Makson Sales Santos

Mostly regularity theory: interfaces and free boundaries

Thesis presented to the Programa de Pós-graduação em Matemática of PUC-Rio in partial fulfillment of the requirements for the degree of Doutor em Matemática.

Advisor
Prof. Edgard Almeida Pimentel
Co-advisor: Prof. Eduardo Vasconcelos Oliveira Teixeira

Makson Sales Santos

Mostly regularity theory: interfaces and free boundaries

Thesis presented to the Programa de Pós-graduação em Matemática of PUC-Rio in partial fulfillment of the requirements for the degree of Doutor em Matemática. Approved by the undersigned Examination Committee.

Prof. Edgard Almeida Pimentel Advisor
Departamento de Matemática - PUC-Rio
Prof. Eduardo Vasconcelos Oliveira Teixeira
Co-advisor
Departamento de Matemática - U. Central Florida - UCF
Prof. Boyan Slavchev Sirakov
Departamento de Matemática - PUC-Rio
Prof. Fernando Codá dos Santos Cavalcanti Marques Departamento de Matemática - Princeton University
Prof. Helena Judith Nussenzveig Lopes
Departamento de Matemática - UFRJ
Prof. João Marcos Bezerra do Ó
Departamento de Matemática - UFPB
Prof. Juliana Fernandes da Silva Pimentel
Departamento de Matemática - UFRJ
Prof. Julio Daniel Rossi
Departamento de Matemática - Universidad de Buenos Aires
Prof. Nicolau Corção Saldanha
Departamento de Matemática - PUC-Rio
Prof. Paolo Piccione
Departamento de Matemática - IME-USP

Rio de Janeiro, August the 20th, 2020

Makson Sales Santos
Bachelor's degree in Mathematics by Federal University of Sergipe (UFS) in 2012. M.Sc. in Mathematics by Federal University of Sergipe (UFS) in 2015, with emphasis on Differential Geometry. During the Ph.D. at PUC-Rio, also studied at Department of Mathematics of University of Central Florida (UCF). My research concerns are in Regularity Theory of Solutions of Partial Differential Equations and Free Boundary Problems.

Bibliographic data
Santos, Makson Sales
Mostly regularity theory: interfaces and free boundaries / Makson Sales Santos; advisor: Edgard Almeida Pimentel; co-advisor: Eduardo Vasconcelos Oliveira Teixeira. - Rio de janeiro: PUC-Rio, Departamento de Matemática, 2020.
v., 71 f: il. color. ; 30 cm

Tese (doutorado) - Pontifíccia Universidade Católica do Rio de Janeiro, Departamento de Matemática.

Inclui bibliografia

1. Matemática - Teses. 2. Regularidade;. 3. Equações Degeneradas; . 4. Fronteira Livre;. 5. Métodos de Aproximação;. 6. Viscosidade.. I. Pimentel, Edgard. II. Teixeira, Eduardo. III. Pontifíccia Universidade Católica do Rio de Janeiro. Departamento de Matemática. IV. Título.

Acknowledgments

First and foremost I would like to thank God for everything He has provided. He putted extraordinary people in my life and gave me strength to pass through difficult times. I am felling truly blessed for all this.

I would like to express my sincere gratitude to my advisor Professor Edgard Pimentel. He was not just an advisor but also a friend that I used to talk with a lot, about many things. This journey would not be possible without his wisdom and friendship.

I also would like to thank my co-advisor Prof. Eduardo Teixeira for spend time discussing problems with me during my visit to University of Central Florida. I learned a lot, and I will always be in debt with him.

Special thanks to my beloved wife, for all the support she gave all this time even in the most dark day. Thank you for share your life with me, I love you very much.

I would like to thank my family, especially, my grandmother Dezuíta, my sister Aryinnis, my cousins Junior and Renisson, and my aunts and uncles and my father Ariolando.

I wish to thank the Department of Mathematics of PUC-Rio and its professors for all the support that they gave me. In particular, Boyan, Marcos, Kátia and Creuza.

I am very thankful to my friends at PUC-Rio, this journey would not be the same without their support: Tiago, Tamires, Gabi, Marcelo, Letícia, Renan, Aline, Fiorella, Edson, Edhin, David, João Vitor, Diego and so many others.

Also I would like to thank my friends in Rio. I consider myself extremely lucky to have such incredible friends: Alcides, Argenis, Bruna, Carla Mirelle, Cayo, Everson, Felipe, Giane, Gisele, Juliana, Léo, Lucivânio, Mateus, Miguel, Pedro, Rayssa, Roberto, Thays, Viama.

Thanks to the friends that I have made in Orlando, in special Thiálita, Janet, Sue and Bill.

I would also like to express my gratitude to CAPES and ARQUIMEDES for their financial support. This study was financed in part by the Coordenação de Aperfeimento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

I am grateful and at the same time I apologize to so many others who contributed to this journey, but who were not mentioned.

Abstract

> Santos, Makson Sales; Pimentel, Edgard (Advisor); Teixeira, Eduardo (Co-Advisor). Mostly regularity theory: interfaces and free boundaries. Rio de Janeiro, 2020. 71p. Tese de doutorado - Departamento de Matemática, Pontifíccia Universidade Católica do Rio de Janeiro.

This thesis focuses on two classes of problems. Firstly, we examine fully nonlinear equation degenerating as a power of the gradient. The interface along which ellipticity collapses introduces substantial difficulties in the analysis and affects the regularity of the solutions. Through methods in harmonic analysis and measure theory we produce a geometric analysis of the problem, which leads to estimates in Sobolev spaces. Furthermore, our findings set an important open problem in the literature, namely: the H lder-continuity for the gradient of solutions in the presence of unbounded source terms. The second part of the thesis focuses on a free transmission problem driven by fully nonlinear operators. On this topic, our results include the optimal regularity of the solutions and an analysis of the associated free boundary.

Keywords

Regularity; Degenerate Equations; Free Boundary; Approximation Methods; Viscosity.

Resumo

Santos, Makson Sales; Pimentel, Edgard; Teixeira, Eduardo. Teoria de regularidade: interfaces e fronteiras livres. Rio de Janeiro, 2020. 71p. Tese de Doutorado - Departamento de Matemática, Pontifíccia Universidade Católica do Rio de Janeiro.

Abstract

Nesta tese estudamos duas classes de problemas. A primeira delas diz respeito a uma equação completamente não-linear que degenera como uma potência do gradiente. A presença desta interface afeta a elipticidade do sistema e produz redução da regularidade. Combinando técnicas da análise harmônica com métodos da teoria da medida, desenvolvemos uma análise tangencial que produz resultados de regularidade para as soluções em espaços de Sobolev. Como consequência, nossos resultados implicam estimativas em espaços de Hölder para o gradiente das soluções, desconhecidas na literatura no caso de termos de fonte não-limitados. A segunda parte trata de um problema de transmissão livre, governado por operadores completamente não-lineares. Neste caso, obtemos regularidade ótima para as soluções, assim como informações sobre a fronteira livre associada.

Palavras-chave

Regularidade; Equações Degeneradas; Fronteira Livre; Métodos de Aproximação; Viscosidade.

Table of contents

1 Introduction 10
2 Preliminary material and main assumptions 15
2.1 Main assumptions 15
2.2 Preliminary notions and results 17
3 Degenerate fully nonlinear equations 27
3.1 Some context on degenerate fully nonlinear problems 27
3.2 Preliminary estimates for the $\mathcal{C}^{1, \alpha}$-aperture function 29
3.3 Improved integrability for the aperture function 37
4 A fully nonlinear free transmission problem 48
4.1 Some context on transmission problems 49
4.2 Quadratic growth away from the free boundary 52
4.3 Classification of global solutions 56
4.4 Regularity of the free boundary 61
Bibliography65

List of figures

Figure 4.1 The cross-section of a fiber-reinforced material provides an example in \mathbb{R}^{2} of a bounded domain with a finite number of inclusions. The grey subregions in the cross-section represent the fibers, whereas the remainder of the material is the matrix.
Figure 4.2 The geometry depicted on the left is within the scope of (4.7). In fact, as the radii of the balls centered at x^{*} decrease from r_{1} to $r_{2}, V\left(x^{*}, r\right)$ decreases even faster. The case on the right behaves differently. Here, the normalized volume is constant, independent of the radii of the ball; hence, it might fail to satisfy a prescribed smallness regime as in (4.7).

1
 Introduction

This thesis reports regularity results for models governed by fully nonlinear partial differential equations (PDE); it comprises two classes of developments. Firstly, we focus on fully nonlinear elliptic equations degenerating as a power of the gradient. In this setting, we establish results on the regularity of the solutions in Sobolev spaces. In the second part of the thesis, we study a free transmission problem.

The fundamental question underlying both topics is the relevance of (non-physical) free boundaries for the regularity of the structures associated with a given equation. In the case of diffusions degenerating as a power of the gradient, the set $\{D u=0\}$ is of paramount importance. In fact, since ellipticity vanishes at those points, this set is responsible for entailing upper bounds on the regularity of the solutions. On the other hand, when studying free transmission problems, the discontinuity of the diffusion is subject to the geometry of the set $\partial\{u>0\} \cup \partial\{u<0\}$.

In the first part of this work, we consider a degenerate fully nonlinear problem of the form

$$
\begin{equation*}
|D u|^{q} F\left(D^{2} u\right)=f(x) \text { in } B_{1} \tag{1.1}
\end{equation*}
$$

where $q>0, f \in \mathcal{C}\left(B_{1}\right) \cap L^{p}\left(B_{1}\right)$, with $p>d$ and $F: S(d) \rightarrow \mathbb{R}$ is a uniformly elliptic operator. We establish new interior estimates, in fractional Sobolev spaces $W_{l o c}^{\sigma, p(q+1)}\left(B_{1}\right)$ where

$$
\sigma=\left(\frac{q+2}{q+1}\right)^{-} .
$$

We argue through geometric tangential methods; see, for instance, [59], [52], and [60]. See also [21].

Our goal is to study Sobolev regularity results for solutions of (1.1). Notice C^{2}-estimates are not expected, even in the case of F convex; in fact were f bounded, $C^{1, \frac{1}{1+q}}$-regularity would be sharp in this case, see [2]. Therefore, estimates for the solutions in Sobolev spaces are of pivotal importance. The main idea in [21], is to obtain a suitable decay rate of the set of points where the solution can not be touched by a paraboloid either from above or from
bellow.
In the degenerate setting, however, one needs to craft new barriers as to properly gauge the geometric complexity of the graph of u. We introduce the notion of $\mathcal{C}^{1, \alpha}$-ones which comprises functions of the form:

$$
\psi(x)=\ell(x) \pm \frac{M}{2}|x-\zeta|^{1+\alpha}
$$

where M is a positive constant and $\ell(\cdot)$ is an affine function. We name these functions $C^{1, \alpha}$-cones of opening M and vertex ζ. In this context we extend the Sobolev-estimates in [21] to a degenerate fully nonlinear setting. This is the content of our first main result.

Theorem 1 (Regularity in Sobolev spaces) Let $u \in \mathcal{C}\left(B_{1}\right)$ be a viscosity solution to (1.1). Suppose that A1-A3, to be determinate later, hold true. Then $u \in W_{\text {loc }}^{\sigma, p(q+1)}\left(B_{1}\right)$, for every

$$
\sigma<1+\frac{1}{q+1}
$$

In addition, there exists a positive constant $C>0$ such that

$$
\|u\|_{W^{\sigma, p(q+1)}\left(\bar{B}_{1 / 2}\right)} \leq C
$$

Note the q-degeneracy prevents the analysis from accessing information on the Hessian of the solutions. Instead, we control the integrability of a fractional derivative of order $\sigma<2$. An important consequence of the former result is the Hölder regularity of the gradient for the solutions to (1.1) in the presence of source terms in $L^{p}\left(B_{1}\right)$, for $p>d$. We state it what follows as a theorem.

Theorem 2 (Almost-sharp $C^{1, \beta}$-regularity) Let $u \in \mathcal{C}\left(B_{1}\right)$ be a normalized viscosity solution of (1.1). Suppose A1-A3, to be detailed further, are in force. Then $u \in \mathcal{C}_{\text {loc }}^{1, \beta}\left(B_{1}\right)$ for all

$$
\beta<\frac{1}{q+1}\left(q+2-\frac{d}{p}\right)-1 .
$$

The almost-optimality of the exponent β in Theorem 2 follows from the geometry of (1.1) - encoded in its scaling properties - combined with an explicit example of the form $v(x) \sim|x|^{\frac{1}{q+1}\left(q+2-\frac{d}{p}\right)-1}$.

The second part of this thesis concerns a fully nonlinear free transmission problem of the form

$$
\begin{equation*}
F_{1}\left(D^{2} u\right) \chi_{\{u>0\}}+F_{2}\left(D^{2} u\right) \chi_{\{u<0\}}=1 \quad \text { in } \quad \Omega^{+}(u) \cup \Omega^{-}(u), \tag{1.2}
\end{equation*}
$$

where $F_{1}, F_{2}: \mathcal{S}(d) \rightarrow \mathbb{R}$ are (λ, Λ)-elliptic operators, $\Omega^{+}(u):=\{u>0\}$ and $\Omega^{-}(u):=\{u<0\}$. We prove optimal regularity results for the strong solutions to (1.2) and examine the associated free boundary. In particular, we prove that solutions are locally of class $\mathcal{C}^{1,1}$ and establish non-degeneracy of the free interface. The latter result unlocks the analysis of global solutions. Finally, we focus on the set of non-degenerate points of the free boundary and show that it is, locally, the graph of a $\mathcal{C}^{1,1}$ function.

We study $W^{2, d_{-s t r o n g ~}}$ solutions to (1.2). Inspired by ideas firstly put forward in [34], we notice that a $W^{2, d}$-solution to (1.2) solves

$$
G\left(D^{2} u\right)=g \quad \text { in } \quad B_{1}
$$

in the L^{d}-sense, where $g \in L^{\infty}\left(B_{1}\right)$. If we suppose either F_{1} or F_{2} to be convex, we obtain Hessian-regularity in BMO-spaces. See [23] and [53].

In addition, by requiring both operators to be convex and supposing they are positively homogeneous of degree one, we produce quadratic growth for the solutions. It follows from a dyadic analysis combined with the maximum principle. The argument relies on a scaling strategy, using the L^{∞}-norms of the solutions as a normalization factor. This machinery was introduced in [24] in the context of an obstacle problem driven by the Laplacian. In [42] the authors take this perspective to the fully nonlinear setting and develop a fairly complete analysis of the obstacle problem governed by fully nonlinear equations. We also refer the reader to [41].

The quadratic-growth results developed in [24] and [42] rely on a smallness condition on the density of the region where solutions are negative.

A further scaling argument - depending on the square of the distance to the free boundary - is capable of relating B_{1} with each connected component associated with the transmission problem. This fact extrapolates regularity information for u; namely, we prove that strong solutions to (1.2) are of class $\mathcal{C}^{1,1}$ in $B_{1 / 2}$. This is the content of our next result.

Theorem 3 (Regularity of the solutions) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2). Suppose $A_{4}-A 7$, to be detailed further, hold true. Suppose further that $V_{r}(x, u)<C_{0}$ for every $x \in \partial\left(\Omega^{+}(u) \cup \Omega^{-}(u)\right) \cap B_{1 / 2}$, for some $C_{0}>0$. Then, $u \in \mathcal{C}_{\text {loc }}^{1,1}\left(B_{1}\right)$ and there exists a universal constant $C>0$ such that

$$
\left\|D^{2} u\right\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C
$$

After examining the regularity of the solutions, we turn our attention to the free transmission interface. We start our analysis with a non-degeneracy result. Very much based on the maximum principle, it follows along the same lines put forward in [42] and [34]. The non-degeneracy property combines with Theorem 3 to control quadratically the growth of the solutions from above and from below.

A further consequence of non-degeneracy concerns global solutions to (1.2); this is the content of our second main result.

Theorem 4 (Characterization of global solutions) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2) in \mathbb{R}^{d}. Suppose $A 4$-A8, to be detailed further, are in force. Suppose further there exists $\varepsilon_{0}>0$ such that

$$
\frac{M D\left(\left(B_{1} \backslash \Omega\right) \cap B_{r}(x)\right)}{r}>\varepsilon_{0}
$$

where $0<r \ll 1$ and $x \in \partial \Omega$. Then u is a half-space solution. That is, up to a rotation,

$$
u(x)=\frac{\gamma\left[\left(x_{1}\right)_{+}\right]^{2}}{2}+C
$$

where $C \in \mathbb{R}$ and $\gamma \in(1 / \Lambda, 1 / \lambda)$ is such that either $F_{1}\left(\gamma e_{1} \otimes e_{1}\right)=1$ or $F_{2}\left(\gamma e_{1} \otimes e_{1}\right)=1$.

Finally we examine the regularity of the free boundary. Our analysis focuses on the non-degenerate points, see [40]. We consider the set

$$
\mathcal{N}(u):=\left\{x \in B_{1} \mid u(x)=0 \text { and } \limsup _{z \rightarrow x} \frac{|u(z)|}{|x-z|}>0\right\}
$$

and examine its geometric properties. We prove the following:

Theorem 5 (Regularity of the free boundary) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2). Then $\mathcal{N}(u)$ is, locally, a graph of class $\mathcal{C}^{1,1}$. In addition, there exists a universal constant $C>0$ such that for all $z \in \mathcal{N}(u)$, we have

$$
\left|\nu_{x}-\nu_{y}\right| \leq C|x-y|
$$

for every $x, y \in B_{r}(z) \cap \Sigma(u)$ and every $0<r \ll 1$.

The findings reported in Theorem 5 are related to recent developments concerning nodal sets for broken quasilinear equations; see [40]. We mention that a complete result on the regularity of the free boundary as well as the analysis of the singular set are not included here; see, for instance, [42, 54].

The remainder of this thesis is organized as follows. Chapter 2 presents some results and sets the notation used throughout the thesis. In Section 2.1, we introduce the main assumptions under which we work. Section 2.2, recalls some definitions and collects important tools used in both the first and the second parts of this thesis. Chapter 3 accounts to our analysis of degenerate fully nonlinear equation. In the first section, we briefly present an overview on degenerate fully nonlinear equations. The remaining sections detail the proof of Theorem 1. Chapter 4 reports our findings on the regularity theory for the free transmission problem driven by fully nonlinear operators.

2 Preliminary material and main assumptions

In this chapter we collect elementary notions, auxiliary results and the hypotheses under which we work.

2.1
 Main assumptions

In what follows, we detail the main hypotheses used in the first part of this work.

A 1 (Uniform ellipticity) The operator $F: S(d) \longrightarrow \mathbb{R}$ is (λ, Λ)-uniformly elliptic. That is, for $0<\lambda \leq \Lambda$, it holds

$$
\lambda\|N\| \leq F(M+N)-F(M) \leq \Lambda\|N\|
$$

for every $M, N \in \mathcal{S}(d), N \geq 0$.

The next assumption concerns the regularity of F. As in [21], in order to establish Theorem 1, we need F to satisfy a $C^{1,1}$-estimate in the homogeneous setting. Hence, we assume the following:

A 2 ($C^{1,1}$-estimates) We suppose that $F=0$ has $C^{1,1}$-interior estimates; i.e., there exists a constant $C>0$ such that if h is a solution to $F\left(D^{2} h\right)=0$ in B_{1} then

$$
\|h\|_{C^{1,1}\left(\bar{B}_{1 / 2}\right)} \leq C .
$$

Finally, we impose integrability conditions on the source term f.
A 3 (Integrability of the source term f) The source term $f: B_{1} \rightarrow \mathbb{R}$ is such that $f \in \mathcal{C}\left(B_{1}\right) \cap L^{p}\left(B_{1}\right)$, with $p>d$. In addition, there exists a constant $C>0$ for which

$$
\|f\|_{L^{p}\left(B_{1}\right)} \leq C .
$$

In the sequel, we present the assumptions used in the second part of this work.

A 4 (Uniform ellipticity for F_{i}) For $i=1,2$, we suppose the operator $F_{i}: \mathcal{S}(d) \rightarrow \mathbb{R}$ to be (λ, Λ)-uniformly elliptic. That is, for $0<\lambda \leq \Lambda$, it holds

$$
\lambda\|N\| \leq F_{i}(M+N)-F_{i}(M) \leq \Lambda\|N\|,
$$

for every $M, N \in \mathcal{S}(d), N \geq 0$, and $i=1,2$. We also suppose that $F_{i}(0)=0$.
When deriving an elliptic equation satisfied by the strong solutions to (1.2) we suppose the operators F_{1} and F_{2} are comparable. This is the content of the next assumption.

