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Abstract

Ampuero Suárez, Miguel Ángel; Mota de Menezes, Ivan
Fábio (Advisor); Romero Sáenz, Juan Sergio (Co-Advisor).
Topology Optimization for non-Newtonian Fluid-Flow
Problems using the Virtual Element Method. Rio de Janeiro,
2020. 89p. DSc. Thesis – Departamento de Engenharia Mecânica,
Pontif́ıcia Universidade Católica do Rio de Janeiro.

This work presents selected applications of topology optimization for

non-Newtonian fluid flow problems using the virtual element method (VEM)

in arbitrary two-dimensional domains. The objective is to design an optimal

layout into a fluid flow domain to minimize dissipative energy governed

by the Navier-Stokes-Brinkman and non-Newtonian Carreau-Yasuda model

equations. The porosity approach proposed by (Borrvall and Petersson,

2003) [1] is used in the topology optimization formulation. To solve this

problem numerically, the recently proposed VEM method is used. The key

feature that distinguishes VEM from the standard finite element method

(FEM) is that the interpolation functions in the interior of the elements do

not need to be computed explicitly. This is because the integration is on

lower-order polynomial and basis functions, and there is great flexibility by

using a non-convex element. Therefore, the computation of the main element

matrices and vectors are reduced to the evaluation of geometric quantities

on the boundary of the elements. Finally, several numerical examples are

provided to demonstrate the efficiency of the VEM compared to FEM and

the applicability of the topology optimization to fluid flow problems.

Keywords
Topology optimization; Navier-Stokes-Brinkman equation;

non-Newtonian fluids; Carreau-Yasuda model; Newton-Rapshon method;

Virtual element method; Projection operators.
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Resumo

Ampuero Suárez, Miguel Ángel; Mota de Menezes, Ivan
Fábio (Orientador); Romero Sáenz, Juan Sergio (Coorientador).
Otimização Topológica para Problemas de Escoamento de
Fluidos não Newtonianos usando o Método dos Elementos
Virtuais. Rio de Janeiro, 2020. 89p. Tese de Doutorado –
Departamento de Engenharia Mecânica, Pontif́ıcia Universidade
Católica do Rio de Janeiro.

Este trabalho apresenta aplicações da técnica de otimização

topológica para problemas de escoamento com fluidos não Newtonianos,

usando o método dos elementos virtuais (VEM) em domı́nios bidimensionais

arbitrários. O objetivo é projetar a trajetória ótima, a partir da minimização

da energia dissipativa, de um escoamento governado pelas equações de

Navier-Stokes-Brinkman e do modelo não Newtoniano de Carreau-Yasuda.

A abordagem de porosidade proposta por (Borrvall e Petersson, 2003) [1] é

usada na formulação do problema de otimização topológica. Para resolver

este problema numericamente é usado o método VEM, recentemente

proposto. A principal caracteŕıstica que diferencia o VEM do método

dos elementos finitos (FEM) é que as funções de interpolação no interior

dos elementos não precisam ser computadas explicitamente. Isso ocorre

porque a integração é feita em funções polinomiais e bases de ordem

inferior, permitindo assim uma grande flexibilidade no que diz respeito

ao uso de elementos não convexos. Portanto, o cálculo das matrizes

e vetores elementares se reduz à avaliação de grandezas geométricas

nos contornos desses elementos. Finalmente, são apresentados exemplos

numéricos representativos para demonstrar a eficiência do VEM em

comparação com o FEM e a aplicabilidade da otimização topológica para

esta classe de problemas de escoamento.

Palavras–chave
Otimização topológica; Equação de Navier-Stokes-Brinkman;

Fluidos não-Newtonianos; Modelo de Carreau-Yasuda; Método de

Newton-Raphson; Método dos elementos virtuais; Operadores de projeção.
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“There is a driving force more powerful than
steam, electricity and atomic energy: the will”.

Albert Einstein.
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1
Introduction

1.1
Motivation

Structural optimization problems can be classified into three types:

sizing, shape, and topology optimization (Christensen and Klarbring, 2009)

[17].

In sizing optimization, the shape of the structure is known, and the

objective is to optimize the structure by adjusting the sizes of its components.

Here, the design variables are the sizes of the structural elements, such as the

diameter of a pipe or the thickness of a metal sheet. Figure 1.1(a) illustrates

an example of size optimization where the diameters of the pipe elements are

the design variables.

For shape optimization, the design variables are the external boundaries

of the domain and/or the shapes of internal pre-existing holes. Therefore, the

shape of the structure is modified in the optimization process. (See Figure

1.1(b)).

(a)

(b)

(c)

pipe element

Figure 1.1: Three types of optimization: (a) sizing optimization, (b) shape

optimization, and (c) topology optimization (Koga, 2010) [2].
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Chapter 1. Introduction 18

Topology optimization is employed to find the optimal distribution of

a material in a given domain, such that it minimizes specific performance

measures and is subjected to a volume constraint, as illustrated in Figure

1.1(c). We emphasize that we will focus on topology optimization in this work.

In general, the optimization problem can be written as:

min
x

f(x), x ∈ Rn

s.t.

hk(x) = 0, k = 1, . . . ,m

cl(x) ≤ 0, l = 1, . . . , p

xli ≤ xi ≤ xui , i = 1, . . . , n

(1-1)

where f(x) is the objective function (e.g. compliance, pressure drop, a given

velocity), hk(x) and cl(x) are the equality and inequality constraints of the

problem (e.g. displacements, stress, volume), x is the vector of the design

variables (e.g. density of each element, viscosity), and xli and xui are the lower

and upper bounds of the design variables, respectively.

When topology optimization is applied to fluid flow problems (e.g. the

Stokes-Darcy equation), the idea is to design an optimal layout for the fluid

flow in terms of a minimum value of the specified cost functional (e.g. the

dissipated energy).

A strong formulation of the combined Stokes-Darcy equation, considering

the applied forces on the fluid, is given by{
−µ∇2u+ αu+∇p = f

∇.u = 0
, (1-2)

where u is the velocity field, p is the pressure field, µ is the dynamic viscosity

of the fluids (for Newtonian fluids, µ is constant), f is the external force field

on the fluid, and α is the inverse permeability of the porous medium, which

allows one to model the solid and fluid regions (more details in Chapter 5.2).

A weak formulation of the problem can be obtained using the weighted

residual methods (WRMs), where v and q are the velocity and pressure virtual

weighting functions. From Equation (1-2), we have:{
aα(u,v) + b(v, p) = l(v),∀u,v ∈ V

b(u, q) = 0, ∀q ∈ Q
, (1-3)

where
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aα(u,v) := −µ
∫

Ω

∇u : ∇vdΩ +

∫
Ω

αu.vdΩ

b(v, p) :=

∫
Ω

p(∇.v)dΩ, b(u, q) :=

∫
Ω

q(∇.u)dΩ

l(v) :=

∫
Ω

f .vdΩ

.

The general formulation of the topology optimization to an

incompressible Newtonian Stokes-Darcy fluid flow, neglecting external forces

on the fluid, can be written as follows:

min
x

f =
1

2
µ

∫
Ω

∇u : ∇udΩ +
1

2

∫
Ω

α(x)u.udΩ

s.t.

g =

∫
Ω

xdΩ− V ≤ 0

with {
−µ∇2u+ α(x)u+∇p = 0

∇.u = 0
,

and

0 ≤ x ≤ 1.

(1-4)

Here, the objective is to minimize the potential power of the Stokes-Darcy

flow, expressed by the objective function f , subject to an upper bound V on

the volume in the domain Ω, and x is a vector holding the design variables.

This function, f , is composed of 2 terms, the first one corresponding to the

dissipation due to viscous dissipative effects, while the second term corresponds

to the dissipative effects of the porous media model (Koga, 2010) [2].

The Stokes-Darcy system of equations is used as a constraint in a design

optimization problem, and is solved by the finite element method (FEM).

Figure 1.2 illustrates three examples of engineering applications often

found in fluid mechanics literature, where the optimal layout of channel

flow, minimizing drag with given velocities at the boundary, are shown as

two-dimensional problems.
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(b)

(a)

(c)

1/6

1/6

1

1/4

1/4

1/3 1

1

0.2
0.2

0.2

0.2

1

1

1/6

δ

Figure 1.2: Design domain for the two-dimensional (a) diffuser, (b) pipe

bends, and (c) double pipe (by δ >> 1) topology optimizations, (Borvall and

Petersson, 2003) [1].

We discretized the fluid flow domains into polygonal meshes. One of

the main advantages of using polygonal elements is that they are naturally

stable as illustrated in Figure 1.3 for a lid-driven cavity problem. As expected

from the literature, the use of conventional Q4 elements leads to checkerboard

layouts in the pressure field, Figure 1.3(a). However, for polygonal elements,

no checkerboard patterns are observed, Figure 1.3(b)
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(a)

(b)

Figure 1.3: Velocity and pressure fields for a lid-driven cavity problem: (a)

using Q4 elements and (b) using polygonal elements, (Talischi et al., 2014) [3].

In the context of the topology optimization, we also use unstructured

polygonal finite element meshes to avoid checkerboard layouts and one-node

connections, (Talischi et al., 2010) [18]. Figure 1.4 presents an example

of topology optimization for compliance minimization using both standard

regular quadrilateral elements and polygonal elements. Notice that the use

of polygonal elements naturally eliminates the appearance of checkerboard

patterns and one-node connections (see Pereira et al. (2010) [4] for more

details),

(a) (b)

Figure 1.4: Topology optimization for compliance minimization using: (a) 2560
Q4 and (b) 2560 polygonal elements, [4].

The constrained geometry of the discretizations associated with standard

triangles and quads can cause bias in the orientation of members, leading

to mesh-dependent (sub-optimal) topology optimization designs. Figure 1.5

shows that this problem can be easily circumvented by using polygonal element

meshes.
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(a) (b)

Figure 1.5: Topology optimization applied to the Michell domain cantilever

problem; (a) using T6 elements and (b) using polygonal elements.

Recent literature, such as Talischi et al. (2016) [5], shows the effectiveness

in the solution of topology optimization using polygonal elements for fluid

problems solved with FEM and implemented with the educational computer

code Polytop, [19]. Figure 1.6 illustrates a typical example of the diffuser

problem for the minimization of dissipative energy on a Newtonian fluid

governed by the Stokes-Darcy flow equations, neglecting external forces on

the fluid.

(c)(b)

(a)

Figure 1.6: Solution to the diffuser problem. (a) Geometry and boundary
condition using polygonal meshes, (b) optimal solution, and (c) velocity and
pressure fields [5].

Virtual element method

“The Virtual element method (VEM) is a recent generalization of the

Finite Element Method which is characterized by the capability of dealing

with very general polygonal/polyhedral meshes and the possibility to easily

DBD
PUC-Rio - Certificação Digital Nº 1612791/CA



Chapter 1. Introduction 23

implement highly regular discrete spaces,” (Beirão da Veiga et al., 2015) [20].

Some of the main advantages are that VEM does not use basis functions

explicitly (so there is no need for numerical integration in the domain), only

depends on the geometry’s contour, and the domain can be discretized using

convex and non-convex polygonal elements. These features offer significant

flexibility to solve numerical problems in complex bi-dimensional domains with

difficult mesh generation and can integrate into the topology optimization

problem, resulting in very attractive computational performance

We remark that the main steps of the VEM solution is similar to the

standard FEM solution (see Figure 1.7).

Mesh

Domain 

Boundary 
Conditions

get element 
stiffness ke

asemble global 
stiffness K

solve system
equation
f=Ku

get element 
stiffness ke

- explict shape function

- numerical integration for general function

- typically considers triangles or quads

- implicit shape function

- integration of polynomial functions

- polygonal and non-convex elements

E
ni-1
ni

|ei|

|ei-1|

i=1

E

Gauss point

(FEM shape functions)

(VEM space and projections)

Figure 1.7: Main FEM-VEM differences on the standard solution
implementation.

An interesting problem is taken from the work of (Torres, 2016) [6].

