246 66 752 1,739
22 RR none LASSO

none
183.1 0.0000 1,930 317 501 55

22 RR none LASSO
up

4.7 0.0302 1,827 200 618 158

22 RR none LASSO
down

1.3 0.2603 1,822 185 633 163

22 RR none LASSO
smote

76.7 0.0000 1,853 319 499 132

22 RR none LASSO
rose

1551.5 0.0000 246 65 753 1,739

22 RR none RF none 150.8 0.0000 1,880 375 443 105
22 RR none RF up 138.9 0.0000 1,831 443 375 154
22 RR none RF down 93.7 0.0000 1,862 330 488 123
22 RR none RF

smote
145.7 0.0000 1,873 381 437 112

22 RR none RF rose 129.4 0.0000 1,834 425 393 151
22 RR none XGB

none
166.0 0.0000 1,867 417 401 118

22 RR none XGB up 81.3 0.0000 1,811 389 429 174
22 RR none XGB

down
59.7 0.0000 1,781 394 424 204

22 RR none XGB
smote

40.3 0.0000 1,748 398 420 237

22 RR none XGB
rose

397.7 0.0000 1,083 230 588 902

22 RR none CART
none

211.8 0.0000 1,851 502 316 134

22 RR none CART
up

182.9 0.0000 1,863 445 373 122

22 RR none CART
down

86.5 0.0000 1,786 434 384 199

22 RR none CART
smote

140.4 0.0000 1,805 487 331 180
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22 RR none CART
rose

982.2 0.0000 580 163 655 1,405

22 RR up RR down 0.8 0.3591 1,912 109 658 124
22 RR up RR

smote
96.5 0.0000 1,913 334 433 123

22 RR up RR rose 1597.8 0.0000 245 67 700 1,791
22 RR up LASSO

none
117.0 0.0000 1,953 294 473 83

22 RR up LASSO
up

0.2 0.6611 1,865 162 605 171

22 RR up LASSO
down

2.4 0.1181 1,861 146 621 175

22 RR up LASSO
smote

43.2 0.0000 1,893 279 488 143

22 RR up LASSO
rose

1600.5 0.0000 245 66 701 1,791

22 RR up RF none 102.6 0.0000 1,914 341 426 122
22 RR up RF up 104.4 0.0000 1,886 388 379 150
22 RR up RF down 54.4 0.0000 1,893 299 468 143
22 RR up RF

smote
96.5 0.0000 1,901 353 414 135

22 RR up RF rose 87.5 0.0000 1,866 393 374 170
22 RR up XGB

none
123.5 0.0000 1,913 371 396 123

22 RR up XGB up 52.3 0.0000 1,864 336 431 172
22 RR up XGB

down
34.6 0.0000 1,830 345 422 206

22 RR up XGB
smote

19.9 0.0000 1,793 353 414 243

22 RR up XGB
rose

463.4 0.0000 1,112 201 566 924

22 RR up CART
none

167.8 0.0000 1,897 456 311 139

22 RR up CART
up

136.5 0.0000 1,903 405 362 133

22 RR up CART
down

57.0 0.0000 1,834 386 381 202

22 RR up CART
smote

100.3 0.0000 1,840 452 315 196

22 RR up CART
rose

1045.2 0.0000 591 152 615 1,445

22 RR down RR
smote

109.6 0.0000 1,903 344 438 118

22 RR down RR rose 1571.0 0.0000 238 74 708 1,783
22 RR down LASSO

none
121.7 0.0000 1,926 321 461 95
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22 RR down LASSO
up

0.1 0.8120 1,803 224 558 218

22 RR down LASSO
down

0.6 0.4254 1,881 126 656 140

22 RR down LASSO
smote

47.6 0.0000 1,860 312 470 161

22 RR down LASSO
rose

1573.6 0.0000 238 73 709 1,783

22 RR down RF none 119.1 0.0000 1,910 345 437 111
22 RR down RF up 117.4 0.0000 1,877 397 385 144
22 RR down RF down 64.9 0.0000 1,884 308 474 137
22 RR down RF

smote
109.2 0.0000 1,891 363 419 130

22 RR down RF rose 101.4 0.0000 1,863 396 386 158
22 RR down XGB

none
135.4 0.0000 1,899 385 397 122

22 RR down XGB up 59.9 0.0000 1,846 354 428 175
22 RR down XGB

down
42.4 0.0000 1,822 353 429 199

22 RR down XGB
smote

26.6 0.0000 1,794 352 430 227

22 RR down XGB
rose

423.6 0.0000 1,077 236 546 944

22 RR down CART
none

188.2 0.0000 1,896 457 325 125

22 RR down CART
up

153.5 0.0000 1,898 410 372 123

22 RR down CART
down

63.3 0.0000 1,811 409 373 210

22 RR down CART
smote

111.3 0.0000 1,829 463 319 192

22 RR down CART
rose

990.7 0.0000 559 184 598 1,462

22 RR
smote

RR rose 1727.6 0.0000 197 115 441 2,050

22 RR
smote

LASSO
none

0.0 1.0000 2,069 178 378 178

22 RR
smote

LASSO
up

109.5 0.0000 1,918 109 447 329

22 RR
smote

LASSO
down

121.0 0.0000 1,891 116 440 356

22 RR
smote

LASSO
smote

28.1 0.0000 2,112 60 496 135

22 RR
smote

LASSO
rose

1730.2 0.0000 197 114 442 2,050
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22 RR
smote

