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Abstract

Medeiros Domingos, João Vitor; Pimentel, Edgard (Advisor). A 
Priori Estimates with Application to Mean-Field Games. 
Rio de Janeiro, 2019. 55p. Dissertação de Mestrado – Departamento 
de Matemática , Pontifícia Universidade Católica do Rio de Janeiro.

The mean-field games framework was developed to study problems with
an infinite number of rational players in competition, which could be applied
in many problems. The formalized study of these problems has begun,
in the mathematical community by Lasry and Lions, and beside them,
but independently close to the same time in the engineering community
by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal
contributions, the research in mean-field games has grown exponentially,
and in this work we present a regularity to a case of mean-field games using
particulars techniques.

In this work, we study time-dependent mean-field games in the subqua-
dratic case, that is, mean-field games, which are written as a system of
a Hamilton–Jacobi equation and a transport or Fokker–Planck equation,
where The Hamiltonian presented on the Hamilton–Jacobi equation has a
subquadratic growth. We begin by assuming ten assumptions, and then,
under these assumptions derive Lipschitz regularity of the system.

Keywords
Assumptions; First and Second Order Estimates; Regularity for the

Hamilton-Jacobi equation; Regularity for the Fokker-Plank equation; So-
bolev Regularity; Lipschitz Regularity.
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Resumo

Medeiros Domingos, João Vitor; Pimentel, Edgard. Estimativas 
a priori e jogos de campo médio. Rio de Janeiro, 2019. 55p. 
Dissertação de Mestrado – Departamento de Matemática , 
Pontifícia Universidade Católica do Rio de Janeiro.

A estrutura dos mean-filed games foi desenvolvida com o intuito de es-
tudar problemas com um infinito número de jogadores em algum tipo de
competição, ao qual pode ser aplicado em diversos problemas. O estudo for-
malizado desses problemas começou, na comunidade matemática com Lasry
and Lions, e mais ou menos na mesma época, porém independentemente,
na comunidade de engenharia por P. Caines, Minyi Huang, and Roland
Malhamé. Desde então a pesquisa nos mean-field games cresceu exponen-
cialmente, e nesse trabalho apresentaremos regularidade para um caso de
mean-field games utilizando tecnicas particulares.

Nesse trabalho, estudamos time-dependent mean-field games no caso
subquadrático, isto é, mean-field games, o qual é escrito como um sistema
de duas equações, uma equação de Hamilton-Jacobi e uma equação do
transporte ou uma equação de Fokker-Plank, em que o Hamiltoniano
na equação de Hamilton-Jacobi possui um crescimento subquadratico.
Começamos em assumir dez suposições, e então sob os mesmos deduzir
regularidade Lipschitz para o sistema.

Palavras-chave
Suposições; Estimativas de Primeira e Segunda Ordem; Regularidade

para a Equação de Hamilton-Jacobi; Regularidade para a Equação de
Fokker-Plank; Regularidade Sobolev; Regularidade Lipschitz.
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O sábio nunca diz tudo o que pensa, mas pensa sempre tudo o que diz. 
Aristóteles
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1
Introduction

1.1
Mean-Field Games

The mean-field games formalism is a class of methods developed in series
of seminal papers by J.-M. Lasry, P.-L. Lions [10]-[14] and M.Huang, R. Mal-
hame and P. Caines [8, 9] which aims at understanding differential games with
infinitely many indistinguishable players, in other words, differential games
with a large population of rational players. These agents have preferences not
only about their state (e.g., wealth, capital) but also on the distribution of
the remaining individuals in the population. Mean-field games theory stud-
ies generalized Nash equilibrium for these systems. Usually, these models are
characterized by a pair of coupled partial differential equations, known as a
transport equation or Fokker-Plank equation for the distribution of the players
and a Hamilton-Jacobi equation.

One of the most important research direction in the theory of mean-field
games concerns the study of the existence and regularity of solutions. Well-
posedness in the class of smooth solutions was explored, both in the stationary
and in the time-dependent setting. A priori estimates are a fundamental
ingredient for the pursuing of well-posedness (nonlinear) partial differential
equations. This is the content of this work.

1.2
Hamilton-Jacobi and Fokker-Plank Equation

In this section, we discuss several notions from the setting of deterministic
optimal control to the stochastic setting. We start by addressing the Hamilton-
Jacobi equation.

1.2.1
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Chapter 1. Introduction 11

Hamilton-Jacobi Equation

Consider a single player whose state is determined by a point x ∈ Rd.This
agent can change its state by applying a control v ∈ Rd. However, the players
are subject to independent external and random forces that are modeled by a
white noise. In this simplified model, the trajectory of the player is given by
the stochastic differential equation (SDE)

dxt = vtdt+ σdWt

xt0 = x,
(1.1)

where v is a progressively measurable control.

Consider a Lagrangian L : Rd × Rd × R→ R. By selecting the control v
in a progressively measurable way, the player seeks to maximize a functional
cost given by

J(v, x; t) = Ex
[∫ T

t
L(xs, vs;m)ds+ Ψ(xT )

]
, (1.2)

where m represents a quantity to be made precise later. In 1.2 Ex denotes
the expectation operator, given that xt = x. furthermore Ψ : Rd → R, is the
terminal cost of the system.

The Legendre transform of L is

H(x, p;m) = sup
v∈Rd

(p · v + L(x, v;m)). (1.3)

We are interested in the value function of this problem, u, which is determined
by

u(x, t) = sup
v
J(x, v; t).

1.2.2
Fokker-Plank Equation

In this section, we examine the Fokker-Planck equation. Consider a
population of players whose state is x ∈ Rd. Assume further that the state of
each agent in the population is governed by the stochastic differential equation
in (1.1). Under the assumption of uncorrelated noise, the evolution of the
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Chapter 1. Introduction 12

population’s density is determined by a Fokker-Planck equation. To discuss the
derivation of this equation, we depend once more on the notion of infinitesimal
generator of a (Markov) process. We refer the reader interested in stochastic
analysis to [1] and [?]

Let A be the generator of a Markov process xt. The formal adjoint of A,
denoted by A∗, acts on functions in a suitable regularity class and is determined
by the identity

∫
Rd
φ(x)Af(x)dx =

∫
Rd
f(x)A∗φ(x),

for every φ ∈ C∞c (Rd).

Example 1.2.1 (Markov diffusion) The infinitesimal generator of a
Markov diffusion is

Av[f ](x, t) = ∂

∂t
f(x, t) + h · fx(x, t) + Tr σTσD2

xf

2 .

Therefore A∗ is given by

(Av)∗[m] = − ∂

∂t
m− div(hm) +

(
(σTσ)i,jm

)
xixj

2

A fundamental result is given an initial configuration m0, is described by the
equation:

A
∗[m](x, t) = 0

m(x, t0) = m0(x).
(1.4)

The Example 1.2.1 build upon (1.4) yields the Fokker-Planck equation

mt(x, t) + div(hm(x, t)) =

(
(σTσ)i,jm

)
xixj

2

1.3
Time-Dependent Mean-Field Games

In this work, we explored the regularity of the subquadratic case.
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Chapter 1. Introduction 13

A model studied here is the system
−ut +H(x,Du) = ∆u+ g(m)

mt − div(DpHm) = ∆m.
(1.5)

Where, H and g satisfy specific conditions as detailed in Section 1.4 We can
coupled the system above with the boundary conditions, knows as, initial-
terminal boundary conditions:

u(x, T ) = u0(x)

m(x, 0) = m0(x),
(1.6)

where T > 0 is a fixed terminal instant. We will consider in this work spatially
periodic solutions. That is, u and m are regarded as functions with domain
Td×[0, T ], where Td is the d-dimensional torus. The main goal of this work is to
obtain conditions under which existence of solution to (1.5) under the initial-
terminal conditions (1.6) can be established. We considered, in this paper, also
a model non-linearity g(m) = mα, and improve and extend for Hamiltonians
with subquadratic growth. So in this work we are interest to show the Lipschitz
regularity for u.

In order to prove our goal, we consider a regularization of (1.5) by
replacing g(m) by the nonlocal operator

gε(m) = ηε ∗ g(ηε ∗m) =
∫
Td
ηε(x) · g

(∫
Td
ηε(z) ·m(y − x− z)dz

)
dx,

where ηε is a standard mollifying kernel, which in particular is symmetric. This
yields the system

−u
ε
t +H(x,Dxu

ε) = ∆uε + gε(mε) in Td × (0, T )

mε
t − div(DpHm

ε) = ∆mε in Td × (0, T ).
(1.7)

We use the convention g0 = g. The proof proceeds by establishing a new class
of polynomial estimates for mε, which combined with upper bounds for uε.

Under the ten specific Assumptions that we are going to see later, follow
our main results.

Teorema 1.1 Let (uε,mε) be a solution of (1.7). Suppose mε ∈
L∞([0, T ];Lβ0(Td)), β0 ≥ 1. Assume that p > d

2 , let q be the conjugate
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PUC-Rio - Certificação Digital Nº 1712696/CA



Chapter 1. Introduction 14

exponent and r = 1
κ
, where

κ = d+ 2q − dq
q[(θ − 1)d+ 2] . (1.8)

Then,
∫
Td

(mε)βn(x, τ)dx ≤ C + C
∥∥∥|DpH|2

∥∥∥rn
Lr([0,T ];Lp(Td))

, (1.9)

where

rn = r
θn − 1
θ − 1 , (1.10)

θ > 1, n ∈ N and βn = θnβ0.

The proof of Theorem 1.1 is presented in Chapter 3. The key upper bounds
for uε are given by:

Lemma 1.3.1 Let (uε,mε) be a solution of (1.7) and assume that A1-A7 are
in force. Let a, b > 1 be such that

d

2 <
b(a− 1)

a
.

Then these exists C > 0 such that

‖uε‖L∞([0,T ];L∞(Td)) ≤ C + C‖gε(mε)‖La([0,T ];Lb(Td)).

Lemma 1.3.1 is proved in Chapter 4. Using Gagliardo-Nirenberg interpolation
Theorem we get:

Theorem 1.3.2 Let (uε,mε) be a solution of (1.7) and assume that A1-9 are
in force. For 1 < p, r <∞ there are c, C > 0 such that

‖D2uε‖Lr([0,T ];Lp(Td)) ≤ c‖gε(mε)‖Lr([0,T ];Lp(Td)) + c‖uε‖
γ

2−γ
L∞([0,T ];L∞(Td)) + C.

(1.11)

The proof of Theorem 1.3.2 is presented in Chapter 5.

1.4
Main Assumptions

In this Section we present the main assumptions used throughout this
work.
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Chapter 1. Introduction 15

1.4.1
Assumptions

A1. The Hamiltonian H : Td × Rd → R, d > 2, is smooth and:

1. for fixed x, p� H(x, p) is strictly convex function;
2. satisfies the coercivity condition

lim
|p|→∞

H(x, p)
|p|

= +∞

and without loss of generality we suppose further that H(x, p) ≥ 1.