A 5 (Comparable diffusions) We suppose the operators F_{1} and F_{2} are comparable in the L^{∞}-topology. I.e., there exists $C>0$ such that

$$
\sup _{M \in \mathcal{S}(d)}\left|F_{1}(M)-F_{2}(M)\right| \leq C
$$

The former assumption is instrumental in proving that u solves an elliptic equation with right-hand side in L^{∞}. We stress that A5 does not require F_{1} and F_{2} to be close to each other; i.e., the constant $C>0$ in the assumption does not satisfy a smallness regime.

The next assumption concerns homogeneity of degree 1 . It plays a major role in the regularity of the solutions. The argument towards quadratic growth in [24] uses the linearity of the Laplacian operator. In [42] the authors notice that in the fully nonlinear case the condition that parallels linearity is the homogeneity of degree 1 .

A 6 (Homogeneity of degree one) We suppose F_{i} to be homogeneous of degree one for $i=1,2$; that is, for every $\tau \in \mathbb{R}$ and $M \in \mathcal{S}(d)$, we have

$$
F_{i}(\tau M)=\tau F_{i}(M)
$$

for $i=1,2$.
Our next assumption concerns the convexity of the operators F_{i}.
A 7 (Convexity of the operator F_{i}) We suppose the operator $F_{i}: \mathcal{S}(d) \rightarrow$ \mathbb{R} to be convex, for $i=1,2$.

The next assumption is required in the study of non-degeneracy and to characterize global solutions.

A 8 We suppose $\{D u \neq 0\} \subset \Omega(u)=\Omega^{+}(u) \cup \Omega^{-}(u)$.
In the next section we collect a number of definitions and auxiliary results used throughout this thesis.

2.2
 Preliminary notions and results

We start gathering some notation and preliminaries regarding the analysis of degenerate fully nonlinear elliptic equations.

For $r>0$ and $x_{0} \in \mathbb{R}^{d}, B_{r}\left(x_{0}\right)$ denotes the open ball of radius r centered at x_{0}, whereas B_{r} denotes $B_{r}(0)$. Similarly, $Q_{r}(x)$ stands for the open cube with side r and center x_{0}, i.e.,

$$
Q_{r}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{d}:\left|x-x_{0}\right|_{\infty}<\frac{r}{2}\right\}
$$

where $|x|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots\left|x_{d}\right|\right\}$.
For $M \in S(d)$ we define the Pucci extremal operators to be

$$
\mathcal{M}^{+}(M):=\sup _{A \in \mathcal{A}_{\lambda, \Lambda}}(-\operatorname{Tr}(A M))
$$

and

$$
\mathcal{M}^{-}(M):=\inf _{A \in \mathcal{A}_{\lambda, \Lambda}}(-\operatorname{Tr}(A M))
$$

where $\mathcal{A}_{\lambda, \Lambda}:=\{A \in S(d): \lambda I \leq A \leq \Lambda I\}$. It is important to note that $\mathcal{M}^{+}(M)=-\mathcal{M}^{-}(-M)$. With this definition we can rewrite the uniformly elliptic of an operator F as

$$
\mathcal{M}^{-}(N) \leq F(M+N)-F(M) \leq \mathcal{M}^{+}(N)
$$

for any $M, N \in S(d)$. In the sequel we introduce the definition of viscosity solution.

Definition 1 (Viscosity solution) Let $F \in \mathcal{C}\left(\mathcal{S}(d) \times \mathbb{R}^{d} \times \mathbb{R} \times B_{1}, \mathbb{R}\right)$ be a uniformly elliptic operator. We say that $u \in \mathcal{C}\left(B_{1}\right)$ is a viscosity subsolution to $F=0$ if for every $x_{0} \in B_{1}$ and every $\phi \in \mathcal{C}^{2}\left(B_{1}\right)$ such that $u-\phi$ attains a local maximum at x_{0}, we have

$$
F\left(D^{2} \phi\left(x_{0}\right), D \phi\left(x_{0}\right), u\left(x_{0}\right), x_{0}\right) \leq 0
$$

We say that $u \in \mathcal{C}\left(B_{1}\right)$ is a viscosity supersolution to $F=0$ if for every $x_{0} \in B_{1}$ and every $\phi \in \mathcal{C}^{2}\left(B_{1}\right)$ such that $u-\phi$ attains a local minimum at x_{0}, we have

$$
F\left(D^{2} \phi\left(x_{0}\right), D \phi\left(x_{0}\right), u\left(x_{0}\right), x_{0}\right) \geq 0
$$

If $u \in \mathcal{C}\left(B_{1}\right)$ is a viscosity sub and a supersolution to $F=0$ we say u is a viscosity solution to $F=0$ in B_{1}.

For $g \in L_{l o c}^{1}\left(\mathbb{R}^{d}\right)$ the maximal function of g is defined by

$$
m(g)(x):=\sup _{r>0} \frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)}|g(y)| d y .
$$

Recall that the maximal operator satisfies

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{d}: m(g)(x) \geq t\right\}\right| \leq \frac{C}{t}\|g\|_{L^{1}\left(\mathbb{R}^{d}\right)}, \quad \forall t>0 \tag{2.1}
\end{equation*}
$$

See [21] for further details. Next, we detail the definition of convex envelope and contact set for a continuous function defined on a domain $\Omega \subset \mathbb{R}^{d}$.

Definition 2 Let $\Omega \subset \mathbb{R}^{d}$ be an open set and $v \in \mathcal{C}(\Omega)$. The convex envelope of v in Ω is defined by

$$
\Gamma(v)(x):=\sup _{L}\{L(x) ; L \leq v \text { in } \Omega, L \text { is affine }\} .
$$

The contact set of v is given by

$$
\{x \in \Omega ; v(x)=\Gamma(v)(x)\}
$$

The next lemma ensures the existence of a barrier function suitable for our analysis of degenerate fully nonlinear problems. See [36] for details.

Lemma 1 Given $\varepsilon_{0}>0$ there exits a smooth function $\varphi: \mathbb{R}^{d} \longrightarrow \mathbb{R}$, such that

1. $\varphi \geq 0$ in $\mathbb{R}^{d} \backslash B_{2 \sqrt{d}}$;
2. $\varphi \leq-2$ in Q_{3};
3. $\varphi \geq M_{b}$ in \mathbb{R}^{d};
4. $|D \varphi| \leq \varepsilon_{0}$ in \mathbb{R}^{d};
5. $\mathcal{M}^{-}\left(D^{2} \varphi\right)+C \xi \geq 0$ in \mathbb{R}^{d},
where $\xi: \mathbb{R}^{d} \longrightarrow[0,1]$ is a continuous function with support in \bar{Q}_{1}, C is a positive universal constant and M_{b} is a positive constant.

We proceed with the definition of $\mathcal{C}^{1, \frac{1}{1+q}}$-cone; these functions play the role of the paraboloids in the uniformly elliptic case.

Definition $3\left(\mathcal{C}^{1, \frac{1}{1+q}}\right.$-cone of opening M and vertex $\left.x_{0}\right)$ We say that ψ is a convex $C^{1, \alpha}$-cone of opening M and vertex x_{0} if

$$
\psi(x)=L(x)+\frac{M}{2}\left|x-x_{0}\right|^{1+\alpha}
$$

where M is a positive constant, and $L(x)$ is an affine function. Similarly, ψ is a concave $C^{1, \alpha}$-cone of opening M and vertex x_{0} if

$$
\psi(x)=L(x)-\frac{M}{2}\left|x-x_{0}\right|^{1+\alpha},
$$

where M is a positive constant, and $L(x)$ is an affine function.
The sets collecting those points that can be touched by a $\mathcal{C}^{1, \alpha}$-cone of certain opening play a pivotal role in our analysis, since their measure yields information on the integrability of the solutions.

Definition 4 Let $O \subset \Omega$ be an open subset, $0<\tau_{0}<\frac{\operatorname{diam}(O)}{5}$ and $M>0$. We define

$$
\underline{G}_{M}(u, O)=\underline{G}_{M}(O)
$$

as the set of all points $x_{0} \in O$ such that there exists a concave $C^{1, \alpha}$-cone ψ of opening M and vertex x_{0} satisfying the following two properties:

1. $u\left(x_{0}\right)=\psi\left(x_{0}\right)$;
2. $u(x)>\psi(x)$ for all $x \in B_{\tau_{0}}\left(x_{0}\right)$.

Likewise we define:

$$
\bar{G}_{M}(u, O)=\bar{G}_{M}(O)
$$

as the set of all points $x_{0} \in O$ such that there exists a convex $C^{1, \alpha}$-cone ψ of opening M and vertex x_{0} satisfying the following two properties:

1. $u\left(x_{0}\right)=\psi\left(x_{0}\right)$;
2. $u(x)<\psi(x)$ for all $x \in B_{\tau_{0}}\left(x_{0}\right)$.

Finally

$$
G_{M}(O)=\underline{G}_{M}(O) \cap \bar{G}_{M}(O) .
$$

Next, we note a monotonicity property related to the sets G_{M}. Let $M_{1}>M_{2}$ and take $x_{1} \in \underline{G}_{M_{2}}(u, O)$. By definition, there exits a concave $C^{1, \frac{1}{q+1}}$-cone of the form

$$
\psi(x)=L(x)-\frac{M_{2}}{2}\left|x-x_{1}\right|^{1+\frac{1}{q+1}}
$$

where L is an affine function, such that $\psi\left(x_{1}\right)=u\left(x_{1}\right)$ and $\psi(x)<u(x)$, for all $x \in B_{\frac{\text { diam }(O)}{10}}\left(x_{1}\right)$. Hence,

$$
\begin{aligned}
u(x) & >L(x)-\frac{M_{2}}{2}\left|x-x_{1}\right|^{1+\frac{1}{q+1}} \\
& >L(x)-\frac{M_{1}}{2}\left|x-x_{1}\right|^{1+\frac{1}{q+1}} \\
& =\tilde{\psi}(x),
\end{aligned}
$$

for all $x \in B_{\frac{\text { diam(O) }}{10}}\left(x_{1}\right)$. Notice that,

$$
u\left(x_{1}\right)=\psi\left(x_{1}\right)=\tilde{\psi}\left(x_{1}\right) .
$$

We conclude that $x_{1} \in \underline{G}_{M_{1}}(u, O)$. It follows that

$$
\underline{G}_{M_{2}}(u, O) \subset \underline{G}_{M_{1}}(u, O) .
$$

Similarly, we have

$$
\bar{G}_{M_{2}}(u, O) \subset \bar{G}_{M_{1}}(u, O)
$$

Therefore,

$$
G_{M_{2}}(u, O) \subset G_{M_{1}}(u, O) .
$$

Definition 5 Let $O \subset \Omega$ be an open subset, $0<\tau_{0}<\frac{\operatorname{diam}(O)}{5}$ and $M>0$. We define

$$
\underline{A}_{M}(u, O)=\underline{A}_{M}(O)=O \backslash \underline{G}_{M}(u, O) .
$$

Similarly

$$
\bar{A}_{M}(u, O)=\bar{A}_{M}(O)=O \backslash \bar{G}_{M}(u, O)
$$

Finally

$$
A_{M}(u, O)=A_{M}(O)=O \backslash G_{M}(u, O)
$$

Next we define the $\mathcal{C}^{1, \frac{1}{q+1}}$-aperture function. This structure is directly related to the integrability of solutions to (1.1).

Definition $6\left(\mathcal{C}^{1, \frac{1}{q+1}}\right.$-aperture function) For $x \in B_{1 / 2}$ we define

$$
\theta(x):=\theta\left(u, B_{1 / 2}\right)(x)=\inf \left\{M: x \in G_{M}\left(B_{1 / 2}\right)\right\} \in[0, \infty] .
$$

Lemma 2 Let $g: \Omega \rightarrow \mathbb{R}$ be a nonnegative and measurable function. Define $\mu_{g}: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+}$as

$$
\mu_{g}(t)=|\{x \in \Omega: g(x)>t\}|, \quad t>0 .
$$

Let $\eta>0$ and $M>1$ be constants. Then, for $0<p<\infty$,

$$
g \in L^{p}(\Omega) \Longleftrightarrow \sum_{k \geq 1} M^{p k} \mu_{g}\left(\eta M^{k}\right)=S<\infty
$$

and

$$
C^{-1} S \leq\|g\|_{L^{p}(\Omega)}^{p} \leq C(|\Omega|+S)
$$

where $C>0$ is a constant depending only on η, M and p.

The function μ_{g} defined in Lemma 2 is known as distribution function of g. Next, we recall a corollary of the Calderón-Zygmund decomposition. See [22, Lemma 4.2]. Let Q_{1} be the unit cube and split it into 2^{d} cubes of half side. Then, split each one of these 2^{d} cubes and iterate the process. The cubes obtained in this way are called dyadic cubes.

If Q is a dyadic cube different from Q_{1}, we say that \tilde{Q} is the predecessor of Q if the latter is one of the 2^{d} cubes obtained by dividing \tilde{Q}.

Lemma 3 (Calderón-Zygmund decomposition) Let $A \subset B \subset Q_{1}$ be measurable sets and $0<\delta<1$ such that
(a) $|A| \leq \delta$;
(b) if Q is a dyadic cube such that $|A \cap Q|>\delta|Q|$, then $\widetilde{Q} \subset B$, where \widetilde{Q} is the predecessor of Q.

Then

$$
|A| \leq \delta|B| .
$$

Now, we are capable of stating a connection between the distribution function μ_{θ} and the measure of the sets A_{M}. In fact,

$$
\mu_{\theta}(t) \leq\left|A_{t}\left(B_{1 / 2}\right)\right| ;
$$

therefore, our interest relies on the summability of

$$
\sum_{k \leq 1} M^{p(q+1) k}\left|A_{M^{k}}\left(B_{1 / 2}\right)\right|
$$

and on the pass-through mechanism transmitting information from theta to the solutions u.

In the sequel we state an Aleksandroff-Bakelman-Pucci estimate designed for degenerate equations. We refer the reader to [36] for its proof.

Proposition 1 Let $G: \Omega \times \mathbb{R}^{d} \backslash B_{M_{F}} \times S(d)$, for some $M_{F} \geq 0$. Suppose that G is continuous and (degenerate) elliptic, i.e. for all $x \in \Omega, p \in \mathbb{R}^{d}$ and $M, N \in S(d)$,

$$
\begin{equation*}
M \leq N \Rightarrow G(x, p, N) \leq G(x, p, M) \tag{2.2}
\end{equation*}
$$

In addition, suppose that G satisfies the following condition:

$$
\left\{\begin{array}{l}
|p| \geq M_{F} \tag{2.3}\\
G(x, p, M) \geq 0 .
\end{array} \quad \Rightarrow \mathcal{M}^{+}(M)+\gamma(x)|p|+g(x) \geq 0\right.
$$

If u is a viscosity supersolution to

$$
G\left(x, D u, D^{2} u\right)=0 \quad \text { in } B_{r},
$$

then

$$
\sup _{B_{r}} u^{-} \leq \sup _{\partial B_{r}} u^{-}+C r\left(M_{F}+\left(\int_{B_{r} \cap\left\{u+M_{\partial}=\Gamma(u)\right\}}\left(g^{+}\right)^{d}\right)^{1 / d}\right),
$$

where $M_{\partial}=\sup _{\partial B_{r}} u^{-}, \Gamma(u)$ is the convex envelope of $\min \left(u+M_{\partial}, 0\right)$ extended by 0 on $B_{2 r}$ and C is a positive constant (only) depending on $\|\gamma\|_{L^{d}\left(B_{r}\right)}, d$.

The importance of an ABP-type of estimate to our argument relies on the switch pointwise-to-measure control. Once we produce a lower bound for the measure of the contact set of solutions, the geometry of $\mathcal{C}^{1, \alpha}$-cones relates such lower bound with the aperture function θ.

In what follows, we define the fractional Sobolev spaces used in this thesis. We refer to [32, Chapter 2] for further details.

Definition 7 Let $s \in(0,1)$. For any $p \in[1,+\infty)$ we define $W^{s, p}(\Omega)$ as follows

$$
W^{s, p}(\Omega):=\left\{u \in L^{p}(\Omega): \frac{|u(x)-u(y)|}{|x-y|^{\frac{n}{p}+s}} \in L^{P}(\Omega \times \Omega)\right\}
$$

The norm in $W^{s, p}(\Omega)$ is given by

$$
\|u\|_{W^{s, p}(\Omega)}:=\left(\int_{\Omega}|u|^{p} d x+\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y\right)^{\frac{1}{p}}
$$

where the term

$$
[u]_{W^{s, p}(\Omega)}:=\left(\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{d+s p}} d x d y\right)^{\frac{1}{p}}
$$

is the so-called Gagliardo seminorm of u.

Definition 8 If $s>1$, we write $s=m+\gamma$, where m is a integer and $\gamma \in(0,1)$. In this case we define,

$$
W^{s, p}(\Omega):=\left\{u \in W^{m, p}(\Omega): D^{\alpha} u \in W^{\gamma, p}(\Omega) \text { for any } \alpha \text { s.t. }|\alpha|=m\right\} .
$$

The norm in $W^{s, p}(\Omega)$, when $s>1$, is defined by

$$
\|u\|_{W^{s, p}(\Omega)}:=\left(\|u\|_{W^{m, p}(\Omega)}^{p}+\sum_{|\alpha|=m}\left\|D^{\alpha} u\right\|_{W^{\gamma, p}(\Omega)}^{p}\right)^{\frac{1}{p}}
$$

When $p=2$, we write $W^{s, 2}(\Omega):=H^{s}(\Omega)$. The space $W_{0}^{s, p}(\Omega)$ consists of all functions $u \in W^{s, p}\left(\mathbb{R}^{d}\right)$ such that $u=0$ in $\mathbb{R}^{d} \backslash \Omega$. In addition, $W^{-s, p}(\Omega)$ denotes the dual space of $W^{s, p}(\Omega)$.

Next, we collect some facts concerning the Fourier transform and its relationship with the fractional Laplacian operator. The Schwartz space will be denoted by \mathcal{S}. We refer the reader to [32, Chapter 3]. Standard density arguments allow us to work in less regular spaces such as $L^{2}\left(\mathbb{R}^{d}\right)$.

Definition 9 (Fourier transform) Let $u \in \mathcal{S}$. The Fourier transform of u is defined by

$$
\mathcal{F} u(\zeta):=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i \zeta \cdot x} u(x) d x
$$

It is well known that \mathcal{F} is a isometry from $L^{2}\left(\mathbb{R}^{d}\right)$ to $L^{2}\left(\mathbb{R}^{d}\right)$. See for instance [33, Section 4.3.1, Theorem 1].

Next, we define
Definition 10 Let $s \in(0,1)$. Then, for any $u \in \mathcal{S}$, we define the fractional Laplacian operator as

$$
(-\Delta)^{s} u(x):=-\frac{1}{2} C(d, s) \int_{\mathbb{R}^{d}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{d+2 s}} d y
$$

The interaction between the Fourier transform and the fractional Laplacian operator is a well established fact and we state as follows.

Proposition 2 Let $s \in(0,1)$ and let $(-\Delta)^{s}: \mathcal{S} \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ be the fractional Laplacian operator. Then, for any $u \in \mathcal{S}$,

$$
(-\Delta)^{s} u=\mathcal{F}^{-1}\left(|x|^{2 s}(\mathcal{F} u)\right) \text { for all } x \in \mathbb{R}^{d} .
$$

Proof. See [32, Proposition 3.3].

Definition 11 For $s \in \mathbb{R}$ we define

$$
\bar{H}^{s}\left(\mathbb{R}^{d}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right): \int_{\mathbb{R}^{d}}\left(1+|x|^{2 s}\right)|\mathcal{F} u(x)|^{2} d x<\infty\right\}
$$

Proposition 3 Let $s \in(0,1)$. Then the fractional Sobolev space $H^{s}\left(\mathbb{R}^{d}\right)$ coincides with $\bar{H}^{s}\left(\mathbb{R}^{d}\right)$. In particular, for any $u \in H^{s}\left(\mathbb{R}^{d}\right)$

$$
[u]_{H^{s}\left(\mathbb{R}^{d}\right)}^{2}=2 C(n, s)^{-1} \int_{\mathbb{R}^{d}}|x|^{2 s}|\mathcal{F} u(x)|^{2} d x
$$

Proof. See [32, Proposition 3.4].
The next result concerns local regularity for the fractional Laplacian equation of order s. See [8, Theorem 1.4] for details.