It consists of a comparative study of three numerical methods, VEM, FEM

and smoothed FEM (SFEM), applied to solve elasticity problems in the

context of topological optimization. A correction was made to the numerical

integration of the FEM in polygonal meshes, increasing from 3 to 7 points per

triangle to achieve the convergence level shown in Figure 1.8(a). Although a

higher computational cost is observed (see Figure 1.8(b)) a good monotonic

convergence is achieved.
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(a) (b)

Figure 1.8: Convergence of the FEM with 3 (a) and 7 (b) integration points

[6].

The performance of each numerical method is presented in Figure 1.9(a).

Figure 1.9(b) shows the computational time for assembling the global stiffness

matrix of each method. It is clear from Figure 1.9 that the VEM has proven

to be very efficient in solving elasticity problems using polygonal meshes when

compared to FEM and smoothed FEM.

Figure 1.9: (a) Convergence of each method using polygonal meshes and (b)
computational cost [6].

In the work of (Sutton, 2017) [7], the results of the VEM numerical

solution of the classical Poisson problem using both discretized domains

(convex and non-convex elements) were shown and the flexibility and efficiency

of this method compared with the standard FEM was proven.

The strong formulation of the two-dimensional Poisson problem is written

as follows: {
−∇2u = f in Ω

u = g on ∂Ω
,
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where the boundary, g, and loading function, f , are defined as:

g = (1− x)ysin(πx) and f = 15sin(πx)sin(πy).

Figure 1.9 shows the numerical solution obtained using VEM in a square

domain of 1x1 discretized with Voronoi-polygonal elements (Figure 1.10(a)),

triangle and quad elements (Figure 1.10(b)), and non-convex elements

(Figure 1.10(c)).

(a)

(b)

(c)

Figure 1.10: VEM numerical solution for the two-dimensional Poisson

problem.(a) Voronoi-polygonal, (b) triangle & quads, and (c) non-convex

elements [7].

Paulino and Gain [8] show numerical results in topology optimization

for the elasticity problem by minimizing a compliance function subject to a
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volume constraint using the VEM. Figure 1.11 illustrates the results of the

optimal topology in different domains using non-convex elements.

(a)

(b) (c)

Figure 1.11: Two-dimensional linear elastic topology optimization examples

using VEM method (by non-convex elements). (a) Bridge ,(b) cantilever beam,

and (c) bracing system problem [8].

Recently, works on topology optimization were extended by

non-Newtonian fluid flow problems using several numerical solvers such as

FEM, the Lattice Boltzmann method (LBM), and the finite volume method

(FVM). Detailed descriptions of previous work can be found in Chapter 1.2.

In summary, our contribution in this work is to provide detailed

procedures of the proposed VEM method implemented in MATLAB®

using lower-order elements, to solve non-Newtonian and incompressible

Navier-Stokes-Brinkman (NVSB) differential equations, the Carreau-Yasuda

equation, as a model of the non-Newtonian fluid, and to make a study of

the convergence analysis of VEM and FEM. Further, we will compare the

performance of these two methods with respect to computational efficiency. We

will prove that the proposed VEM is a better solver that could be integrated

into topology optimization for fluid flow problems. We will present several

examples of two-dimensional fluid flow problems, which are available in the

literature, to demonstrate the functionality and applicability of the proposed

methodology.

Some relevant comments about VEM

The computation of the projection operator (see Section 3 for more

details) can be computationally expensive, in particular, when variables such as
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displacement, velocity, pressure fields, etc., are approximated with high-order

functions (i.e., k ≥ 2).

Figure 1.11 shows element VEM spaces and degrees of freedom (DOF)

using quadratic (k = 2) and cubic (k = 3) elements, (Beirão et al., 2014 [9].)

Figure 1.12: Element VEM spaces and degrees of freedom for k = 2 (left) and

k = 3 (right), (Taken from: [9]).

From the strong formulation of the Poisson problem (Eq. (1-3)), it can be

written in the weak formulation as follow:

a(u,v) := −
∫

Ω

∇u : ∇vdΩ =

∫
Ω

f .vdΩ := l(v). (1-5)

From Eq. (1-5), in the VEM method, the element level approximation is

expressed as:

aEh :=

∫
E

Π0
E∇uhΠ0

E∇vhdx︸ ︷︷ ︸
consistency

+αS(uh − Π∇Euh,vh − Π∇Evh)︸ ︷︷ ︸
stability

, (1-6)

where the first and second term are called as consistency and stability term

and Π0
E and Π∇E are called as first and second virtual projection operators,

respectively, (for more details see Chapter 3). In this problem, the value of the

stability factor α is 1.

Therefore, in some cases we need to adjust this stability factor. As an

example (taken from the work of Torres 2016 [6]), we show a typical cantilever

problem, illustrated in Figure 1.13, where we want to obtain the maximum

displacements, u, using the VEM. The governing equations of this problem

are: 
∫ b

−b
σxydy = F ;x = 0

σxy =
3F (b2 − y2)

4b3

,

and the analytical solution is given as:
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Figure 1.13: Geometry and boundary conditions of the cantilever beam
problem with end loading,[10].


ux =

3Fx2y

4Eb3
+

3F (1 + ν)y

2Eb
+
F (2 + ν)y3

4Eb3
+ A− Cy,

uy =
3Fνxy2

4Eb3
− Fx3

4Eb3
+B + Cx

.

with ux = 0;uy = 0; ∂uy
∂x

= 0; in x = a, y = 0, (taken from (Barber,2009

[10])). The author conducted a study to select the optimal stability factor

by comparing with the minimum relative error of the FEM and VEM with

respect to the analytical solution (see Figure 1.14). The author presented

a semi-logarithmic graph of the norm error vs. stability factor, α, for a

given number of polygonal elements in VEM and FEM. In this problem, the

minimum norm error was obtained using a coefficient of α = 0.15; therefore,

the element stiffness matrix was adjusted with this factor.

Figure 1.14: Stability factor analysis extracted from [6].

Based on previous works on virtual element applied for elastic problem

(Artioli et al., 2017, [21]), the parameter, α, is recommended to be selected

as one-half of the trace of the consistent tangent matrix, i.e., tr(K). For

VEM-inelastic problems, the choice of the parameter is equal to the trace

of the consistent part of the stiffness matrix K, multiplied by a factor that is a
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function of the poisson’s ratio (ν). According to Taylor and Artioli, 2018 [22],

the factor α is given as:

α =
3

4
tr(K)

1− 2ν

1 + ν
.

1.2
Previous work

The method of topology optimization for fluid flow problems first

appeared in the literature in 2003. It was originally studied by Borrvall and

Petersson [1], where numerical examples for the optimal layout of channel flows

with minimized viscous drag, combining the Stokes and Darcy law equations

considering laminar flow condition are presented in his works. Gersborg-Hansen

et al. (2005) [23] applied topology optimization for microfluidic channel-layout

problems and microelectromechanical device design, considering low Reynold

numbers. They used the FEM to solve this numerical problem. Guest and

Prévost (2006) [24] extended that work by introducing the stabilized FEM

(Burman and Hansbo, (2007) [25]) to solve the Stokes-Darcy differential

equation.

Until then, the inverse permeability material model was used as a design

variable parameter by defining solid or fluid regions in the fluid domain. Wiker

et al. (2007) [26] extended the viscosity as a dependent parameter of the design

variables, where he presented numerical examples as channels in a tree-shaped

structured that solved pure Darcy and Stokes-Darcy equations. Further, the

gradient method was used in topology optimization with known optimizers

such as optimality criteria (OC) and method of moving asymptotes (MMA).

Challis and Guest (2009) [27] reported the level set method (LSM) (Wang et

al., (2007) [28]) to solve Stokes-Darcy topology optimization problems. Classic

examples of the bi-dimensional domains, such as a diffuser, double-triple pipe,

bend pipe, and manifolds optimization, were extended to three-dimensional

optimization problems.

Topology optimization applied to Stokes-Darcy fluid flow problems has

attracted interest from researchers, who have expanded their work to steady

Navier-Stokes-Brinkman flow problems. Okkels et al. (2005) [29] presented

micro-nanofluidic systems optimal designs, and Olesen et al. (2005) [30] studied

and presented numerical examples of channels with reversed flow. Deng et

al. (2011) [31] reported unsteady NVSB equations with low and moderate

Reynolds numbers using FEM and integrated topology optimization problems

and reproduced classical examples presented by (Borvall and Peterson)[1].

Kreissl et al., (2011) [32],[33] studied a different way to approximate
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the solution of the NVSB equation by applying the hydrodynamic Lattice

Boltzmann method (LBM) (Chen and Doolen, 1998) [34] and applied steady

and unsteady fluid flow problems. Then, they presented numerical results of

NVSB optimal topology optimization problems using both LBM and LSM.

A multiphase flow problem was studied by Kreissl and Maute (2012) [35],

where they solved the problem by using the extended FEM (XFEM) (Chessa

and Belytschko, 2003) [36], which is an attractive method for modeling

discontinuous elements and combined topology optimization problems.

Deng et al., (2013) [37], [38] reproduced topology optimization fluid flow

problems considering external body forces on the fluid, such as gravitational,

centrifugal, and Coriolis forces.

Authors such as (Romero and Silva, 2014) [39] and (L.F.N. Sá et al., 2017)

[40] extended the NVSB equation considering vorticity in the formulation.

They presented the optimal design of a machine rotor (pump and turbine

models).

Polygonal elements have been used by Pereira et al., (2016) [5] on

the FEM solution of the Stokes-Darcy problems. They compared and

reproduced classical examples presented by (Borvall and Petersson, 2003 [1])

and demonstrated the effectiveness of the polygonal meshes on topology

optimization fluid flow problems.

The Navier-Stokes-Brinkman equation was extended to consider

a non-Newtonian fluid, solved with FEM, and used in the topology

optimization method. Authors such as (Pingen and Maute, 2010) [11] used the

Carreau-Yasuda formulation to model the non-Newtonian fluid; (Hyun et al.,

2014) [41] applied it to fluidic systems minimizing wall shear stress; (Zhang

and Liu, 2015) [42] studied optimal arterial bypass configurations; (Zhang et

al., 2016) [43] extended it by using the power-law model as a non-Newtonian

fluid; and (Romero and Silva, 2017) [44] reproduced applications of optimal

flow machine rotor design by non-Newtonian fluid.

Recently, the VEM has attracted the interest of a diverse range of

authors, and they have successfully applied VEM to solve numerically different

problems, such as the elasticity problem. These authors include (Beirão da

Veiga et al., 2013) [45], (Gain et al., 2014) [46], (E. Artioli et al., 2017)

[47],[21] and (Chi et al., 2017) [48]). VEM was used to solve the plate bending

problem in (Brezzi and Marini, 2013) [49], the contact between two elastic

bodies problem in (Wriggers et al., 2016) [50], spectral problems in (Rivera and

Mora, 2018) [51], cracking analysis in (Benedetto et al., 2018) [52]. Fluid flow

problems were tackled, using VEM, by (Sutton, 2017) [7] to solve the Poisson’s

equation, whereas (Antonietti et al., 2014) [53], (Cangiani et al., 2016) [54],
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(Beirão da Veiga and Lovadina, 2017) [55], and (Ernesto and Gatica, 2017)

[56] solved the Stokes-Darcy equation, and (Beirão da Veiga et al., 2018) [57]

solved the Navier-Stokes-Brinkman equation.

From topology optimization, VEM was used to solve two- and

three-dimensional elasticity problems. Authors such as (Paulino and Gain,

2015) [8], (Gain et al., 2015) [58], and (P.F. Antonietti et al., 2016) [59],

reproduced and compared VEM with FEM, and optimized structure design

by minimizing compliance using non-convex elements.

Suárez et al., 2018 [14] extended Stokes-Darcy topology optimization

problems using VEM and lower-order elements, and reproduced examples

presented by Borvall and Petersson, (2003) [1] and Pereira et al., (2016) [5]. In

this work, the author extended the non-Newtonian Navier-Stokes-Brinkman

equation, using VEM and lower-order elements, with focus on topology

optimization for fluid flow problems using Carreau-Yasuda to model the

non-Newtonian fluid (Suárez et al.) [16].

1.3
Objectives of this thesis

The main objective of this thesis is to present several applications of

topology optimization for fluid flow problems, specifically for incompressible

non-Newtonian fluids governed by the Navier-Stokes-Brinkman and

Carreau-Yasuda equations, using the VEM and lower-order elements in

arbitrary two-dimensional domains.