Furthermore, (u0,m0) ∈ C∞(Td) with m0 ≥ 0, and
∫
Tdm0 = 1.

Let R+ = {x ∈ R|x > 0} and R+
0 = {x ∈ R|x ≥ 0}

A2. g : R+
0 → R is a non-negative increasing function.

From the previous hypothesis it follows that g(z) = G′(z) for some convex
increasing function G : R+

0 → R.

We define the Legendre transform of H by

L(x, v) = sup
p

(−p · v −H(x, p)). (1.12)

Then if we set

L̂(x, p) = DpH(x, p)p−H(x, p), (1.13)

by standard properties of the Legendre transform L̂(x, p) = L(x,−DpH(x, p)).

A3. For some c, C > 0

L̂(x, p) ≥ cH(x, p)− C.

A4. g(m) = mα, for some α > 0.

A5. H satisfies |DxH|, |D2
xxH| ≤ CH + C, andm for any symmetric matrix

M , and any δ > 0 there exists Cδ such that

Tr(D2
px) ≤ δTr(D2

ppHM
2) + CδH.

Note that since we assume H ≥ 1 we can replace the inequality above
by |DxH|, |D2

xxH| ≤ C̃H, for some constant C̃.
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A6. We have m0 ≥ κ0, for some κ ∈ R+.

The next group of hypothesis concerns subquadratic growth.

A7. H satisfies the subquadratic growth condition H(x, p) = C|p|γ + C, for
some 1 + 1

d+1 < γ < 2.

A8. DpH satisfies the subquadratic growth condition |DpH| = C|p|γ−1 + C,
for some 1 + 1

d+1 < γ < 2.

A9. H satisfies |D2
xpH|2 ≤ CH and, for any symmetric matrix M

|D2
ppHM |2 ≤ C Tr(D2

ppHMM).

The second assertion in A9 ensures the existence of a uniform upper
bound for the eigenvalues of D2

ppH.

Observe that, for d > 2 and 1 < γ < 2 one has

−4(−4 + γ)2(−1 + γ)γ2 + 2d(−4 + (−2 + γ)γ)(−4 + (−4 + γ)(−2 + γ)γ)
(−2 + d)(−4 + γ)(−1 + γ)γ(−2(−4 + γ)γ + d(−4 + (−2 + γ)γ)) >

2
d− 2

A10. The exponent α is such that 0 < α < αγ,d.
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2
First and Second Order Estimates

This chapter details two classes of estimates used in the study of time
dependent mean-field games. Those are the first and second order estimates.

Let (uε,mε) be a solution of (1.7). Then uε is the value function for the
following stochastic optimal control problem

uε(x, t) = inf
v
E
∫ T

t
[L(x(s), v(s)) + gε(mε)(x(s), s)] ds+ uε(x(T ), T ), (2.1)

where L is given by (1.12), and the infimum is taken over all bounded and
progressively measurable control v,

dx = vds+
√

2dWs,

where x(t) = x, and Ws is a d-dimensional Brownian motion. The estimates
that we will see over this chapter can be provided as a consequence of this
optimal control representation formula.

2.1
Lax-Hopf Estimate

Proposition 2.1.1 Suppose A1 holds. Let (uε,mε) be a solution of (1.7). Then
for any smooth vector field b : Td × (t, T )→ Rd, and any solution to

ξt + div(bξ) = ∆ξ, (2.2)

with ξ(x, t) = ξ0 we have the following upper bound:

∫
Td
uε(x, t)ξ0dx ≤

∫ T

t

∫
Td

(L(y, b(y, s)) + gε(mε)(y, s))ξ(y, s)dyds

+
∫
Td
uε(y, T )ξ(y, T )dx. (2.3)

Proof. Multiplying the first equation of (1.7) by ξ and 2.2 by uε, we obtain the
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auxiliary system:
−u

ε
tξ + ξH(x,Dxu

ε) = ξ∆uε + ξgε(mε)

ξtu
ε + uε div(bξ) = uε∆ξ.

We subtract these equations to obtain

−ξtuε − ξuεt = uε div(bξ) + ξH(x,Dxu
ε)− uε∆ξ + ξ∆uε + ξgε(mε). (2.4)

Notice that:
−ξtuε − ξuεt = − d

dt
(uεξ);

also, integrating (2.4) in Td yields
∫
Td
uε div(bξ)dx =

∫
∂Td

uεbξdx−
∫
Td
Duεbξdx = −

∫
Td
Duεbξdx.

Notice we have no boundary terms, because the Torus is a compact manifold
without boundary. Moreover,

∫
Td
−uε∆ξ +

∫
Td
ξ∆uε =

∫
Td
DξDuε −

∫
Td
DξDuε = 0.

Thus,

− d

dt

∫
Td
uεξdx =

∫
Td

(−b(x, t)Duε −H(x,Duε) + gε(mε))ξdx. (2.5)

Note that L(x, v) = sup(−p · v −H(x, p)). Because in our problem v = b and
p = Duε, we get L(x, b) ≥ Duε · b−H(x,Duε).
Then,∫

Td
(−b(x, t)Duε −H(x,Duε) + gε(mε))ξdx ≤

∫
Td

(L(x, b) + gε(mε))ξdx (2.6)

Now, integrating with respect to the Lebesgue measure in [t, T ], we discover∫ T

t
− d

dt

∫
Td
uεξdx ≤

∫ T

t

∫
Td

(L(x, b) + gε(mε))ξdxdt. (2.7)

That is,
∫
Td

(uε(x, t)ξ(x, t)− uε(x, T )ξ(x, T ))dx ≤
∫ T

t

∫
Td

(L(x, b) + gε(mε))ξdxdt
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We conclude that:
∫
Td
uε(x, t)ξ0dx ≤

∫ T

t

∫
Td

(L(y, b(y, s))

+ gε(mε)(y, s))ξ(y, s)dyds+
∫
Td
uε(y, T )ξ(y, T )dx.

�

The following corollary shows us what happen when we take b = 0, which
is a natural choice. Also, we can choose ξ0 to be either the Lebesgue measure
or the measure m0.

Corollary 2.1.1 Suppose A1 is in force. Let (uε,mε) be a solution to (1.7).
Then the following upper bounds are available:

i) If µ(x, t) solves the heat equation with µ(x, 0) = m0, we have

∫
Td
uε(x, 0)m0dx ≤CT +

∫ T

0

∫
Td
gε(mε)(x, t)µ(x, t)dxdt+∫

Td
uε(x, T )µ(x, T )dx. (2.8)

ii) We also have:∫
Td
uε(x, 0)dx ≤ CT +

∫ T

0

∫
Td
gε(mε)(x, t)dxdt+

∫
Td
uε(x, T )dx (2.9)

Proof. Choosing b = 0, t = 0 and ξ0 = m0 in 2.3, we obtain:

ξt + div(bξ) = ∆ξ ⇒ ξt −∆ξ = 0,

where µ(x, t) is the solution of the heat equation, and µ(x, 0) = m0.

Even more,
L(x, b) = sup

p∈Rd
(p · b−H(x, p));

hence L(x, 0) = sup
p∈Rd
−H(x, p) < −1, as implied by A1.

Thus, ∫ T

0

∫
Td
L(x, 0)dxdt <

∫ T

0
Cdt = CT

and,
∫
Td
uε(x, 0)m0dx ≤ CT +

∫ T

0

∫
Td
gε(mε)µ(x, t)dxdt+

∫
Td
uε(x, T )µ(x, T )dx.
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Chapter 2. First and Second Order Estimates 20

Note that, if we take ξ0 = 1 and b = 0 on 2.2, we have
∫
Td
uε(x, 0)dx ≤ CT +

∫ T

0

∫
Td
gε(mε)dxdt+

∫
Td
uε(x, T )dx,

where ξ = 1 is the solution of:
ξt −∆ξ = 0, in Td × [0,∞]

ξ(x, 0) = 1, on Td × {t = 0},

which is unique.

�

2.2
First Order Estimates

For a function f we define the oscillation in a given domain Ω ∈ Rd as
follows

oscx∈Ω f(x) = sup
x∈Ω

f(x)− inf
x∈Ω

f(x).

Proposition 2.2.1 Assume A1-3 are in force. Let (uε,mε) be a solution of
(1.7). Then∫ T

0

∫
Td
cH(x,Dxu

ε)mε +G(ηε ∗mε)dxdt ≤ CT + C oscuε(·, T ), (2.10)

where G′ = g.

Proof. Multiplying the first equation of (1.7) by mε, the second by uε and
subtracting them, we obtain:

−(uεtmε+mε
tu
ε)+mεH(x,Duε)+uε div(DpHm

ε) = mε∆uε−uε∆mε+gε(mε)mε.

Integrate in the d-dimensional torus Td to get
∫
Td
−(uεtmε +mε

tu
ε)dx = − d

dt

∫
Td
uεmεdx,

∫
Td
uε div(DpHm

ε) =
∫
∂Td

uεDpHm
εdx−

∫
Td
DuεDpHm

εdx = −
∫
Td
DuεDpHm

εdx,

and ∫
Td
mε∆uε − uε∆mεdx = 0.

Thus,

− d

dt

∫
Td
uεmεdx+

∫
Td

(H −DuεDpH)mεdx =
∫
Td
gε(mε)mεdx. (2.11)
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By A2, we have:

L̂(x, p) = DpH(x, p)p−H(x, p).

Hence,

−L̂(x,Duε) = H(x,Duε)−DuεDpH(x,Duε).

By A3:

cH(x,Duε)− C ≤ DuεDpH(x,Duε)−H(x,Duε).

As consequence,

−cH(x,Duε) + C ≥ H(x,Duε)−DuεDpH(x,Duε).

Taken these observations into account 2.11, becomes:
∫
Td

(−cH(x,Duε) + C)mεdx ≥
∫
Td

(H(x,Duε)−DuεDpH(x,Duε))mεdx

= d

dt

∫
Td
uεmεdx+

∫
Td
gε(mε)mεdx.

Multiplying by (−1) and integrating in [0, T ], we get

∫ T

0

∫
Td

(cH(x,Duε)− C)mεdxdt ≤−
∫ T

0

∫
Td
gε(mε)mεdxdt

+
∫
Td
uε(x, 0)mε(x, 0)dx−

∫
Td
uε(x, T )mε(x, T )dx.

Note that
∫ T

0

∫
Td
Cmεdxdt = C

∫ T

0

∫
Td
mεdxdt = C

∫ T

0
1dt = CT.