RF none 0.1 0.7202 2,060 195 361 187

22 RR
smote

RF up 1.6 0.2040 2,051 223 333 196

22 RR
smote

RF down 7.1 0.0077 2,014 178 378 233

22 RR
smote

RF
smote

0.1 0.7345 2,094 160 396 153

22 RR
smote

RF rose 0.3 0.5823 2,053 206 350 194

22 RR
smote

XGB
none

3.2 0.0722 2,065 219 337 182

22 RR
smote

XGB up 4.9 0.0274 2,006 194 362 241

22 RR
smote

XGB
down

10.4 0.0012 1,969 206 350 278

22 RR
smote

XGB
smote

18.4 0.0000 1,925 221 335 322

22 RR
smote

XGB
rose

682.2 0.0000 1,142 171 385 1,105

22 RR
smote

CART
none

27.6 0.0000 2,100 253 303 147

22 RR
smote

CART
up

8.9 0.0029 2,075 233 323 172

22 RR
smote

CART
down

1.4 0.2397 1,989 231 325 258

22 RR
smote

CART
smote

4.1 0.0417 2,036 256 300 211

22 RR
smote

CART
rose

1250.8 0.0000 592 151 405 1,655

22 RR rose LASSO
none

1742.1 0.0000 206 2,041 450 106

22 RR rose LASSO
up

1570.2 0.0000 234 1,793 698 78

22 RR rose LASSO
down

1550.3 0.0000 234 1,773 718 78

22 RR rose LASSO
smote

1667.9 0.0000 206 1,966 525 106

22 RR rose LASSO
rose

0.0 1.0000 311 - 2,491 1

22 RR rose RF none 1781.5 0.0000 225 2,030 461 87
22 RR rose RF up 1802.0 0.0000 226 2,048 443 86
22 RR rose RF down 1734.1 0.0000 234 1,958 533 78
22 RR rose RF

smote
1770.4 0.0000 219 2,035 456 93

22 RR rose RF rose 1725.2 0.0000 188 2,071 420 124
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22 RR rose XGB
none

1803.5 0.0000 221 2,063 428 91

22 RR rose XGB up 1735.3 0.0000 230 1,970 521 82
22 RR rose XGB

down
1710.4 0.0000 230 1,945 546 82

22 RR rose XGB
smote

1698.6 0.0000 240 1,906 585 72

22 RR rose XGB
rose

871.8 0.0000 239 1,074 1,417 73

22 RR rose CART
none

1816.5 0.0000 187 2,166 325 125

22 RR rose CART
up

1810.7 0.0000 211 2,097 394 101

22 RR rose CART
down

1712.2 0.0000 204 2,016 475 108

22 RR rose CART
smote

1753.1 0.0000 185 2,107 384 127

22 RR rose CART
rose

363.3 0.0000 273 470 2,021 39

22 LASSO
none

LASSO
up

134.7 0.0000 1,959 68 488 288

22 LASSO
none

LASSO
down

146.5 0.0000 1,932 75 481 315

22 LASSO
none

LASSO
smote

15.7 0.0001 2,035 137 419 212

22 LASSO
none

LASSO
rose

1743.1 0.0000 205 106 450 2,042

22 LASSO
none

RF none 0.1 0.7129 2,070 185 371 177

22 LASSO
none

RF up 1.6 0.2029 2,052 222 334 195

22 LASSO
none

RF down 8.6 0.0035 2,049 143 413 198

22 LASSO
none

RF
smote

0.1 0.7467 2,078 176 380 169

22 LASSO
none

RF rose 0.3 0.5842 2,051 208 348 196

22 LASSO
none

XGB
none

3.9 0.0472 2,101 183 373 146

22 LASSO
none

XGB up 4.8 0.0289 2,002 198 358 245

22 LASSO
none

XGB
down

11.0 0.0009 1,981 194 362 266

22 LASSO
none

XGB
smote

18.4 0.0000 1,925 221 335 322
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22 LASSO
none

XGB
rose

693.1 0.0000 1,152 161 395 1,095

22 LASSO
none

CART
none

28.4 0.0000 2,106 247 309 141

22 LASSO
none

CART
up

10.2 0.0014 2,101 207 349 146

22 LASSO
none

CART
down

1.5 0.2249 2,004 216 340 243

22 LASSO
none

CART
smote

4.2 0.0413 2,037 255 301 210

22 LASSO
none

CART
rose

1287.9 0.0000 618 125 431 1,629

22 LASSO
up

LASSO
down

1.0 0.3098 1,842 165 611 185

22 LASSO
up

LASSO
smote

62.6 0.0000 1,934 238 538 93

22 LASSO
up

LASSO
rose

1571.2 0.0000 233 78 698 1,794

22 LASSO
up

RF none 102.6 0.0000 1,890 365 411 137

22 LASSO
up

RF up 110.6 0.0000 1,877 397 379 150

22 LASSO
up

RF down 61.5 0.0000 1,891 301 475 136

22 LASSO
up

RF
smote

115.8 0.0000 1,920 334 442 107

22 LASSO
up

RF rose 90.1 0.0000 1,847 412 364 180

22 LASSO
up

XGB
none

133.5 0.0000 1,910 374 402 117

22 LASSO
up

XGB up 57.0 0.0000 1,854 346 430 173

22 LASSO
up

XGB
down

38.2 0.0000 1,818 357 419 209

22 LASSO
up

XGB
smote

23.2 0.0000 1,787 359 417 240

22 LASSO
up

XGB
rose

446.7 0.0000 1,101 212 564 926

22 LASSO
up

CART
none

180.9 0.0000 1,898 455 321 129

22 LASSO
up

CART
up

145.5 0.0000 1,898 410 366 129

22 LASSO
up

CART
down

63.4 0.0000 1,833 387 389 194

22 LASSO
up

CART
smote

116.4 0.0000 1,860 432 344 167
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22 LASSO
up

