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Abstract

Santana, Murillo Vinícius Bento; Gonçalves, Paulo Batista (Advi-
sor - PUC); Berke, Péter Zoltán (Supervisor - ULB). Tailored Co-
rotational Formulations for the Nonlinear Static and Dy-
namic Analysis of Bistable Structures. Rio de Janeiro, 2019.
178p. Tese de doutorado – Departamento de Engenharia Civil e
Ambiental, Pontifícia Universidade Católica do Rio de Janeiro.

Large span reticulated structures are applied in a variety of engine-
ering applications. Many of these structures present a nonlinear behavior
involving both geometric and material nonlinearities with multistable confi-
gurations. Particularly, bistable structures are often subjected to instability
phenomena, such as snap-through and bifurcations of the whole structure,
individual units or single bars. The present work, focuses on two classes of
bistable structural systems: pyramidal trusses (undesired instability) and
deployable scissor structures (desired design instability). Theoretical and
computational tools are developed to investigate the influence of the strain
measure, elasto-plastic deformations and instability phenomena on the non-
linear static and dynamic response of bistable pyramidal trusses. A com-
pliant corrotational spatial joint finite element formulation with finite size
is developed and applied to study bistable deployable scissor modules. The
analysis of bistable large span structures formed by the assembly of modu-
les is also carried out. It’s shown that the presence and interaction of the
studied buckling sources have deep influence on the systems behavior and
can ultimately determine their viability in practical applications.

Keywords
Instability, bistable systems, deployable structures, nonlinear oscilla-

tions, corotational formulations
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Resumo

Santana, Murillo Vinícius Bento; Gonçalves, Paulo Batista; Berke,
Péter Zoltán. Formulações Corrotacionais para a Análise
Não Linear Estática e Dinâmica de Estruturas Biestáveis.
Rio de Janeiro, 2019. 178p. Tese de Doutorado – Departamento de
Engenharia Civil e Ambiental, Pontifícia Universidade Católica do
Rio de Janeiro.

Estruturas reticuladas espaciais com grandes vãos são encontradas em
uma variedade de aplicações em engenharia. Muitas dessas estruturas apre-
sentam um comportamento eminentemente não linear, envolvendo tanto
não linearidades físicas quanto geométricas, o que leva em muitos casos a
múltiplas configurações de equilíbrio. Em particular, estruturas biestáveis
estão usualmente sujeitas a instabilidades por ponto limite (snap-through),
bifurcações simétrica instável ao longo do caminho não linear de equilíbrio,
instabilidade elástica de elementos individuais, devido à plastificação destes
elementos ou a interação destes fenômenos. O presente trabalho tem como
objetivo a análise detalhada de duas classes de estruturas biestáveis: treliças
piramidais (instabilidade indesejada) e estruturas ajustáveis com elementos
de tesoura (instabilidade desejada). Ferramentas teóricas e computacionais
são desenvolvidas para a investigação da influência das medidas de deforma-
ção quadrática e logarítmica, deformações elasto-plásticas e instabilidades
na resposta estática e dinâmica não linear de um módulo de treliça pira-
midal. Uma formulação corrotacional em elementos finitos é proposta para
descrever a ligação espacial flexível encontrada nas estruturas ajustáveis
biestáveis aqui estudadas. A análise de estruturas com grandes vãos forma-
das pela junção de módulos de treliças piramidais ou módulos ajustáveis
é apresentada. Os resultados obtidos mostram que a presença e interação
das diversas fontes de instabilidade têm uma grande influência no compor-
tamento destas estruturas e pode determinar ou não a sua viabilidade em
aplicações práticas.

Palavras-chave
Instabilidade, sistemas biestáveis, estruturas ajustáveis, oscilações não

lineares, formulações corrotacionais
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1
Introduction

1.1
Reticulated bistable structures in engineering

Large span reticulated structures are present in several civil, mechanical,
off-shore and aero-spatial engineering applications. Many of these structures
present an initial curvature to increase their stiffness and load carrying
capacity. However this may lead to multistable configurations and static and
dynamic buckling may become an important design issue. Particularly, bistable
structures are mechanical systems with two stable load-free configurations and
are often composed from an assembly of linear structural elements, such as
trusses and beams, using complex joints. The present work, focuses on two
classes of bistable structural systems: pyramidal trusses and deployable scissor
structures.

Pyramidal trusses possess an immediate practical interest since they are
currently used in many present-day engineering structures (Figs. 1.1, 1.2 and
1.3), either as a main structural component or as constitutive units of more
complex structures, from carbon nanostructures [7] to large geodesic domes [8]
or double layer reticulated trusses or shells [9]. Lattice structures composed of
pyramidal units can also be considered as a promising alternative in sandwich
lightweight structures ([10], [11] and [12]).

These structures exhibit usually a highly nonlinear structural behavior
involving both geometrical and material nonlinearities and are often subjected
to instability phenomena, such as snap-through and bifurcations of the whole
structure, individual units or single bars, being liable to catastrophic buckling.
Because of their highly complex structural behavior, the development and use
of appropriate numerical models are necessary to guide their realistic design
and lead to an understanding on their complex structural static and dynamic
behavior.

Ligarò and Valvo [9] studied the static elastic stability and load capacity
of pyramidal space trusses considering moderate elastic deformations, making
use of derived analytical expressions. However, the effect of local buckling and
plasticity and the interaction between different buckling phenomena were not
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Chapter 1. Introduction 20

Figure 1.1: London Stansted airport pyramidal truss system [1].

Figure 1.2: Lattice structure with pyramidal truss components [2] (dimensions
in meters).

(a) [13] (b) [14]

Figure 1.3: Geodesic dome with pyramidal truss components.

considered. Castro [15] and Orlando et al. [16] studied the complex dynamics of
shallow elastic pyramidal trusses, while Orlando et al. [17] studied the influence
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Chapter 1. Introduction 21

of transient escape and added load noise on the dynamic integrity of multistable
systems (an extensive literature review on pyramidal truss systems is presented
in Chapters 2 and 3).

In summary, to the author’s best knowledge, pyramidal truss systems
have been modeled considering moderate strains with a material linear elas-
tic behavior, disregarding local instabilities (Euler buckling) and with a fixed
(rigid) base. As the height/base ratio become sufficiently high, these assump-
tions are no longer valid and the effect of the base flexibility and the coupling
of the plastic and local buckling modes on the system stability and load ca-
pacity have to be considered. This work proposes an extension of pyramidal
truss modeling in this direction.

Among reticulated structures, deployable structures have recently re-
ceived deserved attention in the literature due to their possible application
in emergency shelters [18], exhibitions and recreational structures, temporary
buildings, maintenance facilities [19] and spatial antennas [20], among others.
Deployable structures are mechanical systems that can transform from a folded
compact configuration to a deployed form, in which they can support external
loads (Figs. 1.4, 1.5 and 1.6). The deployable scissor structures considered in
this work are space frames consisting of straight elastic beams that are con-
nected by complex joints. Their major advantages are the small volume they
occupy during storage and transportation, the ease and speed of erection, and
their re-usability. Due to these advantages, they offer possible alternatives for
a wide range of civil, mechanical and aero-spatial engineering applications.

Figure 1.4: Hoberman dome transformation [3].

This work focuses particularly on bistable deployable structures, in which
intended geometric incompatibilities between the members are introduced as a
design strategy to instantaneously achieve structural stability when deployed.
The intentionally incorporated geometric incompatibilities lead to axial and
bending stresses of structural members during transformation, generating a

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 1. Introduction 22

Figure 1.5: Multiple configurations of a deployable structure [4].

Figure 1.6: Self-deployable space structure [5].

controlled and desired snap-through behavior. In spite of the advantages of
bistable scissor structures, few have successfully been built because of the
complexity of their behavior and of their design process [21].

The bistable deployable structures studied in the present work were
first proposed and investigated by Gantes [22] (a literature review dedicated
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to bistable deployable structures is presented in Chapter 4). The structural
response of the investigated deployable structures, as well as their behavior in
the deployed configuration is exclusively obtained in previous works (e. g. [21])
using commercial finite element packages. In commercial finite element codes
the behavior of an element is usually limited to pre-coded features that may
not correspond to the complete set of required numerical ingredients.

A comprehensive analysis of the transformation of 3D bistable deployable
structures must include several nonlinear effects and their appropriate treat-
ment in a computational solution procedure (geometric nonlinearity, friction
and snap-through). Additionally, for realistic designs hub sizes, beam spac-
ing, friction and the finite stiffness of joints should also be incorporated. In
this work the convoluted effect of the above ingredients is studied as novelty,
through the development and application of a new corotational joint finite
element, tailored for the analyses of bistable deployable structures.

As the investigated pyramidal trusses and deployable structures have
a bistable behavior, they present two unloaded stable configurations, passing
from one to another through external applied forces. For the pyramidal trusses,
this phenomenon usually represents the (partial or complete) collapse of the
structural system and, in order to be avoided, an accurate analysis of the
pre-bucking and post-buckling behavior must be performed. For deployable
structures, this phenomenon represents the transformation of the system
between a folded and deployed configuration, and so, the determination of the
key characteristics (such as the required force) can only be obtained through
an advanced analysis of the system.

1.2
Problem statement and objectives

Many materials, in particular metallic materials, exhibit an elasto-plastic
behavior, it is thus expected that metallic structures undergoing snap-through
buckling may exhibit permanent deformations, due to the large stresses de-
veloped during this nonlinear process. Nevertheless, little is known on the
influence of the elasto-plastic deformations on the stability of structures liable
to snap-through or bifurcation buckling.

Additionally, compressive stresses in individual members may surpass
the Euler buckling load. Euler buckling together with the unavoidable manu-
facturing geometric imperfections lead to bending of the structural members
and, as the displacement increases, possibly to elasto-plastic behavior. Thus
interaction between different geometrical and material nonlinear phenomena
may occur, leading to a significant decrease in the load carrying capacity of
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the structure [23].
To the author’s best knowledge, previous works on pyramidal trusses are

restricted to the elastic nonlinear behavior of the perfect idealized truss model
considering only limit-point instability (snap-through buckling) or unstable
symmetric bifurcation along the nonlinear equilibrium path with moderate
strains (Ligarò and Valvo [9], Castro [15]). However, in real structures, struc-
tural instability may display a multifold nature depending on the geometrical
and material parameters and imperfections.

There is thus a need for a deeper understanding of the complex bistable
behavior of reticulated structures (particularly focusing here on pyramidal
trusses) under different sources of nonlinear phenomena. In addition to snap-
through and bifurcation buckling, the effect of the material elasto-plastic
constitutive laws, the individual bars Euler buckling, the flexibility of the base,
and their interaction are critical to structural safety. In particular, interactive
buckling has a considerable effect on the imperfection sensitivity and load
capacity of reticulated structures. A main objective of this work is the study
of instability phenomena involving large displacements, rotations and high
strains with proper numerical tools and benchmark analytical formulations.

Pyramidal trusses can be subject to dynamic loads (wind, earthquakes,
machinery, moving loads) and structural instabilities also include dynamic
jumps, therefore their elasto-plastic nonlinear dynamic behavior is of concern
for a safe design. Accidents due to snow and wind of structural systems
composed by pyramidal trusses leading to an inverted configuration (collapse)
have been investigated in the literature [24, 25, 26]. Having in mind that large
strains may occur, the analysis of the influence of different strain measures on
the system stability and load capacity, as well as on its nonlinear oscillations
and dynamic instabilities are of interest and are not covered systematically in
the dedicated literature. Another main objective and original contribution of
the present work is to quantify computationally the influence of large elastic
and elasto-plastic strains on the pyramidal truss dynamic response.

To capture the true nonlinear structural behavior of bistable deployable
structures a proper representation of the joint behavior (finite stiffness and
friction) and kinematics (finite size and beam inter-distance) have to be
incorporated in the numerical model. To the author’s best knowledge this
was not attempted earlier using a dedicated joint finite element, leaving a
gap in the literature. The third main objective of this work is the study of
the convoluted effect of the geometrical and material effects above through
the application of a tailor-made joint finite element developed specifically for
deployable structures.
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The global aim of the present work is thus the development of theoretical
and computational tools for the analysis of spatial reticulated structures, with
focus on systems formed by a combination of bistable pyramidal trusses or an
assembly of deployable modules. As bistable structures are subjected to the
coupling of different nonlinear phenomena, the numerical tools are specifically
designed to deal with the most relevant of them. The common feature of the
developed numerical tools is that they all employ a corotational kinematics.

1.3
Originalities

One of the main interest of the proposed work for pyramidal truss struc-
tural behavior is the characterization of the static stability and load capacity
considering large elasto-plastic deformations, the local Euler’s buckling of the
bars and the coupling of these effects. A new detailed theoretical and compu-
tational (corotational formulation) analysis of the truss considering not only
limit-point instability and unstable symmetric bifurcation in the elastic regime,
but also Eulerian buckling, plastic buckling, geometric imperfections, base flex-
ibility and the interaction among these bifurcation phenomena is conducted.

The other main interest is the study of elastic and elasto-plastic nonlinear
oscillations and dynamic instabilities under a vertical harmonic excitation
force. The quadratic and logarithmic strain measures are used in nonlinear
dynamics and their influence on the static and dynamic non-linear behavior is
duly investigated together with the influence of plastic deformations.

For bistable deployable scissor structures, the current work aims at
combining a set of ad hoc numerical ingredients in the modeling effort of
the transformation, giving a contribution to the state of the art both from
a computational development as well as an application point of view. The
finite joint size and the beam thickness, the nonlinear elastic finite stiffness of
the joints as well as friction are incorporated in the structural model and their
influence and interactions are investigated. The finite elements that constitute
the structural models (elastic beams and flexible frictional joints) are described
in a corotational framework to properly capture the large rigid rotations during
transformation.

Specific original contributions of the present work can be listed as:

• Assessment of the influence of different strain measures and large elastic
and elasto-plastic strains on the static and dynamic structural response
of pyramidal trusses;

• Proposal of closed form solutions for the nonlinear elastic and elasto-
plastic equilibrium paths of pyramidal truss modules obtained in terms
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of nondimensional geometrical and material parameters for moderate and
large strains;

• Novel closed form expressions for the critical load of pyramidal trusses
derived for different instability phenomenon;

• Computational assessment of the load capacity reduction of imperfect
pyramidal trusses due to the interaction between snap-through, bifurca-
tion buckling, Euler buckling and material yielding;

• Computational quantification of the influence of the base flexibility, the
imperfection magnitude and shallowness/slenderness ratios for pyramidal
trusses in statics;

• Computational static simulation of a large-span structure composed of
pyramidal units considering different types of buckling interactions;

• Computational study of the influence of the elasto-plastic constitutive
model and induced plastic energy dissipation on the nonlinear oscilla-
tions, dynamic instabilities and resonance curves of pyramidal trusses;

• Identification of chaotic attractors considering different nonlinear phe-
nomena and design parameters (shallow and deep systems, plasticity,
preload, initial conditions);

• Proposal of a novel joint finite element considering its finite stiffness,
friction and finite size and its application in a bistable deployable scissor
module (quantifying their influence on the structural behavior);

• Analysis of the deployment of large-span flat structures composed of
bistable deployable modules considering the convolution of the effects
above.

All computational simulations presented here are performed in a FE
software developed by the author and written in the C++ programming
language. The software is object oriented and includes FE formulations and
solvers for both static and dynamic nonlinear analyses. The truss (App. B)
and beam (App. C) FE formulations make use of a corotational reference
frame to deal with large rigid body motions. The truss formulation takes into
account moderate (quadratic) or large (logarithmic) strain measures and the
material elastic or elasto-plastic behavior, while the beam formulation takes
into account the progressive plastification of the cross section via the plastic
zone method. The static nonlinear solver together with the used continuation
methods and the dynamic nonlinear solvers are presented in (App. D).
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1.4
Outline of the thesis

This manuscript is organized as follows. In Chapter 2 the static stability
and load capacity of pyramidal truss structures are investigated in the elastic
and elasto-plastic regime. The nonlinear oscillations and dynamic instabilities
of pyramidal trusses subjected to an external vertical harmonic force are in-
vestigated through bifurcation diagrams of the Poincaré map and phase-space
projections of the relevant attractors in Chapter 3. Bistable deployable struc-
tures are computationally investigated in Chapter 4. The nonlinear transfor-
mation between the two stable configurations (folded and deployed) is studied
incorporating the effects of hub size, joints friction, flexibility and finite beam
spacing. Finally, in Chapter 5 the main results obtained through the proposed
computational and closed form developments and their application are listed
and discussed, and the conclusions of this work are drawn. Suggestions for
future work are also presented.

This manuscript contains several Appendices in which computational
developments that were implemented for the numerical studies presented in
the main body are thoroughly explained. Although these developments contain
elements of novelty (systematically highlighted in the Appendices), they are
not part of the core of the manuscript in order to keep the focus on the
genuinely original findings.
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2
Static analysis of bistable truss structures

2.1
Outline

The present chapter investigates the static nonlinear behavior and sta-
bility of pyramidal truss structures. An original analytical model of a truss
module considering a general strain measure is derived together with closed
form solutions for the nonlinear equilibrium paths, natural frequencies and
critical parameters (limit, bifurcation and buckling points). Different types of
nonlinear phenomena (snap-through, lateral bifurcation, elasto-plastic buck-
ling, Euler buckling) are considered computationally and their influence on
the load capacity and structural stability are investigated using quadratic and
logarithmic strain measures. The numerical results are successfully compared
with the derived closed form solutions, validating them. The coupling of Euler
buckling and elasto-plastic deformations of the structural members is also nu-
merically investigated. Finally, the response of a large span curved structure,
formed by an assembly of pyramidal truss units, is investigated and the effect
of initial curvature, number of modules, modules height, load symmetry and
plastic deformations is also assessed. 1

2.2
State of the art on static modeling of pyramidal trusses

The pyramidal truss considered in this work is shown in Fig. 2.1. It consist
of n ≥ 3 pinned bars connected at the apex node and equally separated at the
base Γ so that the base nodes form a regular polygon of n sides. The pyramid
has a height H, a base radius B and each bar’s initial length is L =

√
B2 +H2.

The possible buckling of these truss systems is of importance in structural
analysis and design and has been studied by many researchers in recent years.
The von Mises truss (Fig. 2.2) is the plane counterpart of the pyramidal truss.
It is a typical bistable structure which can buckle, depending on the height to
span ratio, at a limit point or through an unstable symmetric bifurcation along
the nonlinear fundamental equilibrium path [27]. Due to its complex nonlinear

1The contents of Chapters 2 and 3 are a convolution of two manuscripts submitted for
publication to International Journal of Solids and Structures and Nonlinear Dynamics.
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(a) Initial configuration (b) Deformed configuration

Figure 2.1: Geometry, coordinate systems and initial and deformed configura-
tions of the pyramidal truss.

response, the von Mises truss has been customarily used as a benchmark in
the numerical analysis of bistable structures [28]. Kala and Kalina [29] and
Kwasniewski [27] investigated the static snap-through and equilibrium paths
of the classical von Mises truss while Psotný and Ravinger [30] and Kalina [31]
considered the effect of imperfections in its computational analysis. Recently,
Halpernand and Adriaenssens [32] studied the in-plane buckling of shallow
truss arches, while Plaut [33] investigated the snap-through of shallow domes
under unilateral displacement control.

p

B B

H

Figure 2.2: Geometry and initial configuration of the von Mises truss.

However, the majority of studies in the literature does not consider some
important aspects in terms of column and spatial truss design such as the
critical interaction between Euler buckling and material yielding. Bazzucchi
et al. [34] studied the interaction between Eulerian buckling and snap-through
of the imperfect 2D von Mises truss in terms of the slenderness and shallowness
ratios, while Bazzucchi et al. [35] investigated the effect of shallowness and
slenderness parameters, restraining conditions and imperfection patterns on
the load carrying capacity of a von Mises arch-like structure. They indicated
the importance of interactive buckling (i.e. coupling of different nonlinear
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sources of buckling) on the imperfection sensitivity and load carrying capacity
of shallow arch-like structures.

During exceptional loading, relevant to consider for a safe design, the
axial force in the bars can reach the material elastic limit, and elasto-plastic
deformation occurs. Fan et al. [36] and Zhi et al. [37] studied the elasto-plastic
static and dynamic stability of single-layered reticulated shell truss structures.
Unfortunately, studies in this field are very scarce, especially when coupled
instability between different buckling modes are considered [38].

Several spatial truss configurations exhibit a bistable behavior, including
shallow pyramidal trusses. These structures have received considerable atten-
tion lately due to their applications ranging from large space structures, deploy-
able and morphing structures to nano or micro structures and meta-materials.
The nonlinear behavior of arch-like bistable structures is a classical problem
in the theory of structural stability [39]. Current research areas where bistable
or multistable behaviors are of importance include deployable and morphing
structures [40, 21], meta-materials [41, 42], energy harvesting structures [43],
energy absorption structures [44], mechanical and electro-mechanical devices
that switch between a discrete number of states [45, 46, 47], micro and nanos-
tructures [48, 49, 50, 51] and aeronautical structures [52], among others. Re-
cently, Brinkmeyer et al. [53, 54] studied pre-stressed morphing bistable domes
and composite panels, Pontecorvo et al. [55] studied bistable arches in mor-
phing applications and Cui and Santer [56] studied bistable composite shell
surfaces. The effect of symmetric imperfections on bistable struts was studied
by Cai et al. [57]. In the field of lattice structures Feng et al. [58] studied
the mechanical behavior of hourglass truss lattice structures, Yungwirth et al.
[59] tested experimentally the ballistic response of composite pyramidal lat-
tice trusses, Danso and Karpov [60] investigated the bistability criterion for
geometrically nonlinear structures and Wang et al. [61] studied the perfor-
mance of truss panels with Kagomé cores. All of the works above are limited
to structural systems with elastic moderate strains.

Ligarò and Valvo [9] derived an analytical expression of the internal en-
ergy for the static elastic behavior of pyramidal spatial trusses, considering
moderate deformations using a quadratic strain measure and, from the sta-
tionary condition for the potential energy, the static nonlinear equilibrium
equations were obtained, as well as the expressions for the stiffness matrix and
stability parameters. The equilibrium paths were obtained for vertical and
horizontal loading considering different geometrical parameters. Such closed
form solutions for the structural behavior are very useful for design since they
require a significantly smaller computational effort and complexity when com-
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pared with numerical models, providing more general, often non-dimensional
results. However the effect of local buckling and plasticity and the interaction
between different buckling phenomena is usually not incorporated and is one
of the main originalities developed in this Chapter.

In [9, 16, 62] an extension of analytical models of pyramidal trusses to
finite strains is proposed using the Green quadratic strain measure, leading to
neat analytical closed form solutions. However, in finite strain elasto-plasticity
a more appropriate strain measure is the logarithmic strain, also called true
strain or Hencky strain, which is a function of the stretch ratio (see, for
example, Perić et al. [63], Naghdabadi et al. [64], Neff et al. [65]). In this
chapter logarithmic strains are included in the analyses.

There is thus a gap in the literature when considering the general scope of
pyramidal trusses nonlinear structural behavior subject to large strains, Euler
buckling and material elasto-plastic deformations. The originality of this work
is the incorporation of all the above phenomena. The current chapter presents
an effort to better understand the influence of these effects on the system
response.

A general closed form solution describing the equations of motion con-
sidering truss elements with geometrical and material nonlinear behavior is
developed in Sec. 2.3. The static analysis of a single pyramidal truss mod-
ule subject to horizontal and vertical loads is performed in Sec. 2.4. Both
closed form and computational approaches are used in convolution all along
this Chapter, showing a satisfying match. A large span curved structure formed
by an assembly of pyramidal truss modules is analyzed in Sec. 2.5. Finally, in
Sec. 2.6 the main conclusions of this chapter are drawn.

2.3
Derivation of a closed form solution

In the initial configuration (Fig. 2.1a), the apex and kth base node
coordinates are

[
0 0 H

]T
and

[
B cos(θk) B sin(θk) 0

]T
, respectively, with

θk = 2πk/n. The apex node is free to move and it’s position in the deformed
configuration is given in Cartesian coordinates by x =

[
x y z

]T
, or in a

cylindrical coordinate system by x =
[
r θ z

]T
. The base nodes can either be

fixed or connected to flexible supports with a stiffness kb and sliders allowing
for their displacement in the radial direction only, representing the compliance
of the foundation or the interaction with other modules. With a compliant base
the assumption is made that the kth base node in the deformed configuration
can move to the position

[
b cos(θk) b sin(θk) 0

]
. The structure is subjected

to an arbitrary conservative (i.e. with a fixed direction) concentrated load
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applied at the apex node p = λ
[
pr cos(θp) pr sin(θp) pz

]T
, where λ is the

load multiplier factor of the reference load vector. Here, it is assumed that
all joints in the truss behave as ideal frictionless hinges, and no moments are
generated by nodal loads. Also, in order to avoid local buckling of the bars, the
compressive force in each bar f must not exceed the critical load of a simply-
supported column Fcr = π2EAr2

g/L
2 [34] where rg is the minimum radius of

gyration of the cross sectional area.
As the base nodes are initially fixed, considering the bar kinematics, the

equivalent nodal mass concentrated in the apex node corresponds to a third
of the pyramidal truss total mass. The system’s kinetic energy T (ẋ, ḃ) and the
potential energy of the applied forces V (x, λ) are given respectively by:

T (ẋ, ḃ) = m

2
(
ẋT · ẋ + ḃ2

)
(2-1)

V (x, λ) = −λ [prr cos (θ − θp) + pz (z −H)] (2-2)

with (˙) = d( )/dt being the time derivative and m = nρAL/3.
From the nodal positions in the deformed configuration, the length of the

bar connecting the apex node and the kth base node lk is given by:

lk(r, θ, z, b) =
√
z2 + r2 + b2 − 2rb cos(θ − θk) (2-3)

From Eq. (2-3), the following polar symmetry relation can be obtained:

li+k (r, ϕi + φ, z, b) = li−k+1 (r, ϕi − φ, z, b) (2-4)

where ϕi = (2i+ 1)π/n and φ ∈ (−π/n, π/n].
Considering an elastic material behavior, the system’s strain energy

U(r, θ, z, b) is written as:

U(r, θ, z, b) = EAL

2

n∑
k=1

ε2
k + nkb

2 (b−B)2 (2-5)

As the kth bar’s strain εk is a function of the axial stretch λk = lk/l0, from
Eq. (2-4) the following symmetry relations can be obtained for the system’s
strain energy:

U(r, ϕi, z, b) = U(r, ϕj, z, b) (2-6)

U(r, ϕi, z, b) = U(−r, ϕi, z, b) for n even (2-7)

U(r, ϕi, z, b) = U(−r, ϕi + π/n, z, b) for n odd (2-8)

U(r, ϕi + φ, z, b) = U(r, ϕi − φ, z, b) (2-9)
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As any angle θ can be decomposed in a unique manner as θ = ϕi +φ, for
some par (i ∈ Z, φ ∈ (−π/n, π/n]), the above relations show that the system’s
strain energy U can be fully described with θ ∈ [0, π/n]. This means that
for an increasing number of bars n, the dependency on the angle θ becomes
incrementally smaller as the interval [0, π/n] converges asymptotically to a
point. Also Eq. (2-7) implies that, for n even, U is symmetric with respect to
r, while Eq. (2-8) shows that, for n odd, this symmetry is out of phase by π/n.
Considering the popular quadratic strain measure for the sake of simplicity
εq = (l2k − L2)/(2L2) (Eq. B-17), the strain energy Uq can be expressed as:

Uq(x, b) = nEA

8L3

[(
r2 + z2 −H2

)2
+ 2b2r2

]
+ nkb

2 (b−B)2 (2-10)

The bar’s strain energy Uq is completely independent of the angle θ and
has a linear dependency on the number of bars n. The system’s Lagrangian [66]
is given by L(d, ḋ, λ) = T (ḋ)−U(d)−V (x, λ). Applying Hamilton’s principle,
the nonlinear equations of motion are obtained as:

d

dt

(
∂L
∂ḋ

)
− ∂L
∂d

= 0 (2-11)

mẍ +
n∑
k=1

fktk = p (2-12)

mb̈+ kb(b−B) +
n∑
k=1

fkck = 0 (2-13)

where dT =
[
r θ z b

]
is the vector comprising the system’s degrees of

freedom and ck = [b− r cos(θ − θk)]/lk.
Considering an elasto-plastic material behavior, the same nonlinear

equations of motion can be obtained from equilibrium considerations. However,
the bars axial force fk must be computed accounting for the plastic behavior
(details are given in Eqs. B-10 and B-19).