The specific objectives are:

1. To develop a numerical solution for fluid flow problems using the

VEM and to present some comparative studies with respect to its

computational efficiency.

2. To solve topology optimization problems for representative numerical

examples available in the literature.

1.4
Outline of this thesis

The remainder of this thesis is organized in seven chapters as

follows: Firstly, Chapter 1 comprises this introduction. In Chapter 2, the

theoretical background regarding the Navier-Stokes-Brinkman equation and

Carreau-Yasuda model (non-Newtonian fluid) are briefly presented together

with some theoretical background on the FEM. In the final subsection of

Chapter 2, we show a verification of the FEM method by comparing results
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with the literature. In Chapter 3, the VEM is explained in more detail and we

present the main equations, matrices, and vectors of this method. In Chapter

4, convergence analysis examples are presented for both the FEM and VEM

and we show the efficiency of this method for Newtonian and non-Newtonian

(using the Carreau-Yasuda model) fluids in the NVSB problem. In Chapter 5,

we describe the topology optimization method applied to non-Newtonian fluid

flow. In chapter 6, we discuss the results obtained using several representative

numerical examples available in the literature. Finally, in Chapter 7, we

summarize the conclusions of this work and present suggestions and directions

for future work.
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2
Fluid flow problems

In this chapter, we briefly discuss the basic issues that are related

to the computational steps to solve the Navier-Stokes-Brinkman equation

for non-Newtonian fluids using the Carreau-Yasuda model. The domain is

discretized based on the FEM, and we present the main vectors, matrices,

and equations associated with these problems.

2.1
Navier-Stokes-Brinkman equation

The steady-state strong formulation of the Navier-Stokes-Brinkman

equation (Gartling et al., 2007) [60] is expressed as:
−η(γ̇)∇2u+ αu+∇p+ ρu.∇u = f , in Ω

∇.u = 0

u = g, on ∂Ω

(2-1)

where the first equation is due to the conservation of linear momentum

and the second equation comes from the conservation of mass, where,

considering general viscosity equation for non-Newtonian fluid, η(γ̇) is a

function dependent on the fluid velocity gradients ∇u, (more details in Section

2.1.1), ρ is the density of the fluid, α is the inverse permeability of the porous

medium, u the velocity field, p is the pressure field, and f is the external force

field on the fluid (e.g., gravity, centrifugal and Coriolis forces, etc.).

Some important remarks regarding Equation (2-1): in the Stokes-Darcy

problem, the non-linear term is neglected, (i.e., u.∇u ≈ 0), the viscosity

behavior is considered as Newtonian fluid, i.e., η = µ = cte, and the parameter

α allows for the determination of the solid/fluid regions in domain Ω (more

details are available in Chapter 5.2).

From Eq. (2-1), using the WRMs, the weak formulation expressed in

bilinear form is:
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{
a(u,v) + aα(u,v) + b(v, p) + c(w;u,v) = l(v),∀u,v,w ∈ V

b(u, q) = 0, ∀u ∈ V , ∀q ∈ Q
, (2-2)

where



a(u,v) := −
∫

Ω

η(γ̇)∇u : ∇vdΩ, aα(u,v) :=

∫
Ω

αu.vdΩ

b(v, p) :=

∫
Ω

p(∇.v)dΩ, b(u, q) :=

∫
Ω

q(∇.u)dΩ

c(w;u,v) := ρ

∫
Ω

(∇u)w.vdΩ, l(v) :=

∫
Ω

f .vdΩ

,

v and q are the velocity and pressure virtual weighting functions, respectively,

and the solution (u, p) ∈ V ×Q a : V ×V → R, aα : V ×V → R, b : V ×Q→
R, c : V × V × V → R, l : V → R, respectively.

The velocity field, ui, and pressure field, p, are approximated by a linear

combination of the basis functions of the form
ui(x) =

N∑
j=1

φn(x)uni = φTu, i = 1, 2

p(x) =
M∑
j=1

χm(x)pm = χTp

, (2-3)

where, u and p are vectors with nodal values of the components of velocity

and pressure, respectively, and φ and χ are the vectors’ interpolation function,

respectively.

Substituting Eq.(2-3) into (2-2) we can re-write the formulation as

follows: {
C(u)u+Kηu+Kαu−Qp = F

−QTu = 0
, (2-4)

where, the expression of the main elementary matrices and vectors are:

[Kη]ij =

∫
Ωe

η(γ̇)
∂φ

∂xi

∂φ

∂xj

T

dx, [Kα]ij =

∫
Ωe

αφφTdx

Cj(uj) = ρ

∫
Ωe

φ
(
φTuj

) ∂φ
∂xj

T

dx, i, j = 1, 2.,

Qi =

∫
Ωe

∂φ

∂xi
χTdx, F i =

∫
Ωe

ρφfidx+

∮
Γe

hiφds

(2-5)

and in the global matrix form, is expressed as:
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[
C(u) +K −Q
−QT 0

]
︸ ︷︷ ︸

K̃

[
u

p

]
︸︷︷︸
U

=

[
F

0

]
︸︷︷︸

F̃

, with u = [u1,u2]T and K = Kη +Kα.

(2-6)
From Eq. (2-6), K̃ is symmetric and is known as system stiffness matrix.

The resulting nonlinear systems equation, K̃(U)U = F̃ , is solved using the

Newton-Raphson method (NRM) (Burden and Faires, 2000) [61] as follows.

First, we define the residual vector, R, as:

R(U) = K̃(U)U − F̃ = 0. (2-7)

Using the first-order Taylor expansion, R is expressed as:

R(U) = R(Un) +
∂R

∂U

∣∣∣∣
Un

∆U + · · · = 0,

then,

R(Un) = − ∂R

∂U

∣∣∣∣
Un

(∆U) = −J(Un)(Un+1 −Un).

The matrix J is known as the Jacobian matrix and the solution is expressed

as:
Un+1 = Un − J−1(Un)R(Un), (2-8)

where, Un+1 = [u1,u2,p]T are the unknown velocity and pressure vectors.

The respective algorithm steps are shown in Algorithm 1.

Algorithm 1 : Newton-Rapshon method

1: Initialization: given U = Un;
2: while |R(U) < Tol| do
3: J∆U = −R;
4: Un+1 = Un + ∆U
5: end while

More details about the formulations of the residual vector R(U) and Jacobian

matrix J(U) (Eq. (2-5)) are given in the work by (Suárez et al.) [16]. After

obtaining the residual vector, R, and matrix, J , we use Eq. (2-8) to solve

the non-linear Navier-Stokes-Brinkman equation. The flowchart solution is

presented in Figure 2.1.
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Navier-Stokes-
Brinkman 

flow equation

Boundary 
conditions

Results:
velocity and

pressure fields

Domain

Polygonal mesh

Newton-Rapshon
method

Assembling 
global matrix J

Assembling 
global vector R

Computing 
local matrix J

Computing 
local vector R

Computing local
matrices and

vectors: Kη , Kα , 
Q and C

Figure 2.1: General flowchart for the solution of the Navier-Stokes-Brinkman

flow equation using Newton-Raphson method.

In Chapter 3, we will show how compute the main elementary matrices

and vectors shown in Eq. (2-5) with focus on the VEM.

The main references of this section is Carvalho and Valerio, (2012) [62].

2.1.1
Carreau-Yasuda model for a non-Newtonian fluid

Generalized Newtonian models are used to describe permanent shear

flows; they describe non-Newtonian viscosity, but not the effects of normal

stress, time-dependent effects, or elastic effects. At present, it is widely used in

industry. Non-Newtonian viscosity and its enormous variation with the shear

rate is central to the description of flows of interest.

In general, for an incompressible fluid, the viscous stress tensor (τ ) is

expressed as:
τ = 2η(γ̇)D, (2-9)

where D = 1
2
(∇U + ∇UT ) is the strain-rate tensor. For the particular

Newtonian fluid case, the viscosity has a constant behavior, (i.e., η = µ = cte),

see Figure 2.2 .

The generalized non-Newtonian viscosity η(γ̇) is obtained from empirical

relations, the simplest relation for η(γ̇) is the expression known as the

power-law, expressed as
η(γ̇) = mγ̇n−1,

that depends on two parameters, wherem and n are constants that characterize

the fluid. This simple relationship describes the non-Newtonian viscosity curve

in the log-log viscosity diagram versus shear rate for many materials. A better

fit can be obtained using the Carreau-Yasuda model.

In this work, we focus on non-Newtonian fluid flow and we use the

Carreau-Yasuda model, for being one of the most used model in the literature
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([11], [13], [63] and [64]), where the viscosity, η, is a function of the shear rate,

γ̇ , as:
η(γ̇) = η∞ + (η0 − η∞)[1 + (λγ̇)a]

n−1
a , (2-10)

where the main parameters for this model are: η0, η∞ (max-min value of

viscosity η), n is the power law exponent, and λ,a are dimensionless numbers.

Depending on the type of fluid, these parameters can vary and are obtained

experimentally. According to Cho and Kenssey (1991) [63] and Pingen and

Maute (2010) [11], for blood, the constants in the Carreau-Yasuda model are

λ = 1.902s, n = 0.22, a = 1.5, η0 = 0.056, and η∞ = 0.00345Pa-s. Figure 2.2

shows the behavior of the blood viscosity using the Carreau-Yasuda model.

Carreau-Yasuda model
for non-Newtonian fluid

Convergence to Newtonian fluid behavior

shear rate γ 
10

-2
10

-1
10

 0
10

 1
10

 2

vi
sc

os
ity

 b
lo

od
 η

  

10
-6

10
-5

10
-4

10
-3

Figure 2.2: Log-log plot of the viscosity vs. shear rate for blood fluid flow using

the Carreau-Yasuda model. Extracted from (Pingen and Maute, 2010) [11].

The magnitude of the shear rate, γ̇, is expressed as

γ̇ =
√

2 [D2
11 +D2

22 + 2D2
12] =√

2

(
∂u1

∂x

)2

+ 2

(
∂u2

∂y

)2

+

(
∂u1

∂y
+
∂u2

∂x

)2

.

(2-11)

and is substituted in Eq. (2-10).

Consideration:Sensitivity analysis of the fluid viscosity

For a non-Newtonian fluid, from Equation (2-7), the expression of the

Jacobian matrix, J , must be re-formulated by considering the sensitivity of

the viscosity η(γ̇) as follows:

J =
∂R

∂U
= K̃ (U) +

∂K̃(U)

∂U
U , (2-12)

where, K̃(U) = C(U) + η(γ̇)Kη +Kα and using the chain rule, we have:

∂K̃(U)

∂U
=
∂C(U)

∂U
+
∂η(γ̇)

∂γ̇

∂γ̇

∂U
Kη, (2-13)
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therefore, the final expression of the Jacobian matrix, J , is

J = K̃ (U) +

(
∂C(U )

∂U
+
∂η(γ̇)

∂γ̇

∂γ̇

∂U
Kη

)
U .

where the terms ∂η(γ̇)
∂γ̇

and ∂γ̇
∂U

can be calculated as follows:

From Eq. (2-10), we derived the viscosity η(γ̇) with respect the shear rate γ̇

and we obtain:

∂η(γ̇)

∂γ̇
= (n− 1)λ(η0 − η∞) [1 + (λγ̇)a]

n−1
a (λγ̇)a−1 . (2-14)

From Eq. (2-11), we have:

∂γ̇

∂u1

= γ̇−1

[
2
∂u

∂x

∂φ

∂x
+

(
∂u

∂y
+
∂v

∂x

)
∂φ

∂y

]
∂γ̇

∂u2

= γ̇−1

[
2
∂v

∂y

∂φ

∂y
+

(
∂u

∂y
+
∂v

∂x

)
∂φ

∂x

]. (2-15)

Finally, Eq. (2-15) can be expressed in matrix form as ∂γ̇
∂U

= M gU , where:

M g =

[
2∂φφφ
∂x

∂φφφ
∂x

T
+ ∂φφφ

∂y
∂φφφ
∂y

T ∂φφφ
∂y

∂φφφ
∂x

T

∂φφφ
∂x

∂φφφ
∂y

T
2∂φφφ
∂y

∂φφφ
∂y

T
+ ∂φφφ

∂x
∂φφφ
∂x

T

]
.
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3
Virtual element method

In this Chapter, we present the theoretical background on the VEM

in more detail, and we discuss concepts related to polynomial space and

projection operators. Further, we present the main steps of the computation

of the main elementary matrices and vectors of the Navier-Stokes-Brinkman

and non-Newtonian Carreau-Yasuda equations, focusing on the VEM and

considering lower-order elements.

