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Abstract

Medeiros Domingos, Jodao Vitor; Pimentel, Edgard (Advisor). A
Priori Estimates with Application to Mean-Field Games.
Rio de Janeiro, 2019. 55p. Dissertacao de Mestrado — Departamento
de Matematica , Pontificia Universidade Catélica do Rio de Janeiro.

The mean-field games framework was developed to study problems with
an infinite number of rational players in competition, which could be applied
in many problems. The formalized study of these problems has begun,
in the mathematical community by Lasry and Lions, and beside them,
but independently close to the same time in the engineering community
by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal
contributions, the research in mean-field games has grown exponentially,
and in this work we present a regularity to a case of mean-field games using
particulars techniques.

In this work, we study time-dependent mean-field games in the subqua-
dratic case, that is, mean-field games, which are written as a system of
a Hamilton—Jacobi equation and a transport or Fokker—Planck equation,
where The Hamiltonian presented on the Hamilton—Jacobi equation has a
subquadratic growth. We begin by assuming ten assumptions, and then,

under these assumptions derive Lipschitz regularity of the system.

Keywords

Assumptions; First and Second Order Estimates; Regularity for the
Hamilton-Jacobi equation; Regularity for the Fokker-Plank equation; So-
bolev Regularity; Lipschitz Regularity.


DBD
PUC-Rio - Certificação Digital Nº 1712696/CA


PUC-Rio- CertificagaoDigital N° 1712696/CA

Resumo

Medeiros Domingos, Joao Vitor; Pimentel, Edgard. Estimativas
a priori e jogos de campo médio. Rio de Janeiro, 2019. 55p.

Dissertacao de Mestrado — Departamento de Matematica |,
Pontificia Universidade Catélica do Rio de Janeiro.

A estrutura dos mean-filed games foi desenvolvida com o intuito de es-
tudar problemas com um infinito nimero de jogadores em algum tipo de
competicao, ao qual pode ser aplicado em diversos problemas. O estudo for-
malizado desses problemas comecou, na comunidade matematica com Lasry
and Lions, e mais ou menos na mesma época, porém independentemente,
na comunidade de engenharia por P. Caines, Minyi Huang, and Roland
Malhamé. Desde entao a pesquisa nos mean-field games cresceu exponen-
cialmente, e nesse trabalho apresentaremos regularidade para um caso de
mean-field games utilizando tecnicas particulares.

Nesse trabalho, estudamos time-dependent mean-field games no caso
subquadratico, isto é, mean-field games, o qual é escrito como um sistema
de duas equacgoes, uma equacdo de Hamilton-Jacobi e uma equacao do
transporte ou uma equagao de Fokker-Plank, em que o Hamiltoniano
na equacao de Hamilton-Jacobi possui um crescimento subquadratico.
Comecgamos em assumir dez suposi¢oes, e entao sob os mesmos deduzir

regularidade Lipschitz para o sistema.

Palavras-chave

Suposicoes; Estimativas de Primeira e Segunda Ordem; Regularidade
para a Equacao de Hamilton-Jacobi; Regularidade para a Equacao de
Fokker-Plank;  Regularidade Sobolev;  Regularidade Lipschitz.
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O sabio nunca diz tudo o que pensa, mas pensa sempre tudo o que diz.
Aristdteles
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1

Introduction

1.1

Mean-Field Games

The mean-field games formalism is a class of methods developed in series
of seminal papers by J.-M. Lasry, P.-L. Lions [10]-[14] and M.Huang, R. Mal-
hame and P. Caines [8, 9] which aims at understanding differential games with
infinitely many indistinguishable players, in other words, differential games
with a large population of rational players. These agents have preferences not
only about their state (e.g., wealth, capital) but also on the distribution of
the remaining individuals in the population. Mean-field games theory stud-
ies generalized Nash equilibrium for these systems. Usually, these models are
characterized by a pair of coupled partial differential equations, known as a
transport equation or Fokker-Plank equation for the distribution of the players

and a Hamilton-Jacobi equation.

One of the most important research direction in the theory of mean-field
games concerns the study of the existence and regularity of solutions. Well-
posedness in the class of smooth solutions was explored, both in the stationary
and in the time-dependent setting. A priori estimates are a fundamental
ingredient for the pursuing of well-posedness (nonlinear) partial differential

equations. This is the content of this work.

1.2

Hamilton-Jacobi and Fokker-Plank Equation

In this section, we discuss several notions from the setting of deterministic
optimal control to the stochastic setting. We start by addressing the Hamilton-

Jacobi equation.

1.2.1
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Hamilton-Jacobi Equation

Consider a single player whose state is determined by a point € R%. This
agent can change its state by applying a control v € R%. However, the players
are subject to independent external and random forces that are modeled by a
white noise. In this simplified model, the trajectory of the player is given by
the stochastic differential equation (SDE)

det = ’Utdt + O'th

Tty = T,

where v is a progressively measurable control.

Consider a Lagrangian L : R? x RY x R — R. By selecting the control v
in a progressively measurable way, the player seeks to maximize a functional

cost given by

J(v,z;t) =E° [/tTL(a:S,US; m)ds + ¥(z7)|, (1.2)

where m represents a quantity to be made precise later. In 1.2 E* denotes
the expectation operator, given that z, = z. furthermore ¥ : R? — R, is the

terminal cost of the system.
The Legendre transform of L is

H(x,p;m) = sup(p- v+ L(z,v;m)). (1.3)
vERI

We are interested in the value function of this problem, u, which is determined
by

u(z,t) = sup J(z,v;t).

1.2.2
Fokker-Plank Equation

In this section, we examine the Fokker-Planck equation. Consider a
population of players whose state is € R%. Assume further that the state of
each agent in the population is governed by the stochastic differential equation

n (1.1). Under the assumption of uncorrelated noise, the evolution of the
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population’s density is determined by a Fokker-Planck equation. To discuss the
derivation of this equation, we depend once more on the notion of infinitesimal
generator of a (Markov) process. We refer the reader interested in stochastic

analysis to [1] and [?]

Let A be the generator of a Markov process z;. The formal adjoint of A,
denoted by A*, acts on functions in a suitable regularity class and is determined
by the identity

| o@Af@)de = [ f@)Ao().
for every ¢ € C°(RY).

Example 1.2.1 (Markov diffusion) The infinitesimal generator of a

Markov diffusion is

TroloD2f

A1) = o f@t) b 1) 4 2

ot

Therefore A* is given by

((O'TO')Z'J?TL)
2

(A)*[m] = —aatm — div(hm) + e

A fundamental result is given an initial configuration mg, is described by the

equation:

A*Im)(z,t) =0 (1.4)

m(x,tg) = mo(x).

The Example 1.2.1 build upon (1.4) yields the Fokker-Planck equation

((O'TO'>ijjm>
2

TiT;

my(z,t) + div(hm(z,t)) =

1.3

Time-Dependent Mean-Field Games

In this work, we explored the regularity of the subquadratic case.
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A model studied here is the system

—uy + H(z, Du) = Au+ g(m)

(1.5)
my — div(D,Hm) = Am.

Where, H and g satisfy specific conditions as detailed in Section 1.4 We can
coupled the system above with the boundary conditions, knows as, initial-

terminal boundary conditions:

u(z, T) = up(x) (L.6)
m(x,0) = mo(z),

where T' > 0 is a fixed terminal instant. We will consider in this work spatially
periodic solutions. That is, © and m are regarded as functions with domain
T?x [0, T], where T? is the d-dimensional torus. The main goal of this work is to
obtain conditions under which existence of solution to (1.5) under the initial-
terminal conditions (1.6) can be established. We considered, in this paper, also
a model non-linearity g(m) = m®, and improve and extend for Hamiltonians
with subquadratic growth. So in this work we are interest to show the Lipschitz

regularity for w.

In order to prove our goal, we consider a regularization of (1.5) by

replacing g(m) by the nonlocal operator

ge(m) = ne* g(ne x m) = /Td ne(z) - g (/w ne(2) - m(y —z — Z)d2> dz,

where 7. is a standard mollifying kernel, which in particular is symmetric. This

yields the system

—u§ + H(x, Dyuf) = Au + g.(mF) in  Tx(0,7T)

(1.7)
m§ — div(D,Hm*) = Am* in  T¢x (0,7).

We use the convention gy = g. The proof proceeds by establishing a new class

of polynomial estimates for m¢, which combined with upper bounds for u*.
Under the ten specific Assumptions that we are going to see later, follow

our main results.

Teorema 1.1 Let (u®,m¢) be a solution of (1.7). Suppose m¢ €
L>([0,T]; LP(T?)), By > 1. Assume that p > %, let q be the conjugate
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exponent and r = %, where

d+ 2q — dq
= ) 1.8
"0 —1)d+ 2 (18)
Then,
€\Bn 2||™m
/Td(m (@, 7)de < C+ CIDHE|) (1.9)
where
0" —1
Tn:T0_17 (110)

0>1,neNand S, =0"5.