As previous works on the elastic response of pyramidal trusses [9, 15,
16, 17] make use of the quadratic strain measure (QSM), the elastic-plastic
material straining is first treated here with the QSM. Note that, for metallic
materials the elasto-plastic constitute relations are usually expressed in terms
of the logarithmic strain measure (LSM) and the Cauchy (real) stress in
the context of an hypo-elastic model. In the present work, a hyper-elastic
constitutive law is used and the LSM is related to the Kirchhoff stress for the
elasto-plastic deformations [67]. This assumption is justified as the structural
member’s volumetric change is small, and so the Cauchy and Kirchhoff stress
measures approach one another. As common in metallic materials, the elasto-
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plastic behavior is assumed to be symmetric, i.e. assuming equal response in
tension and compression.

In the analytical expressions developed, the material initial yield strain
εy = σy/E is used to make them more compact and a monotonic vertical
motion of the apex node is assumed. A classical return mapping algorithm is
applied in the numerical simulations based on the stress.

The linearization of the equations of motion in the deformed equilibrium
configuration allows the calculation of the system’s natural frequencies ωn [67].
In the initial (undeformed) configuration, and the base fixed, the vertical ω0

and horizontal ωh frequencies are the same for all of the strain measures since
there is no initial structural deformation (i.e. load-free configuration), and are
given by:

ω2
0 = 3EH2

ρl40
(2-14)

ω2
h = 3EB2

2ρl40
(2-15)

In this case, due to the symmetry of the structure, there are two equal
natural frequencies.

The nonlinear equations of motion (Eqs. 2-12 and 2-13) are:

M · ẍ + Fi(x)− Fe(λ) = 0 (2-16)

where for the QSM the system’s internal Fi(x) and external Fe(λ) force vectors
and the mass matrix M are given by:

M = mI (2-17)

Fi(x) = nEA

2L3

[
xµ2

1 yµ2
1 zµ2

2

]T
(2-18)

Fe(λ) = λ
[
pr cos(θp) pr sin(θp) pz

]T
(2-19)

with µ2
1 = r2 +z2 +B2−H2 and µ2

2 = r2 +z2−H2. The system stiffness matrix
is obtained by taking the variation of the internal force vector with respect to
the apex node position x in Eq. (2-18), leading to:

K(x) = nEA

2L3


2x2 + µ2

1 2xy 2xz
2xy 2y2 + µ2

1 2yz
2xz 2yz 2z2 + µ2

2

 (2-20)

Taking the linearization of the nonlinear equations of motion (Eqs. 2-12
and 2-13) in an equilibrium position, the natural frequencies ωi and vibration
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modes φi for the loaded structure are obtained as:

ω2
1,3 = 3E(κ2

2 ∓ κ2
3)

4ρL4 ω2
2 = 3Eµ2

1
2ρL4 (2-21)

φ1,3 =


+ cos(θ)
+ sin(θ)

4zsrs/(κ2
1 ∓ κ2

3)

 φ2 =


− sin(θ)
+ cos(θ)

0

 (2-22)

where:

κ2
1 = B2 + 2

(
r2 − z2

)
(2-23)

κ2
2 = 4

(
r2 + z2

)
+B2 − 2H2 (2-24)

κ2
3 =

√
B4 + 4B2 (r2 − z2) + 4 (r2 + z2)2 (2-25)

An equilibrium position is called stable if the stiffness matrix is positive
definite or, equivalently, if all natural frequencies are real, and called unsta-
ble otherwise. A decision on structural stability thus requires assessing the
structure’s natural frequencies in the considered static analysis. The neutral
equilibrium surfaces are geometric spaces with at least one null frequency com-
ponent and represent the boundary between stable and unstable domains of
the structural response (sets of equilibrium points where the stiffness matrix
is positive definite). Setting ωi = 0, they are obtained as [9]:

z1 = ±
√

2H2

3 − B2

2 − r
2 + ∆z (2-26)

z2 = ±
√
H2 −B2 − r2 (2-27)

z3 = ±
√

2H2

3 − B2

2 − r
2 −∆z (2-28)

with:

∆z =

√√√√(H2

3 −
B2

2

)2

+ 2
3B

2r2 (2-29)

The determination of the static equilibrium points stability is important
since only stable equilibrium points correspond to real configurations of struc-
tural systems. In reality, the computed unstable equilibrium configurations are
perturbed by different sources of imperfections and are subject to instability
phenomena, such as dynamic jumps to stable equilibrium configurations (these
are incorporated in chapter 3).

Although the logarithmic strain measure better represents the constitute
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elastic and elasto-plastic behavior of metallic materials in the finite strain
domain, it yields complex expressions in a closed formulation formulation.
Usually computational simulations are required to capture the structural
behavior. The quadratic strain measure is used here as a direct extension of
the literature [9, 15, 16] and because it allows the formulation of simple closed
form expressions.

2.4
Single pyramidal truss module behavior

In this section, the stability and load capacity of a single pyramidal
truss module are studied. The effects of four types of nonlinear behavior
are considered for the vertical and horizontal loads: saddle-node bifurcation
(snap-through), pitchfork bifurcation (lateral instabilities), bars Euler buckling
and plasticity of the structural elements. A comparison between analytical
and computational models (corotational finite element code developed in the
Appendices) based on equilibrium paths (load vs. displacements curves) is
presented as well.

The common model parameters are summarized in Tab. 2.1. Depending
on the investigated nonlinear effect, an appropriate height, H, is selected.
In the numerical simulations, the truss is discretized using only one finite
element per bar while five finite elements are used for each beam. This choice
guarantees convergence of the results when compared with finer discretizations.
The minimal norm method (Sec. D.1.1) is used as a continuation strategy in
the static nonlinear solver. As suggested by Ligarò and Valvo [9], the reference
loads in the vertical and horizontal directions, when considered, are taken as
pz = pr = − (H/L)3 (nEA/2). In addition, to extend the validity of the results,
the following non-dimensional parameters are used in the analysis z = z/H,
r = r/H, α = B/H, β = L/H =

√
1 + α2 and ωi = ωi/ω0.

The non-dimensional parameters α and β are related to the base/height
ratio and control the depth of the truss. For the same load level λ shallow and
deep systems may have considerable different structural responses character-
ized by the non-dimensional apex node motion r and z and system natural
frequencies ωi.

2.4.1
Potential energy maps through analytical solution

The global nonlinear behavior of the pyramidal truss is governed by
the topology of the total potential energy. The total potential energy of the
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Parameter Value
n number of bars 6
B pyramid base radius 7 m
d cross section diameter 508 mm
t cross section thickness 12.7 mm
E material elastic modulus 200 GPa
σy material yield stress 400 MPa
ρ material mass density 7850 kg/m3

Table 2.1: Numerical parameters used in the FE analysis of a single pyramidal
truss module with a hollow circular cross section.

structure is given in non-dimensional form as Π = (U + V )/(pzH), and is
evaluated here based on the closed form expressions of Sec. 2.3.

The static unloaded equipotential curves (pr = pz = 0) and equilibrium
configurations with a quadratic strain measure for three selected values of α
are shown in Figs. 2.3 and 2.4, respectively. For α = 0.80 < 1.00 (deep truss),
Fig. 2.3(a), the potential energy displays five equilibrium positions, the origin,
a local maximum (unstable), two additional equilibrium positions along the z
axis at z = ±1.00, corresponding to two local minima (stable – unloaded and
stress-free configurations), and two additional equilibrium positions along the
r axis at r = ±

√
1− α2, corresponding to two symmetric saddles (unstable).

At α = 1.00, Fig. 2.3(b), the two saddles coalesce with the maximum,
leading to a degenerated saddle, with the only eigenvector in the direction
of the r axis, reducing the number of equilibrium positions to three. For
α = 1.20 > 1.00 (shallow truss), Fig. 2.3(c), there are only three equilibrium
positions, a saddle (unstable) at the origin and two symmetric minima (stable)
along the z axis. So, α = 1.00 corresponds to a critical value separating two
types of global behavior.

The static unloaded equipotential curves with a logarithmic strain mea-
sure (LSM, εk = ln(lk/L)) for the same values of α are shown in Fig. 2.5. As
for the QSM, there are three equilibrium points along the z axis: two minima
corresponding to the undeformed initial and inverted equilibrium positions and
a saddle corresponding to a flat stressed equilibrium configuration. Also, the
two symmetric saddles along the the r axis are identified. However, when the
LSM is considered, as the length of a compressed bar tends to zero, Π → ∞
at r = ±α and z = 0.

The equipotential curves in Fig. 2.3 and Fig. 2.5 correspond to the
possible solutions (orbits) of the conservative Hamiltonian system (Π) in the
configuration space (r× z). The comparison of these two figures, shows clearly
that the adopted strain measure has a strong influence on the free undamped
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Figure 2.3: Equipotential energy curves of the unloaded structure for selected
values of α.

vibrations and that the results become clearly different as the deformation of
the bars increases, thus leading to different global behaviors.

The equipotential curves of the statically loaded truss using the QSM for
three load combinations with α = 0.80 are shown in Fig. 2.6. The presence
of vertical and/or horizontal load changes the topology of the total potential
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(a) α = 0.80 (b) α = 1.00 (c) α = 1.20

Figure 2.4: Equilibrium configurations of the unloaded structure for selected
values of α considering a QSM.

energy, modifying the number of solutions (satisfying equilibrium), the position
of the equilibrium points on the (r, z) plane and their stability (Fig. 2.7). In
Fig. 2.6(a), the vertical load breaks the symmetry of the potential energy with
respect to the r axis, shifting the equilibrium points away from it. Analogously,
Fig. 2.6(b) shows how the horizontal load breaks the symmetry with respect to
the z axis, changing the number of solutions and the position of the equilibrium
points. In Fig. 2.6(c) the combination of the vertical and horizontal loads
breaks completely the symmetries of the potential energy function, reducing
the number of equilibrium configurations to one.

Figures 2.3 and 2.6 are in fact the cross sections of the four dimensional
phase-space (r, z, α, λ) of the conservative system. The unstable manifolds of
the saddles (unstable domains containing the saddle points) separate the initial
conditions that lead to bounded solutions surrounding the stable equilibrium
positions of the structure. The knowledge of these frontiers helps the designer to
separate the phase space into safe and unsafe domains and evaluate the degree
of safety of the system [16]. The results show that the geometric parameter α
and the load direction have a significant influence on the energy landscape, thus
controlling the behavior of the structure. In the following, a parametric analysis
of the truss under vertical and horizontal loads with different structural depths
is thus presented.

2.4.2
Structural response under horizontal load

The response of the pyramidal truss module under horizontal load
(pz = 0, pr 6= 0) is considered in this section. In Sections 2.4.2.1 and 2.4.2.2
the primary and secondary elastic equilibrium paths determined by Ligarò
and Valvo [9] are reviewed and novel closed form expressions for the natural
frequencies are proposed and validated numerically, clearly separating the

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 2. Static analysis of bistable truss structures 40

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

r-

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

z-

0.0

2.0

4.0

6.0

8.0

10.0

12.0

(a) α = 0.80

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

r-

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

z-

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

(b) α = 1.00

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

r-

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

z-

0.0

5.0

10.0

15.0

20.0

25.0

30.0

(c) α = 1.20

Figure 2.5: Equipotential energy curves of the unloaded structure for selected
values of α considering the LSM.

stable and unstable domains of the response. Although the focus of the current
chapter is the static behavior of pyramidal trusses this is interesting because
the fundamental frequency-load relation can be employed for the estimation of
buckling loads using non-destructive experiments [68] and in the identification
of structural parameters [69].
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Figure 2.6: Equipotential energy curves of the loaded structure with α = 0.80.

Along the stable and unstable parts of the equilibrium paths, the bars
are subjected to compressive axial forces, which can become greater than
the Euler’s buckling load [34, 35] or the stresses may reach the material
yield limit [70], leading to an elasto-plastic nonlinear response. In such cases,
the local instability of the bars and the plastic behavior of the material
may influence the load carrying capacity of the structure. A novel study of
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(a) λv = 0.25 (b) λh = 0.25 (c) λv = λh = 0.25

Figure 2.7: Equilibrium configurations of the loaded structure with α = 0.8
and considering a QSM.

the influence of the bars Euler and elasto-plastic buckling on the structural
response is presented in Sections 2.4.2.3 and 2.4.2.4, respectively, proposing
novel closed form expressions for the limit load points (validated numerically).
The numerical tools used in each analyses are summarized in Tab. 2.2.

Section FE formulation Strain measure Material behavior
2.4.2.1 Bar QSM elastic
2.4.2.2 Bar QSM elastic
2.4.2.3 Beam QSM elastic
2.4.2.4 Bar QSM elasto-plastic

Table 2.2: Numerical tools used in the static analysis of a single pyramidal
truss module under horizontal load.

2.4.2.1
Elastic primary path

The elastic response of the horizontally loaded pyramidal truss with the
apex node inside the base circle Γ (Fig. 2.8) is considered here. Initially all bars
are in compression and the system behavior is unstable since the truss would
snap vertically to either the original or inverted configurations. However, this
case is of interest since this equilibrium path may appear in computational
simulations of the pyramidal truss under horizontal load.

As proven in [9], considering z = 0 and combining the x and y compo-
nents of the Eqs. (2-18) - (2-19), the relation θ = θp + π is satisfied and:

λ = r
(
1− r2 − α2

)
(2-30)

Differentiation of this equation leads to the following limit point (local
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Figure 2.8: Equilibrium configuration of the truss elastic primary path under
horizontal load (α = 1.2).

extreme load) coordinates (rhl , λhl ):

rhl =
√

3 (1− α2)/3 λhl = 2
√

3 (1− α2)3/9 (2-31)

Thus for α > 1 there is no limit point. From Eq. (2-21) the natural
frequencies are given by:

ω2
1 =

(
r2 − 1

)
/2 (2-32)

ω2
2 =

(
r2
s + α2 − 1

)
/2 (2-33)

ω2
3 =

(
3r2

s + α2 − 1
)
/2 (2-34)

Therefore, the response is stable if r > 1. The equilibrium paths obtained
numerically and analytically are plotted in Fig. 2.9 and the variation of the
natural frequencies with the applied load is illustrated in Fig. 2.10 for α = 1.20
(H = 5.83 m), showing matching curves for the closed form and finite element
solutions. The usual convention adopted in this work is that, solid and dashed
lines correspond to stable and unstable configurations, respectively.
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Figure 2.9: Fundamental equilibrium path for a shallow truss under horizontal
load (α = 1.20).
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Figure 2.10: Variation of the natural frequencies with the horizontal load
(α = 1.20).

2.4.2.2
Elastic bifurcation

The elastic secondary equilibrium path is now studied, considering z 6= 0.
From Eqs. (2-18) to (2-19) and taking θ = θp and z = ±

√
H2 − r2, the

bifurcated path is obtained as:

λ = α2r = α2
√

1− z2 (2-35)

Differentiation of this equation leads to the following load limit point
coordinates (rhb , λhb ):

rhb = 1 λhl = α2 (2-36)

From Eq. (2-21), the associated natural frequencies are given by:

ω2
1 =

[
α2 + 2−

√
(α2 − 2)2 + 8α2r2

s

]
/4 (2-37)

ω2
2 = α2/2 (2-38)

ω2
3 =

[
α2 + 2 +

√
(α2 − 2)2 + 8α2r2

s

]
/4 (2-39)

Thus, the response is stable if r < 1. The projections of the secondary
path onto the the z×r and λ×z planes computed numerically and analytically
are shown in Fig. 2.11(a) and Fig. 2.11(b), respectively, and the variation of the
natural frequencies with the applied load is illustrated in Fig. 2.12 for α = 0.70
(H = 10.0 m), showing matching curves for the closed form and finite element
solutions. The secondary path is stable as corroborated by the positive values
of the square of the natural frequencies.
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Figure 2.11: Secondary equilibrium path of a deep truss under horizontal load
(α = 0.70).
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Figure 2.12: Variation of the natural frequencies with the horizontal load
(α = 0.70).

2.4.2.3
Euler buckling using a beam FE model

When the pyramidal truss is subjected to a horizontal load (θ = θp,
z2 +r2 = H2), some bars are in traction while others are in compression. From
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Eq. (2-3) the most compressed bar has a length lk =
√
z2 + (B − r)2. Thus its

axial force, considering an elastic behavior, is given by fk = −EABr/L2. The
buckling point (rhf , λhf ) is then obtained analytically by comparing the axial
force with the Euler buckling load Pb = π2EI/L2, leading to:

rhf = π2r2
g/α λhf = απ2r2

g (2-40)

Figure 2.13 shows the results of the finite element simulations, illustrating
the influence of the truss height on the nonlinear response and load capacity
considering beam buckling. The initial stiffness is progressively reduced as the
bars under compression buckle. The closed form expression of the buckling
point is favorably compared with the start of the stiffness reduction in the
numerical simulations. Later, as the apex node reaches the base, the bars
under traction oppose to the applied load and the system recovers its stiffness
and load capacity.
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Figure 2.13: Influence of the height on the Euler buckling and nonlinear
response of the horizontally loaded truss.

2.4.2.4
Plastic buckling response

Considering now the system subjected to a horizontal load in the direction
of one of the bars, the yield point

(
rhy , λ

h
y

)
may be obtained analytically by

equating the maximum axial force f = EArB/L2 and the yield axial force
Py = Aσy, resulting in:

rhy = β2εy/α λhy = β2αεy (2-41)

Figure 2.14 shows the results of the finite element simulations, illustrating
the influence of the truss height on the load capacity considering elasto-plastic
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material behavior with zero hardening. The closed form expression of the yield
point is favorably compared with the start of the stiffness reduction in the
numerical simulations. The initial stiffness reduces suddenly when the two
bars in the load direction (one in compression and one in tension) yield. As
the other four bars yield subsequently in compression and tension, the truss
stiffness decreases and finally becomes null (perfect plasticity).
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Figure 2.14: Influence of the truss height on the elasto-plastic response of the
horizontally loaded system.

In all cases analyzed here the present FE results agree well with the
analytical results, thus validating the developed closed form expressions. Based
on Eqs. (2-31), (2-36), (2-40) and (2-41) the designer can identify the regions
where different nonlinear phenomena may occur for the horizontal load without
performing finite element simulations.

2.4.3
Structural response under vertical load

The response of the pyramidal truss module under vertical load (pr =
0, pz 6= 0) is considered here. In Sections 2.4.3.1 and 2.4.3.2 the primary and
secondary elastic equilibrium paths determined by Ligarò and Valvo [9] are
reviewed and novel closed form expressions for the natural frequencies are
proposed and validated numerically, clearly separating the stable and unstable
domains of the response. The influence of the strain measure on the elastic
primary and secondary equilibrium paths is also investigated. A novel study
of the influence of the bars Euler and inelastic buckling on the pyramidal truss
structural response is presented in Sections 2.4.3.3 and 2.4.3.4, respectively,
where closed form expressions for the limit load points are proposed and
validated numerically. The complete closed form elasto-plastic equilibrium
path is determined considering moderate and large strains both analytically
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and through finite element simulations using the in-house developed code
(Appendices). The numerical tools used in each analyses are summarized in
Tab. 2.3.

Section FE formulation Strain measure Material behavior
2.4.3.1 Bar QSM and LSM elastic
2.4.3.2 Bar QSM and LSM elastic
2.4.3.3 Beam QSM elastic
2.4.3.4 Bar QSM and LSM elasto-plastic

Table 2.3: Numerical tools used in the static analysis of a single pyramidal
truss module under vertical load.

2.4.3.1
Elastic primary path

Initially the elastic symmetric response of the system (nonlinear primary
equilibrium path) subjected to a vertical load at the apex node is considered
(r = 0). From Eq. (2-12), considering the QSM εk = (l2k−L2)/(2L2) and LSM
εl = ln(lk/L), the respective nonlinear equilibrium paths are given by:

λq = z
(
1− z2

)
(2-42)

λl = β4 z

z2 + α2 ln
(

1 + α2

z2 + α2

)
(2-43)

In terms of the adopted non-dimensional variables, the equilibrium path
using the QSM is independent of the values of the geometric parameters α
and β that governs the truss depth (Fig. 2.1) [9], while the equilibrium path
obtained using the LSM is a nonlinear function of these geometric parameters
as would be expected from systems with a high geometrical nonlinear behavior.
The equilibrium path obtained with the finite element formulation is favorably
compared with the developed analytical solution in Fig. 2.15(a). For low values
of α = B/H (deep truss), the pyramidal truss is subjected to large strains as
it moves from the initial configuration to the inverted one, and the difference
between the strain measures appears clearly. The fundamental equilibrium
path with logarithmic strains approaches asymptotically to the one for QSM
as α increases, and for a shallow truss (H � B) the response is practically
independent of the strain measure.

The system load limit points can be determined through the following
equations:

∂λq
∂z

= 1− 3z2 = 0 (2-44)
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Figure 2.15: Influence of the strain measures and geometric parameter α on
the fundamental nonlinear equilibrium path and limit point for vertical load
and elastic material behavior.

∂λl
∂z

= ~2
[(
α2 − z2

)
ln(~)− 2z2

]
= 0 (2-45)

where ~ = (1 + α2)/(z2 + α2).
Using this condition, the coordinates of the two limit-points (zvq,m, λvq,m)

for the QSM are obtained as:

zvq,m = ±
√

3/3 λvq,m = ±2
√

3/9 (2-46)

For the logarithmic equilibrium path there are also two limit points
(±zvl,m,±λl,m), but they have an implicit nonlinear dependency on α, as
illustrated in Fig. 2.15(b), where the two limit point loads are plotted as a
function of α. In both cases, the limit points correspond to the snap-through
jump between the initial to the inverted configurations. As the difference
between the two strain measures reduces for small deformations, the limit
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point using the LSM approaches asymptotically from above λq,m = 2
√

3/9 as
α increases.

From Eq. (2-21), the QSM natural frequencies of the loaded structure
are:

ω2
1 =

(
4z2

s + α2 − 2− |α2 − 2z2
s|
)
/4 (2-47)

ω2
2 =

(
z2
s + α2 − 1

)
/2 (2-48)

ω2
3 =

(
4z2

s + α2 − 2 + |α2 − 2z2
s|
)
/4 (2-49)

If |z| >
√

2/2α, ω1 = ω2, otherwise ω2 = ω3. This is due to the inherent
symmetries of the structural system and may lead to internal resonances, as
the different vibration modes can transfer energy from one to another.

The equilibrium path and limit points for α = 1.20 (shallow structure)
are shown in Fig. 2.15 and the variation of the square of the natural frequencies
with the applied load considering the QSM is plotted in Fig. 2.16. The stability
of the nonlinear equilibrium paths is evaluated here from the Hessian matrix
and the eigenvalues are proportional to the square of the natural frequency.
The square of the lowest natural frequency becomes zero at the two limit
points and negative between these points (unstable equilibrium path), while
the two other frequencies are always positive. Thus, for shallow trusses (α > 1),
the fundamental nonlinear equilibrium path is unstable for |z| <

√
3/3 and

the structure jumps to an inverted position at the limit points (snap-through
buckling).
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Figure 2.16: Variation of the natural frequencies with the vertical load magni-
tude (α = 1.20).
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2.4.3.2
Elastic bifurcation

The existence of additional bifurcation points (that appear due to lateral
instabilities) along the nonlinear equilibrium path is investigated here. As α
increases (i.e. structural depth decreases) the truss under vertical load may also
lose stability through an unstable symmetric bifurcation along the nonlinear
equilibrium path, breaking the system symmetry (r 6= 0). The bifurcation
points appear in pairs.

Considering the QSM and combining the x and y components in Eqs.
(2-18)-(2-19) leads to:

λ = α2z (2-50)

The coordinates of the bifurcation points along the fundamental path,
(zq,b, λq,b), are the intersections of the equilibrium paths given by Eqs. (2-42)
and (2-50), and are:

zvq,b = ±
√

1− α2 λvq,b = ±α2√1− α2 (2-51)

Therefore, bifurcation occurs only if α ≤ 1.
For the LSM, after some algebraic manipulation, the linearization of Eq.