From Corollary 2.1.1,
∫ T

0

∫
Td
cH(x,Duε)mεdxdt ≤CT −

∫ T

0

∫
Td
gε(mε)mεdxdt+

∫ T

0

∫
Td
gε(mε)µ(x, t)dxdt

+
∫
Td
uε(x, T )µ(x, T )dx−

∫
Td
uε(x, T )mε(x, T )dx

=
∫ T

0

∫
Td
gε(mε)(µ−mε) +

∫
Td
uε(x, T )(µ(x, T )

−mε(x, T ))dx
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Remembering that gε(mε) = ηε ∗ g(ηε ∗ mε), and by A2, there exists a
convex function G such that g(z) = G′(z). Also ηε(y) = ηε(−y).

Then,

ηε ∗ g(ηε ∗mε)(µ−mε) = g(ηε ∗mε)ηε ∗ (µ−mε) ≤ G(ηε ∗ µ)−G(ηε ∗mε)

Hence,

c
∫ T

0

∫
Td
H(x,Duε)mεdxdt ≤ CT +

∫
Td
uε(x, T )(µ(x, T )−mε(x, T ))dx

+
∫ T

0

∫
Td
G(ηε ∗ µ)−G(ηε ∗mε)dxdt.

Note that ∫
Td
uε(x, T )µ(x, T ) ≤ supuε

∫
Td
µ(x, T ) = supuε.

and,
−
∫
Td
uε(x, T )mε(x, T ) ≥ inf uε

∫
Td
mε(x, T ) = inf uε.

We have that µ is bounded, then

G(ηε ∗ µ) = G
(∫

Td
ηε(y)µ(x− y)dy

)
≤ G(‖µ(x− y)‖L∞(Td)

∫
Td
ηε(y)dy).

Since ηε is a mollifyer, ∫
Td
ηε = 1.

Then, G(ηε ∗ µ) is also bounded, that is,

∫ T

0

∫
Td
G(ηε ∗ µ) ≤ C.

To conclude, we gather the former computations to obtain

c
∫ T

0

∫
Td
H(x,Duε)mεdxdt+

∫ T

0

∫
Td
G(ηε ∗mε)dxdt ≤ CT + supuε − inf uε + C

= CT + C oscuε.

�

If we specialize g as g(z) = zα we obtain further information.

Corollary 2.2.1 Assume A1-4 are in force. Let (uε,mε) be a solution of (1.7).
Then,

∫ T

0

∫
Td

(ηε ∗mε)α+1 +H(x, duε)mεdxdt ≤ C. (2.12)
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Proof. Note that, since g(mε) = (mε)α, we have

G′(ηε ∗mε) = g(ηε ∗mε) = (ηε ∗mε)α ⇒ G(ηε ∗mε) = (ηε ∗mε)α+1.

Then,
∫ T

0

∫
Td
H(x,Duε)mεdxdt+

∫ T

0

∫
Td
G(ηε ∗mε)dxdt

=
∫ T

0

∫
Td
H(x,Duε)mεdxdt+

∫ T

0

∫
Td

(ηε ∗mε)α+1dxdt ≤ C.

Because T is the terminal instant, so is fixed, that is, CT ≤ K1, for some
constant K1. Moreover oscuε(·, T ) ≤ K2, for some constant K2, because T , is
fixed. Then,

C = K1 +K2.

The result follows. �

2.3
Gains of Regularity for the Hamilton-Jacobi Equation

We will now obtain improved regularity for the Hamilton-Jacobi equa-
tion, the first equation of (1.7), by applying the results from the previous
section.

Proposition 2.3.1 Let (uε,mε) be a solution to (1.7). Suppose g ≥ 0 and let
M = max

x
H(x, 0). Then,

uε(x, t) ≥ min
x
uε(x, T ) +M(t− T ). (2.13)

Proof. Remind that the first equation of (1.7) is:

−uεt +H(x,Duε) = ∆uε + gε(mε).

At an extremum point, we have Duε = 0. Then:

−uεt −∆uε = gε(mε)−H(x, 0) ≥ gε(mε)−max
x

H(x, 0)

= gε(mε) + min
x
H(x, 0)

≥ 0.
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By the Maximum Principle,

uε(x, t) ≥ min
x
uε(x, T ),

and,
−MT ≤ −Mt.

Add these equations to obtain:

uε(x, t)−Mt ≥ min
x
uε(x, T )−MT.

Thus,
uε(x, t) ≥ min

x
uε(x, T ) +M(t− T ).

�

Remark 1 For the Maximum Principle, we refer the reader to [2], chapter 2.

Proposition 2.3.2 Assume A1-4 are in force. Let (uε,mε) be a solution to
(1.7). We have:

∫ T

0

∫
Td
H(x,Duε)dxdt ≤ C +

∫
T d

(uε(x, T )− uε(x, 0))dx. (2.14)

Proof. By the Corollary 2.2.1
∫ T

0

∫
Td

(ηε ∗mε)α+1 +H(x,Duε)dxdt− C ≤ 0.

Furthermore, by the Corollary 2.1.1

0 ≤
∫ T

0

∫
Td
gε(mε)dxdt+

∫
Td
uε(x, T )− uε(x, 0)dx+ CT.

Thus,
∫ T

0

∫
Td
gε(mε) +H(x,Duε)dxdt− C ≤

∫ T

0

∫
Td
gε(mε)dxdt

+
∫
Td
uε(x, T )− uε(x, 0)dx+ CT.

Hence,
∫ T

0

∫
Td
H(x,Duε)dxdt ≤

∫
Td
uε(x, T )− uε(x, 0)dx+ C.

�
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Corollary 2.3.1 Assume A1-4 are in force. Let (uε,mε) be a solution to (1.7).
Then, the following lower bound is available.

∫ T

0

∫
Td
H(x,Duε)dxdt ≤ C + oscuε(·, T ) (2.15)

and
∫
Td
|uε(x, 0)|dx ≤ C + 3 ‖uε(·, T )‖L∞(Td) . (2.16)

Proof. By proposition 2.3.1, we have:

uε(x, t) ≥ min
x
uε(x, T ) +M(t− T )−max uε(x, T ).

Taken t = 0,
−uε(x, 0) ≤ oscuε(·, T ) +MT.

Integrating with respect to the Lebesgue measure to d-dimensional torus Td,
we obtain:

∫
Td
−uε(x, 0)dx ≤

∫
Td

(oscuε(·, T ) +MT )dx.

Taking the modulus, we get
∫
Td
|uε(x, 0)|dx ≤

∫
Td
| oscuε(·, T ) +MT |dx ≤ C + oscuε(·, T ),

since, oscuε(·, T ) ≤ 2 ‖uε(·, T )‖L∞(Td) .

The result first claim follows.

By 2.14
∫ T

0

∫
Td
H(x,Duε)dxdt ≤C +

∫
T d

(uε(x, T )− uε(x, 0))dx

≤C +
∫
Td

(uε(x, T ) + oscuε(·, T ) +MT )dx.

Observe that, if we take t = T in 2.13, we obtain:

uε(x, T ) ≥ min uε(x, T ).

Taken that observation into account, we have:
∫ T

0

∫
Td
H(x,Duε)dxdt ≤C + oscuε(·, T ),

as we desire. �
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2.4
Second Order Estimates

In this section we produce second order estimates for a mean-field game
system.

Proposition 2.4.1 Assume A1-6 are in force. Let (uε,mε) be a solution to
(1.7). Then, the following lower bound is available.

∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2 + Tr(D2

ppH(D2
xxu

ε)2)mε ≤ max
x

∆uε(x, t)

+ C(1 + max
x

uε(x, T )−min
x
uε(x, T ))−

∫
Td
uε(x, 0)∆mε(x, 0)dx.

Proof. Remember that the first equation of (1.7) is:

−uεt +H(x,Duε) = ∆uε + gε(mε).

Observe that we need to take the Laplacian ∆ in (1.7). Taken the second order
derivate of H(x,Dxu

ε), we obtain:

Dx(Dx(H(x,Dxu
ε))) = Dx(DxH +DpHD

2
xxu

ε)

= D2
xxH +D2

pxHD
2
xxu

ε + (D2
xp +D2

ppD
2
xxu

ε)D2
xxu

ε

+DpHDxD
2
xxu

ε.

Now, apply the Trace operator to conclude

∆xH = 2 Tr(D2
pxHD

2
xxu

ε) + Tr(D2
pp(D2

xxu
ε)2) +DpHDx∆uε.

Note that,
gε(mε) = ηε ∗ g(ηε ∗mε).

Then, taken the Laplacian ∆ in gε(mε), we obtain:

∆gε(mε) = div(Dxgε(mε)) = div(ηε ∗ (g′(ηε ∗mε) ·Dx(ηε ∗mε))).

Thus,

∆uεt −∆∆uε + Tr(D2
ppD

2
xxu

ε)2) + ∆xH + 2 Tr(D2
pxHD

2
xxu

ε) +DpHDx∆uε

= div(ηε ∗ (g′(ηε ∗mε) ·Dx(ηε ∗mε))).
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Multiplying by mε and integrating in the d-dimensional torus Td.
∫
Td
mε∆uεt −mε∆∆uε + Tr(D2

ppD
2
xxu

ε)2)mε +mε∆xH

+ 2 Tr(D2
pxHD

2
xxu

ε)mε +mεDpHDx∆uεdx

=
∫
Td
mε div(ηε ∗ (g′(ηε ∗mε) ·Dx(ηε ∗mε)))dx.

Note that,
∫
Td
mε div(ηε ∗ (g′(ηε ∗mε) ·Dx(ηε ∗mε)))dx =

∫
Td
ηε ∗ (g′(ηε ∗mε) ·Dx(ηε ∗mε))Dxm

εdx

=
∫
Td

(g′(ηε ∗mε) ·Dx(ηε ∗mε))Dx(ηε ∗mε)dx

=
∫
Td
g′(ηε ∗mε) · |Dx(ηε ∗mε)|2dx.

Moreover,
∫
Td
mεDpHDx∆uεdx =

∫
∂Td

mεDpHdx−
∫
Td

div(mεDpH)∆uεdx,

Since the d-dimensional torus has no boundary terms, we have the following
result:

∫
Td
mεDpHDx∆uεdx = −

∫
Td

div(mεDpH)∆uεdx.

Observe that,
∫
Td
mε∆∆uεdx =

∫
Td

∆mε∆uεdx,

and,
∫
Td
mε∂t∆uεdx =

∫
Td
∂t(mε∆uε)dx−

∫
Td
∂tm

ε∆uεdx

Integrating in [0, T ], we obtain:

∫ T

0

∫
Td
mε
t∆uε − div(mεDpH)∆uε −∆mε∆uεdxdt

=
∫ T

0

∫
Td

(mε
t − div(mεDpH)−∆mε)∆uεdxdt = 0.
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Furthermore,
∫ T

0

∫
Td
∂t(mε∆uε)dxdt =

∫ T

0

d

dt

∫
Td
mε∆uεdxdt

=
∫
Td
mε(x, T )∆uε(x, T )−mε(x, 0)∆uε(x, 0)dx

=
∫
Td
mε(x, T )∆uε(x, T )− uε(x, 0)∆mε(x, 0)dx.