The proof of Theorem 1.1 is presented in Chapter 3. The key upper bounds

for u¢ are given by:

Lemma 1.3.1 Let (uf,m¢) be a solution of (1.7) and assume that A1-A7 are
in force. Let a,b > 1 be such that

bla—1)

¢ <
2 a

Then these exists C > 0 such that
HUGHLW([O,T];LOO(T"’)) <C+ CHQE(mE>HL“([O,T];L"(’H‘d))-

Lemma 1.3.1 is proved in Chapter 4. Using Gagliardo-Nirenberg interpolation

Theorem we get:

Theorem 1.3.2 Let (uf, m¢) be a solution of (1.7) and assume that A1-9 are
in force. For 1 < p,r < oo there are ¢c,C > 0 such that

e
HD2UEHU([0,T1;Lp(1rd)) < cllge(m) ro,ry:Lr(ray) + CHUGHEQ([O,T];Loo(Td)) +C.
(1.11)

The proof of Theorem 1.3.2 is presented in Chapter 5.

1.4

Main Assumptions

In this Section we present the main assumptions used throughout this

work.
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14.1

Assumptions
Al. The Hamiltonian H : T¢ x R = R, d > 2, is smooth and:

1. for fixed x,p — H(z,p) is strictly convex function;
2. satisfies the coercivity condition

H

pl—oo  |p|

and without loss of generality we suppose further that H(z,p) > 1.

Furthermore, (ug, mg) € C*(T9) with mo > 0, and [a mg = 1.
Let RT = {z € Rlz > 0} and R} = {x € R|z > 0}
A2. g:R$ — R is a non-negative increasing function.

From the previous hypothesis it follows that g(z) = G'(z) for some convex

increasing function G : R — R.

We define the Legendre transform of H by
L(z,v) = sgp(—p v — H(z,p)). (1.12)
Then if we set
L(w,p) = DpH (x,p)p — H(a,p), (1.13)
by standard properties of the Legendre transform L(z, p) = L(z, — D, H (z, p)).

A3. For some ¢,C > 0

A

L(z,p) > cH(x,p) — C.

A4. g(m) =m®, for some a > 0.

A5. H satisfies |D,H|, |D?,H| < CH + C, andm for any symmetric matrix
M, and any 6 > 0 there exists Cys such that

Tr(D2,) < 6 Tr(D2,HM?) + CsH.

Note that since we assume H > 1 we can replace the inequality above
by |D.H|, |D?,H| < CH, for some constant C.
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A6. We have my > kg, for some k € R*.
The next group of hypothesis concerns subquadratic growth.

A7. H satisfies the subquadratic growth condition H(z,p) = C|p|” + C, for

somel—l—d—}rl<7<2.

A8. D,H satisfies the subquadratic growth condition |D,H| = C|p|"~' + C,

forsomel+d%r1<fy<2.

A9. H satisfies |D2 H|* < CH and, for any symmetric matrix M

|D2,HM|* < C'Tx(D2,HMM).

The second assertion in A9 ensures the existence of a uniform upper

bound for the eigenvalues of D> H.

Observe that, for d > 2 and 1 < 7 < 2 one has

—4(=4 + ) (=1 + )7y +2d(=4 + (=2 + V)Y (—4+ (=4 +7)(=2+7)7) .2
(2+d)(—4+V)(=1+)v(=2(—4+7)y +d(—4+ (=2 +7)7)) d—2

A10. The exponent « is such that 0 < a < ay 4.
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2

First and Second Order Estimates

This chapter details two classes of estimates used in the study of time

dependent mean-field games. Those are the first and second order estimates.

Let (uf,m¢) be a solution of (1.7). Then u¢ is the value function for the

following stochastic optimal control problem
T
w(a,t) = inf B [ [L(2(),0(s)) + 9.(m) (a(s), )] ds + u(a(T), T),  (21)

where L is given by (1.12), and the infimum is taken over all bounded and

progressively measurable control v,
dx = vds + V/2dW,,

where x(t) = x, and W; is a d-dimensional Brownian motion. The estimates
that we will see over this chapter can be provided as a consequence of this

optimal control representation formula.

2.1
Lax-Hopf Estimate

Proposition 2.1.1 Suppose A1 holds. Let (uf, m¢) be a solution of (1.7). Then
for any smooth vector field b: T? x (t,T) — R<, and any solution to

& + div(be) = A, (2.2)

with £(x,t) = & we have the following upper bound:

[t e < [ [ (L0500, 9) + g0m) s, 9))eLy o) duds

+ [ uly Ty, T)de. (2.3)

Proof. Multiplying the first equation of (1.7) by £ and 2.2 by u¢, we obtain the
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auxiliary system:
—u§ + EH (2, Dyu) = EAu + Ege(me)
&ut + ucdiv(bg) = u*AE.

We subtract these equations to obtain

—&u — Euy = udiv(bg) + EH (x, Dyuf) — u AE + EAu® + Eg.(me).  (2.4)
Notice that:
G — ot =~ (0E);

also, integrating (2.4) in T? yields

/ u€ div(be)da = / ubeds — / Du‘bedr — — / Dubéda.
Td oTd Td Td

Notice we have no boundary terms, because the Torus is a compact manifold

without boundary. Moreover,

/Td —u AL+ /w (AU = /Td DEDuS — /Td DEDwE = 0.

Thus,
d
dt
Note that L(x, v) = sup(—p - v — H(x,p)). Because in our problem v = b and
p = Duf, we get L(z,b) > Duf-b— H(x, Du).
Then,

utds = /Td(—b(x, £)Duf — H(x, Duf) + g.(m¢))édx. (2.5)

/Td(—b(:v,t)DuE—H(x,Du)%—ge gdx</ (2,b) + g.(m))edz (2.6)

Now, integrating with respect to the Lebesgue measure in [¢,T], we discover

/t - €€d33</ / (,b) + ge(m))&ddt. (2.7)

That is,

/Td(ue(x,t)g( 1) — u(z, TVE(x, T)) dx<// (,b) + g.(m®))Edadt
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We conclude that:

[t tgode < [ [ (D bty

+ gm) (g )6y, $)dyds + [y, T)E(y, T

The following corollary shows us what happen when we take b = 0, which
is a natural choice. Also, we can choose &, to be either the Lebesgue measure

or the measure my.

Corollary 2.1.1 Suppose Al is in force. Let (u¢,m) be a solution to (1.7).

Then the following upper bounds are available:

i) If p(z,t) solves the heat equation with p(x,0) = mgy, we have

/T “(x,0)modx <CT+/ / ge(m®)(z, t)u(x, t)dedt+
/W u(z, T)p(z, T)dx. (2.8)

it) We also have:

/Td we(z, O)da:<CT+//g€ mtd:pdt+/ Tz (2.9)

Proof. Choosing b =0, t = 0 and &, = mg in 2.3, we obtain:
& +div(b) = AL = & — AL =0,

where pu(x,t) is the solution of the heat equation, and u(x,0) = my.

Even more,

L(z,b) = sup(p-b— H(x,p));

peRd

hence L(z,0) = sup —H (z,p) < —1, as implied by Al.
pERA

T T
/ / L(x, 0)dxdt </ Cdt = CT
0 Td 0

Thus,

and,

/11" u(z, 0)modz < CT—I—/ / Ge(m®)pu(w, t) d:pdt—i—/ Tz, T)dx.
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Note that, if we take g =1 and b = 0 on 2.2, we have

T
/ u(z,0)dr < C’T—i—/ / ge(me)dxdt—i-/ u(z, T)dx,
Td o Jrd Td
where ¢ = 1 is the solution of:

& —AE=0, in T x [0, 00]
£(x,0) =1, on T¢x {t=0},

which is unique.

2.2
First Order Estimates

For a function f we define the oscillation in a given domain Q € RY as

follows
0sCzeq f(x) = sup f(z) — inf f(z).

2eQ e

Proposition 2.2.1 Assume A1-3 are in force. Let (u¢,m¢) be a solution of
(1.7). Then

T
/ /d cH(z, Dyu“)m® + G(ne x m)dzdt < CT + Coscu(-,T), (2.10)
o Jr
where G' = g.

Proof. Multiplying the first equation of (1.7) by m¢, the second by u¢ and

subtracting them, we obtain:
—(ugm+miu®)+m H (z, Du®)+u® div(D,Hm?) = m Au —u Am+g.(m)m*.

Integrate in the d-dimensional torus T¢ to get

€ € €,,€ d € €
/Td —(uym® + myu®)dx = g e T dx,

/W ucdiv(D,Hm") = /

<D, Hmedz— / Du‘D,Hmedx = — / Du‘D,Hm dx,
oTd Td Td

and

mAu® — u*AmSdr = 0.
'ﬂ*d

Thus,

_jt - u‘mSdx + ./Td(H — DuerH)mEd:p — /Ed ge(me)medx. (2'11)
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By A2, we have:

L(z,p) = D,H (z,p)p —

Hence,

21

H(z,p).