2-12 provides the following relation for the critical configuration:

α =

√√√√ λ2
1 ln(λ2

1)
(1− λ2

1) ln(λ2
1)− 1 (2-52)

Although Eq. (2-52) can’t be solved analytically for λ1, the term inside
the square root is only non-negative for λ1 ∈ [0, 1]. This result is expected, since
the pyramidal truss can only suffer bifurcation when the bars are subjected to
compression. Also, the right hand side of Eq. (2-52) has a horizontal tangent
at λ1 = ± exp

(
1
4 −

√
5

4

)
, corresponding to a maximum value of αm = 0.5092.

This means that the bifurcation in the system can only occur if α ≤ αm, which
is approximately half of the value obtained with the QSM. This large difference
is justified by the fact that bifurcation due to lateral instabilities only occurs
in deep trusses, and so at the bifurcation point the strains in the members are
large (the results from the two strain measures thus differ considerably).

Figure 2.17 shows the computational results, illustrating the equilibrium
path and apex node trajectory of the truss for both strain measures and
α = 0.5. For the elastic vertically loaded structure a horizontal geometric
imperfection of 0.01%H in the x direction of the apex node position is
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considered in the FE numerical analysis in order to capture the bifurcation
computationally. The magnitude of the imperfection has only a small influence
on the system load capacity. Its major influence is to allow the identification of
the bifurcation point and to shift from the pre-buckling to the post-buckling
path using the continuation algorithm. As the eigenvalues of the system
stiffness are monitored along the complete equilibrium path, all bifurcations
are determined.

The unstable post-buckling path (dashed lines) connects the two bifurca-
tion points. There is an increase in the bifurcation load from the quadratic to
logarithmic case. However, there is also a sharp increase in the initial declivity
of post-buckling path which, according to Koiter post-buckling theory, leads
to an increase in the imperfection sensitivity [71]. As the post-buckling path
approaches the flat configuration, the equilibrium path of the logarithmic case
approaches asymptotically that of the quadratic case, where the two paths
intersect.
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Figure 2.17: Projections of the nonlinear equilibrium paths under vertical load
(α = 0.5).
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In addition, for the QSM, from Eqs. (2-46) and (2-51), the limit point
(zvq,m, λvq,m) and bifurcation point (zvq,b, λvq,b) under vertical load coincide for
α =

√
6/3. For α >

√
6/3, the bifurcation point appears along the unstable

part of the nonlinear equilibrium path, without influencing the load carrying
capacity of the truss. The bifurcation point disappears for α > 1. Along the
secondary branch, the natural frequencies are given by:

ω2
1 =

[
2− 3α2 −

√
(α2 − 2)2 − 8α2z2

s

]
/4 (2-53)

ω2
2 = 0 (2-54)

ω2
3 =

[
2− 3α2 +

√
(α2 − 2)2 − 8α2z2

s

]
/4 (2-55)

The variation of the square of the natural frequencies with the applied
load is illustrated in Fig. 2.18 for α = 0.7 (H = 10.0m). The elliptical post-
buckling path is unstable (ω2 = 0 and ω2

1 < 0). At the bifurcation point the
truss jumps to an inverted stable equilibrium position.
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Figure 2.18: Variation of the natural frequencies with vertical load (α = 0.70).

2.4.3.3
Euler buckling using a beam FE model

The system stability and load capacity considering the elastic buckling
of the bars (saddle-node bifurcation for the imperfect system) are investigated
here. For the buckling analysis of the pin-ended bars, the spatial beam
formulation presented in Appendix C is used in the FE analysis. A small
initial imperfection along the beams of the form 10−3L sin (πx/L) is assumed
in order to numerically capture in the FE analysis the instability.

Considering an initial symmetric response (r = 0) using the QSM, Eq.
(2-3) provides the axial force in the bars as f = EA(z2−H2)/(2L2). The beam
buckling load [72] is Pb = π2EI/L2 and equating f and Pb, the buckling points
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(zvq,f , λvq,f ) can be obtained analytically as:

zvq,f = ±
√

1− 2π2r2
g λvq,f = ±2π2r2

g

√
1− 2π2r2

g (2-56)

where, rg = rg/H and r2
g = I/A is the cross section radius of gyration.

Elastic buckling occurs if H > Hf =
√

2πrg. For the chosen numerical
parameters the minimum height at which this occurs is Hf = 0.78 m. Figure
2.19 shows the numerical results of the simulations, illustrating the influence of
the truss height on the load capacity considering buckling. As the truss height
increases, the axial compressive force increases in the elements, causing them
to buckle earlier, greatly reducing the system load capacity. In terms of the
present non-dimensional parameters the slenderness parameter of each bar is
given by L/rg = β/rg.
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Figure 2.19: Influence of the system height on the buckling response of deep
trusses under vertical load.

The effect of an initial symmetric (umbrella and inverted umbrella) and
antisymmetric (alternate) small geometric imperfection was also tested. In all
cases the system follows practically the same equilibrium path with a small
sensitivity to the type of imperfection. Thompson and Hunt [39] have shown
that, among all of the bifurcation types, the saddle-node bifurcation exhibits
the lowest imperfection sensitivity, further confirming the result obtained in
the present work. The effect of an random imperfection magnitude varying in
each structural element was not investigated.

2.4.3.4
Plastic buckling response

The truss stability and load capacity considering the elasto-plastic behav-
ior of the material in now examined. For monotonic loading, plasticity occurs
when the strain in a bar ε becomes equal to the elastic yield strain εy = σy/E.

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 2. Static analysis of bistable truss structures 55

The yield points (determined using this criterion) for the QSM and LSM can
be obtained analytically as:

zvq,y ±
√

1± 2β2εy λvq,y = ±2β2εy
√

1± 2β2εy (2-57)

zvl,y = ±

√√√√ 1 + α2

exp(±2εy)
− α2 λvl,y = ±2εy exp(±2εy)β2zvl,y (2-58)

From the equations above, the snap-through process in compression only
occurs in the elastic regime if:

αq ≥
√

1− 2εy
2εy

(2-59)

αl ≥ [exp(2εy)− 1]−
1
2 (2-60)

which corresponds for most metal structures to rather shallow systems.
Figure 2.20 shows the variation of zl,y for the pyramidal truss under

vertical load generating tension and compression as a function of α for a
nominal yield strain of εy = 0.2%. In this case the snap-through occurs entirely
in the elastic range only if α ≥ 15.8.
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Figure 2.20: Pyramidal truss elasto-plastic response as a function of α (LSM).

Thus, it is expected that most metal trusses will exhibit plastic deforma-
tion before they reach the limit point and plastic snap-through occurs.

Note that, this limit value of α will decrease as the support stiffness kb
decreases (representing a more flexible base), and elastic buckling can occur
for increasingly smaller values of α (this topic is treated in Sec. 2.4.5).

For deep trusses an unstable symmetric bifurcation, leading to an asym-
metric buckling mode may occur at a lower load level then the ones predicted
in Eqs. (2-57) and (2-58) along the fundamental equilibrium path. This hap-
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pens when the fundamental path becomes unstable and the truss jumps to an
inverted position.

Figure 2.21 shows the results of the numerical simulations, illustrating
the influence of the truss height on its load capacity considering an elasto-
plastic material behavior. The closed form expression of the yield point is
favorably compared with the plastic buckling using finite element models with
perfect plasticity. Similar to the observations in Sec. 2.4.3.3, as the truss height
increases, the bars axial compressive force increases in a nonlinear manner,
triggering plastic deformations at lower load levels, greatly reducing the system
load capacity.
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Figure 2.21: Influence of the height on the truss elasto-plastic behavior under
vertical load.

After the elasto-plastic buckling permanent structural deformations are
present. In the initial stress free configuration (λ = 0) there is an equilibrium
configuration at z = 0 (base plane), however, due to the permanent defor-
mations the element lengths are shortened, moving the buckled stress free
configurations to a value of |zp| < 1. As the height and, consequently, plastic
deformations increases the value of |zp| decreases.

When the system response reaches the yield point, the stress in all
elements becomes equal to the yield stress σy. Considering an elasto-plastic
material with hardening, the ensuing unstable equilibrium path is given by:

λq = 2β2[(1− η)εy − ηε]z (2-61)

λl = β4
[
2 (1− η) εy + η ln

(
1 + α2

z2 + α2

)]
z

z2 + α2 (2-62)

where η = K/(E +K) ∈ [0, 1].
The maximum compressive strain occurs when the apex node reaches

the base plane (z = 0) and is given by εm = −α2/(2β2) for the QSM and
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εm = ln(α/β) for the LSM. After this, the compressive strain decreases along
the unstable path and, considering an elasto-plastic material behavior with
hardening, the system response becomes eventually elastic in tension with a
residual plastic deformation εr:

εr = (1− η)(εm + εy) (2-63)

The stress in the elements becomes σ = E(ε − εr) and the resulting
equilibrium path can be written as:

λq = β2
[
2εr + 1− z2

1 + α2

]
z (2-64)

λl = β4
[
2εr + ln

(
1 + α2

z2 + α2

)]
z

z2 + α2 (2-65)

The new stress free configuration is characterized by ε = εr, leading to:

zq,p =
√

1 + 2β2εr (2-66)

zl,p =
√

(1 + α2) exp(2εr)− α2 (2-67)

As the load further increases, the material begins to yield in traction. This
point is characterized by the tension limit strain εt = (1− 2η) εm+2 (1− η) εy.
The resulting tension yield point is then:

zq,t =
√

1 + 2β2εt (2-68)

zl,t =
√

(1 + α2) exp(2εt)− α2 (2-69)

After the stress reaches the yield value in tension, the ensuing stable
equilibrium path is given by:

λq = β2
[
2 (1− η) εh + η

(
1− z2

1 + α2

)]
z (2-70)

λl = β4
[
2 (1− η) εh + η ln

(
1 + α2

z2 + α2

)]
z

z2 + α2 (2-71)

where εh = 2ηεm − (1− 2η)εy.
Figure 2.22 shows the equilibrium path for α = 8.0 and α = 1.2 obtained

by the FE formulation together with the analytical expression for each segment
of the nonlinear elasto-plastic equilibrium path for η = 0 and η = 0.15
(i.e. different hardening behaviors), showing an excellent match. As shown
in Figure 2.21(b), for α = 1.2 plastic deformations are observed for very low
load levels leading to a strong decrease in the load carrying capacity with
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η = 0. For η 6= 0 a limit point appears along the elasto-plastic fundamental
path, which increases with η, increasing the load carrying capacity of the truss.
As η approaches one (the plastic tangent approaches the value of the Young
modulus E) the curve converges to the elastic response obtained previously,
as expected.
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Figure 2.22: Elasto-plastic equilibrium paths of the truss under vertical load
(LSM).

2.4.3.5
Variation of the critical load with truss height

The goal of this section is the analytical calculation of how the critical
load parameter λcr varies as a function of the geometric parameter α (i.e.
the truss depth), for different instability phenomena and considering the QSM
(for the sake of simplicity), using Eqs. (2-46), (2-51), (2-56) and (2-57). Figure
(2.23) shows the limit point load parameter of the elastic truss, with a constant
value of 2

√
3/9 which corresponds to an upper bound of the critical loads.
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For α ≤ 1, an unstable symmetric bifurcation occurs along the nonlinear
equilibrium path, breaking the system symmetry. For α ≤

√
2B/(2πrg) the

compressive axial force in the elements cause them to buckle. With the
chosen numerical parameters buckle will happen if α ≤ 8.99. Finally, for
α ≤

√
(1− 2εy) / (2εy), elasto-plastic deformation occurs. As α decreases, each

instability phenomenon initially occurs along the unstable fundamental path
until the critical value coincides with the limit point load, at which point the
two phenomena occur simultaneously. For lower values of α the instability
occurs for load values lower than 2

√
3/9, thus reducing the load carrying

capacity of the structure.
Which phenomenon first occurs depends on the geometric and material

characteristics of the truss. In the vicinity of the crossing and tangent points
between two curves, interactive buckling may occur, thus leading to a further
decrease in the load capacity. For example, with α = 0.5 the truss elements
buckle, soon latter are subject to plastic deformations and then the system
bifurcates through lateral instabilities. For α = 4 the truss elements are first
subject to plastic deformations and then buckle. For α = 16 (very shallow
truss) the system is subject only to snap-through.
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Figure 2.23: Variation of the critical load with the design parameter α (QSM).

2.4.4
Interactive buckling

In the previous sections elastic snap-through and bifurcation buckling,
Euler buckling and material yielding were considered individually. However, in
terms of the truss design, the decrease of load capacity due to the complex
interaction between these phenomena is important [73, 74] in a broad range
of the geometric parameter α, as observed in Fig. 2.23. Most of the studies on
interactive buckling are in the field of elastic deformations [34]. However most
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steel structures are designed in such a way that their strength limit lies in
the elasto-plastic range. Thus, it is important to quantify the effects of plastic
deformations in the case of interactive buckling [38].

Here the system stability and load capacity considering elasto-plastic
buckling is investigated in a purely computational approach, being an origi-
nal contribution to the state of the art, using a corotational fiber beam finite
element (Appendix C). A small initial geometric imperfection on the beam
straightness given by e sin (πx/L) (see Fig. 2.24a) is assumed in the simu-
lations. The cross-section is discretized into 150 fibers, as illustrated in Fig.
2.24b, considering 30 and 5 angular and radial divisions, respectively. As the
shallow trusses are studied in this Section the QSM is adopted in the analyses.

ee

B B

H

(a) Truss initial imperfection (b) 30× 5 mesh

Figure 2.24: Initial geometric imperfections on the pyramidal truss and cross-
section discretization.

From Eqs. (2-56) and (2-57), it is observed that at α = 8.65 the Euler
buckling load and the plastic buckling load are equal (Fig. 2.23). So, in the
vicinity of this value the interaction between Euler buckling and material
yielding is expected to be stronger. Figure 2.25 shows for α = 8.65 the nonlinear
equilibrium paths considering a range of values for the geometric imperfection
e expected in real structures.

Geometric imperfections on the beam straightness of tolerable magnitude
(i.e. acceptable manufacturing imperfections) introduce bending from the onset
of loading. The imperfection magnitude is usually limited by design specifica-
tions and is normally given as a fraction of the length of the member. The
decrease of load capacity intensifies with the initial imperfection magnitude,
as also observed in the literature for pinned bars [75]. On the other hand, as
the imperfection magnitude tends to zero (e.g. e = L/10000), the response
converges asymptotically to the analytical elasto-plastic solution illustrated in
Fig. 2.22.

Figure 2.26 shows the imperfection sensitivity curve for this geometry,
where the limit point load of the imperfect structure is divided by the limit
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Figure 2.25: Influence of the initial geometric imperfection magnitude on the
elasto-plastic response (α = 8.65).

plastic load (Eq. 2-57). The load capacity is greatly reduced, even for small
imperfections. The decrease of the limit point load is around 20% when the
imperfection magnitude is 0.5% of the bar length L. In all cases the unloaded
inverted configuration exhibits large permanent plastic deformations.
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Figure 2.26: Influence of initial imperfection on the elasto-plastic limit load
(α = 8.65).

Figure 2.27 shows the influence of the geometric parameter α on the
nonlinear response of the imperfect truss with e = L/500, which is the usual
straightness tolerance for tubular members (p. 42 of [74]). For small α (deep
truss) the interaction between the Euler and plastic buckling happens for low
load levels, as expected. The buckling load increases with α until the limit
load in the fundamental path is reached and the interactive buckling starts to
happen after the snap-through.

Figure 2.28 shows the variation of the limit point load of the imperfect
structure divided by the limit point load of the perfect elastic truss (Eq. 2-
46) with α ∈ [6, 16] (see Fig. 2.23). In this interval, for α = 7.34 the snap-
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Figure 2.27: Influence of α on the elasto-plastic response (e = L/500).

through and Euler buckling load are equal, for α = 8.65 the Euler and inelastic
buckling occur simultaneously, while for α = 12.87, the snap-through and
inelastic buckling loads coincide. Thus in this interval the interaction among
these three nonlinear phenomena is active.
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Figure 2.28: Influence of the geometric parameter α on the elasto-plastic limit
load (e = L/500).

As α increases (the truss height and the length of the bars decrease)
the limit point load increases and approaches asymptotically the limit point
load of the imperfect elastic truss, which is 7% less than that of the perfect
truss (for α = 16 the buckling process occurs in the elastic regime). Again
the interaction of Euler buckling and material yielding is quite significant. The
critical load of the imperfect structure for α = 16 is about 30% lower than the
elastic limit point load of the perfect structure, λvl = 2

√
3/9.

As α decreases, the beam length increases and for small values of α a
pitchfork (symmetric) bifurcation occurs. As shown in Fig. 2.23, in this region,
for imperfect trusses interaction between the pitchfork bifurcation, Eulerian
buckling and material yielding may occur.
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Figure 2.29 shows the nonlinear response of the truss for α = 0.90
and e = L/500. This leads to a huge decrease in the load carrying capacity
and increase in the declivity of the post-critical path (see inset figure) when
compared with the elastic case (see Fig. 2.19). This indicates, according to the
stability theory, high imperfection sensitivity [39].
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Figure 2.29: Interaction of the pitchfork bifurcation, Euler buckling and
material yielding (α = 0.90, e = L/500).

2.4.5
Incorporating flexible supports

In structures composed of pyramidal truss modules, the base nodes of
each module are not rigidly fixed which affects the flexibility of the whole
structure. The interaction between the modules is mainly governed by the
forces transmitted through their bases. The influence of the base flexibility on
the symmetric structural response is therefore important for the understanding
of the behavior of large structural systems and a simplified model is set up here
(uniform radial base displacement assumption).

In the numerical simulations, the base nodes are constrained to move
in the radial direction by static condensation of the appropriate degrees of
freedom. The more general case, with complex kinematics, could be treated
through other numerical methods, such as Lagrange multipliers and penaliza-
tion. The base nodes are considered to move by the same amount b for the
sake of simplicity.

Figure (2.30) shows the fundamental equilibrium paths obtained for a
selected range of values of the parameterized base stiffness kb. The pyramidal
truss becomes a mechanism when kb = 0, representing a lack of the lateral
constraint by the supports. As the base stiffness increases, the load capacity
increases, approaching the fixed base solution as kb tends to infinity.
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Figure 2.30: Influence of the base flexibility on the structural response (α = 1).

The consideration of the flexibility of the supports, or equivalently
the interaction with other modules through their base nodes, thus has a
considerable influence on the truss load capacity and should be included in
the design process.

2.5
Pyramidal curved truss

In this Section, to illustrate the nonlinear behavior of more complex
structures, a large span structure composed of n pyramidal trusses in both
directions (Fig. 2.31) is analyzed. The structure has a span of L = 20.00 m
in both directions and an initial rise in the vertical direction, as observed in
many practical applications, increasing its initial stiffness and load capacity.
The rise is modeled as a parabola with a height h and the modules have a
height H (both h and H are varied in a parametric study). The material of
the elements is the same as adopted for the analysis of the pyramidal truss
module (Tab. 2.1). The tubular cross section has a diameter d = 35.6 cm
and a thickness t = 2.5 cm. The numerical parameters used in each analysis
are summarized in Tab. 2.4. The truss is subjected to its self-weight, which
is negligible compared to its load capacity. An additional vertical, uniformly
distributed load q is applied on the top nodes. The nodes along the two straight
sides are fixed. This example is for purely computational purposes, illustrating
that the findings presented for individual modules appear on larger structures
composed of the assembly of single pyramidal truss modules as well.
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Figure 2.31: Structure composed of pyramidal truss modules.

Section Rise (h) Units (n) Height (H) Load Material behavior
2.5.1 vary 10 1.00 m symmetric elastic
2.5.2 1.25 m vary 1.00 m symmetric elastic
2.5.3 1.25 m 10 vary symmetric elastic
2.5.4 1.90 m 10 1.00 m asymmetric elastic
2.5.5 1.25 m 10 1.00 m symmetric elasto-plastic

Table 2.4: Numerical parameters used in the FE analysis of the pyramidal
curved truss.

2.5.1
Influence of the initial curvature

The effect of h, related to the initial curvature of the structure, is
investigated taking n = 10 modules and H = 1.00 m. Figure 2.32 shows
the results of the static nonlinear analysis considering a variable height h.
For h = 0.00 m the initial stiffness and nonlinearity are small. The structure
becomes stiffer as the rise h increases and the load capacity also increases.
However, the nonlinearity of the structure is also more pronounced, and for
h ≥ 0.50 m a limit point appears. The load and displacement difference
between the maximum and minimum limit points increases monotonously with
h. Fig. 2.33 shows the deformed configuration after snap-through buckling. For
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these geometries no Euler buckling is observed. The maximum compressive
load increases with h and for h = 1.25 m it is equal to 152 MN while the
corresponding Euler buckling load is equal to 165 MN.
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Figure 2.32: Influence of the initial curvature on the nonlinear structural
response (α = 1.41).

Figure 2.33: Structure final deformed configuration.

2.5.2
Influence of the number of modules

The effect of the number of pyramidal modules n is now studied consid-
ering a rise of h = 1.25 m and module height H = 1.00 m. Figure 2.34 shows
the results of the static nonlinear analysis considering a variable number of
units n. As the number of modules increases, the length of each individual
bar is reduced, increasing the structure stiffness and load capacity, and better
distributing the vertical load q on the apex nodes. The geometric parameter α
of each unit also varies, altering their properties and consequently the system’s
structural behavior. Also, due to the length reduction, the Euler buckling load
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of the bars increases and the system becomes less susceptible to this type of
instability. For n = 14, the maximum compressive load is equal to 152 MN
while the corresponding Euler buckling load is equal to 323 MN. For all values
of n the truss displays a bistable behavior and the difference between the upper
and lower limit loads increases with n.
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Figure 2.34: Influence of the number of modules on the structural response.

2.5.3
Influence of the modules height

The effect of the modules height H is now studied considering a rise
h = 1.25 m and number of modules n = 10. Figure 2.35 shows the results of
the static nonlinear analysis considering a variable modules height H. As the
modules height increases, each individual module becomes stiffer, increasing
the structural stiffness and load capacity. However, since the load is distributed
among the same number of nodes, the bars axial force increases, while the Euler
buckling load is reduced (due to longer elements) and the system becomes more
susceptible to this local instability. For H = 1.20 m and H = 1.40 m Euler
buckling occurs.

2.5.4
Influence of the load asymmetry

The effect of load asymmetry is now investigated by applying a symmetric
and asymmetric distributed vertical load on the top nodes of the structure.
The asymmetric load is modeled by increasing the symmetric one by 20 %
on one half and decreasing it by the same amount on the other half of the
structure, thus maintaining the total load constant. The structure has a rise
h = 1.90 m, n = 10 modules in each direction with height H = 1.00 m. Figure
2.36 shows the results of the static nonlinear analysis. When subjected to the
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Figure 2.35: Influence of the modules height on the structural response.

symmetric load, the structure has a limit point load of q = 4000kN/m2. For
the asymmetric case, the maximum load is q = 3570kN/m2, representing a
reduction of 10.75 % of the system load capacity. The break of symmetry is
illustrated by the system deformed configuration subject to symmetric and
asymmetric loads (Fig. 2.37). Several load and displacement limit points are
observed in the asymmetric case, showing a more complex response similar to
the behavior observed in bistable shallow arches [32].
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Figure 2.36: Influence of the load asymmetry on the structural response
(α = 1.41).

2.5.5
Influence of the material elasto-plastic behavior

The effect of the elasto-plastic behavior is now studied considering a rise
of h = 1.25 m, n = 10 modules in each direction with a height of H = 1.00 m.
The maximum yield stress of modern steels, depending on their composition,
can approach 3000 MPa, while the elastic modulus remains practically constant
(E = 200GPa). The first curve in Fig. 2.38 refers to a yield strength of 400MPa,
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(a) Symmetric load

(b) Asymmetric load

Figure 2.37: Equilibrium configurations of the structure subject to symmetric
and asymmetric loads (α = 1.41).

while the second one to a yield strength of 2400MPa, which would correspond
to an ultra-high-strength steel with yield strength between 1400 and 2400 MPa
[76]. As expected, the plastic buckling load increases with the material yield
strength, however at higher load levels the geometrical nonlinearity is more
prominent, leading to a faster reduction of the post-yield system stiffness. As
the deformation increases the two elasto-plastic curves approach one another.
Even if a high yield strength (well above the maximum value used in most
practical applications) is considered, a sharp reduction of the critical load is
observed, converging to the structural response of conventional steel structures.

0

250

500

750

1000

1250

1500

1750

2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

q
 (

kN
 /

 m
2
)

w (m)

Elastic
σy = 400 MPa

σy = 2400 MPa

Figure 2.38: Influence of the material nonlinearity on the structural response
(α = 1.41).

2.6
Conclusions

In this chapter, nonlinear analyses of pyramidal trusses were carried
out with emphasis on stability and load carrying capacity. In addition, novel
analytical solutions were proposed and validated for the nonlinear equilibrium
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paths, critical loads and natural frequencies of single modules considering both
elastic and elasto-plastic behavior, Eulerian buckling and the flexibility of
the base nodes. The FE results were favorably compared with the analytical
results, validating the closed form approach.

For a truss under vertical or horizontal load, instability due to limit point
and pitchfork bifurcations along the fundamental nonlinear equilibrium path
as well as instability due to individual bar buckling and elasto-plastic behavior
of the material was investigated. In each case, a parametric analysis was
carried out to study the influence of the truss height to base ratio (shallowness
parameter) on the structural behavior and load carrying capacity of the system.

For shallow structures, the instability was observed to be due to the
existence of two limit points along the nonlinear equilibrium path, where
an unstable path to an inverted position (snap-through buckling) occurred.
For very shallow systems, this occurred in the elastic range. For deeper (non-
shallow) structures, however, the fundamental equilibrium path was unstable
before the structure reached the limit point and the truss lost stability through
unstable symmetric bifurcation. The ensuing unstable secondary elliptical
equilibrium path connects this critical point to its mirror inverted position.
This bifurcation is associated to an asymmetric buckling mode. Again after
reaching the bifurcation point the structure jumps to an inverted configuration.