CART
rose

1032.7 0.0000 588 155 621 1,439

22 LASSO
down

LASSO
smote

61.5 0.0000 1,871 301 495 136

22 LASSO
down

LASSO
rose

1551.3 0.0000 233 78 718 1,774

22 LASSO
down

RF none 120.6 0.0000 1,878 377 419 129

22 LASSO
down

RF up 123.5 0.0000 1,854 420 376 153

22 LASSO
down

RF down 73.1 0.0000 1,868 324 472 139

22 LASSO
down

RF
smote

119.4 0.0000 1,877 377 419 130

22 LASSO
down

RF rose 113.3 0.0000 1,855 404 392 152

22 LASSO
down

XGB
none

144.5 0.0000 1,882 402 394 125

22 LASSO
down

XGB up 65.9 0.0000 1,824 376 420 183

22 LASSO
down

XGB
down

47.1 0.0000 1,795 380 416 212

22 LASSO
down

XGB
smote

31.7 0.0000 1,776 370 426 231

22 LASSO
down

XGB
rose

420.5 0.0000 1,089 224 572 918

22 LASSO
down

CART
none

201.7 0.0000 1,885 468 328 122

22 LASSO
down

CART
up

160.4 0.0000 1,877 431 365 130

22 LASSO
down

CART
down

70.8 0.0000 1,796 424 372 211

22 LASSO
down

CART
smote

124.3 0.0000 1,825 467 329 182

22 LASSO
down

CART
rose

989.6 0.0000 569 174 622 1,438

22 LASSO
smote

LASSO
rose

1668.9 0.0000 205 106 525 1,967

22 LASSO
smote

RF none 15.9 0.0001 2,002 253 378 170

22 LASSO
smote

RF up 22.0 0.0000 1,991 283 348 181

22 LASSO
smote

RF down 0.9 0.3385 1,985 207 424 187

22 LASSO
smote

RF
smote

20.1 0.0000 2,050 204 427 122
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22 LASSO
smote

RF rose 16.3 0.0001 1,988 271 360 184

22 LASSO
smote

XGB
none

28.7 0.0000 2,013 271 360 159

22 LASSO
smote

XGB up 1.6 0.2031 1,961 239 392 211

22 LASSO
smote

XGB
down

0.0 0.9284 1,926 249 382 246

22 LASSO
smote

XGB
smote

1.1 0.2855 1,885 261 370 287

22 LASSO
smote

XGB
rose

599.0 0.0000 1,128 185 446 1,044

22 LASSO
smote

CART
none

68.8 0.0000 2,027 326 305 145

22 LASSO
smote

CART
up

40.7 0.0000 2,016 292 339 156

22 LASSO
smote

CART
down

4.3 0.0378 1,940 280 351 232

22 LASSO
smote

CART
smote

30.3 0.0000 1,998 294 337 174

22 LASSO
smote

CART
rose

1172.6 0.0000 588 155 476 1,584

22 LASSO
rose

RF none 1784.1 0.0000 225 2,030 462 86

22 LASSO
rose

RF up 1803.0 0.0000 225 2,049 443 86

22 LASSO
rose

RF down 1735.1 0.0000 233 1,959 533 78

22 LASSO
rose

RF
smote

1771.4 0.0000 218 2,036 456 93

22 LASSO
rose

RF rose 1727.8 0.0000 188 2,071 421 123

22 LASSO
rose

XGB
none

1804.5 0.0000 220 2,064 428 91

22 LASSO
rose

XGB up 1736.3 0.0000 229 1,971 521 82

22 LASSO
rose

XGB
down

1711.4 0.0000 229 1,946 546 82

22 LASSO
rose

XGB
smote

1699.6 0.0000 239 1,907 585 72

22 LASSO
rose

XGB
rose

874.3 0.0000 239 1,074 1,418 72

22 LASSO
rose

CART
none

1817.5 0.0000 186 2,167 325 125

22 LASSO
rose

CART
up

1811.7 0.0000 210 2,098 394 101
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22 LASSO
rose

CART
down

1713.2 0.0000 203 2,017 475 108

22 LASSO
rose

CART
smote

1754.1 0.0000 184 2,108 384 127

22 LASSO
rose

CART
rose

365.7 0.0000 273 470 2,022 38

22 RF none RF up 1.2 0.2724 2,130 144 404 125
22 RF none RF down 14.7 0.0001 2,093 99 449 162
22 RF none RF

smote
0.0 1.0000 2,134 120 428 121

22 RF none RF rose 0.0 0.8831 2,049 210 338 206
22 RF none XGB

none
3.2 0.0725 2,148 136 412 107

22 RF none XGB up 9.5 0.0021 2,074 126 422 181
22 RF none XGB

down
19.3 0.0000 2,053 122 426 202

22 RF none XGB
smote

27.4 0.0000 1,988 158 390 267

22 RF none XGB
rose

688.6 0.0000 1,141 172 376 1,114

22 RF none CART
none

26.9 0.0000 2,129 224 324 126

22 RF none CART
up

9.1 0.0025 2,133 175 373 122

22 RF none CART
down

2.8 0.0935 2,032 188 360 223

22 RF none CART
smote

2.9 0.0872 2,052 240 308 203

22 RF none CART
rose

1287.0 0.0000 612 131 417 1,643

22 RF up RF down 21.6 0.0000 2,081 111 418 193
22 RF up RF

smote
1.2 0.2758 2,112 142 387 162

22 RF up RF rose 0.4 0.5135 2,037 222 307 237
22 RF up XGB

none
0.4 0.5422 2,170 114 415 104

22 RF up XGB up 24.4 0.0000 2,128 72 457 146
22 RF up XGB

down
32.8 0.0000 2,078 97 432 196

22 RF up XGB
smote

40.9 0.0000 2,013 133 396 261

22 RF up XGB
rose

726.2 0.0000 1,159 154 375 1,115

22 RF up CART
none

22.3 0.0000 2,177 176 353 97
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22 RF up CART
up

