
Eduardo Moreira Fernandes

On the Relation between Refactoring and
Critical Internal Attributes when Evolving

Software Features

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática.

Advisor: Prof. Marcos Kalinowski

Rio de Janeiro
March 2021

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Eduardo Moreira Fernandes

On the Relation between Refactoring and
Critical Internal Attributes when Evolving

Software Features

Thesis presented to the Programa de Pós–graduação em Infor-
mática of PUC-Rio in partial fulfillment of the requirements for
the degree of Doutor em Ciências – Informática. Approved by the
Examination Committee.

Prof. Marcos Kalinowski
Advisor

Departamento de Informática – PUC-Rio

Prof. Helio Côrtes Vieira Lopes
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Prof.ª Simone Diniz Junqueira Barbosa
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Prof. Marco Tulio de Oliveira Valente
Universidade Federal de Minas Gerais – UFMG

Prof.ª Tayana Uchôa Conte
Universidade Federal do Amazonas – UFAM

Rio de Janeiro, March 12th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



All rights reserved.

Eduardo Moreira Fernandes
Substitute Professor in the Faculty of Computing (FACOM)
at the Federal University of Mato Grosso do Sul (UFMS) since
2021. He obtained his PhD in Informatics from the Pontifi-
cal Catholic University of Rio de Janeiro (PUC-Rio) in 2021.
He also obtained his Master’s and Bachelor’s degrees in Com-
puter Science from the Federal University of Minas Gerais
(UFMG) and UFMS in 2017 and 2014, respectively. Eduardo
was a visiting researcher in Data Analytics at the Newcastle
University (NCL) in 2017. He also served as software enginee-
ring intern for Tecgraf Institute at PUC-Rio (2018-2019) and
Governança Brasil (2017). He has joined Research & Develop-
ment (R&D) projects in many topics, such as applied software
engineering, information systems for healthcare, and educa-
tion in computing. His collaborative work resulted in more
than 30 peer-reviewed papers and three best paper awards or
nominations. Eduardo has earned the 2019 FAPERJ distin-
guished PhD scholarship, the 2014 SBC distinguished under-
graduate student award, and a few other acknowledgments.

Bibliographic data
Moreira Fernandes, Eduardo

On the Relation between Refactoring and Critical Internal
Attributes when Evolving Software Features / Eduardo Mo-
reira Fernandes; advisor: Marcos Kalinowski. – Rio de janeiro:
PUC-Rio, Departamento de Informática, 2021.

v., 172 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do
Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Refatoração;. 3. Atributo In-
terno de Qualidade;. 4. Evolução de Software;. 5. Funciona-
lidade;. 6. Mineração de Repositório de Software;. 7. Grupo
Focal.. I. Kalinowski, Marcos. II. Pontifícia Universidade Ca-
tólica do Rio de Janeiro. Departamento de Informática. III.
Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Acknowledgments

I thank God almighty for who I am and for all I have achieved, especially
during the last decade of study and work. He has been constantly showing
love and care for me, even though I do not deserve any of this. I also thank my
beloved family, as well as my extended family and friends spread across Brazil
and all over the globe, for their kindness and support.

I thank the advisor of this doctoral thesis for his willingness to guide me
in a moment of great need. Some people may destroy us at our core, but others
are as you have been – they help us recover. I also thank each well-inclined
person I had the chance to collaborate with as an early career researcher.
Thanks for letting us learn and evolve together – this is priceless.

I particularly thank the committee members of my doctoral thesis defense
for letting us share experiences, points of view, and lessons learned. In addition,
I heartily thank the Pontifical Catholic University of Rio de Janeiro (PUC-
Rio) family – professors, secretaries, cleaners, janitors etc. – for creating such
a welcoming environment to professional and personal growth.

Last, but not least, I thank the Brazilian National Council for Scientific
and Technological Development (CNPq) and the Fundação de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ) for providing me with
doctoral scholarship, thereby helping this doctoral thesis come to life.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Abstract

Moreira Fernandes, Eduardo; Kalinowski, Marcos (Advisor). On
the Relation between Refactoring and Critical Internal
Attributes when Evolving Software Features. Rio de Janeiro,
2021. 172p. Tese de doutorado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.
Context: Several software changes applied while evolving software

features aim at improving internal quality attributes, e.g. cohesion. These
changes are the refactorings. Non-assisted refactorings might worsen, rather
than improve, internal attributes. However, current knowledge is insufficient
for managing internal attributes during software evolution. Objective:
Our first objective is assessing how refactorings affect internal attributes
during software evolution by filling gaps of past work on study scope.
Our second objective is filling gaps of qualitative evidence on how to
manage critical internal attributes via refactorings while evolving features.
An internal attribute is critical when its measurement has anomalous
values. Low cohesion is an example of critical attribute. Method: Our
first study extends a large quantitative assessment of the relationship
between refactorings and five internal attributes: cohesion, complexity,
coupling, inheritance, and size. We include a more detailed statistical
analysis and address major threats to validity of past work. Our second
study is a qualitative case study based on focus group. We selected two
industry cases to promote discussions on how much (and why) critical
attributes are relevant while evolving features. Finally, we crossed the
findings from both conducted studies aimed at discussing how critical
attributes can be addressed via refactoring when evolving features.Results:
About 64% of refactorings either improve or keep the internal attributes
unaffected. Developers seem to perform refactorings until the most relevant
internal attributes are improved, thereby neglecting other internal attributes
that may be critical. Low cohesion and high complexity are perceived
as relevant because they often make evolving features harder than usual.
High coupling, large inheritance, and large size are perceived as irrelevant
when developers implement especially complex features. By crossing the
findings from both studies, we discuss how refactorings can improve internal
attributes, especially the critical ones. Conclusions: The findings of our
studies can support managing critical attributes that developers typically
find relevant, while preserving other attributes that may become critical.
Keywords

Refactoring; Internal Quality Attribute; Software Evolution; Fea-
ture; Mining Software Repository; Focus Group.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Resumo

Moreira Fernandes, Eduardo; Kalinowski, Marcos. Sobre a Re-
lação entre Refatoração e Atributos Internos Críticos ao
Evoluir Funcionalidades de Software. Rio de Janeiro, 2021.
172p. Tese de Doutorado – Departamento de Informática, Pontifí-
cia Universidade Católica do Rio de Janeiro.
Contexto: Várias mudanças de código aplicadas ao evoluir funciona-

lidades visam melhorar atributos internos de qualidade como coesão. Tais
mudanças são as refatorações. Refatorações não dirigidas podem piorar, e
não melhorar, atributos internos. Porém, o saber atual é insuficiente para
gerir atributos internos durante a evolução do sistema. Objetivo: Nosso
primeiro objetivo é entender como refatorações afetam atributos internos
ao evoluir sistemas, mitigando limitações de escopo de estudos anteriores.
Nosso segundo objetivo é atender uma carência por evidência quantitativa
sobre como gerir atributos internos críticos via refatorações ao evoluir siste-
mas. Um atributo interno é crítico se sua medição assume valores anômalos.
Baixa coesão é um exemplo de atributo crítico.Método: O primeiro estudo
estende uma avaliação quantitativa da relação entre refatorações e cinco
atributos internos: acoplamento, coesão, complexidade, herança e tamanho.
Incluímos novas análises e resolvemos ameaças à validade da literatura. O
segundo estudo contém estudos de caso qualitativos baseados em grupo fo-
cal. Em dois casos industriais, promovemos discussões sobre o quanto (e por
que) atributos críticos são relevante ao evoluir funcionalidades. Por fim, cru-
zamos os achados dos dois estudos para discutir como gerir atributos críticos
via refatoração ao evoluir funcionalidades. Resultados: Aproximadamente
64% das refatorações melhoram ou não afetam os atributos internos. De-
senvolvedores parecem refatorar até melhorar os atributos mais relevantes,
ignorando outros atributos internos possivelmente críticos. Baixa coesão e
alta complexidade são percebidos como relevantes e tornam mais difícil evo-
luir funcionalidades. Alto acoplamento, herança larga e tamanho largo são
percebidos como irrelevantes ao implementar funcionalidades especialmente
complexas, por exemplo. Ao cruzar dados entre estudos, discutimos como
refatorações podem melhorar atributos internos, inclusive atributos críticos.
Conclusões: Os achados dos nossos estudos podem apoiar a gestão de atri-
butos críticos relevantes aos desenvolvedores, mas também preservar outros
atributos que podem se tornar críticos.

Palavras-chave
Refatoração; Atributo Interno de Qualidade; Evolução de Software;

Funcionalidade; Mineração de Repositório de Software; Grupo Focal.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Table of contents

1 Introduction 12
1.1 Degradation Symptoms and Software Evolution 13
1.2 Limited Knowledge on Critical Attributes and Software Evolution 14
1.3 On the Relationship between Refactorings and Internal Attributes 16
1.4 On the Relevance of Critical Attributes for Evolving Features 19
1.5 Thesis Contributions 22
1.6 Thesis Summary 23

2 Background and Related Work 24
2.1 Critical Attributes 26
2.2 Design Smells 29
2.3 On the Developer’s Perception of Degradation Symptoms 30
2.4 Refactorings and Re-refactorings 32
2.5 On Addressing Degradation Symptoms through Refactoring 35
2.6 Chapter Summary 36

3 Relationship between Refactorings and Internal Attributes 37
3.1 Goal and Research Questions 40
3.2 Steps and Procedures 42
3.3 (Re-)Refactoring and Critical Attributes (RQ1) 45
3.3.1 Frequency Regardless of Refactoring Type 45
3.3.2 Frequency by Refactoring Type 47
3.3.3 Summary of RQ1 48
3.4 Refactoring Effect on Internal Attributes (RQ2) 49
3.4.1 Improvement of Internal Attributes 49
3.4.2 Worsening of Internal Attributes 51
3.4.3 Most Metrics versus At Least One Metric 52
3.4.4 Root-canal versus Floss Refactoring 53
3.4.5 Summary of RQ2 54
3.5 Re-Refactoring Effect on Internal Attributes (RQ3) 54
3.5.1 Improvement of Internal Attributes 54
3.5.2 Worsening of Internal Attributes 56
3.5.3 Most Metrics versus At Least One Metric 57
3.5.4 Root-canal versus Floss Refactoring 57
3.5.5 Summary of RQ3 59
3.6 Comparison of Refactoring and Re-refactoring Effect (RQ4) 59
3.6.1 Quantitative Results 59
3.6.2 Summary of RQ4 61
3.7 Our Study Versus Related Work 61
3.7.1 Study Comparison at the Design Level 61
3.7.2 Study Comparison at the Results Level 63
3.8 Threats to Validity 65
3.9 Chapter Summary 67

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



4 On the Relevance of Critical Attributes for Evolving Features 69
4.1 Study Characterization 73
4.1.1 Problem Statement 73
4.1.2 Research Objectives 75
4.1.3 Context 76
4.2 Case Study Design 76
4.2.1 Research Questions 77
4.2.2 Case and Subject Selection 79
4.2.3 Data Collection Procedures 81
4.3 Results and Discussion 86
4.3.1 Relevance of Critical Attributes for Evolving Features (RQ1) 86
4.3.2 Reasons Behind the (Ir-)relevance of Critical Attributes (RQ2) – Case A 87
4.3.3 Reasons Behind the (Ir-)relevance of Critical Attributes (RQ2) – Case B 93
4.3.4 Managing Critical Attributes through Refactorings (RQ3) 99
4.3.5 Participant Feedback 101
4.4 Threats to Validity 102
4.5 Chapter Summary 106

5 Conclusion 107
5.1 Quantitative Study Implications 109
5.2 Industry Case Study Implications 111
5.3 Closely Related Publications 114
5.4 Other Publications 116

Bibliography 117

A Background Form for All Focus Group Sessions 128

B Feedback Form for All Focus Group Sessions 131

C Video Transcription of Focus Group Session 1 (Case A) 134
C.1 Low Class Cohesion: Relevant or Irrelevant – Why? 134
C.2 High Class Complexity: Relevant or Irrelevant – Why? 135
C.3 High Class Coupling: Relevant or Irrelevant – Why? 137
C.4 Large Class Hierarchy Depth: Relevant or Irrelevant – Why? 138
C.5 Large Class Hierarchy Breadth: Relevant or Irrelevant – Why? 139
C.6 Large Class Size: Relevant or Irrelevant – Why? 140