Along both paths and along the unstable path the elements are subjected
to high compressive axial forces, that can become greater than the Euler’s
buckling load of individual bars or the stresses may reach the material elastic
limit, leading to an elasto-plastic nonlinear response. In such cases, the local
instability of the bars and the plastic behavior of the material was observed to
decrease substantially the load carrying capacity of the structure.

Analytical expressions in terms of the geometric and material parameters
were obtained to define what type of buckling occurs.

The consideration of the flexibility of the base nodes led to a decreasing
of the load capacity, as expected.

The influence of the interaction of snap-through instability, Eulerian
buckling and plastic deformations on the imperfection sensitivity and load
carrying capacity of the spatial truss was investigated using finite element
simulations. The results showed that in a wide range of the shallowness
parameter interactive buckling may occur, leading to further decrease of the
load carrying capacity of the spatial truss.

A parametric analysis of a large span curved structure composed of
several pyramidal truss modules was investigated. The structure exhibited a
bistable behavior except for small rise values. The upper limit point load was
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observed to increase with the initial curvature, number of modules and module
height.

As it will be seen in Chapter 4, the mechanical properties of the joints
connecting the beam elements (finite size, flexibility and friction) may have
a considerable influence on the pyramidal truss load capacity and stability,
inducing new buckling modes. In future works, an appropriate joint finite ele-
ment should thus be included in the finite element simulations. The structural
behavior of large span structural systems inspired from built design could be
evaluated.
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3
Dynamic analysis of bistable truss structures

3.1
Outline

In this chapter the nonlinear oscillations and dynamic instabilities of
pyramidal truss modules under harmonic vertical load are investigated through
bifurcation diagrams of the Poincaré map and phase-space projections of the
relevant attractors. The effects of snap-through, lateral instabilities, material
nonlinear behavior on the system dynamic response, as well as the influence of
a static preload and initial conditions are investigated in the main resonance
region. Detailed bifurcation analyses of structural systems are usually carried
out using low order models (direct integration of equations of motion with a
few degrees of freedom). Here, the proposed algorithm is part of the developed
FE software (Appendices B and D) and permits to study the influence of
the parameters investigated in the static buckling analysis on the nonlinear
oscillations of the pyramidal truss under harmonic load.

The chapter is organized as follows: in Section 3.2 a review on the
dynamic behavior of pyramidal trusses is presented, together with the main
goals in this work. A novel closed form solution for the unloaded elastic
symmetric orbits is proposed is Sec. 3.3. The computational procedure used
in the numerical simulations is presented in Sec. 3.4. The dynamic nonlinear
behavior of shallow trusses is investigated in Sec. 3.5. Section 3.6 considers the
response of shallow trusses subject to a static preload. In Section 3.7 the lateral
instabilities of deep trusses are investigated, and an elasto-plastic material
response is incorporated in Sec. 3.8. The elastic and elasto-plastic bifurcation
diagrams of the system (showing the variation of the vibration amplitude as
a function of the excitation frequency) are traced in Sec. 3.9. The influence
of the initial conditions on the dynamic response is investigated in Sec. 3.10.
Finally, the main conclusions of this chapter are drawn in Sec. 3.11. 1

1The contents of Chapters 2 and 3 are a convolution of two manuscripts submitted for
publication to International Journal of Solids and Structures and Nonlinear Dynamics.
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3.2
State of the art on dynamic modeling of pyramidal trusses

Pyramidal truss modules or large span structures formed by their assem-
bly are often subject to dynamic external loads such as wind, earthquakes,
machinery and/or moving loads (traffic). The resulting nonlinear oscillations
may include dynamic instabilities and elasto-plastic deformations, being a con-
cern for design safety.

The bistable nature of pyramidal trusses allows for multiple equilibrium
configurations for a given static load level, as shown in Chapter 2. Similarly,
multiple dynamic responses (coexisting solutions) may appear for the same
dynamic load level as a result of different load sequences. The response may
suffer a period-multiplying cascade (oscillate with a period that is a multiple
of the excitation period) or present a chaotic (non-periodic) behavior. These
phenomena can be considered undesirable, because they make the design
process extremely complex and hinder obtaining a controlled motion of the
system. The presence of coexisting solutions make the system response non
deterministic and may turn the design process very complex or even nonviable
with simple approaches.

The dynamic nonlinear behavior of pyramidal trusses has been studied
in the literature restricted to an elastic material response and moderate
strains (quadratic strain measure). Castro [15] and Orlando et al. [16] deduced
the nonlinear equations of motion for this system under vertical harmonic
excitation and studied through bifurcation diagrams, phase space projections,
time responses and basins of attraction the complex dynamics of shallow elastic
pyramidal trusses, while Orlando et al. [17] studied the influence of transient
escape and added load noise on the dynamic integrity of multistable systems.

Previous predictions of the elastic pyramidal truss dynamic behavior
show a predominant period-doubling cascade or chaotic behavior. Considering
the elasto-plastic material behavior (a new contribution to the state of the art,
developed in this chapter), a considerable portion of the energy introduced
in the system by the external harmonic excitation may be dissipated in the
oscillations due to plastic deformations, critically influencing the dynamic
response.

The analysis of the nonlinear vibrations and dynamic bifurcations of
elasto-plastic reticulated structures has not yet been investigated extensively
in the dedicated literature. It is well known that nonlinear dynamic phenomena
are strongly dependent on the characteristics of the oscillator restoring force
(internal forces in the elements as a response to external excitations). However,
as pointed out by Palmov [77], unjustifiably little attention is paid in the
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vast literature on the free and forced vibrations of elasto-plastic bodies,
in particular the nonlinear vibrations of structures involving material and
geometrical nonlinearities. Among the earlier contributions in this field, Pratap
et al. [78, 79, 80] studied the nonlinear free and forced oscillations of a
bilinear hysteretic elasto-plastic oscillator with kinematic hardening. The
forced response is particularly complex, as the motion undergoes numerous
bifurcations, from periodic to quasi-periodic to chaotic motions. Later, Pratap
and Holmes [81] studied the local and global dynamic behavior of a single
degree of freedom parametrically excited elasto-plastic oscillator. Gerstmayr
and Irschik [82] presented a numerical strategy for vibrations of elasto-
plastic beams. Liu and Huang [83] investigated the steady state responses
of a SDOF viscous elasto-plastic oscillator under sinusoidal loading. They
also derived the maximum driving force amplitude to avoid oscillations in
the plastic range. Challamel and Gilles [84] studied the stability and the
dynamics of a harmonically excited elastic-perfectly plastic oscillator, with
the hysteretic system described as a non-smooth forced autonomous system.
Kalmár-Nagy and Shekhawat [85] analyzed the transient and steady-state
response of an oscillator with hysteretic restoring force under sinusoidal
excitation. The elasto-plastic nonlinear vibrations analysis of beams and
columns was conducted by Karagiozov and Karagiozova [86], Savi and Pacheco
[87], Ribeiro and van der Heijden [88], Ribeiro [89] and Grognec et al. [90].
In a related area, Lacarbonara and Vestroni [91] investigated the responses
and codimension-one (1D subsets) bifurcations in Masing-type and Bouc–Wen
hysteretic oscillators. Bifurcations, including jump phenomena, symmetry-
breaking, complete period-doubling cascades, fold, and secondary Hopf were
obtained.

To the author’s best knowledge there is currently a lack of knowledge
regarding the dynamic behavior of pyramidal trusses subject to large elasto-
plastic deformations. In particular, no experimental results concerning pyra-
midal trusses subject to extreme loads were found. The goal of this work is
thus investigate numerically the influence of the finite strain measure and ge-
ometrical and material parameters on the nonlinear elasto-plastic oscillations
of pyramidal truss modules.

To better understand its fundamental dynamic characteristics, novel
analytical expressions for the phase plane orbits of the unloaded elastic
symmetric system are proposed and discussed in this work, allowing the
identification of the boundaries between stable and unstable oscillations.

For deep trusses subject to moderate or large loads the quadratic and
logarithmic strain measures differ considerably (as shown in chapter 2), in-
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fluencing the characteristics of the dynamic response in terms of vibration
amplitude, period, chaotic behavior and stability. Their comparison is done
in the dynamic regime here using closed for expressions and numerical simu-
lations. Subsequently, the influence of finite elastic and elasto-plastic strains
on the snap-through and lateral instabilities are investigated computationally
making use of the logarithmic strain measure (LSM).

Although the material stiffness decreases in the elasto-plastic regime,
the energy dissipation may be a dominant factor, reducing the oscillations
amplitude and eliminating the domains with chaotic behavior and period
cascades. The influence of the material elasto-plastic behavior on the nonlinear
forced vibrations constitutes a novel contribution of practical significance since
most metal bistable structures may exhibit elasto-plastic behavior due to large
amplitude resonant vibrations and escape from the pre-buckling potential well.

Dynamic loads in civil engineering applications, such as wind and earth-
quake, are usually not harmonic but exhibits broadband frequency spectrum
and may act in different directions. In the present work, only a vertical har-
monic nodal load is considered for the sake of simplicity.

3.3
Unloaded elastic symmetric phase planes through analytical solution

Some insight on the pyramidal truss module dynamic behavior can be
obtained by tracing its phase space, which are geometric regions describing
the evolution of state variables of the system with respect to time. In this
section, the phase planes of the pyramidal truss considering the apex node
nondimensional vertical velocity (ż/ω0) and position (z) are traced for the
unloaded elastic system assuming symmetric oscillations (r = 0). To this end,
a novel closed form expression describing the topology of the phase plane is
developed.

With no horizontal movement assumed for the apex node, all bars have
the same length (l =

√
z2 +B2) and are subject to equal elastic strains ε.

As there are no external loads or damping considered, the system mechanical
energy T + U is conserved, hence:

T + U = T0 + U0 (3-1)
nρAL

6 ż2 + nEAL

2 ε2 = nρAL

6 ż2
0 + nEAL

2 ε2
0 (3-2)

Dividing the above equation by the factor nEAL/2 the following nondi-

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 3. Dynamic analysis of bistable truss structures 76

mensional form is obtained:(
ż

β2ω0

)2

+ ε2 =
(

ż0

β2ω0

)2

+ ε2
0 = A2

0 (3-3)

where A0 is a nondimensional constant energy level, which is a function of the
initial conditions (z0, ż0) and the choice of the strain measure ε0 = ε(z0).

From Eq. (3-3) the orbits (curves on the phase plane) can be parameter-
ized making use of a dummy variable ψ as:

ε = A0 cos(ψ) (3-4)

ż = ω0β
2A0 sin(ψ) (3-5)

The nondimensional vertical position z can be obtained from the strain
measure definition. The inverse of Eqs. B-17 and B-18 provides the following
parametrization for the QSM and LSM, respectively:

zq = ±
√

1 + 2β2A0 cos(ψ) (3-6)

zl = ±
√
β2 exp [2A0 cos(ψ)]− α2 (3-7)

The phase plane with orbits on different energy levels, A0, are plotted
in Fig. 3.1 with α = 1.0 (H = B), where the black dots represent the stable
(z = ±1) and unstable (z = 0) fixed points (static equilibrium positions).
In a linear system, the phase plane would consist of concentric ellipses,
with the center representing the single attractor. The bistable nature of the
pyramidal truss considerably alter the topology of the orbits. For low energy
levels, the pyramidal truss oscillates around either the original (z = +1) or
inverted (z = −1) stable configurations. Points like this, to which the system
oscillations approach or are bounded to, are named attractors. As the energy
level increases, the orbits eventually cross the origin (unstable fixed point) and
the system oscillates around the two stable configurations.

The region in which the system oscillations around the original stable
attractor are bounded by the homoclinic orbit associated with the saddle (un-
stable configuration) is called pre-buckling well. The second region, associated
with the inverted truss position, also bounded by a homoclinic orbit of the sad-
dle is called post-buckling well. The boundary of this region (the homoclinic
orbits) can be determined by selecting the orbit that passes by the saddle, and
so the corresponding energy level is obtained form Eq. (3-3) as Ap = −ε(0).
The minus sign is chosen as the bars are subject to compression when the apex
node is located in the base plane. For the QSM and LSM, the corresponding
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Figure 3.1: Phase planes for different non-dimensional energy levels of the
unloaded elastic pyramidal truss (α = 1.0).

energy levels are given by, respectively:

Ap,q = 1
2β2 (3-8)

Ap,l = ln
(
β

α

)
(3-9)

The pre-buckling well for both strain measures is illustrated in Fig. 3.2.
As can be observed, with α = 1.0 the truss is subject to large strains while
oscillating and so the results with the two strain measures differ considerably.
The LSM provides a larger domain, meaning that the QSM over-constrain
the limit displacements and velocities that causes the system to pass by an
unstable point and oscillate around the two attractors.

For elastic nonlinear dynamic problems, energy conserving integration
methods are available in the literature. Although the conservation of energy
is not considered in nonlinear solvers presented in App. D.2, the selection of
an appropriate time step ensures the precision of the computational results.
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Whenever possible, the obtained numerical results were compared favorably
with derived closed form time solutions, validating them.
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Figure 3.2: Pre-buckling and post-buckling wells of the unloaded elastic pyra-
midal truss (α = 1.0).

3.4
Computational FE model

The assumption is made that a single pyramidal truss module is subjected
to a vertical external harmonic force given by P sin(ωt), where P is the force
magnitude and ω is the excitation frequency (Fig. 3.3). The same geometrical
and material parameters of the pyramidal truss module from Sec. 2.4 are used
here (Tab. 2.1). The bifurcation diagrams (variation of the vibration amplitude
with respect to P or ω) are obtained by a brute force method. For each
increment or decrement of the control parameters (Porω), the stable fixed
points coordinates of the Poincaré map (intersections of the periodic orbits
with specific Poincaré sections taking fixed P and ω values) are computed
using the finite element method [92] with one element per bar and taking the
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base nodes fixed. The structural response is computed using a given set of
initial conditions and values for the parameters P or ω.

The analysis is performed using the nonlinear finite element truss formu-
lation developed in Appendix B, and either the Newmark (Sec. D.2.1) or the
4th order Runge-Kutta (Sec. D.2.2) solution methods are applied for the time
integration of the equations of motion. In the algorithm, at each step, the bar
strains are computed as a function of the nodal positions, and the stresses are
updated through the material constitutive law using the last equilibrium con-
figuration as reference (updated Lagragian formulation). A viscous damping
equal to 4.0% of the critical value of the unloaded structure is considered in the
analyses. Although this value is an overestimation for steel structures (usually
0.5%), it reduces considerably the computational cost involved in obtaining
the bifurcation diagrams. Also, this value has been suggested for structures
undergoing large elasto-plastic deformations [93]. Each time integration oper-
ation consists of np = 40 periods, of which nd = 10 are discarded as transient
response (Fig. 3.4a). For the remaining periods (steady state solution), the
Poincaré map is recorded after every excitation period. In each excitation pe-
riod nt = 500 time integration points are used, summing up to a total of
ns = npnt = 2 × 104 time steps. In all simulations, one finite element per bar
is used. As the use of the LSM requires the computation of the logarithmic
function, the computational cost is much higher in the dynamic nonlinear sim-
ulations if compared with the QSM, which only requires the computation of
polynomial functions. In the performed simulations, the computation time was
in some cases five times larger.

To obtain a clear understanding of the bifurcation scenario and to
identify coexisting solutions, the control parameter (load P or frequency ω)
is separately incremented to a maximum value and subsequently decremented
to its initial value in nm = 2000 steps (Fig. 3.4b) yielding a good compromise
between accuracy and computational cost. At each control parameter ramping
the dynamic structural response for np periods of the harmonic excitation is
computed. With fixed geometrical and material parameters of the pyramidal
truss, one bifurcation map requires nm dynamic nonlinear finite element
simulations. The numerical tools used in each section are summarized in Tab.
3.1.

3.5
Dynamics of elastic shallow trusses

A pyramidal truss under a vertical harmonic force P sin(ωt) with α =
1.20 (shallow truss) and a fixed non-dimensional load frequency parameter
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Figure 3.3: Pyramidal truss subject to a vertical harmonic load.
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Figure 3.4: Control parameter variation and time response on the brute force
method.

ω = ω/ω0 = 1.00 is considered first. This choice puts the simulations in the
critical main resonance region, where the largest oscillation amplitudes are
expected. The non-dimensional force magnitude parameter pz = P/pz is the
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Section Control Parameter Strain measure Material behavior
3.5 load (P ) QSM and LSM elastic
3.6 load (P ) QSM and LSM elastic
3.7 load (P ) LSM elastic
3.8 load (P ) LSM elasto-plastic
3.9 frequency (ω) LSM elasto-plastic

Table 3.1: Numerical tools used in the dynamic analysis of a single pyramidal
truss module under vertical load.

control variable, and both strain measures (εq = (l2k−L2)/(2L2), εl = ln(lk/L))
are considered and compared here with a purely elastic material behavior.

For the QSM (Fig. 3.5a), starting from the unloaded equilibrium position,
z = 1.00 (solution in blue), the shallow truss first exhibits a period one
(i.e. has the same period as the excitation) small amplitude solution with
increasing amplitude. Initially, the vibration of the system occurs in the pre-
buckling well, i.e. around the initial configuration. At pz = 0.32 it undergoes
a period doubling bifurcation (with a period two times that of the excitation)
and at pz = 0.36 the response escapes from the pre-buckling well, and the
truss exhibits large cross-well motions, passing by the initial and inverted
configurations. In this region, chaotic and periodic motions with different
periods are observed. At pz = 0.68 only a period one large amplitude response
is observed up to pz = 1.00. This is the same response as obtained for the load
magnitude decrease (unloading process, in red). This response remains up to
pz = 0.32, where a dynamic jump (discontinuity on the bifurcation diagram)
to the original period one small amplitude oscillation within the pre-buckling
well is detected, as a consequence of a saddle-node bifurcation. The response
converges to the initial truss position (z = 1.00) as the load is ramped to zero.
The system dynamic response with different load sequences varies considerably,
showing the existence of multiple solutions.

For the LSM (Fig. 3.5b), the structure exhibits initially a period one
solution with increasing amplitude up to pz = 0.41, where a period doubling
bifurcation occurs, and at pz = 0.44 the response escapes from the pre-buckling
well. Compared to the QSM, similar to the static case (Fig. 2.15), there is an
increase of 28% in the period doubling bifurcation load and of 22% in the escape
load (the force magnitude required to escape from the pre-buckling well).
After escape, the bifurcation sequence associated with the two strain measures
are completely different, as expected, since after escape the truss enters the
large deformations domain. For the LSM three chaotic regions are observed
preceded by different bifurcation sequences. As in the previous case, upon
decreasing the load, the response converges to the initial truss configuration.
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The dynamic response also varies with the loading sequence, as a result of
coexisting solutions.
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Figure 3.5: Influence of the adopted strain measure on the bifurcation diagram
of the Poincaré map for α = 1.2.

To illustrate the influence of the strain measure on the elastic solution,
Fig. 3.6 shows phase plane projections of some of the attractors for pz = 0.1
and pz = 0.8. The strain measure influences not only the magnitude but also
the period of the steady state solution. For pz = 0.1 the maximum vibration
amplitude and velocity using the LSM is higher than the same values obtained
for the QSM and the inverse occurs for pz = 0.8. In this latter case, the QSM
response has the same period as the excitation while the LSM response is
subject to a period-doubling cascade.

When considering a very shallow truss (α = 8.0) practically the same
bifurcation sequence is observed for both strain measures (Fig. 3.7). This
result is expected, since very shallow trusses are usually subjected to small
strains, a regime in which all strain measures yield similar responses. The only
difference occurs during unloading; after the jump at pz = 0.32 the QSM and

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 3. Dynamic analysis of bistable truss structures 83

-0.4

-0.3

-0.2

-0.1

+0.0

+0.1

+0.2

+0.3

+0.4

+0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +1.1 +1.2 +1.3 +1.4

  
z‾.   

/ 
ω

0

 z‾

Present FE (QL)
Present FE (LL)

Present FE (QU)
Present FE (LU)

(a) pz = 0.1

-2.0

-1.5

-1.0

-0.5

+0.0

+0.5

+1.0

+1.5

+2.0

-2.5 -2.0 -1.5 -1.0 -0.5 +0.0 +0.5 +1.0 +1.5 +2.0 +2.5

  
z‾.   

/ 
ω

0

 z‾

Present FE (QL)
Present FE (LL)

Present FE (QU)
Present FE (LU)

(b) pz = 0.8

Figure 3.6: Influence of the adopted strain measure on the steady-state solution
for α = 1.2. QL: QSM, loading; QU: QSM, unloading; LL: LSM, loading; LU:
LSM, unloading.

LSM solutions converge to different attractors. Note that due to the symmetry
of the potential function of the unloaded system with respect to z = 0 (see Fig.
2.3 and Fig. 2.5), a mirror image of this bifurcation diagram is obtained [16]
starting at the inverted initial configuration z = −1.0. Thus, for small values
of pz up to the escape load, these two branches of in-well solutions coexist,
leading to mirror basins of attraction (region of influence of an attractor in the
phase-space) [16].

3.6
Influence of static preload on the response of elastic shallow trusses

All civil engineering structures in a dynamic environment are subjected
to a static preload (self-weight, loads from other structural components, among
others). The magnitude of this preload varies from case between applications
and may influence in the dynamic response (specially for high preloads). This
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Figure 3.7: Influence of the adopted strain measure on the bifurcation diagram
of the Poincaré map for α = 8.0.

effect is investigated in this section. Figure 3.8 shows the bifurcation diagram of
the elastic truss of Sec. 3.5 (α = 1.20) considering a static preload ps = 0.6λl,m
(Eq. 2-43), i.e. 60 % of the static snap-through limit load. This value is selected
because a preload close to λl,m would cause the system to jump directly to
the inverted configuration, not allowing it to vibrate in the pre-buckling well.
Additionally, considering such a high preload would not be realistic for civil
engineering applications. All results in the following were obtained using the
LSM only, as it is a more realistic strain measure and better represents the
elastic and elasto-plastic material constitutive behavior (App. B).

Comparing these results to the structure without static preload (Fig.
3.5b), it can be observed that the chosen static preload has a large influence
on the dynamic buckling load even though the same bifurcation sequence is
observed to lead to the escape from the pre-buckling well. After escape a
completely different bifurcation sequence is obtained: first the structure jumps
to a small amplitude period one oscillation within the post-buckling well (the
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post-buckling well is much deeper and broader than the pre-buckling one [16],
resulting in a more prominent chaotic behavior), which undergoes a period
doubling bifurcation at pz = 0.51 and is followed by a broad window of large
amplitude chaotic cross-well motions. After unloading the structure converges
to the inverted equilibrium position.

Thus the influence of static preload can be determinant in the truss
dynamic behavior and increases with its magnitude. A special care should be
thus taken in a through design process to verify whether its influence has to
be incorporated.
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Figure 3.8: Bifurcation diagram of the statically pre-loaded system (α = 1.20).

3.7
Dynamics of elastic deep trusses

The dynamic behavior of deep trusses can differ considerably from
shallow ones since these structures can be subject to large strains, as observed
in Chapter 2. Also, as the axial compressive force in the truss elements increase
with the pyramid depth, lateral instabilities may appear and influence the
dynamic response of the system. As show in Sec. 2.4.3.2, for a static vertical
load, the elastic truss is subject to this type of buckling if α < 0.5092 (with
the LSM). The following analysis is carried out with α = 0.50 to incorporate
this effect. The results for the coordinates z and r of the fixed points of the
Poincaré map are shown in Figs. 3.9(a) and Fig. 3.9(b), respectively.

Both in the loading and unloading cases only symmetric responses are
obtained for pz < 0.55. At pz = 0.55 the dynamic response becomes asymmetric
(r 6= 0, i.e. a horizontal displacement component of the apex node appears) as
the load increases due to a period doubling bifurcation, followed by a period-
doubling cascade up to a chaotic region starting at pz = 0.82.

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 3. Dynamic analysis of bistable truss structures 86

Upon unloading (in red) a rather different bifurcation sequence is ob-
served, indicating the presence of coexisting solutions in a broad range of the
load magnitude. Fig. 3.10 illustrates the symmetric responses detected pre-
vious to the period-doubling bifurcation. For pz = 0.40 only one attractor is
observed during the loading and unloading sequences, with the truss vibrating
around the initial configuration. However for pz = 0.45, this response coex-
ists with a large amplitude period five cross-well complex response. Therefore,
deep systems present a more complex dynamic response than shallow ones,
with lateral instabilities and different chaotic regions and period cascades.

Figure 3.11 shows for pz = 0.60 and pz = 0.80 three projections of the
four dimensional (r, z, ṙ, ż) periodic attractors. For both load levels the 4-
dimensional attractor (in blue) coexists with the 2-dimensional attractor (in
red), showing the multiplicity and complexity of the dynamic solutions. Since
the system is elastic, due to the symmetries of the potential energy with respect
to the z and r axes (see Fig. 2.5), the corresponding mirror attractors exist
(although not shown here).
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Figure 3.9: Deep truss bifurcation diagrams of the Poincaré map (α = 0.50).
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Figure 3.10: Deep truss phase planes (α = 0.50).

Fig. 3.12 shows the projection of the Poincaré section considering np =
5000 excitation periods for pz = 0.90 obtained during the loading and
unloading processes. After each integration period (nt = 500 time integration
points) the coordinates (z, ż) are marked in the phase plane. The fine fractal
structure of the chaotic attractor, represented by the three almost self-similar
geometric objects, can be observed in the two cases and is a clear indication
of the high degree of nonlinearity presented by the system. A similar fractal
structure was obtained by Orlando et al. [17] while investigating multistable
systems. Due to the presence of coexisting bifurcation diagrams within the
pre and post-buckling wells which can undergo different types of bifurcations
as well as large cross-well solutions, the truss can exhibit several coexisting
attractors in the main resonance region for a given load magnitude. Similar
phenomena were shown by Orlando et al. [16, 17], where up to five coexisting
solutions were detected in the bifurcation analysis.

In conclusion, depending on the load increment, during the unloading
process different sequences of solutions can be followed by the numerical al-
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Figure 3.11: Deep truss phase planes (α = 0.50).

gorithm. As an example, Fig. 3.13 shows two different bifurcation sequences
obtained using respectively 50 (in red) and 500 (in black) integration periods.
The considerable variation of the computed solutions under different bifur-
cation sequences and numerical parameters illustrates how the elastic truss
complex dynamic response turns the controlled motion and design of the sys-
tem challenging. When the system is subject to elasto-plastic deformations,
part of the energy introduced by the harmonic excitation is dissipated and a
more controlled motion is expected.