By A5:

2 Tr(D2
pxH(D2

xxu
ε)2) ≤ δTr(D2

ppH(D2
xxu

ε)2) + CδH.

Finally,
∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2 + Tr(D2

ppH(D2
xxu

ε)2)mεdxdt

≤
∫ T

0

∫
Td

(|D2
xxH|+ δTr(D2

ppH(D2
xxu

ε)2) + CδH)mεdxdt

+
∫
Td
mε(x, T )∆uε(x, T )− uε(x, 0)∆mε(x, 0)dx.

Observe that:
∫
Td
mε(x, T )∆uε(x, T )dx ≤ max

x
∆uε(x, T )

∫
Td
mε(x, T )dx = max

x
∆uε(x, T ).

Since ∫
Td
mε(x, T )dx = 1.

Choosing δ = 1
2 and remembering that by A5, |D2

xxH| ≤ CH+C, we get

∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2 + 1

2 Tr(D2
ppH(D2

xxu
ε)2)mεdxdt

≤ C + C
∫ T

0

∫
Td
Hmεdxdt+ max

x
∆uε(x, T )−

∫
Td
uε(x, 0)∆mε(x, 0)dx.

By 2.2.1

C
∫ T

0

∫
Td
Hmεdxdt ≤ C + C osc(·, T ).

Then,
∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2 + Tr(D2

ppH(D2
xxu

ε)2)mεdxdt

≤ C(1 + max
x

uε(x, T )−min
x
uε(x, T )) + max

x
∆uε(x, T )−

∫
Td
uε(x, 0)∆mε(x, 0)dx.

�
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The following corollary shows us a computation of Sobolev’s Theorem
with the result above.

Corollary 2.4.1 Assume A1-6 are in force. Let (uε,mε) be a solution of (1.7).
Then

∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2dxdt ≤ C,

and so
∫ T

0
‖ηε ∗mε‖α+1

L
2∗
2 (α+1)(Td)

dt ≤ C.

Proof.

First we can see that
∫
Td
uε(x, 0)∆mε(x, 0)dx ≤ ‖uε(x, 0)‖L∞(Td)

∫
Td

∆mε(x, 0)dx = 0.

And
∫ T

0

∫
Td
tr(D2

ppH(D2
xxu

ε)2)mεdxdt ≤ C,

since
∫ T

0

∫
Td
tr(D2

ppH(D2
xxu

ε)2)mεdxdt ≤ tr(D2
ppH(D2

xxu
ε)2)

∫ T

0

∫
Td
mεdxdt = C.

Moreover,

C(1 + max
x

uε(x, T )−min
x
uε(x, T )) + max

x
∆uε(x, T ) = C.

Then,
∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2dxdt ≤ C.

Now, we are going to compute the second part of the theorem, but first
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remember that g(m) = mα. Thus,

∫ T

0

∫
Td
g′(ηε ∗mε)|Dx(ηε ∗mε)|2dxdt =

∫ T

0

∫
Td

(ηε ∗mε)α−1|Dx(ηε ∗mε)|2dxdt =∫ T

0

∥∥∥(ηε ∗mε)
α−1

2 Dx(ηε ∗mε)
∥∥∥
L2(Td)

dt =
∫ T

0

∥∥∥∥α + 1
2 (ηε ∗mε)

α+1
2 −

2
2Dx(ηε ∗mε)

∥∥∥∥
L2(Td)

dt∫ T

0

∥∥∥Dx(ηε ∗mε)
α+1

2
∥∥∥
L2(Td)

dt =
∫ T

0
‖Dx(ηε ∗mε)‖α+1

L
2
2 (α+1)(Td)

dt.

Finally, by Sobolev’s theorem we obtain:
∫ T

0
||Dx(ηε ∗mε)||α+1

L
2
2 (α+1)(Td)

dt ≥
∫ T

0
||(ηε ∗mε)||α+1

L
2∗
2 (α+1)(Td)

dt.

�

We included the statement of Sobolev’s Theorem in the introduction. See
also [2], chapter 5

Corollary 2.4.2 Assume A1-9 are in force. Let (uε,mε) be a solution of (1.7).
Then

∫ T

0

∫
Td
|divDpH|2mεdxdt ≤ C.

Proof. Note that div(DpH) = Tr(D2
ppHD

2
xxu

ε) + Tr(D2
xpH).

Thus,

| div(DpH)|2 = 2|Tr(D2
ppHD

2
xxu

ε)|2 + 2|Tr(D2
xpH)|2.

Using Assumption 9, we get:

2|Tr(D2
ppHD

2
xxu

ε)|2 + 2|Tr(D2
xpH)|2 ≤ C Tr(D2

ppH(D2
xxu

ε)2) + CH.

Now apply Proposition 2.4.1 and Proposition 2.2.1 to complete the proof.

�
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3
Regularity for the Fokker-Planck Equation

We begin this section taking note if we integrate the second equation of
(1.7) we obtain

∫
Tdm

ε(x, t) = 1, for all 0 ≤ t ≤ T. Observe that the maximum
principle yields that mε ≥ 0 if mε(x, 0) ≥ 0.

We will explore in this section various estimates and further integrability
for mε. In Section 3.1 we obtain by the second order estimates, described in
the previous section, improved integrability of mε. In Section 3.2 we obtain
Lp norms of DpH to control the integrability of mε. These guide us to
obtain explicit control for norms of mε in terms of polynomial expressions
in ‖DpH‖Lp(Td).

3.1
Regularity by the Second Order Estimates

We begin this with a proposition that will help us through this section:

Proposition 3.1.1 Assume A1 is in force. Let (uε,mε) be a solution of (1.7).
Let ϕ : R→ R be a C2 function. Then

d

dt

∫
Td
ϕ(mε)dx+

∫
Td

div(DpH)ϕ∗(mε)dx = −
∫
Td
ϕ′′(mε)|Dxm

ε|2dx.

The following theorem will provide us a priori estimates for mε.

Theorem 3.1.2 Assume A1-9 are in force. Let (uε,mε) be a solution of (1.7).
Then for d > 2, ‖mε‖L∞([0,T ],Lr(Td)) is bounded for any 1 ≤ r < 2∗

2 uniformly
in ε.

Proof. In this proof we will omit the ε to simplify our notation.

Let βn be an increasing sequence defined inductively such that
‖m(·, t)‖1+βn is bounded. Set β0 = 0, so that ‖m(·, t)‖1+β0

= 1 ≤ C. Let
βn+1 = 2d

1+βn . Observe that βn is the nth partial sum of the geometric series
with tem 2n

dn
. Then limn→∞ βn = 2

d−2 = 2∗
2 −1. Since this is a sum of a geometric

series with term less than 1.
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Set
qn = 2∗

2 (βn+1 + 1) = d

d− 2(βn+1 + 1).

Observe that
qn >

d

d− 2βn+1 + βn+1 + 1 > 2βn+1 + 1.

Then we get,

‖m‖2βn+1+1 ≤ ‖m‖
1−λn
1+βn ‖m‖

λn
qn
,

for 0 < λn < 1, since λn
qn

+ 1−λn
1+βn = 1

2βn+1+1 . In particular

λn = qn
qn − βn − 1

2βn+1 − βn
2βn+1 + 1 = βn+1 + 1

2βn+1 + 1 .

We have that ‖m‖1+βn ≤ C then, ‖m‖1−λn
1+βn ≤ C.

Thus,
∫
Td
m2βn+1+1dx = ‖m‖2βn+1+1

2βn+1+1 ≤ C ‖m‖λn(2βn+1+1)
qn

= C ‖m‖βn+1+1
qn

. (3.1)

Taking β > 0, using Proposition 3.1.1 with ϕ(m) = mβ+1 we get:

First note that, ϕ′(m) = (β + 1)mβ and ϕ′′(m) = β(β + 1)mβ−1.

Then,

d

dt

∫
Td
mβ+1(x, t)dx+

∫
Td

div(DpH)[(−β − 1)mβ+1 +mβ+1]dx = −
∫
Td
β(β + 1)mβ+1|Dxm|2dx.

Observe that,
∫
Td

div(DpH)[(−β − 1)mβ+1 +mβ+1] = −β
∫
Td

div(DpH)mβ+1dx

and,
β(β + 1)mβ+1|Dxm|2 = 4β

β + 1 |Dxm
β+1

2 |2.

Now integrate in [0, τ ] to obtain:

∫
T d
mβ+1(x, τ)dx+ 4β

β + 1

∫ τ

0

∫
Td
|Dxm

β+1
2 |2dxdt

=
∫
Td
mβ+1(x, 0)dx+ β

∫ τ

0

∫
Td

div(DpH)mβ+1dxdt. (3.2)
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Taking the Young’s inequality with δ on | div(DpH)mβ+1| we have
∫
Td
| div(DpH)mβ+1|dx =

∫
Td
| div(DpH)m 1

2mβ+ 1
2 |dx

≤ Cδ

(∫
Td
| div(DpH)|2mdx

)
+ δ

(∫
Td
m2β+1dx

)
, (3.3)

where all integrals are evaluated at a fixed time t.

Setting β = βn+1, from (2.1), (2.2) and (2.3) we get for any τ ∈ [0, T ]

∫
T d
mβn+1+1(x, τ)dx+ 4βn+1

βn+1 + 1

∫ τ

0

∫
Td
|Dxm

βn+1+1
2 |2dxdt

=
∫
Td
mβn+1+1(x, 0)dx+ Cδ

∫ τ

0

∫
Td
| div(DpH)|2mdxdt+ δ

∫ τ

0
‖m‖βn+1+1

qn
dt.

(3.4)

By Sobolev’s theorem we get

‖m‖βn+1+1
qn

= ‖m‖βn+1+1
2∗
2 (βn+1+1) =

∥∥∥∥mβn+1+1
2

∥∥∥∥2

2∗
≤ C

∥∥∥∥mβn+1+1
2

∥∥∥∥2

W 1,2

= C

(∥∥∥∥mβn+1+1
2

∥∥∥∥2

2
+
∥∥∥∥Dmβn+1+1

2

∥∥∥∥2

2

) 1
2 .2

= C
(∫

Td
mβn+1+1dx+

∫
Td
|Dm

βn+1+1
2 |2dx

)
(3.5)

From (2.1) and
∫
Tdm(x, t) = 1, for each fixed time t, and applying Holder’s

inequality and Young’s inequality on
∫
Tdm

βn+1+1 we have

∫
Td
mβn+1+1dx =

∫
Td
mβn+1+ 1

2m
1
2dx ≤

(∫
Td
m2βn+1+1dx

) 1
2
·
(∫

Td
m

1
2 .2dx

) 1
2

≤ Cζ + ζ
∫
Td
m2βn+1+1dx ≤ Cζ + ζ ‖m‖βn+1+1

qn
.