4.2 0.0407 2,161 147 382 113

22 RF up CART
down

7.8 0.0052 2,067 153 376 207

22 RF up CART
smote

0.7 0.3881 2,089 203 326 185

22 RF up CART
rose

1333.8 0.0000 631 112 417 1,643

22 RF down RF
smote

11.9 0.0006 2,066 188 423 126

22 RF down RF rose 10.1 0.0015 2,009 250 361 183
22 RF down XGB

none
30.9 0.0000 2,104 180 431 88

22 RF down XGB up 0.1 0.7042 2,026 174 437 166
22 RF down XGB

down
0.8 0.3763 2,020 155 456 172

22 RF down XGB
smote

4.4 0.0351 1,941 205 406 251

22 RF down XGB
rose

656.1 0.0000 1,165 148 463 1,027

22 RF down CART
none

62.9 0.0000 2,069 284 327 123

22 RF down CART
up

39.1 0.0000 2,081 227 384 111

22 RF down CART
down

1.6 0.2061 1,978 242 369 214

22 RF down CART
smote

20.4 0.0000 2,002 290 321 190

22 RF down CART
rose

1251.8 0.0000 630 113 498 1,562

22 RF
smote

RF rose 0.0 0.8413 2,057 202 347 197

22 RF
smote

XGB
none

2.9 0.0875 2,125 159 390 129

22 RF
smote

XGB up 8.0 0.0046 2,052 148 401 202

22 RF
smote

XGB
down

15.2 0.0001 2,015 160 389 239

22 RF
smote

XGB
smote

26.6 0.0000 1,985 161 388 269

22 RF
smote

XGB
rose

707.4 0.0000 1,159 154 395 1,095

22 RF
smote

CART
none

26.6 0.0000 2,123 230 319 131

22 RF
smote

CART
up

8.7 0.0032 2,119 189 360 135
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22 RF
smote

CART
down

2.6 0.1065 2,028 192 357 226

22 RF
smote

CART
smote

3.5 0.0603 2,079 213 336 175

22 RF
smote

CART
rose

1303.7 0.0000 624 119 430 1,630

22 RF rose XGB
none

1.4 0.2319 2,070 214 330 189

22 RF rose XGB up 6.6 0.0104 1,973 227 317 286
22 RF rose XGB

down
12.9 0.0003 1,949 226 318 310

22 RF rose XGB
smote

21.1 0.0000 1,905 241 303 354

22 RF rose XGB
rose

759.4 0.0000 1,198 115 429 1,061

22 RF rose CART
none

20.4 0.0000 2,094 259 285 165

22 RF rose CART
up

5.4 0.0202 2,070 238 306 189

22 RF rose CART
down

2.5 0.1137 1,951 269 275 308

22 RF rose CART
smote

2.0 0.1609 2,015 277 267 244

22 RF rose CART
rose

1332.9 0.0000 640 103 441 1,619

22 XGB
none

XGB up 29.4 0.0000 2,125 75 444 159

22 XGB
none

XGB
down

42.7 0.0000 2,093 82 437 191

22 XGB
none

XGB
smote

43.9 0.0000 2,001 145 374 283

22 XGB
none

XGB
rose

757.0 0.0000 1,177 136 383 1,107

22 XGB
none

CART
none

14.5 0.0001 2,159 194 325 125

22 XGB
none

CART
up

1.8 0.1813 2,148 160 359 136

22 XGB
none

CART
down

10.0 0.0016 2,053 167 352 231

22 XGB
none

CART
smote

0.1 0.7327 2,078 214 305 206

22 XGB
none

CART
rose

1348.3 0.0000 634 109 410 1,650

22 XGB up XGB
down

2.0 0.1551 2,045 130 473 155
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22 XGB up XGB
smote

7.8 0.0052 1,993 153 450 207

22 XGB up XGB
rose

629.5 0.0000 1,133 180 423 1,067

22 XGB up CART
none

65.5 0.0000 2,100 253 350 100

22 XGB up CART
up

33.9 0.0000 2,085 223 380 115

22 XGB up CART
down

1.0 0.3272 2,022 198 405 178

22 XGB up CART
smote

19.2 0.0000 2,030 262 341 170

22 XGB up CART
rose

1237.6 0.0000 615 128 475 1,585

22 XGB
down

XGB
smote

1.9 0.1703 1,952 194 434 223

22 XGB
down

XGB
rose

603.7 0.0000 1,130 183 445 1,045

22 XGB
down

CART
none

78.3 0.0000 2,064 289 339 111

22 XGB
down

CART
up

47.0 0.0000 2,056 252 376 119

22 XGB
down

CART
down

4.3 0.0374 1,974 246 382 201

22 XGB
down

CART
smote

27.6 0.0000 1,990 302 326 185

22 XGB
down

CART
rose

1193.3 0.0000 601 142 486 1,574

22 XGB
smote

XGB
rose

542.1 0.0000 1,091 222 435 1,055

22 XGB
smote

CART
none

85.0 0.0000 2,000 353 304 146

22 XGB
smote

CART
up

55.9 0.0000 1,995 313 344 151

22 XGB
smote

CART
down

10.3 0.0013 1,924 296 361 222

22 XGB
smote

CART
smote

40.3 0.0000 1,958 334 323 188

22 XGB
smote

CART
rose

1158.3 0.0000 596 147 510 1,550

22 XGB
rose

CART
none

759.2 0.0000 1,122 1,231 259 191

22 XGB
rose

CART
up

732.4 0.0000 1,136 1,172 318 177

22 XGB
rose

CART
down

634.8 0.0000 1,120 1,100 390 193
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22 XGB
rose