D Video Transcription of Focus Group Session 2 (Case B) 144
D.1 Low Class Cohesion: Relevant or Irrelevant – Why? 144
D.2 High Class Complexity: Relevant or Irrelevant – Why? 148
D.3 High Class Coupling: Relevant or Irrelevant – Why? 150
D.4 Large Class Hierarchy Depth: Relevant or Irrelevant – Why? 155
D.5 Large Class Hierarchy Breadth: Relevant or Irrelevant – Why? 157
D.6 Large Class Size: Relevant or Irrelevant – Why? 160

E MURAL Prints of Focus Group Session 1 (Case A) 165

F MURAL Prints of Focus Group Session 2 (Case B) 169

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



List of figures

Figure 4.1 Data Collection Procedures 81
Figure 4.2 Template of Focus Group Session Defined at MURAL 83
Figure 4.3 Section Dedicated to Discussing Low Class Cohesion 84
Figure 4.4 Relevance of Critical Attributes per Case 86
Figure 4.5 Relevance of Critical Attributes for Both Cases 87
Figure 4.6 Themes on Why Attributes are Relevant for Case A 91
Figure 4.7 Themes on Why Attributes are Irrelevant for Case A 92
Figure 4.8 Themes on Why Attributes are Relevant for Case B 97
Figure 4.9 Themes on Why Attributes are Irrelevant for Case B 98

Figure E.1 Raw Discussions on Low Class Cohesion (Case A) 165
Figure E.2 Raw Discussions on High Class Complexity (Case A) 166
Figure E.3 Raw Discussions on High Class Coupling (Case A) 166
Figure E.4 Raw Discussions on Large Class Hierarchy Depth (Case A)167
Figure E.5 Raw Discussions on Large Class Hierarchy Breadth

(Case A) 167
Figure E.6 Raw Discussions on Large Class Size (Case A) 168

Figure F.1 Raw Discussions on Low Class Cohesion (Case B) 169
Figure F.2 Raw Discussions on High Class Complexity (Case B) 170
Figure F.3 Raw Discussions on High Class Coupling (Case B) 170
Figure F.4 Raw Discussions on Large Class Hierarchy Depth (Case B)171
Figure F.5 Raw Discussions on Large Class Hierarchy Breadth

(Case B) 171
Figure F.6 Raw Discussions on Large Class Size (Case B) 172

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



List of tables

Table 2.1 Metrics Grouped by Internal Attribute 28
Table 2.2 Design Smell Types Grouped by Granularity 30
Table 2.3 Refactoring Types Grouped by Granularity 33
Table 2.4 Internal Attributes Associated with Refactoring Types 33

Table 3.1 Systems Selected for Analysis 43
Table 3.2 Frequency of Refactorings Applied to Elements with

Critical Attributes 45
Table 3.3 Frequency of Refactorings Applied to Elements with

Critical Attributes per Type 47
Table 3.4 Refactoring Effect on Internal Attributes by Refactoring

Type 49
Table 3.5 General Refactoring Effect on Internal Attributes by

Refactoring Tactic 53
Table 3.6 Re-refactoring Effect on Internal Attributes by Refactor-

ing Type 55
Table 3.7 General Re-refactoring Effect on Internal Attributes by

Refactoring Tactic 58
Table 3.8 Correlation of Effect Observed for Refactoring in General

and Re-refactoring 59
Table 3.9 Design-level comparison of our study with previous work 62
Table 3.10 Design-level comparison of our study with previous work 64

Table 4.1 Participant Background Collected via Background Form 80
Table 4.2 Notes on (Ir-)relevance of Critical Attributes for Case A 89
Table 4.3 Notes on (Ir-)relevance of Critical Attributes for Case B 94
Table 4.4 Relevance and Interrelation of Critical Attributes from

the Developer’s Perception 99
Table 4.5 Refactoring Recommendations per Critical Attribute 100
Table 4.6 Participant Feedback Collected via Feedback Form 102

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



But I shall look to Yahweh,
my hope is in the God who will save me;
my God will hear me.

Micah, The Book of Micah 7:7.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



1
Introduction

Software evolution means incrementally adapting an existing software
system according to the demands of stakeholders and the system operating
environment (Lehman, 1980). This process consists of applying one or more
changes over versions of the same system (Mens et al., 2010). After completing
the initial development of a system, software evolution aims at adapting the
system based on ever-changing software features and environment settings.
Feature is a unit of functionality of the system associated to one or more
design or domain decisions (Apel and Kästner, 2009). These decisions cover
all software development phases rather than exclusively architectural design.

Based on the current knowledge (Elfatatry, 2007; Lehman, 1980;
Paixao et al., 2019), software change is a unit of modifications applied to
a system. These modifications adapt the existing features as new stakeholders’
demands and environment settings emerge (Elfatatry, 2007). Features are
not restricted to the documentation elaborated in the earliest development
phases. This is because, in practical settings, new software features may
emerge anytime along with the software design, implementation, and other
subsequent phases (Martin, 2002). Each change reflects a particular demand
for adapting the existing software system.

Developers apply several changes to their systems along with soft-
ware evolution. This observation stands for both open source systems
and closed source systems (Kim et al., 2014; Murphy-Hill et al., 2012;
Silva et al., 2016a). Changes vary in granularity, i.e., the scale of the software
artifact to be changed (Elfatatry, 2007). Many of these changes target the
code structure, and the effect of a change may be either local or extensive.
Each change affects the code structure at different granularities: from fine-
grained elements, e.g. attributes and methods, to coarse-grained elements, e.g.
components and interfaces (Chávez et al., 2017; Paixao et al., 2019).

In addition, each change is often associated with one or more devel-
oper intents (Paixao et al., 2019; Silva et al., 2016a; Tao et al., 2012). An in-
tent reflects the developer expectation behind the application of a change. One
of the most frequent intents is evolving software features (Kim et al., 2014;
Paixao et al., 2019; Silva et al., 2016a). Evolving features consists of ei-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 13

ther incorporating new features into a system or enhancing existing fea-
tures (Burke, 2014). This particular intent often co-occurs with the enhance-
ment of code structures (Gousios et al., 2015), especially through refactor-
ings (Fernandes, 2019a; Paixao et al., 2019; Silva et al., 2016a).

Applying changes while evolving features is not trivial. An undis-
ciplined application of changes may degrade the code structure and its
design (Szőke et al., 2015a; Tufano et al., 2017). As a system evolves,
developers – consciously or not – introduce anomalous code struc-
tures that may threaten software evolution (Fernandes et al., 2017b;
Palomba et al., 2014; Taibi et al., 2017). Moreover, developers may take
sub-optimal design decisions leading to code and design degrada-
tion (Lin et al., 2016; Tufano et al., 2017).

Neglecting or postponing the enhancement of anomalous code
structures may increase software evolution costs (Lehman, 1980;
Mens et al., 2010). Extreme cases imply reengineering the entire sys-
tem (Lanubile and Visaggio, 1995).

1.1
Degradation Symptoms and Software Evolution

The literature in software engineering has introduced different mecha-
nisms for tracking anomalous code structures that suggest a degraded code
structure or design (Chávez et al., 2017; Chidamber and Kemerer, 1994;
Lanza and Marinescu, 2006). In particular, many anomalous code
structures emerge along with software evolution (Bavota et al., 2015;
Bibiano et al., 2019; Fernandes et al., 2017b; Tufano et al., 2017). Hereafter,
we refer to these mechanisms as degradation symptoms. We summarize below
two degradation symptoms often investigated by past work. Prior to that,
however, we introduce the concept of internal quality attribute.

Each internal attribute targets a particular quality aspect of the internal
structure of a system (Chávez et al., 2017; Fernandes et al., 2020). Cohesion,
complexity, coupling, inheritance, and size (Chidamber and Kemerer, 1994;
Lanza and Marinescu, 2006; Lorenz and Kidd, 1994; McCabe, 1976) are
examples of traditional internal attributes. Developers usually cap-
ture an internal attribute based on one or more software met-
rics (Chávez et al., 2017; Fernandes et al., 2020). A plenty of metrics
address different internal attributes (Chidamber and Kemerer, 1994;
Lanza and Marinescu, 2006; Lorenz and Kidd, 1994). For instance, Lack of
Cohesion (LCOM2) is an example of metric aimed at capturing the degree of
class cohesion (Chidamber and Kemerer, 1994), while Cyclomatic Complexity

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 14

(CC) captures the complexity degree of a method (McCabe, 1976).
Internal attributes may help monitor parts of the source code that

may increase the difficulty of evolving features (Chaparro et al., 2014;
Chávez et al., 2017; Destefanis et al., 2014). Such monitoring is enabled by
the analysis of a degradation symptom called critical internal attribute.
Each critical attribute is an internal attribute whose metrics used for
computing it assume anomalous values in comparison with a reference
value (Vale et al., 2018). Developers may derive reference values in many ways,
such as computing the distribution of metric values extracted from a set of sys-
tems (Vale et al., 2018). Examples of critical attributes often discussed in the
literature include low cohesion, high complexity, high coupling, large inheri-
tance, and large size (Fernandes et al., 2020).

Another degradation symptom is the so-called design smell. Design
smells are recurring code structures that potentially hinder software evolu-
tion (Fowler, 2018; Lanza and Marinescu, 2006). Design smell types include
Large Class, i.e. a too large and complex class, and Long Method, i.e. a
too long and complex method. Critical attributes serve as a basis for de-
tecting design smells (Bibiano et al., 2019; Fowler, 2018). That is, the defi-
nition of many design smell types relies on capturing two or more critical at-
tributes (Fowler, 2018; Lanza and Marinescu, 2006). For instance, Large Class
is usually computed by combining low cohesion, high complexity, and large
size (Fernandes et al., 2017b; Vale et al., 2018).

By definition, both critical attributes and design smells are purely
symptoms of degraded code structure and its design. Hence, their occurrence in
a system may not represent a threat to evolving features. Representing a threat
or not depends on the developer’s perception (Oliveira et al., 2020b). This
doctoral thesis is particularly concerned on how much (and why) developers
perceive critical attributes as relevant for evolving features. That is, we aim
at understanding the circumstances that make developers want to mitigate or
fully address critical attributes for the sake of software evolution.

1.2
Limited Knowledge on Critical Attributes and Software Evolution

Previous studies (Bibiano et al., 2019; Chaparro et al., 2014;
Le et al., 2016; Pantiuchina et al., 2018) investigated the relationship between
changes and the occurrence of degradation symptoms potentially harmful to
software evolution. Nevertheless, the majority of these studies is limited in
scope and has several flaws in methodology and procedures. A result is that
our current knowledge is insufficient for managing degradation symptoms that

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 15

developers find relevant, especially while evolving features, through refactoring
recommendations. In particular, we discuss below how extending the current
knowledge on critical attributes could help in evolving features.

A recent work (Silva et al., 2016b) suggests that about 40% of pull re-
quest rejections in open source systems is due to degraded code structure and
design. In this case, understanding how refactorings affect internal attributes
could help developers in deciding what refactorings to apply. Thus, developers
could improve those internal attributes they prioritize as relevant. Moreover,
revealing the most relevant critical attributes from the developer’s perception
could drive refactoring recommendations for effectively enhancing code struc-
tures. Thus, developers could reduce their rates of pull request rejections.

A major limitation of previous studies is focusing too much on en-
hancing code structures rather than addressing other intents. Certain stud-
ies (Bavota et al., 2015; Bibiano et al., 2019; Du Bois and Mens, 2003) gave
us useful hints on how refactorings may unexpectedly degrade the code struc-
ture and its design. However, they assume that developers apply most refactor-
ings intended at mitigating or fully addressing degradation symptoms. As a re-
sult, they ignore that the majority of refactorings are applied with other intents
in mind (Murphy-Hill et al., 2012; Silva et al., 2016a). Particularly, 73% of
refactorings are somehow related with evolving features (Chávez et al., 2017).