Theorem 1 Let $u \in W_{0}^{s, 2}(\bar{\Omega})$ be the unique weak solution to

$$
\left\{\begin{align*}
(-\Delta)^{s} u & =f \text { in } \Omega \tag{2.4}\\
u & =0 \text { on } \mathbb{R}^{d} \backslash \Omega
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{d}$ is an arbitrary bounded open set and $s \in(0,1)$. Suppose $f \in W^{-s, 2}(\bar{\Omega})$. If $f \in L^{p}(\Omega)$ with $1<p<\infty$, then $u \in W_{\text {loc }}^{2 s, p}(\Omega)$.

The remainder of this chapter fixes some notation and collect elements regarding the second part of the thesis, namely, the fully nonlinear free transmission problem.

We denote by $\Omega^{+}(u)$ the subset of the unit ball where $u>0$, whereas $\Omega^{-}(u)$ stands for the set where $u<0$. That is,

$$
\Omega^{+}(u):=\left\{x \in B_{1} \mid u(x)>0\right\} \quad \text { and } \quad \Omega^{-}(u):=\left\{x \in B_{1} \mid u(x)<0\right\} .
$$

When referring to the set where $u \neq 0$ it is convenient to use the notation $\Omega(u):=\Omega^{+}(u) \cup \Omega^{-}(u)$. With $\partial \Omega(u)$ we denote the union of the topological boundaries of Ω^{+}and Ω^{-}. I.e.,

$$
\partial \Omega(u):=\left(\partial \Omega^{+}(u) \cup \partial \Omega^{-}(u)\right) \cap B_{1} .
$$

Also, we denote with $\Sigma(u)$ the set where u vanishes:

$$
\Sigma(u)=\left\{x \in B_{1} \mid u(x)=0\right\}
$$

Next, we define strong solutions for the free transmission problem

Definition 12 Let $d<2 p$ and $f \in L_{l o c}^{p}(\Omega)$. A function $u \in W^{2, d}\left(B_{1}\right)$ is a $W^{2, d}$-strong subsolution (respectively, supersolution) of

$$
F\left(D^{2} u\right)=f \text { in } \Omega
$$

if

$$
F\left(D^{2} u\right) \geq f \text { a.e. in } \Omega,
$$

(respectively $F\left(D^{2} u\right) \leq f$ a.e. in Ω,). Moreover, u is $W^{2, d}$-strong solution of

$$
F\left(D^{2} u\right)=f \text { in } \Omega
$$

if it is both an $W^{2, d_{-}}$-strong subsolution and an $W^{2, d}$-strong supersolution.
Moreover, we recall the notion of L^{p}-viscosity solution.
Definition 13 Let $d<2 p$ and $f \in L_{\text {loc }}^{p}(\Omega)$. A function $u \in \mathcal{C}(\Omega)$ is an L^{p}-viscosity subsolution (supersolution) of

$$
F\left(D^{2} u\right)=f \text { in } \Omega
$$

if for all $\phi \in W_{\text {loc }}^{2, p}\left(B_{1}\right)$, and point $\hat{x} \in \Omega$ at which $u-\varphi$ has a local maximum (respectively minimum) one has

$$
e s s \liminf _{x \rightarrow \hat{x}}\left(F\left(D^{2} \varphi\right)-f(x)\right) \geq 0
$$

(respectively ess $\left.\lim \sup _{x \rightarrow \hat{x}}\left(F\left(D^{2} \varphi\right)-f(x)\right) \leq 0\right)$. Moreover, u is an L^{p}-viscosity solution of

$$
F\left(D^{2} u\right)=f \text { in } \Omega
$$

if it is both an L^{p}-viscosity subsolution and an L^{p}-viscosity supersolution.
Finally, we introduce the set of non-degenerate points, denoted by $\mathcal{N}(u)$ and defined as

$$
\mathcal{N}(u):=\left\{z \in \Sigma(u): \limsup _{x \rightarrow z} \frac{|u(x)|}{|x-z|}>0\right\} .
$$

A further condition imposed on the problem regards the subregion $\Omega^{+}(u)$. To prove quadratic growth of the solutions through the set of methods used in the paper, we consider the quantity

$$
\begin{equation*}
V_{r}\left(x^{*}, u\right):=\frac{\operatorname{vol}\left(B_{r}\left(x^{*}\right) \cap \Omega^{-}(u)\right)}{r^{d}} \tag{2.5}
\end{equation*}
$$

For ease of notation, $V_{r}(0, u)=: V_{r}(u)$. The analysis leading to quadratic growth away from the free boundary supposes $V_{r}\left(x^{*}, u\right)<C_{0}$ for some smalls constant $C_{0}>0$ depending on the data of the problem.

We close this section by introducing the notion of thickness. For any set A, we denote by $\operatorname{MD}(A)$ the smallest possible distance between two parallel hyperplanes containing A. We define the thickness of Σ in $B_{r}(x)$ as

$$
\delta_{r}(u, x):=\frac{\operatorname{MD}\left(\Sigma(u) \cap B_{r}(x)\right)}{r} .
$$

The thickness δ_{r} satisfies some elementary properties which we list below. We refer to [49, Chapter 5] for more details.

Proposition 4 The thickness δ_{r} satisfies the following properties:

1. $\delta_{1}\left(u_{r}, 0\right)=\delta_{r}(u, x)$, where $u_{r}(y)=u(x+r y) / r^{2}$;
2. For polynomial global solutions $P_{2}=\Sigma_{j} a_{j} x_{j}^{2}$, with a_{j} such that $G\left(D^{2} P_{2}\right)=1$ we have $\delta_{r}\left(P_{2}, 0\right)=0$;
3. If u_{r} converges to some function u_{0} then $\lim \sup _{r \rightarrow 0} \delta_{r}\left(u, x_{0}\right) \leq \delta_{1}\left(u_{0}, 0\right)$.

The next chapter details our analysis of degenerate fully nonlinear diffusions and puts forward the proof of Theorem 1.

3
 Degenerate fully nonlinear equations

In this chapter we detail the proofs of Theorems 1 and 2. The next section provides some context on fully nonlinear equations of the form

$$
\begin{equation*}
|D u|^{q} F\left(D^{2} u\right)=f \quad \text { in } B_{1} \tag{3.1}
\end{equation*}
$$

3.1
 Some context on degenerate fully nonlinear problems

Since the developments in [21] were reported, fully nonlinear equations of the form

$$
F\left(x, D^{2} u\right)=f(x) \quad \text { in } B_{1}
$$

have been studied by many authors. As a consequence, several results were established concerning the properties of solutions to fully nonlinear operators. More recently, this geometric ideas have been developed into a set of methods and techniques known as geometric tangential analysis. See, for instance [3],[4],[61], [63], [62] just to cite a few. We also refer to the surveys [52],[64].

Contrasting the fully nonlinear elliptic case, in the equation (3.1) the diffusion degenerates along an a priori unknown set of critical points $\{|D u|=$ $0\}$. The degeneracy of the equation is controlled by the exponent q. The larger the value of q more degenerate the equation is. Consequently the smoothing effects on the diffusion become less efficient.

The study of equations of type (3.1) is the subject of a series of papers. In [9] the authors establish fundamental results for equations of the form

$$
F\left(x, D u, D^{2} u\right)-g(x, u) \geq(\leq) 0
$$

Under certain conditions on the operator F, modelled after the p-Laplace operator, they were able to prove a comparison result for subsolutions and supersolutions of $F\left(x, D u, D^{2} u\right)=b(u)$. In addition, they also prove a Liouville type estimate for solutions of

$$
-F\left(x, D u, D^{2} u\right) \geq h(x) u^{q}
$$

in \mathbb{R}^{d}.

The study of eigenvalues is the subject of [10] and [11]. Based on [7] the authors extend the definition of the principal eigenvalue. They work with operators of the form

$$
G\left(x, u, D u, D^{2} u\right):=F\left(x, D u, D^{2} u\right)+b(x) \cdot D u|D u|^{\alpha}+c(x)|u|^{\alpha} u,
$$

where the operator F can be seen as a non-variational extension of the p-Laplacian. For a similar condition see [39]. They prove the existence of non-negative solutions to

$$
\left\{\begin{aligned}
G\left(x, u, D u, D^{2} u\right)+\lambda u^{1+\alpha} & =f \Omega \\
u & =0 \partial \Omega
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
G\left(x, \phi, D \phi, D^{2} \phi\right)+\bar{\lambda} \phi^{1+\alpha} & =f \Omega \\
\phi & =0 \partial \Omega
\end{aligned}\right.
$$

where $\lambda<\bar{\lambda}$ and ϕ is of class C^{1-}, i.e., ϕ is α-Hölder continuous for every $\alpha \in(0,1)$. In addition ϕ is assumed to be locally Lipschitz. The concept of eigenvalue for fully nonlinear operators was generalized in [12]. In that paper, instead of C^{2} regularity, the boundary just need to satisfy the uniform exterior cone condition. In addition, they also prove C^{α}-regularity and a maximum principle.

The Aleksandroff-Bakelman-Pucci (ABP) estimate is the object of [36]. In that paper the authors prove the ABP estimate for a class of fully nonlinear elliptic equations of the form

$$
\begin{equation*}
F\left(x, u, D u, D^{2} u\right)=0 \tag{3.2}
\end{equation*}
$$

which can be either degenerate or singular. In addition, they explain how to extend their results to the singular case and for equations of the form

$$
\begin{equation*}
F_{0}\left(D u, D^{2} u\right)+b(x) \cdot D u|D u|^{\alpha} c u|u|^{\alpha}+f_{0}(x)=0, \quad x \in \Omega, \tag{3.3}
\end{equation*}
$$

where F is positively homogeneous of order $\alpha \in(-1,1)$. See [29] for similar estimates and existence results.

In [36] the authors also prove the Harnack inequality for positive solutions of (3.2) in either the singular or the degenerate case. They work under the additional assumption that the operator F is strictly elliptic when the gradient is large. In [30] the authors prove a Harnack inequality to solutions of (3.3), in the singular case, under similar conditions of [36]. See also [13] for similar results in unbounded domains. More recently, Imbert and Silvestre in [38] proved the Harnack inequality for a equation in terms of the Pucci
extremal operators, that is more general than particular equations; in fact, their formulation addresses equations holding in regions where the gradient is large. In addition, the authors derivate a L^{ε}-estimate for the solutions.

As a central topic in analysis, the regularity theory for fully nonlinear degenerate/singular equations has been studied by many authors in recent years. In [30] the authors work in the singular setting and established C^{α}-estimates for solutions to (3.3). In [36], the authors extend the result in [30] to the degenerate case. In [38], the authors prove Hölder-estimates for solutions of a general equation (involving the Pucci extremal operators) where the gradient is large. Hölder regularity of the gradient of the solutions is the subject of [37]. In that paper the authors proved that solutions to (3.1) are locally of class $C^{1, \alpha}$, for some $0<\alpha<1$, provided f is continuous and bounded and $q \geq 0$. The optimal regularity of solutions to (3.1) is given in [2]. Under the additional assumption that F is concave, the authors establish that solutions to (3.1) are of class $\mathcal{C}^{1, \frac{1}{1+q}}$ and this regularity is optimal.

A variable-exponent version of (3.1) is considered in [19]. The authors obtain $\mathcal{C}^{1, \alpha}$-estimates for solutions of

$$
|D u|^{q(x)} F\left(D^{2} u\right)=f(x) \quad \text { in } \quad B_{1}
$$

where q is bounded from below and $\alpha \in(0,1)$ depends on the the L^{∞}-norms of the positive and negative parts of q.

The next section presents a preliminary integrability estimate for the aperture function θ.

3.2
 Preliminary estimates for the $\mathcal{C}^{1, \alpha}$-aperture function

In this section we produce an L^{δ}-estimate for the aperture function θ, introduced in Definition 6. This first level of integrability stems from the uniform ellipticity of the operator F and the integrability of the source term f; see A1 and A3. Such estimate is to be refined in a further step of the argument, where geometric arguments build upon A2. To be more precise, we prove the next proposition:

Proposition 5 (L^{δ}-estimate for the aperture function) Let $u \in \mathcal{C}\left(B_{1}\right)$ be a viscosity solution to (1.1). Suppose A1 and A3 are in force. Then $\theta \in L^{\delta}\left(B_{1}\right)$, for some $0<\delta \ll 1$, and there exists a universal constant $C>0$ such that

$$
\|\theta\|_{L^{\delta}\left(B_{1 / 2}\right)} \leq C
$$

The proof of Proposition 5 follows from a few lemmas, exploring the measure of the sets A_{M} and G_{M}. The δ-integrability of the aperture function relates to a δ-decay rate for the measure of suitable sets. We start by framing the problem in the context of a bounded domain $\Omega \subset \mathbb{R}^{d}$ containing balls of d-dependent radii. Furthermore, since we work under A3, scaling arguments allow us to suppose

$$
\begin{equation*}
\|f\|_{L^{d}\left(B_{1}\right)} \leq \delta_{0} \tag{3.4}
\end{equation*}
$$

for arbitrary values of $\delta>0$. We suppose such bounds are available throughout the chapter.

Lemma 4 Let $u \in \mathcal{C}\left(B_{6 \sqrt{d}}\right)$ be a viscosity solution to (3.1) in $B_{6 \sqrt{d}}$. Suppose A1 and A3 are in force. Suppose further that Ω is a bounded domain such that $B_{6 \sqrt{d}} \subset \Omega$. Then

$$
\left|\underline{G}_{M}(u, \Omega) \cap Q_{1}\right| \geq 1-\sigma
$$

where $0<\sigma<1$ is a universal constants and $M>1$ is such that $M=$ $M(\lambda, \Lambda, d, q)$.

Proof. We starting by noticing that $\bar{Q}_{1} \subset \bar{Q}_{3} \subset B_{2 \sqrt{d}}$. Consider the barrier function φ whose existence is ensured by Lemma 1 and set $w:=u+1+2 \varphi$ in $\bar{B}_{2 \sqrt{d}}$. For this choice of w, we have

$$
w \geq 0 \quad \text { on } \quad \partial B_{2 \sqrt{d}} \quad \text { and } \quad \inf _{x \in Q_{3}} w(x) \leq-2
$$

In addition, w solves

$$
G\left(x, D w, D^{2} w\right)=0
$$

where

$$
G(x, p, M):=|p-D \varphi|^{q} F\left(M-2 D^{2} \varphi\right)-f(x)
$$

At this point we resort to the ABP estimate as to produce a pointwise-to-measure control. By setting $\gamma \equiv 0$ in Proposition 1, we notice G satisfies (2.2) and (2.3), with

$$
g(x)=C \xi(x)+|f(x)|
$$

Hence, by applying Proposition 1 to w we obtain

$$
\frac{1}{2 c(d)} \leq M_{F}+\left|\{w=\Gamma(w)\} \cap Q_{1}\right|
$$

provided δ_{0} is taken sufficiently small in (3.4). Then, for M_{F} small enough we have

$$
\left|\{w=\Gamma(w)\} \cap Q_{1}\right| \geq 1-\sigma,
$$

with $0<\sigma<1$.
Now, we extrapolate information along the contact set tot \underline{G}_{M}. To that end, we show that $\left(\{w=\Gamma(w)\} \cap Q_{1}\right) \subset\left(\underline{G}_{M}(\Omega) \cap Q_{1}\right)$, for some $M>1$. Let $x_{0} \in\left\{w=\Gamma(w) \cap Q_{1}\right\}$. By the definition of convex envelope, there exists an affine function L such that $L<0$ on $\partial B_{2 \sqrt{d}}$. Recall that $\Gamma(w)<-w^{-} \leq 0$ in $B_{4 \sqrt{d}}$. Hence

$$
L \leq \Gamma(w) \leq w=u+1+2 \varphi \quad \text { in } \quad B_{2 \sqrt{d}}
$$

with equalities at x_{0}. Since $\left\|D^{2} \varphi\right\| \leq C$ in $B_{2 \sqrt{d}}$, where C is a universal constant, it follows that there exists a concave $C^{1, \frac{1}{1+q}}$-cone of opening M and vertex x_{0}

$$
\psi(x)=a-\frac{M}{2}\left|x-x_{0}\right|^{1+\frac{1}{1+q}}
$$

where $M=M(\lambda, \Lambda, d, q)>1$ and a is a real number ensuring that

$$
\begin{equation*}
\psi \leq L-1-2 \varphi \leq u \quad \text { in } \quad B_{2 \sqrt{d}} \tag{3.5}
\end{equation*}
$$

with equalities at x_{0}. Since $L<0$ and $\varphi \geq 0$ on $\partial B_{2 \sqrt{d}}$ we have that $\psi \leq-1$ on $\partial B_{2 \sqrt{d}}$. In addition, $\|u\|_{L^{\infty}}(\Omega) \leq 1$ implies that $\psi\left(x_{0}\right)=u\left(x_{0}\right) \geq-1$. Now, since $x_{0} \in B_{2 \sqrt{d}}$ and $\left\{x \in \mathbb{R}^{d}: \psi(x) \geq-1\right\}$ is convex, we get $\psi<-1$ in $\mathbb{R}^{d} \backslash \Omega$.

As a consequence, we find that $\psi \leq u$ in $\mathbb{R}^{d} \backslash \Omega$. From this and (3.5) we obtain $\psi \leq u$ in Ω; because $\psi\left(x_{0}\right)=u\left(x_{0}\right)$ we get $x_{0} \in \underline{G}_{M}(u, \Omega) \cap Q_{1}$ and complete the proof.

The next result connects the existence of an element $x_{1} \in \underline{G}_{1}(u, \Omega) \cap Q_{3}$ with the measure of $\underline{G}_{M}(u, \Omega) \cap Q_{1}$.