—L(x, Du) = H(x, Du) — Du‘D,H (x, Duf).

By A3:

cH(z,Duf) — C < Du*D,H (z,

As consequence,

—cH(z,Duf) + C > H(x, Du‘) —

Duf) — H(x, Duf).

Du‘D,H (x, Duf).

Taken these observations into account 2.11, becomes:

/d(—cH(:z:, Duf) + C)mSdx > /d(H(l‘, Du) — Du°D,H (x, Duf))mdx
T T

:ddt/qrd’Lﬁmgdl'—f—/nge(m mdl‘

Multiplying by (—1) and integrating in [0, 7], we get

T T
cH(x, Du®) — C)mSdxdt < — (m)mSdxdt
! 9l
o Jr

Lo

Note that

(z,0)dx — /due(x,T)me(a:,T)da:.
T

T T T
/”/CMMﬁzc//ﬁﬁMﬁzc/1m=CT
0 JTd 0 JTd 0

From Corollary 2.1.1,

T T
/ / cH(xz, Du)mdzdt SC’T—/ / ge(m
0 Jrd

*

6@&+/L/% (e, ) dwdt

p(x, T)dx —/ (x, TYm (z, T)dz

_/ nge ILL m —|—/ .Z'T)

—m(z,T))dz
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Remembering that g.(m¢) = n. * g(n. * m), and by A2, there exists a
convex function G such that ¢g(z) = G'(z). Also n.(y) = n.(—y).

Then,
M * g(ne * m) (1 — m) = g(ne * m)ne (1 — m?) < G(ne x p) — Gne x m*)
Hence,
T
€ < _ €
C/o /T H(z, Du)m‘dxdt CT+/ (x, T)(p(z, T) — m(x,T))dz

+ / / (Ne % 1) — G(ne * mS)dxdt.

Note that
/Td u(x, T)p(z,T) < supuS /Td w(x, T) = supu.
and,
—/ xT)>infu5/Tdm5(x,T):infu6.

We have that p is bounded, then

G(nexp) =G (/W ne(y)u(z — y)dy) < G(llu(z = y)ll poo ey /Td ne(y)dy).

Since 7. is a mollifyer,

Tdne = 1.

Then, G(n, * p) is also bounded, that is,

[ [ ctem=c

To conclude, we gather the former computations to obtain

T T
c/ /d H(z, Du®)mSdxdt + / /d G(ne * m)dxdt < CT 4 supu® — infu® + C
0 Jr o Jr

=CT + Coscut.

If we specialize g as g(z) = z* we obtain further information.

Corollary 2.2.1 Assume A1-4 are in force. Let (uf, m¢) be a solution of (1.7).
Then,

T
/ /d(ne *mS)* T+ H(x, du®)mdxdt < C. (2.12)
0 T
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Proof. Note that, since g(m¢) = (m®)®, we have

G'(ne+m) = g(ne + m®) = (nexm)* = G(ne + m*) = (e +m)**

Then,

T T
/ / H(z, Du)mSdxdt + / / G(ne * m®)dxdt
0 Jrd 0 Jrd

T T
= / / H(z, Du®)m‘dxdt +/ / (e * m)* M dzdt < C.
0 Jrd 0 JTd

Because T is the terminal instant, so is fixed, that is, CT < K, for some

constant K;. Moreover oscu(-,T) < K, for some constant K5, because T, is
fixed. Then,
C - Kl + KQ.

The result follows. |

2.3

Gains of Regularity for the Hamilton-Jacobi Equation

We will now obtain improved regularity for the Hamilton-Jacobi equa-
tion, the first equation of (1.7), by applying the results from the previous

section.

Proposition 2.3.1 Let (uf,m) be a solution to (1.7). Suppose g > 0 and let
M = max H(z,0). Then,

u(z,t) 2 minu(z, T) + Mt —T). (2.13)

Proof. Remind that the first equation of (1.7) is:
—us + H(x, Du) = Au + g.(m°).
At an extremum point, we have Du® = 0. Then:

—U: — Auf = ge(m€> - H('T7 0) > ge(m€) - Il’lqE}iX H(.T7 0)
= g.(m) + min H (z, 0)

> 0.
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By the Maximum Principle,
u(x,t) > mxinue(as,T),

and,
—MT < —Mt.

Add these equations to obtain:
u(z,t) — Mt > minu(z,T) — MT.

Thus,
u(z,t) 2 minu(z, T) + Mt —T).

|
Remark 1 For the Mazimum Principle, we refer the reader to [2], chapter 2.

Proposition 2.3.2 Assume Al1-4 are in force. Let (uf,m¢) be a solution to
(1.7). We have:

T

/ / H(z, Du)dzdt < C + /d(ue(x,T) — w(x, 0))dx. (2.14)

o Jr T
Proof. By the Corollary 2.2.1
T
/ d(ne *m®)* ™ + H(x, Du)dwdt — C < 0.
T

Furthermore, by the Corollary 2.1.1

O</ / ge(m dxdt+/ T) —u(x,0)dx + CT.

Thus,

//gﬁ +HxDu)dxdt—C<//g€ Vdadt

+ [ u (z,T) — u(z,0)dz + CT.
T

Hence,

/OT/TdH(a:Du)d:z;dt</ “(,T) —u(x,0)dzx + C.
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Corollary 2.3.1 Assume A1-4 arein force. Let (uf, m) be a solution to (1.7).

Then, the following lower bound is available.
/ / (x, Du)dzdt < C + oscu(-,T) (2.15)
and

[ i@, 0)ldz < €+ 3 Ju (s Tl e - (2.16)

Proof. By proposition 2.3.1, we have:
u(z,t) = minu(z, T) + M(t = T') — maxu(z,T).

Taken t = 0,
—u(z,0) <oscu(-,T)+ MT.

Integrating with respect to the Lebesgue measure to d-dimensional torus T¢,

we obtain:
/’]Td —u(z,0)dr < /Td(oscu (,7)+ MT)dx.
Taking the modulus, we get
/d |u(z,0)|dx < /d loscu(-,T) + MT|dx < C + oscu(-,T),
T T

since, oscuf(-,T) < 2 ||u€('7T)||L°°(’]Td)'

The result first claim follows.

By 2.14

T
/ /d H(z, Duf)dxdt §C+/ (u(x,T) — u(x,0))dz
0 Jr

<C+/ (¢, T) + oscu(-, T) + MT)dz.

Observe that, if we take t = T" in 2.13, we obtain:
u(xz,T) > minu(z, T).
Taken that observation into account, we have:
T
/ /d H(z, Duf)dxdt <C + oscu‘(-,T),
o Jr

as we desire. [
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2.4

Second Order Estimates

In this section we produce second order estimates for a mean-field game

system.

Proposition 2.4.1 Assume A1-6 are in force. Let (uf,m¢) be a solution to

(1.7). Then, the following lower bound is available.

T

T
[ Lo/ e mOIDare ) 4 Te(D2,H (D2, me < max Au(w, )
o Jr
+ C(1 + maxu(z, T) —minu(z,T)) — /d u(z,0)Am*(z,0)dz.
x x T
Proof. Remember that the first equation of (1.7) is:
—u; + H(xz, Du) = Au + g.(m°).

Observe that we need to take the Laplacian A in (1.7). Taken the second order

derivate of H(z, D, uc), we obtain:

D.(D,(H(z, D,u))) = D,(D,H + D,HD? uf)
2 2 2 € 2 2 2 € 2 €
= D2, H + D, HD2 u* + (D2, + D2 D2 u‘) D2 u
+ D,HD,D? u°.

Now, apply the Trace operator to conclude
A H =2Te(D2 HD? ) + Tr(D2 (D2,u)?) + DyH Dy Auc.

Note that,
ge(m©) = ne * g(ne * m°).

Then, taken the Laplacian A in g.(m¢), we obtain:
Age(m*) = div(Dage(m©)) = div(ne * (¢'(ne * m®) - Dy(ne * m©))).
Thus,

Aug — AAu, + Tr(D2 D2 u)?) + A H + 2 Te(D2 HD? ) + Dy, H Dy Auf
= div(ne * (g'(ne * m*) - Dy(ne * m?))).
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Multiplying by m¢ and integrating in the d-dimensional torus T¢.