Additionally, current knowledge on the relationship between refactorings
and the occurrence of degradation symptoms is quite discouraging. Although
refactorings are especially designed for enhancing code structures, less than
10% of them suffice to fully address degradation symptoms such as design
smells (Bavota et al., 2015; Bibiano et al., 2019; Bibiano et al., 2020). By as-
suming that enhancing code structures is the intent behind most refactorings,
these studies ignore that other intents may have been a priority (e.g., evolving
features). Thus, recommending refactoring solely based on how much they en-
hance code structures is a naive strategy for managing degradation symptoms
– including critical attributes.

Another major limitation of previous studies is their very strict investi-
gation scope, thereby supporting a limited view on the refactoring effect – i.e.
improvement or worsening of internal attributes after performing refactorings.
Anomalous metric values (Chaparro et al., 2014; Pantiuchina et al., 2018) and
design smells (Bibiano et al., 2019; Mantyla et al., 2004; Palomba et al., 2014;
Taibi et al., 2017) have been the main target of studies on degrada-
tion symptoms. Still, previous studies typically assessed a small variety
of metrics and design smell types. Particularly, studies regarding criti-
cal attributes (Bavota et al., 2015; Chaparro et al., 2014; Kim et al., 2014;

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 16

Veerappa and Harrison, 2013) investigated only a few critical attributes –
mostly, cohesion and complexity. Some studies adopted small case studies
rather than large-scale studies.

In addition, previous studies (Palomba et al., 2014; Taibi et al., 2017)
captured the developer’s perception on how relevant design smells are to soft-
ware evolution. Contrary to expectations, only a few design smell types are re-
portedly potential threats to evolving features. For instance, while Duplicated
Code may hinder code reuse (Taibi et al., 2017), Large Class can increase the
difficulty to understand and perform changes (Palomba et al., 2014). However,
types like Lazy Class and Long Parameter List (Fowler, 2018) are not harm-
ful to software evolution after all. Curiously, to the best of our knowledge, no
past work captured the developer’s perception on how much (and why) critical
attributes are relevant for evolving features.

Different of previous studies, the majority of this doctoral thesis targets
changes whose intent is software evolution rather than the pure enhancement
of code structures. We aim to shed light on the refactoring effect on internal
attributes that may become critical and, still, are not relevant for developers
while evolving features. Furthermore, instead of purely quantifying the critical
attributes phenomenon, we qualitatively capture the developer’s perception on
how much each critical attribute is relevant in practical settings.

We summarize below the General Limitation addressed by this thesis.

General Limitation: The current knowledge on how refactorings affect
internal attributes and on how critical attributes can be addressed through
refactorings is insufficient to assist developers when evolving features.

1.3
On the Relationship between Refactorings and Internal Attributes

Refactoring means applying changes particularly designed for en-
hancing the internal structure of a system (Fowler, 2018; Liu et al., 2011).
Fowler’s Refactoring book (Fowler, 2018) is the most extensive catalog
of refactorings to this date. Since the first release of this catalog in
1999, refactoring practices spread across major software companies, e.g.
Google (Potvin and Levenberg, 2016) and Microsoft (Kim et al., 2014),
and large open source projects (Bavota et al., 2015; Chaparro et al., 2014;
Paixao et al., 2019). Particularly, refactoring has been incorporated into prac-
tices of software quality assurance, such as code review (Paixao et al., 2019;
Sadowski et al., 2018).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 17

Each refactoring varies in type according to the expected change. Ex-
amples of popular refactoring types in industry (Murphy-Hill et al., 2012;
Silva et al., 2016a) are Extract Method, i.e. extracting a new method from
an existing method, and Move Method, i.e. moving an existing method across
classes. Refactoring types are associated with the expected enhancement of
code structures. For instance, Extract Method may mitigate of fully address
critical attributes like high complexity and large size in a method. Similarly,
Move Method may reduce high coupling and increase cohesion in the origi-
nal class of a moved method (Al Dallal and Abdin, 2017; Chávez et al., 2017;
Fernandes et al., 2020).

The relationship between refactorings and internal attributes still lacks
empirical validation. Two major literature limitations restrict our view on
how refactorings affects traditional internal attributes, such as cohesion and
complexity. The first limitation regards the very strict scope of internal
attributes and metrics analyzed so far. Recent studies (Bavota et al., 2015;
Chaparro et al., 2014; Kim et al., 2014; Veerappa and Harrison, 2013) as-
sessed either a few internal attributes, mostly cohesion and coupling, or a few
metrics for capturing each attribute. As a result, these studies say little on how
refactorings affect internal attributes, regardless of being critical attributes.

The second limitation regards the lack of empirical investigation
on re-refactoring. The re-refactoring phenomenon occurs whenever one or
more refactorings are applied to a previously refactored code element, e.g. a
method or a class (Fernandes et al., 2020). Once developers often perform re-
refactorings, one could assume a more significant enhancement of the code
structure and its design via re-refactoring when compared to each single
refactoring. For instance, this is what previous studies assume to some ex-
tent (Chávez et al., 2017; Fowler, 2018; Jiau et al., 2013). That enhancement
could be even more significant depending the inherent complexity of code struc-
ture and design degradation (Bibiano et al., 2019; Bibiano et al., 2020). Nev-
ertheless, to the best of our knowledge, no empirical study has validated this
assumption, especially through the analysis of a large set of systems.

To address the aforementioned limitations is essential for assisting de-
velopers with refactorings to help manage critical attributes while evolving
features. For instance, while adding or enhancing features in a system, devel-
opers could carefully choose what refactoring types to apply for the sake of
software evolution. Developers could also decide whether to keep refactoring
the same code elements, in a re-refactoring manner, until the code structure
and its design is sufficiently enhanced. Finally, researchers could recommend
effective refactorings for improving internal attributes that developers typi-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 18

cally find relevant, while preserving other internal attributes that may become
critical.

We summarize below the Specific Limitation 1 addressed by this
doctoral thesis, based on the discussion above.

Specific Limitation 1: The current knowledge on how refactorings (and
re-refactorings) affect internal attributes, by means of attribute improve-
ment or worsening, is insufficient for managing critical attributes while
evolving features.

We address Specific Limitation 1 via a large quantitative study.
We extend a previous work (Chávez et al., 2017) about the refactoring effect
on five internal attributes – i.e., cohesion, complexity, coupling, inheritance,
and size. In order to overcome limitations of past work (Bavota et al., 2015;
Chaparro et al., 2014), we analyze 23 open source systems with 29,303 refac-
torings in total, from which nearly 50% of them constitutes re-refactorings.
Our study has the largest scope to this date: 11 refactoring types and 25 met-
rics. We assess three categories of refactoring effect: attribute improvement,
attribute worsening, and cases in which neither an attribute improvement nor
an attribute worsening occurs.

We advocate the importance of further investigating such a fine-grained
degradation symptom as internal attributes. The literature suggests that
degradation symptoms are often interrelated (Fernandes et al., 2017b). For in-
stance, low cohesion and high coupling are closely associated with degradation
symptoms at the architectural level (Samarthyam et al., 2016). We also dis-
cussed in Section 1.1 that detecting design smells like Large Class requires
combining two or more critical attributes, e.g. low cohesion, high complexity,
and large size.

Our study results reveal unprecedented details about the effect of
refactorings and re-refactorings on internal attributes. In contrast to a recent
work (Bavota et al., 2015), we found out that 94% of refactorings and re-
refactorings occur in code elements with at least one critical attribute. In other
words, the majority of (re-)refactorings occur in parts of the source code with
some sort of degraded code structure and design. Moreover, refactorings are
85 times more likely to occur in code elements without critical attributes than
re-refactorings. This result suggests that developers apply re-refactorings on
parts of the source code that remain degraded along with software evolution.

Other results are equally interesting. About 73% of refactorings co-occur
with other changes often aimed at evolving features. This result suggests that

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 19

mitigating or fully addressing critical attributes is relevant to perform software
evolution. In addition, refactorings either improve or keep unaffected the
internal attributes in 64% of the cases. Re-refactorings had similar results. We
hypothesize that either i) refactorings were insufficient to fully address critical
attributes in the 36% remaining cases or ii) developers only address internal
attributes they find relevant for evolving features. However, our quantitative
data is insufficient to confirm any of these hypotheses.

1.4
On the Relevance of Critical Attributes for Evolving Features

Many previous studies (Bavota et al., 2013; Bavota et al., 2015;
Bibiano et al., 2019; Bibiano et al., 2020; Chaparro et al., 2014) investigated
the refactoring effect on different degradation symptoms. These symptoms
range from anomalous metric values to design smells and, in the case of the
work we have extended (Chávez et al., 2017), critical attributes. Unfortu-
nately, the majority of study results published so far somehow discourage
the use of refactorings in practical settings. On the one hand, applying a
single refactoring on a code element rarely suffices in fully addressing design
smells (Yoshida et al., 2016). The same result is valid when combining or
re-applying refactorings (Bibiano et al., 2019; Bibiano et al., 2020).

While analyzing previous studies on this research topic, we observe
a research bias towards performing quantitative rather than qualitative
studies on the refactoring effect. We have found very few studies aimed
at capturing the developer’s perception of what degradation symptoms
are relevant for evolving features (Palomba et al., 2014; Taibi et al., 2017;
Yamashita and Moonen, 2013). By the way, we refer to relevance as the need
for either mitigating or fully addressing a degradation symptom for the sake
of software evolution. Previous studies conclude, for instance, that Duplicated
Code and Large Class may hinder code reuse and evolution, while Lazy Class
and Long Parameter List represent no threat after all (Palomba et al., 2014;
Taibi et al., 2017).

Unfortunately, all the aforementioned studies (Palomba et al., 2014;
Taibi et al., 2017; Yamashita and Moonen, 2013) on the developer’s percep-
tion of degradation symptoms target design smells only. As we discussed in
Section 1.1, design smell types are typically detected by combining two or
more critical attributes. Once past work provides evidence on how developers
perceive combinations of attributes in the form of design smells, these stud-
ies give us preliminary hints of how relevant each critical attribute may be.
Still, the lack of studies especially designed to capture the developer’s per-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 20

ception of critical attributes as relevant while evolving features has two major
implications. We discuss below each implication.

The first implication is this: refactoring recommendations derived from
past work may not match the recurring intents behind refactorings in industry.
Inherent limitations of quantitative data extracted from software repositories,
as collected in (Bavota et al., 2015; Bibiano et al., 2019), make it hard to
understand whether developers: i) actually failed in fully addressing critical
attributes or ii) have just ignored the improvement or worsening of critical
attributes they find irrelevant. Refactoring recommendations based on these
studies tend to optimize attribute improvement, regardless of attributes being
irrelevant.

The second implication derives from the first one. Shortly, devel-
opers will probably reject refactoring recommendations that overlook their
perception of what critical attributes are actually relevant. Previous stud-
ies suggest that developers are often reluctant in refactoring their sys-
tems (Kim et al., 2014; Silva et al., 2016a), mostly because they fear unex-
pected behavioral changes. However, in our case, the problem is simpler: de-
velopers may not see value in adopting the recommended refactorings. They
will probably prefer adding new features or enhancing existing features for
rapidly meeting the stakeholders’ needs.

This doctoral thesis proposes a different approach to provide recommen-
dations for managing critical attributes. We aim at capturing the developer’s
perception on how much each traditional critical attribute is relevant for evolv-
ing features. As a complement, we aim at capturing why certain critical at-
tributes are more relevant than others are and, thereby, developers must miti-
gate or fully address them for the sake of software evolution. To the best of our
knowledge, this is the first qualitative study on this matter. We expect to fill
an apparent gap between current refactoring recommendations and developer’s
concerns on managing critical attributes in practice.

We summarize below the Specific Limitation 2 addressed by this
doctoral thesis, based on the discussion above.

Specific Limitation 2: The current knowledge on how much (and why)
critical attributes are perceived as relevant by developers while evolving
features is scarce if not non-existent.

Aimed at addressing Specific Limitation 2, we designed a qualitative
case study based on focus group sessions. We chose two industry cases in order
to promote discussion on how much (and why) critical attributes are relevant

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 21

while evolving features. This study relies on strict guidelines for conducting
case study research in software engineering (Runeson and Höst, 2009).