3.1
2D virtual element space

The Domain Ω ⊂ R2 is partitioned in polygonal elements E (either

convex or non-convex), and we define discretized domain Ωh. Therefore, the

global VEM space Vh is defined as:

Vh =
{
vh ∈ H1(Ωh) : vh|E ∈ Vk(E), ∀E ⊂ Ωh

}
.

For each polygonal, E, we define a local finite element VEM space Vk(E), using

the lower-order element (k = 1) as:

Vk(E) = V1(E) =
{
v ∈ H1(E) : ∇v = 0, v ∈ C0(∂E), v|e ∈ P1(e)

}
,

E

Figure 3.1: Example of partitioned domain Ωh in non-convex elements E using

tess12 elements (a non-convex polygonal element with 12 vertices). (Taken

from [8]).
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where, we highlight the following:

(i) vh is a polynomial of lower-order on each edge e of E, i.e., vh|e ∈ P1(e)

(Polynomial space on each edge e of E);

(ii) vh on ∂E is globally continuous i.e., vh|∂E ∈ C
0(∂E);

(iii) a polynomial of lower-order satisfies (i), (ii) so P1(E) is a subspace of

V1(E), more details in the reference by (Beirão da Veiga et al., 2014),

[9].

Defining VEM basis functions by the lower-order element

(k = 1)

By linear polynomial space, Pk(E), the set of basis functions, m
(k)
α , α =

1, . . . , npk , are defined as

m
(1)
1 = 1, m

(1)
2 =

x− xC
hE

, m
(1)
3 =

y − yC
hE

, (3-1)

where npk is the dimension of Pk(E) and npk = 3 is the dimension of Pk(E)

The respective gradients of Pk(E) are

∇m(1)
1 =

[
0

0

]
, ∇m(1)

2 =
1

hE

[
1

0

]
, ∇m(1)

3 =
1

hE

[
0

1

]
. (3-2)

In vectorial polynomial space [Pk−1(E)]2, the set of basis functions is made from

the canonical two-dimensional basis vector m
(k−1)
α ,α = 1, . . . , npk−1

defined as:

m
(0)
1 =

[
1

0

]
and m

(0)
2 =

[
0

1

]
, (3-3)

where npk−1
is the dimension of [Pk−1(E)]2 and npk−1

= 2.

xc and yc are the coordinates of the centroid of the element E, |E| is the

element area, and hE = |E|1/2 is the average element size.

E

i=1 2

3

4

5

nv

n1

n2

n3

n4n5

xc ,yc

nnv

y

x

{
Vertex i located at {xi,yi}.

ni: outward-pointing normal vector i.

 {xc,yc}: coordinates of the centroid.
 nv: number of vertices.

|e1|

|e2|

|e  |nv
  

|e3|

|e4||e5|

|e |i i: length of the ith edge e .

Figure 3.2: Details of the element VEM spaces and the degrees of freedom of

a given element E, [14].
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3.2
Virtual element projection Π0

E∇v

The first projection operator Π0
E∇v, which projects the gradient of v

(∇v) in vectorial polynomial space [Pk−1(E)]2, satisfies the orthogonality

condition ([59],[60]) with:

< ∇v − Π0
E∇v,p >= 0, ∀p ∈ [Pk−1(E)]2,

The inner product (<,>), satisfies the following expression:∫
E

Π0
E∇vpdx =

∫
E

∇vpdx, ∀p ∈ [Pk−1(E)]2.

By applying the divergence theorem we have:∫
E

Π0
E∇vpdx =

∫
E

∇vpdx =

∮
∂E

vpnds−
∫
E

v∇.pdx,

∀p ∈ [Pk−1(E)]2.

(3-4)

By introducing a set of shape functions, φi(x), i = 1, . . . , nv, for the local

VEM space, Vh(E), we can express Π0
E∇v as

Π0
E∇v =

nv∑
i=1

Π0
E∇φi(x)Vi, (3-5)

where Vi is the ith DOF of the functions in Vh(E). Therefore, using the basis

Eq. (3-3) and shape Eq. (3-5) functions, Eq. (3-4) can be rewritten as:∫
E

Π0
E∇φim(k−1)

α dx =

∫
E

∇φim(k−1)
α dx =

∮
∂E

φim
(k−1)
α nds−∫

E

φi∇.m(k−1)
α dx, α = 1, . . . , npk−1

.

(3-6)

We can also express Π0
E∇φi using the set of basis m

(k−1)
α for [Pk−1(E)]2

as:

Π0
E∇φi(x) =

npk−1∑
β=1

Siβm
(k−1)
β (x). (3-7)

Finally, Eq. (3-6) can be rewritten as:

npk−1∑
β=1

Siβ

∫
E

mβ
(k−1)mα

(k−1)dx︸ ︷︷ ︸
M

=

∮
∂E

φim
(k−1)
α nds−

∫
E

φi∇.m(k−1)
α dx,︸ ︷︷ ︸

R

i = 1, . . . , nv and α = 1, . . . , npk−1
.

(3-8)
From Eq. (3-8), we can build the matrices M and R to compute the

matrix S as:
S = RM−1. (3-9)
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3.3
Virtual element projection Π∇Ev

The second projection operator, Π∇Ev, which projects v onto lineal

polynomial space, Pk(E), satisfies the orthogonality condition as:

< ∇(v − Π∇Ev),∇p >= 0, ∀p ∈ Pk(E),

The inner product (<,>), satisfies the following expression:∫
E

∇Π∇Ev∇pdx =

∫
E

∇v∇pdx, ∀p ∈ Pk(E).

Applying the divergence theorem, we have∫
E

∇Π∇Ev∇pdx =

∫
E

∇v∇pdx =

∮
∂E

v∇pnds−
∫
E

v∆pdx,

∀p ∈ Pk(E).

(3-10)

We can express Π∇Ev using the shape functions, φi, as:

Π∇Ev =
nv∑
i=1

Π∇Eφi(x)Vi. (3-11)

Therefore, using Equations Eq. (3-1), Eq. (3-2), and Eq. (3-10), Eq. (3-11)

can be rewritten as:

∫
E

∇Π∇Eφi∇m(k)
α dx =

∫
E

∇φi∇m(k)
α dx =

∮
∂E

φi∇m(k)
α nds−∫

E

φi∆m
(k)
α dx, α = 1, . . . , npk .

(3-12)

We can also express Π∇Eφi in terms of the basis set, m
(k)
α for Pk(E) as:

Π∇Eφi =

npk∑
α=1

S∇iαm
(k)
α . (3-13)

By combining the basis in Eq. (3-3) and shape functions of Eq. (3-13),

we obtain:

npk∑
β=2

S∇iβ

∫
E

∇m(k)
β ∇m

(k)
α dx︸ ︷︷ ︸

M∇

=

∮
∂E

φi∇m(k)
α nds−

∫
E

φi∆m
(k)
α dx,︸ ︷︷ ︸

R∇

i = 1, . . . , nv and α = 1, . . . , npk .

(3-14)

From Eq. (3-14), we can build matrices M∇ and R∇ and compute the

matrix S∇ as

S∇ = R∇(M∇)−1. (3-15)
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Main remarks: considering lower-order element (k = 1), the second term

of the second member of Eqs. (3-8) and Eq. (3-14) can be neglected, i.e.,

∇.m(0)
α = 0 and ∆m

(1)
α = 0, resulting in very short computational time to

obtain a solution of the linear system of equations.

Additionally, from Eq. (3-13)), we can express Π∇Eφi(x) in terms of the

shape funtions φi, i = 1, ..., nv as:

Π∇Eφi(x) =
nv∑
i=1

P∇ij φj(x). (3-16)

Using the set of basis functions m
(k)
α , for Pk(E) as:

m(k)
α (x) =

nv∑
j=1

G∇αjφj(x), (3-17)

and substituting Eq. (3-17) into Eq. (3-13), we obtain:

Π∇Eφi =

npk∑
α=1

S∇iα

nv∑
j=1

G∇αjφj(x) =

npk∑
α=1

nv∑
j=1

S∇iαG
∇
αj︸ ︷︷ ︸

P∇ij

φj(x). (3-18)

Comparing with Eq. (3-16), we obtain the P∇ matrix as:

P∇ = S∇G∇, (3-19)

where S∇ is obtained by Eq. (3-15) and:

G∇ =

 1 . . . 1

m
(1)
2 (x1) . . . m

(1)
2 (xnv)

m
(1)
3 (x1) . . . m

(1)
3 (xnv)

 ,
where m

(1)
α (xi), i = 1, . . . , nv , α = 1, . . . , npk indicates the αth basis function

for Pk(E) evaluated at position xi of the ith vertex.

VEM computation of main elementary matrices and vectors

of the Navier-Stokes-Brinkman and Carreau-Yasuda equations

Now, from Eq. (2-5), the main element matrices (Kη,Kα,C) and vectors

(Q,F ) can be computed using virtual element projections Π0
E∇φi and Π∇Eφi

as follows.

Computing {Kη}h:
The global {Kη}h matrix is defined as

{Kη}h(uh,vh) :=
∑
E∈Ωh

{Kη}Eh (uh,vh),

and, the discrete element matrix {Kη}Eh is expressed as
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{Kη}Eh (uh,vh) := (Π0
E∇uh,Π0

E∇vh)0,E + SE(uh − Π∇Euh,vh − Π∇Evh)

(3-20)
where, {Kη}Eh : V E

h × V E
h → R.

Therefore,

{Kη}Eh (φi, φj) =

∫
E

Π0
E∇φiΠ0

E∇φjdx+ αS∗(φi − Π∇Eφi, φj − Π∇Eφj). (3-21)

With substitution of Eq. (3-7) into the first term of Eq. (3-21), the consistency

term can be expressed as:∫
E

Π0
E∇φiΠ0

E∇φjdx = Cη

npk−1∑
α=1

npk−1∑
β=1

SiαSjβ

∫
E

m
(k−1)
β m(k−1)

α dx = SMCηS
T ,

(3-22)
where:

Cη = η(γ̇)

2 0 0

0 2 0

0 0 1

 .
Substituting Eqs. (3-13) and (3-19) in the second term of Eq. (3-21), the

stability term is given by

S∗(φi − Π∇Eφi, φj − Π∇Eφj) = αE(δik − P∇ik )(δjk − P∇jk)

= α(I − P∇)(I − P∇)T ,
(3-23)

where α is the stability factor and takes the value of 1 for Navier-Stokes

problems (more comments will be presented at the end of this chapter.)

We highlight that, from Eq. (3-22), the local viscosity must be computed

first. When this value is constant and different in each element, the formulation

of the viscosity is described by Eqs. (2-10) and (2-11) through Eq. (2-9) and

it only depends on the local velocity gradients. Then, from Eq. (3-7), we can

express these velocity gradients as a function of the virtual element projection

as follows: 

∂u1

∂x
= (Π0

E∇φi)Txu1 =


S11

S21

...

Snv1


[
u1

1, ..., u
nv
1

]

∂u1

∂y
= (Π0

E∇φi)Tyu1 =


S12

S22

...

Snv2


[
u1

1, ..., u
nv
1

]
(3-24)

and
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∂u2

∂x
= (Π0

E∇φi)Txu2 =


S11

S21

...

Snv1


[
u1

2, ..., u
nv
2

]

∂u2

∂y
= (Π0

E∇φi)Tyu2 =


S12

S22

...