3.8
Incorporating elasto-plastic behavior

For most materials, dynamic jumps and escape from the pre-buckling well
leads to large stresses and strains with possible elasto-plastic oscillations. Here
the influence of the plastic behavior of the material on the dynamic nonlinear
response is investigated without considering a static preload. Shallow and deep
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Figure 3.12: Projections of the Poincaré sections of the chaotic attractor onto
the z × ż plane for pz = 0.9 and α = 0.5.
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Figure 3.13: Different bifurcation sequences during the unloading process due
to existence of various competing attractors.

truss behaviors are considered and compared.
Figure 3.14 shows the bifurcation diagram for a shallow truss with

α = 8.00 considering a nonlinear material response with different values of
strain hardening parameter η = K/(E + K). Initially the structural response
is elastic but, as the vibration amplitudes increase in the main resonance re-
gion, plastic deformation appears (Eq. 2-58). Each value of the strain hard-
ening nondimensional parameter η results in completely different bifurcation
scenarios, demonstrating the complexity of the elasto-plastic dynamic response
on the one hand and the large influence of plastic energy dissipation on the
structural response on the other hand.

For η = 0, i.e. a perfectly plastic assumption, a smoother variation of the
Poincaré coordinates (pz, z) and smaller vibration amplitudes than those in
the elastic case are observed (see Fig. 3.7) due to the dissipation of mechanical
energy through the plastic deformations. As the load increases (blue branch)
the period one solution becomes unstable at pz = 0.23 and the truss jumps
to a period four solution which is followed by a period halving cascade and
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return to period one at pz = 0.65. The blue and red branches converge at a
flip bifurcation point at pz = 0.88. For higher load levels only one attractor
is observed until pz = 1.00. Upon unloading, the truss follows the red branch
of the pitchfork bifurcation and a period doubling bifurcation is detected at
pz = 0.65. It is followed by a second period doubling cascade, and as the load
decreases, more evolved solutions are observed until pz = 0.08. Here there is a
discontinuous jump to a period one solution and the response converges to an
unloaded inverted configuration with large residual deformations (z = −0.57).

For higher values of the strain hardening nondimensional parameter η 6= 0
the elements capacity to store elastic energy increases with accumulated plastic
deformations. The response follow the same initial period one solution branch
up to pz = 0.24. At this point a jump to an inverted configuration occurs. After
this, the solution is highly affected by the value of the strain hardening pa-
rameter with several jumps and discontinuities, revealing a complex bifurcation
scenario. In all cases large residual deformations are observed. It is emphasized
that since the elasto-plastic response depends on the load history, different bi-
furcations sequences may be obtained depending on the loading/unloading
process. The results show that the solutions are highly dependent on the value
of the strain hardening parameter η influencing the plastic energy dissipation.

Fig. 3.15 illustrates the phase-plane of the stable solutions detected
during loading and unloading processes for selected values of pz and perfect
plasticity. Comparing with the previous examples, large cross-well motions
are rare due to the dissipative effect of plasticity, reducing or eliminating the
chaotic domains of the response. Therefore, the system nonlinear elastic and
elasto-plastic, oscillations are considerably different and the consideration of
the materials plastic behavior can be of importance in the dynamic design of
pyramidal trusses.

The computational results show the existence of multiple dynamic solu-
tions in the elasto-plastic domain. In Fig. 3.15(a), for pz = 0.2, the small ampli-
tude period one solution within the pre-buckling well coexists with a complex
solution within the post-buckling well (see Fig. 3.14(a)). In Figs. 3.15(b) and
3.15(c), for pz = 0.40 and pz = 0.60 respectively, two symmetric period two
solutions are observed. Finally, in Fig. 3.15(d), for pz = 0.80, the two period
one solutions preceding the flip bifurcation are shown.

The results for a deep truss with α = 1.20 are shown on Figs. 3.16 and
3.17. As deep trusses are usually subject to large strains and consequently
large stresses, the plastic deformation of the elements start for lower load
magnitudes compared with shallow structures. As a consequence, the effects of
plastic deformation increase with the truss height (similar to the observations

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 3. Dynamic analysis of bistable truss structures 91

-1.0

-0.8

-0.6

-0.4

-0.2

+0.0

+0.2

+0.4

+0.6

+0.8

+1.0

+0.0 +0.2 +0.4 +0.6 +0.8 +1.0

 z‾

 p‾ z

Loading Unloading

-2.5

-2.0

-1.5

-1.0

-0.5

+0.0

+0.5

+1.0

+1.5

+2.0

+2.5

+0.0 +0.2 +0.4 +0.6 +0.8 +1.0

 z‾

 p‾ z

Loading Unloading

(a) η = 0.00 (b) η = 0.05

-2.0

-1.5

-1.0

-0.5

+0.0

+0.5

+1.0

+1.5

+2.0

+0.0 +0.2 +0.4 +0.6 +0.8 +1.0

 z‾

 p‾ z

Loading Unloading

-2.5

-2.0

-1.5

-1.0

-0.5

+0.0

+0.5

+1.0

+1.5

+0.0 +0.2 +0.4 +0.6 +0.8 +1.0

 z‾

 p‾ z

Loading Unloading

(c) η = 0.15 (d) η = 0.30

Figure 3.14: Bifurcation diagram considering the elasto-plastic material behav-
ior (α = 8.0).
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Figure 3.15: Phase plane considering the elasto-plastic material behavior
(α = 8.0, η = 0.00).

made in the static analysis of Chapter 2). For η = 0.00, the plastic bifurcation
occurs for a very low load. For η > 0, the structure is capable of supporting
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higher load levels and escape from the pre-buckling well is observed. Again, as
the load continues to increase, several jumps and bifurcations are observed with
periodic solutions of various orders, however chaotic motions are not detected
up to pz = 1.00.
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Figure 3.16: Bifurcation diagram considering the elasto-plastic material behav-
ior (α = 1.2).
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Figure 3.17: Phase plane considering the elasto-plastic material behavior
(α = 1.2, η = 0.05).

3.9
Influence of the excitation frequency

In this section the bifurcation diagrams are obtained considering the
excitation frequency parameter ω = ω/ω0 as control variable and maintaining
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the harmonic excitation force magnitude fixed (without static preload). The
elastic and elasto-plastic dynamic response of shallow and deep systems are
compared.

Figure 3.18 shows the bifurcation diagrams of a shallow truss with
α = 8.0 for different fixed values of the load magnitude pz, considering
an elastic material (and LSM). For pz = 0.02 the response is practically
correspond to the one observed in a linear system, with a resonant peak at
ω = 1. As the fixed load increases, the bifurcation diagram bends to the
left due to the geometric nonlinearity softening effect. For pz > 0.04 two
saddle-node bifurcations are detected leading to jumps (discontinuities on
the bifurcation diagrams) from the non-resonant to the resonant branch as
the frequency parameter increases (jumps from the resonant branch to the
non-resonant branch also appears as the frequency parameter decreases). The
maximum vibration amplitude increases with an increasing value of the fixed
pz. At pz = 0.02 the structure jumps to the inverted position and cross-well
motions are detected in the vicinity of the main resonance region. A secondary
peak appears around ω = 0.5, also due to the geometrical nonlinearity. For
higher values of the excitation frequency the truss vibrates again around the
unloaded configuration.

Figure 3.19 shows the results for the same shallow truss (α = 8.0), for
different values of the fixed load magnitude pz, but considering an elasto-
plastic material with strain hardening (η = 0.30). For pz = 0.02 the response
is elastic and linear, with coincident loading and unloading paths, because
the yield strength is not reached. At pz = 0.04, in the main resonance region
around ω = 1, the vibration amplitudes however induce stresses high enough
to generate plastic deformations. For high excitation frequencies the loading
and unloading paths match. However, as the excitation frequency decreases,
a new solution path appears just to the right of ω = 1 (in red) due to the
accumulated plastic deformations.

The results in Fig. 3.20, showing the bifurcation diagrams for four
selected values of η and pz = 0.04 are used to explain the influence of the
elasto-plastic behavior and the strain hardening parameter for this shallow
truss. Initially, in the low frequency range, the vibration amplitude increases
slowly and the response remains elastic. For ω > 0.8 the vibration amplitude
increases and becomes practically linear for low values of η. When ω decreases
(red), the effect of the accumulated plastic deformations increases (e.g for
η = 0.00 rather large deformations are observed) and in the unloaded process
the pyramidal truss oscillates around the new configuration with permanent
deformations. As observed in Fig. 3.19 and 3.20 when compared to Fig. 3.18
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Figure 3.18: Bifurcation diagrams for a shallow truss with α = 8.0 and
increasing values of the load magnitude pz, considering an elastic material
and the LSM.

the softening effect due to geometric nonlinearities and the resulting jumps
practically disappear when the material nonlinearity is taken into account.

The results with η = 0.00 in a broader range of the frequency domains are
shown in Fig. 3.21. In this particular case, as the material response presents
no hardening, the system stiffness in the elasto-plastic domain is due to its
geometrical part, leading to a different response in the unload process. The
peak load is located at ω = 3.43 moving from the resonance region of the
elastic system.

A similar behavior is observed for deep trusses when considering elasto-
plastic behavior (Fig. 3.22 for α = 1.2). However, as η tends to zero, the
material nonlinearity has a more dominant influence on the structural response
as expected.
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Figure 3.19: Bifurcation diagrams for a shallow truss with α = 8.0 and
increasing values of the load magnitude pz, considering an elasto-plastic
material with η = 0.30.
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Figure 3.20: Bifurcation diagrams for a shallow truss with α = 8.0, pz =
0.04 with elasto-plastic behavior and different values of the strain hardening
parameter η.
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Figure 3.21: Bifurcation diagram for a shallow truss with α = 8.0, pz = 0.04
and η = 0.00 in a broader range of the frequency domain.

-2.00

-1.50

-1.00

-0.50

+0.00

+0.50

+1.00

+1.50

+2.00

+2.50

+3.00

+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8

 z‾

 ω‾

Increasing Decreasing

+1.30

+1.40

+1.50

+1.60

+1.70

+1.80

+1.90

+2.00

+2.10

+2.20

+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8

 z‾

 ω‾

Increasing Decreasing

(a) η = 0.00 (b) η = 0.05

+1.30

+1.35

+1.40

+1.45

+1.50

+1.55

+1.60

+1.65

+1.70

+1.75

+1.80

+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8

 z‾

 ω‾

Increasing Decreasing

+1.10

+1.20

+1.30

+1.40

+1.50

+1.60

+1.70

+1.80

+0.2 +0.4 +0.6 +0.8 +1.0 +1.2 +1.4 +1.6 +1.8

 z‾

 ω‾

Increasing Decreasing

(c) η = 0.15 (d) η = 0.30

Figure 3.22: Bifurcation diagrams with α = 1.2, pz = 0.08 and different values
of η.

Figure 3.23 shows the elasto-plastic phase planes for the bifurcation
diagrams displayed in Fig. 3.21 as the excitation frequency increases and
decreases in the main resonance region for ω = 0.8 and four selected values of
the strain hardening parameter η. These results illustrate the influence of the
strain hardening parameter on the transient and steady state responses. For
η = 0, the plastic attractor is continuously moving with the evolution of the
accumulated plastic deformations. For η = 0.05, two separate attractors are
observed and as η further increases start to approach one another.
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Figure 3.23: Elasto-plastic solutions for α = 1.2, pz = 0.08 and ω = 0.8.

3.10
Influence of the choice of the initial conditions

The elasto-plastic attractors depend on the load time-history (as shown
earlier) and initial conditions. The focus is shifted on the latter in this Section.
To illustrate the influence of the initial conditions on the transient and steady
state vibrations of the elasto-plastic shallow pyramidal truss module, the apex
node displacement time histories for α = 8.0, fixed ω = 0.8, fixed pz = 0.04
and η = 0.00 are investigated using different initial values of the vertical
displacement.

Some of the obtained results are shown in Fig. 3.24. It is observed
that, depending on the initial conditions, the truss vibrates around different
equilibrium points. Due to the accumulated plastic deformations the attractor
moves along the z axis, as already exemplified in the preceding bifurcation
diagrams.

3.11
Conclusions

The dynamic nonlinear analyses of shallow and deep bistable pyramidal
truss modules were carried out with emphasis on their nonlinear vibrations
and instabilities, considering geometrical nonlinearities and elastic and elasto-
plastic material behaviors. Two key questions were investigated: the influence
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Figure 3.24: Influence of the initial conditions on the transient and steady state
elasto-plastic nonlinear vibrations of the truss under harmonic load (α = 8.0,
ω = 0.8 and pz = 0.04).

of the adopted strain measures (QSM and LSM) and the influence of the
material constitutive law on the nonlinear dynamic response of the pyramidal
truss. The logarithmic strain measure was better suited to represent the
structural behavior in the numerical simulations (as seen in chapter 2),
specially when elasto-plastic deformations are considered and although more
complex, should be used when possible.

An original closed form expression of the phase space for the unloaded
elastic symmetric system was developed and investigated, the boundaries of the
pre-buckling and post-buckling wells were determined. The non-dimensional
minimum energy levels required to cross the boundaries and initiate the large
cross-well motion of the system were determined.

Using the developed FE software, the nonlinear oscillations and dynamic
instabilities of the pyramidal truss under vertical harmonic excitation were
investigated through bifurcation diagrams of the Poincaré map and phase-
space projections of the relevant attractors.

A parametric analysis was conducted to study the influence of the
truss geometry and strain hardening parameter. The complex topology of the
bistable truss potential energy was observed to result in coexisting solutions
in the main resonance region, including in-well and cross-well periodic and
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chaotic attractors. For deep pyramidal trusses with a high height/base ratio
(α) the strain measure has a considerable influence on the dynamic response
and leads to cross-well solutions for different dynamic load levels.

The influence of static preload was investigated and considerably different
bifurcation sequences and chaotic behavior was observed. Its effect may have
to be considered in the dynamic analyses of pyramidal trusses as a function of
its magnitude.

The dissipation of energy in the plastic deformations was shown to dra-
matically influence the dynamic response of shallow and deep systems, elimi-
nating the its chaotic behavior and leading to smaller oscillation amplitudes.
When material hardening is considered the structural system exhibits a more
complex response, including multiple period doubling and dynamic jumps. The
elasto-plastic deformations of the material should be included in the analyses
and may be necessary for an accurate dynamic design.

Energy dissipation through friction or use of complaint, energy absorbing
elastic materials could attenuate the chaotic motions of the system, making the
design more straightforward. In future works this effect could be investigated.
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4
Computational modeling of bistable deployable structures

4.1
Outline

The 3D deployable frames studied in this work are structures composed
of elastic beam elements connected by complex joints. During transformation
a controlled, desired snap-through allows the instantaneous stabilization of
the structure in an open and in a closed, compact configuration. To ensure
that the transformation is reversible the beams deformations are restricted to
the elastic domain. The mechanics of the transformation is highly nonlinear,
since it relies on finite rotations of the structural elements. It is strongly
influenced by geometrical features required for a manufacturing-ready design,
such as the finite size of structural elements and sufficient spacing between
the beams. These features are generally disregarded in the usual wireframe-
based design, but they are taken into account in this work by applying a
tailor-made corotational 3D joint finite element, developed to incorporate
naturally finite joint size, finite nonlinear joint stiffness and friction effects.
The formulation of the proposed joint FE is presented and the performance of
the numerical implementation is verified using computational benchmarks. The
joint FE is then applied to the numerical investigation of the transformation
response of bistable deployable structures from a single module case to large,
complex structures. Among other findings, it is shown that the incorporation
of finite joint size and beam spacing in the numerical model leads to a different
snap-through mechanism that significantly reduces the peak force required for
transformation, which could be a basis for future design strategies. Additionally
the performance of structures applying the bistable structural pattern on the
whole structure or following an entirely modular design (interconnected single
modules) is also compared, as a function of the structural size.

The Chapter is organized as follows: Following an introduction in Sec.
4.2, the 3D corotational joint finite element formulation is presented in Sec.
4.3. Computational developments are validated through benchmark examples
in Sec. 4.4. The transformation behavior of a bistable deployable module is
investigated in details in Sec. 4.5. The transformation load vs displacement
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curves are analyzed and the effects of the joint friction, hub size, beam width
and joint dimensions are assessed. Section 4.6 is dedicated to the analysis
of more complex bistable deployable structures formed by the assembly of
deployable modules. Finally, in Sec. 4.7, conclusions and suggestions for future
work are given. 1

4.2
State of the art

Deployable scissor structures are space frames consisting of straight
elastic beams that are connected by complex joints, forming a compact
bundle in the closed configuration that can be unfolded into a large, load
bearing structure. Their major advantages are the small volume they occupy
during storage and transportation, the ease and speed of erection, and their
reusability. Due to these advantages, they offer possible alternatives for a wide
range of civil engineering applications such as emergency shelters, exhibition
and recreational structures.

Transformable scissor structures for aerospace applications have been
studied in the literature [94, 95], considering for instance their dynamic
behavior [96, 97, 98]. While the concept of transformation is similar, due to the
difference in size, manufacturing tolerances and loading conditions, i.e. need of
taking into account gravity in the deployed configuration [99], the findings from
this field are not directly applicable to civil engineering structures. Without
the intention of constituting an exhaustive list, several recent efforts for civil
engineering applications of deployable structures can be referred to. Alegria
Mira et al. [18] studied a deployable scissor arch as an emergency shelter
and Van Mele et al. [100] investigated scissor-hinged retractable membrane
structures. For an extensive review on deployable structures, the interested
reader is referred to Fenci and Currie [101].

The focus of the present work is a specific type of deployable structures,
in which intended geometric incompatibilities between the members are in-
corporated as a design strategy to instantaneously achieve structural stability,
i.e. a ready-to-use service state. During transformation these geometric in-
compatibilities lead to compression and bending of the beams, resulting in a
controlled structural snap-through. Such structures are referred to as bistable
deployable structures, because of their two stable states: folded and deployed
[102]. In spite of the advantages of bistable scissor structures, few have suc-

1The contents of Chapter 4 are a convolution of a manuscript submitted for publication
to Mechanical Systems and Signal Processing.
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cessfully been built because of the complexity of their behavior and of their
design process that requires advanced computational modelling [21].

A comprehensive analysis of the transformation of 3D bistable deploy-
able structures must include several nonlinear effects and their appropriate
treatment in a computational solution procedure (geometric nonlinearity, fric-
tion and snap-through). In these structures, revolute joints define the con-
nections between beams and their relative movement generates friction that
can considerably increase the load required for transformation [22]. During
the transformation, the beams and joints are subjected to large displacements
and rotations and their motion is composed of a rigid body part and straining
(since the elements bend and buckle) that has to be appropriately described
in a numerical model. Structural joints are used in the beam-to-beam connec-
tions, as well as in the hubs at which more than two beams meet. For the sake
of simplicity they are most often considered in numerical models as rigid links
with zero compliance in the constrained directions [103]. They can however be
attributed a finite stiffness to, which was shown to be beneficial to compen-
sate for possible geometrical manufacturing tolerances [21]. The choice of the
joint stiffness model obviously influences the structural deformation and the
load distribution. Considering the complexity of these nonlinear effects and
their interaction, computational modeling gives a useful contribution to the
understanding and quantitative prediction of the transformation behavior of
bistable deployable structures and is a basis for establishing rigorous design
strategies.

The bistable deployable structures studied in this contribution were first
proposed and investigated by Gantes et al. [102]. Recently Arnouts et al. [21]
further investigated this class of deployable structures taking geometrical im-
perfections into account that naturally appear during manufacturing (uncer-
tainty on the beams length, eccentricity of the pivot points, hinge stiffness and
misalignment). In the works above the transformation and structural response
in the deployed configuration were obtained using commercial finite element
packages that are usually limited to pre-coded features that may not corre-
spond to the complete set of required numerical ingredients. To the author’s
best knowledge there are no experimental works in the literature regarding
this type of bistable deployable structures.

In the present work it is shown that the behavior of bistable scissor
structures is also strongly influenced by geometrical features that need to
be incorporated for a manufacturing-ready design, such as the finite size of
structural elements and sufficient spacing between the beams. These features
are generally disregarded in the usual wireframe-based design and numerical

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Chapter 4. Computational modeling of bistable deployable structures 103

investigation, except for the hub size [104, 21]. Here, a more complete set
of ingredients is considered by applying a tailor-made corotational 3D joint
finite element to the modelling of bistable deployable structures, developed
to incorporate naturally finite joint size, finite nonlinear joint stiffness, beam
spacing and friction effects. The development of such a 3D hinge finite element
dedicated to deployable structures and the computational study considering
all these effects are unprecedented and original to the author’s best knowledge.

To ensure capturing a complex nonlinear structural behavior, several au-
thors proposed numerical developments of interest for deployable structures.
Crisfield [105], Pacoste and Erikkson [106] and Battini and Pacoste [6] de-
veloped 3D corotational beam formulations and applied them to investigate
the instability of 3D frames. The computational modeling of joints has been
treated in the literature in a number of different ways. Nikravesh and Chung
[107] and Sugiyama et al. [108] used nonlinear constraints coupled with the
equilibrium equations, to include the contribution of the joints. Jelenic and
Crisfield [109] used nonlinear ’master-slave’ relationships to represent the joint
connecting the nodal degrees of freedom. Geradin and Cardona [66] consid-
ered both nonlinear constraints and small local deformations in the modeling
of different types of joints. These approaches consider that the joints have an
infinitesimal size (i.e. geometrically reduced to a single point) and are either
rigid or have a linear stiffness, and so are not adapted to a comprehensive
analysis of deployable scissor structures with finite stiffness.

The current work aims at combining a set of ad hoc numerical ingredients
in the modeling effort of the transformation of bistable deployable structures,
giving a contribution to the state of the art both from a computational develop-
ment as well as an application point of view. The finite joint size and the beam
thickness, the nonlinear elastic finite stiffness of the joints as well as friction
are incorporated in the structural model and their influence and interactions
are investigated. Different large bistable deployable structures are studied us-
ing the developed finite element, applying the bistable structural pattern on
the whole structure (single built approach) or following an entirely modular
design (interconnected single modules), their transformation performance as a
function of their size is compared.

4.3
Corotational 3D joint finite element

Joints are mechanisms present in the connection of two beams that con-
strain their relative motion through their constitutive behavior and dimensions.
Figure 4.1 shows a simple hinge joint, separating the beam midaxes by a dis-
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tance s and allowing their relative rotation θ around a given axis perpendicular
to the theoretical common plane of the beams.

sθ

Figure 4.1: A finite size hinge joint connecting two beams (s > 0).

During transformation (folding and unfolding), the joints of bistable de-
ployable scissor structures are subjected to large displacements and rotations.
In deployable scissor structures, as the connected beams bend and buckle, the
axis of each revolute joint changes direction considerably, which needs to be
taken into account thoroughly in a numerical model. In the case of flexible
joints, the relative motion of the connected nodes deforms the joint material
and the rotation around the joint axis creates a friction resistance, influencing
the load distribution in the connected beams and the overall behavior of the
structure. The appropriate computational treatment of such joints must then
include these geometric nonlinear effects and the corresponding constitutive
behaviors.

Joints are usually treated as dependencies and/or nonlinear constraints
that nodal displacements and rotations have to respect, together with the
system of nonlinear equilibrium equations ([109], [107], [108]). In another
approach, the joint can be treated as a finite element, combining relative
displacements and rotations of the nodes with the joint constitutive relations,
as contributions to the system internal force vector and stiffness matrix [66],
leaving more flexibility in the possible constitutive relationships.

In the present work, a finite element formulation is introduced and used
to represent the joints in the computational model of bistable deployable
scissor structures. The formulation makes use of a corotational system and
considers the joint complex constitutive behavior, including friction and finite
dimensions which is of fundamental importance for an accurate analysis of
bistable deployable scissor structures (Section 4.5). Local deformations in the
beams, e.g. due to very low wall thickness, are not incorporated in the present
model.
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When dealing with large displacements and rotations in finite element
formulations, it is beneficial to adopt a corotational methodology. This consists
in defining a local coordinate system that follows the finite element rigid body
motion, and hence, with respect to this system, only the part of the motion
that generates deformations is measured. In this procedure, the movement
is brought to the local system uncoupled from rigid body motion, and the
strains, stresses, forces and stiffness are computed in this corotational frame.
These local quantities are returned to the global structural coordinate system
through a transformation, where the equilibrium of the structure is verified.

This split of the kinematics is particularly useful because it separates the
geometric nonlinearity from the local nonlinear material behavior. This allows
taking advantage of the high performance features of standard finite element
formulations, such as the interpolation functions in the local frame, while
considering the rigid body large displacements and rotations in the element.
The present joint formulation is coupled to a corotational beam formulation
that has been implemented but is not treated in this paper to keep focus on the
novelties. The main equations of the beam formulation are given in Appendix
C.

4.3.1
Corotational kinematics

The proposed joint finite element is composed of two nodes, separated by
a distance s, corresponding to the beam midaxis interdistance of the beams it
connects. The two joint nodes have initial coordinates Xa and Xb and the joint
has an initial triad si associated to it. If the distance between the two nodes
s is not null, then s3 is chosen in the direction of the line that connects the
two nodes, otherwise this direction is provided as an additional input data. In
both cases, s1 is arbitrarily selected in the plane normal to s3 and s2 = s3× s1.
In the current configuration, the two connected nodes are subjected to the
global translations ua and ub and rotation tensors Ra and Rb, translating to
the positions xa and xb and rotating the initial triad si to the nodal triads µi
and ξi, respectively (Fig. 4.2). From Eq. (A-5):

µi = Ra · si (4-1)

ξi = Rb · si (4-2)

Based on the 3D rotation description given in Appendix A, from Eq.
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(A-9), the rotation tensors Ra and Rb may be written as:

Ra = µTi · si (4-3)

Rb = ξTi · si (4-4)

Setting µi as the local triad, the relative rotation tensor R rotates the
local system to the triad ξi:

R = Rb ·RT
a = ξi · µTi (4-5)
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Figure 4.2: Corotational joint motion and degrees of freedom.