Thus,

‖m‖βn+1+1
qn

≤ C
∫
Td
|Dm

βn+1+1
2 |2dx+ Cζ + ζ ‖m‖βn+1+1

qn
. (3.6)

From (2.4) and (2.5), taking δ ζ small enough we have for some δ1 > 0
∫
Td
mβn+1+1(x, τ)dx+ δ1

∫ τ

0
‖m‖βn+1+1

qn
dt

≤ C + C
∫
Td
mβn+1+1(x, 0)dx+ C

∫ τ

0

∫
Td
| div(DpH)|2mdxdt

Since by Corollary 2.4.2
∫ τ

0

∫
Td
| div(DpH)|2mdxdt
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is bounded, the result follows.

�

Corollary 3.1.1 Assume A1-9 are in force. Let (uε,mε) be a solution of (1.7).
Then, for −1

2 ≤ β ≤ 0 we have

∫ T

0

∫
Td

(mε)β−1|Dxm
ε|2dxdt ≤ C. (3.7)

Proof. To make the notation less crowded, as before, throughout this proof we
will omit the ε.

We first note that for −1 ≤ β ≤ 0
∫
Td
mβ+1dx ≤ C,

since for each fixed time t we have that m(·, t) is a probability measure. Then,
using identity (2.2), coupled with (2.3) and Corollary 2.4.2 yields

∫ τ

0

∫
Td
|Dxm

β+1
2 |2dxdt ≤ C + C

∫ τ

0

∫
Td
m2β+1dxdt,

and provided −1
2 ≤ β ≤ 0 the right hand side is bounded. �

3.2
Regularity by Lp Estimates

In this section we obtain estimates formε in L∞([0, T ], Lp(Td)) depending
polynomially on the Lp-norm of DpH, for p > d

2 . Because we need explicit
estimates, we will prove them in detail. Throughout this Section, we omit the
ε in proofs for ease of presentation.

Lemma 3.2.1 Let (uε,mε) be a solution of (1.7). Then, for β > 1, there exist
constants c, C > 0 such that

d

dt

∫
Td

(mε)βdx ≤ C
∫
Td
|DpH|2(mε)βdx− c

∫
Td
|Dx(mε)

β
2 |2dx.

We now improved integrability of m in terms of the Lr([0, T ], Lp(Td))-norms
of |DpH|2 for p <∞.
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Lemma 3.2.2 Let (uε,mε) be a solution of (1.7) and assume that β ≥ β0 for
β0 > 1 fixed.

d

dt

∫
Td

(mε)βdx ≤ C
∥∥∥|DpH|2

∥∥∥
Lp(Td)

∥∥∥(mε)β
∥∥∥
Lq(Td)

− c
∫
Td
|Dx(mε)

β
2 |2dx, (3.8)

where 1
p

+ 1
q

= 1.

Proof. The result follows by applying Holder inequality on

C
∫
Td
|DpH|2(mε)βdx.

�

Definition 3.2.1 Let 1 ≤ β0 <
2∗
2 = d

d−2 be a fixed constant. The sequence
(βn)n∈N is defined inductively by βn+1 = θβn, where θ > 1 is a fixed constant.

Lemma 3.2.3 Assume that (βn)n∈N as above and let 1 < q < d
d−2 . Then

∥∥∥(mε)βn+1
∥∥∥
q
≤
(∫

Td
(mε)βndx

)θκ (∫
Td

(mε)
2∗βn+1

2 dx
) 2(1−κ)

2∗

,

where κ is given by (1.8).

Proof. Holder inequality yields

||mβn+1 ||q =
(∫

Td
(m)βn+1q

) 1
βn+1q ≤

(∫
Td
mβn

) κ
βn
(∫

Td
m

2∗βn+1
2

) 2(1−κ)
2∗βn+1

,

where

1
βn+1q

= κ

βn
+ 2(1− κ)

2∗βn+1
. (3.9)

By rearranging the exponents taking the βn+1’th power

(∫
Td
mβn+1q

)q
≤
(∫

Td
mβn

)βn+1κ
βn

(∫
Td
m

2∗βn+1
2

) 2(1−κ)
2∗

,

establishing the result. �

Lemma 3.2.4 For any 1 < q < d
d−2 we have

∣∣∣∣∣∣∣∣(mε)
βn+1

2

∣∣∣∣∣∣∣∣2(1−κ)

2∗
≤ C

(∫
Td

∣∣∣∣Dx

(
(mε)

βn+1
2

)∣∣∣∣2
)(1−κ)

+ C
∣∣∣∣∣∣(mε)βn+1

∣∣∣∣∣∣(1−κ)

q
.
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Proof. From Sobolev’s inequality we obtain

∣∣∣∣∣∣∣∣(mε)
βn+1

2

∣∣∣∣∣∣∣∣2(1−κ)

2∗
=
(∫

Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx+
∫
Td

∣∣∣∣mβn+1
2

∣∣∣∣2 dx
)2(1−κ) 1

2

≤ 2p
(∫

Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx
)(1−κ)

+
(∫

Td
mβn+1dx

)(1−κ)
 .

Now applying Holder’s inequality to last term of the above inequality we obtain

(∫
Td
mβn+1 · 1dx

)(1−κ)
≤
(∫

Td
mβn+1q

) 1−κ
q

·
(∫

Td
1p
) 1−κ

p

≤ C
∣∣∣∣∣∣mβn+1

∣∣∣∣∣∣(1−κ)

q
.

Then the result follows. �

Lemma 3.2.5 Assume that 1 < q < d
d−2 . Then, for any δ > 0 there exists C

such that

∣∣∣∣∣∣(mε)βn+1
∣∣∣∣∣∣
q
≤ C + δ

∣∣∣∣∣∣∣∣(mε)
βn+1

2

∣∣∣∣∣∣∣∣2
2∗
.

Proof. Note that, q < d
d−2 = 2∗

2 , then 1 < qβn+1 <
2∗βn+1

2 .

We can apply Holder’s interpolation on ||(mε)||qβn+1
, to obtain

(∫
Td
mβn+1qdx

) 1
βn+1q ≤

(∫
Td
mdx

)λ (∫
Td
m

2∗βn+1
2 dx

) 2(1−λ)
2∗βn+1

,

where 0 < λ < 1 solves 1
βn+1q

= λ+ 2(1−λ)
2∗βn+1

. Taking the βn+1’th power on above
equation, and since m is a probability measure, we get.

∣∣∣∣∣∣mβn+1
∣∣∣∣∣∣
q
≤
∣∣∣∣∣∣∣∣mβn+1

2

∣∣∣∣∣∣∣∣2(1−λ)

2∗
.

Furthermore, noticing that (1− λ) < 1, Young’s inequality with δ yields

∣∣∣∣∣∣mβn+1
∣∣∣∣∣∣
q
≤ C + δ

∣∣∣∣∣∣∣∣mβn+1
2

∣∣∣∣∣∣∣∣2
2∗
,

establishing the result. �

Proposition 3.2.6 Assume that 1 < q < d
d−2

∣∣∣∣∣∣(mε)βn+1
∣∣∣∣∣∣
q
≤
(∫

Td
(mε)βndx

)θκ C + C

(∫
Td

∣∣∣∣Dx

(
(mε)

βn+1
2

)∣∣∣∣2 dx
)(1−κ)

 .

DBD
PUC-Rio - Certificação Digital Nº 1712696/CA



Chapter 3. Regularity for the Fokker-Planck Equation 37

Proof. By combining both Lemmas 3.2.4 and 3.2.5 and taking the (1 − κ)’th
power on the statement of Lemma 3.2.5 we obtain

∣∣∣∣∣∣∣∣mβn+1
2

∣∣∣∣∣∣∣∣2(1−κ)

2∗
≤ C + C

(∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx
)1−κ

+ δ
∣∣∣∣∣∣∣∣mβn+1

2

∣∣∣∣∣∣∣∣2(1−κ)

2∗
⇒

(1− δ)
∣∣∣∣∣∣∣∣mβn+1

2

∣∣∣∣∣∣∣∣2(1−κ)

2∗
≤ C + C

(∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx
)(1−κ)

⇒

∣∣∣∣∣∣∣∣mβn+1
2

∣∣∣∣∣∣∣∣2(1−κ)

2∗
≤ C + C

(∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx
)(1−κ)

Now, multiplying both sides by

(∫
Td

(mε)βndx
)θκ

,

and using Lemma 3.2.3 the result follows.

�

Proposition 3.2.7 Let (uε,mε) be a solution of (1.7) and assume that 1 <

q < d
d−2 . Let

1
q

+ 1
p

= 1 and rκ = 1 where κ is given by 1.8. Then

d

dt

∫
Td

(mε)βn+1dx ≤ C + C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣r
Lp(Td)

(∫
Td

(mε)βndx
)θ

(3.10)

Proof. From the statement of Lemma 3.2.2 and using the last Proposition one
obtains that

d

dt

∫
Td
mβn+1(x, t)dx ≤

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣
p

(∫
Td
mβn

)C (∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2
)(1−κ)

+ C


− c

∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx.
Note that,

C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣
p

(∫
Td
mβn

)θκ (∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2
)(1−κ)

≤

C ∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣
p

(∫
Td
mβn

)θκ (∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2
)(1−κ)

r

≤ C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣r
p

(∫
Td
mβn

)θ (∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2
)(r−1)

.
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Since, r > 1 and rκ = 1. From Corollary 3.1.1 one obtains(∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2
)
≤ C.

Nevertheless, taking those observations into account, we get that

d

dt

∫
Td
mβn+1(x, t)dx ≤

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣
p

(∫
Td
mβn

)C (∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2
)(1−κ)

+ C


− c

∫
Td

∣∣∣∣Dx

(
m

βn+1
2

)∣∣∣∣2 dx ≤ C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣
p

(∫
Td
mβn

)θκ
+ C

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r
p

(∫
Td
mβn

)θ
C + C

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r
p

(∫
Td
mβn

)θ
,

where the last inequality follow from Young’s inequality shown bellow

C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣
p

(∫
Td
mβn

)θκ
· 1 ≤

[
C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣
p

(∫
Td
mβn

)θκ]r
+ 1q

�

Proof of Theorem 1.1. The proof follows by induction on n. For n = 1
we integrate equation (3.10) with respect to dt over (0, τ) to obtain
∫
Td
mβ1(x, τ)dx ≤ C

∫ τ

0

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r
Lp(Td)

dt+ C ≤ C
∣∣∣∣∣∣|DpH|2

∣∣∣∣∣∣r
Lr([0,T ];Lp(Td))

+ C,

where we are considering that
∫
Tdm

β0 ≤ C for some constant C > 0. This
verifies our claim for n = 1. Then,

d

dt

∫
Td
mβn+1dx ≤ C

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r
Lp(Td)

(
C + C

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣rn
Lr([0,T ];Lp(Td))

)θ
. (3.11)

Integrating (3.11) with respect to the Lebesgue measure dt over (0, τ) one
obtains that

∫
Td
mβn+1(x, τ)dx ≤ C

∫ τ

0

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r
Lp(Td)

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣rnθ
Lr([0,T ];Lp(Td))

dt∫ τ

0

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r
Lp(Td)

dt+ C.