Lemma 5 Let $u \in \mathcal{C}\left(B_{6 \sqrt{d}}\right)$ be a viscosity solution to (3.1) in $B_{6 \sqrt{d}}$. Suppose A1 and $A 3$ are in force and Ω is a bounded domain such that $B_{6 \sqrt{d}} \subset \Omega$. Suppose further that

$$
\underline{G}_{1}(u, \Omega) \cap Q_{3} \neq \emptyset .
$$

Then

$$
\left|\underline{G}_{M}(u, \Omega) \cap Q_{1}\right| \geq 1-\sigma,
$$

where $0<\sigma<1$ is a universal constant and $1<M=M(\lambda, \Lambda, d, q)$.
Proof. Let $x_{1} \in \underline{G}_{1}(u, \Omega) \cap Q_{3}$ and observe that

$$
Q_{1} \subset Q_{3} \subset B_{3 / 2 \sqrt{d}} \subset B_{4 \sqrt{d}}\left(x_{1}\right) \subset B_{6 \sqrt{d}} \subset \Omega
$$

From the definition of $C^{1, \frac{1}{1+q}}$-cone of opening 1 , we infer the existence of

$$
\psi(x)=L(x)-\frac{1}{2}\left|x-x_{1}\right|^{1+\frac{1}{1+q}}
$$

where $L(x)$ is an affine function, touching u from bellow at x_{1}. Hence,

$$
\psi_{1}(x) \leq v(x)
$$

where

$$
\begin{gathered}
\psi_{1}(x):=1-\frac{1}{16 d}\left|x-x_{1}\right|^{1+\frac{1}{1+q}} \\
v(x):=L_{1}(x)+\frac{u(x)}{8 d}
\end{gathered}
$$

and

$$
L_{1}(x):=1-\frac{L(x)}{8 d}
$$

As before, we build an auxiliary function as to resort to the ABP estimate in Proposition 1. Consider φ as in Lemma 1 and define $w(x):=v(x)+\varphi(x)$ in $B_{4 \sqrt{d}}\left(x_{1}\right)$. We have that w solves

$$
G\left(x, D w, D^{2} w\right)=0
$$

where

$$
G(x, p, M):=\left|p-\left(D \varphi-l_{1}\right)\right|^{q} \frac{1}{8 d} F\left(8 d M-8 d D^{2} \varphi\right)-\frac{1}{(8 d)^{q+1}} f(x)
$$

Once again we take $\gamma \equiv 0$ to conclude G satisfies (2.2) and (2.3), for

$$
g(x)=c(d) \xi(x)+|f(x)| .
$$

By definition, we have that $w \geq 0$ on $\partial B_{4 \sqrt{d}}\left(x_{1}\right)$. In addition, $\inf _{Q_{3}} w \leq-1$. We apply Proposition 1 to w in $B_{4 \sqrt{d}}\left(x_{1}\right)$ and, as in the proof of Lemma 4, specialize the choice of constants as to obtain

$$
\left|\{w=\Gamma(w)\} \cap Q_{1}\right| \leq 1-\sigma,
$$

with $0<\sigma<1$.
It remains to prove that $\left(\{w=\Gamma(w)\} \cap Q_{1}\right) \subset\left(\underline{G}_{M}(u, \Omega) \cap Q_{1}\right)$, for some $M>1$. Let $x_{2} \in\{w=\Gamma(w)\} \cap Q_{1}$. There exists an affine function L_{2} such that

$$
L_{2} \leq \Gamma(w) \leq v+\varphi \text { in } B_{4 \sqrt{d}}\left(x_{1}\right),
$$

with equalities at x_{2}. Thus, there exists a concave $C^{1, \frac{1}{1+q}}$-cone of opening M_{0}

$$
\psi_{2}(x)=\widetilde{L}(x)-\frac{M_{0}}{2}\left|x-x_{2}\right|^{1+\frac{1}{1+q}},
$$

where $M_{0}=M_{0}(\lambda, \Lambda, d, q)>1$ and $\widetilde{L}(x)$ is an affine function, such that

$$
\begin{equation*}
\psi_{2} \leq L_{2}-\varphi \leq v \quad \text { in } \quad B_{4 \sqrt{d}}\left(x_{1}\right) \tag{3.6}
\end{equation*}
$$

with equalities at x_{2}. Since $L_{2}<0$ on $\partial B_{4 \sqrt{d}}\left(x_{1}\right)$, it follows that $\psi \leq \psi_{1}$ on $\partial B_{4 \sqrt{d}}\left(x_{1}\right)$. In addition, $x_{2} \in Q_{1} \subset B_{4 \sqrt{d}}\left(x_{1}\right)$ and $\psi_{2}\left(x_{2}\right)=v\left(x_{2}\right) \geq \psi_{1}\left(x_{2}\right)$. Now, by taking $M_{0}>1 /(8 d)$ we obtain that $\left\{\psi_{2}-\psi_{1} \geq 0\right\}$ is a convex set. Hence $\psi_{2}-\psi_{1}<0$ in $\mathbb{R}^{d} \backslash B_{4 \sqrt{d}}\left(x_{1}\right)$. It implies that

$$
\psi_{2} \leq \psi_{1} \leq v \quad \text { in } \quad \Omega \backslash B_{4 \sqrt{d}}\left(x_{1}\right)
$$

From (3.6) we get $\psi_{2} \leq v$ in Ω. Thus

$$
8 d \psi_{2}-8 d a_{1} \leq u \quad \text { in } \quad \Omega,
$$

with equalities at x_{2}. Therefore $x_{2} \in \underline{G}_{8 d M_{0}}(u, \Omega) \cap Q_{1}$.
At this point, we connect the former information on the measure of $\underline{G}_{M} \cap Q_{1}$ with the corollary of Calderón-Zygmund decomposition presented in Lemma 3.

Lemma 6 Let $u \in \mathcal{C}\left(B_{6 \sqrt{d}}\right)$ be a viscosity solution to (3.1) in $B_{6 \sqrt{d}}$. Suppose $A 1$ and $A 3$ are in force and Ω is a bounded domain such that $B_{6 \sqrt{d}} \subset \Omega$. Define

$$
A=\underline{A}_{M^{k+1}}(u, \Omega) \cap Q_{1}
$$

and

$$
B=\left(\underline{A}_{M^{k}}(u, \Omega) \cap Q_{1}\right) \cup\left\{x \in Q_{1}: m\left(f^{d}\right)(x) \geq\left(c_{1} M^{k(q+1)}\right)^{d}\right\} .
$$

Then

$$
|A| \leq \sigma|B|
$$

where $0<\sigma<1, c_{1}>0$ and $M>1$ are positive constants.
Proof. We start by noticing that $\left(\underline{G}_{M}(\Omega) \cap Q_{1}\right) \subset\left(\underline{G}_{N}(\Omega) \cap Q_{1}\right)$, whenever $M \leq N$. Hence,

$$
\left|\underline{G}_{M^{k+1}}(\Omega) \cap Q_{1}\right| \geq\left|\underline{G}_{M^{k}}(\Omega) \cap Q_{1}\right| \geq 1-\sigma .
$$

It follows that $|A| \leq \sigma$. For $i \geq 1$, let $Q=Q_{1 / 2^{i}}\left(x_{0}\right)$ be a dyadic cube satisfying

$$
\begin{equation*}
\left|\underline{A}_{M^{k+1}}(\Omega) \cap Q\right|=|A \cap Q|>\sigma|Q| . \tag{3.7}
\end{equation*}
$$

To complete the proof, we resort to Lemma 3 . That is, we verify that $\widetilde{Q} \subset B$, where \widetilde{Q} is a predecessor of Q.

We argue by contradiction and suppose that $\widetilde{Q} \not \subset B$. Then, there exists x_{1} such that

$$
\begin{equation*}
x_{1} \in \widetilde{Q} \cap \underline{G}_{M^{k}}(\Omega) \tag{3.8}
\end{equation*}
$$

and

$$
\sup _{r>0} \frac{1}{\left|Q_{r}\left(x_{1}\right)\right|} \int_{Q_{r}\left(x_{1}\right)}|f|^{d} d x \leq\left(c_{1} M^{k(q+1)}\right)^{d} .
$$

Now, consider the transformation

$$
\begin{equation*}
x=x_{0}+\frac{1}{2^{i}} y, \quad y \in Q_{1}, \quad x \in Q \tag{3.9}
\end{equation*}
$$

and define the function

$$
v(x)=\frac{2^{(1+1 /(1+q)) i}}{M^{k}} u\left(x_{0}+\frac{1}{2^{i}} y\right)
$$

We will check that v satisfies the hypothesis of Lemma 5 with Ω replaced by $\widetilde{\Omega}$, where

$$
\widetilde{\Omega}:=x_{0}+\frac{1}{2^{i}} \Omega .
$$

Observe that $x \in Q$ (respectively, $Q_{3 / 2^{i}}\left(x_{0}\right), B_{6 \sqrt{d} / 2^{i}}\left(x_{0}\right)$, and Ω) if and only if $y \in Q_{1}$ (respectively, $Q_{3}, B_{6 \sqrt{d}}, \widetilde{\Omega}$). Because $B_{6 \sqrt{d} / 2^{i}}\left(x_{0}\right) \subset B_{6 \sqrt{d}}$ and $\widetilde{Q} \subset Q_{3 / 2^{i}}\left(x_{0}\right)$, transformation (3.9) leads to

$$
B_{6 \sqrt{d}} \subset \widetilde{\Omega} \quad \text { and } \quad\left|x_{1}-x_{0}\right| \leq \frac{3}{2^{i+1}}
$$

In addition, v solves

$$
|D v(y)|^{q} \widetilde{F}\left(D^{2} v\right)-\widetilde{f}(y)=0
$$

where

$$
\widetilde{F}(P):=\frac{2^{-q i /(q+1)}}{M^{k}} F\left(\frac{M^{k}}{2^{-q i /(q+1)}} P\right)
$$

and

$$
\tilde{f}(y)=\frac{1}{M^{k(q+1)}} f\left(x_{0}+\frac{1}{2^{i}} y\right)
$$

Since $B_{6 \sqrt{d} / 2^{i}}\left(x_{0}\right) \subset Q_{15 \sqrt{d} / 2^{i}}\left(x_{1}\right)$, we obtain

$$
\begin{aligned}
\|\tilde{f}\|_{L^{d}\left(B_{6 \sqrt{d}}\right)}^{d} & =\frac{2^{i d}}{M^{k d(q+1)}} \int_{B_{6 \sqrt{d} / 2^{i}\left(x_{0}\right)}}|f(x)|^{d} d x \\
& \leq \frac{c(d)}{M^{k d(q+1)}} \frac{1}{\left|Q_{15 \sqrt{d} / 2^{i}}\right|} \int_{Q_{15 \sqrt{d} / 2^{i}\left(x_{1}\right)}}|f(x)|^{d} d x \\
& \leq c(d) c_{1}^{d} \\
& \leq \delta_{0}^{d}
\end{aligned}
$$

if we choose c_{1} sufficiently small.
Recall that $x_{1} \in \underline{G}_{M^{k}}(u, \Omega) \cap \widetilde{Q}$. Then there exits a concave $C^{1, \frac{1}{1+q}-c o n e}$ of opening M^{k} and vertex x_{1}

$$
\psi(x)=a-\frac{M^{k}}{2}\left|x-x_{1}\right|^{1+\frac{1}{1+q}},
$$

that touches u from bellow at x_{1}. Define

$$
\widetilde{\psi}(y)=\frac{2^{i\left(1+\frac{1}{1+q}\right)}}{M^{k}} \psi\left(x_{0}+\frac{1}{2^{i}} y\right)
$$

It is easy to see that $\tilde{\psi}$ touches v from bellow at y_{1}, where y_{1} is such that $x_{1}=x_{0}+\frac{1}{2^{i}} y_{1}$. In addition, by definition of $\tilde{\psi}$, we have that

$$
\tilde{\psi}(y)=\tilde{L}(x)-\frac{1}{2}\left|y-y_{1}\right|^{1+\frac{1}{1+q}}
$$

where $\tilde{L}(x)$ is an affine function.
Hence, $y_{1} \in \underline{G}_{1}(v, \widetilde{\Omega})$ which implies that $\underline{G}_{1}(v, \widetilde{\Omega}) \cap Q_{3} \neq \emptyset$. Therefore, then by Lemma 5 ,

$$
\left|\underline{G}_{M}(v, \widetilde{\Omega}) \cap Q_{1}\right| \geq 1-\sigma=(1-\sigma)\left|Q_{1}\right| .
$$

Hence

$$
\left|\underline{G}_{M^{k+1}}(u, \Omega) \cap Q_{1}\right| \geq(1-\sigma)\left|Q_{1}\right|
$$

which is a contradiction with (3.7).
The next lemma concerns a decay rate of the measure of the sets $A_{t}(u, \Omega) \cap Q_{1}$.

Lemma 7 Let $u \in \mathcal{C}\left(B_{6 \sqrt{d}}\right)$ be a viscosity solution to (3.1) in $B_{6 \sqrt{d}}$. Suppose $A 1$ and $A 3$ are in force and Ω is a bounded domain such that $B_{6 \sqrt{d}} \subset \Omega$. Extend f by zero outside $B_{6 \sqrt{d}}$. Then

$$
\begin{equation*}
\left|A_{t}(u, \Omega) \cap Q_{1}\right| \leq c_{2} t^{-\mu}, \quad \forall t>0 \tag{3.10}
\end{equation*}
$$

where c_{2} and μ are positive universal constants.
Proof. We start by defining the quantities α_{k} and β_{k} as follows:

$$
\alpha_{k}=\left|\underline{A}_{M^{k}}(u, \Omega) \cap Q_{1}\right|
$$

and

$$
\beta_{k}=\left|x \in Q_{1}: m\left(f^{d}\right)(x) \geq c_{1}^{d} M^{k d(q+1)}\right| .
$$

Because of Lemma 6, we have $\alpha_{k+1} \leq \sigma\left(\alpha_{k}+\beta_{k}\right)$. Hence

$$
\alpha_{k} \leq \sigma^{k}+\sum_{i=0}^{k-1} \sigma^{k-i} \beta_{i}
$$

Since $\|f\|_{L^{d}\left(B_{6 \sqrt{d}}\right)} \leq \delta_{0}$, we have that $\left\|f^{d}\right\|_{L^{1}\left(B_{6 \sqrt{d}}\right)} \leq \delta_{0}^{d}$. Thus, the definition of maximal operator (2.1) yields

$$
\beta_{k} \leq c(d) \delta_{0}^{d}\left(c_{1} M^{k(q+1)}\right)^{-d}=C M^{-d k(q+1)}
$$

Hence

$$
\sum_{i=0}^{k-1} \sigma^{k-i} \beta^{i} \leq C k m_{0}^{k}
$$

where $m_{0}=\max \left\{\sigma, M^{-d(q+1)}\right\}<1$. Therefore

$$
\alpha_{k} \leq \sigma^{k}+C k m_{0}^{k} \leq(1+C k) m_{0}^{k}
$$

and, since $m_{0}<1$, we conclude

$$
\begin{equation*}
\left|\underline{A}_{t}(u, \Omega) \cap Q_{1}\right| \leq c_{2} t^{-\mu}, \quad \forall t>0 . \tag{3.11}
\end{equation*}
$$

Notice that $v=-u$ solves

$$
-|D v|^{q} F\left(-D^{2} v\right)=-f(x)
$$

Since $G(x, p, M)=-|D v|^{q} F(-M)+f(x)$ satisfies (2.2) and (2.3), Lemma 4 is available for v. Hence,

$$
\begin{equation*}
\left|\bar{A}_{t}(u, \Omega) \cap Q_{1}\right| \leq c_{2} t^{-\mu}, \quad \forall t>0 \tag{3.12}
\end{equation*}
$$

By gathering (3.11) and (3.12) we conclude

$$
\left|A_{t}(u, \Omega) \cap Q_{1}\right| \leq c_{2} t^{-\mu}, \quad \forall t>0
$$

and complete the proof.
At this point, we have all the necessary ingredients to establish Proposition 5.

Proof of Proposition 5. Without loss of generality, we may assume that u solves

$$
|D u|^{q} F\left(D^{2} u\right)=f(x) \quad \text { in } B_{6 \sqrt{d}},
$$

with $\|u\|_{L^{\infty}\left(B_{6 \sqrt{d}}\right)} \leq 1$ and

$$
\|f\|_{L^{d}\left(B_{6 \sqrt{d}}\right)} \leq \delta_{0}
$$

We will prove that $\|\theta\|_{L^{\delta}\left(B_{1 / 2}\right)} \leq C$, for some $0<\delta \ll 1$. We resort to (3.10), with $\Omega=B_{6 \sqrt{d}}$, and obtain

$$
\left|A_{M^{k}}\left(u, B_{6 \sqrt{d}}\right) \cap Q_{1}\right| \leq c_{2} M^{-k \mu}
$$

Hence,

$$
\sum_{k \geq 1} M^{\frac{\mu}{2} k}\left|A_{M^{k}}\left(u, B_{6 \sqrt{d}}\right) \cap Q_{1}\right| \leq C
$$

for a constant $C>0$. Since $B_{1 / 2} \subset Q_{1} \subset B_{6 \sqrt{d}}$, we get

$$
A_{M^{k}}\left(u, B_{1 / 2}\right) \subset A_{M^{k}}\left(u, B_{6 \sqrt{d}}\right) \cap Q_{1} .
$$

Hence

$$
\sum_{k \geq 1} M^{\frac{\mu}{2} k}\left|A_{M^{k}}\left(u, B_{1 / 2}\right)\right| \leq C .
$$

Recall that $\mu_{\theta}(t) \leq\left|A_{t}\left(u, B_{1 / 2}\right)\right|$. Therefore, Lemma 2 implies

$$
\|\theta\|_{L^{\mu / 2}\left(B_{1 / 2}\right)} \leq C
$$

by taking $\delta=\mu / 2$, the proof is complete.
In the next section, we produce an approximation lemma relating the solutions to (1.1) with viscosity solutions to $F=0$. Improved regularity available for the latter refines the decay rate for $\left|A_{M^{k}}\left(u, B_{6 \sqrt{d}}\right) \cap Q_{1}\right|$, ultimately yielding improved integrability for the aperture function θ.

3.3
 Improved integrability for the aperture function

In what follows, we refine the decay rate of the measure of certain sets, leading to improved integrability of the aperture function. In the sequel we state the main result in this section.

Proposition $6(p(q+1)$-integrability of $\theta)$ Let $u \in \mathcal{C}\left(B_{1}\right)$ be a viscosity solution to (3.1). Suppose A1-A3 are in force. Suppose further that $\|f\|_{L^{d}\left(B_{1}\right)}<$ ε, for some $\varepsilon>0$ to be determined. Then $\theta \in L^{p(q+1)}\left(B_{1}\right)$ and there exists a universal constant $C>0$ such that

$$
\|\theta\|_{L^{p(q+1)}\left(B_{1 / 2}\right)} \leq C .
$$

The key ingredient in establishing Proposition 6 is an approximation lemma importing information from the solutions to $F=0$, under A2.

Lemma 8 (Approximation Lemma) Let $u \in \mathcal{C}\left(B_{8 \sqrt{d}}\right)$ be a normalized viscosity solution to (3.1) in $B_{8 \sqrt{d}}$. Suppose that A1-A3 are in force. Given $\delta>0$, there exists $0<\varepsilon<\delta^{q+1}$ such that, if $\|f\|_{L^{d}\left(B_{8 \sqrt{d}}\right)} \leq \varepsilon$, one can find a function $h \in C^{1,1}\left(B_{6 \sqrt{d}}\right)$ satisfying

$$
\|u-h\|_{L^{\infty}\left(\bar{B}_{6 \sqrt{d}}\right)} \leq \delta
$$

Proof. We argue by contradiction. Suppose that the statement of the proposition is false. Then, there exists $\widetilde{\delta_{0}}$ and sequences $\left(u_{n}\right)_{n},\left(f_{n}\right)_{n}$, such that

$$
\begin{gather*}
\left|D u_{n}\right|^{q} F\left(D^{2} u_{n}\right)=f_{n} \quad \text { in } \quad B_{8 \sqrt{d}} \tag{3.13}\\
\left\|f_{n}\right\|_{L^{p}\left(B_{8 \sqrt{d}}\right)} \leq \frac{1}{n}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|u_{n}-h\right\|_{L^{\infty}\left(B_{6 \sqrt{d}}\right)}>\widetilde{\delta}_{0} \tag{3.14}
\end{equation*}
$$

for all $h \in C^{1,1}\left(\bar{B}_{6 \sqrt{d}}\right)$.
From the regularity available for (3.13), see [37], we have that there exists a function $u_{\infty} \in C_{\text {loc }}^{1, \beta}\left(B_{7 \sqrt{d}}\right)$, for some $0<\beta<1$, such that $u_{n} \longrightarrow u_{\infty}$ in $C_{\mathrm{loc}}^{1, \beta}\left(B_{7 \sqrt{d}}\right)$, through a subsequence if necessary. Note that u_{∞} solves

$$
\left|D u_{\infty}\right|^{q} F\left(D^{2} u_{\infty}\right)=0 \quad \text { in } \quad B_{7 \sqrt{d}}
$$

in the viscosity sense. It follows that u_{∞} solves

$$
F\left(D^{2} u_{\infty}\right)=0 \quad \text { in } \quad B_{6 \sqrt{d}} .
$$

Since F has $C_{\text {loc }}^{1,1}$-estimates, $u_{\infty} \in C^{1,1}\left(\bar{B}_{6 \sqrt{d}}\right)$. By taking $h \equiv u_{\infty}$ we get a contradiction with (3.14) and the proof is complete.

Lemma 9 Let $u \in \mathcal{C}\left(B_{8 \sqrt{d}}\right)$ be a normalized viscosity solution to (3.1) in $B_{8 \sqrt{d}}$. Suppose that A1-A3 are in force and

$$
-|x|^{1+1 /(q+1)} \leq u(x) \leq|x|^{1+1 /(q+1)} \quad \text { in } \quad \Omega \backslash B_{6 \sqrt{d}}
$$

Then

$$
\begin{equation*}
\left|G_{M}(u, \Omega) \cap Q_{1}\right| \geq 1-\rho, \tag{3.15}
\end{equation*}
$$

for some $\rho \in(0,1)$, where $M>1$ depends only on d and q, and δ in Lemma 8 will be determined by ρ.