We opted for investigating critical attributes at the class level only,
e.g. high class coupling. We believe that our investigation at the class level
is sufficient for acquiring a broad understanding on the relevance of critical
attributes. Indeed, classes are key code elements constituted of many others,
including attributes and methods. Additionally, we had the need for promoting
discussions, in each focus group session, that do not take longer than real
development teams may participate. Thus, we opted for restricting our study
to class level, thereby discarding critical attributes at levels such as method.

Following strict guidelines to perform focus groups (Kontio et al., 2004),
we recruited for participation two development teams of an industry-academy
joint initiative for Research and Development (R&D) in Brazil – i.e., the
ExACTa initiative1. Each team engaged with a particular focus group ses-
sion, in which developers discussed the five critical attributes mentioned
in Section 1.1 and investigated in our previous work (Chávez et al., 2017):
low cohesion, high complexity, high coupling, large inheritance, and large
size (Fernandes et al., 2020). Each focus group session lasted up to two hours
and was fully taken online, with the support of the MURAL interactive plat-
form2 and the Zoom Meeting tool3.

Our study results reveal important aspects on the relevance of the
five critical attributes mentioned above. On the one hand, we found out that
low cohesion and high complexity are ultimately relevant for developers. This
is because both critical attributes tend to increase the difficulty of evolving
features in a class. On the other hand, high coupling, large inheritance, and
large size are especially irrelevance when developers perform code reuse. Still,
these critical attributes may concern developers while evolving features.

In addition, we crossed our data obtained through the quantitative study
(Section 1.3) with our data obtained via our qualitative study (Section 1.4).
The data crossing allowed us to derive a simple, but empirically derived,
catalog of refactoring recommendations to help manage critical attributes while
evolving features. It is worth mentioning that our recommendations partially
rely on data regarding critical attributes at the class level. Thus, generalizing
our study results to critical attributes at other levels of the system requires
further investigation.

1http://www.exacta.inf.puc-rio.br/
2https://www.mural.co/
3https://zoom.us/pt-pt/meetings.html

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 22

1.5
Thesis Contributions

This doctoral thesis expands the current knowledge on degradation
symptoms that are relevant for developers during the software evolution.
Particularly, we provide unprecedented insights on how much (and why)
developers have to mitigate or fully address critical attributes while evolving
features. We rely on both a large quantitative study, based on mining software
repositories, and two industry cases with developers often engaged in software
evolution. We summarize below the contributions of this doctoral thesis.

Contribution 1: Additional empirical evidence on how (re-)refactorings
affect internal attributes – We identified opportunities to expand the
scope of previous studies (Section 1.3), e.g. by investigating a wider
set of internal attributes and metrics. Additionally, we did not re-
strict our study to changes associated with single refactoring only,
as made by past work (Al Dallal and Abdin, 2017; Bavota et al., 2015;
Du Bois and Mens, 2003). Instead, we provided an unprecedented re-
refactoring analysis. Finally, we strive for providing practitioners and de-
velopers with a large quantitative study based on the analysis of real systems.

As a result, we contribute with new insights on how refactorings and
re-refactorings affect critical attributes often discussed in the literature – e.g.,
low cohesion, high complexity, and large size. Besides introducing a catalog of
refactoring types and their respective effect on internal attributes, we contra-
dict past assumptions and common wisdom. Finally, the results of our large
quantitative study are documented in a journal paper (Fernandes et al., 2020).

Contribution 2: Empirical evidence on the developer’s perception re-
garding the relevance of critical attributes for evolving features – As aforemen-
tioned, evolving features is a major industry demand (Gousios et al., 2015).
Feature additions and enhancements are often performed in conjunction with
the enhancement of code structures (Chávez et al., 2017; Paixao et al., 2019),
mostly through refactorings. Still, we know little about what critical attributes
are more relevant for performing software evolution from the developer’s per-
ception. More critically, we barely know what makes developers mitigate or
fully address a critical attribute.

We present preliminary evidence on how much (and why) developers
find the five critical attributes investigated in our quantitative study rele-
vant (Fernandes et al., 2020). We relied on two industry cases where developers
discussed the relevance degree of each critical attributes at the class level – e.g.,
low class cohesion. The developers also provided recurring reasons for either
mitigating or fully addressing each critical attribute while evolving features.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 1. Introduction 23

Through this scientific contribution, we expect to inspire study replications in
other industry contexts – once generality of case study results is typically lim-
ited. We also aim at inspiring the design of novel tools for assisting refactorings
during software evolution.

Contribution 3: A catalog of refactoring recommendations to help
manage critical attributes while evolving features – The lack of empirical
knowledge on what critical attributes are relevant for evolving features may,
in parts, justify the limitations of the current tools for assisting refactorings,
e.g. (Lin et al., 2016; Szőke et al., 2015a). Existing tools mostly address the
removal of degradation symptoms (including critical attributes) regardless of
the intent behind refactorings. Hence, they provide little or no assistance to
mitigating or fully addressing those critical attributes that may hinder adding
or enhancing features.

We cross data from our quantitative study (Section 1.3) and qualitative
study (Section 1.4). Thus, we derive practical recommendations of refactorings
that may improve critical attributes often reported as relevant by the develop-
ers, while preventing the worsening of eventually critical attributes. We expect
not only support practitioners in their daily work, but also inspire the design
of novel tools for assisting refactorings.

1.6
Thesis Summary

We structured the remainder of this doctoral thesis as follows.
Chapter 2 provides background information aimed at supporting the

understanding of our work. This chapter also discusses related work.
Chapter 3 introduces our large quantitative study on the relation-

ship between refactorings and internal attributes. We present and discuss
the main study results, as reported in our recently published journal pa-
per (Fernandes et al., 2020).

Chapter 4 introduces our qualitative study case based on focus group
sessions. We describe in details our study, summarize our major study results,
and discuss some threats to validity – as treatments applied whenever possible.

Chapter 5 concludes this doctoral thesis. We discuss some major
implication of our study findings and describe the set of publications achieving
during this PhD course – some of them derived from this doctoral thesis.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



2
Background and Related Work

One of the most important concepts in contemporary software devel-
opment is software evolution. Shortly, software evolution consists of incre-
mentally adapting a software system according to the ever-changing demands
of stakeholders and system operating environment settings (Lehman, 1980).
While performing software evolution, developers apply several software changes
over versions of the same system (Mens et al., 2010). Each change is a
unit of modifications applied to the system (Elfatatry, 2007; Lehman, 1980;
Paixao et al., 2019). In general, each change in isolation reflects a particular
need for evolving the system (Elfatatry, 2007).

Changes vary in granularity, i.e. the scale of the software arti-
fact affected by modifications (Elfatatry, 2007). A single change may af-
fect the system at granularities ranging from methods and attributes
to components (Chávez et al., 2017; Paixao et al., 2019). In addition, each
change is associated with one or more developer intents (Paixao et al., 2019;
Silva et al., 2016a; Tao et al., 2012). An intent reflects a particular expec-
tation of the developer with respect to the applied change. Enhancing
code structures through refactorings (Fowler, 2018) and evolving software
features (Fernandes, 2019a; Paixao et al., 2019) are two of the most re-
curring intents. Both intents often co-occur in industry (Kim et al., 2014;
Paixao et al., 2019; Silva et al., 2016a).

Developers should avoid the introduction of degradation symptoms
– hints of degraded code structure and design – for the sake of soft-
ware evolution (Bavota et al., 2015; Fowler, 2018; Tufano et al., 2017). Two
examples of recurring degradation symptoms are anomalous metric val-
ues (Bavota et al., 2015; Chávez et al., 2017; Fernandes et al., 2020) and de-
sign smells (Fowler, 2018). In addition, monitoring and correcting degradation
symptoms as soon as they occur may facilitate future changes in a system.
Unfortunately, developers tend to unexpectedly introduce several degradation
symptoms to their systems, especially while performing changes without proper
assistance (Tufano et al., 2017). Even small systems have hundreds of degra-
dation symptoms (Fernandes et al., 2017b).

Particularly, the occurrence of degradation symptoms may make it harder

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 25

to perform feature additions and enhancements over time (Mens et al., 2010).
In this doctoral thesis, we call relevant a degradation symptom that developers
need to either mitigate or fully address for supporting software evolution.
Although highly recommended to developers, managing degradation symptoms
through refactorings is far from being a trivial task. This is mostly due to
two limitations of the current empirical knowledge. We discuss below these
limitations.

The first limitation regards an insufficient knowledge on how refactorings
affect degradation symptoms. Although previous studies (Bavota et al., 2015;
Bibiano et al., 2019; Chaparro et al., 2014; Du Bois and Mens, 2003) at-
tempted to address this literature gap, they are very limited in scope. Most
studies investigated a small variety of degradation symptoms – mostly design
smells. They also lacked a deep understanding on whether refactorings are
capable of fully addressing each degradation symptom in isolation.

The second limitation regards an insufficient knowledge on what
degradation symptoms are the most relevant from the developer’s percep-
tion. Past work (Bavota et al., 2015; Bibiano et al., 2019; Bibiano et al., 2020)
implicitly assumes that developers would either mitigate or fully ad-
dress any degradation symptoms with the proper guidance. However, re-
cent studies (Palomba et al., 2014; Pantiuchina et al., 2018; Taibi et al., 2017;
Yamashita and Moonen, 2013) suggest that many degradation symptoms are
irrelevant for developers, especially while evolving features. Thus, recommen-
dations to help manage degradation symptoms should consider the developer’s
perception of relevance for matching the intents behind refactorings.

This doctoral thesis addresses the two aforementioned limita-
tions in the context of a particular degradation symptom: critical in-
ternal attribute (Chávez et al., 2017; Fernandes et al., 2020). Each crit-
ical attribute is an internal attribute whose metrics used for com-
puting it assume anomalous values in comparison with a reference
value (Vale et al., 2018). Our first study extends a large quantitative
assessment (Chávez et al., 2017) of the relationship between refactor-
ings and five internal attributes: cohesion, complexity, coupling, inheri-
tance, and size (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006;
Lorenz and Kidd, 1994; McCabe, 1976). Our second study is a qualitative
case study based on focus groups (Kontio et al., 2004) in the industry. We aim
at understanding how much (and why) critical attributes are relevant while
evolving features.

This chapter summarizes background and related work for supporting
the understanding of this doctoral thesis. Section 2.1 defines critical attributes

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 26

based on anomalous metric values. Section 2.2 summarizes and exemplifies
design smells. We emphasize examples closely associated with the critical
attributes discussed throughout the thesis. Section 2.3 discusses the current
knowledge of developer’s perception on degradation symptoms with respect to
software evolution. Section 2.4 summarizes the basic concepts of refactoring
and re-refactoring. Section 2.5 discusses who refactorings may help either
mitigate or fully address degradation symptoms. Finally, Section 2.6 concludes
this chapter.

2.1
Critical Attributes

Metrics are measurements designed to provide insights on the quality
of a system (Lorenz and Kidd, 1994; Vale et al., 2018). A plenty of met-
rics have been cataloged in the literature (Chidamber and Kemerer, 1994;
Henry and Kafura, 1981; Lanza and Marinescu, 2006; Lorenz and Kidd, 1994).
In this thesis, we are particularly concerned on object-oriented metrics, i.e.,
metrics targeting systems implemented in object-oriented programming lan-
guages, from which Java stands out in industry1. Examples of metrics are
Method Lines of Code (MLOC) (Zimmermann et al., 2007), which counts the
number of code lines that constitute a method, and Coupling between Objects
(CBO) (Chidamber and Kemerer, 1994), which counts the number of classes
connected to a class.

Metric thresholds typically drive the metric value interpretation. Each
threshold is a reference value τ for determining whether a metric value is
anomalous. For instance, one could define an arbitrary τ = 100 in such a
way that MLOC > τ represents the range of anomalous MLOC values, once
they suggest a method is too long. Thresholds can be derived in several
ways, e.g. from the analysis of metrics distribution considering a set of
systems (Vale et al., 2018). As an example, the mean value of a metric, let
us say µ, could be set as a MLOC threshold so that MLOC > µ is the range
of anomalous metric values, while MLOC ≤ µ is the range of regular metric
values.