CART
smote

682.7 0.0000 1,102 1,190 300 211

22 XGB
rose

CART
rose

507.5 0.0000 709 34 1,456 604

22 CART
none

CART
up

7.7 0.0055 2,205 103 347 148

22 CART
none

CART
down

51.1 0.0000 2,116 104 346 237

22 CART
none

CART
smote

10.3 0.0014 2,147 145 305 206

22 CART
none

CART
rose

1352.6 0.0000 591 152 298 1,762

22 CART
up

CART
down

18.4 0.0000 2,058 162 333 250

22 CART
up

CART
smote

0.6 0.4416 2,110 182 313 198

22 CART
up

CART
rose

1327.2 0.0000 604 139 356 1,704

22 CART
down

CART
smote

10.7 0.0011 2,021 271 312 199

22 CART
down

CART
rose

1244.2 0.0000 606 137 446 1,614

22 CART
smote

CART
rose

1275.3 0.0000 578 165 346 1,714

33 RR up RR down 0.2 0.6831 634 78 460 72
33 RR up RR

smote
59.3 0.0000 634 200 338 72

33 RR up RR rose 504.6 0.0000 92 39 499 614
33 RR up LASSO

none
0.1 0.8052 630 72 466 76

33 RR up LASSO
up

2.3 0.1306 637 89 449 69

33 RR up LASSO
down

19.6 0.0000 647 119 419 59

33 RR up LASSO
smote

12.5 0.0004 592 175 363 114

33 RR up LASSO
rose

502.0 0.0000 92 40 498 614

33 RR up RF none 202.7 0.0000 644 353 185 62
33 RR up RF up 30.3 0.0000 568 247 291 138
33 RR up RF down 35.9 0.0000 577 246 292 129
33 RR up RF

smote
138.3 0.0000 636 296 242 70

33 RR up RF rose 237.2 0.0000 364 40 498 342
33 RR up XGB

none
84.2 0.0000 580 321 217 126
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33 RR up XGB up 85.5 0.0000 578 326 212 128
33 RR up XGB

down
27.9 0.0000 541 277 261 165

33 RR up XGB
smote

73.4 0.0000 572 317 221 134

33 RR up XGB
rose

4.9 0.0276 529 222 316 177

33 RR up CART
none

110.4 0.0000 585 350 188 121

33 RR up CART
up

16.3 0.0001 518 276 262 188

33 RR up CART
down

0.5 0.4883 431 258 280 275

33 RR up CART
smote

86.6 0.0000 593 304 234 113

33 RR up CART
rose

503.6 0.0000 93 39 499 613

33 RR down RR
smote

52.7 0.0000 634 200 332 78

33 RR down RR rose 519.9 0.0000 98 33 499 614
33 RR down LASSO

none
0.6 0.4564 634 68 464 78

33 RR down LASSO
up

1.1 0.2885 644 82 450 68

33 RR down LASSO
down

28.7 0.0000 690 76 456 22

33 RR down LASSO
smote

11.6 0.0007 614 153 379 98

33 RR down LASSO
rose

517.3 0.0000 98 34 498 614

33 RR down RF none 184.6 0.0000 636 361 171 76
33 RR down RF up 29.0 0.0000 584 231 301 128
33 RR down RF down 33.3 0.0000 586 237 295 126
33 RR down RF

smote
124.3 0.0000 629 303 229 83

33 RR down RF rose 233.3 0.0000 356 48 484 356
33 RR down XGB

none
83.2 0.0000 594 307 225 118

33 RR down XGB up 82.2 0.0000 586 318 214 126
33 RR down XGB

down
24.9 0.0000 544 274 258 168

33 RR down XGB
smote

70.9 0.0000 582 307 225 130

33 RR down XGB
rose

3.3 0.0704 511 240 292 201
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33 RR down CART
none

104.2 0.0000 587 348 184 125

33 RR down CART
up

14.6 0.0001 529 265 267 183

33 RR down CART
down

1.0 0.3285 447 242 290 265

33 RR down CART
smote

79.7 0.0000 592 305 227 120

33 RR down CART
rose

517.3 0.0000 98 34 498 614

33 RR
smote

RR rose 616.8 0.0000 83 48 362 751

33 RR
smote

LASSO
none

58.4 0.0000 621 81 329 213

33 RR
smote

LASSO
up

40.3 0.0000 638 88 322 196

33 RR
smote

LASSO
down

18.0 0.0000 675 91 319 159

33 RR
smote

LASSO
smote

39.2 0.0000 745 22 388 89

33 RR
smote

LASSO
rose

614.3 0.0000 83 49 361 751

33 RR
smote

RF none 72.7 0.0000 735 262 148 99

33 RR
smote

RF up 0.8 0.3627 629 186 224 205

33 RR
smote

RF down 0.3 0.6112 635 188 222 199

33 RR
smote

RF
smote

28.5 0.0000 718 214 196 116

33 RR
smote

RF rose 337.1 0.0000 346 58 352 488

33 RR
smote

XGB
none

11.3 0.0008 675 226 184 159

33 RR
smote

XGB up 12.0 0.0005 670 234 176 164

33 RR
smote

XGB
down

0.5 0.4814 599 219 191 235

33 RR
smote

XGB
smote

7.4 0.0066 664 225 185 170

33 RR
smote

XGB
rose

16.5 0.0000 589 162 248 245

33 RR
smote

CART
none

25.2 0.0000 686 249 161 148

33 RR
smote

CART
up

3.2 0.0745 575 219 191 259
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33 RR
smote