A further application of Holder’s inequality leads to
∫
Td
mβn+1(x, τ)dx ≤ C + C

∣∣∣∣∣∣|DpH|2
∣∣∣∣∣∣r+rnθ
Lr([0,T ];Lp(Td))

,

establishing the result.

�
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4
Upper Bounds for the Hamilton-Jacobi Equation

In this section we investigate L∞ bounds for the Hamilton-Jacobi equa-
tion. Since by Proposition 2.3.1 any solution of (1.7) is bounded by bellow,
to get the bounds it is enough to establish upper bounds. These build upon
the improved integrability obtain previously for mε and will be used in the
following sections. As before, we omit the ε in the proofs in this Chapter.

Proposition 4.0.1 Suppose (uε,mε) is a solution of (1.7) and H satisfies A1.
Then, if p > d

2 , we have

uε(x, τ) ≤ (T − τ) max
z
L(z, 0) + C ||gε(m)||L∞([0,T ];Lp(Td)) +

∫
Td
uε(y, T )θ(y, T − τ)dy,

where θ is the heat kernel, with θ(·, τ) = δx. Furthermore, if 1
r

+ 1
s

= 1
p

+ 1
q

= 1,
and p

s
> d

2 , we have

uε(x, τ) ≤ (T − τ) max
z
L(z, 0) + C ||gε(m)||Lr([0,T ];Lp(Td)) +

∫
Td
uε(y, T )θ(y, T − τ)dy.

Proof. By applying Proposition 2.1.1 with b = 0 and ζ0 = θ(·, τ) = δx, we
obtain the estimate

u(x, τ) ≤ (T − τ) max
z∈Td

L(z, 0)

+
∫ T

τ

∫
Td
g(m)(y, t)θ(y, t− τ)dydt+

∫
Td
u(y, T )θ(y, T − τ)dy.

where,
∫ T

τ

∫
Td
L(y, 0)θ(y, t− τ)dydt ≤ max

z∈Td
L(z, 0)

∫ T

τ

∫
Td
θ(y, t− τ)dydt = max

z∈Td
L(z, 0)

∫ T

τ
1dt

= (T − τ) max
z∈Td

L(z, 0).

Now, we need to estimate
∫ T
τ

∫
Td g(m)(y, t)θ(y, t−τ)dydt. To doing so, we recall

the following property of the heat kernel, for 1
p
+ 1

q
= 1 we have ||θ(·, t)||q ≤ C

t
d

2p
.

DBD
PUC-Rio - Certificação Digital Nº 1712696/CA



Chapter 4. Upper Bounds for the Hamilton-Jacobi Equation 40

Hence, Holder’s inequality yields
∫
Td
g(m)(y, t)θ(y, t− τ)dy ≤ ‖g(m(·, t))‖Lp(Td) ‖θ(·, t)‖Lq(Td)

≤ C

(t− τ)
d

2p
‖g(m(·, t))‖Lp(Td) .

Thus, if d < 2p we have
∫ T

τ

∫
Td
g(m)(y, t)θ(y, t− τ)dydt ≤

∫ T

τ

C

(t− τ)
d

2p
‖g(m(·, t))‖Lp(Td) dt ≤ C ‖g(m)‖L∞([0,T ];Lp(Td)) .

For the second assertion, Holder’s inequality leads to
∫ T

τ

∫
Td
g(m)(y, t)θ(y, t− τ)dydt ≤

∫ T

τ
‖g(m)(·, t)‖Lp(Td) ‖θ(·, t− τ)‖Lq(Td) dt

≤ ‖g(m)‖Lr([0,T ];Lp(Td))

(∫ T

τ

C

t
ds
2p

) 1
s

≤ C ‖g(m)‖Lr([0,T ];Lp(Td)) ,

where the last inequality follows from ds
2p < 1. �

Corollary 4.0.1 Suppose A1-6 are in force. Let (uε,mε) be a solution of (1.7).
Then, for any p > d

2 we have

u(x, τ) ≤ (T − τ) max
z∈Td

L(z, 0) + C ‖ηε ∗mε‖αL∞([0,T ];Lαp(Td))

∫
Td
u(y, T )θ(y, T − τ)dy,

where θ is the heat kernel, with θ(·, τ) = δx. Furthermore, if αp ≤ 1 we have

u(x, τ) ≤ (T − τ) max
z∈Td

L(z, 0) + C +
∫
Td
u(y, T )θ(y, T − τ)dy.

Proof. To begin our proof, first note that by A4, g(m) = mα.

Thus,

‖gε(m)‖p = ‖ηε ∗ g(ηε ∗m)‖p = ||(ηε ∗m)α||p =
(∫

Td
|ηε ∗m|αpdx

) 1
p

= α
αp

= ‖ηε ∗m‖ααp .

Then the first assertion follows.

Nevertheless, to establish the second assertion, note that, since αp ≤ 1

‖ηε ∗m‖ααp ≤ ‖ηε ∗m‖
α
1 =

(∫
Td

(ηε ∗m)dx
)α

=
(∫

Td
ηεdx

)α (∫
Td
mdx

)α
= 1.

However, with the observation above, we conclude our proof. �

Corollary 4.0.2 Suppose A1-6 are in force. Let (uε,mε) be a solution of (1.7).
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Then, for any p, r such that, p(r−1)
r

> d
2 , we have

u(x, τ) ≤ (T − τ) max
z∈Td

L(z, 0) + C ‖ηε ∗mε‖αLαr([0,T ];Lαp(Td))

∫
Td
u(y, T )θ(y, T − τ)dy,

Proof. By the second assertion of Proposition 4.0.1 and A4, we have that

||gε(m)||Lr([0,T ];Lp(Td)) = ‖(ηε ∗m)α‖Lr([0,T ];Lp(Td)) =
(∫ T

0

((∫
Td

(ηε ∗m)αpdx
) 1
p

)r
dt

) 1
r

=
(∫ T

0

(∫
Td

(ηε ∗m)αpdx
) r
p

=αr
αp

dt

) 1
r

=
(∫ T

0
‖ηε ∗m‖αrLαp(Td) dt

) 1
r

= α
αr

= ‖ηε ∗m‖αLαr([0,T ];Lαp(Td))

Then, the result follows. �

To finish this Chapter we show the proof of Lemma 1.3.1.

Proof of Lemma 1.3.1:

It follows from the second assertion of Proposition 4.0.1. Since b(a−1)
a

> d
2

holds.

�
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5
Sobolev Regularity for the Hamilton-Jacobi Equation

In this Chapter we consider regularity in Sobolev spaces for the Hamilton-
Jacobi equation. As before, we omit the ε in the proofs in this Chapter.

Lemma 5.0.1 Let u ∈ W 2,p(Td). Then, there exists C > 0 such that

‖Du‖Lγp(Td) ≤ C
∥∥∥D2u

∥∥∥ 1
2

Lp(Td)
‖u‖

1
2
L∞(Td) . (5.1)

Proof. Note that Gagliardo-Nirenberg interpolation Theorem leads to

‖Dju‖Lp ≤ C‖Dmu‖αLr‖u‖1−α
Lq ,

where,
1
p

= j

n
+
(1
r
− m

n

)
α + 1− α

q
.

Taking q =∞, j = 1 and α = 1
2 , the result follow. �

Lemma 5.0.2 Let (uε,mε) be a solution of (1.7). Then

‖uεt‖Lr([0,T ];Lp(Td)), ‖D2uε‖Lr([0,T ];Lp(Td)) ≤ ‖gε(mε)‖Lr([0,T ];Lp(Td)) + ‖H‖Lr([0,T ];Lp(Td)),

for 1 < p, r <∞. Furthermore,

‖D2uε‖L∞([0,T ];L2(Td)) ≤ ‖gε(mε)‖L2([0,T ];L2(Td)) + ‖H‖L2([0,T ];L2(Td)).

Lemma 5.0.3 Let (uε,mε) be a solution of (1.7) and assume that A1-9 are
in force. For 1 < p, r <∞ there are constants c, C > 0 such that

‖H(x,Duε)‖Lr([0,T ];Lp(Td)) ≤ c‖D2uε‖
γ
2
Lr([0,T ];Lp(Td))‖u

ε‖
γ
2
L∞([0,T ];L∞(Td)).

Proof. Assumption A7 yields

(∫
Td
|H(x,Du(x, t))|pdx

) 1
p

≤ c
(∫

Td
|Du|γpdx

) 1
p

+ C.
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By combining this with Lemma 5.0.1 if follows that

(∫
Td
|H(x,Du(x, t))|pdx

) 1
p

≤ c
(∫

Td
|Du|γpdx

) 1
p

= γ
γp

+ C = c‖Du‖γLγp(Td) + C

≤ c‖D2u‖
γ
2
Lp(Td)‖u‖

γ
2
L∞(Td) + C.

Thus,

‖H(x,Du)‖Lr([0,T ];Lp(Td)) ≤ c

(∫ T

0

(
‖D2u‖

γ
2
Lp(Td)‖u‖

γ
2
L∞(Td)

)r
dt

) 1
r

+ C

≤ c

(
‖u‖

γ
2
L∞([0,T ];L∞(Td)) ·

∫ T

0

(
‖D2u‖

γ
2
Lp(Td)

)r
dt

) 1
r

+ C

≤ c‖D2uε‖
γ
2
Lr([0,T ];Lp(Td))‖u

ε‖
γ
2
L∞([0,T ];L∞(Td)) + C,

where in the last inequality we used that γ
2 < 1. �

Proof of Theorem 1.3.2. By combining Lemma 5.0.2 and 5.0.3 yield

‖D2u‖
γ
2
Lr([0,T ];Lp(Td)) ≤ c‖D2u‖

γ
2
Lr([0,T ];Lp(Td))‖u‖

γ
2
L∞([0,T ];L∞(Td)) + ‖g(m)‖Lr([0,T ];Lp(Td)) + C.

Set j = 2
γ
and define l by 1

j
+ 1

l
= 1. Using Young’s inequality with δ.

But first, observe that, since j = 2
γ
. Then l = 2

2−γ .