Setting xa as the origin of the local system, the relative displacement
(translation) components ui are:

ui = µTi · (xb − xa)− sTi · (Xb −Xa) (4-6)

With help of Eqs. (A-12), (A-13) and (A-14), the relative rotation
direction nr, the rotation angle θr and the rotation components θi are given
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by:

nr = µi × ξi
2 sin(θr)

(4-7)

θr = arccos
[1
2
(
ξTi · µi − 1

)]
(4-8)

θi = θr

2 sin(θr)
(
ξTj · µk − ξTk · µj

)
(4-9)

4.3.2
Internal force computation

In this Section the chosen joint constitutive relationships are presented
(4.3.2.1). The local internal forces are computed making use of them and
transformed back to the global set of axes (4.3.2.2).

4.3.2.1
Constitutive relations

The studied joint is shown in Fig. 4.3 and the design parameters and
mechanical components are illustrated in Fig. 4.4. The local forces ni and
moments mi energetically conjugate through the virtual work variation δU

to the relative displacement (translation) δui and rotation δθi variations,
respectively, are computed through the joint constitutive relations. The triad
si is defined so that s3 corresponds to the hinge initial axis direction and s1

and s2 are in the plane normal to s3. The central pin has a radius rh. A spacer,
with width sh, is located in the hinge center in order to avoid contact between
the beams. There is a compliant nonlinear elastic cylindrical layer inside the
case, with width wh and thickness th, that is directly connected with the joint
out-of-plane motion allowing reversible relative displacements and rotations.

Several deformation modes of this joint assembly can be identified, as
described in the following. The relative translation in the axis current direction
u3 generates a shearing deformation in the elastic layer and an associated
resisting force n3 (Fig. 4.5). Assuming a small relative displacement u3 and
hence an elastic linear behavior with stiffness kn3 , the hinge axial force can be
obtained as:

n3 = k
n

3u3 (4-10)

The relative rotation in the axis direction θ3 generates a friction resistant
moment m3 in the axis current direction. The friction is considered here
through an elastic-plastic model (Fig. 4.6). The relative rotation θ3 is split
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Figure 4.3: Hinge joint connecting two beams (3D representation).
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(a) cut view
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Figure 4.4: Hinge detailed description.

into an elastic θe3 and a plastic θp3 part:

θ3 = θ
e

3 + θ
p

3 (4-11)
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Figure 4.5: Hinge deformation due to the axial relative motion (cut view).
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Figure 4.6: Hinge moment on the axis direction.

The axis moment m3 is related to the rotations through an elastic
modulus ke3 as:

m3 = k
e

3θ
e

3 = k
e

3

(
θ3 − θ

p

3

)
(4-12)

This moment is also constrained to a yield curve fp, which is a function
of the initial yield moment my, the plastic modulus kp3 and the hardening
parameter αp according to:

fp = |m3| −
(
my + k

p

3αp
)
≤ 0 (4-13)

The plastic rotation θ
p

3 and the hardening parameter αp are connected
as:

θ̇
p

3 = sign(m3)α̇p (4-14)

In a solution step n + 1, given θ3,n+1, θ
p

3,n and αn, the new plastic state
θ
p

3,n+1 and αn+1, and the axis moment m3,n+1 and stiffness km33,n+1, can be
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obtained following a standard return mapping routine [110]. The current plastic
state θp3,n and αn is stored in each joint as history variables. In this work the
frictional behavior of the joints is restricted to a perfect plastic model, i.e.
my = cte in the subsequent simulations.

The elastic layer acts in such a way that, in the beginning, when the
triads si, µi and ξi are aligned, it offers an initial rotational stiffness km0 in
the plane normal to the joint axis formed by s1 and s2. As a relative rotation
perpendicular to the current axis (θ1 and θ2) takes place, the elastic nonlinear
layer starts deforming (Fig. 4.7), increasing its stiffness. For a limit rotation θl,
corresponding to the elastic layer material maximum deformation, the stiffness
k
m

α and resisting moment mα tend to infinity. This means that, the relative
rotations in this plane are restricted to |θα| < θl. The moments mα and
rotational stiffness kmα are described here by a cutoff model written as (see
also Fig. 4.8):

mα = 1
2k

m

0 θl ln
(
θl + θα

θl − θα

)
(4-15)

k
m

α = ∂mα

∂θα
= k

m

0

 θ
2
l

θ
2
l − θ

2
α

 (4-16)
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θα/2θα/2
sh

rh

whwh

Figure 4.7: Hinge deformation due to relative rotation (cut view).

Analogously, the elastic layer can also deform due to the relative transla-
tions uα (Fig. 4.9) with an initial stiffness kn0 in the original configuration. The
translational resisting force nα and stiffness knα tends to infinity as the relative
translation uα approaches the limit displacement ul, associated to an allowed
maximum deformation. This constrains the relative translations to |uα| < ul.
The force nα and the translational stiffness knα are described by a cutoff model
as:

nα = 1
2k

n

0ul ln
(
ul + uα
ul − uα

)
(4-17)
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Figure 4.8: Hinge moment perpendicular to the axis.
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Figure 4.9: Hinge deformation due to relative motion (cut view).

4.3.2.2
Local to global internal forces

The joint local internal force is transformed to the global structural axes
by equating the virtual work in both systems. From Eq. (4-6) and (4-9), the
variation of the relative rotations δθi and displacements δui components are
given by:

δθi = qTi · (δωb − δωa) (4-19)

δui = µTi · (δxb − δxa) + wT
i · δωa (4-20)

Taking the increment of the displacement ∆ (δui) and rotation ∆
(
δθi
)
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variation components results in:

∆ (δui) = δωTa · µ̂i · (∆xb −∆xa)− . . .

− (δxb − δxa)T · µ̂i ·∆ωa + . . .

+ δωTa · (x̂b − x̂a) · µ̂i ·∆ωa (4-21)

∆
(
δθi
)

= (δωa − δωb)T ·Qa
i ·∆ωa − . . .

− (δωb − δωa)T ·Qb
i ·∆ωb (4-22)

In the above equations, the rotation gradient qi and translation gradient
wi, and the rotation hessians Qa

i and Qb
i , are given by:

wi = µi × (xb − xa) (4-23)

qi = grθinr + f r
(
ξj × µk − ξk × µj

)
(4-24)

Qa
i = gr

(
n · qTi + qi · nTr − θiNa

)
+ . . .

+ hrθinr · nTr + f r
(
ξ̂j · µ̂k − ξ̂k · µ̂j

)
(4-25)

Qb
i = gr

(
n · qTi + qi · nTr − θiNb

)
+ . . .

+ hrθinr · nTr + f r
(
µ̂k · ξ̂j − µ̂j · ξ̂k

)
(4-26)

Where the following variables are introduced:

f r = θr

2 sin(θr)
(4-27)

gr = 1
θr
− cot(θr) (4-28)

hr = 1− 2
θr

(
1
θr
− cot(θr)

)
(4-29)

Na = cot(θr)nr · nTr + ξ̂i · µ̂i
2 sin(θr)

(4-30)

Nb = cot(θr)nr · nTr + µ̂i · ξ̂i
2 sin(θr)

(4-31)

In the particular case where θr → 0 the above expressions become
indefinite, and so their limit is used in place:

qi =
(
ξj × µk − ξk × µj

)
/2 (4-32)

Qa
i =

(
ξ̂j · µ̂k − ξ̂k · µ̂j

)
/2 (4-33)

Qb
i =

(
µ̂k · ξ̂j − µ̂j · ξ̂k

)
/2 (4-34)

The variation of the virtual work δU can now be expressed in terms of
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the local and global systems:

δU = niδui +miδθi (4-35)

δU = δxTa · na + δωTa ·ma + . . .

+ δxTb · nb + δωTb ·mb (4-36)

Therefore, the internal force f may be obtained combining the equations
above with Eqs. (4-19) - (4-20), as:

na = −niµi (4-37)

nb = +niµi (4-38)

mb = +miqi (4-39)

ma = −miqi + niwi (4-40)

Note that as the origin of the local system is set in xa and a finite joint
size is considered (s = ‖xb − xa‖ > 0), the eccentricity of the nodal force nb
acting on the opposing node generates an additional term in the moment ma

acting on the base node.

4.3.3
Derivation of the consistent tangent stiffness

The consistent tangent stiffness is required to ensure a quadratic conver-
gence rate of the Newton-Raphson iterations of the solution procedure. The
joint coherent tangent stiffness K can be obtained expressing the equality of
the increment of the virtual work ∆ (δU) in both the global and local systems:

∆ (δU) = δdT ·K ·∆d (4-41)

∆ (δU) = k
n

ijδui∆uj + k
m

ij δθi∆θj + . . .

+ ni∆ (δui) +mi∆
(
δθi
)

(4-42)

With, knij = ∂ni/∂uj and k
m

ij = ∂mi/∂θj. Combining the equations above
with Eqs. (4-19) - (4-20) and (4-21) - (4-22), the joint stiffness K can be
obtained as:

K =


K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

 (4-43)

K11 = K33 = +knijµi · µTj (4-44)
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K13 = K31 = −knijµi · µTj (4-45)

K32 = +knijµi ·wT
j − niµ̂i (4-46)

K23 = +knijwi · µTj + niµ̂i (4-47)

K12 = −knijµi ·wT
j + niµ̂i (4-48)

K21 = −knijwi · µTj − niµ̂i (4-49)

K24 = −kmijqi · qTj −miQb
i (4-50)

K42 = −kmijqi · qTj −miQa
i (4-51)

K44 = +kmijqi · qTj +miQb
i (4-52)

K34 = K14 = K43 = K41 = 0 (4-53)

K22 = +knijwi ·wT
j + k

m

ijqi · qTj + . . .

+ ni (x̂b − x̂a) · µ̂i +miQa
i (4-54)

In the above equations, the terms involving the local stiffness knij and k
m

ij

represent the material stiffness, while the terms involving local forces ni and
moments mi represent the geometric stiffness. As expected, the material part
is related to the deformation of the joint and preserves the symmetry of the
local stiffness knij and k

m

ij . However, the geometric part is related to the rigid
body motion of the joint and is not symmetric. This is associated to the lack
of commutation property of 3D rotations.

4.4
Validation of the formulation

4.4.1
Incorporating friction

In order to validate the friction model and the large rotations implemen-
tation, the joint formulation (and the beam formulation as given in Appendix
C) are applied to a single scissor-like element shown in Fig. 4.10. Considering
the beams to be rigid with a length 2L, having no separation of the midaxes
(s = 0) and a perfect plastic frictional behavior of the hinge (ke3 ≈ ∞ and
k
p

3 = 0), with yield moment my, the system response may be obtained from
equilibrium considerations as:

P (θ) = my

L
sec

(
θ

2

)
(4-55)

In the numerical model, the beams have length L = 1 m, are made of
steel with elastic modulus E = 200 GPa and Poisson’s ratio ν = 0.30, with
a rectangular cross section with 4 cm height and 1 cm width. The joint yield
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Figure 4.10: Scissor-like element opening with lateral force.

moment is my = 1 Nm and the rotational stiffness are ke3 = 100 kNm/rad. A
value of kp3 slightly superior to zero was taken to ease the convergence of the
computation.

Starting from a closed module (θ = 0), the yield moment my generates
a friction resistance and a force P (0) = my/L has to be applied to initiate
the motion. As the module opens, the vertical distance between the joint and
the load application point decreases and a higher force P (θ) is required to
equilibrate the friction moment my. The numerical results, with one element
per beam half length, are favorably compared with the analytical solution in
Fig. 4.11.
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Figure 4.11: Scissor-like element equilibrium path.
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4.4.2
Rotational flexibility

The rotational flexibility perpendicular to the joint axis and the elastic
nonlinear behavior of the hinge layer are now validated applying the joint
element to the two beams system shown in Fig. 4.12a. The beams are
considered as rigid, meaning that the hinge nodes relative rotation θ is a
direct consequence of the compliance of the elastic layer, when subjected to
the torsion moment m. From equilibrium considerations, the system response
may be stated as:

m = 1
2k

m

0 θl ln
(
θl + θ

θl − θ

)
(4-56)

x

y

z
m, θ

L L

(a) torsion moment

f, d

x

z

y
f, ds

(b) axial force

Figure 4.12: Two beam hinged system.

In the computation, the beams have a length L = 1 m and are made
of the same material and cross section as before. The joint rotational initial
stiffness is km0 = 1 Nm/rad and the limit rotation is θl = 10◦ (π/18 rad).

With the deformation of the elastic layer, the applied torque f increases,
tending to infinite as the rotation d approaches the limit θl, as expected. The
numerical results, with one element per beam half length, match the analytical
solution in Fig. 4.13, where the dashed line represents the limit rotation θl.
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Figure 4.13: Equilibrium path of the two beam system subjected to a torsion
moment.

4.4.3
Translational flexibility

The translational flexibility in the elastic nonlinear behavior of the
hinge layer is now validated considering an axial force f and the generated
displacement d in the two beam system (Fig. 4.12b). Again, the beams are
considered rigid, meaning that the hinge nodes relative motion d is a direct
consequence of the elastic layer flexibility. From equilibrium considerations,
the system response may be stated as:

f = 1
2k

n

0ul ln
(
ul + d

ul − d

)
(4-57)

In the simulation, the beams have a length L = 1 m and are made of
the same material and cross section as before. The joint’s translational initial
stiffness is kn0 = 1 N / m and the limit translation is ul = 1 cm. The distance
between the beams midaxis are assumed to be s1 = 1 cm and s2 = 2 cm.

With the deformation of the elastic layer, the applied force f increases,
tending to infinite as the displacement d approaches the limit ul, as expected.
The numerical results, with one element per beam, match the closed form
solution in Fig. 4.14, where the dashed line represents the limit displacement
ul. The midaxis distance s creates an eccentricity of the force f and generates
a bending moment f × s in the beam on the left, which is captured by the
joint formulation in the numerical analysis.
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Figure 4.14: Equilibrium path of the two beam system subjected to an axial
force.

4.5
Transformation of a single flat bistable module

In this Section, the proposed corotational joint formulation is used to
analyse a square deployable module (Fig. 4.15). This module, has been studied
in many research contributions ([21], [102], [22], [111], [104], [112], [113] and
[103]) to investigate the behavior of bistable deployable scissor structures. The
influence on the transformation response of the self weight, joint friction and
stiffness, hub size, beam and spacer thickness (influencing s) are investigated
here. In all simulations, the beams remain elastic, ensuring the reversibility
of the transformation. The beams half-length are modeled with five finite
elements, which is a converged mesh. The cylindrical arc-length method (Sec.
D.1.1) is used as a continuation method in the static nonlinear solver.

(a) folded configuration (b) deployed configuration

Figure 4.15: Deployable module.

Material parameters that are different from the ones chosen in the
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previous literature are selected, aiming for a civil engineering application.
The inner and outer diagonal scissor-like elements are assumed to be made
of aluminum, with elastic modulus 70 GPa, Poisson’s ratio 0.35 and a specific
mass of 2700 kg/m3. All elements have a hollow rectangular cross-section, with
width 1 cm, height 4 cm and thickness 1 mm. The central and outer hubs,
connecting the beams, are modeled as a rigid grid of beam elements. Initially,
the joints are considered frictionless (my = k

p

3 = 0) and, a high rotational
(km0 = 100 kNm/rad) and translational (kn0 = 100 kN / m) stiffnesses are
chosen to model rigid links.

4.5.1
Geometric design

The deployable module dimensions are shown in Fig. 4.16. The model is
constructed using the geometric design principles proposed by [22], respecting
the condition of zero deformation energy in the deployed and folded configu-
rations. With the transformation, the volume occupied by the module in the
folded configuration is dramatically reduced if compared with the deployed
configuration. Here, the chosen basic dimensions are L = 1.00 m, h1 = 0.50 m
and h2 = 0.40 m. A hub size of r = 5 cm is selected to allow the connection of
all beam elements to the hub. As a new feature from the joint formulation, a
spacing s = 2cm representing the beams and joints thickness is introduced.

h1 h2

r

r r

r

L

P

P

s

s

x

yz

Figure 4.16: Diagonal scissor module dimensions and boundary conditions.

4.5.2
Transformation

The displacements and rotations in the middle node of the lower central
hub are fixed. A horizontal force P is applied in the diagonal direction of each
central node of the side hubs. The vertical translation of the central hub w
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is used as a measure of the efficiency of the transformation, since it is related
to the volume change between the configurations. In the numerical model,
each beam is discretized in four finite elements, which was verified to be a
converged mesh for the investigated problem. Initially, the hub size, as well
as the joint and beam thickness are neglected (r = s = 0), as in [22] for the
sake of simplicity and to define a reference case. However, in the present work
the module self weight is taken into account, since it is always present in civil
engineering applications.

Fig. 4.17 shows the equilibrium path during the deployment and folding
operations. Initially, in the deployed configuration, the self weight deforms
the module, generating a downward displacement of w = −0.08 cm. During
folding, the gravitational loads act against the deployment, with a limit load
P = 441 N at w = 2.90 cm. After the limit point, the system becomes unstable
and the load starts decreasing, vanishing at w = 14.8 cm. The loads keeps
decreasing, reaching a minimum load of P = −31.0 N at w = 21.3 cm further
followed by an increase until the folded state is reached. The results obtained
were compared with [21], yielding a good match.

For the sake of completeness, a simulation without gravity loads was also
performed to assess the influence of self weight on the transformation. The
curve neglecting gravity is close to the one taking self weight into account for
this light structure (with a total mass of 5.5 kg). The area between the curves
with and without gravity loads can be interpreted as the work done by those
forces. As gravity loads are always present in civil engineering applications, all
further results presented consider the self weight.

During the transformation (deployment or folding), the beams deform
and buckle, defining the structural response. As expected in an elastic re-
sponse, the deployment (D) and folding (F) processes follow the same equi-
librium path. The dashed line in all figures represents the ideal, theoretical
displacement corresponding to a fully folded configuration, determined using a
rigid wireframe model [22] for which the module fully closes into a line. During
the deployment, the inner and outer elements then buckle in-plane, i.e. in the
common plane of the connected beams.

4.5.3
Joints friction effect

To assess the influence of friction on the module response, the joints
friction moment limit my is chosen to vary from 1 Nm up to 5 Nm, corre-
sponding to approximately 1% of the peak bending moment in the beams
during the transformation (331 Nm), while still neglecting the hub size and
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Figure 4.17: Deployable module transformation response in the reference case.

beams thickness (r = s = 0). The chosen frictional behavior is rigid perfectly
plastic (ke3 = 1 kNm / rad and k

p

3 = 1 Nm/rad). Figure 4.18 shows the ef-
fect of the friction on the transformation response. As expected, while folding,
the maximum load required for the deployment increases with the friction
limit moment and all the curves with friction are above the frictionless result.
Analogously, during the deployment, the maximum load required for the de-
ployment increases in absolute value, as the friction moment acts against the
motion of the module. The differential area between frictional and friction-
less curves represents the work done by friction, dissipating energy during the
transformation. The load negative part of the equilibrium path reduces with
the presence of the friction moment during the folding process, and increases
during the deployment.
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Figure 4.18: Friction effect on the deployable module transformation.

The module behavior during deployment (D) and folding (F) is shown in
Fig. 4.19. As could be expected, without friction, the system response is elastic
and the deployment and folding paths are equal. With friction (my = 5Nm),
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the hinge axis moment always opposes the motion, and changes its sign in
the beginning of deployment, causing a load jump near the fully closed state
(dashed line).
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Figure 4.19: Deployable module loading and unloading with friction.

4.5.4
Hub size influence

The effect of the hub size (r) on the structural response is considered
separately in Fig. 4.20. Considering r 6= 0 the geometric design is altered
to respect the bistable condition, i.e. the structure is redesigned to the new
geometric condition. The peak load is increased to 678 N at w = 2.92 cm
for r = 5 cm, which represents an increment of 54% relative to the result
with r = 0 cm. This is associated to the fact that, considering the hub size
(r) with the other geometric parameters (L, h1 and h2) fixed, the length of
the inner and outer beams is reduced, increasing their resistance to the in-
plane buckling that controls the deployment. After the local maximum, the
load starts decreasing, vanishing at w = 16.9cm. Then, the load continues
decreasing until reaching a local minimum of P = −26.7 N at w = 23.1 cm.
After, the load starts increasing, but passes by another local minimum of
P = −44.9 N at w = 39.2 cm before vanishing as the module closes at
w = 39.6cm.

It is interesting to note that the hub size also reduces the displacement
w corresponding to the fully closed configuration, resulting in a less compact
folded configuration. Again, the inner and outer beam elements buckle in-plane
and, as could be expected, the deployment (D) and folding (F) processes follow
the same path. As a finite hub size is always present, being a requirement for
the assembly of the structural elements, all further results presented in this
work consider r = 5 cm.
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Figure 4.20: Hubs size effect on the module response.

4.5.5
Beam and joint thickness effect

As a new feature provided by the joint formulation, the effect of the
beam and joint thickness on the structural response is shown in Fig. 4.21.
Considering the beams thickness (s = 1 cm), the peak load is reduced to
245N at w = 1.11cm, only 36% of the one in Section 4.5.4. This significant
load decrease is explained by the out of plane buckling of the inner and
outer beam elements that generates a twist in the module. Bending moments
appear, generated by the axial forces in the connected beams due to the
midaxes separation s, changing the buckling mode from in-plane to out of plane
buckling. In some real life models, this effect is also observed, as illustrated in
Fig. 4.22. After the local maximum, the load starts decreasing, vanishing at
w = 17.1cm. As before, the load continues decreasing until reaching a local
minimum of P = −20.1N at w = 25.5cm. After, the load starts increasing,
but passes by another local minimum of P = −44.9 N at w = 39.2 cm before
vanishing as the module closes at w = 39.6cm. When considering the joint
spacer (s = 2 cm) the beams midaxes are further separated and the generated
eccentricity increases. The module is then more prone to the out of plane
buckling and the peak load is slightly reduced to P = 233 N at w = 1.60 cm.

As observed in the curves with s = 1 cm and s = 2 cm in Fig. 4.21,
the magnitude of the separation of the beams midaxis s have only a small
influence on the peak load of the transformation. Numerical simulations with
s = 0.1 cm provided a peak load of 257 N. This is due to the fact the a
small separation is able to activate numerically the out-of-plane buckling of
the beam elements, which is responsible for the harsh decrease on the peak
load. This result is similar to the bifurcation of the pyramidal truss module
studied in Sec. 2.4.3.2, where a small imperfection is added in the model in
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order to numerically capture the instability.
The system buckles in the elastic regime, therefore the deployment (D)

and folding (F) processes follows the same path. As the beams and joints
thickness are always present, all further results presented in this work consider
s = 2 cm, in addition to other effects. In some applications, the out of
plane buckling can be a desired effect since the peak load required for the
transformation decreases significantly and may eliminate the need of machine
driven transformation. Hence, the spacer size could be considered as a design
parameter.
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Figure 4.21: Beams and joints thickness effect on the module response.

4.5.6
Joints stiffness influence

The effect of the joints stiffness (km0 ) on the structural response is shown
in Fig. 4.23. With the out of plane buckling, the hinges are subjected to bending
moments and the joints stiffness has a significant impact on the maximum
load required for the transformation. A higher joint stiffness hinders while a
low joint stiffness promotes the out of plane buckling of the inner scissor-like
elements. For km0 = 2 kNm, the peak load is reduced to 194N at w = 1.79cm,
only 79% of the one observed in Section 4.5.5. After the peak load point,
all curves approach the one with km0 = 100 kNm as the module continues to
transform and the twist generated by the out of plane buckling is reduced. This
effect not only compensates for manufacturing imperfections, but is useful to
reduce the peak load required for the transformation and hence could be a
design parameter for future designs.
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(a) deployed

(b) intermediate

(c) real toy module during transformation

Figure 4.22: Deployable module configurations.

4.6
Transformation of flat bistable deployable structures

In this Section assemblies of the flat bistable deployable module analyzed
in the previous section are investigated to illustrate the nonlinear behavior of
more complex structures. The material, joints, cross section properties and
geometric design of the modules are the same as in Section 4.5. Initially, the
joints are considered frictionless. As verified in [21], the model choice of joints
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Figure 4.23: Joints stiffness effect on the module response.

as flexible elements partly accommodates the imperfections that the structural
system may exhibit.

Two types of assembly alternatives are adopted. In the first one the
modules are connected continuously one after the other, sharing edges (Fig.
4.24a). In the second one the modules are connected by plates (modeled here
by a rigid network) leading to a fully module-based structure (Fig. 4.24b). In
this case, the rectangular plates connecting the modules are considered to have
a size of 5 cm.

The inner scissor-like elements can be connected to the hubs according
to two configurations (Fig. 4.25). The first orientation (+) causes the module
beams and joints to be twisted in the positive z direction (Fig. 4.16) during
the transformation, while the second orientation (−) causes the twisting to be
in the opposite direction. When forming structural systems composed of 1D or
2D arrays of the deployable modules, the twisted orientation can be chosen to
be uniform or alternate along the structure (Fig. 4.26). During the numerical
simulations it was verified that in both cases the maximum bending moments
occurs in the inner diagonal elements of the modules. However, the alternate
approach results in lower bending moments acting on the connecting plates
(modular built) and hubs (single built), as the efforts on neighbor modules
tend to equilibrate with one another. Therefore, in the following numerical
simulations the alternate approach is used.

4.6.1
1D assembly

The simplest assembly of the deployable modules in terms of kinematics
is the line structure shown in Fig. 4.27. It consists of a linear array of modules.
The structure is supported on the bottom and on one side, while pushed (or
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Figure 4.24: Assembly alternatives in a 2 x 2 grid.
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Figure 4.25: Modules twist direction.

pulled) on the other extremity during the folding (or deployment) process.
Figure 4.28 shows the effect of the number of modules on the struc-

tural response for both single built and modular approaches. The horizontal
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Figure 4.26: Assembly twist alternatives in a 5 x 5 grid.

translation of the loaded hubs u is used as a measure of the efficiency of the
transformation. As expected, the number of modules has a small influence on
the peak load, as the line assembly transfers the efforts from one module to the
next like a set of springs connected in series. For the single built assembly the
peak load is 2.80 kN and for the modular assembly it is 3.28 kN (15% higher).
In both cases, the system is subjected to a lateral instability when 5 modules
are used, characterized by a small snap-back in the control displacement u and
leading to a non uniform deployed state of the modules during some stages of
the transformation. The first peak load (positive) occurs approximately for the
same displacement in all cases, while the second peak load (negative) position
varies as a function of the number of modules.