Snv2


[
u1

2, ..., u
nv
2

]
. (3-25)

Computing {Kα}h:
The global {Kα}h matrix is defined as:

{Kα}h(uh,vh) :=
∑
E∈Ωh

{Kα}Eh (uh,vh),

and, the discrete element matrix {Kα}Eh is expressed as:

{Kα}Eh (uh,vh) := (Π∇Euh,Π
∇
Evh)0,E, (3-26)

where, {Kα}Eh : V E
h × V E

h → R. Therefore:

{Kα}Eh (φi, φj) =

∫
E

αΠ∇Eφi.Π
∇
Eφjdx. (3-27)

Substituting Eq. (3-13) into Eq. (3-27), we obtain:∫
E

αΠ∇EφiΠ
∇
Eφjdx = α

npk∑
α=1

npk∑
β=1

S∇iαS
∇
jβ

∫
E

m
(k)
β .m(k)

α dx = α|E|NNT , (3-28)

where

N =


S∇11 S∇12 S∇13

S∇21 S∇22 S∇23
...

...
...

S∇nv1 S∇nv2 S∇nv3


m

(1)
1 (xc)

m
(1)
2 (xc)

m
(1)
3 (xc)

 and xC = [xc, yc]. (3-29)

Computing {Qh}h:
The global {Q}h vector is defined as:

{Q}h(uh, qh) :=
∑
E∈Ωh

{Q}Eh (uh, qh),

and the discrete element vector {Q}Eh is expressed as:

{Q}Eh (uh) := (∇.Π∇Evh)0,E, (3-30)

where, {Q}Eh : V E
h × qEh → R. Therefore, substituting Eq. (3-13) into

Eq. (3-31), we obtain:
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{Q}Eh (φi) =

∫
E

∇.Π∇Eφidx =

npk∑
α=1

S∇iα∇.m(k)
α (3-31)

or

{Q}Eh =


S∇11 S∇12 S∇13

S∇21 S∇22 S∇23
...

...
...

S∇nv1 S∇nv2 S∇nv3


∇.m

(1)
1

∇.m(1)
2

∇.m(1)
3

 =
1

hE



S∇12

S∇13
...

S∇nv2

S∇nv3


, i = 1, ..., nv. (3-32)

Computing {C}h:
The global {C}h matrix is defined as:

{C}h(wh;uh,vh) :=
∑
E∈Ωh

{C}Eh (wh;uh,vh),

and, the discrete element matrix {C}Eh is expressed as:

{C}Eh (ul) := (ρΠ∇Eφi; Π∇Eφjul,Π
0
E∇φi)0,E (3-33)

where, {C}Eh : V E
h × V E

h × V E
h → R. Therefore:

CE
h (ul) = ρ

∫
E

Π∇Eφi
(
Π∇Eφjul

)
Π0
E∇φidx, l = 1, 2. (3-34)

Substituting Eqs. (3-7) and (3-13) into Eq. (3-34), we obtain:

CE
h (ul) = ρ|E|

npk∑
α=1

S∇iαm
(k)
α

( npk∑
β=1

S∇iβm
(k)
β ul

) npk−1∑
w=1

Siwm
(k−1)
w dx, (3-35)

From Eq. (3-29), we can express Eq. (3-35) in the simple vector form as

CE
h (ul) = ρ|E|N

(
NTul

)
S̃, where we define vector S̃ as:

S̃ =


S11 S12

S21 S22

...
...

Snv1 Snv2


[
m

(0)
1

m
(0)
2

]
=



S11

S12

...

Snv1

Snv2


.

Finally, we observe that for l = 1, 2 we have CE
h (ul) = C1

E
h (u1) + C2

E
h (u2),

then:
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C1
E
h (u1) = ρ|E|N

(
NTu1

)

S11

S21

...

Snv1

 and C2
E
h (u2) = ρ|E|N (NTu2)


S12

S22

...

Snv2

 .
(3-36)

Computing {F }h:
The global {F }h vector is defined as:

{F }h(vh) :=
∑
E∈Ωh

{F }Eh (vh),

and, the discrete element vector {F }Eh is expressed as:

{F }Eh (vh) := (fΠ∇Evh)0,E, (3-37)

where, {F }Eh : V E
h → R. Therefore, substituting Eq. (3-13) into Eq. (3-37),

we have

{F }Eh (φj) =

∫
E

fΠ∇Eφjdx =

npk∑
α=1

fS∇jαm
(k)
α (xc) = |E|f(xc)S

∇m(1)
α (xc).

(3-38)
where the value of the basis m

(1)
α at the centroid element xc is m

(1)
α (xc) =

[1 0 0]T and f(xc) is the loading source term function. Besides, we use one

point of integration at the centroid and the weight as the area of the element

|E|.
In brief, from Eq. (2-5), the expressions of the main elementary matrices

and vectors of the NVSB equation with focus on the VEM is:



{Kη}Eh = SMCηS
T + α(I − P∇)(I − P∇)T , {Kα}Eh = α|E|NNT ,

CE
h (ul) = ρ|E|N

(
NTu1

)

S11

S21

...

Snv1

+ ρ|E|N (NTu2)


S12

S22

...

Snv2

 , l = 1, 2.

{Q}Eh =
1

hE



S∇12

S∇13
...

S∇nv2

S∇nv3


, {F }Eh = |E|f(xc)S

∇m(1)
α (xc).

(3-39)
The main references of this section are based on the works of Ahmad et

al., (2013) [65], Beirão da Veiga et al., (2013)[66], Beirão da Veiga et al., (2014)

[9], (2016) [67]; Gain et al. (2014) [46], Paulino and Gain (2015) [8], Brener et
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al. (2017) [68].

3.4
VEM verification

Channel flow problem for non-Newtonian fluid: Consider the

channel flow domain problem, studied by Siebert and Fodor (2009) [13]. Blood

properties are density, ρ = 1.056gr/cm3, and the viscosity parameters for the

Carreau-Yasuda model, are shown in Table (3.1).

Table 3.1: Carrea-Yasuda parameters for blood fluid.

parameter value

a 2

n 0.3568

λ 3.313

η0 0.56 poise

η∞ 0.035 poise

The geometry and boundary conditions are illustrated in Figure 3.3, for

two maximum inlet velocities, 2.5 cm/s and 80 cm/s, and the outlet pressure

is zero.

Figure 3.3: Channel flow problem.(Extracted from Kian, (2017) [12].)

The numerical results, using 4,000 polygonal elements, of the velocity

field for the Newtonian and non-Newtonian (Carreau-Yasuda) model, are

shown in Figure 3.4 and 3.5, respectively. Figure 3.6 shows a comparison of

the velocity profiles at the outlet.

DBD
PUC-Rio - Certificação Digital Nº 1612791/CA



Chapter 3. Virtual element method 49

(a)

(b)

Figure 3.4: Velocity field for the Newtonian model for inlet center line

velocities: (a) 2.5 cm/s, and (b) 80 cm/s.

(a)

(b)

Figure 3.5: Velocity field for the non-Newtonian model (Carreau Yasuda) for

inlet center line velocities: (a) 2.5 cm/s, and (b) 80 cm/s.
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Figure 3.6: Comparison between the velocity profiles at the outlet for the

Newtonian and non-Newtonian (Carreau-Yasuda) models by inlet speed of (a)

2.5 cm/s and (b) 80 cm/s.

From Siebert and Fodor [13], velocity fields for the Carreau model for inlet

center line velocities of 0.025m/s and 0.8m/s are shown in Figure 3.7(a) and

the comparison between the velocity profiles at the outlet for the Newtonian

and Carreau-Yasuda models are shown in Figure 3.7(b). The results presented

here were obtained using the COMSOL Multiphysics 3.5 package [13].
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(a)

(b)

Figure 3.7: Results obtained using COMSOL software [13]. (a) Velocities field
for the Carreua-Yasuda model and (b) Velocity profiles.

Relevant comments on the Virtual Element Method:

The general Navier-Stokes-Brinkman equation presents terms such as:

transient, diffusive, convective, and source term, where for lower Reynold

numbers (laminar flow), the diffusive term, which contains the Laplacian

of velocity (∆u) and viscosity η(γ̇), as a function of velocity gradient, (see

Eq.(2-1)), is the most dominant term in the differential equation:

E.D. :
∂(ρφ)

∂t︸ ︷︷ ︸
transient

+ div(ρuφ)︸ ︷︷ ︸
convective

= div(Γgradφ)︸ ︷︷ ︸
diffusive

+ S︸︷︷︸
source

.

where φ = u and Γ = η(γ̇).

From the VEM formulation of the diffusive term, Eq.(3-21), it contains

two main terms: consistency and stability. For the consistency term, the

non-Newtonian viscosity field using the Carreau-Yasuda model, is obtained

using the information of the local velocity gradients. The viscosity results,

(similar to the pressure field), is a low order term (constant) in each element

and, therefore, it can come out of the integral, allowing us to calculate the

diffusive term in the element in the same traditional way. It is important to

mention that, in the FEM, the viscosity is computed in each integration point

of the element. This process is computationally expensive compared to the
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VEM method, where the viscosity is a constant value for each element.

From Section 3.4 and Chapter 4, the stability factor was defined by

comparing the analytical and FEM numerical solutions of Newtonian and

non-Newtonian fluid-flow tests, with errors in the order below 10−4. The

stability factor was set as unity.

From the discrete problem, the bilinear form of the local aE is:

aE(u, v) := (u, v)0,E,∀u, v ∈ H1(E), aE : H1(E)×H1(E)→ R

the discrete counterpart of aE is:

aEh (uh,vh) := (Π0
E∇uh,Π0

E∇vh)0,E︸ ︷︷ ︸
consistency

+αSE(uh − Π∇Euh,vh − Π∇Evh)︸ ︷︷ ︸
stability

,

V E
h × V E

h → R,

where
ah(uh,vh) :=

∑
E∈Ωh

aEh (uh,vh), ∀uh, vh ∈ Vh,

here, ah is the discrete counterpart of the global a.

The local discrete bilinear form satisfy the following expressions:

(a) Polynomial consistency,

aEh (uh, p) = aE(uh, p), ∀uh ∈ V E
h and p ∈ ℘,

expressing the fact that the method is exact when the solution is a

piecewise linear polynomial with respect to the mesh, providing the accuracy

of the method.

(b) Stability, there exists two positive constants α∗ and α∗ ,independent

of h and E ,such that [7],[9]:

α∗a
E(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh), ∀vh ∈ V E

h .
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4
Convergence analysis of VEM-FEM

In this Chapter, we present and discuss the results of the convergence

study on the Navier-Stokes-Brinkman solution, using the lower-order element,

VEM and FEM methods, and Newtonian and non-Newtonian (using by the

Carreau-Yasuda model) fluids. Numerical results presented were implemented

in MATLAB®, and adapting and incorporating codes in the PolyTop (See

Talischi et al., 2012 [19] and Pereira et al., 2016 [5]). In Chapter 4.1 we show

results of convergence tests applied to a Newtonian fluid and in Chapter 4.2

we present results using a non-Newtonian fluid.

4.1
Work methodology

First, we defined a polygonal discretization of the domain using the mesh

generator Polymesher (Talischi et al., 2012) [15]. Then, numerical results

for the fluid flow problem considering both Newtonian and non-Newtonian

Carreau-Yasuda cases were obtained and the velocities and pressures were

compared to the analytical solution, for successive mesh refinement. We used

the expression for the numerical error presented in (Fish and Belytschko, 2007)

[69], given by:

‖error‖L2 = ‖uex(x)− uh(x)‖ =

(∫
Ω

(
uex(x)− uh(x)

)2
dx

) 1
2

, (4-1)

where uex represents the exact solution and uh represents the approximate

solution using the VEM and FEM. From Eq. (4-1), this error can be

considered as a measure of the mean square error. Finally, we compared the

numerical solution of the VEM and FEM with respect to their computational

performance.

The vector uh denotes the displacement field obtained by interpolating

the VEM and FEM dofs using the Wachspress shape functions (Talischi et al.,

[70]) and, we used 7 Gauss points for each triangle that defines a polygonal

element.

From Beirão da Veiga et al., [57], in order to compute the errors, we

consider the computable error quantities of the velocity gradients, velocity
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and pressure as:

error(u, H1) :=

(∑
E∈Ωh

‖∇uex(x)−∇uh(x)‖2

) 1
2

error(u, L2) :=

(∑
E∈Ωh

‖uex(x)− uh(x)‖2

) 1
2

.

error(p, L2) := ‖pex(x)− ph(x)‖

(4-2)

For the numerical tests we used two different types of domains defined as Test

01: quad domain and Test 02: lid-driven cavity domain.