Thus,

‖D2u‖
γ
2
Lr([0,T ];Lp(Td)) ≤ δ‖D2u‖Lr([0,T ];Lp(Td)) + C‖u‖

γ
2−γ
L∞([0,T ];L∞(Td)) + ‖g(m)‖Lr([0,T ];Lp(Td)) + C.

Absorbing the term δ‖D2u‖Lr([0,T ];Lp(Td)) on the left-hand side yields

‖D2u‖
γ
2
Lr([0,T ];Lp(Td)) ≤ +c‖u‖

γ
2−γ
L∞([0,T ];L∞(Td)) + c‖g(m)‖Lr([0,T ];Lp(Td)) + C,

which concludes the proof.

�
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6
Improved Regularity

Throughout this chapter we define, for 1 ≤ β0 <
2∗
2 and

0 ≤ υ ≤ 1 < θ, (6.1)

aυ=̇
α + 1
1− υ and bυ=̇

d(α + 1)β0θ

(α + 1)dυ + θβ0(d− 2)(d− υ) . (6.2)

As before, we omit the ε in the proofs in this Chapter.

Lemma 6.0.1 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that aυ and bυ are given as in 6.2. Then,

‖mε‖Laυ ([0,T ];Lbυ (Td)) ≤ C + C
∥∥∥|DpH|2

∥∥∥ rυ(1− 1
θ

)
β0(θ−1)

Lr([0,T ];Lp(Td))
,

where

p >
d

2 and r = p(d(θ − 1) + 2)
2p− d . (6.3)

Proof. Since , 0 ≤ υ ≤ 1, 1
aυ

= 1−υ
α+1 and 1

bυ
= 1−υ

2∗(α+1)
2

+ υ
θβ0

, which hold by 6.2.
Holder’s inequality implies that,

‖mε‖Laυ ([0,T ];Lbυ (Td)) =
(∫ T

0

((∫
Td
mbυdx

) 1
bυ

)aυ
dt

) 1
aυ

≤
(∫ T

0

((∫
Td
m

2∗(α+1)
2 dx

) 2
2∗(α+1) .(1−υ)

·
(∫

Td
mθβ0dx

) 1
θβ0

.υ
)aυ

dt

) 1
aυ

=
(∫ T

0

(∫
Td
m

2∗(α+1)
2 dx

) 2
2∗

·
(∫

Td
mθβ0dx

) 1
θβ0

.υ.aυ

dt

) 1
aυ

=
(∫ T

0
‖m‖(α+1)

L
2∗(α+1)

2
· ‖m‖υ.aυ

Lθβ0dt

) 1
aυ

.

Now, applying Holder’s inequality, with p = 1 and q = ∞ one obtains
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that
(∫ T

0
‖m‖(α+1)

L
2∗(α+1)

2
· ‖m‖υ.aυ

Lθβ0dt

) 1
aυ

≤
(
‖m‖υ.aυ

L∞([0,T ];Lθβ0 ) ·
∫ T

0
‖m‖(α+1)= (α+1)(1−υ)

1−υ =aυ(1−υ)

L
2∗(α+1)

2
dt

) 1
aυ

= ‖m(1−υ)‖
Laυ ([0,T ];L

2∗(α+1)
2 (Td))

· ‖m‖υL∞([0,T ];Lθβ0 (Td)).

Note that, (1− υ)aυ = (α + 1). Thus,

‖m(1−υ)‖Laυ =
(∫

m(1−υ)aυ
) 1
aυ

= 1
aυ

(1−υ)
(1−υ)

=
(∫

m(α+1)
)(α+1)(1−υ)

= ‖m‖(1−υ)
L(α+1) .

Nevertheless,

‖mε‖Laυ ([0,T ];Lbυ (Td)) ≤ ‖m‖
(1−υ)

L(α+1)([0,T ];L
2∗(α+1)

2 (Td))
· ‖m‖υL∞([0,T ];Lθβ0 (Td)) .

Because of Corollary 2.4.1 we have ‖m‖(1−υ)

L(α+1)([0,T ];L
2∗(α+1)

2 (Td))
≤ C. On the

other hand, from Theorem 1.1 it follows that

‖m‖υL∞([0,T ];Lθβ0 (Td)) ≤ C + C
∥∥∥|DpH|2

∥∥∥ rυ(1− 1
θ

)
β0(θ−1)

Lr([0,T ];Lp(Td))
.

By combining the previous computations one obtains the result. �

The following Lemma shows us upper bound for uε depending on gε(m)

Lemma 6.0.2 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Assume that

bυ
aυ

(
aυ − α
α

)
>
d

2 . (6.4)

Then,

‖uε‖L∞([0,T ];L∞(Td)) ≤ C + C‖gε(m)‖
L
aυ
α ([0,T ];L

bυ
α (Td))

.

Proof. The result easily follows from Lemma 1.3.1 since (6.4) holds. �

The Lemma below, we can derive more details about upper bounds of uε

and gε(m).

Lemma 6.0.3 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Let ζ, p̃ and r̃ such that

0 ≤ ζ ≤ 1, p̃
(
r̃ − 1
r̃

)
>
d

2 , (6.5)
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where

1
p̃

=̇ 1− ζ(
1 + 1

α

)
d
d−2

+ ζ
bυ
α

, (6.6)

and

1
r̃

=̇ 1− ζ
1 + 1

α

+ ζ
aυ
α

. (6.7)

Then

‖gε‖Lr̃([0,T ];Lp̃(Td)) ≤ C‖gε(m)‖ζ
L
aυ
α ([0,T ];L

bυ
α (Td))

,

and

‖uε‖L∞([0,T ];L∞(Td)) ≤ C + C ‖gε‖Lr̃([0,T ];Lp̃(Td)) .

Proof. Note that the second assertion follows from (6.5) along with Lemma ??.
To solve the first assertion, we can use Holder’s inequality

‖gε‖Lr̃([0,T ];Lp̃(Td)) ≤ ‖gε‖
(1−ζ)

L1+ 1
α

(
[0,T ];L

2∗
2 (1+ 1

α)(Td)
) ‖gε(m)‖ζ

L
aυ
α ([0,T ];L

bυ
α (Td))

.

Also, we have from Corollary 2.4.1 that ‖gε‖(1−ζ)

L1+ 1
α

(
[0,T ];L

2∗
2 (1+ 1

α)(Td)
) < C, for

some C > 0. Then combining these, the result follows. �

The next Lemma we derive upper bound for |DpH|2.

Lemma 6.0.4 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that p > d

2 and r is given as in (6.3). Then

∥∥∥|DpH|2
∥∥∥
Lr([0,T ];Lp(Td))

≤ C + C ‖Duε‖2(1−λ)(γ−1)
LF ([0,T ];LG(Td)) ,

where

0 ≤ λ ≤ 1, 1
2(γ − 1)r = λ

γ
+ 1− λ

F
(6.8)

and

1
2(γ − 1)p = λ

γ
+ 1− λ

G
, (6.9)

respectively.
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Proof. Note that A8 yields,
∥∥∥|DpH|2

∥∥∥
Lr([0,T ];Lp(Td))

≤ C + C ‖Duε‖2(1−λ)(γ−1)
L2(γ−1)r([0,T ];L2(γ−1)p(Td)) .

On the other hand, Holder’s inequality implies that

‖Duε‖2(1−λ)(γ−1)
L2(γ−1)r([0,T ];L2(γ−1)p(Td)) ≤ ‖Du

ε‖λLγ([0,T ];Lγ(Td)) ‖Du
ε‖(1−λ)
LF ([0,T ];LG(Td))

(6.10)

since (6.8) and (6.9) hold. We have from Proposition 2.2.1 that Du ∈
Lγ(Td × [0, T ]). Combining these with the computation above, we get the
result. �

Finally, in the next Lemma, we are able to derive upper bound for Duε.

Lemma 6.0.5 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that (6.4) - (6.9),

F

γ
= aυ

α
(6.11)

and

G

γ
= bυ
α

(6.12)

hold. Then,

‖Duε‖LF ([0,T ];LG(Td)) ≤ C‖gε‖
ζ

2−γ+ ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C‖gε‖
1
γ

+ ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C.

Proof. Inequality (5.1) implies that

||Du||L2(γ−1)p(Td) ≤ C||D2u||
1
2

L
2(γ−1)
γ (Td)

||u||
1
2
L∞(Td).

Note that γ < 2 it follows that

||Du||L2(γ−1)p(Td) ≤ C||D2u||
1
γ

L
2(γ−1)
γ (Td)

||u||
1
2
L∞(Td) + C||u||

1
2
L∞(Td). (6.13)

From (6.13) it follows that

‖Duε‖LF ([0,T ];LG(Td)) ≤ C‖D2u‖
1
γ

L
F
γ ([0,T ];L

G
γ (Td))

‖u‖
1
2
L∞([0,T ];L∞(Td)) + C‖u‖

1
2
L∞([0,T ];L∞(Td))
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and

‖D2u‖
1
γ

L
F
γ ([0,T ];L

G
γ (Td))

≤ C‖gε‖
1
γ

L
aυ
α ([0,T ];L

bυ
α (Td))

+ ‖u‖
1

2−γ
L∞([0,T ];L∞(Td)) + C.

By combining these, one obtains

‖Duε‖LF ([0,T ];LG(Td)) ≤C‖gε‖
1
γ

L
aυ
α ([0,T ];L

bυ
α (Td))

‖u‖
1
2
L∞([0,T ];L∞(Td)) (6.14)

+ ‖u‖
1

2−γ+ 1
2

L∞([0,T ];L∞(Td)) + C‖u‖
1
2
L∞([0,T ];L∞(Td)). (6.15)

Because of Lemma (6.0.3) we also have

‖u‖
1
2
L∞([0,T ];L∞(Td)) ≤ C + C‖gε‖ζ

L
aυ
α ([0,T ];L

bυ
α (Td))

.

Hence, (6.14) becomes

‖Duε‖LF ([0,T ];LG(Td)) ≤ C‖gε‖
1
γ

+ ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C‖gε‖
ζ

2−γ+ ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ ‖gε‖
ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C‖gε‖
1
γ

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C

≤ C‖gε‖
ζ

2−γ+ ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C‖gε‖
1
γ

+ ζ
2

L
aυ
α ([0,T ];L

bυ
α (Td))

+ C,

where the last inequality follows from Young’s inequality applied to those terms
with lower exponents. �

In the next two corollaries we can see more details about upper bounds
of gε(m) and Duε.