/ meAus — mAAu, + Tr(D2 D2 u)*)me +m A H
Td
+ 2Tr(D,HD2 u)ym + m D, H D, Au‘da
B /d me div(ne * (¢'(ne * m*) - Dy(ne * m)))dx.
T

Note that,

e * (g’ (ne xm®) - Dy(ne x m®)) DymSdx

d

Il
S—5—5—

/Td m div(ne % (¢' (e * m€) - Dy(ne % me)))da

(9'(ne * M) - Dy(ne * m€)) Dy (ne * mS)da

d

gl(ne *m€) - [Dy(ne * m€)|2d:1:.

d

Moreover,

/ mD,HD,Au‘dz = | m‘D,Hdzx - / div(m* D, H)Au‘dr,
T T

aTd

Since the d-dimensional torus has no boundary terms, we have the following

result:
/ m D,HD,Au‘dx = —/ div(im‘D,H)Au‘dzx.
Td Td
Observe that,
/ mAAudr = / Am Audr,
Td Td
and,
/ m o Aucdr = / Oy (mAuf)dx — / oym Autdr
Td Td Td
Integrating in [0, 7], we obtain:
T
/ ) myAu® — div(m D, H)Au — Am Audzdt
o Jr

T
= / /d(m§ —div(m D,H) — Am®)Audxdt = 0.
o Jr
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Furthermore,

T T
/ (%(meAue)dxdt:/ —/ mAuSdxdt
o Jrd dt

/ (x, T)Au(x,T) — m*(z,0)Au(z,0)dz

/ (z, T)Au(x,T) — u(z,0)Am*(x,0)dz.
By Ab5:
2Tr(D2, H(D2,u)?) < 6 Te(D2, H(DZ,u)?) + CsH
Finally,
T
/ /d , 776 * me)|Dz(776 * m€)|2 + Tr(Dng(Diqu)2)medIdt
T

< / / (D2, H| + 6 Te(D2 H(D2,uf)?) + Cy H)mddt

m(x, T)Au(x,T) — u(x,0)Am*(x,0)dz.
Observe that:
/d m(x, T)Au(x, T)dr < max Au(z,T) /d mc(x,T)dr = max Au(x,T).
T x T x

Since

/Tdm (,T)dx = 1.

Choosing § = 5 and remembering that by A5, |D2 H| < CH+C, we get
T 1
/ / g (ne % m)| Dy (e * m)* + 5 Tr(Dy, H (Dg,u)*)m dudt
0 JTd 2 pp Tz

T
<C+ C’/ /d Hm dzdt + max Au(z,T) — /d u(x,0)Am*(z,0)dx.
o Jr z T

By 2.2.1
T
C’/ /d Hmfdzxdt < C + Cosc(-,T).
o Jr

Then,

/ /d (e * m)| Dy (ne % m®) | + Tr(D2 H (D2 u)*)ym ddt
T

< C(1+maxu(x,T) — minu(z,T)) + max Au(x,T) — /d u(z,0)Am*(z,0)dz.
x T T T
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The following corollary shows us a computation of Sobolev’s Theorem

with the result above.

Corollary 2.4.1 Assume A1-6 are in force. Let (uf, m¢) be a solution of (1.7).

Then
T
/ /d g' (e * m)| Dy (ne x m€)|*dadt < C,
o Jr
and so
r 1
/ |7 % m II“+ dt < C.
0 7 (a+1)(T%)
Proof.

First we can see that

/1r (2. 0)Am (,0)dz < [[u (2, 0)]| o /1r Am(z,0)dr = 0.

And
r 2 2 ,€\2 €
/0 /T tr(D2H(D2,u))medadt < C,
since
T
2 €\2 € 2 2 €\2 € o
/ [ (D2, H(D2,u)?)ymddt < tr(D2,H(D%,u)?) /0 [ mdudt = C.
Moreover,
C(1+ maxu'(z,T) — minu(z,T)) + max Au(z,T) = C.
Then,

T
/ /d g (ne x m)| Dy (ne » m) Pdxdt < C.
0 T

Now, we are going to compute the second part of the theorem, but first
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remember that g(m) = m®. Thus,

// g (ne x m)| Dy (ne x m®) Pdadt = //ne*m ) Dy (e ¥ m®)|*dwdt =
a+1 +1_2

a—1 = €

/ H (e *m) "2 Dy(ne x m°) LQ(Td)dt_/o (ne*m) z 2D, (ne *m) L2(Td)dt
e\ &t a+1

L Pateem) | e = [ AD2 e m [

Finally, by Sobolev’s theorem we obtain:

T
/0HDx(m*m)||a2(a+1>wdt>/ (e me)] |52

( et ()

We included the statement of Sobolev’s Theorem in the introduction. See

also [2], chapter 5

Corollary 2.4.2 Assume A1-9 are in force. Let (uf, m¢) be a solution of (1.7).
Then

T
/ / |divD, H*mdudt < C.
0 T

Proof. Note that div(D,H) = Tr(D}, HD?, u) 4+ Tr(D2 H).
Thus,

| div(D,H)|* = 2| Tre(D2,HDZ2, u)|> + 2| Tr(D2 H) .

Using Assumption 9, we get:

2| Te(D2, HD2 u)|* + 2| Te(DZ,H)|> < CTx(D2 H(D2,u)?) + CH.

Now apply Proposition 2.4.1 and Proposition 2.2.1 to complete the proof.
|
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3
Regularity for the Fokker-Planck Equation

We begin this section taking note if we integrate the second equation of
(1.7) we obtain [rs m¢(z,t) =1, for all 0 < ¢ < T. Observe that the maximum
principle yields that m¢ > 0 if m(z,0) > 0.

We will explore in this section various estimates and further integrability
for m¢. In Section 3.1 we obtain by the second order estimates, described in
the previous section, improved integrability of m*. In Section 3.2 we obtain
LP norms of D,H to control the integrability of m¢ These guide us to
obtain explicit control for norms of m¢ in terms of polynomial expressions

in ”DPHHLP(Td)'
3.1

Regularity by the Second Order Estimates

We begin this with a proposition that will help us through this section:

Proposition 3.1.1 Assume A1 is in force. Let (u¢,m*) be a solution of (1.7).
Let o : R — R be a C? function. Then

d . . el e b o
G otmde + [ div(D, ) (ne)dx = — [ (m) D o

The following theorem will provide us a priori estimates for m*.

Theorem 3.1.2 Assume A1-9 are in force. Let (u,m¢) be a solution of (1.7).
Then for d > 2, |m®|| pec(o.1),1r(ray) @S bounded for any 1 <r < 2 uniformly

in E.

Proof. In this proof we will omit the € to simplify our notation.

Let [, be an increasing sequence defined inductively such that
[m(-,t)|l 5, is bounded. Set Sy = 0, so that ||m(-,t)[,,5 = 1 < C. Let

Bni1 = %. Observe that (3, is the n'® partial sum of the geometric series
with tem ?TZ' Then lim,, .o 3, = ﬁ = % —1. Since this is a sum of a geometric

series with term less than 1.
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Set

*

qn = §<5n+1 + 1) = (ﬁn+1 + 1)'

d—2
Observe that

qn > ﬁﬂrﬂrl + Bnt1 +1> 2040 + 1.
Then we get,
1-An An
||m||2,3n+1+1 < ||m||1+ﬁn an ?

for0 < A\, <1, smce’\"—i—1 A —

T3 =3 /Bn+ —- In particular

A — Qn 28541 — Bn _ Bny1+1

Qn_ﬂn_l 2ﬁn+1+1 25n+1+1

We have that |[m||,,, < C then, ||m||}+2" <C.
Thus,

m25n+1+1dl, _ ||m||2/3n+1+1 <C ” ||)\n (28n41+1) _ =C ||m||qﬁn+1+1 . (31)

T(i 25n+1+1 -

Taking 3 > 0, using Proposition 3.1.1 with ¢(m) = m?*! we get:
First note that, ¢'(m) = (8 + 1)m” and ¢”(m) = B(3 + 1)mP~L.
Then,

d

L ) de + / div(D, H)[(= 5 — 1)mP* + mP+)de = — / B(8 + 1)ymP* | Dym|2da.
dt Td Td Td

Observe that,

/T div(DH)[(— — Dm T 4 m ] = —p /T div(D,H)m? ' de

and,
43 B+1
+1)m | Dym|* = ——|D,m 7
85+ DDl = 2 DS
Now integrate in [0, 7] to obtain:
mP Tz, 7)dr + 7/ |D, m” 2 dpdt
T4 Td

— p+1 ; B+1
= /Tdm (x,0)dx + 5/0 /Td div(D,H )m" " dxdt. (3.2)
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Taking the Young’s inequality with ¢ on | div(D,H)m”*1| we have
/ | div(D, H)m"|dz = / | div(D, H)m#m*3|du
T T
< Cs ( / |div(D,H )Idex> +6 ( / ) mzﬂde) : (3.3)
T T

where all integrals are evaluated at a fixed time ¢.