4.2
Convergence tests using Newtonian fluid

The numerical results were obtained using a machine with an Intel

Corei7− 8700 CPU @3.20 GHz, 16.0 GB RAM, Microsoft Windows 10 64-bit

operating system, and running MATLAB® R2018b version as follows.

Test 01: A square domain of unit dimensions 1x1 is used (Figure 4.1). We

consider a unit value of the viscosity and density and we choose the components

of the load vector f = [fx, fy] as fx = 2x3 + y − 2 and fy = 2yx2 + x, such

that the analytical solutions for velocity and pressure are:

u(x, y) =

[
x2

−2xy

]
, p(x, y) = xy.

u, v = 0
p = 0

u = 1, v = -2y 
p = y 

u = x, v = -2y 
p = x 

2 

u = x, v = 0 
p = 0 

2 
Ω

x 

y 

 1

 1

Figure 4.1: Geometry and boundary conditions of Test 01.

Test 02: A square domain of unit dimension 1x1 is also used (Figure 4.2)

and the values of viscosity and density are set to 1. The boundary condition, in

terms of velocity, is u(x, 1) = 16(x4−2x3 +x2) and we choose the components

of the load vector f = [0, fy] as fy = −8[24S(x) + 2s′(x)g′′(y) + s′′′(x)g(y)]−
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64[S2(x)G1(y) − g(y)g′(y)S1(x)] such that the analytical solution for velocity

and pressure are:

u(x, y) =

[
8s(x)g′(y)

−8s′(x)g(y)

]
,

p(x, y) = 8(S(x)g′′′(y) + s′(x)g′(y)) + 64S2(x)(g(y)g′′(y)− [g′(y)]2),

where,

s(x) = x4 − 2x3 + x2, g(y) = y4 − y2,

S(x) =

∫
s(x)dx, S1(x) = s(x)s′′(x)− [s′(x)]2,

S2(x) =

∫
s(x)s′(x)dx, G1(y) = g(y)g′′′(y)− g′(y)g′′(y).

u, v = 0

f

x 

y 

 1

u, v = 0u, v = 0

p = 0

u(x,1)=16( x - 2x + x )2 4 3 

 1

Figure 4.2: Geometry and boundary conditions of Test 02.

We emphasize that the analytical solution of the lid-driven cavity

problem (Test 02) was studied by Shih et al., (1989) [71] and Miller, (1995) [72]

with a Newtonian fluid. The authors completed an extensive literature review

and could not find examples of the analytical solution for the non-Newtonian

case.

Now, we show the results in the following Tables (4.1-4.2) and Figure

(4.3-4.5).
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Table 4.1: Numerical errors in VEM and FEM solutions for the Newtonian
case of Test 01.

h error(u, L2) error(p, L2) rate u rate p
1/5 6.6246e-03 6.5112e-02 - -
1/10 1.5409e-03 3.3630e-02 2.0344 0.9216

VEM 1/20 3.5612e-04 1.6726e-02 2.0526 0.9787
1/40 9.5249e-05 8.4168e-03 1.8795 0.9788
1/80 2.2340e-05 4.3348e-03 2.0807 0.9521
1/5 6.5697e-03 6.2261e-02 - -
1/10 1.4730e-03 3.1442e-02 2.0857 0.9530

FEM 1/20 3.4180e-04 1.5874e-02 2.0470 0.9577
1/40 8.9796e-05 7.8734e-03 1.9050 0.9993
1/80 2.1753e-05 4.1653e-03 2.0343 0.9136
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Figure 4.3: Convergence analysis for the Newtonian case of Test 01: (a) velocity

and (b) pressure.

Table 4.2: Numerical errors in VEM and FEM solutions for the Newtonian
case of Test 02.

h error(u, L2) error(p, L2) rate u rate p
1/5 4.0028e-02 6.3530e-01 - -
1/10 9.0208e-03 2.6784e-01 2.0413 1.1832

VEM 1/20 2.4766e-03 1.3542e-01 1.8185 0.9594
1/40 6.3577e-04 6.5796e-02 1.9367 1.0281
1/80 1.5330e-04 3.2459e-02 2.0434 1.0150
1/5 4.0071e-02 6.7542e-01 - -
1/10 8.8597e-03 2.7234e-01 2.0675 1.2443

FEM 1/20 2.4280e-03 1.3613e-01 1.8210 0.9755
1/40 6.2290e-04 6.5891e-02 1.9376 1.0335
1/80 1.5116e-04 3.2614e-02 2.0343 1.0103
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Figure 4.4: Convergence analysis for the Newtonian case of Test 02: (a) velocity

and (b) pressure.
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Figure 4.5: CPU time for the Newtonian case: (a) Test 01 and (b) Test 02.

4.3
Convergence tests using a non-Newtonian Carreau-Yasuda model fluid

Solution strategy:

Based on the analytical solution of Newtonian case of the Test 01 and

Test 02, we take this solution {u, p}, compute the gradient of the velocities

and substitute them in the formulation of the Carreau-Yasuda model to

obtain viscosity field, η(γ̇). Next, we substitute in the formulation of the

Navier-Stokes-Brinkman equation. The idea is to obtain the expression of

the analytical load term f that satisfies this equations simultaneously. Then,

this analytical formulation is set as the boundary condition in the numerical

implementation in order to obtain the numerical velocity and pressure field’s

solution, respectively.
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Test 01:

(a) (b)

(c) (d)

(e)

Figure 4.6: Graphics of the solution contour from Test 01: (a) velocity field, u,

(b) pressure field, p, (c) load field, fx, (d) load field, fy, and (e) viscosity field,

η(γ̇).

Figure 4.6 and 4.7 show the analytical solution of the velocity field, u,

and pressure field, p, of both domains (Test 01 and 02), and the load field,

f , and viscosity field, η(γ̇), in the non-Newtonian Carreau-Yasuda model are

shown in Figure 4.6(c-e) and 4.7(c-e), respectively.
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Test 02:

(a) (b)

(c) (d)

(e)

Figure 4.7: Graphics of the solution contour from Test 02: (a) velocity field, u,

(b) pressure field, p, (c) load field, fx, (d) load field, fy, and (e) viscosity field,

η(γ̇).

The numerical results of the Test 01 and 02, using the non-Newtonian

Carreau-Yasuda model, are presented in Tables 4.3 and 4.4, respectively.
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Table 4.3: Numerical errors in VEM and FEM solutions for the non-Newtonian
Carreau-Yasuda case of Test 01.

h error(u, L2) error(p, L2) rate u rate p
1/5 6.6602e-03 6.4311e-02 - -
1/10 1.8453e-03 3.4526e-02 1.7529 0.8495

VEM 1/20 6.1407e-04 1.5777e-02 1.5637 1.1130
1/40 1.9773e-04 9.0519e-03 1.6183 0.7934
1/80 4.7168e-05 4.1826e-03 2.0627 1.1112
1/5 7.2100e-03 6.3947e-02 - -
1/10 1.9753e-03 3.3757e-02 1.7683 0.8725

FEM 1/20 5.5944e-04 1.6251e-02 1.7928 1.0389
1/40 1.9472e-04 9.1609e-03 1.5072 0.8186
1/80 4.5955e-05 4.4236e-03 2.0781 1.0478
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Figure 4.8: Test 01: Convergence analysis for the non-Newtonian case using
polygonal meshes: (a) velocity and (b) pressure.

Table 4.4: Numerical errors in VEM and FEM solutions for the non-Newtonian

Carreau-Yasuda case of Test 02.
h error(u, L2) error(p, L2) rate u rate p

1/5 5.6431e-02 6.1986e-01 - -

1/10 1.7952e-02 3.0601e-01 1.5764 0.9716

1/20 4.8547e-03 1.3799e-01 1.8306 1.1149

VEM 1/40 1.3795e-03 6.9057e-02 1.8090 0.9953

1/80 3.8174e-04 3.3705e-02 1.8435 1.0292

1/160 9.2862e-05 1.6281e-02 2.0338 1.0469

1/5 5.2918e-02 5.5680e-01 - -

1/10 1.7655e-02 2.9584e-01 1.5109 0.8704

1/20 3.8167e-03 1.3628e-01 2.1441 1.0850

FEM 1/40 1.0921e-03 6.8855e-02 1.7990 0.9816

1/80 2.7728e-04 3.3972e-02 1.9670 1.0137

1/160 6.9520e-05 1.6936e-02 1.9903 1.0015
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Figure 4.9: Convergence analysis for the non-Newtonian Carreau-Yasuda case
of Test 02: (a) velocity and (b) pressure.
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Figure 4.10: CPU time for the non-Newtonian Carreau-Yasuda case: (a) Test

01 and (b) Test 02.

Comments from the experimental tests:

Figures 4.3 and 4.4 (Newtonian case) and Figures 4.8 and 4.9

(non-Newtonian Carreau-Yasuda case) show the logarithm of the error norm

as a function of the logarithm of the size polygonal element h. We remark that

for linear elements, the error varies linearly with the size of the element, where

in the velocity case, if the size of the element is reduced by half, the error

decreases by a factor of 2, and for the pressure case, this factor is 1 (see Tables

4.1-4.4). We also remark that the numerical convergence presents a monotonic

behavior and the results are stable for different sizes of polygonal elements.

Finally, from Figures 4.5 and 4.10, we show the computational time of

the NVSB numerical solution (Test 01 and 02) against the number of DOFs

to evaluate the computational performance of the VEM and FEM.

Therefore, the VEM method using lower-order polygonal elements proved

to be very efficient in solving NVSB fluid flow problems, for both Newtonian

and non-Newtonian Carreau-Yasuda model cases.
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5
Topology optimization

In this Chapter, we discuss the topology optimization problem for the

Navier-Stokes-Brinkman equation using the Carreau-Yasuda formulation as

a non-Newtonian fluid model. In Section 5.1 we present the formulation of

the objective and constraint functions, while in Section 5.2 we describe the

material model interpolation used in this problem. In Section 5.3, we derive

the sensitivities of the objective function with respect to the design variables,

and finally in Section 5.4, we present the numerical implementation.

5.1
Formulation

We define an objective function, f , which is the minimization of

the dissipative energy subject to the volume constraint function, g, of the

optimization problem, as follows:

min
x

f =
1

2

∫
Ω

η(γ̇)∇u : ∇udΩ +
1

2

∫
Ω

α(x)u.udΩ

s.t.

g =

∫
Ω

xdΩ− V ≤ 0,

with {
−η(γ̇)∇2u+ α(x)u+∇p+ ρu.∇u = 0

∇.u = 0
,

and

0 ≤ x ≤ 1.

(5-1)

We remark that the expression of the objective function is given

neglecting any external forces on the fluid (such as gravitational and Coriolis

forces). It has two terms, where the first term corresponds to dissipation due of

the viscous dissipative effects and the second term is the porous media model.

Term x represents the design variables for the optimization problem, and V is

an upper bound for the final volume to be achieved in the solution.

The main steps of the topology optimization for non-Newtonian
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Carreau-Yasuda fluid flow problems are shown in Figure 5.1, where, first of

all, we discretized the fluid flow domain using polygonal meshes considering

boundary conditions of velocity and pressure and parameters of the fluid.

Then the Navier-Stokes-Brinkman system of equations and formulation of the

non-Newtonian fluid (Carreau-Yasuda model) are solved using the VEM. The

gradients of the objective and constraint functions are obtained analytically

and used in the MMA - Method of Moving Asymptotes - (provided by

K. Svanberg, (1987) [73], (1995) [74], (2002) [75] and implemented here in

MATLAB®) as the optimizer to obtain the new design variables. Finally, we

used a material model interpolation to obtain the fluid/solid distribution in all

domains. The optimization process is completed when the optimal topology

solution is achieved.

Initial Design, geometry,
mesh domain, create discretization and initialize.

Solve Navier-Stokes-Brinkman and non-Newtonian
Carreau-Yasuda model fluid equations using 
VEM method and minimize dissipated energy

Sensitivity analysis of objective and
constraint functions.