Corollary 6.0.1 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that (6.4) holds. Then,

‖gε(m)‖
L
aυ
α ([0,T ];L

bυ
α (Td))

≤ C + C
∥∥∥|DpH|2

∥∥∥ rυα(1− 1
θ )

β0(θ−1)

Lr([0,T ];Lp(Td))
,

where p > d
2 and r is given by (6.3)

Proof. Lemma 6.0.1 along with A4 leads to

‖gε(m)‖
L
aυ
α ([0,T ];L

bυ
α (Td))

≤ ‖m‖αLaυ ([0,T ];Lbυ (Td)) ≤ C + C
∥∥∥|DpH|2

∥∥∥ rυα(1− 1
θ )

β0(θ−1)

Lr([0,T ];Lp(Td))

and then the result is established. �
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Corollary 6.0.2 Let (uε,mε) be a solution of (1.7) and assume A1-9 are in
force. Suppose further that (6.4) - (6.12) hold. Then,

‖Duε‖LF ([0,T ];LG(Td)) ≤ C + C‖Duε‖
(1−λ)(γ−1)(4ζ−γζ)

(2−γ)
rυα(1− 1

θ )
β0(θ−1)

LF ([0,T ];LG(Td))

+ C‖Duε‖
(1−λ)(γ−1)(2+γζ)

γ

rυα(1− 1
θ )

β0(θ−1)
LF ([0,T ];LG(Td)) ,

where p > d
2 and r is given by (6.3).

Proof. Lemma 6.0.5 along with Corollary 6.0.1 leads to

‖Duε‖LF ([0,T ];LG(Td)) ≤ C + C
∥∥∥|DpH|2

∥∥∥ (4ζ−γζ)
2(2−γ)

rυα(1− 1
θ )

β0(θ−1)

Lr([0,T ];Lp(Td))

+ C
∥∥∥|DpH|2

∥∥∥ (2+γζ)
2γ

rυα(1− 1
θ )

β0(θ−1)

Lr([0,T ];Lp(Td))
.

Furthermore, because of A8 and Lemma 6.0.4

∥∥∥|DpH|2
∥∥∥ (4ζ−γζ)

2(2−γ)
rυα(1− 1

θ )
β0(θ−1)

Lr([0,T ];Lp(Td))
≤ C + C‖Duε‖

(1−λ)(γ−1)(4ζ−γζ)
(2−γ)

rυα(1− 1
θ )

β0(θ−1)
LF ([0,T ];LG(Td))

and

∥∥∥|DpH|2
∥∥∥ (2+γζ)

2γ
rυα(1− 1

θ )
β0(θ−1)

Lr([0,T ];Lp(Td))
≤ C + C‖Duε‖

(1−λ)(γ−1)(2+γζ)
γ

rυα(1− 1
θ )

β0(θ−1)
LF ([0,T ];LG(Td)) .

The result follows by combining both above computation. �

This final Lemma below shows us that ‖Duε‖LF ([0,T ];LG(Td)) ≤ C.

Lemma 6.0.6 Let (uε,mε) be a solution of (1.7) and assume A1-10 are in
force. Then,

‖Duε‖LF ([0,T ];LG(Td)) ≤ C,

where F and G are given by (6.8) and (6.9), respectively.

Proof. By Corollary 6.0.2 and (6.1)-(6.12) hold,

‖Duε‖LF ([0,T ];LG(Td)) ≤ C + C‖Duε‖
(1−λ)(γ−1)(4ζ−γζ)

(2−γ)
rυα(1− 1

θ )
β0(θ−1)

LF ([0,T ];LG(Td))

+ C‖Duε‖
(1−λ)(γ−1)(2+γζ)

γ

rυα(1− 1
θ )

β0(θ−1)
LF ([0,T ];LG(Td))
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Also,

(1− λ)(γ − 1)(4ζ − γζ)
(2− γ)

rυα
(
1− 1

θ

)
β0(θ − 1) < 1 (6.16)

(1− λ)(γ − 1)(2 + γζ)
γ

rυα
(
1− 1

θ

)
β0(θ − 1) < 1 (6.17)

have to be satisfied. The Lemma follows by combining Young’s inequality with
Lemma ??. �

To finish this chapter we present the following Theorem.

Theorem 6.0.7 Let (uε,mε) be a solution of (1.7) and assume A1-10 are in
force. Then, for any β > 1, ‖mε‖L∞([0,T ];Lβ(Td)) is bounded uniformly in ε.

Proof. For p > d
2 , θ > 1 and r is given by Lemma 6.0.6, we have by Theorem

1.1 that for any β > 1 there is rβ such that
∫
Td
mβ(τ, x)dt ≤ C + C‖DpH(x,Du)|2‖rβLr([0,T ];Lp(Td)).

If we combine (6.10) and Lemma 6.0.6 with A8 one obtains

‖|DpH(x,Du)|2‖Lr([0,T ];Lp(Td)) ≤ C‖Du‖2(γ−1)(1−λ)
LF ([0,T ];LG(Td)) + C ≤ C.

It is enough to conclude the Theorem. �

Corollary 6.0.3 Let (uε,mε) be a solution of (1.7) and assume A1-10 are
in force. Then, for any p, r > 1, ‖Duε‖Lr([0,T ];Lp(Td)), ‖D2uε‖Lr([0,T ];Lp(Td)) are
bounded uniformly in ε.

Proof. Because of Theorem 6.0.7, for p, r > 1, ‖gε(mε)‖Lr([0,T ];Lp(Td)) is bounded
uniformly in ε. So are ‖uε‖L∞([0, T ];L∞(Td)) and ‖D2uε‖Lr([0,T ];Lp(Td))

bounded by Proposition 4.0.1 and Theorem 1.3.2, respectively. Finally by
Gagliardo-Nirenberg inequality

‖Duε‖L2r([0,T ];L2p(Td)) ≤ C‖D2uε‖
1
2
Lr([0,T ];Lp(Td))‖uε‖

1
2
L∞([0,T ];L∞(Td)).

which shows that ‖Duε‖Lr([0,T ];Lp(Td)) is also uniformly bounded in ε. �
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7
Lipschitz Regularity

In this chapter we derive Lipschitz regularity for the solution of uε by
using the Adjoint Method, for more details about this method we encourage
the readers to see [6].

Theorem 7.0.1 Let (uε,mε) be a solution of (1.7) and assume A1-10 are in
force. Then Duε ∈ L∞(Td× [0, T ]), uniformly in ε. As before, we omit the ε in
the proof in this Chapter.

Proof.
ut + ∆u = f

u(x, T ) = ψ,
(7.1)

with ψ ∈ W 1,∞(Td) and f ∈ La([0, T ] × Td) for any a > 1. We introduce the
adjoint equation

−ρt + ∆ρ = 0, (7.2)

with initial data ρ(·, τ) = δx0 . Multiplying (7.2) by νρν−1 and integrating, we
have for τ < s < T . First, note that

∫ T

s
= νρρ−1ρtdt =

∫ T

s

d

dt
ρνdt = ρν(x, T )− ρν(x, s),

and
∫ T

s

∫
Td
νρν−1∆ρdxdt = −ν

∫ T

s

∫
Td
Dρν−1Dρdxdt = ν(1− ν)

∫ T

s

∫
Td
ρν−2(Dρ)2dxdt.

Observe that,

4(1− ν)
ν

(Dρ ν2 )2 = 4(1− ν)
ν

ν2

4 ρ
ν−2(Dρ)2 = ν(1− ν)ρν−2(Dρ)2.
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Then,

∫
Td

(ρν(x, T )− ρν(x, s))dx = 4(1− ν)
ν

∫ T

s

∫
Td
|Dρ

ν
2 |2dxdt. (7.3)

Because ρ(·, t) is a probability measure and 0 < ν < 1 we have
∫
Td
ρν(x, t)dx ≤ 1.

Thus,
∫ T

τ

∫
Td
|Dρ

ν
2 |2dxdt ≤ ν

4(1− ν) .

Fixing a unit vector ξ ∈ Rd, we have by derivate the first equation of 7.1 in
direction ξ, multiply by ρ and integrate we get

∫ T

τ

∫
Td

(uξ)tρdxdt+
∫ T

τ

∫
Td

(∆uξ)ρdxdt =
∫ T

τ

∫
Td
fξρdxdt,

multiplying (7.2) by uξ and subtract these equation to obtain

∫ T

τ

∫
Td

(uξ)tρ− uξρtdxdt+
∫ T

τ

∫
Td

(∆uξ)ρ− (∆ρ)uξdxdt = −
∫ T

τ

∫
Td
fξρdxdt,

where
∫ T

τ

∫
Td

(uξ)tρ− uξρtdxdt =
∫ T

τ

∫
Td

d

dt
(uξρ)dxdt =

∫
Td

(uξ(x, τ)ρ(x, τ)− uξ(x, T )ρ(x, T ))dx

= uξ(x, τ)δx0 −
∫
Td
ψξρ(x, T )dx

and
∫ T

τ

∫
Td

(∆uξ)ρ− (∆ρ)uξdxdt = 0.

Then

uξ(x, τ)δx0 −
∫
Td
ψξρ(x, T )dx = −

∫ T

τ

∫
Td
fξρdxdt =

∫ T

τ

∫
Td
fρξdxdt.

Note that |
∫
Td ψρ(x, T )|dx ≤ ‖ψ‖W 1,∞(Td). For 0 < ν < 1,
∣∣∣∣∣
∫ T

τ

∫
Td
fρξdxdt

∣∣∣∣∣ ≤
∫ T

τ

∫
Td
|f |ρ1− ν2 |ρ

ν
2−1Dρ|dxdt

≤ ‖f‖La([τ,T ]×Td)‖ρ1− ν2 ‖Lb([τ,T ]×Td)‖Dρ
ν
2 ‖L2([τ,T ]×Td),

for any 2 ≤ a, b∞ satisfying 1
a

+ 1
b

+ 1
2 = 1. Therefore it suffices to bound
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‖ρ1− ν2 ‖Lb([τ,T ]×Td), for some b > 2.

Let d−1
d

< ν < 1, and κ = dν
dν+2 . Then 1 − κ + 2κ

2∗ν = κ
ν
, and therefore

1 < ν
κ
< 2∗ν

2 . Moreover ν
κ
> 2−ν. Define b = ν

κ(1− ν2 ) > 2. By Holder’s inequality
we have

(∫
Td
ρb(1−

ν
2 )
) 1
b(1− ν2 )

≤
(∫

Td
ρb(1−

ν
2 )
)κ
ν

≤
(∫

Td
ρ
)1−κ (∫

Td
ρ

2∗ν
2

) 2κ
2∗ν

.

Recall that by Sobolev’s inequality we have
(
ρ

2∗ν
2

) 2
2∗

≤ C + C
∫
Td |Dp

ν
2 |2.

Therefore
∫
Td
ρb(1−

ν
2 ) ≤ C + C

∫
Td
|Dp

ν
2 |2,

and then
∫ T

τ

∫
Td
ρb(1−

ν
2 ) ≤ C + C

∫ T

τ

∫
Td
|Dp

ν
2 |2 ≤ C.

�
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