Setting 5 = (41, from (2.1), (2.2) and (2.3) we get for any 7 € [0, 7]

45, T Bri1+1
) mPrt (g ) de + 35:‘11 ) |D,m T |?dxdt
T n+1 0 JT
= [ mPr (2, 0)de + Cs | div(D,H)|*mdadt + 5 [ |m| " at.
Td Td p 0 dn
(3.4)
By Sobolev’s theorem we get
Bpy1tl Bny1t+1 |2
HmHBn+1+1 _ HmHg—fJ(rﬁltll+1) _ Hm +1 <c Hm Pniatl
5 (Pn w2
Bug1t1 ||2 Bry1+1 |2 32 1 Pni1tl o
_C Hm 2 —|—HDm 2 :O(/dm5n+1+dx+/d|Dm 2 |daj‘>
2 2 T T
(3.5)

From (2.1) and [pam(z,t) = 1, for each fixed time ¢, and applying Holder’s

inequality and Young’s inequality on [rs m®+1+1 we have

1 1
mPraitldy = mPrrtamady < ( m%”*l“da:) °. ( m;'de) ’
Td Td T Td
< CC + C/]Td m25n+1+1dx < CC + C Hquﬁ:+l+1‘
Thus,
Il < € [ 1Dm™E Pdw 4 Cok Cmf . (36)

From (2.4) and (2.5), taking 0 ¢ small enough we have for some §; > 0

[t (o, e + 6 [ e at

<C+C / P (g 0)di 4 O / ' / | div(D, H)Pmdzdt
T o Jr
Since by Corollary 2.4.2

/O ’ /T | div(D, H)Pmdzdt
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is bounded, the result follows.

Corollary 3.1.1 Assume A1-9 are in force. Let (u°,m¢) be a solution of (1.7).
Then, for —% < B <0 we have

T
/0 /T () Dy Pdadt < C. (3.7)

Proof. To make the notation less crowded, as before, throughout this proof we

will omit the e.

We first note that for —1 < 3 <0

mPde < C,
Td

since for each fixed time t we have that m(-,t) is a probability measure. Then,
using identity (2.2), coupled with (2.3) and Corollary 2.4.2 yields

// \Dom ™ Pdadt < O+C’/T/ m2 e dt,
0 Td 0 Td

and provided —3 < [ < 0 the right hand side is bounded. [ |

1
2

3.2
Regularity by L7 Estimates

In this section we obtain estimates for m¢ in L>°([0, T'|, LP(T%)) depending

polynomially on the LP-norm of D,H, for p > %. Because we need explicit
estimates, we will prove them in detail. Throughout this Section, we omit the

€ in proofs for ease of presentation.

Lemma 3.2.1 Let (uf,m¢) be a solution of (1.7). Then, for 5 > 1, there exist
constants ¢, C' > 0 such that

d € € € ﬁ

= [ e < (J/Td D, H 2 (m€)Pdz — c/w D, (m€)% |2 de.

We now improved integrability of m in terms of the L7([0,T], LP(T%))-norms
of |[D,H|? for p < oo.
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Lemma 3.2.2 Let (uf,m¢) be a solution of (1.7) and assume that B > By for
Bo > 1 fized.

dt/ Vv < C||D,HP (m

. /\D )52z, (3.8)

Lr(T4)
1,1
where st e= 1.
Proof. The result follows by applying Holder inequality on
C / D, H |2 (me) da.
Td
[ |

Definition 3.2.1 Let 1 < 5y < % = d%‘lQ be a fixed constant. The sequence
(Bn)nen 1s defined inductively by B,41 = 05,, where 0 > 1 is a fized constant.
Lemma 3.2.3 Assume that (5,)nen as above and let 1 < q < %2. Then

1—k)

< (/ ( E)ﬁnd )9& (/ ( 6)2*5§+1d )2(2*
.= U m T » m T ,

where K is given by (1.8).

H(me)ﬁnJrl

Proof. Holder inequality yields

1 K 2(1—k)
||mB”+1||q _ </ (m)ﬂan) Bn4149 < (/ mB”) Bn </ m2*B;7,+1>2*5n+1 ’
Td Td Td
where
1 kK 2(1—k
_r k) (3.9)
/8n+1q Bn 2 /8n+1
By rearranging the exponents taking the (3,,1’th power
Bnt1k 2(1—k)
( m5n+1Q)q < (/ mﬁn) Pn ( mQ*ﬁ;H) >
Td - Td Td ’
establishing the result. [ |

Lemma 3.2.4 Foranyl < q< d%'ZQ we have

2(1—k)
<C ( /
2% Td

o

(1—r)
. .

2\ (1—K)
) +C|(meyne

D, ((m)"5)
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Proof. From Sobolev’s inequality we obtain
e Pntl
2

2(1—k) Bt \ |2 2 2(1-r)3
H(m) = / D, <m 2 ) dx—i—/ dx
% Td Td
N2 (1-+) (1-x)
< 2P ((/ D, <mﬁ2+ ) dx) + (/ m5"+1dm) ) )
Td Td

Now applying Holder’s inequality to last term of the above inequality we obtain

5n+1
m 2

(1—k) 1= = (1—k)
(e ae) s (fmter) T (fv) T = el
Td Td Td q

Then the result follows. |

Lemma 3.2.5 Assume that 1 < q < d%Q. Then, for any 6 > 0 there exists C'
such that

ﬂn+1

q§c+5wmwz

H(me)BnJrl

2*‘

Proof. Note that, ¢ < 4 =2, then 1 < ¢f,41 < MTnH

We can apply Holder’s interpolation on [|(m©)||,s, ., to obtain

B ! A 2*Bh41 22*([13_)\>

n419 nt n41

( mﬁ”“qu) < (/ mdx) ( m” 2 dx) ,
Td Td Td

1 _ 2(1-X)
where 0 < A < 1 solves Bog = A+ S

equation, and since m is a probability measure, we get.

Taking the (,,11'th power on above

By 1207

<[>
q

o

2*
Furthermore, noticing that (1 — A) < 1, Young’s inequality with § yields

Bn41 2

gc+ﬂhz
q

‘ ’m/BTLJrl

2*

establishing the result. [ |

Proposition 3.2.6 Assume that 1 < ¢ < d%'lz

< (fumrae) oo ([ [or (im0#)

oy
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Proof. By combining both Lemmas 3.2.4 and 3.2.5 and taking the (1 — k)’th

power on the statement of Lemma 3.2.5 we obtain

8,0 |12(1—K) s, 2 =k 8,q 12(1—K)
Hm o §C+C</ ‘Dz(m ;1> dx) +5Hm — =
9 Td 9%
b | [2(1—K) Bt \ |2 (1—x)
(1—5)Hm 2 <C+C /d’Dm<m 2 ) dx =
2% T
b1y |12(1—K) s, 2 (1-~)
Hm ! §C+C’</ ‘Dac(mjl) d$>
2% T

Now, multiplying both sides by

([ meyar)”,

and using Lemma 3.2.3 the result follows.

Proposition 3.2.7 Let (uf,m®) be a solution of (1.7) and assume that 1 <
q < d%‘lz. Let % + % =1 and rk = 1 where k is given by 1.8. Then

d

= Td(m6>5+1d:¢ <C+C|pHP

. ( /T d(mf)ﬂndx>9 (3.10)

Proof. From the statement of Lemma 3.2.2 and using the last Proposition one
obtains that

£ Lt ()
. C/ Dm <mﬂn2+l> 2d$.

"H‘d
Note that,

C H|DPH|2Hp (/Td mgn)(?n (/Td D, <mﬁn2+1) 2) (1—k)
CH‘DpHFH </ m5n>9l€ </ D, (mﬁnjl)r)(l—ﬁ)]

p \JTd e
<ot (Ln) (Lo ())
p \J1d T4

o)) e

c(/w

<
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Since, r > 1 and rx = 1. From Corollary 3.1.1 one obtains
2
(/ D, (mﬁn;l) ) <C.
Td
Nevertheless, taking those observations into account, we get that
o / D ( 5n+1>2 (l—m)+C
2
dt Jra Ta| " "

e [ [pe () [ ar < 0 g (fm) " o] (fme)
. 9
O+CWDJWM(A/Mﬂ,

where the last inequality follow from Young’s inequality shown bellow

ot ()" 1< [elmat], ([ )] o

i Lo < [0, (f,m™)

Proof of Theorem 1.1. The proof follows by induction on n. For n = 1

we integrate equation (3.10) with respect to dt over (0,7) to obtain

r

Lr(Td

T

L7 ([0,T);LP(T4)) +C

/ mP (z, 7)dr < C’/T H|Dp]—]|2
Td 0

)ﬁ+C§CW%HP

where we are considering that [ram® < C for some constant C' > 0. This

verifies our claim for n = 1. Then,

T

Lp(T9)

Tn

(7
mmwwm)'“n>

Integrating (3.11) with respect to the Lebesgue measure dt over (0,7) one
obtains that

Cciit/ﬂ‘dmﬁn-&-ldeCH‘DpHPH (C*JrCH]DpH|2

r

Lr(T4)

rnb

Bn . 2 ?
mpPrtl (:L',T)dl‘ < C/O H‘DpH| | L7([0,T);LP(T4))

. 1D,

KW@mﬂ;Mﬁ+a

A further application of Holder’s inequality leads to

r41rn0

ﬁnl 2
m'%%ﬂM§C+CW%H|UmHMMV

Td

establishing the result.
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4
Upper Bounds for the Hamilton-Jacobi Equation

In this section we investigate L°>° bounds for the Hamilton-Jacobi equa-
tion. Since by Proposition 2.3.1 any solution of (1.7) is bounded by bellow,
to get the bounds it is enough to establish upper bounds. These build upon
the improved integrability obtain previously for m® and will be used in the

following sections. As before, we omit the € in the proofs in this Chapter.