Proof. Fix $0<\delta<0$, yet to be determined. Then let h be the δ-approximating function whose existence is ensured by Lemma 8 , restricted to $\bar{B}_{6 \sqrt{d}}$. We know from $A 2$ that $h \in C^{1,1}\left(\bar{B}_{6 \sqrt{d}}\right)$ and

$$
\|h\|_{C^{1,1}\left(\bar{B}_{6 \sqrt{d}}\right)} \leq C
$$

Extend h outside $\bar{B}_{6 \sqrt{d}}$ continuously, as to have $h=u$ in $\Omega \backslash B_{7 \sqrt{d}}$ and $\|u-h\|_{L^{\infty}(\Omega)}=\|u-h\|_{L^{\infty}\left(B_{6 \sqrt{d}}\right)}$. Recall that $\|h\|_{L^{\infty}\left(B_{6 \sqrt{d}}\right)}=\|u\|_{L^{\infty}\left(B_{6 \sqrt{d}}\right)}$. It is clear that

$$
\|u-h\|_{L^{\infty}(\Omega)} \leq 2
$$

It follows that

$$
-2-|x|^{1+\frac{1}{q+1}} \leq h(x) \leq 2+|x|^{1+\frac{1}{q+1}} \quad \text { in } \quad \Omega \backslash B_{6 \sqrt{d}} .
$$

Therefore, there exists $1<N=N(d, q, C)$ such that

$$
\begin{equation*}
Q_{1} \subset G_{N}(h, \Omega) \tag{3.16}
\end{equation*}
$$

Define

$$
w(x)=\frac{\min \left(1, \delta_{0}\right)^{1 /(q+1)}}{2 \delta}(u-h)(x),
$$

where δ_{0} is the constant in Lemma 4. Notice that w solves

$$
\left|D u+\frac{\min \left(1, \delta_{0}\right)^{1 /(q+1)}}{2 \delta} D h\right|^{q} \tilde{F}\left(D^{2} u\right)-\tilde{f}(x)=0
$$

where

$$
\tilde{F}(M):=\frac{\min \left(1, \delta_{0}\right)^{1 /(q+1)}}{2 \delta} F\left(\frac{2 \delta}{\min \left(1, \delta_{0}\right)^{1 /(q+1)}} M+D^{2} h\right)
$$

and

$$
\tilde{f}(x):=\frac{\min \left(1, \delta_{0}\right)}{(2 \delta)^{q+1}} f(x)
$$

As a consequence of the former inequality, we have

$$
\|\tilde{f}\|_{L^{d}} \leq \frac{\min \left(1, \delta_{0}\right)}{(2 \delta)^{q+1}}\|f\|_{L^{d}} \leq \delta_{0}
$$

Hence, w is entitled to the conclusions of Lemma 4 in Ω. Because of Lemma 7 , we obtain

$$
\left|A_{t}(w, \Omega) \cap Q_{1}\right| \leq t^{-\mu}, \quad \text { for all } \quad t>0
$$

It follows that

$$
\left|A_{s}(u-h, \Omega) \cap Q_{1}\right| \leq c s^{-\mu} \delta^{\mu} \quad \text { for all } \quad s>0
$$

By choosing δ small enough we get

$$
\left|G_{N}(u-h, \Omega) \cap Q_{1}\right| \geq 1-\delta^{\mu} \geq 1-\rho
$$

The proof of Lemma 9 sets the proximity-regime encoded by $\delta>0$. As a by-product it sets the smallness condition on the L^{d}-norm of the source term f, encoded by $\varepsilon>0$ in the statement of Lemma 8. In the remainder of this chapter, these constants are fixed.

Lemma 10 Let $u \in \mathcal{C}\left(B_{8 \sqrt{d}}\right)$ be a normalized viscosity solution to (3.1) in $B_{8 \sqrt{d}}$. Suppose that A1-A3 are in force. If

$$
\begin{equation*}
G_{1}(u, \Omega) \cap Q_{3} \neq \emptyset \tag{3.17}
\end{equation*}
$$

then

$$
\left|G_{M}(u, \Omega) \cap Q_{1}\right| \geq 1-p
$$

with M and ρ as in Lemma 9.
Proof. Let $x_{1} \in G_{1}(u, \Omega) \cap Q_{3}$. Hence, there exists an affine function $L(x)$, such that

$$
-\frac{1}{2}\left|x-x_{1}\right|^{1+1 /(q+1)} \leq u(x)-L(x) \leq \frac{1}{2}\left|x-x_{1}\right|^{1+1 /(q+1)} \quad \text { in } \quad \Omega .
$$

Define

$$
v(x)=\frac{u(x)-L(x)}{c(d)}
$$

where $c(d)$ is a constant depending only on d, large enough as to guarantee $|v(x)| \leq 1$ and

$$
|v(x)| \leq|x|^{1+1 /(q+1)} \quad \text { in } \quad \Omega \backslash B_{6 \sqrt{d}} .
$$

In addition, v solves

$$
|D v|^{q} \tilde{F}\left(D^{2} u\right)-\tilde{f}(x)=0
$$

where

$$
\tilde{F}(M):=\frac{1}{c(d)} F(c(d) M)
$$

and

$$
\tilde{f}(x):=\frac{1}{c(d)^{q+1}} f(x) .
$$

Lemma 9 yields

$$
\left|G_{M}(v, \Omega) \cap Q_{1}\right| \geq 1-\rho,
$$

and, therefore

$$
\left|G_{c(d) M}(u, \Omega) \cap Q_{1}\right| \geq 1-\rho
$$

The next result resorts once again to the Calderón-Zygmund decomposition.

Lemma 11 Let $u \in \mathcal{C}\left(B_{8 \sqrt{d}}\right)$ be a normalized viscosity solution to (3.1) in $B_{8 \sqrt{d}}$. Suppose that A1-A3 are in force. Extend f by zero outside $B_{8 \sqrt{d}}$ and set

$$
\begin{gathered}
A:=A_{M^{k+1}}\left(u, B_{8 \sqrt{d}}\right) \cap Q_{1} \\
B:=\left\{A_{M^{k}}\left(u, B_{8 \sqrt{d}}\right) \cap Q_{1}\right\} \cup\left\{x \in Q_{1}: m\left(f^{d}\right)(x) \geq c_{3}^{d} M^{k d(q+1)}\right\},
\end{gathered}
$$

for $k \in \mathbb{N}$. Then

$$
|A| \leq \rho|B|
$$

where $M>1$ depends on d and q, and $c_{3}>0$ depends only on d, λ, Λ and ρ.
Proof. We start by noticing that $|u| \leq 1 \leq|x|^{1+1 /(q+1)}$ in $B_{8 \sqrt{d}} \backslash B_{6 \sqrt{d}}$. Hence Lemma 9 applied with $\Omega=B_{8 \sqrt{d}}$, implies

$$
\left|G_{M^{k+1}}\left(u, B_{8 \sqrt{d}}\right) \cap Q_{1}\right| \geq\left|G_{M^{k}}\left(u, B_{8 \sqrt{d}}\right) \cap Q_{1}\right| \geq 1-\rho
$$

It leads to $|A| \leq \rho$.
The remainder of the proof relies on the Calderón-Zygmund decomposition, as stated in Lemma 3. Hence, we need to show that if $Q=Q_{1 / 2^{i}}\left(x_{0}\right)$ is a dyadic cube Q_{1} such that

$$
\begin{equation*}
\left|A_{M^{k+1}}\left(u, B_{8 \sqrt{d}}\right) \cap Q\right|=|A \cap Q|>\rho|Q|, \tag{3.18}
\end{equation*}
$$

we have $\tilde{Q} \subset B$. We suppose otherwise and produce a contradiction. Suppose that $\tilde{Q} \not \subset B$ and let x_{1} be such that

$$
\begin{equation*}
x_{1} \in \tilde{Q} \cap G_{M^{k}}\left(u, B_{8 \sqrt{d}}\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(f^{d}\right)\left(x_{1}\right) \leq\left(c_{3} M^{k(q+1)}\right)^{d} \tag{3.20}
\end{equation*}
$$

Now, we proceed as in Lemma 6. Consider as before the transformation

$$
\begin{equation*}
x=x_{0}+\frac{1}{2^{i}} y, \quad x \in B_{8 \sqrt{d}}, \tag{3.21}
\end{equation*}
$$

and define

$$
v(y)=\frac{2^{\left(1+\frac{1}{q+1}\right) i}}{M^{k}} u\left(x_{0}+\frac{1}{2^{i}} y\right) .
$$

Finally, let $\tilde{\Omega}$ be the image of $B_{8 \sqrt{d}}$ under the transformation (3.21).
We need to verify that v satisfies the hypothesis of Lemma 10. Note that v solves

$$
|D v(y)|^{q} \tilde{F}\left(D^{2} u\right)-\tilde{f}(x)=0 \text { in } \tilde{\Omega}
$$

where

$$
\tilde{F}(N):=\frac{1}{2^{i q /(q+1)} M^{k}} F\left(2^{i q /(q+1)} M^{k} N\right)
$$

and

$$
\tilde{f}(x):=\frac{1}{M^{k(q+1)}} f\left(x_{0}+\frac{1}{2^{i}} x\right)
$$

Since $B_{8 \sqrt{d}} \subset \tilde{\Omega}$, the function v satisfies the equation in $B_{8 \sqrt{d}}$, in the viscosity sense. Furthermore $\left|x_{1}-x_{0}\right|_{\infty} \leq 3 / 2^{i+1}$ implies that $B_{8 \sqrt{d} / 2^{i}}\left(x_{0}\right) \subset$ $Q_{19 \sqrt{d} / 2^{i}}\left(x_{1}\right)$. Hence

$$
\begin{aligned}
\|\tilde{f}\|_{B_{8 \sqrt{d}}}^{d} & =\frac{2^{i d}}{M^{k d(q+1)}} \int_{B_{8 \sqrt{d} / 2^{i}\left(x_{0}\right)}}|f(x)|^{d} d x \\
& \leq \frac{c(d)}{M^{k d(q+1)}} \frac{1}{\mid Q_{19 \sqrt{d} / 2^{i}}} \int_{Q_{19 \sqrt{d} / 2^{i}\left(x_{1}\right)}}|f(x)|^{d} d x \\
& \leq c(d) c_{3}^{d} \\
& \leq \varepsilon,
\end{aligned}
$$

for c_{3} small enough.
Now, by (3.19) there exist a convex and a concave $C^{1, \alpha_{-}}$cones of opening M^{k}, ψ_{1} and ψ_{2} respectively, such that ψ_{1} touches u from above at x_{1} and ψ_{2} touches u from bellow at x_{1}. Define

$$
\tilde{\psi}_{1}(y):=\psi_{1}\left(x_{0}+\frac{1}{2^{i}} y\right)
$$

and

$$
\tilde{\psi}_{2}(y):=\psi_{2}\left(x_{0}+\frac{1}{2^{i}} y\right) .
$$

It is easy to see that $\tilde{\psi}_{1}$ (resp. $\tilde{\psi}_{2}$) touches v from above (respectively from
bellow) in a point y_{1} such that $x_{1}=x_{0}+\frac{1}{2^{2}} y_{1}$. Therefore $G_{1}(v, \tilde{\Omega}) \neq \emptyset$. By Lemma 10 we obtain

$$
\left|G_{M}(v, \tilde{\Omega}) \cap Q_{1}\right| \geq 1-\rho=(1-\rho)\left|Q_{1}\right| .
$$

Hence

$$
\left|G_{M^{k+1}}\left(u, B_{8 \sqrt{d}}\right) \cap Q\right| \geq(1-\rho)|Q|
$$

which implies

$$
\left|A_{M^{k+1}}\left(u, B_{8 \sqrt{d}}\right) \cap Q\right| \leq \rho|Q| .
$$

This is a contradiction with (3.18).

Proof of Proposition 6. Let M be as in Lemma 11 and take ρ such that

$$
\rho M^{p(q+1)}=\frac{1}{2}
$$

For $k \geq 0$, define

$$
\alpha_{k}:=\left|A_{M^{k}}\left(u, B_{8 \sqrt{d}}\right) \cap Q_{1}\right|
$$

and

$$
\beta_{k}:=\left|\left\{x \in Q_{1}: m\left(f^{d}\right)(x) \geq\left(c_{3} M^{k(q+1)}\right)^{d}\right\}\right|
$$

By Lemma 11 we obtain $\alpha_{k+1} \leq \rho\left(\alpha_{k}+\beta_{k}\right)$. Hence

$$
\begin{equation*}
\alpha_{k} \leq \rho^{k}+\sum_{i=0}^{k-1} \rho^{k-i} \beta_{i} \tag{3.22}
\end{equation*}
$$

Since $f^{d} \in L^{p / d}\left(B_{8 \sqrt{d}}\right)$, we have that $m\left(f^{d}\right) \in L^{p / d}\left(B_{8 \sqrt{d}}\right)$ and

$$
\left\|m\left(f^{d}\right)\right\|_{L^{p / d}\left(B_{8 \sqrt{d}}\right)} \leq c\|f\|_{L^{p}\left(B_{8 \sqrt{d}}\right)}^{d} \leq C .
$$

Therefore, by Lemma 2 we obtain

$$
\sum_{k \geq 0}\left(M^{d(q+1)}\right)^{\frac{p k}{d}}\left|x \in Q_{1}: m\left(f^{d}\right)(x) \geq c_{3}^{d} M^{d k(q+1)}\right| \leq C
$$

The former inequality implies

$$
\begin{equation*}
\sum_{k \geq 0} M^{p(q+1) k} \beta_{k} \leq C \tag{3.23}
\end{equation*}
$$

Since $B_{1 / 2} \subset Q_{1}$, the distribution function of θ is bounded from above as follows:

$$
\mu_{\theta}(t) \leq\left|A_{t}\left(u, B_{1 / 2}\right)\right| \leq\left|A_{t}\left(u, B_{8 \sqrt{d}}\right) \cap Q_{1}\right|
$$

Hence

$$
\begin{aligned}
\sum_{k \geq 1} M^{p(q+1) k} \alpha_{k} & \leq \sum_{k \geq 1}\left(\rho M^{p(q+1)}\right)^{k}+\sum_{k \geq 1} \sum_{i=0}^{k-1} \rho^{k-i} M^{p(q+1) k} \beta_{i} \\
& =\sum_{k \geq 1} 2^{-k}+\sum_{k \geq 1} \sum_{i=0}^{k-1} \rho^{k-i} M^{p(q+1)(k-i)} M^{p(q+1) i} \beta_{i} \\
& =\sum_{k \geq 1} 2^{-k}+\sum_{k \geq 1} \sum_{i=0}^{k-1} 2^{-(k-i)} M^{p(q+1) i} \beta_{i} \\
& =\sum_{k \geq 1} 2^{-k}+\left(\sum_{i \geq 0} M^{p(q+1) i} \beta_{i}\right)\left(\sum_{j \geq 1} 2^{-j}\right) \\
& \leq C .
\end{aligned}
$$

Applying Lemma 2 once again we conclude that $\|\theta\|_{L^{p(q+1)}\left(B_{1 / 2}\right)} \leq C$ and complete the proof.

At this point we relate the (improved) integrability of the aperture function θ with the regularity of solutions in fractional Sobolev spaces. For completeness, we restate Theorem 1.

Theorem 6 (Restatement of Theorem 1) Let $u \in \mathcal{C}\left(B_{1}\right)$ be a viscosity solution to (3.1). Suppose that A1-A3, to be determinate later, hold true. Then $u \in W_{l o c}^{\sigma, p(q+1)}\left(B_{1}\right)$, for every

$$
\sigma<1+\frac{1}{q+1}
$$

In addition, there exists a positive constant $C>0$ such that

$$
\|u\|_{W^{\sigma, p(q+1)}\left(\bar{B}_{1 / 2}\right)} \leq C .
$$

Proof. Let ψ is a $C^{1, \alpha}$-cone of opening $\pm M$ and vertex x_{0}, we have:

$$
\begin{aligned}
\Delta_{h}^{1+\alpha} \psi\left(x_{0}\right) & :=\frac{\psi\left(x_{0}+h\right)+\psi\left(x_{0}-h\right)-2 \psi\left(x_{0}\right)}{|h|^{1+\alpha}} \\
& = \pm M
\end{aligned}
$$

Also, notice that touching u strictly in $B_{\frac{1}{10}}\left(x_{0}\right)$ from above at x_{0} by a
convex $C^{1, \alpha}$-cone ψ of opening M and vertex x_{0} gives for all $0<h<\frac{1}{10}$

$$
\begin{aligned}
\Delta_{h}^{1+\alpha} u\left(x_{0}\right) & :=\frac{u\left(x_{0}+h\right)+u\left(x_{0}-h\right)-2 u\left(x_{0}\right)}{|h|^{1+\alpha}} \\
& <\frac{\psi\left(x_{0}+h\right)+\psi\left(x_{0}-h\right)-2 \psi\left(x_{0}\right)}{|h|^{1+\alpha}} \\
& \leq \theta\left(u, B_{1 / 2}\right)\left(x_{0}\right)
\end{aligned}
$$

Similarly, touching u strictly in $B_{\frac{1}{10}}\left(x_{0}\right)$ from below at x_{0} by a concave $C^{1, \alpha_{-}}$-cone ψ of opening M and vertex x_{0} gives, for all $0<h<\frac{1}{10}$:

$$
-\theta\left(u, B_{1 / 2}\right)\left(x_{0}\right)<\Delta_{h}^{1+\alpha} u\left(x_{0}\right)
$$

Hence, by hypothesis,

$$
\left\|\Delta_{h}^{1+\alpha} u\right\|_{L^{p}\left(B_{1 / 2}\right)} \leq C
$$

uniformly for all $0<h<\frac{1}{10}$, for $\alpha=\frac{1}{1+q}$. At this point, we set $\varphi:=u \chi_{B_{1 / 2}}$ in \mathbb{R}^{d}. Then we have that $\varphi \in L^{\infty}\left(\mathbb{R}^{d}\right)$. Next, for

$$
\sigma<1+\frac{1}{q+1}
$$

we define the singular integral operator:

$$
I_{\sigma / 2}(v)\left(x_{0}\right):=\int_{\mathbb{R}^{d}} \frac{v\left(x_{0}+y\right)+v\left(x_{0}-y\right)-2 v(y)}{|y|^{d+\sigma}} .
$$

Notice that $I_{\sigma / 2}(v)=\Delta^{\sigma / 2}(v)$. For $x_{0} \in B_{1 / 2}$ we estimate

$$
\begin{aligned}
& I_{\sigma / 2}(\varphi)\left(x_{0}\right)= \int_{\mathbb{R}^{d}} \frac{\varphi\left(x_{0}+y\right)+\varphi\left(x_{0}-y\right)-2 \varphi(y)}{|y|^{d+\sigma}} \\
&= \int_{B_{1 / 10}} \frac{u\left(x_{0}+y\right)+u\left(x_{0}-y\right)-2 u(y)}{|y|^{d+\sigma}} \\
&+\int_{B_{1} \backslash B_{1 / 10}} \frac{u\left(x_{0}+y\right)+u\left(x_{0}-y\right)-2 u(y)}{|y|^{d+\sigma}} \\
& \leq \theta\left(u, B_{1 / 2}\right)\left(x_{0}\right) \int_{B_{1 / 10}} \frac{1}{|y|^{d-\varepsilon}}+C\|u\|_{L^{\infty}\left(B_{1}\right)} \\
&= C \\
& \varepsilon 10^{d}
\end{aligned} \theta\left(u, B_{1 / 2}\right)
$$

where

$$
\varepsilon=1+\frac{1}{q+1}-\sigma
$$

and C is a universal constant. Hence, we have proven that

$$
I_{\sigma / 2}(\varphi) \in L^{p(q+1)}\left(B_{1 / 2}\right)
$$

Therefore,

$$
(-\Delta)^{\sigma / 2} \varphi \in L^{p(q+1)}\left(B_{1 / 2}\right)
$$

By setting $g:=(-\Delta)^{\sigma / 2} \varphi$ in $B_{1 / 2}$ we conclude that φ satisfies

$$
\left\{\begin{aligned}
(-\Delta)^{\sigma / 2} \varphi & =g \text { in } B_{1 / 2} \\
\varphi & =0 \text { in } \mathbb{R}^{d} \backslash B_{1 / 2}
\end{aligned}\right.
$$

Now, we want to show that $\varphi \in W^{\sigma / 2,2}\left(\mathbb{R}^{d}\right)$. Extend g by zero outside $B_{1 / 2}$. It is clear that $g \in L^{2}\left(\mathbb{R}^{d}\right)$. Hence $\mathcal{F}(g) \in L^{2}\left(\mathbb{R}^{d}\right)$. In addition, since $\varphi \in L^{2}\left(\mathbb{R}^{d}\right)$ (φ is bounded in \mathbb{R}^{d}), $\mathcal{F}(\varphi) \in L^{2}\left(\mathbb{R}^{d}\right)$ as well. By Proposition 2 (applied to functions in $L^{2}\left(\mathbb{R}^{d}\right)$)

$$
\mathcal{F}(g)(x)=(|x|)^{\sigma} \mathcal{F}(\varphi)
$$

Furthermore, we have that

$$
\left(1+|x|^{\sigma}\right) \mathcal{F}(\varphi)=\mathcal{F}(\varphi)+\mathcal{F}(g)
$$

It follows that $\left(1+|x|{ }^{\sigma}\right) \mathcal{F}(\varphi) \in L^{2}\left(\mathbb{R}^{d}\right)$. In particular,

$$
\int_{\mathbb{R}^{d}}\left(1+|x|^{\sigma}\right)|\mathcal{F}(\varphi)(x)|^{2} d x<\infty
$$

Hence, by Proposition 3 we conclude that $\varphi \in W^{\sigma / 2,2}\left(\mathbb{R}^{d}\right)$. Finally, by Theorem 2.4 we obtain that $\varphi \in W_{l o c}^{\sigma, p(q+1)}\left(B_{1 / 2}\right)$. Therefore

$$
u \in W_{l o c}^{\sigma, p(q+1)}\left(B_{1 / 2}\right)
$$

which ends the proof.
By combining Theorem 6 with standard embedding results for fractional Sobolev spaces, we obtain Theorem 2, restated in what follows. See [31, Section 4.6] for an account of embedding results for fractional Sobolev spaces $W^{\sigma, p}$, for $\sigma \geq 1$.
Theorem 7 (Restatement of Theorem 2) Let $u \in \mathcal{C}\left(B_{1}\right)$ be a normalized viscosity solution of (3.1). Suppose A1-A3, to be detailed further, are in force. Then $u \in \mathcal{C}_{\text {loc }}^{1, \beta}\left(B_{1}\right)$ for all

$$
\beta<\frac{1}{q+1}\left(q+2-\frac{d}{p}\right)-1
$$

The almost optimality of the exponent $\beta \in(0,1)$ can be derived from the analysis of an explicit example, combined with intrinsic, scaling-related, constraints of the equation.