Anomalous metric values have been used to monitoring what we refer
to as internal quality attributes (Bavota et al., 2015; Chaparro et al., 2014;
Chávez et al., 2017; Fernandes et al., 2020). Each internal attribute concerns
an internal property of the system. This doctoral thesis targets the five
internal attributes defined below. In particular, cohesion and coupling are the
most recurrently investigated attributes (Fernandes et al., 2020). It is worth

1https://www.tiobe.com/tiobe-index/

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 27

mentioning that the definitions below are quite strict due to the scope of our
work. For instance, although complexity (Kataoka et al., 2002; McCabe, 1976)
could target other granularities rather than class, we are concerned about the
class complexity.

– Cohesion (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006)
captures the interrelation degree of code elements, i.e. attributes and
methods, that constitute a class;

– Complexity (Kataoka et al., 2002; McCabe, 1976) targets the cognitive
complexity degree of the code structure within a given class;

– Coupling (Chidamber and Kemerer, 1994; Kataoka et al., 2002) regards
the inter-dependency degree of a class with others in terms of methods
and attributes being used;

– Inheritance (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006)
encompasses parent-child relationships between classes that constitute
the class hierarchy in a system; and

– Size (Kataoka et al., 2002; Zimmermann et al., 2007) measures the
length or amount of source code implemented by a certain code element.

Table 2.1 summarizes the set of 25 metrics assessed throughout this
doctoral thesis. We have explored this set in our previous work on refac-
torings and their effect on internal software quality (Bibiano et al., 2019;
Bibiano et al., 2020; Chávez et al., 2017). All metrics are grouped (second col-
umn) according to the internal attribute they aim at capturing (first column).
The fifth column informs when a metric becomes critical whether its value
either increases or decreases after performing a change. This column relies on
our experiences with software development in industry combined with insights
extracted from previous studies (Bavota et al., 2015; Chávez et al., 2017). For
instance, high CBO values suggest classes with several features and dependen-
cies (Fowler, 2018; Lanza and Marinescu, 2006). Thus, CBO becomes critical
as its value increases for a given class.

Changes affect internal attributes in three ways (Chávez et al., 2017;
Fernandes et al., 2020). They can improve an internal attribute if the metrics
used for capturing it increase or decrease (depending on the fifth column of
Table 2.1) towards becoming non-critical metrics. They can also keep unaffected
an internal attribute by neither increasing nor decreasing the metrics used for
capturing it. Finally, they can worsen an internal attribute if the metrics used
for capturing it increase or decrease (also depending on the fifth column of
Table 2.1) towards becoming critical metrics.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 28

Table 2.1: Metrics Grouped by Internal Attribute
Attribute Metric Acronym Granularity Critical if

Cohesion

Lack of Cohesion of Methods
(Chidamber and Kemerer, 1994) LCOM2 Class Increases

Lack of Cohesion of Methods
(Li and Henry, 1993) LCOM3 Class Increases

Tight Class Cohesion
(Bieman and Kang, 1995) TCC Class Decreases

Complexity

Cyclomatic Complexity
(McCabe, 1976) CC Method Increases

Essential Complexity
(McCabe, 1976) Evg Method Increases

Nesting MaxNest Method Increases
Paths
(Nejmeh, 1988) NPATH Method Increases

Weighted Method per Class
(Chidamber and Kemerer, 1994) WMC Class Increases

Coupling

Coupling between Objects
(Chidamber and Kemerer, 1994) CBO Class Increases

Coupling Dispersion
(Lanza and Marinescu, 2006) CDISP Method Increases

Coupling Intensity
(Lanza and Marinescu, 2006) CINT Method Increases

Fan-in
(Henry and Kafura, 1981) FANIN Method Increases

Fan-out
(Henry and Kafura, 1981) FANOUT Method Increases

Inheritance

Base Classes
(Destefanis et al., 2014) IFANIN Class Decreases

Depth of Inheritance Tree
(Chidamber and Kemerer, 1994) DIT Class Decreases

Number Of Children
(Chidamber and Kemerer, 1994) NOC Class Decreases

Override Ratio
(Lanza and Marinescu, 2006) OR Class Increases

Size

Classes
(Lorenz and Kidd, 1994) CDL File Increases

Instance Methods
(Lorenz and Kidd, 1994) NIM Class Increases

Instance Variables
(Lorenz and Kidd, 1994) NIV Class Increases

Lines of Code
(Lorenz and Kidd, 1994) LOC Method Increases

Lines with Comments
(Lorenz and Kidd, 1994) CLOC Method Decreases

Number of Public Attributes
(Lanza and Marinescu, 2006) NOPA Class Increases

Statements
(Lorenz and Kidd, 1994) STMTC Method Increases

Weight of a Class
(Lanza and Marinescu, 2006) WOC Class Increases

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 29

Section 3.2 defines two cases for computing critical attributes. Case 1
occurs when a metric typically becomes critical when its value decreases
(Table 2.1). In this case, the internal attribute captured through this metric
is critical when the metric value is below a lower threshold. Case 2 occurs
when a metric typically becomes critical when its value increases (Table 2.1).
In this case, the internal attribute captured through this metric is critical
when the metric value is above an upper threshold. We relied on our previous
work (Chávez et al., 2017) to set the first (25%) and third (75%) quartiles as
our lower and upper thresholds, respectively, based on the distribution analysis
of each metric.

2.2
Design Smells

Design smells are symptoms of recurring code structures that are poten-
tially harmful to software evolution (Fowler, 2018). Each design smell varies
in type according to the recurring code structure it represents (Fowler, 2018;
Lanza and Marinescu, 2006). Examples of design smell types often assessed
by past work (Bibiano et al., 2019; Fernandes et al., 2017b; Liu et al., 2011;
Mantyla et al., 2004) are Large Class and Long Method. Large Class consists
of a class that is too large and complex, often realizing too many features. Sim-
ilarly, Long Method is a too long and complex method. Both types indicate
code elements whose understanding and changing may be hard for developers
to perform (Palomba et al., 2014; Yamashita and Moonen, 2013).

Table 2.2 list six design smell types (second column) grouped by their
granularity (first column), i.e. where each design smell occurs within the code
structure of a system. We sampled these types, and adapted their definitions
(third column), from Fowler’s Refactoring book (Fowler, 2018). We cherry-
picked design smell types that are closely related to our results reported in
Chapter 4 – on how much and why developers perceive each critical attributes
as relevant for evolving features. Similar to the case of refactoring types
(Section 1.3), Fowler’s book is a very comprehensive catalog of design smell
types.

Detecting design smells often requires the measurement of one
or more metrics, which are combined in the form of detection strate-
gies (Fernandes et al., 2016b). Once each metric captures a particu-
lar critical attribute of the system (Lanza and Marinescu, 2006), design
smells are more comprehensive degradation symptoms than critical at-
tributes (Bibiano et al., 2019). The detection strategy is responsible compar-
ing metric values to reference values (Vale et al., 2018) in clauses via logical

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 30

Table 2.2: Design Smell Types Grouped by Granularity
Granularity Design Smell Type Definition

Class
Large Class Too large and complex class

Data Class Nothing but a data holder; the lack of a more
intricate logic does not pay off its existence

Method
Long Method Too long and complex method

Feature Envy Method that ultimately consumes resources
from other classes rather than its host class

Both
Duplicated Code Same feature implemented in two or more dif-

ferent parts of the source code

Speculative Generality Parts of the source code created for an hypo-
thetical use that never really happens

operators, e.g. > and <. All clauses are combined via logical connectives, e.g.
AND and OR, in order to define whether a code element is affected by design
smells.

For illustration purposes, let us consider the Large Class design
smell type. Large Class is usually associated with critical attributes such
as low cohesion, high complexity, and large size (Fernandes et al., 2017b;
Vale et al., 2018). Thus, an arbitrary detection strategy for Large Class could
be such that (LCOM2 > τA) AND (CC > τB) AND (WOC > τC), where τA,
τB, and τC are considerably high metric values. Another example regards Long
Method. Once this design smell type is often associated with a large size, one
could define the following detection strategy: (MLOC > τD), where τD is also
a considerably high metric value.

2.3
On the Developer’s Perception of Degradation Symptoms

A few previous studies (Fernandes et al., 2017a; Meirelles et al., 2010;
Palomba et al., 2014; Taibi et al., 2017; Yamashita and Moonen, 2013) aimed
at investigating how developers perceive degradation symptoms. We discuss
below some of these studies with an emphasis on how important if mitigating
and fully addressing degradation symptoms for the sake of software evolution.
We also highlight literature gaps that we address throughout this doctoral
thesis.

Interesting insights are reported by previous studies on whether devel-
opers perceive anomalous metric values as useful symptoms of degraded
code structure and design (Bavota et al., 2013; Fernandes et al., 2017a;
Meirelles et al., 2010; Revelle et al., 2011). For instance, a previous
work (Meirelles et al., 2010) aimed at characterizing factors leading to a
high attractiveness of open source systems to new contributors, i.e., new
developers. The authors have found that developers may feel discourage to

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 31

contributing to systems with anomalous values of complexity metrics. In this
particular case, a potentially high difficulty to evolving features leads to a low
attractiveness.

Other previous studies (Bavota et al., 2013; Revelle et al., 2011) aimed
at capturing the developer’s perception on the usefulness of coupling metrics.
Results suggest coupling metrics solely based on the analysis of code structures,
such as CBO, are less effective than those derived from semantic aspects of the
system are. In other words, metrics that consider where features are located
within a system may benefit the analysis of internal attributes such as coupling.
Finally, another study (Fernandes et al., 2017a) concludes that developers
often perceive anomalous metric values for complexity and size as indicators
of unclear code. Shortly, unclear code is a part of the source code structure
that is potentially hard to understand and change (Fernandes et al., 2017a).

As discussed in Section 2.1, each metric aims at capturing a particular
internal attribute (see Table 2.1 for details). Thus, one could assume the afore-
mentioned study results provide hints on how relevant the critical attributes
are for software evolution in industry. Still, to the best of our knowledge, no
past work has investigated how much critical attribute – e.g., low cohesion,
high complexity, high coupling, large inheritance, and large size – are rele-
vant for developers while evolving features. We introduce a quantitative study
aimed at addressing this literature gap in Chapter 4.

Similarly, previous studies (Palomba et al., 2014; Taibi et al., 2017;
Yamashita and Moonen, 2013) investigated whether developers perceive de-
sign smells as useful symptoms of degraded code and design. Again, insights
on critical attributes appear because the definition of many design smells
depend on one or more critical attributes combined (Section 2.2). Contrary
to expectations, only a few design smell types are potential threats to evolv-
ing features. For instance, results suggest that design smell types such as
Duplicated Code may hinder code reuse (Taibi et al., 2017).

In addition, previous studies also agree that Large Class and Long
Method make it hard for developers to understand and change code el-
ements (Palomba et al., 2014; Taibi et al., 2017). Thus, design smell types
like these represent threats to evolving features from the developer’s per-
ception. This result is particularly interesting because both design smell
types are often detected by combining low cohesion, high complexity,
and large size (Fernandes et al., 2017b; Vale et al., 2018). On the other
hand, Lazy Class (Fowler, 2018), Long Parameter List (Fowler, 2018), and
other design smell types are not harmful to software evolution after
all (Palomba et al., 2014; Taibi et al., 2017; Yamashita and Moonen, 2013).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 32

Our quantitative study introduced in Chapter 4 also explored the circum-
stances that make developers either mitigate or fully address critical attributes
while evolving features. By doing that, we expect to understand each critical
attribute in isolation rather than combined in design problems.

2.4
Refactorings and Re-refactorings

Refactoring means applying changes to improve the internal software
quality (Fowler, 2018; Liu et al., 2011). Developers may purely intend to en-
hance code structures while refactoring, or they may refactor as a means to
achieve other intents, such as adding or enhancing features (Fernandes, 2019a;
Kim et al., 2014; Paixao et al., 2019; Silva et al., 2016a). Refactorings have
been recommended to help manage different types of degradation symptoms,
such as anomalous metric values (Bavota et al., 2015; Chaparro et al., 2014)
and design smells (Bibiano et al., 2019; Szőke et al., 2015a). We discuss
below three basic concepts associated with refactorings: refactoring tac-
tics (Murphy-Hill et al., 2012), refactoring types (Fowler, 2018), and re-
refactorings (Chávez et al., 2017).