CART
down

35.4 0.0000 469 220 190 365

33 RR
smote

CART
smote

10.6 0.0011 685 212 198 149

33 RR
smote

CART
rose

617.3 0.0000 85 47 363 749

33 RR rose LASSO
none

514.9 0.0000 101 601 512 30

33 RR rose LASSO
up

533.8 0.0000 98 628 485 33

33 RR rose LASSO
down

566.9 0.0000 94 672 441 37

33 RR rose LASSO
smote

558.5 0.0000 88 679 434 43

33 RR rose LASSO
rose

0.0 1.0000 130 2 1,111 1

33 RR rose RF none 760.4 0.0000 72 925 188 59
33 RR rose RF up 622.0 0.0000 98 717 396 33
33 RR rose RF down 626.6 0.0000 96 727 386 35
33 RR rose RF

smote
713.5 0.0000 83 849 264 48

33 RR rose RF rose 250.8 0.0000 120 284 829 11
33 RR rose XGB

none
687.6 0.0000 86 815 298 45

33 RR rose XGB up 685.8 0.0000 83 821 292 48
33 RR rose XGB

down
610.4 0.0000 89 729 384 42

33 RR rose XGB
smote

683.8 0.0000 91 798 315 40

33 RR rose XGB
rose

535.1 0.0000 83 668 445 48

33 RR rose CART
none

686.0 0.0000 63 872 241 68

33 RR rose CART
up

597.9 0.0000 96 698 415 35

33 RR rose CART
down

500.4 0.0000 100 589 524 31

33 RR rose CART
smote

665.0 0.0000 74 823 290 57

33 RR rose CART
rose

0.0 1.0000 130 2 1,111 1

33 LASSO
none

LASSO
up

8.3 0.0040 682 44 498 20

33 LASSO
none

LASSO
down

30.5 0.0000 669 97 445 33
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33 LASSO
none

LASSO
smote

15.3 0.0001 601 166 376 101

33 LASSO
none

LASSO
rose

512.3 0.0000 101 31 511 601

33 LASSO
none

RF none 213.4 0.0000 647 350 192 55

33 LASSO
none

RF up 36.8 0.0000 588 227 315 114

33 LASSO
none

RF down 45.1 0.0000 603 220 322 99

33 LASSO
none

RF
smote

153.3 0.0000 646 286 256 56

33 LASSO
none

RF rose 250.6 0.0000 377 27 515 325

33 LASSO
none

XGB
none

94.9 0.0000 595 306 236 107

33 LASSO
none

XGB up 92.2 0.0000 584 320 222 118

33 LASSO
none

XGB
down

32.3 0.0000 555 263 279 147

33 LASSO
none

XGB
smote

84.2 0.0000 590 299 243 112

33 LASSO
none

XGB
rose

5.6 0.0179 521 230 312 181

33 LASSO
none

CART
none

117.8 0.0000 590 345 197 112

33 LASSO
none

CART
up

19.3 0.0000 534 260 282 168

33 LASSO
none

CART
down

0.3 0.5851 454 235 307 248

33 LASSO
none

CART
smote

97.8 0.0000 607 290 252 95

33 LASSO
none

CART
rose

512.3 0.0000 101 31 511 601

33 LASSO
up

LASSO
down

13.1 0.0003 688 78 440 38

33 LASSO
up

LASSO
smote

6.2 0.0126 618 149 369 108

33 LASSO
up

LASSO
rose

531.2 0.0000 98 34 484 628

33 LASSO
up

RF none 183.6 0.0000 663 334 184 63

33 LASSO
up

RF up 23.0 0.0000 602 213 305 124

33 LASSO
up

RF down 28.2 0.0000 611 212 306 115
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33 LASSO
up

RF
smote

125.1 0.0000 661 271 247 65

33 LASSO
up

RF rose 266.9 0.0000 372 32 486 354

33 LASSO
up

XGB
none

77.4 0.0000 618 283 235 108

33 LASSO
up

XGB up 75.3 0.0000 607 297 221 119

33 LASSO
up

XGB
down

20.6 0.0000 571 247 271 155

33 LASSO
up

XGB
smote

67.1 0.0000 612 277 241 114

33 LASSO
up

XGB
rose

1.4 0.2388 531 220 298 195

33 LASSO
up

CART
none

97.2 0.0000 608 327 191 118

33 LASSO
up

CART
up

10.8 0.0010 553 241 277 173

33 LASSO
up

CART
down

2.7 0.1014 466 223 295 260

33 LASSO
up

CART
smote

77.9 0.0000 626 271 247 100

33 LASSO
up

CART
rose

531.2 0.0000 98 34 484 628

33 LASSO
down

LASSO
smote

0.0 1.0000 651 116 362 115

33 LASSO
down

LASSO
rose

564.4 0.0000 94 38 440 672

33 LASSO
down

RF none 137.4 0.0000 689 308 170 77

33 LASSO
down

RF up 7.0 0.0081 626 189 289 140

33 LASSO
down

RF down 9.6 0.0020 631 192 286 135

33 LASSO
down

RF
smote

79.1 0.0000 677 255 223 89

33 LASSO
down

RF rose 294.8 0.0000 364 40 438 402

33 LASSO
down

XGB
none

47.4 0.0000 644 257 221 122

33 LASSO
down

XGB up 47.4 0.0000 637 267 211 129

33 LASSO
down

XGB
down

6.3 0.0118 587 231 247 179

33 LASSO
down

XGB
smote

38.3 0.0000 633 256 222 133
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33 LASSO
down