In fact, consider $v(x):=|x|^{1+\beta}$. A straightforward computation yields

$$
|D v|^{q} \Delta v \sim|x|^{(1+\beta)(q+1)-q-2}
$$

to ensure the right hand side in the former expression belongs to $L^{p}\left(B_{1}\right)$, we must secure

$$
\begin{equation*}
\beta \geq \frac{1}{q+1}\left(q+2-\frac{d}{p}\right)-1 \tag{3.24}
\end{equation*}
$$

Conversely, we examine the $\mathcal{C}^{1, \beta}$-scaling of (3.1). Let

$$
v(x):=\frac{u(r x)}{r^{1+\beta}}
$$

for some fixed $0<r \ll 1$. We find that v solves

$$
|D v|^{q} \bar{F}\left(D^{2} v\right)=\bar{f} \quad \text { in } B_{1}
$$

where

$$
\bar{F}(M):=r^{2-(1+\beta)} F\left(r^{(1+\beta)-2} M\right)
$$

and

$$
\bar{f}(x):=r^{2-(1+\beta)-((1+\beta)-1) q} f(r x)
$$

To ensure that $\bar{f} \in L^{p}\left(B_{1}\right)$, we require

$$
\begin{equation*}
\beta \leq \frac{1}{q+1}\left(q+2-\frac{d}{p}\right)-1 \tag{3.25}
\end{equation*}
$$

By gathering (3.24) and (3.25), one finds the constraint on the Hölder exponent prescribed in Theorem 2 to be almost optimal.

4
 A fully nonlinear free transmission problem

In this chapter, we study the fully nonlinear free transmission problem

$$
\begin{equation*}
F_{1}\left(D^{2} u\right) \chi_{\{u>0\}}+F_{2}\left(D^{2} u\right) \chi_{\{u<0\}}=1 \quad \text { in } \quad \Omega^{+}(u) \cup \Omega^{-}(u), \tag{4.1}
\end{equation*}
$$

where $F_{1}, F_{2}: \mathcal{S}(d) \rightarrow \mathbb{R}$ are (λ, Λ)-elliptic operators, $\Omega^{+}(u):=\{u>0\}$ and $\Omega^{-}(u):=\{u<0\}$.

We start by noticing that a $W^{2, d}$-strong solution to (4.1) solves a uniformly elliptic PDE in B_{1}. Moreover, the source term for such equation is bounded. Then we establish quadratic growth for the solutions away from the free boundary.

Proposition 7 Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (4.1). Suppose $A 4$-A5 hold true. There exists a (λ, Λ)-elliptic operator $G: \mathcal{S}(d) \rightarrow \mathbb{R}$ and a function $g \in L^{\infty}\left(B_{1}\right)$ such that u is a strong solution to

$$
\begin{equation*}
G\left(D^{2} u(x)\right)=g(x) \quad \text { in } \quad B_{1} . \tag{4.2}
\end{equation*}
$$

Proof. Because $u \in W^{2, d}\left(B_{1}\right)$, we have $D^{2} u(x)=0$ a.e. $-x \in\{u=0\}$. Without loss of generality, consider $G:=F_{1}$. For a.e. $-x \in\{u>0\}$ we have $G\left(D^{2} u(x)\right)=1$. In addition, the last condition in A4 yields $G\left(D^{2} u(x)\right)=0$ for almost every $x \in\{u=0\}$. Finally, we consider $x \in\{u<0\}$; because of (4.1), we know that $F_{2}\left(D^{2} u(x)\right)=1$ for a.e. $-x \in\{u<0\}$. It follows from A5 that

$$
\left|F_{1}\left(D^{2} u(x)\right)\right| \leq C+1 \quad \text { a.e. }-x \in\{u<0\} .
$$

By defining $g: B_{1} \rightarrow \mathbb{R}$ as

$$
g(x):= \begin{cases}1 & \text { if } x \in\{u>0\} \\ 0 & \text { if } x \in\{u=0\} \\ F_{1}\left(D^{2} u(x)\right) & \text { if } x \in\{u<0\}\end{cases}
$$

we have $g \in L^{\infty}\left(B_{1}\right)$ and $G\left(D^{2} u(x)\right)=g(x)$ almost everywhere in B_{1}.
The next result states that u is an L^{d}-viscosity solution to $G=g$ in B_{1}; it follows from [20, Lemma 2.5]. For the sake of completeness, we include it here as a Proposition.

Proposition 8 Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (4.1). Suppose A_{4}-A5 hold true. Then, u is an L^{d}-viscosity solution to (4.2).

As mentioned in [20], Proposition 8 follows from the ellipticity of G and the maximum principle for $W^{2, d}$-functions, as stated in [46]; see also [15]. At this point, by requiring F_{1} to be convex, our analysis produces a first regularity result concerning the solutions to (4.1). In fact, the convexity of F_{1} turns u into a viscosity solution to a convex equation with bounded right-hand side. From [23] we infer that $D^{2} u \in \mathrm{BMO}_{l o c}\left(B_{1}\right)$, with the appropriate estimates. As yet a further consequence, we also have $u \in \mathcal{C}_{\text {loc }}^{1, \text { Log-Lip }}\left(B_{1}\right)$; for a direct proof of this fact, see [57]. An alternative argument would be to relate functions with derivatives in BMO-spaces with the Zygmund class [47] and then notice the Zygmund class is a subset of the space of Log-Lipschitz functions [66].

4.1
 Some context on transmission problems

Transmission problems comprise a class of models aimed at examining a variety of phenomena in heterogeneous media. The problems under the scope of this formulation include thermal and electromagnetic conductivity, composite materials and, more generally, diffusion processes driven by discontinuous laws.

Given a domain $\Omega \subset \mathbb{R}^{d}$, there exist distinct subregions $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}$ satisfying $\Omega_{i} \subset \Omega$ for every $i=1, \ldots, k$, for some $k \in \mathbb{N}$ so that the mechanism governing the problem is smooth within Ω_{i}, though possibly discontinuous across $\partial \Omega_{i}$. A paramount, subtle, aspect of the theory concerns the nature of those subregions.

In fact, $\left(\Omega_{i}\right)_{i=1}^{k}$ and the geometry of $\partial \Omega_{i}$ can be prescribed a priori. The alternative is $\left(\Omega_{i}\right)_{i=1}^{k}$ to be determined endogenously. The latter setting frames the theory in the context of free boundary problems. Both cases differ substantially; as a consequence, their analysis also requires distinct techniques. The vast majority of former studies on transmission problems presupposes a priori knowledge of the subregions Ω_{i} and their geometric properties. A work-horse of the theory is the divergence-form equation

$$
\begin{equation*}
\operatorname{div}(a(x) D u)=0 \quad \text { in } \quad \Omega, \tag{4.3}
\end{equation*}
$$

where the matrix-valued function $a(\cdot)$ is defined as

$$
a(x):=a_{i} \text { for } x \in \Omega_{i},
$$

for constant matrices a_{i} and $i=1, \ldots, k$. Though smooth within every Ω_{i}, the coefficients of (4.3) can be discontinuous across $\partial \Omega_{i}$. This feature introduces
genuine difficulties in the analysis.
The first formulation of a transmission problem appeared in [51] and addressed a topic in the realm of material sciences. More precisely, in elasticity theory. In that paper, the author proves the uniqueness of solutions for a model consisting of two subregions, which are known a priori. The existence of solutions is discussed in [51], although not examined in detail. See also [50].

The formulation in [51] motivated a number of subsequent studies [17, 26, 27, 28, 45, 35, 48, 55, 65, 58]. Those papers present a wide range of developments, including the existence of solutions for the transmission problem in [51] and the analysis of several variants. We refer the reader to [16] for an account of those results and methods.

Estimates and regularity results for the solutions to transmissions problems have also been treated in the literature. In [44] the authors consider a bounded subdomain $\Omega \subset \mathbb{R}^{d}$, which is split into a finite number of subregions $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}$, known a priori. The motivation is in the study of composite materials with closely spaces inclusions. A two-dimensional example is the cross-section of a fiber-reinforced material; see Figure 4.1.

Figure 4.1: The cross-section of a fiber-reinforced material provides an example in \mathbb{R}^{2} of a bounded domain with a finite number of inclusions. The grey subregions in the cross-section represent the fibers, whereas the remainder of the material is the matrix.

The mathematical analysis amounts to the study of

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(a(x) \frac{\partial}{\partial x_{j}} u\right)=f \quad \text { in } \quad \Omega, \tag{4.4}
\end{equation*}
$$

where

$$
a(x):=\left\{\begin{array}{lll}
a_{i}(x) & \text { for } & x \in \Omega_{i}, i=1, \ldots, k \\
a_{k+1}(x) & \text { for } & x \in \Omega \backslash \cup_{i=1}^{k} \Omega_{i} .
\end{array}\right.
$$

Under natural assumptions on the data, the authors establish local Hölder continuity for the gradient of the solutions. From the applied perspective, the gradient encodes information on the stresses of the material. Their findings imply bounds on the gradient independent of the location of the fibers. C.f. [14].

The vectorial setting is the subject of [43]. In that paper the authors extend the developments reported in [44] for systems. Moreover, they produce bounds for higher derivatives of the solutions.

In [5] the authors consider a domain with two subregions, which are supposed to be ε-apart, for some $\varepsilon>0$. Within each subregion, the divergence-form equation is governed by a constant coefficient k, whereas outside the coefficient is equal to 1 . By setting $k=+\infty$, the authors frame the problem in the context of perfect conductivity.

In this setting, it is known that bounds on the gradient deteriorate as the two subregions approach each other. The analysis in [5] yields blow up rates for the gradient bounds as $\varepsilon \rightarrow 0$. The case of multiple inclusions, covering perfect conductivity and insulation $(k=0)$, is discussed in [6]. See also [18].

Recently, new developments have been obtained under minimal regularity requirements for the transmission interfaces. In [25] the authors consider a smooth and bounded domain Ω and fix $\Omega_{1} \Subset \Omega$, defining $\Omega_{2}:=\Omega \backslash \bar{\Omega}_{1}$. They suppose the boundary of the transmission interface $\partial \Omega_{1}$ to be of class $\mathcal{C}^{1, \alpha}$ and prove existence, uniqueness and $\mathcal{C}^{1, \alpha}\left(\bar{\Omega}_{i}\right)$-regularity of the solutions to the problem, for $i=1,2$. Their argument imports regularity from flat problems, through a new stability result; see [25, Theorem 4.2].

Another class of transmission problems concerns models where the subregions of interest are determined endogenously. For example, given $\Omega \subset$ \mathbb{R}^{d}, one would consider

$$
\Omega_{1}:\{x \in \Omega \mid u(x)<0\} \quad \text { and } \quad \Omega_{2}:\{x \in \Omega \mid u(x)>0\}
$$

where $u: \Omega \rightarrow \mathbb{R}$ solves a prescribed equation. Roughly speaking, knowledge of the solution is required to determine the subregions of the domain where distinct diffusion phenomena take place. In this context, a further structure arises, namely, the free interface, or free boundary. Here, in addition to the analysis of the solutions, properties of the free boundary are also of central interest.

In [1] the authors examine a transmission problem with free interface. They consider the functional

$$
\begin{equation*}
I(v):=\int_{\Omega} \frac{1}{2}\langle A(x, v) D v, D v\rangle+\Lambda(v)+f v d x \tag{4.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& A(x, u):=A_{+}(x) \chi_{\{u>0\}}+A_{-}(x) \chi_{\{u \leq 0\}}, \\
& \Lambda(u):=\lambda_{+}(x) \chi_{\{u>0\}}+\lambda_{-}(x) \chi_{\{u \leq 0\}}, \\
& f:=f_{+}(x) \chi_{\{u>0\}}+f_{-}(x) \chi_{\{u \leq 0\}},
\end{aligned}
$$

with $A_{ \pm}$matrix-valued mappings and $\lambda_{ \pm}$and $f_{ \pm}$given functions. Local minimizers for (4.5) satisfy

$$
\begin{array}{lll}
\operatorname{div}\left(A_{+}(x) D u\right)=f_{+} & \text {in } \quad \Omega_{+}:=\{u>0\} \\
\operatorname{div}\left(A_{-}(x) D u\right)=f_{-} & \text {in } & \Omega_{-}:=\{u>0\}^{\circ}
\end{array}
$$

while Hadamard's-type of arguments yield a flux condition across the free interface $F(u):=\partial \Omega_{+} \cap \Omega$, depending on λ_{+}and λ_{-}. The authors prove the existence of minimizers, with L^{∞}-bounds. In fact the proof of existence bypasses the lack of convexity of the functional and yield estimates in L^{∞} as a by-product. Those local minima are proved to have a local modulus of continuity. Under the assumption that A_{+}and A_{-}are close, in a sense made precise in that paper, the authors prove that solutions are indeed asymptotically Lipschitz. We emphasize that improved regularity under such small-jumps condition follows through a set of methods known as geometric tangential analysis. We refer the reader to the following survey papers on this class of techniques [59, 52, 60].

The problem examined in [1] profits from the existence of an associated functional and the properties derived for its minima. We remark those structures are not available in the context of (4.1).

4.2
 Quadratic growth away from the free boundary

Let $x^{*} \in B_{1}$ be fixed. Consider the maximal subset of \mathbb{N} whose elements j are such that

$$
\begin{equation*}
\sup _{x \in B_{2}-j-1}\left(x^{*}\right)|u(x)| \geq \frac{1}{16} \sup _{x \in B_{2}-j\left(x^{*}\right)}|u(x)| ; \tag{4.6}
\end{equation*}
$$

we denote such set by $\mathcal{M}\left(x^{*}, u\right)$.

Proposition 9 Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (4.1). Suppose A4-A7 hold true. Let $x^{*} \in \partial \Omega$. There exists $C_{0}>0$ such that, if

$$
\begin{equation*}
V_{2^{-j}}\left(x^{*}, u\right)<C_{0}, \tag{4.7}
\end{equation*}
$$

for every $j \in \mathcal{M}\left(x^{*}, u\right)$, then

$$
\sup _{x \in B_{2}-j\left(x^{*}\right)}|u(x)| \leq \frac{1}{C_{0}} 2^{-2 j}, \quad \forall j \in \mathcal{M}\left(x^{*}, u\right)
$$

Proof. For ease of notation, we set $x^{*}=0$ and $\mathcal{M}(u):=\mathcal{M}(0, u)$. We resort to a contradiction argument; suppose the statement of the proposition is false. Then, there exist sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(j_{n}\right)_{n \in \mathbb{N}}$ such that u_{n} is a normalized strong solution to (4.1),

$$
\begin{equation*}
V_{\frac{1}{2^{n}}}\left(u_{n}\right)<\frac{1}{n} \tag{4.8}
\end{equation*}
$$

with

$$
\begin{equation*}
\sup _{x \in B_{2}-j_{n}}\left|u_{n}(x)\right|>\frac{n}{2^{2 j_{n}}}, \tag{4.9}
\end{equation*}
$$

for every $j_{n} \in \mathcal{M}\left(u_{n}\right)$, and $n \in \mathbb{N}$. Because $\left\|u_{n}\right\|_{L^{\infty}\left(B_{1}\right)}$ is uniformly bounded, it follows from (4.9) that $j_{n} \longrightarrow \infty$. In particular, we may re-write (4.8) as

$$
\begin{equation*}
V_{\frac{1}{2 j_{n}}}\left(u_{n}\right)<\frac{1}{j_{n}} . \tag{4.10}
\end{equation*}
$$

Now, we introduce an auxiliary function $v_{n}: B_{1} \rightarrow \mathbb{R}$, given by

$$
v_{n}(x):=\frac{u_{n}\left(2^{-j_{n}} x\right)}{\left\|u_{n}\right\|_{L^{\infty}\left(B_{2-\left(j_{n}+1\right)}\right)}} .
$$

Clearly, $v_{n}(0)=0$. In addition, $V_{1}\left(v_{n}\right) \longrightarrow 0$. Moreover, it follows from the definition of v_{n} that

$$
\begin{equation*}
\sup _{B_{1 / 2}}\left|v_{n}(x)\right|=1 \tag{4.11}
\end{equation*}
$$

and

$$
\sup _{B_{1}}\left|v_{n}(x)\right| \leq 16 .
$$

We notice that A6 yields

$$
G\left(D^{2} v_{n}\right)=\frac{2^{-2 j_{n}}}{\left\|u_{n}\right\|_{L^{\infty}\left(B_{2^{-\left(j_{n}+1\right)}}\right)}} G\left(D^{2} u_{n}\left(2^{-j_{n}} x\right)\right)
$$

Therefore,

$$
\begin{equation*}
\left|G\left(D^{2} v_{n}\right)\right| \leq \frac{1}{n} \frac{C\left\|u_{n}\right\|_{L^{\infty}\left(B_{2}-j_{n}\right)}}{\left.\left\|u_{n}\right\|_{L^{\infty}\left(B_{2}-\left(j_{n}+1\right)\right.}\right)} \leq \frac{C}{n} \longrightarrow 0 \tag{4.12}
\end{equation*}
$$

as $n \rightarrow \infty$.
It follows from the Krylov-Safonov theory that $\left(v_{n}\right)_{n \in \mathbb{N}}$ is equibounded in $\mathcal{C}_{l o c}^{1, \alpha}\left(B_{1}\right)$, for some $\alpha \in(0,1)$. Therefore, there exists v_{∞} such that $v_{n} \longrightarrow v_{\infty}$ in $\mathcal{C}_{\text {loc }}^{1, \beta}\left(B_{1}\right)$, for every $0<\beta<\alpha$. Since $v_{n}(0)=0$ for every $n \in \mathbb{N}$ we infer that $v_{\infty}(0)=0$, whereas (4.11) leads to $\left\|v_{\infty}\right\|_{L^{\infty}\left(B_{1 / 2}\right)}=1$. Because $V_{1}\left(v_{n}\right) \longrightarrow 0$, we conclude that $v_{\infty} \geq 0$ in B_{1}.

By the same token, standard stability results for viscosity solutions build upon (4.12) to ensure

$$
G\left(D^{2} v_{\infty}\right)=0 \quad \text { in } \quad B_{1} .
$$

We conclude that v_{∞} is a viscosity solution to a homogeneous equation which attains an interior local minimum at the origin. As a consequence of the strong maximum principle, we obtain a contradiction and complete the proof.

In Proposition 9 the constant $C_{0}>0$ is determined. This quantity remains unchanged throughout the thesis.

Figure 4.2: The geometry depicted on the left is within the scope of (4.7). In fact, as the radii of the balls centered at x^{*} decrease from r_{1} to $r_{2}, V\left(x^{*}, r\right)$ decreases even faster. The case on the right behaves differently. Here, the normalized volume is constant, independent of the radii of the ball; hence, it might fail to satisfy a prescribed smallness regime as in (4.7).