Developers typically apply two different refactoring tactics: root-canal
and floss refactoring (Murphy-Hill et al., 2012). While root-canal refactor-
ing is the pure application of refactorings to code elements, floss refac-
toring means applying other changes in conjunction with refactorings.
These other changes may range from fixing bugs to adding or enhancing
features (Fernandes et al., 2020; Fernandes, 2019a; Murphy-Hill et al., 2012;
Paixao et al., 2019). In this case, developers – consciously or not – enhance
the code structure while applying other changes that realize particular de-
veloper intents. For instance, the developer adds new lines of code into an
extracted method to implement new features.

In summary, root-canal refactoring means improving the structural qual-
ity of the code without further changes, while floss refactoring implies refac-
toring in conjunction with other changes. From the perspective of critical at-
tributes, one could assume that different refactoring tactics have a different
effect on each critical attributes in isolation. For instance, changes applied in
conjunction with refactorings could lead to the worsening of internal attributes
that a pure refactoring would improve. That assumption is often true and our
quantitative study reported in Chapter 3 provides insights on this matter.

Each refactoring has a type targeting the enhancement of a partic-
ular code structure. Table 2.3 lists the set of 11 refactoring types ana-
lyzed in this doctoral thesis. We defined this set from Fowler’s Refactoring

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 33

book (Fowler, 2018). All refactoring types (second column) are grouped by
granularity (first column), i.e. the scope of changes caused by each refactoring
type. Examples of popular refactoring types in industry (Bibiano et al., 2019;
Murphy-Hill et al., 2012; Silva et al., 2016a) are Extract Method, i.e. extract-
ing a new method from an existing one, and Move Method, i.e. moving an
existing method from one class to another class.

Table 2.3: Refactoring Types Grouped by Granularity
Granularity Refactoring Type Definition

Attribute

Move Attribute Move an attribute from one class to another

Pull Up Attribute Move an attribute from one or more subclasses
to the superclass

Push Down Attribute Move an attribute from the superclass to one or
more subclasses

Class
Extract Interface Extract a new general interface from two or

more existing classes

Extract Superclass Extract a new superclass from two or more
existing classes

Method

Extract Method Extract a new method from an existing method

Inline Method Incorporate the body of an existing method into
another method

Move Method Move an existing method across classes

Pull Up Method Move a method from one or more subclasses to
the superclass

Push Down Method Move a method from the superclass to one or
more subclasses

Rename Method Rename an existing method

The refactoring types are implicitly associated with one or more internal
attribute. This is because each refactoring type should modify the code
structure and its design in such a way it changes one or more metric values.
Table 2.4 presents an attempt to associate the five internal attributes analyzed
in this doctoral thesis (Section 2.1) with the full set of 11 refactoring types
(Table 2.3). We derived this table for the analysis purposes of Chapter 3, based
on our experience with software development in industry and insights provided
by previous studies (Bibiano et al., 2019; Fowler, 2018).

Table 2.4: Internal Attributes Associated with Refactoring Types
Attribute Associated Refactoring Types
Cohesion Move Attribute, Move Method
Complexity Move Method
Coupling Extract Method, Inline Method, Move Attribute, Move Method
Inheritance Extract Interface, Extract Superclass, Move Attribute, Move Method,

Push Down Attribute, Push Down Method
Size Extract Interface, Extract Method, Extract Superclass, Inline Method,

Pull Up Attribute, Pull Up Method, Rename Method

As an example, the class cohesion may improve through Move Attribute
and Move Method if the refactored code element (attribute or method) was

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 34

at least partially the root-cause of the low cohesion. We highlight that this
association takes into account the scope of each internal attribute as described
in Section 2.1. Consequently, some reasonable associations are missing, such
as complexity versus Extract Method. In this case, once we target the class
complexity rather than the method complexity, we assume that Extract
Method has not direct effect on the class complexity.

Re-refactoring: Refactorings are not restricted to the applica-
tion of each single refactoring in isolation. Re-refactoring occurs when-
ever refactorings are applied to a code element refactored any time
in the past (Chávez et al., 2017; Jiau et al., 2013). This phenomenon
is quite frequent in practice (Bibiano et al., 2019; Chávez et al., 2017;
Murphy-Hill et al., 2012). Re-refactoring is supposedly applied to fully
achieve one of the aforementioned developer intents with refactorings, e.g.
purely enhancing the code structure or evolving features (Fernandes, 2019a;
Paixao et al., 2019).

Re-refactoring as a theoretical concept is still evolving in its formal
definition and mechanisms for computing re-refactoring instances. This may
have been due to the lack of studies, until recently (Bibiano et al., 2019;
Chávez et al., 2017; Fernandes et al., 2019b; Murphy-Hill et al., 2012), on un-
derstanding how developers combine different refactorings for enhancing the
code structure and its design. In this work, decide for choosing the re-
refactoring definition proposed by a recent work (Chávez, 2017) Although this
past definition is quite loose, we explain below how each refactoring is consid-
ered as either a re-refactoring instance or a single refactoring.

Consider the three granularities of refactoring types in the first column of
Table 2.3: attribute, method, and class. Consider also that developers applied
a refactoring r (e.g. Move Method) to a given code element (e.g., a method
m()) at a certain granularity (in this case, at the method granularity). Thus,
r is a re-refactoring instance only if developers previously applied another
refactoring r’ (e.g., another Move Method or an Extract Method etc.) to the
same code element (in this case, m()) at the same granularity. That is, for a
refactoring r to be a re-refactoring instance, another refactoring r’ must have
occurred previously during software evolution and share the same granularity.

Composite refactoring: There is empirical evidence that about a half
of the tool-automated refactorings are applied in conjunction rather than in
isolation (Murphy-Hill et al., 2012). Furthermore, developers can combine two
or more refactorings to achieve their most varied intents (Silva et al., 2016a),
e.g. to mitigate or fully address a degradation symptom (Bibiano et al., 2019;
Fowler, 2018; Lin et al., 2016; Szőke et al., 2015a). Composite refactoring, for-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 35

merly known as batch refactoring, is how we have been calling the appli-
cation of two or more refactorings in conjunction (Fernandes et al., 2019b;
Fernandes, 2019a). Although frequent in real systems, composite refac-
toring has only recently being empirically assessed (Bibiano et al., 2019;
Bibiano et al., 2020).

2.5
On Addressing Degradation Symptoms through Refactoring

Some studies, e.g. (Bavota et al., 2015; Bibiano et al., 2019;
Chaparro et al., 2014) investigated the role of refactoring in either mitigating
or fully addressing degradation symptoms while evolving features. These stud-
ies targeted different degradation symptoms, including anomalous metric val-
ues (Bavota et al., 2015; Chaparro et al., 2014; Veerappa and Harrison, 2013)
and design smells (Bibiano et al., 2019; Yoshida et al., 2016).

Although refactoring was originally assumed to enhance the code struc-
ture and its design (Fowler, 2018), thereby leveraging the internal software
quality, past work does not support this assumption. For instance, a non-
ignorable percentage of refactorings worsens, rather than improves, anomalous
metric values (Chaparro et al., 2014; Du Bois and Mens, 2003). Furthermore,
the literature (Bibiano et al., 2019; Bibiano et al., 2020; Tufano et al., 2017)
suggests that refactoring rarely suffices to fully remove design smells.

Applying each single refactoring to the code structure only removes from
9% to 9.7% of design smells (Tufano et al., 2017). This results is not exactly un-
expected, once design smell types such as Duplicated Code and Large Class (cf.
Table 2.2) involve multiple code elements and are quite hard to fully address.
On the other hand, applying composite refactorings also falls short in removing
design smells (Bibiano et al., 2019; Bibiano et al., 2020) – even when applying
composite refactorings suggested in Fowler’s Refactoring book (Fowler, 2018).
Composites remove only 11% of design smells (Bibiano et al., 2019), probably
due to the lack of assistance in combining refactorings (Bibiano et al., 2020;
Fernandes et al., 2019b).

Several techniques aim at assisting developers in mitigating or fully
addressing degradation symptoms in real settings. Many tools aim at au-
tomating the detection of design smells (Fernandes et al., 2016b). Systematic
procedures were introduced for driving the validation of degradation symp-
toms that really concern developers while evolving features (Liu et al., 2011;
Oliveira et al., 2020b). Finally, tools were designed for removing design smells
from systems (Lin et al., 2016; Szőke et al., 2015a; Tsantalis et al., 2018).

To the best of our knowledge, none of the existing tools and techniques

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 2. Background and Related Work 36

mentioned above have been shaped for addressing particular needs of adding
or enhancing features. We acknowledge that the current tooling support may
be quite handful while performing refactorings, especially for preventing an
overall decay of the internal software quality. Still, existing tools and techniques
typically ignores that certain degradation symptoms – e.g., specific critical
attributes – are more relevant than others are while evolving features.

Aimed at partially addressing this literature gap, our qualitative study
reported in Chapter 3 summarizes a preliminary set of refactoring recommen-
dations. Our major goals are i) assist developers with refactorings to help man-
age critical attributes, thereby supporting software evolution, and ii) inspire
the design of novel tooling support for assisted refactorings.

2.6
Chapter Summary

This chapter summarized key theoretical concepts explored through the
doctoral thesis. We discussed two of the most recurrently investigated degra-
dation symptoms in the literature: critical attributes and design smells. As a
complement, we summarized findings of previous studies on the developer’s
perception of degradation symptoms – with an emphasis on the lack of knowl-
edge of relevant critical attributes. Also in this chapter, we discussed some
basic concepts regarding refactorings, including refactoring tactics and types.
Finally, we summarized the existing strategies for either mitigating or fully
addressing degradation symptoms through refactorings – with an emphasis on
the lack of refactoring support to help manage critical attributes.

In order to dig deeper into the degradation symptoms to evolving
features, the next chapter introduces the first study that composes this
doctoral thesis. In a large quantitative study, we investigate the relationship
between refactoring and internal attributes. We are particularly concerned on
addressing major literature limitations, such as the lack of empirical studies
on re-refactoring.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



3
Relationship between Refactorings and Internal Attributes

Several software changes are daily applied along with software evolu-
tion (Lehman, 1980). Each change addresses a particular demand for changing
software features or operating environment constraints (Mens et al., 2010).
Refactoring is typically applied to enhance the code structure and its
design (Kim et al., 2014; Murphy-Hill et al., 2012; Silva et al., 2016a). In
principle, each single refactoring targets the improvement of a particu-
lar code structure (Fowler, 2018; Kataoka et al., 2002; Liu et al., 2011).
Mitigating or fully addressing a degraded code structure often requires
the application of two or more refactorings on the same code ele-
ment (Bibiano et al., 2019; Murphy-Hill et al., 2012). We refer to this phe-
nomenon as re-refactoring (Fernandes et al., 2020; Jiau et al., 2013).

There are two refactoring tactics (Murphy-Hill et al., 2012): root-canal
refactoring and floss refactoring. Developers apply root-canal refactoring when
they aim at exclusively improving the internal software quality. Thus, changes
applied along with root-canal refactoring are restricted to refactorings à la
Fowler (Fowler, 2018). Developers apply floss refactoring aimed at achieving
other intents rather than the pure code structure and design enhancement, e.g.
evolving features (Fernandes, 2019a; Murphy-Hill et al., 2012). Thus, develop-
ers (consciously or not) enhance the code structure and its design in order
to enable a feature addition or enhancement. This observation could partially
explain why about 92% of the code review issues target refactorings together
with either feature addition or enhancement (Paixao et al., 2019).

Internal quality attributes target internal quality properties
of a system. Cohesion and complexity are examples of these at-
tributes (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006;
Lorenz and Kidd, 1994). One could expect a different effect on internal
attributes after applying each refactoring type. For instance, Move Method
could reduce coupling of the methods’ source class, while Extract Method re-
duces method size (Fowler, 2018). Analyzing the refactoring effect on internal
attributes could drive the enhancement of code structures while facilitating
other intents, such as evolving features. One could also expect a different
effect on attributes per refactoring tactic. For instance, floss refactoring may

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 38

be more likely to worsen attributes due to the changes applied in conjunction
with refactorings.