Proposition 4.0.1 Suppose (u¢, me) is a solution of (1.7) and H satisfies A1.
Then, if p > f, we have

uE(xv T) < (T - T) m?JX L(Z, O) +C ||ge(m)||L°°([O,T];LP('JI‘d)) + /’H‘d ue(y’ T)e(yv T— T)dya

where 0 is the heat kernel, with 0(-,7) = d,. Furthermore, Zf%-i—% =

and 2 > f, we have
u(z,7) < (T — 1) max L(2,0) + C||ge(m)|| 1 o ;00 (may) + /]I‘d u(y, T)0(y, T — 7)dy.

Proof. By applying Proposition 2.1.1 with b = 0 and {, = (-, 7) = J,, we

obtain the estimate

u(z,7) < (T — 7)max L(z,0)

z€Td

+ / / )y, t)0(y, t — 7)dydt + / u(y, T)0(y, T — 7)dy.

where,

T
//dL(y,O) y,t—7)dydt<maxLzO// (4.t — 7)dydt = max L(=,0) [ 1dt
T T

2€Td z€Td

= (T — 1) max L(z,0).

z€T4

Now, we need to estimate [” [ra g(m)(y, t)8(y, t—7)dydt. To doing so, we recall
the following property of the heat kernel, for %—i—% = 1 we have ||0(-,t)| , < <
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Hence, Holder’s inequality yields

[ 9tm) w000, = )y < gm0 ooy 10C o

C
< i Hg(m('vt))HLp(Td)'
(t—71)2
Thus, if d < 2p we have
C
[ fstmtor 0. = 7o < [ ot Dl < € gy -
T)?2r

For the second assertion, Holder’s inequality leads to

[ [ om0, = 7yt < [ 1g0m) 0l 100, = 7) e

T C s
< lgm)l e o, 1p:10 (ray) (/T d> < Cllgtm)ll o o,ry:10 () -

2p

where the last inequality follows from < 1. [ |

Corollary 4.0.1 Suppose A1-6 are in force. Let (u¢, m*) be a solution of (1.7).
Then, for any p > g we have

u(z,7) < (T —17)max L(z,0) + C ||n. *x m ||L°° ([0.T]:Lo?(T4)) /Td u(y, T)0(y, T — 7)dy,

2€Td

where 0 is the heat kernel, with 0(-,7) = d,. Furthermore, if ap <1 we have

w(z,7) < (T —7)max L(z,0) + C + /Td w(y, T)0(y, T — 7)dy.

z€Td

«

Proof. To begin our proof, first note that by A4, g(m) = m®.
Thus,

P

1_ «a
a a L a
lgcml, = llne = g+ m)ll, = 11 m)ll, = ([ Inesmierda )™ = ncsemlls,

Then the first assertion follows.

Nevertheless, to establish the second assertion, note that, since ap <1

[ne * mlg, < llnexm|f = (/Td(n6 *m)dw) = (/]I‘d nedx> (/]I‘d md;v) = 1.

However, with the observation above, we conclude our proof. [ |

Corollary 4.0.2 Suppose A1-6 are in force. Let (u¢, m) be a solution of (1.7).
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Then, for any p,r such that, @ > g, we have

u('Tv T) < (T - T) IZ%%‘)d{ L(Z> 0) +C Hne * mEHLaT([O,T];L"P(Td)) /ﬂ,d u(yu T>9(yv T - T)dy>

Proof. By the second assertion of Proposition 4.0.1 and A4, we have that

1
T 2\ v
ey = 10510 oy = ([ ([0 miea) ) ar)

3=

T =2t 7 T ar
a P ap " ar or [
- </o (/w (e 5 m) de) dt) N </o 17 %[ e (e dt) = [ % m e 0.1y Lov e

Then, the result follows. [ |
To finish this Chapter we show the proof of Lemma 1.3.1.

Proof of Lemma 1.3.1:
b(a—1) d

=

It follows from the second assertion of Proposition 4.0.1. Since
holds.
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5

Sobolev Regularity for the Hamilton-Jacobi Equation

In this Chapter we consider regularity in Sobolev spaces for the Hamilton-

Jacobi equation. As before, we omit the € in the proofs in this Chapter.

Lemma 5.0.1 Let u € W*P(T?). Then, there exists C > 0 such that

1 1
| Dtll oy < C [ D]}, o el ey - (5.1)

Proof. Note that Gagliardo-Nirenberg interpolation Theorem leads to

ID7ullze < ClID™ul|g [l 12,
where,
1 ] 1 m 1l—a
- ==+ ( — ) a+ .
p n r o on q
Taking g =00, j =1 and a = %, the result follow. [ ]

Lemma 5.0.2 Let (uf,m¢) be a solution of (1.7). Then

HutHLT ([0, T); L2 (T4)) HD u HLT ([0,T]:LP(Td)) < | ge(m )HLT([O,T];LP(Td)) + ||H||LT([0,T];LP(Td))7

for 1 < p,r < oo. Furthermore,
1D e ozzacrayy < ge(m) | caqo,ryzaceay + H [l e2qozyizaceay).

Lemma 5.0.3 Let (uf,m®) be a solution of (1.7) and assume that A1-9 are

in force. For 1 < p,r < oo there are constants ¢, C > 0 such that
€ 2, € % € %
|1 H (2, Du)|| r(0,1);20 (1)) < || D7u ||Lr([o,T];Lp(Td))||u ||Loo([o,T];Loo(1rd))-

Proof. Assumption A7 yields

(/Td |H (x, Du(x,t))|pdx>; <ec (/Td ’Duppdxf el
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By combining this with Lemma 5.0.1 if follows that

—
3

([ e Duteypia)” < [ 1Dur7ae) ™ 40 = Dl + €

2113 3
< || D7ul| £ pay [l foo (pay + C-

Thus,
. 1
[H (2, Du)|| r(jo,1p;L0 (1)) < € (/0 (IIDQUIIZP(W)IIUIlim(Td)) dt) +C

1
N T ol T r
S C (HUHEOO([O,TLLOO(Td)) ' /0\ (HDZu”[Q/p(Td)> dt) + C

2. €||3 €2
< ellD N v o ry; o way 14N Eoe o,y oo rayy + C

where in the last inequality we used that 3 < 1. [

Proof of Theorem 1.3.2. By combining Lemma 5.0.2 and 5.0.3 yield

i ol X2
HD2UHZT([O,T];LP('H‘0¢)) < C||D2u”zr([o,T];Lp(1rd))HU||2°°([0,T};L°°(T¢)) + llg(m)ll e qgo,ry;ze(may) + C-

Set 7 = % and define [ by % + % = 1. Using Young’s inequality with 0.

But first, observe that, since j = % Then [ = %

Thus,
3 5=
IIDQUIIET([O,T];LP(W)) < 5||D2U||LT([0,T];LP(W)) + CIIUIIEOJ([O,T};LOOW)) + ||9<m)||LT([0,T];LP(1rd)) +C.

Absorbing the term 8| D?ul| (0. 77.20(ra)) on the left-hand side yields

X e
IIDQUHE([O,T};LP(W)) < +C|IUI|2;?([O,T];L00(W)) + cllg(m) || - o170 (ray) + €

which concludes the proof.
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6
Improved Regularity

Throughout this chapter we define, for 1 < 5y < % and

0<v<1<9, (6.1)
La+1 N d(a + 1)500
T and bv_(oz + 1)dv + 05y(d — 2)(d — v) (62)

As before, we omit the € in the proofs in this Chapter.

Lemma 6.0.1 Let (uf,m) be a solution of (1.7) and assume A1-9 are in

force. Suppose further that a, and b, are given as in 6.2. Then,

rv(lfé)
Bo(6—1)

€ 2
Il zew oztizo ey < €+ C H'DPH’ L7(10,T};LP (T4)) ’

where

d
P> and 1= : (6.3)

Proof. Since , 0 < v <1, i = i;;{ and i = % + ﬁ, which hold by 6.2.