XGB
rose

0.5 0.4930 550 201 277 216

33 LASSO
down

CART
none

67.0 0.0000 640 295 183 126

33 LASSO
down

CART
up

1.8 0.1770 580 214 264 186

33 LASSO
down

CART
down

11.4 0.0007 474 215 263 292

33 LASSO
down

CART
smote

45.3 0.0000 645 252 226 121

33 LASSO
down

CART
rose

564.4 0.0000 94 38 440 672

33 LASSO
smote

LASSO
rose

556.0 0.0000 88 44 433 679

33 LASSO
smote

RF none 127.3 0.0000 676 321 156 91

33 LASSO
smote

RF up 5.8 0.0159 601 214 263 166

33 LASSO
smote

RF down 7.7 0.0056 598 225 252 169

33 LASSO
smote

RF
smote

73.7 0.0000 667 265 212 100

33 LASSO
smote

RF rose 268.0 0.0000 341 63 414 426

33 LASSO
smote

XGB
none

42.3 0.0000 625 276 201 142

33 LASSO
smote

XGB up 43.5 0.0000 623 281 196 144

33 LASSO
smote

XGB
down

5.4 0.0204 560 258 219 207

33 LASSO
smote

XGB
smote

36.6 0.0000 628 261 216 139

33 LASSO
smote

XGB
rose

0.5 0.4663 547 204 273 220

33 LASSO
smote

CART
none

62.0 0.0000 626 309 168 141

33 LASSO
smote

CART
up

1.5 0.2279 548 246 231 219

33 LASSO
smote

CART
down

10.7 0.0010 452 237 240 315

33 LASSO
smote

CART
smote

45.0 0.0000 647 250 227 120

33 LASSO
smote

CART
rose

557.5 0.0000 89 43 434 678

33 LASSO
rose

RF none 757.9 0.0000 72 925 187 60
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33 LASSO
rose

RF up 619.3 0.0000 98 717 395 34

33 LASSO
rose

RF down 624.0 0.0000 96 727 385 36

33 LASSO
rose

RF
smote

710.9 0.0000 83 849 263 49

33 LASSO
rose

RF rose 248.1 0.0000 120 284 828 12

33 LASSO
rose

XGB
none

685.0 0.0000 86 815 297 46

33 LASSO
rose

XGB up 683.3 0.0000 83 821 291 49

33 LASSO
rose

XGB
down

607.8 0.0000 89 729 383 43

33 LASSO
rose

XGB
smote

681.2 0.0000 91 798 314 41

33 LASSO
rose

XGB
rose

532.7 0.0000 83 668 444 49

33 LASSO
rose

CART
none

682.1 0.0000 62 873 239 70

33 LASSO
rose

CART
up

595.3 0.0000 96 698 414 36

33 LASSO
rose

CART
down

497.8 0.0000 100 589 523 32

33 LASSO
rose

CART
smote

664.0 0.0000 75 822 290 57

33 LASSO
rose

CART
rose

0.0 1.0000 130 2 1,110 2

33 RF none RF up 107.8 0.0000 754 61 186 243
33 RF none RF down 95.3 0.0000 753 70 177 244
33 RF none RF

smote
22.6 0.0000 874 58 189 123

33 RF none RF rose 502.8 0.0000 352 52 195 645
33 RF none XGB

none
31.6 0.0000 806 95 152 191

33 RF none XGB up 26.7 0.0000 792 112 135 205
33 RF none XGB

down
95.1 0.0000 741 77 170 256

33 RF none XGB
smote

36.9 0.0000 788 101 146 209

33 RF none XGB
rose

150.8 0.0000 675 76 171 322

33 RF none CART
none

15.5 0.0001 846 89 158 151

33 RF none CART
up

117.6 0.0000 722 72 175 275
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33 RF none CART
down

211.3 0.0000 620 69 178 377

33 RF none CART
smote

31.2 0.0000 790 107 140 207

33 RF none CART
rose

759.4 0.0000 73 59 188 924

33 RF up RF down 0.2 0.6735 681 142 287 134
33 RF up RF

smote
51.6 0.0000 743 189 240 72

33 RF up RF rose 301.8 0.0000 331 73 356 484
33 RF up XGB

none
32.5 0.0000 747 154 275 68

33 RF up XGB up 35.4 0.0000 750 154 275 65
33 RF up XGB

down
0.0 0.9040 679 139 290 136

33 RF up XGB
smote

21.5 0.0000 728 161 268 87

33 RF up XGB
rose

8.6 0.0033 553 198 231 262

33 RF up CART
none

45.1 0.0000 718 217 212 97

33 RF up CART
up

1.3 0.2506 653 141 288 162

33 RF up CART
down

40.5 0.0000 559 130 299 256

33 RF up CART
smote

19.9 0.0000 691 206 223 124

33 RF up CART
rose

619.3 0.0000 98 34 395 717

33 RF down RF
smote

44.0 0.0000 745 187 234 78

33 RF down RF rose 338.0 0.0000 355 49 372 468
33 RF down XGB

none
18.9 0.0000 705 196 225 118

33 RF down XGB up 19.3 0.0000 698 206 215 125
33 RF down XGB

down
0.0 0.8323 642 176 245 181

33 RF down XGB
smote

12.6 0.0004 689 200 221 134

33 RF down XGB
rose

14.0 0.0002 607 144 277 216

33 RF down CART
none

35.2 0.0000 704 231 190 119

33 RF down CART
up

2.5 0.1147 651 143 278 172
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33 RF down CART
down