A few studies (Bavota et al., 2015; Yoshida et al., 2016) have investi-
gated the refactoring effect on degraded code structures spotted by de-
sign smells (Fowler, 2018). These studies suggest that design smells poten-
tially harm software evolution, once developers apply several refactorings
on smelly code while evolving software features. Contrary to expectations,
these studies show that single refactorings only remove from 9% to 9.7%
of design smells. Design smells are coarse-grained degradation symptoms,
once each design smell is often captured from two or more critical inter-
nal attributes (Fowler, 2018; Lanza and Marinescu, 2006). By targeting design
smells only, past work may have overlooked a fine-grained improvement of par-
ticular critical attributes (Chávez et al., 2017), even if design smells were not
removed.

It is assumed that re-refactoring may help addressing more com-
plex degradation symptoms when compared to each single refactor-
ing (Chávez et al., 2017; Jiau et al., 2013). Unfortunately, the current
knowledge on the relationship between refactorings and internal at-
tributes is insufficient to stand this assumption. Indeed, previous stud-
ies (Bavota et al., 2015; Chaparro et al., 2014; Du Bois and Mens, 2003;
Veerappa and Harrison, 2013) assess a strict scope of internal attributes.
While most studies target cohesion and coupling only, there are other poten-
tially relevant attributes, e.g. complexity and size. Additionally, those studies
analyzed only a few metrics per attribute. Finally, there is still no evidence
that re-refactoring is more frequent in code elements affected by complex
degradation symptoms, i.e. two or more attributes combined, when compared
to single refactoring.

Critical attributes are quantifiable via software metrics as much as de-
sign smells. Nevertheless, we acknowledge the importance of investigating crit-
ical attributes in specific. Indeed, degradation symptoms are often interre-
lated (Fernandes et al., 2017b). For instance, critical attributes targeting the
code structure and its design, such as low cohesion and high coupling, are
closely associated with architecture degradation (Samarthyam et al., 2016).
Thus, understanding how refactorings affect each internal attribute may lever-
age software evolution practices.

This chapter extends a recent work (Chávez et al., 2017) on the re-
lationship between refactorings and internal attributes. Our study was
originally designed to investigate five internal attributes (Fowler, 2018;
Lanza and Marinescu, 2006; Lorenz and Kidd, 1994): cohesion, complexity,

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 39

coupling, inheritance, and size. We mined 23 Java open source systems
with 29,303 refactorings in total. We analyzed 11 popular refactoring
types (Kim et al., 2014; Murphy-Hill et al., 2012).

In this chapter, we incorporate complementary study findings grounded
on statistical testing, in order to address a major literature limitation reported
by a recent work (Al Dallal and Abdin, 2017). Moreover, we introduce an
unprecedented analysis of the re-refactoring effect on internal attributes,
thereby addressing another major literature gap. Finally, we systematically
compare the results obtained for refactorings in general with those achieved
for re-refactorings.

Similar to our previous work (Chávez et al., 2017), we defined criti-
cal attribute as an attribute whose metrics used for capturing it assume
anomalous values (Vale et al., 2018). We aimed to reveal if re-refactorings
may at least partially address critical attributes, as refactorings in gen-
eral (Chávez et al., 2017). Hereinafter, we refer to both refactoring and re-
refactoring as (re-)refactoring. Our results suggest that:

– Surprisingly, 94% of (re-)refactorings occur in code elements with
at least one critical attribute. This result contradicts a previous
study (Bavota et al., 2015) by showing that refactorings and internal at-
tributes are indeed interrelated. Such a high refactoring rate also indi-
cates that critical attributes are possibly relevant for evolving features.

– 73% of refactorings constitute floss refactorings, i.e. refactorings applied
in conjunction with other changes often intended at evolving features.
Combined with the aforementioned finding, this result suggests that mit-
igating or fully addressing critical attributes via refactorings is important
in practice. Otherwise, developers would not refactor code while perform-
ing feature additions and enhancements.

– Refactorings tend to either improve or keep unaffected the internal
attributes, regardless of the refactoring types being associated with
a particular attribute. In 64% of the cases, attributes were improved
or kept unaffected when considering our strictest analysis approach.
Nevertheless, it is possible that i) refactorings in general are insufficient
to overcome degraded code structure and design spotted by critical
attributes, or ii) developers only fully address those critical attributes
that really concern developers while evolving features. Our qualitative
study reported in Chapter 4 further investigates these assumptions.

– Re-refactorings tend to improve or keep unaffected the internal at-
tributes, just as refactorings in general. However, the rates of attribute

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 40

improvement are slightly greater than the rates of attribute worsening:
up to 26% greater in the case of pure refactorings that changed attributes
they should change. This result suggests re-refactoring aims at gradually
addressing complex degradation symptoms, e.g. combinations of two or
more critical attributes in the form of design smells.

We organized the remainder of this chapter as follows. Section 3.1
introduces the study goal and research questions. Section 3.2 describes the
study steps and procedures. Section 3.3 presents the study results on the
relationship between (re-)refactorings and critical attributes. Sections 3.4
and 3.5 provide the study results on the refactoring and re-refactoring effect,
respectively. Section 3.6 compares the refactoring and re-refactoring effect
results. Section 3.7 compares our study with past work at the levels of study
design and results. Section 3.8 discusses threats to the study validity. Finally,
Section 3.9 concludes this chapter and introduces the next one.

3.1
Goal and Research Questions

Our study goal is: analyze how refactoring in general and re-refactoring
affect internal attributes; for the purpose of understanding when and how
(re-)refactoring affect metrics that quantify cohesion, complexity, coupling,
inheritance, and size; with respect to i) the frequency of (re-)refactorings
applied to code elements with critical attributes, and ii) if these refactorings
are more likely to improve, keep unaffected, or worsen internal attributes;
from the viewpoint of software engineering researchers; in the context of Java
open source systems and refactoring types popularly adopted in industry. We
describe below our four research questions (RQs).

RQ1: Is (re-)refactoring often applied to code elements with critical at-
tributes? – Anomalous metric values are shown useful for spotting code ele-
ments that are worth refactoring (Fowler, 2018; Lanza and Marinescu, 2006;
Lorenz and Kidd, 1994). In our past work (Chávez et al., 2017), we investi-
gated if developers are more likely to apply refactorings to code elements whose
anomalous metric values suggest the occurrence of critical attributes.

Through RQ1, we extend our past work by investigating the application
of both refactoring in general and re-refactoring. We refer to critical attributes
those internal attributes whose metric values are anomalous when compared
to a reference value. If code elements with critical attributes are typically
(re-)refactored, it is worth investigating the (re-)refactoring effect on internal
attributes. Section 3.2 describes our strategy for computing critical attributes.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 41

From the perspective of software evolution, RQ1 is essential to validate
the practical relevance of critical attributes while evolving features. If develop-
ers often perform (re-)refactorings on code elements with at least one critical
attribute, the degraded code structure and design realized by these code ele-
ments are worth mitigating or fully addressing. Past work (Bibiano et al., 2019;
Chávez et al., 2017) showed that floss refactorings, i.e. refactorings combined
with intents such as evolving features (Murphy-Hill et al., 2012), are more fre-
quent than root-canal refactorings. Thus, the more critical attributes affect
refactored code, the higher may be the relevance of critical attributes to either
adding or enhancing features.

RQ2: How does refactoring affect internal attributes? – Once we know
how frequently developers apply refactorings to code elements with critical at-
tributes (RQ1), it becomes important to observe the side effect of these refac-
torings to the code structural quality. Via RQ2, we investigate the refactoring
effect on the five internal attributes selected for the study (Section 2.1). Our
major goal is to understand if refactorings are more likely to improve, keep
unaffected, or worsen these internal attributes, regardless of being critical.

Table 2.4 suggests that only a few internal attributes have a close rela-
tionship with each refactoring type. Thus, our study makes a clear distinction
of associated and non-associated refactoring types by attribute. We also define
two approaches for analyzing the refactoring effect on internal attributes: At
Least One Metric and Most Metrics. Please refer to Section 3.2 for further
information on each analysis approach.

In the RQ2 case, analyzing the refactoring effect on internal attributes
may help in understanding the importance of mitigating and fully addressing
these degradation symptoms. If (re-)refactorings often worsen or keep unaf-
fected the internal attributes, we could state that (re-)refactorings have been
insufficient for fully addressing internal attributes. Thus, developers need as-
sistance while adding or enhancing features, thereby preventing that internal
attributes become critical. However, it is possible that refactorings and re-
refactorings often improve internal attributes. Thus, we could conclude that
these changes, even when combined with evolving features, are effective in
mitigating or fully addressing internal attributes, including critical attributes.

RQ3: How does re-refactoring affect internal attributes? – Developers
may have to apply more than one refactoring to the same code element, e.g.
to mitigate the harmfulness of a degradation symptom to software evolu-
tion. This phenomenon is called re-refactoring (Jiau et al., 2013). Contrary
to refactorings in general (Chávez et al., 2017), i.e., regardless of constituting
re-refactorings or not, little is known about the re-refactoring effect on internal

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 42

attributes.
It may be true that, although developers typically perform re-refactoring,

the internal software quality worsens rather than improves. If so, developers
need guidance while applying re-refactorings. RQ3 aims at revealing the extent
in which re-refactoring has succeeded in improving code structures as assumed
by previous work (Jiau et al., 2013). Section 3.2 describes two approaches for
analyzing the re-refactoring effect on internal attributes.

Through RQ3, we may partially address the aforementioned assumption
that re-refactorings aim at mitigating or fully addressing complex degradation
symptoms while evolving features. It is possible that re-refactorings very often
improve internal attributes. Thus, developers may have been re-refactoring for
gradually addressing critical attributes.

RQ4: To what extent the refactoring effect differs from the re-refactoring
effect on internal attributes? – In RQ2 and RQ3, we explore the effect of
refactoring in general and re-refactoring on internal attributes separately.
Thus, it may be hard to understand whether the effect of applying new
refactorings to a previously refactored code element increases (or decreases) the
likelihood of improving, keeping unaffected, or worsening internal attributes.
RQ4 aims at fairly comparing the results obtained by the separate analyses of
refactoring in general and re-refactoring.

Maybe developers tend to worsen, rather than improve, internal at-
tributes while performing re-refactorings. This result could serve as a warning
for preventing an unexpected introduction of critical attributes along with
re-refactorings. From a software evolution perspective, RQ4 may validate our
assumption that re-refactorings are more effective in addressing complex degra-
dation symptoms when compared to refactorings in general.

3.2
Steps and Procedures

Step 1: Selecting systems – Table 3.1 lists the 23 analyzed systems sorted
by the number of refactorings detected (third column). We relied on the same
data set explored by our previous work (Chávez et al., 2017), retrieved from
GitHub. The number of systems by number of refactorings is balanced: six
systems have many refactorings (> 1, 000) and six systems have less than 100
refactorings; the other 11 systems range from 100 to 1,000 refactorings each.
Our system selection criteria were: Java as the main programming language,
because Java is largely adopted and allows the detection of most refactoring
types defined in Fowler’s book (Fowler, 2018); open source systems to support
the study replication; and popular systems based on the GitHub stars count.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 43

Table 3.1: Systems Selected for Analysis
System GitHub Repository Refactorings Commits
Elasticsearch elastic/elasticsearch 9,507 23,597
Spring Framework spring-projects/spring-framework 5,320 12,974
ArgoUML argouml-tigris-org/argouml 2,588 17,654
Presto prestodb/presto 2,068 8,056
Ant apache/ant 2,063 13,331
Realm realm/realm-java 1,699 5,916
Spring Boot spring-projects/spring-boot 1,386 8,529
OkHttp square/okhttp 855 2,645
Xerces2 Java apache/xerces2-j 853 5,456
J2ObjC google/j2objc 713 2,823
MPAndroidChart PhilJay/MPAndroidChart 398 1,737
Facebook SDK for Android facebook/facebook-android-sdk 341 601
Junit 4 junit-team/junit4 309 2,113
Dubbo alibaba/dubbo 280 1,836
Hystrix Netflix/Hystrix 266 1,847
Retrofit square/retrofit 232 1,349
Fresco facebook/fresco 161 744
Dagger 1 square/dagger 96 696
Google I/O Android App google/iosched 73 129
Simian Army Netflix/SimianArmy 55 710
Logger orhanobut/logger 20 68
LeakCanary square/leakcanary 12 265
Android Bootstrap AndroidBootstrap/android-bootstrap 8 230
Total 29,303 113,306

Step 2: Computing refactorings – We adopted Refactoring-
Miner (Tsantalis et al., 2013) for detecting the 11 refactoring types analyzed
in this work and listed in Table 2.3. This tool has presented a high accuracy of
95% of precision and recall in the detection of refactorings (Chávez et al., 2017;
Tsantalis et al., 2013). We chose Version 0.2.0, retrieved online1, due to an
existing validation of detection results (Tsantalis et al., 2013). The 11 refac-
toring types covered by RefactoringMiner have been shown popular in
industry (Murphy-Hill et al., 2012; Silva et al., 2016a). We detected 29,303
refactorings in total.