The next result extrapolates the former analysis from $\mathcal{M}\left(x^{*}, u\right)$ to the entire set of natural numbers.

Proposition 10 Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (4.1). Suppose $A_{4}-A 7$ hold true. Let $x^{*} \in \partial \Omega$. Suppose further that for every $j \in \mathcal{M}\left(x^{*}, u\right)$ we have

$$
V_{2^{-j}}\left(x^{*}, u\right)<C_{0}
$$

for $C_{0}>0$ fixed in (4.7). Then

$$
\sup _{x \in B_{2-j}\left(x^{*}\right)}|u(x)| \leq \frac{4}{\varepsilon} 2^{-2 j}, \quad \forall j \in \mathbb{N} .
$$

Proof. As before we set $x^{*}=0$ and argue through a contradiction argument. Suppose the proposition is false. Let $m \in \mathbb{N}$ be the smallest natural number such that

$$
\begin{equation*}
\sup _{B_{2}-m}|u(x)|>\frac{4}{\varepsilon} 2^{-2 m} . \tag{4.13}
\end{equation*}
$$

We claim that $m-1 \in \mathcal{M}(u)$. Indeed,

$$
\sup _{B_{2^{1-m}}}|u(x)| \leq \frac{4}{\varepsilon} 2^{-2(m-1)}=\frac{16}{\varepsilon} 2^{-2 m}<4 \sup _{B_{2^{2}}}|u(x)| .
$$

We conclude

$$
\sup _{B_{2}-m}|u(x)| \leq \sup _{B_{2^{1-m}}}|u(x)| \leq \frac{1}{\varepsilon} 2^{-2(m-1)}=\frac{4}{\varepsilon} 2^{-2 m}
$$

which contradicts (4.13) and completes the proof.
Consequential to Proposition 10 is the quadratic growth of u away from the free boundary. This is the content of the next corollary.

Corollary 1 (Quadratic growth) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (4.1). Suppose $4_{4}-A^{7} 7$ hold true. Let $x^{*} \in \partial \Omega \cap B_{1 / 2}$. Suppose further that, for every $j \in \mathcal{M}\left(x^{*}, u\right)$, we have

$$
V_{2^{-j}}\left(x^{*}, u\right)<C_{0}
$$

for $C_{0}>0$ as in Proposition 9. Then, for $0<r<1 / 2$ there exists $C>0$ such that

$$
\sup _{x \in B_{r}\left(x^{*}\right)}|u(x)| \leq C r^{2}
$$

where $C=C\left(d, \lambda, \Lambda,\|u\|_{L^{\infty}\left(B_{1}\right)}\right)$.
Proof. Find $j \in \mathbb{N}$ satisfying $2^{-(j+1)} \leq r<2^{-j}$. It is straightforward to notice that

$$
\sup _{B_{r}}|u(x)| \leq \sup _{B_{2}-j}|u(x)| \leq C\left[\left(\frac{1}{2}\right)^{j+1-1}\right]^{2} \leq C r^{2}
$$

which ends the proof.
We close this section with the proof of Theorem 3; We restate it in what follows for completeness.

Theorem 8 (Restatement of Theorem 3) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2). Suppose A4-A7 hold true. Suppose further that $V_{r}(x, u)<C_{0}$ for every $x \in \partial\left(\Omega^{+}(u) \cup \Omega^{-}(u)\right) \cap B_{1 / 2}$, for some $C_{0}>0$. Then, $u \in \mathcal{C}_{\text {loc }}^{1,1}\left(B_{1}\right)$ and there exists a universal constant $C>0$ such that

$$
\left\|D^{2} u\right\|_{L^{\infty}\left(B_{1 / 2}\right)} \leq C
$$

Proof. Suppose $0 \in \partial \Omega$. Corollary 1 leads to

$$
|u(x)| \leq C[\operatorname{dist}(x, \partial \Omega)]^{2}
$$

for every $x \in B_{1 / 2}$. Consider the auxiliary function $v: B_{1} \rightarrow \mathbb{R}$ given by

$$
v(y):=\frac{u(x+y \operatorname{dist}(x, \partial \Omega))}{[\operatorname{dist}(x, \partial \Omega)]^{2}} ;
$$

clearly, $\left|D^{2} u(x)\right|=\left|D^{2} v(0)\right|$. Notice that

$$
\left\{z \in B_{1} \mid y \in B_{1} \quad \text { and } \quad z:=x+y \operatorname{dist}(x, \partial \Omega)\right\}
$$

is contained in the same connected component to which x belongs. Therefore, $F_{i}\left(D^{2} v\right)=1$ or $F_{1}\left(D^{2} v\right)=0$ in the unit ball. Hence, standard results in elliptic regularity theory produce

$$
\left|D^{2} v(0)\right| \leq C
$$

for some universal constant $C>0$, not depending on x, and the proof is complete.

In the next section, we turn our attention to the analysis of the free interface. We start working under the assumption $\{D u \neq 0\} \subset \Omega$ and produce a characterization of global solutions.

4.3
 Classification of global solutions

In this section we examine the non-degeneracy of the free boundary. In addition we study properties of the global solution. We start with the non-degeneracy property. This is the content of the next proposition.

Proposition 11 (Non-degeneracy of the free boundary) Let $u \in$ $W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2). Suppose that $A 4-A 5$ and $A 8$ are in force. Let $x^{*} \in \partial \Omega \cap B_{1 / 2}$. There exists $C>0$ such that

$$
\sup _{x \in \partial B_{r}\left(x^{*}\right)} u(x) \geq C r^{2}
$$

for every $0<r<1 / 2$.

Proof. For ease of presentation, we split the proof in three steps.
Step 1. Without loss of generality, we take $x^{*} \in \Omega$. Furthermore, the set $\{D u \neq 0\}$ is dense in Ω. It follows from the fact that $D^{2} u(x)=0$ for almost
every $x \in\{D u=0\}$, the last condition in A4 and (1.2). Therefore, we assume $x \in\{D u \neq 0\} \cap \Omega$.

Step 2. We introduce an auxiliary function $w \in W^{2, d}\left(B_{1}\right)$, given by

$$
w(x):=u(x)-\frac{\left|x-x^{*}\right|^{2}}{2 d \lambda}
$$

We claim that

$$
\begin{equation*}
\max _{x \in \partial B_{r}\left(x^{*}\right)} w(x)=\sup _{x \in B_{r}\left(x^{*}\right)} w(x), \tag{4.14}
\end{equation*}
$$

for every $0<r<1 / 2$. It follows from (4.14) that

$$
\max _{x \in B_{r}\left(x^{*}\right)} u(x) \geq u\left(x^{*}\right)+C r^{2}
$$

where $C:=4 d \Lambda$. By approximation, the former inequality yields the results. It remains to establish (4.14).

Step 3. Suppose (4.14) is false. There exists a maximum point $y \in B_{r}\left(x^{*}\right)$ for w. Hence,

$$
D w(y)=D u(y)-\frac{\left|y-x^{*}\right|^{2}}{4 d \Lambda}=0
$$

Were $y=x^{*}$, it would be $D u\left(x^{*}\right)=0$; we conclude that $y \neq x^{*}$ and, in addition,

$$
D u(y) \neq 0
$$

By assumption, we have $y \in \Omega$.
On the other hand, w is a subsolution for $G=0$ in Ω. In fact, for $x \in \Omega$,

$$
G\left(D^{2} w(x)\right) \geq 1-\mathcal{M}^{+}\left(\frac{I_{d}}{2 d \lambda}\right)=\frac{1}{2} .
$$

Since $y \in \Omega$, there exists a neighborhood of y where w is constant. We conclude w is constant in $B_{r}\left(x^{*}\right)$ and (4.14) follows.

Remark 1 The proof of Proposition 11 follows closely the ideas put forward in [34, Lemma 3.1].

The former result has a number of standard consequences. Of particular interest is the negligibility of the free boundary in the sense of Lebesgue.

Corollary 2 (Lebesgue negligibility of the free boudnary) Let $u \in$ $W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2). Suppose that A4-A5 and A8 are in force. Then $\partial \Omega$ has Lebesgue measure zero.

Next, we establish the classification of global solutions. For completeness, we recall the definition of thickness $\delta_{r}\left(u, x_{0}\right)$: let $u \in W^{2, d}\left(B_{1}\right)$ be a strong
solution to (1.2) and suppose $x_{0} \in \partial \Omega(u)$. Then,

$$
\delta_{r}\left(u, x_{0}\right):=\frac{\operatorname{MD}\left(\Sigma(u) \cap B_{r}\left(x_{0}\right)\right)}{r} .
$$

We proceed with a proposition on the geometry of u.
Proposition 12 Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2) in \mathbb{R}^{d}. Suppose A4-A8 are in force. Suppose further that there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\delta_{r}\left(u, x_{0}\right) \geq \varepsilon_{0} \tag{4.15}
\end{equation*}
$$

for all $r>0$ and every $x_{0} \in \partial \Omega$. Then u is a convex function.
Proof. We argue by contradiction. Suppose that u is not convex and define

$$
\begin{equation*}
-m:=\inf _{z \in \Omega, e \in \mathbb{S}^{d-1}} \partial_{e e} u(z)<0 \tag{4.16}
\end{equation*}
$$

We claim $m>0$ is finite. In fact, because of Theorem 8 , we have $u \in C^{1,1}\left(\mathbb{R}^{d}\right)$.
Now, consider a minimizing sequence $\left(y_{n}, e_{n}\right) \subset \Omega \times \mathbb{S}^{d-1}$ for (4.16); that is,

$$
\partial e_{n} e_{n} u\left(y_{n}\right) \longrightarrow-m
$$

as $n \rightarrow \infty$. Define the rescaled function

$$
u_{n}(x):=\frac{u\left(d_{n} x+y_{n}\right)-u\left(y_{n}\right)-d_{n} D u\left(y_{n}\right) \cdot x}{d_{n}^{2}}
$$

where $d_{n}:=\operatorname{dist}\left(y_{n}, \partial \Omega\right)$. Define further

$$
\Omega_{n}:=\frac{\Omega-y_{n}}{d_{n}} \quad \text { and } \quad \ell_{n}:=-\frac{D u\left(y_{n}\right)}{d_{n}} .
$$

Since $D u=0$ on $\partial \Omega$, we conclude $D u_{n}=\ell_{n}$ on $\partial \Omega_{n}$.
Now, observe that given $y_{n} \in \Omega$, we either have $y_{n} \in \Omega^{+}$or $y_{n} \in \Omega^{-}$. It follows that $z=d_{n} x+y_{n}$ belongs either to Ω^{+}or Ω^{-}. Therefore, we have

$$
F_{1}\left(D^{2} u_{n}\right)=1 \quad \text { or } \quad F_{2}\left(D^{2} u_{n}\right)=1
$$

in Ω_{n}. In any case u_{n} is $C^{2, \alpha}$-regular; hence, $\ell_{n}<C$ for every $n \in \mathbb{N}$ and some $C>0$, universal. As a consequence, we have $\ell_{n} \rightarrow \ell_{\infty}$, through some subsequence if necessary.

Without loss of generality, suppose $e_{n} \rightarrow e_{1}$, as $n \rightarrow \infty$, through a subsequence, if required. Since $\left(u_{j}\right)_{n \in \mathbb{N}}$ is uniformly bounded in $\mathcal{C}^{2, \alpha}\left(B_{1 / 2}\right)$ there exists $u_{\infty} \in \mathcal{C}^{2, \beta}\left(B_{1 / 2}\right)$ such that $u_{n} \rightarrow u_{\infty}$ in the $\mathcal{C}^{2, \beta}$-topology, for $0<\beta<\alpha$. Moreover, $\partial_{11} u_{\infty}(0)=-m$.

Because G is convex, $\partial_{11} u_{\infty}$ is a supersolution of the equation driven by the linear operator $G_{i j}\left(D^{2} u_{\infty}\right) \partial_{i j}$. Let Ω_{∞} be the connected component containing B_{1}. Since $\partial_{11} u_{\infty}(z) \geq-m$ in B_{1}, the strong maximum principle yields $\partial_{11} u_{\infty} \equiv-m$ in Ω_{∞}.

Without loss of generality we can assume $D u_{\infty}(x)=0$ on $\partial \Omega_{\infty}$; indeed, it follows from an affine transformation of u_{∞}. For any $e \in \mathbb{S}^{d-1}$ we have $\partial_{e e} u_{\infty}(z) \geq-m$ in B_{1}; in addition, the directional Hessian along e_{1} attains $-m$. We conclude e_{1} is an eigenvector for $D^{2} u$ at every point, associated with the smallest eigenvalue. It follows that $\partial_{1 j} u_{\infty}=0$ along $\partial \Omega_{\infty}$, for any $j=2, \ldots, d$. Integrating u_{∞} in the direction of e_{1} we deduce deduce

$$
u_{\infty}(x)=P(x):=-m \frac{x_{1}^{2}}{2}+a x_{1}+b\left(x^{\prime}\right) \quad \text { in } \quad \Omega_{\infty}
$$

where $x^{\prime}=\left(x_{2}, \ldots, x_{d}\right), a \in \mathbb{R}$ is a fixed constant and $b: \mathbb{R}^{d-1} \rightarrow \mathbb{R}$.
Observe that

$$
\frac{\partial}{\partial x_{1}} P(x)=-m x_{1}+a
$$

hence, $\partial_{1} P$ vanishes along the set $\left\{x_{1}=a / m\right\}$. On the other hand, the fact that $D u_{\infty}=0$ on $\partial \Omega_{\infty}$ yields $\partial_{1} u_{\infty}=\partial_{1} P=0$ on $\partial \Omega_{\infty}$. As a consequence, we infer $\partial \Omega_{\infty} \subset\left\{x_{1}=a / m\right\}$. At this point we distinguish two cases related to the former inclusion.

Case 1, $\partial \Omega_{\infty} \neq\left\{x_{1}=a / m\right\}$ - It follows that $\mathbb{R}^{d} \backslash\left\{x_{1}=a / m\right\} \subset \Omega_{\infty}$, and a further alternative is available, i.e.:

$$
F_{1}\left(D^{2} u_{\infty}\right)=1 \quad \text { or } \quad F_{2}\left(D^{2} u_{\infty}\right)=1
$$

almost everywhere in \mathbb{R}^{d}. The Evans-Krylov Theorem applies to $u_{r}(y):=$ $u_{\infty}(r y) / r^{2}$ inside B_{1} to produce

$$
\sup _{x, z \in B_{r}} \frac{\left|D^{2} u_{\infty}(x)-D^{2} u_{\infty}(z)\right|}{|x-z|^{\alpha}} \leq \frac{C}{r^{\alpha}} .
$$

Letting $r \rightarrow \infty$ we deduce that $D^{2} u_{\infty}$ is constant. Hence $u_{\infty}(x)$ is a second order polynomial.

Case 2, $\partial \Omega_{\infty}=\left\{x_{1}=a / m\right\}$ - In this case, we have $D_{x^{\prime}} P=0$ on $\left\{x_{1}=a / m\right\}$ (recall that $D u_{\infty}=0$ on $\partial \Omega_{\infty}$). Thus, b is constant and we obtain

$$
u_{\infty}(x)=-m \frac{x_{1}^{2}}{2}+a x_{1}+b \quad \text { in } \quad\left\{x_{1}>a / m\right\}
$$

which implies $D^{2} u_{\infty} \equiv-m$ Id. Being negative-definite, $D^{2} u_{\infty}$ cannot satisfy either $F_{1}\left(D^{2} u_{\infty}\right)=1$ or $F_{2}\left(D^{2} u_{\infty}\right)=1$, which leads to a contradiction.

Therefore, if u is not convex, it has to be a second order polynomial. By combining (4.15) and Proposition 4 we conclude that u_{∞} can not be a second degree polynomial, which lead us to a contradiction.

Corollary 3 Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2) in \mathbb{R}^{d}. Suppose A4-A8 are in force. Suppose further (4.15) is in force. Then $\Omega=\{D u \neq 0\}$.

Proof. Because u is convex, its set of critical points coincide with its set of minima; in addition, the set of minima of a convex function is trivially convex. Hence, $\{D u=0\}$ is convex. Since $F_{1}\left(D^{2} u\right)=1$ in Ω^{+}and $F_{2}\left(D^{2} u\right)=1$ in Ω^{-} we have that $|\Omega \backslash\{D u \neq 0\}|=0$. As a consequence, the convex set $\{D u=0\}$ has measure zero in Ω; if the former in nonempty, it must have co-dimension 1 and, therefore, violates the thickness condition (4.15). Hence, $\Omega=\{D u \neq 0\}$.

Next, we prove Theorem 4.
Theorem 9 (Restatement of Theorem 4) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2) in \mathbb{R}^{d}. Suppose $A 4$-A8 are in force. Suppose further there exists $\varepsilon_{0}>0$ such that

$$
\frac{M D\left(\left(B_{1} \backslash \Omega\right) \cap B_{r}(x)\right)}{r}>\varepsilon_{0}
$$

where $0<r \ll 1$ and $x \in \partial \Omega$. Then u is a half-space solution. That is, up to a rotation,

$$
u(x)=\frac{\gamma\left[\left(x_{1}\right)_{+}\right]^{2}}{2}+C,
$$

where $C \in \mathbb{R}$ and $\gamma \in(1 / \Lambda, 1 / \lambda)$ is such that either $F_{1}\left(\gamma e_{1} \otimes e_{1}\right)=1$ or $F_{2}\left(\gamma e_{1} \otimes e_{1}\right)=1$.

Proof of Theorem 4. For simplicity we suppose that $0 \in \partial \Omega$. For $r>0$ define

$$
u_{r}(x):=\frac{u(r x)}{r^{2}}
$$

and let u_{∞} be the limit, up to a sequence if necessary, of u_{r} as $r \rightarrow \infty$. Notice that

$$
\Sigma\left(u_{\infty}\right)=\{\Sigma(u): t x \in \Sigma(u) \quad \forall t>0\}
$$

Next, we prove that $\Sigma\left(u_{\infty}\right)$ is a half-space. As before, we resort to a contradiction argument. Suppose $\Sigma\left(u_{\infty}\right)$ is a not a half-space; then in some
system of coordinates, we have

$$
\Sigma\left(u_{\infty}\right) \subset \mathcal{C}_{\theta_{0}}:=\left\{x \in \mathbb{R}^{d} ; x=\left(\rho \cos \theta, \rho \sin \theta, x_{3}, \ldots, x_{d}\right), \theta_{0} \leq|\theta| \leq \pi\right\}
$$

for some $\theta_{0}>\pi / 2$.
Choose $\theta_{1} \in\left(\pi / 2, \theta_{0}\right)$ and set $\alpha:=\pi / \theta_{1}$. Then for $\beta>0$ sufficiently large, the function

$$
v:=r^{\alpha}\left(e^{-\beta \sin (\alpha \theta)}-e^{-\beta}\right)
$$

is a positive subsolution for the linear operator $G_{i j}\left(D^{2} u\right) \partial_{i j}$ inside $\mathbb{R}^{d} \backslash \mathcal{C}_{1}$, which vanishes on $\partial \mathcal{C}_{\theta_{1}}$. From Proposition 12 we have that u_{∞} is convex; thus we deduce that $\partial_{1} u_{\infty}>0$ in $\mathbb{R}^{d} \backslash \mathcal{C}_{\theta_{0}}$. In addition $\theta_{0}>\theta_{1}$. Hence, by the comparison principle we obtain that

$$
v \leq \partial_{1} u_{\infty}
$$

Therefore, $\Sigma\left(u_{\infty}\right)$ is a half-space that happens to be convex. As a consequence, it follows that that $\Sigma(u)$ is also a half space.

Finally, we apply global $C^{2, \alpha}$-estimates to u inside the half-ball $B_{1} \backslash \Sigma(u)$; see, for instance, [56]. We obtain

$$
\sup _{x, z \in B_{r} \backslash \Sigma(u)} \frac{\left|D^{2} u(x)-D^{2} u(z)\right|}{|x-z|^{\alpha}} \leq \frac{C}{r^{\alpha}} .
$$

Thus, letting $r \rightarrow \infty$ we conclude that $D^{2} u$ is constant and hence u is a second order polynomial inside the half-space $\mathbb{R}^{d} \backslash \Sigma(u)$. Recall that $D u=0$ on the hyperplane $\partial \Sigma(u)$, because we have supposed $\{D u \neq 0\} \subset \Omega$. Hence, we conclude u is a half-space solution and complete the proof.

In what follows we produce information on the regularity of the free boundary dropping the condition $\{D u \neq 0\} \subset \Omega$. Our analysis focuses on the non-degenerate points $x \in \mathcal{N}(u)$.