The single built approach results in lighter structural system, as there
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(a) folded (b) deployed

Figure 4.27: 1D assembly of the deployable modules.
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(b) Modular assembly

Figure 4.28: Number of modules influence on the 1D assembly.

are no connection plates and less structural elements are present, since the
modules share edges with each other. Also, the structure is more compact,
since the dimensions of the plates on the modular approach influences the
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size of the system in the folded configuration. However, the modular approach
resulting in an easier maintenance of the system as individual modules can be
replaced in case of damage or general malfunction.

4.6.2
2D assembly

The deployable modules are now assembled in a 2D array forming a
hanging wall (Fig. 4.29). The modules are fixed on one side and at the top,
with the gravitational loads acting downwards, while pushed (or pulled) on
the bottom during the folding (or deployment) process. The modular assembly
approach is applied.

(a) top view

(b) folded (c) deployed

Figure 4.29: 2D assembly of the deployable modules.

Figure 4.30 shows the effect of the number of modules on the structural
response. The vertical translation of the loaded hubs w is used as a measure of
the efficiency of the transformation. In this case, the number of modules has a
considerable influence on the peak load, as the modules interact not only with
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others in the same line series but also with those in parallel. For n = 1 unit the
peak load is 2.66 kN, while for n = 5 modules in each direction the peak load
reaches 18.52 kN. Once more, the system is subjected to a lateral instability
for n = 5 and the first peak load (positive) occurs approximately at the same
displacement in all cases, while the second peak load (negative) position and
magnitude varies as a function of the number of modules.
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Figure 4.30: Number of modules influence on the 2D assembly.

The influence of the joints friction on the structural response is shown
in Fig. 4.31, considering n = 2 modules in each direction. As for the single
modules, the joints friction moment limit my is chosen to vary from 1Nm
up to 5Nm with a rigid perfectly plastic behavior (ke3 = 1 kNm / rad and
k
p

3 = 1Nm/rad). As expected, the peak load increases with the friction limit
moment and all the curves with friction are above the frictionless result, as
the friction moment acts against the motion of the module. The load negative
part of the equilibrium path reduces with the presence of the friction moment
during the folding process, as a result of the work done by friction.
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Figure 4.31: Joints friction influence on the 2D assembly.
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The frictional effect could then be used on its own to stabilize the
structure at any given position with a well chosen friction moment, although
this would suppress the bistable nature of the structural behavior.

4.7
Conclusions

In the present chapter a spatial corotational finite element formulation
framework of beams and joints was developed for the nonlinear static analysis
of bistable deployable structures. The beam formulation in Appendix C consid-
ers small local deformations while retaining only the six essential deformation
modes in the local reference system. The joint formulation, is considered as a
special finite element, with flexibility and active contributions to the system
internal force vector and stiffness matrix. As a particular case of the latter,
the hinge formulation contains a deformable elastic layer and friction resistance
around the current axis direction, where constitutive equations were proposed
based on the material properties of its constituents. Both formulations can
handle arbitrarily large displacements and rotations, and were validated with
respect to benchmark examples.

The structural response of a deployable module, was studied in detail,
considering a number of nonlinear effects. First, the deployment behavior,
considering only the geometric nonlinearity was analyzed. A snap-through
phenomenon could be captured, together with two deformation and load
free configurations, characterizing the bistability of the system. The hub
size and the beams and joints thicknesses were then included, showing how
the eccentricities introduced cause the elements to buckle out of plane and
dramatically change the nonlinear response and peak loads. The self-weight
and the friction were shown to increase the required load to deploy the system.
For the friction effect, as energy dissipation occurs during the deployment,
the deployment and folding equilibrium paths are no longer the same. The
joints stiffness was shown to have a direct effect on the peak load of the
transformation.

Finally, more complex structures were modeled by the composition of
several modules. The 1D line and 2D hanging wall assemblies nonlinear
behavior were studied through static finite element analysis, highlighting the
similarities with the module behavior in the nonlinear response.

In future work, other classes of bistable deployable structures can be
studied making use of the beam and joint formulations developed here. In
bistable deployable structures is common to have a snap-through behavior
during the transformation, that could cause dynamic jumps, and so a dynamic
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nonlinear analysis would be necessary to evaluate the response of the system
for deployment safety aspects.
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5
Conclusions and future work

5.1
Conclusions

• Computational developments
In the present work, a spatial corotational finite element formulation

framework of truss (App. B), beam (App. C) and joint (Chap. 4) finite elements
was developed for the nonlinear static and dynamic analysis of a large span
bistable reticulated structures. The truss formulation considers finite strain
measures and an elasto-plastic constitutive law. The beam formulation takes
into account small local elasto-plastic deformations while retaining only the six
essential deformation modes in the local reference system. When the material
elasto-plastic constitutive behavior is considered, the beam cross section is
discretized into fibers. The joint finite element formulation is tailored to
bistable deployable structures and it incorporates finite stiffness and friction,
as well as finite size effects through active contributions to the system internal
force vector and stiffness matrix. All proposed computational formulations can
handle arbitrarily large displacements and rotations, and were validated with
respect to benchmark examples.

• Closed form expressions for the equilibrium path, natural
frequencies and critical points

Novel analytical solutions for the nonlinear behavior of pyramidal trusses
were proposed and validated for the nonlinear equilibrium paths, critical loads
and natural frequencies of single modules with emphasis on stability and
load carrying capacity considering both elastic and elasto-plastic behavior,
Eulerian buckling and the flexibility of the base nodes. Analytical expressions
in terms of the geometric and material parameters were obtained to define
what type of buckling occurs. The FE results were favorably compared with
the analytical results, validating the closed form approach. An original closed
form expression of the phase space for the unloaded elastic symmetric system
was developed and investigated, where the homoclinic orbits (boundaries of
the pre-buckling and post-buckling wells) were determined. When available,
closed form solutions are preferred in place of numerical ones due to its reduced
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computational time.
• Non-dimensional analyses of pyramid truss modules
A parametric analysis was carried out to study the influence of the

truss height to base ratio (depth parameter) on the structural behavior and
load carrying capacity of the system for each bifurcation phenomena. For
shallow structures snap-through buckling to the inverted position occurred. For
deep structures, however, the limit point and the truss lost stability through
unstable symmetric bifurcation. The ensuing unstable secondary elliptical
equilibrium path connects this critical point to its mirror inverted position.
This bifurcation is associated to an asymmetric buckling mode. Again after
reaching the bifurcation point the structure jumps to an inverted configuration.

• Influence of the adopted strain measure
The elastic and elasto-plastic structural response of the pyramidal truss

with two strain measures (quadratic and logarithmic) was investigated. For
deep systems, the strain in the elements are usually considerable and the
adopted strain measure has a large influence on the structural response. The
influence of the strain measure on the topology of the energy landscape was
analyzed. The conservative Hamiltonian system displays the same behavior in
the vicinity of the unloaded stable configurations but the differences increases
with the displacements and velocities, due to the differences in strains when
the truss bars are under increasing compression forces. The logarithmic strain
measure is usually considered in the elastic and elasto-plastic constitutive law
of metals and is recommended for the design of such structures, especially when
dealing with deep trusses (α < 10). The quadratic strain measure is applied in
most closed form expressions for its simplicity.

• Interactive buckling of the pyramidal truss modules
The influence of the interaction of snap-through instability, Eulerian

buckling and plastic deformations on the imperfection sensitivity and load
carrying capacity of the spatial truss was investigated using finite element
simulations, being an original contribution to the state of the art. The results
showed that in a wide range of the shallowness parameter interactive buckling
may occur, leading to further decrease of the load carrying capacity of the
spatial truss and so it must be included in the design of pyramidal trusses.

• Existence of multiple dynamic solutions
The complex topology of the bistable truss potential energy, which is a

function of the truss geometry and static preload, leads to coexisting solutions
in the main resonance region, including in-well and cross-well periodic and
chaotic attractors. For deep pyramidal trusses with a high height/base ratio
(α) the strain measure has a considerable influence on the dynamic response
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and leads to cross-well solutions for different dynamic load levels.
• Influence of the material elasto-plastic behavior
The inclusion of the elasto-plastic material behavior in the static and

dynamic analyses of pyramidal trusses constitutes one of the main originalities
of the present work. The plastic buckling was shown to considerably reduce
the load capacity of most metallic trusses compared to the elastic case. The
dissipation of energy in the plastic deformations was shown to dramatically in-
fluence the dynamic response, eliminating the its chaotic behavior and leading
to smaller oscillation amplitudes. When material hardening is considered the
structural system exhibits a more complex response, including multiple period
doubling and dynamic jumps.

• Features and applicability of the developed joint formulation
A spatial corotational finite element joint formulation framework was de-

veloped for the nonlinear static analysis of a special class of bistable deployable
structures. The formulation incorporates the joint finite size and contains a de-
formable elastic layer and friction resistance around the current axis direction.
The joint can handle arbitrarily large displacements and rotations, and were
validated with respect to benchmark examples.

•Transformation analysis of bistable deployable scissor modules
The structural response of a deployable module was carried out were a

snap-through phenomenon could be observed, together with two deformation
free configurations, characterizing the bistability of the system. The eccentrici-
ties introduced by the hub size and the beams and joints thicknesses was shown
to cause the elements to buckle out of plane and dramatically change the non-
linear response and peak loads. The self-weight and the friction were shown to
increase the required load to deploy the system. The energy dissipation during
the deployment, due to friction, causes the deployment and folding processes
to follow different equilibrium paths. The joints stiffness was shown to have a
direct effect on the peak load of the transformation.

• Static nonlinear analysis of large span pyramidal and deploy-
able structures

A parametric analysis of a large span curved structure composed of
several pyramidal truss modules was investigated. The structure exhibited
a bistable behavior except for small rise values. The upper limit point load
was observed to increase with the initial curvature, number of modules and
module height. More complex structures composed by the composition of
several deployable modules were also investigated. The 1D line and 2D hanging
wall assemblies nonlinear behavior was studied through static finite element
analysis. In both cases, similar trends were found as for single module cases.
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5.2
Future work

The theoretical and numerical studies carried out in this thesis clarify
the influence of bistable behavior on the static and dynamic nonlinear anal-
ysis of spatial reticulated structures. Although the examples are confined to
two significant geometries, the principles and concepts developed herein are
applicable to other space trusses.

The following topics which can be included in future works are of
importance:

• The mechanical properties of the joints connecting the beam elements
(finite size, flexibility and friction) may have a considerable influence on
the pyramidal truss load capacity and stability, inducing new buckling
modes. The developed joint finite element should thus be included in the
finite element simulations.

• The developed closed form expressions could be part of a macro finite
element formulation representing the behavior of a pyramidal truss
module, reducing considerably the computational cost required for the
analyses of large structural models.

• As civil engineering structures are usually subjected to dynamic loads
composed by a broad range of frequencies, a more realistic dynamic
analysis can be performed by considering different external excitations,
e.g. white noise with a variable magnitude.

• The computational results presented in this work can be further comple-
mented with experiments in the future.

• In the dynamic nonlinear analysis, continuation algorithms should be
included in the finite element software in order to obtaining the stable
and unstable paths through the use of Poincaré maps. This would allow
the characterizing the dynamic structural behavior between the jumps in
the bifurcation diagrams. Also the stability analysis using the eigenvalues
of the Floquet matrix will allow a clear definition of the bifurcation type
[114].

• The joints framework can be further improved considering a mean ref-
erence system between the nodes. This allows for a better representa-
tion of the relative rotations and deformation modes since the proposed
corotational system would not be attached to one node but move as a
combination of the kinematics of both nodes.
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• Usual guidelines on joint design in civil engineering applications could
be adapted to the proposed formulation, taking into account the elastic
layer flexibility.

• In bistable deployable structures is common to have a snap-through
behavior during the transformation, that could cause dynamic jumps,
and so a dynamic nonlinear analysis would be necessary to evaluate the
response of the system for deployment safety aspects.

• The joint mechanical properties may have a considerable influence on
the load carrying capacity and stability of deployable structures in the
service configuration (deployed) and it should be investigated, allowing
a more realistic design process.

• The investigation of more realistic large span structures, inspired from
built design should be carried out.
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A
Finite rotations

A.1
Rotations parametrization

Let us consider a triad {s1, s2, s3} defined as an orthogonal unitary base
of R3 oriented through the right hand rule. For any triad the following relations
are valid:

si · sTi = I (A-1)

sTi · sj = δij (A-2)

ŝi = sk · sTj − sj · sTk (A-3)

In the equations above, I is the 3 × 3 identity matrix and the sequence
{i, j, k} represents a cyclic permutation (Fig. A.1). The tensor n̂ = n× is the
skew-symmetric matrix obtained from the vector n by:

n̂ = n× =


0 −n3 +n2

+n3 0 −n1

−n2 +n1 0

 (A-4)

ij

k

−1

+1

+1 +1

Figure A.1: Cyclic permutation.

By applying a rotation, represented by the tensor R, to the original triad
si as (Fig. A.2), a new triad ti is formed:

ti = R · si (A-5)
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Initial
Configuration
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s2

s3

Current
Configuration

t1

t2

t3

R

RT

Figure A.2: Triad rotation.

As a pure rotation must preserve the length and angles between the
rotated vectors, we have:

tTi · tj = sTi ·RT ·R · sj = sTi · sj (A-6)

Since the initial triad si is arbitrary, the equation above implies that:

RT ·R = R ·RT = I (A-7)

This means that the rotation tensor R is orthogonal (R−1 = RT ) and,
pre-multiplying Eq. (A-5) by RT , the original triad can always be recovered
as:

si = RT · ti (A-8)

On the other hand, post-multiplying Eq. (A-5) by sTi , and with help of
Eq. (A-1), the rotation tensor R can be obtained as a function of the triads si
and ti:

R = ti · sTi (A-9)

From the orthogonality condition in Eq. (A-7), the rotation tensor R
only has three independent components, and hence, can be parameterized in
a number of ways [115]. Given a rotation angle θ and unit direction n, the
rotation tensor R may be written as a function of the pseudo-vector θ = θn
through the well know Rodrigue’s formula [116]:

R = exp(θ̂) (A-10)

R = cos(θ)I + sin(θ)n̂ + [1− cos(θ)] n · nT (A-11)
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The term pseudo-vector is used here because θ does not respect the
additive rule of vectors. In fact, if two consecutive rotations (R1,R2) are
applied in a triad, the resultant rotation R12 is, in general, not the addition
of the rotations (R12 6= R2 + R1), but R12 = R2 · R1. Also, in general, the
order of the rotations matter, that is: R12 = R2 ·R1 6= R1 ·R2 = R21. Planar
rotations (n1 = n2) are an exception where the additive and commutative
vector properties are valid.

Taking the skew-symmetric part and the trace of the rotation tensor R
in Eqs. (A-9) and (A-11), the rotation direction n and angle θ can be obtained
as:

n = si × ti
2 sin(θ) (A-12)

θ = arccos
(

tTi · si − 1
2

)
(A-13)

From the above equations, the rotation components θi = θT · si = θT · ti
are:

θi = θ

2 sin(θ)
(
tTj · sk − tTk · sj

)
(A-14)

A.2
Rotations variation

The virtual variation of the rotation tensor δR, with respect to the
current configuration, is important in the derivation of the finite element
equations and can be obtained from the orthogonality condition in Eq. (A-
7) as:

δR ·RT + R · δRT = 0 (A-15)

δR ·RT = −
(
δR ·RT

)T
(A-16)

In the above equations, and through the manuscript, δ(·) and ∆(·)
represents a virtual variation and an infinitesimal increment of a given quantity
with respect to the current configuration, respectively. The above equation
shows that the tensor δR ·RT is skew-symmetric and so, there is a variation
spin δω such that:

δR = δω̂ ·R (A-17)

Considering a fixed original triad si, Eqs. (A-5) and (A-17) gives the
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variation of the new triad δti as:

δti = δω × ti (A-18)

Also, the variation of the orthogonality condition expressed in Eq. (A-2)
gives:

δtTi · tj + δtTj · ti = 0 (A-19)

On the other hand, given the new triad variations δti, the variation spin
δω can be obtained combining the triad rules in Eqs. (A-2) - (A-3) with the
variations in Eqs. (A-18) - (A-19) as:

δω = 1
2 (ti × δti) (A-20)

It’s important to notice the difference between the virtual variation
spin δω and the rotation pseudo-vector δθ. It’s possible to show [116] that
δω = H · δθ, where:

H = I + 1− cos(θ)
θ

n̂ + θ − sin(θ)
θ

n̂2 (A-21)

For small rotations (θ ≈ 0) however, we have cos(θ) ≈ 1, sin(θ) ≈ θ and,
hence, H ≈ I. Analogously to the virtual variations, there is an infinitesimal
increment spin ∆ω such that, the correspondent increments of the rotation
tensor ∆R and of the new triad ∆ti, with respect to the current configuration,
are given as:

∆R = ∆ω̂ ·R (A-22)

∆ti = ∆ω × ti (A-23)

It’s convenient to work with the full tensor R, instead of the rotation
pseudo-vector θ [117]. In fact, a crucial issue of this parametrization is that,
from Eq. (A-21):

det(H) = 2
[

1− cos(θ)
θ

]
(A-24)

Hence, for θ = 2πp, with p ∈ N, H becomes singular [6]. This means
that, in a step n+ 1, given a finite increment spin ∆ωn+1 one would be unable
to compute the finite increment pseudo-vector ∆θn+1. In practice, we don’t
precisely obtain a singular correlation matrix Hn, but for θn near this critical
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values, Hn becomes ill conditioned, reducing the convergence rate or causing
the solution algorithm to fail in founding an equilibrium point [118]. Yet, to
preserve its orthogonality, the increment of the rotation tensor Rn+1 is done
using the finite version of Eq. (A-22):

Rn+1 = exp(∆ω̂n+1) ·Rn (A-25)
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B
Corotational truss finite element

A tri-dimensional corotational truss finite element, allowing the analysis
of spatial truss structures under arbitrarily large displacements and rotations,
is developed. The spatial corotational truss element (see Fig. B.1) consist of a
straight bar subjected to an axial force and connecting two nodes denoted
by (i, j), respectively. Considering the initial (Xi,Xj) and current (xi,xj)
configuration vectors defining the nodal positions, the initial and current
element lengths are given, respectively, by L = ‖Xj −Xi‖ and l = ‖xj − xi‖.

Figure B.1: Spatial truss element.

B.1
Corotational framework

In the initial configuration, the orientation of the bar is described by the
axial direction s1 = (Xj −Xi) /L and the cross section directions s2 and s3.
The position of a material point x0 is given by:

X = Xi + ξasa a = 1, 2, 3 (B-1)

X =
(

1− ξ1

L

)
Xi +

(
ξ1

L

)
Xj + ξαsα α = 1, 2 (B-2)

The parameter ξ1 varies along the element initial length and the param-
eters ξ2 and ξ3 map the cross section domain Ω with initial area A. In the
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current configuration, the bar element is subjected to a uniform stretch along
the principal directions λk. The orientation of the bar is described by the ax-
ial direction t1 = (xj − xi) /l and the cross section directions t2 and t3. The
position of a material point x is given by:

x = xi + λkξata a = 1, 2, 3 (B-3)

x =
(

1− ξ1

L

)
xi +

(
ξ1

L

)
xj + λrξαtα α = 1, 2 (B-4)

The axial stretch can be obtained as λ1 = l/L and, considering a
homogeneous and isotropic material, the cross section has a uniform transversal
stretch λr. These correspond to the principal stretches of the bar under axial
load. Considering dT =

{
xTi xTj

}
and the material specific mass ρ, the element

kinetic energy T is given by:

T =
∫ L

0

∫
Ω
ρẋTn · ẋndξ1dξ2dξ3 = ḋT ·M · ḋ (B-5)

Ignoring the cross section rotational inertia, the mass matrix M can be
obtained as:

M = ρAL

3

I 0
0 I

+ ρAL

6

0 I
I 0

 (B-6)

where I and 0 are the identity and zero 3× 3 matrices, respectively.
The strain field is constant over the element and is a function of the axial

stretch ε = ε(λ1) for an adopted strain measure. The energetically conjugated
stress is obtained for a given strain ε and plastic strain history εp through the
material constitutive law σ = σ(ε, εp). In the current configuration, the virtual
work, δU , can be written as:

δU =
∫ L

0

∫
Ω
σδεdξ1dξ2dξ3 = fT · δd (B-7)

where the variation of the strain δε is given by:

δε = 1
L

∂ε

∂λ1
δl = 1

L

∂ε

∂λ1
tT1 · (δxj − δxi) (B-8)

The element internal forces vectors vector f is then given by:

f = f

−t1

+t1

 (B-9)

where the axial force in the bar f is defined as:
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f = σA
∂ε

∂λ1
(B-10)

Taking the increment of the internal forces vectors vector f with respect
to the nodal positions d, the element stiffness matrix K can be obtained as:

K = ∂f
∂d

= k

+T1 −T1

−T1 +T1

+ f

ln

+P1 −P1

−P1 +P1

 (B-11)

where T1 = t1 ·tT1 , P1 = I−t1 ·tT1 are projection matrices and k is the element
local stiffness given by:

k = ∂f

∂l
=
∂σ
∂ε

(
∂ε

∂λ1

)2

+ σ
∂2ε

∂λ2
1

 A
L

(B-12)

The first term in Eq. (B-11), represents the element stiffness matrix,
related to the increment of deformations in the bar, while the second term
represents the geometric stiffness matrix, due to the large displacements and
rotations and the forces acting on the element.

B.2
Strain measures and material law

There is a large variety of strain measures in literature for finite strains
[119]. The finite strain theory deals with deformations in which the undeformed
and deformed configurations of the continuum are significantly different, as
in the case of elastomers and plastically-deforming materials. An admissible
generic strain measure ε(λ1) should respect the following constraints [120]:

ε(1) = 0 (B-13)
∂ε

∂λ1
> 0 (B-14)

lim
λ1→0

ε = −∞ (B-15)

lim
λ1→+∞

ε = +∞ (B-16)

Here, the bar element response is studied considering the quadratic, εq,
and logarithmic, εl, strain measures. They are energetically conjugated through
the virtual work δU with the second Piola-Kirchhoff stress and the Kirchhoff
stress, respectively. For the quadratic strain measure (QSM) εq the required
expressions for the computation of the element axial force (Eq. B-10) and
stiffness (Eq. B-12) are:

εq = λ2
1 − 1
2

∂εq
∂λ1

= λ1
∂2εq
∂λ2

1
= 1 (B-17)
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while for the logarithmic strain measure (LSM) εl the analogous expressions
are:

εl = ln(λ1) ∂εl
∂λ1

= 1
λ1

∂2εl
∂λ2

1
= − 1

λ2
1

(B-18)

The two strain measures are compared in Fig. (B.2). The elasto-plastic
behavior of the material is characterized by a hardening (or softening) consti-
tutive law (Fig. B.3). The plastic strain εp and hardening parameter ψ in the
current step, for a given set of material properties, namely the elastic modulus
E, the yield stress σy(ψ) and the plastic modulus K(ψ), can be computed by a
return mapping algorithm [110]. The stress σ and the element stiffness matrix
∂σ/∂ε are given respectively by:

σ = E(ε− εp) (B-19)

∂σ

∂ε
=

 E ψ̇ = 0
EK
E+K ψ̇ > 0

(B-20)

-4

-3

-2

-1

 0

 1

 2

 0  0.5  1  1.5  2

ε

λ

QSM LSM

Figure B.2: Quadratic and logarithmic strain measures.

When large elasto-plastic deformations are taken into account, it’s usual
to consider a multiplicative decomposition of the strain gradient [67]. However
this approach is equivalent to an additive decomposition of the strain into
elastic and plastic parts provided that only axial deformations are present and
the logarithmic strain measure is considered.

The adopted constitutive law is frequently used to relate the logarithmic
strain measure with the Kirchhoff stress for steels and other metals. The
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Figure B.3: Elasto-plastic constitutive law.

logarithmic strain measure complies with all the conditions in Eqs. (B-13)
to (B-16), while the quadratic one does not satisfy Eq. (B-15). Therefore,
although the quadratic strain measure provides a simpler model and allows
the derivation of some analytical results, the logarithmic strain measure is
more suitable for a realistic modeling of the elasto-plastic pyramidal truss
under large deformations, as expected in some bistable systems exhibiting
snap-through buckling and dynamic jumps between coexisting attractors. The
influence of the strain measure is particularly important in systems liable to
buckling where the constraint described by Eq. (B-15) plays an important role,
as will be shown thereafter.

B.3
Benchmarks

To test the developed finite element software, the present corotational
formulation is used in the analysis of the double pendulum model shown in Fig.
B.4 . In this example, the elements are subjected to large displacements and
rotations, which induce high geometric and inertial nonlinearities. The lengths
are l1 = l2 = 1m, the bar is made of a material with E = 200GPa and circular
cross section with diameter d = 1cm. The nodal masses are m1 = m2 = 1kg,
and the gravitational accelerations is g = 9.81m/s2. The double pendulum
equations of motion, considering rigid bars, are given by [121]:

mtl1θ̈1 +m2l2
[
cos(θr)θ̈2 − sin(θr)θ̇2

2

]
+mtf1 = 0 (B-21)

m2l2θ̈2 +m2l1
[
cos(θr)θ̈1 + sin(θr)θ̇2

1

]
+m2f2 = 0 (B-22)
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Figure B.4: Discrete elastic double pendulum.