Holder’s inequality implies that,

. 1N N ay
||m6||LaU([07T]?LbU (Td)) = (/0 (( - m%dl’) bv) dt)

9 —_

—v v\ W av
< ( / ' (( m dx) e (7). ( m060dx> o ) dt)
0 Td Td

1

T 2% (a+1) = ﬁ'”'““ av
= ( / ( m- 2 dw) . ( meﬁodx> 0 dt
0 Td Td

1

T ay
1 -y
- ( |t -umnz:%dt) .
0 L2

Now, applying Holder’s inequality, with p = 1 and ¢ = oo one obtains



DBD
PUC-Rio - Certificação Digital Nº 1712696/CA


PUC-Rio- CertificagaoDigital N° 1712696/CA

Chapter 6. Improved Regularity 45

that

1

1
T ay (04+1)(1 v) _ ay
+1 v v a+l)=""F =g, (1-v)
(AH|M¢mw|W% ) @mﬁiww%f/|W”WM“ U dg

= [m"=

2* (ot (d)) HmHEoo([o,T];Lwo(Td)y

@ ([0,T;L

Note that, (1 — v)a, = (a+ 1). Thus,

=0 <1 U) a+1)(1-v)
I = ([ m=0e )OS ([} T o

Nevertheless,
€ (1—v) v
M| Lav .Lbov < |Im . M| oo . .
|| ||L ([0,T);Lbv (Td)) = || ||L(a+1)([ T]L2 ( +1)( T4)) || ||L ([0,T);L9%0 (T4))
Because of Corollary 2.4.1 we have ||mH *(at1) < C. On the
L(O‘“)([O TR (1))

other hand, from Theorem 1.1 it follows that

ru(lff)
Bo(6-1) 1)

||m||Loo ([0,T7;L9%0 (T4)) =C+0C H|D H| Lr([0,T);Lp(Td))

By combining the previous computations one obtains the result. [

The following Lemma shows us upper bound for u¢ depending on g.(m)

Lemma 6.0.2 Let (uf,m) be a solution of (1.7) and assume A1-9 are in

force. Assume that

by [, — d
— > —. 6.4
Qy ( o ) 2 (6-4)
Then,
||u€||Loo([07T]7Loo(’H‘d)) S C + OHgE(m) ||L%([O,T},L%(Td))'
Proof. The result easily follows from Lemma 1.3.1 since (6.4) holds. [

The Lemma below, we can derive more details about upper bounds of u°
and g.(m).

Lemma 6.0.3 Let (uf,m) be a solution of (1.7) and assume A1-9 are in
force. Let ¢, p and 7 such that

0< (<1, ﬁ(ff1>>g, (6.5)
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where
1 1-—
= 1 . i é’ (6.6)
po(1+1) 4 %
and
1.1-¢ ¢
s = 6.7
Firite (6.7)
Then
¢
gellus o rpnacay < ClItmIl oy s
and

HuGHLOO([O,T};LOO(’JI‘d)) <C+C ngHL?([o,T];Lﬁ(Td)) :

Proof. Note that the second assertion follows from (6.5) along with Lemma ?7?.

To solve the first assertion, we can use Holder’s inequality

(1-0)
Je 7 -LP S Je * v .
lodsiursascony < U0l iy o (o

) g m)I oy

Also, we have from Corollary 2.4.1 that ||g€||(1_o vl 1 < C, for
A [o,T];N(“&)(Td))
some C' > 0. Then combining these, the result follows. |

The next Lemma we derive upper bound for |D,H|?.

Lemma 6.0.4 Let (uf,m) be a solution of (1.7) and assume A1-9 are in

force. Suppose further that p > g and r is given as in (6.3). Then

9 €12(1=2)(v=1)
[IDAHE,, o 21000y < C F+ C DU 08 ey
where
1 A 1=\
0< A<, ==+ — (6.8)
20=Ur v F
and
1 A 1—=)
- — + - 5 (6'9>

respectively.
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Proof. Note that A8 yields,

1
|IDH < C+C D[ o

Lr([0,T];LP(T4)) — Dr([0,T);L2(v=Dp(Td)) *

On the other hand, Holder’s inequality implies that

—1
1D 350 ozt vagzayy < DU o gsnray 1 DU o (oo
(6.10)

since (6.8) and (6.9) hold. We have from Proposition 2.2.1 that Du €
LY(T? x [0,T]). Combining these with the computation above, we get the
result. [

Finally, in the next Lemma, we are able to derive upper bound for Du¢.

Lemma 6.0.5 Let (uf,m) be a solution of (1.7) and assume AI1-9 are in
force. Suppose further that (6.4) - (6.9),

Fooa
i (6.11)
v«

and
G by,
g (6.12)
v«

hold. Then,

|Du| < Clg Ol

priompoe) = U9 e o rpnte oy TN L% (o ro

Proof. Inequality (5.1) implies that
5 11 1
1Dull - vmgety < CNDPul P sy 1l
L™ 7 (T4
Note that v < 2 it follows that
1 1
|| D] pat-vo(ray < CHDQUHEM I [lullfoe pay + Cllul| foe ey (6.13)

From (6.13) it follows that

| Duc|| e (o, 1,06 (ay) < CHDQUHW

2 2
L7 ([0,T); L (T d))HuHLoo([ovT]§L°°(Td)) - CHUHLOO([OaT]§L°°(Td))
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and

2
| D uH;7 oz ey < CHgE”’Y o o + HU”Loo(OT] reo(ray T C

By combining these, one obtains

2
[1Du| L (0,17, () <C||9e”7a7u([0ﬂ J(Td))||uHL°°([O,T];L°°(’JFd)) (6.14)
+1 1
+lu HEOJ[OQT ooy T Cllull foe o 1, (rayy- (6:15)
Because of Lemma (6.0.3) we also have
w2 - < C+Cge Cav .
| IIL (0.7):Lo (T4)) Al 2 012 (0
Hence, (6.14) becomes
14
D < Ollgll”
| Du ||LF ([0,T);LG (T4)) g HLTU([O,T];LFU(’]N))
+ Cllgd 7o + gl
el L2 oyt ey 9N Lo (oL oy
1
O € ’Ya
+ e o 1y
< Cllgl™2 gL e
el 2 0.y (ray) Iell 22 opir vy

where the last inequality follows from Young’s inequality applied to those terms

with lower exponents. [

In the next two corollaries we can see more details about upper bounds
of ge(m) and Duc.

Corollary 6.0.1 Let (uf,m®) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that (6.4) holds. Then,

rva(l—%)
Bo(6—1)
L7 ([0,T);LP(T4))

lge(m)]| <C+C||DHP

b
L& ([0,T];L & (T4))

where p > g and r is given by (6.3)

Proof. Lemma 6.0.1 along with A4 leads to

ma(kl)

rell7g)
ERICEY
L7 ([0,T];LP(T4))

l9etm, 2 712 gy < NG o100 rayy < €+ C || D HP?

and then the result is established. [ ]
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Corollary 6.0.2 Let (uf,m) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that (6.4) - (6.12) hold. Then,

(1—A)(?2—_1)()4<_7<) ”;;E@l:ﬁ)
DU | e o ryzeray < €+ CIDU Lro gy 6y

(1= CH—-D(2+~) Ti/;agel:l%))
+CHDUE”LF([O,T]7;LG(T(1)) 0 ’

where p > % and r is given by (6.3).

Proof. Lemma 6.0.5 along with Corollary 6.0.1 leads to

1
(4¢—~¢) 'rva(lff
2(2—v)  Bo(6-1)

1D e (o,ryscorayy < €+ OH|D H? Lr([0,T;LP(T4))

( rva(l 1
2y 50(9 1)
L7([0,T);LP(T4))

+C|||D,H

Furthermore, because of A8 and Lemma 6.0.4

s ”;“((01‘1%)) (=010 “"“6“591‘1%))
- o\v— Y olv—
H’Dp[ﬂ L ([0,T);LP(T4)) < C+Cf|Duf HLF ([0,T[;LE (T4))
and
JCEEE “B"‘g;‘l%)) (-0 (-1)(2+10) ;((;‘1%))
2l 0 0

WQﬁwumnmm)—O+QWWmewmn '

The result follows by combining both above computation. [ ]

This final Lemma below shows us that || Du¢||pr o 7,06(ray) < C.

Lemma 6.0.6 Let (uf,m¢) be a solution of (1.7) and assume A1-10 are in
force. Then,

| Duf| e o,y (nayy < C,
where F and G are given by (6.8) and (6.9), respectively.

Proof. By Corollary 6.0.2 and (6.1)-(6.12) hold,

(- A)(w2 1)()4<,%) rzag:l%))
D e qoraecen) < € + DU o i oey

A=N)(v=1)(24+~¢) Tuﬁagal:é)
+ CHDUEHLF([O,T]’Y;LG(Td)) 0
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Also,
(1— Ny — (¢ —7¢) rva (1 - )
@) ICE (6.16)
(1-N-DEgrall=5) o1

Y Bo(0 —1)

have to be satisfied. The Lemma follows by combining Young’s inequality with

Lemma 77. [ |

To finish this chapter we present the following Theorem.