Update scheme to find new design variables
using MMA optimizer.

Material interpolation to obtain solid/fluid
distribution.

Result: Optimal Topology.

Converged?
NO

YES

velocity field pressure field

sensitivity field

Figure 5.1: Flowchart for the optimal topology solution of the classic
pipe-bending problem.

5.2
Material model interpolation

The scheme of the material model interpolation function, α, which

depends on the design variable, x, is expressed as

α(x) = αU + (αL − αU)x

[
1 + q

x+ q

]
, (5-2)
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where the parameters αU = 2.5η/0.012 and αL = 2.5η/1002 are defined as the

upper and lower value of α, respectively, η is the viscosity of the fluid, and q

is the penalization coefficient (Borrvall and Petersson, 2003) [1].

Note that when the design variable value (x ≈ 1) we have that (α = αL)

i.e., the behavior of the fluid is free flow. On the other hand, when the design

variable value (x ≈ 0) we have (α = αU), then the behavior of the fluid is

restricted to solid regions. Figure 5.2 shows the behavior of the material model

interpolation function of the design variable, x, and penalization coefficient, q.

x

q

α-

Figure 5.2: Material interpolation α, as a function of design variable field, x,
for different values of the penalization coefficient, q = {0.01, 0.1, 1, 10}, [1].

5.3
Sensitivity analysis of the objective function

From Eq. (5-1), the objective function f , that corresponds to the

minimization of the dissipative energy due to the effects of viscous and porous

media, is expressed as:

f =
1

2
uT (η(γ̇)Kη +Kα)u =

1

2
zTCz. (5-3)

where,

C =

[
η(γ̇)Kη +Kα 0

0 0

]
, K̃ =

[
C(u) +Kη +Kα −Q

−Q 0

]
, z =

[
u

p

]
Differentiating Eq. (5-3) with respect to the design variable x, we obtain the

expression of the sensitivity of the objective function as:

∂f

∂x
=

1

2

{(
∂z

∂x

)T
Cz + zT

∂C

∂x
z + zTC

∂z

∂x

}
=

1

2
zT
∂C

∂x
z + zTC

∂z

∂x
. (5-4)
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Now, from Eq. (2-7), the residual vector R, is given by

R = K̃z − F̃ , (5-5)

where,

K̃ =

[
C(u) +Kη +Kα −Q

−Q 0

]
, F̃ =

[
F

0

]
.

Deriving the residual vector R, with respect to design variable x, we obtain

∂R

∂x
=
∂R

∂x

∣∣∣∣
z=const

+
∂R

∂z

dz

dx
= 0, (5-6)

where the first term represents the explicit dependence on the design variable

and the second term is the implicit dependence on the vector z. The explicit

part is obtained by deriving the first term of Eq. (5-5), as follows:

∂R

∂x

∣∣∣∣
z=const

=
∂K̃

∂x
z − ∂F̃

∂x
= r (5-7)

considering that the force vector F̃ does not depend on the design variable x;

therefore, ∂F̃
∂x

is zero. The Eq. (5-7), is re-written as

∂R

∂x

∣∣∣∣
z=const

=
∂K̃

∂x
z. (5-8)

Substituting Eq. (5-8) and Jacobian matrix J = ∂R
∂z

into Eq. (5-6), we isolate

the term dz
dx

and we obtain:

dz

dx
= −J−1 ∂R

∂x

∣∣∣∣
z=const

= −J−1∂K̃

∂x
z. (5-9)

Finally, by substituting Eq. (5-9) into Eq. (5-4), the general expression of the

sensitivity of the objective function, f , is expressed as

∂f

∂x
=

1

2
zT
∂C

∂x
z − ST ∂K̃

∂x
z, (5-10)

where ST = zTCJ−1 and J is the Jacobian matrix. The vector S is obtained

by solving the system of equations JTS = Cz at each step of the optimization

process.

We remark that from Eq.(5-10), the sensitivities of ∂C
∂x

and ∂K̃
∂x

only

depend on the sensitivity of the matrix Kα, where ∂K
∂x

= ∂α
∂x
Kα . Therefore,

the sensitivity of the objective function only depends of the term that contains

the parameter α (i.e., K̃α = αKα).

Re-writing Eq. (5-10), we obtain:

∂f

∂x
=

1

2
uT

∂α

∂x
Kαu− ST

∂α

∂x
Kαu, (5-11)

where, from the expression of the α, Eq. (5-2), the sensitivity expression α

with respect to design variable, x, is:
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∂α

∂x
= (αL − αU)q[

1 + q

(x+ q)2
].

5.4
Numerical implementation

According to Talischi, [15], Polymesher is a ”simple and robust

MATLAB® code for polygonal mesh generation. The main ingredients of

Polymesher are the implicit representation of the domain and the use of

Centroidal Voronoi diagrams for its discretization. The implicit description

offer great flexibility to construct a relatively large class of domains with

algebraic expressions. A discretization of the domain is constructed from a

Centroidal Voronoi tessellation (CVT) that incorporates an approximation to

its boundary. This approximation is obtained by including the set of reflections

of the seeds. Additionally, Lloyd’s method is used to establish a uniform

(optimal) distribution of seeds and thus a high quality mesh (for more details,

see reference (Talischi et al., 2012) [15]). Figure 5.3 shows some iterations of

the Lloyd’s method”.

(a) (b) (c)

Figure 5.3: Lloyd’s method. (a) initial random distribution of seeds and

corresponding Voronoi diagram, (b) first iteration, and (c) distribution of seeds

after 80 iterations [15].

To generate a mesh using Polymesher the user needs to provide

the following informations: the Domain function (e.g. DoublePipe, PipeBend

ChannelFlow, etc.) maximum number of Lloyd’s iterations (MaxIter), and

number of polygonal elements (NElem). The command line to call the

Polymesher function is the following:

[Node,Element]=Polymesher[@Domain,NElem,MaxIter].

The corresponding output data are Node, a vector with the coordinates

of all nodes in the mesh and Element, a cell array containing the connectivity

of each polygonal element, respectively.
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DomainBoundCond is a function that contains the boundary conditions

of the domain and DofDriveJ contains information of the degrees of freedom

of the polygonal meshes.

Polytop is an efficient code developed in MATLAB® for structural

topology optimization that includes a general finite element routine based on

isoparametric polygonal elements. According to the authors (Talischi et al.,

2012b) [19] and from extension on Stokes-Darcy problems (Pereira et al., 2016)

[5], the code also features a modular structure in which the sensitivity analysis

routine and the optimization algorithm are separated from the specific choice

of topology optimization formulation.

Within this framework, FEM and sensitivity analysis routines were

adapted and modified using the VEM and lower-order elements. The function

VEMAnalysis contains formulations to solve the Navier-Stokes-Brinkman

fluid flow problem using both Newtonian and non-Newtonian Carreau-Yasuda

model fluids. It computes the element residue vector, getelemR, Jacobian

element matrix, getelemJ, and assembles the global vector and matrix

(FormR,FormJ), respectively. Then we obtain the numerical solution of the

velocity and pressure fields by solving these systems of non-linear equations

using the function NewtonRapshon.

ObjectiveFnc is the objective function, f , (e.g. dissipative energy)

and ConstraintFnc is the constraint function, g, (e.g. volume fraction).

These are used during the sensitivity analysis in the function called

SensitivityAnalysis that computes the gradients, ∇f and ∇g, of the

objective function and constraint function, respectively. Note that other

formulations can be used and thus the code can be extended, developed, and

modified according to the type of problem.

The variables are updated in the MATLAB® mmasub routine using

the method of moving asymptotes as the main optimizer algorithm, where

the objective, constraint, and gradient functions are used. Then, the material

interpolation function MatIntFnc is used to obtain the solid-fluid distribution

in the domain fluid flow.

The main functions required to achieve an optimal topology for a fluid

flow problem are illustrated in the code structure depicted in Figure 5.4.
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Main Polymesher Domain 

DomainBoundCond

DofDriveJ

Polytop VEMAnalysis

ObjectiveFnc

ConstraintFnc

SensitivityAnalysis

mmasub

MatIntFnc

NewtonRapshon

FormR

FormJ

getelemR

getelemJ

graph

Figure 5.4: Structure of the VEM code implementation.
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6
Results and discussion

In this Chapter, we present numerical results applied to optimal topology

for fluid flow problems using the proposed VEM with polygonal and non-convex

meshes. In Section 6.1 we show the problem of minimization of dissipative

energy for the Stokes-Darcy problems, and in Section 6.2 we solve topology

optimization problems governed by the Navier-Stokes-Brinkman equation,

considering both cases of the Newtonian and non-Newtonian (Carreau-Yasuda

model) fluids.

6.1
Optimal topology by Stokes-Darcy fluid flow

We present numerical examples of the typical diffuser, pipe-bend, and

double pipe-bend problems (studied by Pereira et al. (2013) [76], (2016) [5]

using FEM and polygonal meshes). We used the optimality criteria method

(OC) as the optimizer (Groenwold and Etman, 2008) [77]. Some examples

were presented in the work by (Suárez et al., 2018) [14] and we added others

problems in this work using VEM method as follows.

Diffuser problem

In this typical problem, we present numerical examples of Cartesian

and non-Cartesian domains (see Figures 6.1(a) and 6.2(a)) using polygonal

elements. The boundary conditions are set as a parabolic velocity inlet uinlet =

3 and outlet uoutlet = 1. The other parameters are shown in Table 6.1.

Table 6.1: Parameters used by the diffuser numerical problem (Cartesian and
non-Cartesian domain).

cartesian non-cartesian
volume fraction V = 0.5 V = 0.4608473

viscosity µ = 1
number of element 10, 000

penalty of parameters q = {0.01; 0.1; 1}
optimizer type OC

number max Iter. 150
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Figure 6.1: (a) Geometry and boundary conditions for the diffuser (Cartesian

domain), (b) optimal topology, (c) velocity field, (d) pressure field, and (e)

convergence history [14].
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Figure 6.2: (a) Geometry and boundary conditions for the diffuser

(non-Cartesian domain), (b) optimal topology, (c) velocity field, (d) pressure

field, and (e) convergence history [14].

The solution for the curved domain was obtained for a volume fraction

V = 0.4608473 (see Figure 6.2(b)) to match the solution for the square domain,
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where V = 0.5 (see Figure 6.1(b)), as prescribed by Borrvall and Petersson,

(2003) [1]. The convergence histories of the objective function, f , are shown in

Figures 6.1(e) and 6.2(e).

Pipe-bend problem

In the typical pipe-bend problem, we present numerical examples of

Cartesian and non-Cartesian domains (see Figures 6.3(a) and 6.4(b)) using

polygonal elements. The boundary conditions are set as parabolic velocity

inlet uinlet = 1 and outlet uoutlet = 1. The other parameters are shown in Table

6.2.

Table 6.2: Parameters used by the pipe-bend numerical problem (Cartesian
and non-Cartesian domain).

cartesian non-cartesian
volume fraction V = 1/3 V = 0.08π

viscosity µ = 1
number of element 10, 000

penalty of parameters q = {0.01; 0.1; 1}
optimizer type OC

number max Iter. 150

The solution for the curved domain was obtained for a volume fraction

V = 0.08π (see Figure 6.4 (b)) to match the solution for the square domain,

where V = 1/3 (see Figure 6.3 (b)), as prescribed by Borrvall and Petersson,

(2003) [1]. The convergence histories of the objective function, f , are shown in

Figures 6.3(b) and 6.4(b).

DBD
PUC-Rio - Certificação Digital Nº 1612791/CA



Chapter 6. Results and discussion 71

Ω

u(y)

0.7

0.9

1

0 1

0.7 0.9

0.2

0.2

(a)
u(x)

0 10 20 30 40 50 60 70 80 90

Iteration

6

8

10

12

14

16

18

20

O
bj

ec
ti
ve

 F
u
n
ct

io
n

(b) (c) (d)

(e)

Figure 6.3: (a) Geometry and boundary conditions for the pipe-bend (Cartesian

domain), (b) optimal topology, (c) velocity field, (d) pressure field, and (e)

convergence history.
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Figure 6.4: (a) Geometry and boundary conditions for the pipe-bend

(non-Cartesian domain), (b) optimal topology, (c) velocity field, (d) pressure

field, and (e) convergence history.
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Double-pipe bend problem

Finally, in this problem, we present numerical examples in both domains

of different length, δ, focused on non-convex element (tess12).