In Eqs. (B-21) and (B-22), mt = m1 +m2, θr = θ2−θ1 and fi = g sin(θi).
The initial conditions are θ1 = π/2, θ2 = π and θ̇1 = θ̇2 = 0. In Fig. B.5,
the horizontal (ui) and vertical (vi) displacement components obtained with
the FE formulation are favorably compared with the response obtained by
the numerical integration of Eqs. (B-21) and (B-22). The nonlinear Newmark
method [116] is used for the time integration of the equations of motion in
both cases.
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Figure B.5: Time response of the double pendulum.
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C
Corotational fiber beam finite element

Figure C.1 shows the motion of a beam in the R3 space. The triad ea is the
canonical base of R3 and represents the global coordinates system, where the
contribution of all finite elements is added in order to obtain the equilibrium
equations. In its initial configuration, the beam element is assumed to be
straight and free of deformations, with nodal positions Xi and Xj. The beam
initial longitudinal axis is s1 and the cross section principal directions are s2

and s3. With the motion, the beam nodes translates to the positions xi and
xj. Each node α is subjected to a rotation Rα, and its nodal triad becomes rαa .
A local system is then adopted with its origin at xi and orientation given by a
triad ta, defined later. The beam current l and initial L lengths are given by:

l = ‖xj − xi‖ (C-1)

L = ‖Xj −Xi‖ (C-2)

e1

e2

e3

Xi

Xj

s1

s2

s3

xi

xj
t1

t2

t3

ri1

ri2

ri3

rj1

rj2

rj3

R0 Rj

Rr,Ri

Figure C.1: Corotational beam motion.

C.1
Corotational framework

The initial beam axis is defined as s1 = (Xj −Xi) /L. The cross section
principal direction s3 is a given parameter, from which the other principal
direction is obtained as s2 = s3 × s1. The rotation tensor R0, that rotates the
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global triad ea to sa, and the nodal rotation tensor Rα are given by:

R0 = sa · eTa (C-3)

Rα = rαa · sTa (C-4)

The local system rotation tensor Rr, that rotates the global triad ea to
the local system triad ta is given by:

Rr = ta · eTa (C-5)

The relative nodal rotation tensor R̃α, measured in the global system,
rotates the local triad ta to the nodal triad rαa is given by:

R̃α = rαa · tTa (C-6)

Combining Eqs. (C-3) to (C-6), the two rotation tensors are related by:

R̃α ·Rr = Rα ·R0 (C-7)

The relative nodal rotation tensor Rα, measured in the local system,
is obtained by rotating the tensor R̃α to this system through the following
operations:

Rα = RT
r · R̃α ·Rr = RT

r ·Rα ·R0 (C-8)

Rα =
(
tTa · rαb

)
ea · eTb (C-9)

The local triad can be defined in a number of different ways. It is usual
to set the local triad direction t1 equal to the current beam orientation, i.e.:

t1 = (xj − xi)/l (C-10)

Making the assumption of small strains for the beams, the local rotations
are also small and the nodal triad vectors ri3 and rj3 are never aligned with t1

(being approximately orthogonal). This allows defining the local triad direction
t2 as [6]:

t2 =

(
ri3 + rj3

)
× t1

‖
(
ri3 + rj3

)
× t1‖

(C-11)

The third triad direction is obtained as t3 = t1× t2 (see Eq. (A-3)). The
position of a material point x with respect to the local system x is then given
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by:

x = RT
r · (x− xi) (C-12)

Thus, xi = 0 and xj = le1, and in the initial configuration, Xi = 0 and
Xj = Le1. The local displacements are defined as u = x − x0, with the only
non null nodal displacement being the beam stretch ujx:

ujx = l − L (C-13)

The local nodal rotation angle θα, associated to the tensor Rα is obtained
as (see Eq. A-13):

θα = arccos
[1
2
(
tTa · rαa − 1

)]
(C-14)

Finally, the local nodal rotation components are given by (see Eq. A-14):

θ
α

a = θα

2 sin(θα)
(
tTc · rαb − tTb · rαc

)
(C-15)

Since the triads ta and ria are not identical, the rotation θ
i

x is, in general,
not null and, hence, the twist angle of the beam is given by θjx − θ

i

x. The set
of local deformations d is then:

d =
{
ujx θ

i

z θ
j

z θ
j

x − θ
i

x θ
i

y θ
j

y

}T
(C-16)

C.2
Constitutive relations

The beam local internal forces vectors vector f and stiffness matrix
K considering the material elasto-plastic behavior is obtained using the
plastic zone method [122], in which the cross section is discretized in fibers
where the inelastic response is computed along the element length. In the
present formulation, a linear strain measure is used with respect to the
local deformations d. Taking into account different higher order terms in the
strain measure could result in a different bucking response for some structural
systems.

The beam cross section has an area A and principal moments of inertia in
the directions y and z in the local frame Iy and Iz in the principal directions y
and z, respectively. The torsional moment of inertia is Ix = Iy + Iz− Iw, where
Iw is the moment of inertia reduction related to the cross section warping. In
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the particular case of a linear elastic isotropic material, with shear modulus
G and elastic modulus E, the local internal forces vectors vector is simply
f = K · d, with the local stiffness matrix K given by:

K =



EA
L

0 0 0 0 0
0 4EIz

L
2EIz

L
0 0 0

0 2EIz

L
4EIz

L
0 0 0

0 0 0 GIx

L
0 0

0 0 0 0 4EIy

L
2EIy

L

0 0 0 0 2EIy

L
4EIy

L


(C-17)

In all applications considered in the present work, the beams are slender
and so the Bernoulli theory (which neglects the shear deformations) is used.

C.3
Internal forces vector

As small deformations are considered, Hα ≈ I (Eq. A-21) and δωα = δθα.
Therefore, the variation local deformations vector δd takes the form:

δd =
{
δujx δωiz δωjz δωjx − δωix δωiy δωjy

}T
(C-18)

The variation of the deformation vector δd in the global configuration is
given by:

δd =
{
δxTi δωTi δxTj δωTj

}T
(C-19)

The global f and local f internal forces vectors, energetically conjugated
to the variations δd and δd, are, respectively:

f =
{
nTi mT

i nTj mT
j

}T
(C-20)

f =
{
njx mi

z mj
z mj

x mi
y mj

y

}T
(C-21)

As the local deformations d are functions of the global displacements d,
it is possible to relate their variations through a system transformation T:

δd = T · δd (C-22)

The virtual work δU can be written as:

δU = δdT · f = δdT · f (C-23)
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As the global variations δd are arbitrary, the relation between the local
f and global f internal forces vectors, based on the above equations, is given
by:

f = TT · f (C-24)

The variation of the axial stretch δujx in Eq. (C-1) is:

δujx = δl = tT1 · (δuj − δui) (C-25)

The variation of the spin vector δωα can be obtained from Eq. (C-8) as
[6]:

δω̂α = δRα ·R
T
α (C-26)

δω̂α = RT
r · (δω̂α − δω̂r) ·Rα ·R0 ·R

T (C-27)

δω̂α = RT
r · (δω̂α − δω̂r) ·Rr (C-28)

δωα = RT
r · (δωα − δωr) (C-29)

From Eq. (C-10), the variation of local triad ti is given by:

δt1 = 1
l

(
t2 · tT2 + t3 · tT3

)
· (δxj − δxi) (C-30)

δt2 = −1
l
t1 · tT2 · (δxj − δxi) + δφt3 (C-31)

δt3 = −1
l
t1 · tT3 · (δxj − δxi)− δφt2 (C-32)

In the above equations the variation δφ depends on the choice of the local
system two other directions. It can be expressed in a general form as:

δφ = tT3 · δt2 = −tT2 · δt3 (C-33)

δφ = 1
l
aTr · (δxj − δxi) + bTa · δωa + bTb · δωb (C-34)

From Eq. (C-11), the transformation vectors bi, bj and ar results in:

bi = t2 × ri3
‖tT3 ·

(
ri3 + rj3

)
‖

(C-35)

bj = t2 × rj3
‖tT3 ·

(
ri3 + rj3

)
‖

(C-36)

ar =
tT1 ·

(
ri3 + rj3

)
‖tT3 ·

(
ri3 + rj3

)
‖

t2 (C-37)
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From Eq. (A-20) and Eqs. (C-30) to (C-32), the variation of the local
system spin vector δωr is then given by:

δωr = 1
l
t1 × (δxj − δxi) + δφt1 (C-38)

Finally, combining Eqs. (C-25), (C-29) and (C-38), the system transfor-
mation matrix T can be written as:

T =


−t1

1
l
t2

1
l
t2 0 −1

l
t3 −1

l
t3

0 t3 0 −t1 t2 0
t1 −1

l
t2 −1

l
t2 0 1

l
t3

1
l
t3

0 0 t3 t1 0 t2



T

(C-39)

C.4
Tangent stiffness

The beam tangent stiffness matrix K is then obtained by taking the
increment of the virtual work ∆ (δU) in Eq. (C-23), i.e.:

∆ (δU) = δdT ·K ·∆d = δdT ·∆f + ∆
(
δd
)T
· f (C-40)

The tangent stiffness matrix can be decomposed into the element stiffness
matrix Km and the geometric stiffness matrix Kg, that is, K = Km + Kg. The
element stiffness matrix Km is related to the increment of the local internal
forces vector ∆f :

δdT ·Km ·∆d = δdT ·TT ·K ·∆d = δdT ·TT ·K ·T ·∆d (C-41)

Hence, the element stiffness matrix Km acts as a transformation of the
local stiffness matrix K = ∂f/∂d, i.e.:

Km = TT ·K ·T (C-42)

The geometric stiffness Kg is related to the increment of the local
deformations variation ∆

(
δd
)
. This means that one can obtain the geometric

stiffness Kg by considering the increment of system transformation ∆T (or
equivalently the increment of the local triad ∆ti and current length ∆l), while
keeping the local forces f fixed:

δdT ·Kg ·∆d = δdT ·∆TT · f = δdT ·
(
∂TT

∂d
: f
)
·∆d (C-43)
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Therefore, the geometric stiffness Kg acts as a rigid body motion of the
current local forces with respect to the global system. With the help of Eqs.
(C-25), (C-30) to (C-32) and (C-39), its components can be written as:

Kg = ∂TT

∂d
: f =


Kg

11 Kg
12 Kg

13 Kg
14

Kg
21 Kg

22 Kg
23 Kg

24

Kg
31 Kg

32 Kg
33 Kg

34

Kg
41 Kg

42 Kg
43 Kg

44

 (C-44)

Kg
22 = ma

yBa
3 −ma

zBa
2 (C-45)

Kg
24 = ma

yBb
3 −ma

zBb
2 (C-46)

Kg
42 = mb

yBa
3 −mb

zBa
2 (C-47)

Kg
44 = mb

yBb
3 −mb

zBb
2 (C-48)

Kg
12 = +m

s
z

l
Ba

3 +
ms
y

l
Ba

2 (C-49)

Kg
14 = +m

s
z

l
Bb

3 +
ms
y

l
Bb

2 (C-50)

Kg
32 = −m

s
z

l
Ba

3 −
ms
y

l
Ba

2 (C-51)

Kg
34 = −m

s
z

l
Bb

3 −
ms
y

l
Bb

2 (C-52)

Kg
21 = +m

b
x

l
P1 +

ma
y

l
H2 + ma

z

l
H3 (C-53)

Kg
23 = −m

b
x

l
P1 −

ma
y

l
H2 −

ma
z

l
H3 (C-54)

Kg
41 = −m

b
x

l
P1 +

mb
y

l
H2 + mb

z

l
H3 (C-55)

Kg
43 = +m

b
x

l
P1 −

mb
y

l
H2 −

mb
z

l
H3 (C-56)

Kg
11 = Kg

33 = +n
b
x

l
P1 −

ms
y

l2
Q3 + ms

z

l2
Q2 (C-57)

Kg
13 = Kg

31 = −n
b
x

l
P1 +

ms
y

l2
Q3 −

ms
z

l2
Q2 (C-58)

In the above equations, ms
(·) = ma

(·) +mb
(·), and:

Bα
i = ti · bTα (C-59)

P1 = t2 · tT2 + t3 · tT3 (C-60)

H2 = t1 · tT2 − t3 · aTr (C-61)

H3 = t1 · tT3 + t2 · aTr (C-62)

Q2 = t1 · tT2 + t2 · tT1 − t3 · aTr (C-63)

Q3 = t1 · tT3 + t3 · tT1 + t2 · aTr (C-64)
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Given a symmetric local stiffness matrix K, the element stiffness matrix
Km preserves its symmetry. However, the geometric stiffness Kg is, in general,
not symmetric. This is associated to the non-commutative characteristic of
spatial rotations.

C.5
Benchmarks

In order to validate the developed code based on this beam formulation,
the classical problem of a cantilever beam subjected to a bending moment at
the free end is analyzed (Fig. C.2). The analytical solution for the axial and
transversal displacements (u, v) at the free end is given by u/L = sin(λ)/λ
and v/L = [1− cos(λ)]/λ [123]. The numerical solution, with twenty elements,
is obtained up to λ = 8π, when the beam makes four revolutions around itself.
The results (Fig. C.3) show a good agreement with the analytical solution up
to large displacements and rotations.

L

M = λEI
L

u

v

λ = π/4

λ = π/2λ = π

λ = 2π

Figure C.2: Bending beam subjected to end-moment.
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-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 +0.0 +0.2 +0.4 +0.6 +0.8

λ

u / L v / L Present

Figure C.3: Bending beam equilibrium path.
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The spatial behavior of the beam element is now validated through
the analysis of the right angle frame illustrated in Fig. C.4. As the beam
cross sections is very thin, when the bifurcation moment M = 626.7 is
reached, the structure follows the secondary equilibrium path, where torsional
moments starts to appear. Figure C.5 shows the variation of the out of plane
displacement of the tip node w with the applied moment M . The results, with
five finite elements per beam, are compared with those presented in [124],
showing excellent agreement.

Figure C.4: Right angle frame (Source: [6]).
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Figure C.5: Right angle frame equilibrium path.

As a third example, the torsional buckling and post-buckling behavior
of a slender beam subjected to a concentrated torsion moment as illustrated
in Fig. C.6 is analyzed. When the torsion moment T reaches the critical value
the beam buckles, following a secondary equilibrium path, where bending
moments appear. Figure. C.7, shows the highly nonlinear response of the beam.
The results, with twenty beam elements, are favorably compared with those
presented in [124].

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Appendix C. Corotational fiber beam finite element 159
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Figure C.6: Beam subjected to a torsion moment.
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Figure C.7: Nonlinear equilibrium path of the beam under torsion.
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D
Nonlinear equations solvers

This Appendix presents briefly the algorithms implemented here to solve
the system of nonlinear equilibrium equations in the static analysis and the
nonlinear equations of motion of the discretized structure in the dynamic anal-
ysis. The algorithms implemented to obtain the static nonlinear equilibrium
paths are presented in Sec. D.1, where the Newton-Raphson algorithm is cou-
pled with path following strategies. The methods for computation of the non-
linear dynamic response of the structural systems are discussed in Sec. D.2,
where either the Newmark (Sec. D.2.1) or 4th order Runge-Kutta (Sec. D.2.2)
algorithms are used. The nonlinear oscillations and bifurcations are also stud-
ied making use of Poincaré maps (Sec. D.2.3).

D.1
Static nonlinear solver

The static response of a structural system is governed by a system of
nonlinear algebraic equations of the type Fi(x) = λFr, where x is a state
vector with the system degrees of freedom, Fi is the system internal forces
vector with a nonlinear dependency on x, Fr is a reference load vector and λ
is a load factor. The tangent stiffness matrix on the current configuration is
defined as K(x) = ∂Fi/∂x.

The numerical solution this system of equations is conducted through the
Newton-Raphson method coupled with a continuation strategy. The procedure
is illustrated in Tab. D.1. Basically, given a known equilibrium configuration
(xn, λn) the aim is to determine the next configuration (xn+1, λn+1), using an
initial load increment ∆λ0

n+1 and computing the corresponding state incre-
ment ∆x0

n+1 in the current tangent direction. A iterative loop then starts by
computing the new current configuration (xkn+1, λ

k
n+1) and the corresponding

residual force vector rkn+1. If the residue is sufficiently small, the current config-
uration is accepted and the iterative loop finishes. Otherwise, a new candidate
configuration is computed making use of the current stiffness K(xkn+1) and the
adopted solution strategy.
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Algorithm 1: Newton-Raphson
1 Predictor:

• Solution strategy → ∆λ0
n+1

• ∆x0
n+1 = ∆λ0

n+1K(xn)−1 · Fr

2 Iterative loop:

2.1 State update:
• λkn+1 = λn + ∆λkn+1

• xkn+1 = xn + ∆xkn+1

2.2 Residual force:
• rkn+1 = λkn+1Fr − Fi(xkn+1)
• if ‖rkn+1‖ < tol‖Fr‖ exit iterative loop

2.3 Corrector:
• δxkt,n+1 = K(xkn+1)−1 · Fr

• δxkr,n+1 = K(xkn+1)−1 · rkn+1

• Solution strategy → δλk+1
n+1

• δxk+1
n+1 = δxkr,n+1 + δλk+1

n+1δxkt,n+1

2.4 Increment update:
• ∆λk+1

n+1 = ∆λkn+1 + δλk+1
n+1

• ∆xk+1
n+1 = ∆xkn+1 + δxk+1

n+1

Table D.1: Newton-Raphson incremental step

D.1.1
Solution strategies

The main goal of a solution strategy is to permit the solver to overcome
load and displacement limit points, while making it as robust as possible. Many
solution strategies have been proposed in the literature. In the present work
the cylindrical arc-length [125] and the minimal norm [126] are implemented.
In both methods, the load increment initial predictor ∆λ0

n+1 is computed as:

∆λ0
n+1 = sign(∆xTn ·∆xt)

‖∆xn‖
‖∆xt‖

(D-1)

where ∆xt = K−1
n · Fr.

In the cylindrical arc-length method the new configuration (∆xn+1, λn+1)
is constrained to an hyper-dimensional cylinder around the know configuration
(∆xn, λn) and so, in a iterative procedure, the load sub-increment δλk+1

n+1 is
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given by:

δλk+1
n+1 = − b

a
+ s

√√√√( b
a

)2

− c

a
(D-2)

where:

a = δxkt,n+1 · δxkt,n+1 (D-3)

s = sign(δxkt,n+1 ·∆xkn+1) (D-4)

b = δxkt,n+1 · (δxkr,n+1 + ∆xkn+1) (D-5)

c = δxkr,n+1 · (δxkr,n+1 + 2∆xkn+1) (D-6)

In the minimal norm method the load sub-increment is chosen so that
the norm of the residual force vector rk+1

n+1 is as small as, being given by:

δλk+1
n+1 = −

δxkr,n+1 · δxkt,n+1

δxkt,n+1 · δxkt,n+1
(D-7)

In general, both methods deal well with elastic problems subjected to
geometrical nonlinear behavior, such as snap-through and buckling. In elasto-
plastic problems however the minimal norm method performed better than the
cylindrical arc-length method in the conducted numerical simulations.

Both translational and rotational degrees of freedom are considered in
the cylindrical arc-length and minimal norm methods. When finite spatial
rotations are taken into account the behavior of the nonlinear system of
equations becomes much more complex and convergence problems were verified
frequently. Usually, this problems could be avoided via a controlled update of
the load increment. For this, the number of iterations used in the last step in
are compared to a desired number of iterations id and the new load increment
initial predictor is computed as [116]:

∆λ0
n+1 =

√
id
in

∆λ0
n (D-8)

In regions of the solution with a strong nonlinear behavior, a high number
of iterations in is necessary and the new initial load increment ∆λ0

n+1 is
reduced. In regions of the solution with an almost linear behavior, only a
few iterations are required and the new initial load load increment ∆λ0

n+1 is
increased. Other continuation methods and update strategies, suited for highly
nonlinear elastic and elasto-plastic problems, are available in the literature e.g.
Skatulla and Sansour [127].

DBD
PUC-Rio - Certificação Digital Nº 1512807/CA



Appendix D. Nonlinear equations solvers 163

D.2
Dynamic nonlinear solver

The dynamic response of a structural system is governed by a system of
second order nonlinear differential equations of the type M(x) · ẍ + Fi(x, ẋ) =
Fe(t), where M(x) and Fe(t) are the generalized mass matrix and external
forces vector, respectively. The system internal forces vector Fi(x, ẋ) may have
a nonlinear dependency on the system state x and velocity ẋ, and the system
stiffness and damping are defined as K(x, ẋ) = ∂Fi/∂x and C(x, ẋ) = ∂Fi/∂ẋ,
respectively. As the mass matrix is always positive definite, and so invertible,
the acceleration vector ẍ can easily be determined from the equations of motion
as function of the system displacements x and velocities ẋ in a given time step
t from: ẍ = M(x)−1 [Fe(t)− Fi(x, ẋ)].

A variety of methods have been proposed in the literature for the
numerical solution of such a system of equations. The main goal is to, given
(xn, ẋn) in a given time step tn, determine (xn+1, ẋn+1) in the time step tn+1. In
the present work, the Newmark and 4th order Runge-Kutta methods are used.
The Newmark method has a greater computational cost, since it requires the
assembly of the system stiffness K and damping C matrices. Also, inversion
of the resulting system matrix is generally more numerically unstable than the
mass matrix M (which is diagonal in many applications), used in the Runge-
Kutta method. However, in the Newmark method, the residual force vector r,
if is restricted to certain tolerance in each time step, the obtained numerical
solution is less prone to diverge from the exact solution.

D.2.1
Newmark method

In the Newmark method, given (xn, ẋn), an initial candidate (x0
n+1, ẋ0

n+1)
is computed in the predictor phase by assuming a constant acceleration
(ẍ0

n+1 = ẍn) over the time step ∆t. A iterative loop then starts by computing
the current residual force vector rkn+1. If the residue is small enough, the
current variables are accepted and the iterative loop finishes. Otherwise, the
variables are interpolated in the time interval t ∈ [tn, tn+1] making use of
the parameters γ and β, usually taken as 1/2 and 1/4, respectively. A new
candidate configuration is then computed with the system matrix S defined
as a linear combination of the current stiffness, damping and inertia matrices.
This procedure is illustrated in Tab. D.2.
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Algorithm 2: Newmark
1 Predictor:

• ẍ0
n+1 = ẍn

• ẋ0
n+1 = ẋn + ∆tẍn

• x0
n+1 = xn + ∆tẋn + ∆t2ẍn/2

2 Time update:

• tn+1 = tn + ∆t

3 Iterative loop:

3.1 Residual force:
• rkn+1 = Fe(tn+1)− Fi(xkn+1, ẋkn+1)−M(xkn+1) · ẍkn+1

• if ‖rkn+1‖ < tol‖Fe(tn+1)‖ exit iterative loop
3.2 Corrector:

• Skn+1 = K(xkn+1, ẋkn+1) + γ
β∆tC(xkn+1, ẋkn+1) + 1

β∆t2 M(xkn+1)
• δxkn+1 =

(
Skn+1

)−1
· rkn+1

3.3 State update:
• xk+1

n+1 = xkn+1 + δxk+1
n+1

• ẋk+1
n+1 = ẋkn+1 + γ

β∆tδx
k+1
n+1

• ẍk+1
n+1 = ẍkn+1 + 1

β∆t2 δx
k+1
n+1

Table D.2: Newmark time step

D.2.2
Runge-Kutta method

In the 4th order Runge-Kutta algorithm the finite increments ∆xn+1 and
∆ẋn+1 are progressively computed in four points inside the interval [tn, tn+1].
Starting at tn, passing through two virtual configurations at (tn + tn+1)/2
and one at tn+1, the increments are specifically weighted, computing the
rate of change at each point through the system nonlinear equations of
motion. When the material elasto-plastic behavior is considered in the finite
element formulations, the reference configuration used in the return mapping
algorithms is always taken as the real known one (xn, ẋn). The procedure is
illustrated in Tab. D.3.
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Algorithm 3: Runge-Kutta
1 First increment:

• ∆xn+1 = ∆t
6 ẋn

• ∆ẋn+1 = ∆t
6 ẍn

2 Second increment:

• t = tn + ∆t
2

• x = xn + ∆t
2 ẋn

• ẋ = ẋn + ∆t
2 ẍn

• ẍ = M(x)−1 · [Fe(t)− Fi(x, ẋ)]
• ∆xn+1 = ∆xn+1 + ∆t

3 ẋ
• ∆ẋn+1 = ∆ẋn+1 + ∆t

3 ẍ

3 Third increment:

• x = xn + ∆t
2 ẋ

• ẋ = ẋn + ∆t
2 ẍ

• ẍ = M(x)−1 · [Fe(t)− Fi(x, ẋ)]
• ∆xn+1 = ∆xn+1 + ∆t

3 ẋ
• ∆ẋn+1 = ∆ẋn+1 + ∆t

3 ẍ

4 Forth increment:

• t = tn + ∆t
• x = xn + ∆tẋn
• ẋ = ẋn + ∆tẍn
• ẍ = M(x)−1 · [Fe(t)− Fi(x, ẋ)]
• ∆xn+1 = ∆xn+1 + ∆t

6 ẋ
• ∆ẋn+1 = ∆ẋn+1 + ∆t

6 ẍ

5 Step increment:

• xn+1 = xn + ∆xn+1

• ẋn+1 = ẋn + ∆ẋn+1

Table D.3: Runge-Kutta 4th order time step

D.2.3
Poincaré maps

In a dynamic analysis, the designer may be interested on the effect
of some control parameter, such as the magnitude of the applied external
load P or the exciting frequency ω, on the system response, in particular
dynamic bifurcations and jumps. This can be achieved through the use of the
bifurcation diagrams of the Poincaré map, which is a useful tool in nonlinear
dynamics. Here, the so called brute-force method is implemented, where, for
each increment or decrement of the control parameters (P or ω), the stable
fixed points coordinates of the Poincaré map are obtained [92].

The method consists in computing the system time response during np
periods of the external force, each divided in nt time steps. Then, the first
nd periods of the time response are discarded as the transient part of the
solution. The first minimum (or maximum) of the remaining data is then
located and the value of the oscillation amplitude is stored for the remaining
np−nd periods. The control parameter is then incremented and the process is
repeated. The procedure is illustrated in Tab. D.4. As expected, the quality of
the numerical results increases with the number of periods considered np and
discarded nd since the influence of the transient part of the response becomes
smaller, increasing however the computational cost.
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Algorithm 4: Poincaré map

1 Increment control parameter (P or ω)

2 Compute current time spacing: ∆T = 2π/ω

3 Compute time response (with T = np∆T and ns = npnt)

4 Discard transient part (first ndnt steps)

5 Find first limit step s0 (x = minimum)

6 Select time steps s0 + nti, i ∈ N

Table D.4: Poincaré bifurcation maps incremental step
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