4.4
 Regularity of the free boundary

In this section we focus on non-degenerate points. For a point $x^{*} \in \mathcal{N}(u)$ we define the normal vector at x^{*} as the direction $\nu: \mathcal{N}(u) \rightarrow \mathbb{S}^{n-1}$ given by

$$
\nu_{x^{*}}:=\frac{D u\left(x^{*}\right)}{\left|D u\left(x^{*}\right)\right|} .
$$

In the sequel our arguments build upon the $\mathcal{C}^{1,1}$-regularity of the solutions to (4.1). Hence, throughout this section, we suppose (4.7) is in force with $\varepsilon>0$ as determined in Proposition 9.

Proposition 13 Let $u \in W^{2, d}\left(B_{1}\right)$ be a solution to (4.1). Suppose $A 4$ - $A 7$ hold true. Suppose further that $x^{*} \in \mathcal{N}(u)$ and define $\delta>0$ as

$$
\limsup _{x \rightarrow x^{*}} \frac{|u(x)|}{\left|x-x^{*}\right|}=\delta
$$

There exists a universal constant $C>0$, such that

$$
\begin{equation*}
B_{r}\left(x^{*}\right) \cap \Sigma(u) \subset\left\{x \in B_{1}| |\left(x-x^{*}\right) \cdot \nu_{x^{*}}\left|\leq \frac{C}{\delta}\right| x-\left.x^{*}\right|^{2}\right\} \tag{4.17}
\end{equation*}
$$

for every $0<r \ll 1$.
Proof. Notice that for $x^{*} \in \Sigma(u)$ we have

$$
\limsup _{x \rightarrow x^{*}} \frac{\left|u(x)-u\left(x^{*}\right)\right|}{\left|x-x^{*}\right|}=\delta>0
$$

It implies that $\left|D u\left(x^{*}\right)\right| \geq \delta$. From the $\mathcal{C}^{1,1}$-regularity of u we infer that, for $x \in \Sigma(u)$, is holds

$$
\left|D u(z) \cdot\left(x-x^{*}\right)\right| \leq C\left|x-x^{*}\right|^{2}
$$

Therefore

$$
\left|\nu_{x^{*}} \cdot\left(x-x^{*}\right)\right| \leq \frac{C}{\delta}\left|x-x^{*}\right|^{2}
$$

Proposition 14 Let $u \in W^{2, d}\left(B_{1}\right)$ be a solution to (4.1). Suppose A4-A7 hold true. Suppose further that $x^{*} \in \mathcal{N}(u)$ and

$$
\limsup _{x \rightarrow x^{*}} \frac{|u(x)|}{\left|x-x^{*}\right|}=\delta
$$

Then, there are universal constants $C>0$ and $r>0$ such that $\Sigma(u) \cap B_{r}\left(x^{*}\right) \subset$ $\mathcal{N}(u)$ and that for any $\xi \in \Sigma(u) \cap B_{r}\left(x^{*}\right)$,

$$
\limsup _{x \rightarrow \xi} \frac{|u(x)|}{|x-\xi|} \geq C \delta
$$

Proof. Without loss of generality we can assume $x^{*}=0$. Take $\varepsilon>0$, to be fixed later. The definition of limit superior yields the existence of $r_{0}>0$ such that, for $0<r \leq r_{0}$, one can find $x_{r} \in B_{r} \backslash\{0\}$ satisfying $\left|u\left(x_{r}\right)\right|>(\delta-\varepsilon)\left|x_{r}\right|$. By taking $\varepsilon:=\delta / 2$ we obtain

$$
\sup _{B_{r}}|u(x)|>\frac{\delta}{2} r
$$

for $0<r \leq r_{0}$. Fix r and choose $\xi \in\left(B_{r}(0) \backslash\{0\}\right) \cap \Gamma(u)$. Set $\rho=|\xi|$; then

$$
\sup _{B_{2 \rho}(\xi)}|u(x)| \geq \delta \rho .
$$

Hence, there exists $x_{0} \in B_{2 \rho}(\xi)$ such that

$$
\begin{equation*}
\left|u\left(x_{0}\right)\right| \geq \delta \rho \tag{4.18}
\end{equation*}
$$

The regularity of the solutions and Proposition 13 yield

$$
\left|u\left(x_{0}\right)-D u(\xi) \cdot\left(x_{0}-\xi\right)\right| \leq C\left|x_{0}-\xi\right|^{2}
$$

In addition,

$$
\left|D u(\xi) \cdot\left(x_{0}-\xi\right)\right| \leq 2 \rho|D u(\xi)|
$$

The inequality in (4.18) and a straightforward use of the triangle inequality produce

$$
|D u(\xi)| \geq \frac{1}{2}(\delta-4 C \rho) \geq \frac{\delta}{4}
$$

provided

$$
\rho \leq \frac{\delta}{8 C}
$$

Set $x_{r}:=\xi+r \nu_{\xi}$ for $r>0$ and notice that

$$
\left|u\left(x_{r}\right)\right| \geq|D u(\xi)| r-C r^{2} \geq\left(\frac{\delta}{4}-C r\right) r \geq \frac{\delta}{8} r
$$

provided

$$
r \leq \frac{\delta}{8 C}
$$

Hence

$$
\sup _{B_{r}(\xi)}|u(x)| \geq\left|u\left(x_{r}\right)\right| \geq \frac{\delta}{8} r,
$$

which, in turn, implies

$$
\sup _{B_{r}(z)} \frac{|u(x)|}{|x-\xi|} \geq \frac{\delta}{8}>0
$$

Therefore $\xi \in \mathcal{N}(u)$ and the proof is complete.
Now we detail the proof of Theorem 5 .
Theorem 10 (Restatement of Theorem 5) Let $u \in W^{2, d}\left(B_{1}\right)$ be a strong solution to (1.2). Suppose $A_{4}-A^{7}$ hold true. Then $\mathcal{N}(u)$ is, locally, a graph of class $\mathcal{C}^{1,1}$. In addition, there exists a universal constant $C>0$ such that for
all $z \in \mathcal{N}(u)$, we have

$$
\left|\nu_{x}-\nu_{y}\right| \leq C|x-y|
$$

for every $x, y \in B_{r}(z) \cap \Sigma(u)$ and every $0<r \ll 1$.
Proof. Without loss of generality we may assume that

$$
\limsup _{x \rightarrow 0} \frac{|u(x)|}{|x|}=1
$$

Let $z \in B_{r} \cap \Sigma(u)$. For some $e \in \mathbb{S}^{d-1}$ and $\rho=|z|$, set $x:=z+\rho e$. Observe that $x \in \partial B_{\rho}(z) \cap \Sigma(u)$. The regularity of u yields

$$
\left|\nu_{0} \cdot x\right| \leq C|x|^{2},
$$

for all $x \in B_{r} \cap \Sigma(u)$. Notice that

$$
\rho\left|e \cdot \nu_{0}\right| \leq\left|(\rho e+z) \cdot \nu_{0}\right|+\left|z \cdot \nu_{0}\right| \leq C|x|^{2}+C \rho^{2} \leq C \rho^{2} .
$$

Now, select a ($d-1$)-uple $\left(e^{1}, e^{2}, \ldots, e^{d-1}\right)$ such that $z+\rho e^{i} \in \Sigma(u)$ and that $\left(e^{1}, \ldots, e^{d-1}, \nu_{z}\right)$ spans \mathbb{R}^{d}. Since

$$
\nu_{0}=\sum_{i=1}^{d-1}\left(\nu_{0} \cdot e^{i}\right) e^{i}+\left(\nu_{0} \cdot \nu_{z}\right) \nu_{z}
$$

we obtain

$$
1=\sum_{i=1}^{d-1}\left(\nu_{0} \cdot e^{i}\right)^{2}+\left(\nu_{0} \cdot \nu_{z}\right)^{2}
$$

Hence,

$$
|\nu(z)-\nu(0)|^{2} \leq 2\left[1-\left(1-\sum_{i=1}^{d-1}\left(\nu_{0} \cdot e^{i}\right)^{2}\right)^{1 / 2}\right]=2 \sum_{i=1}^{d-1}\left(\nu_{0} \cdot e^{i}\right)^{2} \leq C \rho^{2}
$$

which leads to

$$
\left|\nu_{z}-\nu_{0}\right| \leq C \rho
$$

and completes the proof.

Bibliography

[1] AMARAL, M. D.; TEIXEIRA, E. V. Free transmission problems, Comm. Math. Phys., v.337, n.3, p. 1465-1489, 2015.
[2] ARAÚJO, D. A. J.; RICARTE, G. ; TEIXEIRA, E. V. Geometric gradient estimates for solutions to degenerate elliptic equations, Calc. Var. Partial Differential Equations, v.53, n.3-4, p. 605-625, 2015.
[3] ARAÚJO, D. A. J.; RICARTE, G. C. ; TEIXEIRA, E. V. Singularly perturbed equations of degenerate type, Ann. Inst. H. Poincaré Anal. Non Linéaire, v.34, n.3, p. 655-678, 2017.
[4] ARAÚJO, D. A. J.; TEIXEIRA, E. V. ; URBANO, J. M. A proof of the $C^{p^{\prime}}$-regularity conjecture in the plane, Adv. Math., v.316, p. 541-553, 2017.
[5] BAO, E. S.; LI, Y. Y. ; YIN, B. Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., v.193, n.1, p. 195-226, 2009.
[6] BAO, E. S.; LI, Y. Y. ; YIN, B. Gradient estimates for the perfect and insulated conductivity problems with multiple inclusions, Comm. Partial Differential Equations, v.35, n.11, p. 1982-2006, 2010.
[7] BERESTYCKI, H.; NIRENBERG, L. ; VARADHAN, S. R. S. The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., v.47, n.1, p. 47-92, 1994.
[8] BICCARI, U.; WARMA, M. ; ZUAZUA, E. Addendum: Local elliptic regularity for the Dirichlet fractional Laplacian [MR3641649], Adv. Nonlinear Stud., v.17, n.4, p. 837-839, 2017.
[9] BIRINDELLI, I.; DEMENGEL, F. Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6), v.13, n.2, p. 261-287, 2004.
[10] BIRINDELLI, I.; DEMENGEL, F. First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential Equations, v.11, n.1, p. 91-119, 2006.
[11] BIRINDELLI, I.; DEMENGEL, F. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators, Commun. Pure Appl. Anal., v.6, n.2, p. 335-366, 2007.
[12] BIRINDELLI, I.; DEMENGEL, F. Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains, J. Math. Anal. Appl., v.352, n.2, p. 822-835, 2009.
[13] BIRINDELLI, I.; DEMENGEL, F. Eigenfunctions for singular fully nonlinear equations in unbounded domains, NoDEA Nonlinear Differential Equations Appl., v.17, n.6, p. 697-714, 2010.
[14] BONNETIER, E.; VOGELIUS, M. An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section, SIAM J. Math. Anal., v.31, n.3, p. 651-677, 2000.
[15] BONY, J.-M. Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B, v.265, p. A333-A336, 1967.
[16] BORSUK, M. Transmission problems for elliptic second-order equations in non-smooth domains. Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel, 2010. xii+218p.
[17] BORSUK, M. V. A priori estimates and solvability of second order quasilinear elliptic equations in a composite domain with nonlinear boundary condition and conjugacy condition, Trudy Mat. Inst. Steklov., v.103, p. 15-50. (loose errata), 1968.
[18] BRIANE, M.; CAPDEBOSCQ, Y. ; NGUYEN, L. Interior regularity estimates in high conductivity homogenization and application, Arch. Ration. Mech. Anal., v.207, n.1, p. 75-137, 2013.
[19] BRONZI, A. C.; PIMENTEL, E. A.; RAMPASSO, G. C. ; TEIXEIRA, E. V. Regularity of solutions to a class of variable exponent fully nonlinear elliptic equations, preprint.
[20] CAFFARELLI, L.; CRANDALL, M. G.; KOCAN, M. ; SWI_ECH, A. On viscosity solutions of fully nonlinear equations with measurable ingredients, Comm. Pure Appl. Math., v.49, n.4, p. 365-397, 1996.
[21] CAFFARELLI, L. A. Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2), v.130, n.1, p. 189-213, 1989.
[22] CAFFARELLI, L. A.; CABRÉ, X. Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1995. vi +104 p.
[23] CAFFARELLI, L. A.; HUANG, Q. Estimates in the generalized Campanato-John-Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J., v.118, n.1, p. 1-17, 2003.
[24] CAFFARELLI, L. A.; KARP, L. ; SHAHGHOLIAN, H. Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. (2), v.151, n.1, p. 269-292, 2000.
[25] CAFFARELLI, L. A.; SORIA-CARRO, M. ; STINGA, P. R. Regularity for $\mathcal{C}^{1, \alpha}$ interface transmission problems, 2020.
[26] CAMPANATO, S. Sul problema di M. Picone relativo all'equilibrio di un corpo elastico incastrato, Ricerche Mat., v.6, p. 125-149, 1957.
[27] CAMPANATO, S. Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo dell'elasticità. I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), v.13, p. 223-258, 1959.
[28] CAMPANATO, S. Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo dell'elasticità. II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), v.13, p. 275-302, 1959.
[29] DÁVILA, G.; FELMER, P. ; QUAAS, A. Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations, C. R. Math. Acad. Sci. Paris, v.347, n.19-20, p. 1165-1168, 2009.
[30] DÁVILA, G.; FELMER, P. ; QUAAS, A. Harnack inequality for singular fully nonlinear operators and some existence results, Calc. Var. Partial Differential Equations, v.39, n.3-4, p. 557-578, 2010.
[31] DEMENGEL, F.; DEMENGEL, G. Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012. xviii+465p. Translated from the 2007 French original by Reinie Erné.
[32] DI NEZZA, E.; PALATUCCI, G. ; VALDINOCI, E. Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., v.136, n.5, p. 521-573, 2012.
[33] EVANS, L. C. Partial differential equations, volume 19 of Graduate Studies in Mathematics. Second. ed., American Mathematical Society, Providence, RI, 2010. xxii+749p.
[34] FIGALLI, A.; SHAHGHOLIAN, H. A general class of free boundary problems for fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., v.213, n.1, p. 269-286, 2014.
[35] IL'IN, V. A.; ŠIŠMAREV, I. A. The method of potentials for the problems of Dirichlet and Neumann in the case of equations with discontinuous coefficients, Sibirsk. Mat. Ž., p. 46-58, 1961.
[36] IMBERT, C. Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully nonlinear elliptic equations, J. Differential Equations, v.250, n.3, p. 1553-1574, 2011.
[37] IMBERT, C.; SILVESTRE, L. $C^{1, \alpha}$ regularity of solutions of some degenerate fully non-linear elliptic equations, Adv. Math., v.233, p. 196-206, 2013.
[38] IMBERT, C.; SILVESTRE, L. Estimates on elliptic equations that hold only where the gradient is large, J. Eur. Math. Soc. (JEMS), v.18, n.6, p. 1321-1338, 2016.
[39] ISHII, H. Viscosity solutions of nonlinear partial differential equations [translation of Sūgaku 46 (1994), no. 2, 144-157; MR1303774 (95j:49002)]. volume 9, 1996. Sugaku Expositions.
[40] KIM, S.; LEE, K.-A. ; SHAHGHOLIAN, H. Nodal sets for "broken" quasilinear PDEs, Indiana Univ. Math. J., v.68, n.4, p. 1113-1148, 2019.
[41] LEE, K.-A. Obstacle problems for the fully nonlinear elliptic operators. ProQuest LLC, Ann Arbor, MI, 1998. 53p. Thesis (Ph.D.)-New York University.
[42] LEE, K.-A.; SHAHGHOLIAN, H. Regularity of a free boundary for viscosity solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., v.54, n.1, p. 43-56, 2001.
[43] LI, Y.; NIRENBERG, L. Estimates for elliptic systems from composite material. volume 56, 2003. Dedicated to the memory of Jürgen K. Moser.
[44] LI, Y. Y.; VOGELIUS, M. Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal., v.153, n.2, p. 91-151, 2000.
[45] LIONS, J. L.; SCHWARTZ, L. Problèmes aux limites sur des espaces fibrés, Acta Math., v.94, p. 155-159, 1955.
[46] LIONS, P.-L. A remark on Bony maximum principle, Proc. Amer. Math. Soc., v.88, n.3, p. 503-508, 1983.
[47] NICOLAU, A.; SOLER I GIBERT, O. Approximation in the zygmund class, Journal of the London Mathematical Society, v.101, n.1, p. 226?246, Jul 2019.
[48] OLEĬNIK, O. A. Boundary-value problems for linear equations of elliptic parabolic type with discontinuous coefficients, Izv. Akad. Nauk SSSR Ser. Mat., v.25, p. 3-20, 1961.
[49] PETROSYAN, A.; SHAHGHOLIAN, H. ; URALTSEVA, N. Regularity of free boundaries in obstacle-type problems, volume 136 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012. x+221p.
[50] PICONE, M. Nuovi indirizzi di ricerca nella teoria e nel calcolo delle soluzioni di talune equazioni lineari alle derivate parziali della fisica-matematica, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2), v.5, n.3-4, p. 213-288, 1936.
[51] PICONE, M. Sur un problème nouveau pour l'équation linéaire aux dérivées partielles de la théorie mathématique classique de l'élasticité. In: Colloque sur les équations aux dérivées partielles, CBRM, Bruxelles, p. 9-11, 1954.
[52] PIMENTEL, E. A.; SANTOS, M. S. Asymptotic methods in regularity theory for nonlinear elliptic equations: a survey. In: PDE models for multi-agent phenomena, volume 28 of Springer INdAM Ser., p. 167-194. Springer, Cham, 2018.
[53] PIMENTEL, E. A.; TEIXEIRA, E. V. Sharp Hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach, J. Math. Pures Appl. (9), v.106, n.4, p. 744-767, 2016.
[54] SAVIN, O.; YU, H. Regularity of the singular set in the fully nonlinear obstacle problem, 2019.
[55] SCHECHTER, M. A generalization of the problem of transmission, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), v.14, p. 207-236, 1960.
[56] SILVESTRE, L.; SIRAKOV, B. Boundary regularity for viscosity solutions of fully nonlinear elliptic equations, Comm. Partial Differential Equations, v.39, n.9, p. 1694-1717, 2014.
[57] SILVESTRE, L.; TEIXEIRA, E. V. Regularity estimates for fully non linear elliptic equations which are asymptotically convex. In: Contributions to nonlinear elliptic equations and systems, volume 86 of Progr. Nonlinear Differential Equations Appl., p. 425-438. Birkhäuser/Springer, Cham, 2015.
[58] STAMPACCHIA, G. Su un problema relativo alle equazioni di tipo ellittico del secondo ordine, Ricerche Mat., v.5, p. 3-24, 1956.
[59] TEIXEIRA, E. Geometric regularity estimates for elliptic equations. In: Mathematical Congress of the Americas, volume 656 of Contemp. Math., p. 185-201. Amer. Math. Soc., Providence, RI, 2016.
[60] TEIXEIRA, E.; URBANO, J. Geometric tangential analysis and sharp regularity for degenerate PDEs. In: Proceedings of the INdAM Meeting "Harnack Inequalities and Nonlinear Operators" in honour of Prof. E. DiBenedetto, Springer INdAM Ser. Springer, Cham, To appear.
[61] TEIXEIRA, E. V. Regularity for quasilinear equations on degenerate singular sets, Math. Ann., v.358, n.1-2, p. 241-256, 2014.
[62] TEIXEIRA, E. V. Universal moduli of continuity for solutions to fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., v.211, n.3, p. 911-927, 2014.
[63] TEIXEIRA, E. V.; URBANO, J. M. A geometric tangential approach to sharp regularity for degenerate evolution equations, Anal. PDE, v.7, n.3, p. 733-744, 2014.
[64] URBANO, J. M. The method of intrinsic scaling, volume 1930 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2008. x+150p. A systematic approach to regularity for degenerate and singular PDEs.
[65] ŠEFTEL', Z. G. Estimates in L_{p} of solutions of elliptic equations with discontinuous coefficients and satisfying general boundary conditions and conjugacy conditions, Soviet Math. Dokl., v.4, p. 321-324, 1963.
[66] ZYGMUND, A. Trigonometric series. Vol. I, II. Cambridge Mathematical Library. Third. ed., Cambridge University Press, Cambridge, 2002. xii; Vol. I: xiv+383 pp.; Vol. II: viii +364 p. With a foreword by Robert A. Fefferman.