Figure 6.5: Tess12 non-convex element, [8].

The main parameters for the test are shown in Table 6.3.

Table 6.3: Parameters used by the double pipe-bend numerical problem.
length of the domain δ = 1 δ = 1.5

volume fraction V = 1/3
viscosity µ = 1

number of element 10, 000
penalty of parameters q = {0.01; 0.1; 1}

optimizer type OC
number max Iter 150

The boundary conditions are set as parabolic velocity inlet and outlet as

u1 = u2 = 1 for the both cases. Figures 6.6 (a) and (b) show the discretized

domain using convex and non-convex (tess12) elements of length δ.
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Ω
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u (y)1

u (y)2

5/6

4/6

1/6

2/6

Figure 6.6: Geometry and boundary conditions for the double pipe by using

(a) polygonal and (b) non-convex elements (tess12 element).

Two different solutions for the double pipe domain was obtained for a

volume fraction V = 1/3 using a length of δ = 1 and δ = 1.5 by using

convex (see Figure 6.7) and non-convex (see Figure 6.8) polygonal elements

as prescribed by Borrvall and Petersson, (2003) [1].

δ=1

δ=1.5

(a) (b) (c)

Figure 6.7: (a) Optimal topology, (b) velocity field, and (c) pressure field for

the double pipe problem using convex polygonal elements, [14].
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δ=1

δ=1.5

(a) (b) (c)

Figure 6.8: Optimal topology (a), velocity field (b) and pressure field (c) for

the double pipe by using non-convex polygonal elements (tess12 element). [14]

Somme comments: The proposed VEM was used to solve

Stokes-Darcy fluid-flow problems considering polygonal elements and it

was integrated into the topology optimization framework. Classic problems

as diffuser (see Figures 6.1-6.2), pipe-bend (see Figures 6.3-6.4), and

double pipe bend problems (see Figures 6.7-6.8), considering cartesian and

non-cartesian domains, were tested and the results obtained demonstrated

that the computational time (computing/assemblig matrices + optimization

convergence time) associated with the VEM was smaller when compared to

the FEM. In addition, non-convex meshes, using tess12 elements were used to

show the flexibility of the proposed method, (see Figure 6.8(a)).

6.2
Optimal topology for Navier-Stokes-Brinkman fluid flow

We present various numerical examples considering the minimization

of dissipative energy due to the effects of viscous and porous media on

blood fluid flow to obtain an optimal channel, focusing on both Newtonian

and non-Newtonian (Carreau-Yasuda model) cases. We used the blood fluid

properties described in in Table 2.1 of Section 2.1.2. The main parameters for

the tests are shown in Table 6.4.
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Table 6.4: Parameters used by topology optimization examples.

Newtonian Carreau-Yasuda

fluid parameters µ = η∞ Table 2.1

number of element 10, 000

penalty of parameters q = 0.1

optimizer type MMA

number max Iter 100

Double channel problem

In this problem we considered the non-Newtonian (Carreau-Yasuda

model) fluid case for the test, which was studied by Pingen and Maute

(2010) [11]. The boundary conditions are set as a parabolic velocity inlet

as u1 = u2 = u and pressure outlet as p = 0. The solution was obtained

using a volume fraction of V = 1/3 and we used the velocity inlet parameter,

u, to increase or decrease the Reynolds number Re. From the results (see

Figure 6.9(c)), we remark that for a high Reynolds number (i.e., u � 1, the

optimal topology results obtained are similar to the ones from the Newtonian

fluid case.

Ω 1

1.5

u (y)1

u (y)2

1/6

2/6

4/6

5/6
p

p

(a)

(b) (c)

Figure 6.9: (a) Geometry and boundary conditions for the double channel

problem; optimal topology for (b) low and (c) high Reynolds number, [16].

DBD
PUC-Rio - Certificação Digital Nº 1612791/CA



Chapter 6. Results and discussion 76

Pipe bend problem with obstacle

In the second example we considered both cases, Newtonian and

non-Newtonian (Carreau-Yasuda model) fluid cases for the test, which was

studied by (Kian, 2017) [12]. The details of the geometry and dimensions of

the domain are shown in Figure 6.10(a). The boundary conditions are set

as a parabolic velocity inlet as u = 0.1 and pressure outlet as p = 0. The

solution was obtained using the volume fraction V = 0.08π. The optimal

results are shown in Figure 6.10 for the Newtonian case (Figure 6.10(b))

and non-Newtonian (Carreau-Yasuda model) fluid case (Figure 6.10(c)).

y

x

Ω

u(y)

p

0.7

0.9

1

0 1

0.7 0.9

0.2

0.2

0.1

0.1

(b) (c)

(a)

Figure 6.10: (a) Geometry and boundary conditions for the pipe bend problem

with obstacle, and optimal topology and velocity field for (b) Newtonian and

(c) non-Newtonian (Carreau-Yasuda model) [16].

Some comments: The double channel problem (Figure 6.7), was tested

considered non-Newtonian fluid, where for lower velocities (low Reynolds

number), the final configuration of the topology is similar to the results of the

double-pipe Stokes problems, for the Newtonian case with a shorter domain
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length (see Figure 6.7(a) with δ = 1) and for high velocities (high Reynolds

number), the configuration is similar to Newtonian case with a longer domain

length (see Figure 6.7(b) with δ = 1.5).

For the pipe bend problem with obstacle (see Figure 6.10), when the fluid flows

under the obstacle, a slight difference is observed in the final topology of the

optimized channel; in the non-Newtonian case (Figure 6.10(b)), the trend is

more curved than in the Newtonian case (Figure 6.10(c)), this is due to the

low velocities, where the Reynolds number is also low.

Now, we present examples of the optimal arterial graft design domain

studied by Zhang and Liu, (2015) [42]. We defined the Reynolds number

as Re = ρVmaxLinlet/η∞, where Vmax and Linlet are the maximum value of

the velocity inlet and length of the fluid inlet, respectively. The gray region

represents the design domain and other regions of the domain are fixed in the

optimization process, as follows.

In the following examples, we present optimal arterial grafts design

domains for the minimization of the viscous drag of the blood fluid flow, studied

by , and illustrated in Figures 6.11a, 6.12a and 6.13a.

Graft design for a blocked artery

Detail of the dimensions are shown in Figure 6.10(a) where, h = 0.8,

d = 0.64, l1 = 6, l2 = 3, l3 = 1.9, l4 = d/4 and l5 = l1 − l2 + d/2. The volume

fraction is 33% of the total volume. The Reynolds number is Re = 60. The

results for the velocity field and optimal topology are shown in Figure 6.11 for

the Newtonian (Figure 6.11 (b)) and non-Newtonian fluid (Figure 6.11 (c))

cases.

p h

l5

l1

l2

l3

l4

Design
Domain Ω

d
u(y)

(a)

(b) (c)

Figure 6.11: (a) Geometry and boundary conditions for the arterial bypass

design problem, velocity field corresponding to the optimal design topology

for (b) Newtonian and (c) non-Newtonian (Carreau-Yasuda model) fluid cases

[16]
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Arterial bypass design for a stenosed artery

The optimal design of the joint section between the host and the graft

artery is illustrated in Figure 6.12. The arterial bypass design domain has

inlet velocities with values of u1 = u2 = 2 for both fixed and graft arteries,

and pressure outlet p = 0, respectively. The solution was obtained for a volume

fraction V = 24% of the total volume. The results for the velocity field and

optimal topology are shown in Figure 6.11, for the Newtonian (Figure 6.12

(b)) and non-Newtonian fluid (Figure 6.12(c)) cases.

p
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u (y)2
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1/6

x

y

(a)

(b) (c)

Figure 6.12: (a) Geometry and boundary conditions for arterial bypass design

problem, velocity field corresponding to the optimal design topology for (b)

Newtonian and (c) non-Newtonian (Carreau-Yasuda model) fluid cases [16].

Graft design for a stenosed artery

In this problem, we present the graft design for a stenosed artery, where

the host artery is considered fixed and the graft artery is designed in the gray

design domain (see Figure 6.13(a)). The prescribed parabolic inlet velocities

for the host and graft arteries and pressure outlet are set to the same value

as the previous example. The solution was obtained for a volume fraction

V = 0.10 and Reynolds number Re = 100. The optimal topology and

velocity field results for the Newtonian and non-Newtonian cases are shown in

Figures 6.13(b) and (c).
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Figure 6.13: (a) Geometry and boundary conditions for the stenosed artery

design problem, velocity field corresponding to the optimal design topology

for (b) Newtonian and (c) non-Newtonian (Carreau-Yasuda model) fluid cases

[16].

Horizontal channel flow with gravity

From the Eq. (5-1), the re-formulation of the objective function, f , (by

minimizing dissipated energy) considering an external force vector, f , on the

fluid, must be:

f =
1

2

∫
Ω

η(γ̇)∇u : ∇udΩ +
1

2

∫
Ω

α(x)u.udΩ−
∫

Ω

f .udΩ,

where, the third term represents the velocity maximization at the points

of applied force (extracted from Koga, (2010) [2]).

We remark that the sensibility analysis of this additional term can be

neglected as the load vector, f , does not depend on the design variable, x.

Therefore, for this type of problem, the objective gradient function formulation

is similar to the expression shown in Eq. (5-11).

Finally, in this non-Newtonian fluid flow problem, studied by Deng et

al.,(2013) [38], we presented a horizontal channel flow design that considers

the influence of external forces on the fluid (such as gravity). The boundary

conditions are set by an inlet velocity u = 3 and an outlet pressure p = 0

(see Figure (6.13)). The solution was obtained for a volume fraction V = 0.40

and a constant gravity vector g = [0,−10]. The other parameters are given in

Table 6.5.
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Table 6.5: Parameters used by the horizontal channel flow with gravity
problem.

Carreau-Yasuda
fluid parameters Table 2.1

number of element 10, 000
penalty of parameters q = 4

optimizer type MMA
number max Iter 100

Ωu(y)

(a)

(b)

3

2/3

1/3

p

p

p

u(y)

u(y)

Figure 6.14: Geometry and boundary conditions for the horizontal channel flow

domain by using (a) convex and (b) non-convex polygonal elements (tess12

element).

In the test, we use polygonal (Figure 6.14(a)) and non-convex (6.14(b))

meshes (tess12 element, see Figure 6.5). In both cases the optimal topology

channel results bend to the direction of the gravity (see Figures 6.15(a) and

6.16(a)).

g

(a) (b)

Figure 6.15: Optimized topologies of the horizontal channel (a) with or (b)

without gravity using polygonal meshes.
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g

(a) (b)

Figure 6.16: Optimized topologies of the horizontal channel (a) with or (b)

without gravity using non-convex meshes (tess12 element).
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7
Conclusions and extensions

7.1
Concluding remarks

In this work, we presented a topology optimization formulation for

solving fluid flow problems considering both Newtonian (Stokes-Darcy

and Navier-Stokes-Brinkman equations) and non-Newtonian (using

Navier-Stokes-Brinkman equation and Carreau-Yasuda model for the blood

flow) cases. The governing equations were solved numerically using the VEM

in arbitrary two-dimensional domains discretized using polygonal meshes.

Representative examples found in the literature were tested and a comparative

study was developed between the FEM and VEM (considering lower-order

elements). We showed that the VEM presented better computational

performance, and that the VEM is very well suited for use in fluid flow

topology optimization problems with complex domains using either convex or

non-convex elements.

7.2
Suggestions for future work

The main suggestions for future research are:

� Extend the formulation to consider unsteady state of the Navier-Stokes

equation for high Reynolds number;

� Extend the formulation to consider heat transfer problems for steady and

unsteady states and combinate with the NVS equation;

� Present a study of convergence and computational time comparison with

respect to the FEM method;

� Extend the formulation to consider multiphysics problems coupled with

VEM using computational parallel techniques for large-scale problems;

� Extend the formulation to consider three-dimensional domains.
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