Theorem 6.0.7 Let (u,m¢) be a solution of (1.7) and assume A1-10 are in

force. Then, for any B > 1, ||m®|| pec(io.r1.08(Tayy @S bounded uniformly in e.
([0,T;LP(T%))

Proof. For p > %, 6 > 1 and r is given by Lemma 6.0.6, we have by Theorem
1.1 that for any 3 > 1 there is r3 such that

/T P (rw)dt < C + C|[DyH (w, Du) Pl o010 oy
If we combine (6.10) and Lemma 6.0.6 with A8 one obtains

2(y=1)(1=X
I DpH (2, Du) Pl oz oy < Cll Dl 0K 26wy, + C < C.

It is enough to conclude the Theorem. [ |

Corollary 6.0.3 Let (uf,m) be a solution of (1.7) and assume A1-10 are
in force. Then, for any p,r > 1, [|Duf||ro1p;re(ray)s | D*u|| 1r (0,70 (rey) are

bounded uniformly in €.

Proof. Because of Theorem 6.0.7, for p,r > 1, ||ge(m®) || rjo,7};2» (1)) is bounded
uniformly in e. So are [Juf||L>([0,T]; L>(T%)) and | D*u||r (o110 (ra))
bounded by Proposition 4.0.1 and Theorem 1.3.2, respectively. Finally by
Gagliardo-Nirenberg inequality

1 1
1D L2ro,17:22p(0e)) < CHDQUGHiT([O,T];Lp(Td)) Hue”zm([QT];Lw('ﬂ‘d))'

which shows that || Duc|| - (jo.7;0(4y) is also uniformly bounded in e. |
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7
Lipschitz Regularity

In this chapter we derive Lipschitz regularity for the solution of u¢ by
using the Adjoint Method, for more details about this method we encourage

the readers to see [6].

Theorem 7.0.1 Let (uf,mc) be a solution of (1.7) and assume A1-10 are in
force. Then Duc € L>*(T? x [0,T)), uniformly in €. As before, we omit the € in
the proof in this Chapter.

Proof.

(7.1)

ug + Au = f
U(ZE,T) =1,

with ¢ € Wh(T9) and f € L([0,T] x T?) for any a > 1. We introduce the

adjoint equation
—pr+Ap=0, (7.2)

with initial data p(-,7) = d,,. Multiplying (7.2) by vp”~! and integrating, we
have for 7 < s < T'. First, note that

T T (
| = et = [ it = (@ T) = (),

and

T T T

/ / v’ Apdadt = —1// / Dp" ' Dpdxdt = v(1 — V)/ / p’2(Dp)*dxdt.
s JTd s JTd s JTd

Observe that,

M=) ppsye = 4(1,,_1/)1129”‘2@/))2 =v(1—v)p"*(Dp)*.
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Then,

41 —v)

/W(P”(%T) = (@, 8))de = ———= /ST /T |Dp? [*dadt.  (7.3)

Because p(-,t) is a probability measure and 0 < v < 1 we have

/po (x,t)dx < 1.

Thus,

v

T
Dps 2dedt < ——.
/T/Ird| pr|de ~4(1-v)

Fixing a unit vector £ € R?, we have by derivate the first equation of 7.1 in

direction &, multiply by p and integrate we get

T T T
/ / (ug)tpdxdt—l—/ / (Aug)pdxdt :/ / fepdzdt,
T JTd T JTd T JTd

multiplying (7.2) by u¢ and subtract these equation to obtain

T T T
/T /Td(z%)tp — ugppdadt —|—/T /Td(Aug)p — (Ap)ugdrdt = —/T /Ed fepdzdt,

where

/TT /Td (ug)ep — uepedwdt = /TT /Td Ccli(ufp)dq;dt = /Td(u£(q:, T)p(x, 7) — ue(x, T)p(x,T))dx

= ui(xaT)(smo - /]I‘d ¢§P($aT)dx

and

/TT /Td(AUa)p — (Ap)ugdzdt = 0.

Then

e (2, T)0y — /Ed Yep(z, T)dr = — /TT /Td fepdxdt = /TT /Ed fpedadt.

Note that | fra ¥p(z, T)|dz < [|[9||wreeera). For 0 <v <1,

g T v v__
‘/T /Td fpédmdt'ﬁ/T /Td|f|/)17|p2 L Dp|ddt

< Nl zagrzyxra 10" 2 | Lo 1xmey | DO | 22 (pr 1y xmay

for any 2 < a,boo satisfying % + % + % = 1. Therefore it suffices to bound
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||p1_%||Lb([T7T]XTd), for some b > 2.
d—1

Let %~ <v <1, and k = dfi2. Then 1 — k + 22’2 = 2, and therefore
1<z< 2*7” Moreover £ > 2—v. Define b = ﬁ > 2. By Holder’s inequality
2
we have

1 A 1—k 2K
b(1—%) \ b=5) b(1-%)\ " / / 2%y 2Fu
(po 2) S(po 2) S(po e’ '

2
2%y *

Recall that by Sobolev’s inequality we have (p 2 )2 < C + C [ra |Dpz|?.
Therefore

/ P2 < C+C/ |Dp? |7,
Td Td

and then

T T
[ [pvo<cre[ [ ippip<c
T JTd T JTd


DBD
PUC-Rio - Certificação Digital Nº 1712696/CA


PUC-Rio- CertificagaoDigital N° 1712696/CA

Bibliography

[1] Applebaum, D. Levy Processes and Stochastic Calculus, Cambridge Studies in
Advanced Mathematics, 2nd Edition

[2] Evans, L.C. Partial Differential Equations: Second Edition. 2nd Edition, Amer-

ican Mathematical Society.

[3] Evans, L.C. (2003). Some new pde methods for weak kam theory. Calc. Var.
Part. Diff. Eqs. 17:159-177.

[4] Evans, L.C. (2009). Further PDE methods for weak KAM theory. Calc. Var.
Partial Diff. Eqs. 35:435-462.

[5] Evans, L.C. (2010). Adjoint and compensated compactness methods for
Hamilton-Jacobi PDE. Arch. Ration. Mech. Anal. 197:1053-1088.

[6] Evans, L.C., Smart, C.K. (2011). Adjoint methods for the infinity Laplacian
partial differential equation. Arch. Ration. Mech. Anal. 201:87-113.

[7] Gomes, D., Pimentel, E., Sanchez-Morgado, H. Time dependent mean-field

games in the subquadratic case.

[8] Huang, M., Caines, P.E., Malhamé, R.P. (2007). Large-population costcoupled
LQG problems with nonuniform agents: Individual-mass behavior and decen-
tralized -Nash equilibria. IEEE Trans. Automat. Control 52:1560-1571.

[9] Huang, M., Malhamé, R.P., Caines, P.E. (2006). Large population stochastic
dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty

equivalence principle. Commun. Inf. Syst. 6:221-251.

[10] Lasry, J.-M., Lions, P.-L. (2006). Jeux a champ moyen. |. Le cas stationnaire
[Mean field games. |. The stationary case.]. C. R. Math. Acad. Sci. Paris
343:619-625.

[11] Lasry, J.-M., Lions, P.-L. (2006). Jeux a champ moyen. Il. Horizon fini et

contrdle optimal [Mean field games. Il. Finite horizon and optimal control.]. C.
R. Math. Acad. Sci. Paris 343:679-684.

[12] Lasry, J.-M., Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2:229-260.


DBD
PUC-Rio - Certificação Digital Nº 1712696/CA


PUC-Rio- CertificagaoDigital N° 1712696/CA

Bibliography Hh)

[13] Lasry, J.-M., Lions, P.-L. (2007). Mean field games. Cahiers de la Chaire
Finance et Développement Durable.

[14] Lasry, J.-M., Lions, P.-L., Guéant, O. Application of mean field games to
growth theory. Preprint.

[15] @ksendal, B. Stochastic Differential Equations. An Introduction with Appli-

cations, Spring.


DBD
PUC-Rio - Certificação Digital Nº 1712696/CA


	A Priori Estimates with Application to Mean-Field Games
	Resumo
	Table of contents
	Introduction
	Mean-Field Games
	Hamilton-Jacobi and Fokker-Plank Equation
	Hamilton-Jacobi Equation
	Fokker-Plank Equation

	Time-Dependent Mean-Field Games
	Main Assumptions
	Assumptions


	First and Second Order Estimates
	Lax-Hopf Estimate
	First Order Estimates
	Gains of Regularity for the Hamilton-Jacobi Equation
	Second Order Estimates

	Regularity for the Fokker-Planck Equation
	Regularity by the Second Order Estimates
	Regularity by Lp Estimates

	Upper Bounds for the Hamilton-Jacobi Equation
	Sobolev Regularity for the Hamilton-Jacobi Equation
	Improved Regularity
	Lipschitz Regularity
	Bibliography