43.8 0.0000 554 135 286 269

33 RF down CART
smote

16.3 0.0001 697 200 221 126

33 RF down CART
rose

624.0 0.0000 96 36 385 727

33 RF
smote

RF rose 445.1 0.0000 356 48 264 576

33 RF
smote

XGB
none

3.4 0.0664 783 118 194 149

33 RF
smote

XGB up 2.5 0.1129 773 131 181 159

33 RF
smote

XGB
down

37.8 0.0000 706 112 200 226

33 RF
smote

XGB
smote

6.6 0.0104 776 113 199 156

33 RF
smote

XGB
rose

81.6 0.0000 643 108 204 289

33 RF
smote

CART
none

0.0 0.8983 811 124 188 121

33 RF
smote

CART
up

54.9 0.0000 692 102 210 240

33 RF
smote

CART
down

128.1 0.0000 582 107 205 350

33 RF
smote

CART
smote

4.2 0.0403 777 120 192 155

33 RF
smote

CART
rose

710.9 0.0000 83 49 263 849

33 RF rose XGB
none

375.6 0.0000 325 576 264 79

33 RF rose XGB up 370.5 0.0000 318 586 254 86
33 RF rose XGB

down
294.1 0.0000 321 497 343 83

33 RF rose XGB
smote

379.7 0.0000 338 551 289 66

33 RF rose XGB
rose

270.2 0.0000 356 395 445 48

33 RF rose CART
none

391.8 0.0000 311 624 216 93

33 RF rose CART
up

265.5 0.0000 314 480 360 90

33 RF rose CART
down

146.4 0.0000 271 418 422 133

33 RF rose CART
smote

375.3 0.0000 328 569 271 76
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33 RF rose CART
rose

248.1 0.0000 120 12 828 284

33 XGB
none

XGB up 0.0 0.8699 828 76 267 73

33 XGB
none

XGB
down

22.6 0.0000 711 107 236 190

33 XGB
none

XGB
smote

0.6 0.4412 793 96 247 108

33 XGB
none

XGB
rose

47.0 0.0000 590 161 182 311

33 XGB
none

CART
none

4.4 0.0354 795 140 203 106

33 XGB
none

CART
up

35.2 0.0000 688 106 237 213

33 XGB
none

CART
down

110.7 0.0000 594 95 248 307

33 XGB
none

CART
smote

0.0 0.8616 751 146 197 150

33 XGB
none

CART
rose

686.6 0.0000 87 45 298 814

33 XGB up XGB
down

23.8 0.0000 709 109 231 195

33 XGB up XGB
smote

1.0 0.3234 796 93 247 108

33 XGB up XGB
rose

47.2 0.0000 583 168 172 321

33 XGB up CART
none

3.3 0.0684 784 151 189 120

33 XGB up CART
up

36.7 0.0000 687 107 233 217

33 XGB up CART
down

105.8 0.0000 580 109 231 324

33 XGB up CART
smote

0.1 0.7259 754 143 197 150

33 XGB up CART
rose

684.8 0.0000 84 48 292 820

33 XGB
down

XGB
smote

15.3 0.0001 693 196 230 125

33 XGB
down

XGB
rose

9.2 0.0024 548 203 223 270

33 XGB
down

CART
none

38.6 0.0000 702 233 193 116

33 XGB
down

CART
up

1.5 0.2267 625 169 257 193

33 XGB
down

CART
down

39.9 0.0000 548 141 285 270
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33 XGB
down

CART
smote

15.6 0.0001 663 234 192 155

33 XGB
down

CART
rose

609.4 0.0000 90 42 384 728

33 XGB
smote

XGB
rose

38.3 0.0000 575 176 179 314

33 XGB
smote

CART
none

7.1 0.0078 769 166 189 120

33 XGB
smote

CART
up

26.5 0.0000 675 119 236 214

33 XGB
smote

CART
down

93.8 0.0000 578 111 244 311

33 XGB
smote

CART
smote

0.2 0.6831 746 151 204 143

33 XGB
smote

CART
rose

682.8 0.0000 92 40 315 797

33 XGB
rose

CART
none

69.5 0.0000 602 333 160 149

33 XGB
rose

CART
up

4.2 0.0416 560 234 259 191

33 XGB
rose

CART
down

8.1 0.0045 490 199 294 261

33 XGB
rose

CART
smote

44.9 0.0000 590 307 186 161

33 XGB
rose

CART
rose

532.7 0.0000 83 49 444 668

33 CART
none

CART
up

74.5 0.0000 733 61 248 202

33 CART
none

CART
down

128.3 0.0000 578 111 198 357

33 CART
none

CART
smote

4.4 0.0356 761 136 173 174

33 CART
none

CART
rose

683.5 0.0000 63 69 240 872

33 CART
up

CART
down

30.5 0.0000 564 125 325 230

33 CART
up

CART
smote

30.5 0.0000 675 222 228 119

33 CART
up

CART
rose

596.9 0.0000 97 35 415 697

33 CART
down

CART
smote

94.8 0.0000 567 330 225 122

33 CART
down

CART
rose

499.4 0.0000 101 31 524 588

33 CART
smote

CART
rose

664.0 0.0000 75 57 290 822
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