Step 3: Classifying refactorings by tactic – We manually classified a
random set of 2,119 refactorings, i.e., about 7% out of the total, by refactoring
tactic. We arbitrarily chose the set size for enabling its manual classification
by three researchers. We annotated each refactoring regardless of constituting
a single refactoring or a re-refactoring. If we observed that a refactoring
was followed by refactoring-unrelated changes, e.g., the addition of new code
statements, we annotated the refactoring as floss refactoring; otherwise, we
annotated the refactoring as root-canal refactoring. We obtained 1,543 floss
refactorings against 576 root-canal refactorings. We reused the same data set
for analyzing the re-refactoring effect on internal attributes.

Step 4: Computing metric values by internal attribute – We used the
non-commercial license of the Understand tool2 for detecting the 25 met-
rics that capture internal attributes listed in Table 2.1. We have successfully

1https://github.com/tsantalis/RefactoringMiner
2https://scitools.com/features/

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 44

adopted this tool to detect metrics in large data sets (Bibiano et al., 2019;
Chávez et al., 2017). Understand is compatible with various languages includ-
ing Java, thereby allowing us to compute metrics for the 23 systems under
analysis.

Procedure 1: Computing critical attributes – We computed the criti-
cality of attributes for each (re-)refactored code element based on metrics. A
metric may indicate a critical attribute in two scenarios. Scenario 1: if the met-
ric typically becomes critical when its value decreases, then a critical attribute
is characterized by values below a lower threshold. Scenario 2: if the metric
typically becomes critical when its value increases, then a critical attribute is
characterized by values above an upper threshold.

Table 2.1 discriminates the typical scenario for each analyzed met-
ric. Thresholds can be computed through the distribution of a metric, es-
pecially quartiles that segregate highest and lowest values in a distribu-
tion (Vale et al., 2018). Inspired by our previous work (Chávez et al., 2017),
we used the first (25%) and third (75%) quartiles as the lower and upper
thresholds. We reused the criticality computation algorithm described in our
past work (Chávez et al., 2017).

Procedure 2: Computing the relationship of (re-)refactoring and critical
attributes – With Procedure 1, we computed the frequency of (re-)refactorings
affecting code elements with zero or more critical attributes. To understand
the differences among refactoring in general and re-refactoring, we com-
puted the Fisher’s exact test with a 99% confidence interval, i.e., p-value
< 0.01. The test was employed to compute the relationship of (re-)refactorings
and the number of critical attributes affecting the (re-)refactored code ele-
ment (Fernandes et al., 2017b). Fisher’s test computes the probability of a
certain property – i.e., the application of either a single refactoring or a re-
refactoring – to co-occur with another property – i.e., the affected code element
to have either zero or more than one critical attribute. The test results in the
Odds Ratio that indicates how many times the first property co-occurs with
the second one (Fernandes et al., 2017b).

Procedure 3: Computing the (re-)refactoring effect on internal at-
tributes – We define two analysis approaches for computing the behavior of
internal attributes after (re-)refactorings. In the At Least One Metric approach,
we assume that an internal attribute has improved if one or more associated
metrics have improved after the (re-)refactoring application. Therefore, im-
proving this attribute was at least a little relevant for evolving features. This
is the less strict analysis approach because it considers any improvement, which
is useful to capture the refactoring effect at a very fine-grained level.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 45

In the Most Metrics approach, we assume that an internal attribute has
improved if most of the associated metrics, i.e., 50% of metrics plus one metric,
have improved. Therefore, improving this attribute was probably very relevant
for evolving features. This is the strictest analysis approach, once the (re-
)refactoring has to be significantly positive by means of the number of metrics
that quantify an internal attribute. For attributes with many metrics, e.g.,
size, the improvement means a highly significant improvement of metrics.

Procedure 4: Comparing the (re-)refactoring effect per analysis ap-
proach – In order to compare the results obtained for each analysis approach
defined in Procedure 3, we have applied a correlation analysis. The last col-
umn presents the ρ coefficient computed from the Pearson’s correlation test
for the results by type. ρ indicates the correlation between Most and At Least
One frequencies. Aimed at a fair correlation computation, we computed corre-
lation only for those attributes whose effect remained the same. We adopted
the following criteria (Hinkle et al., 2002) to classify each ρ coefficient by the
correlation strength: very strong (ρ ≥ 0.9), strong (0.7 ≤ ρ < 0.9), moderate
(0.5 ≤ ρ < 0.7), weak (0.3 ≤ ρ < 0.5), and very weak (ρ < 0.3).

3.3
(Re-)Refactoring and Critical Attributes (RQ1)

3.3.1
Frequency Regardless of Refactoring Type

Table 3.2 presents the frequency of (re-)refactorings applied to code el-
ements with critical attributes. The first column lists three sets of refactor-
ings. The all refactorings row includes the 29,303 refactorings detected for all
23 systems. The single refactoring row covers those transformations that do
not constitute re-refactorings. The re-refactoring row is composed of all re-
refactorings. Finally, the random sample rows include the 2,119 refactorings
manually classified by refactoring tactic (Step 3 of Section 3.2).

Table 3.2: Frequency of Refactorings Applied to Elements with Critical At-
tributes

Refactoring Set Tactic Total
Nº of Critical Attributes

No Single Multiple
Abs. % Abs. % Abs. %

All refactorings All tactics 29,303 1,570 5.36 4,458 15.21 23,275 79.43
Single refactoring All tactics 14,782 1,550 10.49 4,425 29.94 8,807 59.58
Re-refactoring All tactics 14,521 20 0.14 33 0.23 14,468 99.64

Random sample Root-canal 576 7 1.22 17 2.95 552 95.83
Floss 1,543 4 0.26 13 0.84 1,526 98.90

Note: Percentage values may not total 100.00 due to the two-decimals rounding

The second column of Table 3.2 lists the refactoring tactics. The third
column presents the total of refactorings by tactic. The remaining columns

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 46

inform the frequency of refactorings applied to code elements that have: zero
critical attributes, i.e., the no category; one critical attribute, i.e., the single
category; and more than one critical attribute, i.e., the multiple category.
Frequency values are given in absolute number (Abs.) and percentage (%).

Developers apply most (re-)refactorings to code elements with at least
one critical attribute. By summing the two last categories, i.e., single and
multiple, we have at least 94% of refactorings regardless of being either a single
refactoring or a re-refactoring. There is a particular novelty of our results here
in comparison with our previous work (Chávez et al., 2017), whose data are
shown in Table 3.2, except for the fifth row. This time we have found that,
even if a refactoring has been applied to a given code element in the past,
this code element tends to remain with at least one critical attribute after the
re-refactoring application.

To compare the results for single refactoring and re-refactoring, we
computed the Fisher’s exact test on our data with a 99% confidence interval.
The test resulted in a statistically significant Odds Ratio equals 84.90. In other
words, single refactorings are about 85 times more likely to be applied to code
elements with zero critical attributes when compared to re-refactorings. This
result suggests that developers decide to re-refactor only those degraded code
structures that actually threaten software evolution.

Regarding refactoring tactics, floss refactoring is slightly more frequent in
code elements with two or more critical attributes (98.90%) when compared to
root-canal refactoring (95.83%). This result is particularly interesting because
developers do not necessarily apply floss refactoring with code structure im-
provement in mind. Thus, although the intent behind changes extrapolates the
pure enhancement of code structures, developers should be aware of the refac-
toring effect on internal attributes. Otherwise, developers may unexpectedly
degrade the code structure and its design.

On the Relevance of Critical Attributes for Evolving Features:
Surprisingly, about 94% of (re-)refactorings occur in code elements with at least
one critical attribute. Such a high refactoring rate, summed up with a higher
incidence of floss refactoring (73%) when compared to root-canal refactoring
(27%), leads us to an interesting conclusion. That is, addressing critical
attributes seems very relevant for evolving features. Otherwise, developers
would not have spent such an effort with refactoring code elements with a
degraded code structure or design.

Additionally, we found that single refactoring is up to 85 times more
likely to occur in code elements without critical attributes when compared to
re-refactoring. Thus, we partially confirm our assumption on the re-refactoring

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 47

use to mitigate or fully address complex degradation symptoms, e.g., two or
more critical attributes co-occurring in a code element.

3.3.2
Frequency by Refactoring Type

Table 3.3 presents the frequency of (re-)refactorings applied to code
elements with different numbers of critical attributes, i.e., zero (no), one
(single), or more than one (multiple). In this case, we did not split single
refactoring and re-refactoring. We present the frequency in absolute number
(Abs.) and percentage (%) by refactoring type. The 11 refactoring types listed
in the second column are organized by means of the code element that each
type typically affects, i.e., class (and interface), attribute, and method. The
remaining columns are similar to Table 3.2.

Table 3.3: Frequency of Refactorings Applied to Elements with Critical At-
tributes per Type

Element Refactoring Type Total
Nº of Critical Attributes

No Single Multiple
Abs. % Abs. % Abs. %

Class Extract Interface 133 13 9.78 12 9.02 108 81.20
Extract Superclass 341 16 4.69 10 2.93 315 92.38

Attribute
Move Attribute 4,355 0 0.00 6 0.14 4,349 99.86
Pull Up Attribute 465 2 0.43 0 0.00 463 99.57
Push Down Attribute 78 0 0.00 0 0.00 78 100.00

Method

Extract Method 7,513 14 0.19 14 0.19 7,485 99.62
Inline Method 1,525 1 0.07 1 0.07 1,523 99.86
Move Method 1,404 4 0.28 10 0.71 1,390 99.01
Pull Up Method 629 2 0.32 5 0.79 622 98.89
Push Down Method 114 0 0.00 1 0.88 113 99.12
Rename Method 12,746 1,518 11.91 4,399 34.51 6,829 53.58

Note: Percentage values may not total 100.00 due to the two-decimals rounding

Data of Table 3.3 supports some key insights on the (re-)refactoring
effect by refactoring type. Only Extract Interface, Extract Superclass, and
Rename Method were applied more than 1% of the times to code ele-
ments without critical attributes. Additionally, for all refactoring types, the
observation remains: developers ultimately apply refactorings to code ele-
ments with multiple critical attributes rather one or less attributes. Curi-
ously, Rename Method had the highest percentage of refactorings in the
no category. We are aware that Rename Method does not directly affect
the method’s structure. Nevertheless, renaming can be a complement to
other refactorings previously applied for gradually enhancing a code struc-
ture (Bibiano et al., 2019; Bibiano et al., 2020; Fowler, 2018).

Comparison with a Closely Related Work: A previous
work (Bavota et al., 2015) explored the relationship of metrics and
refactorings applied to open source systems. Similar to our previous
work (Chávez et al., 2017), the authors investigated how often refactor-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 48

ings are applied to code elements with anomalous metric values. Contrary to
our results, they did not find a clear relationship of metrics and refactorings.
Instead, the authors observed that developers typically apply refactorings to
code elements whose metrics do not indicate a need for refactoring. Aimed at
tracking the root cause for such a different result, we compared the designs of
the previous work and ours.

Regarding the refactoring detection tool, we used Refactor-
ingMiner (Tsantalis et al., 2013), while the previous work used Ref-
Finder (Prete et al., 2010). The former was empirically validated with high
accuracy, i.e., about 95% of average precision (Tsantalis et al., 2013), be-
sides being successfully explored by us in recent studies (Bibiano et al., 2019;
Bibiano et al., 2020; Chávez et al., 2017). The latter was also empirically
validated with high accuracy, i.e., 79% of overall precision (Prete et al., 2010),
but we decided to use the most accurate tool. We hypothesize that the tool
choice of the previous work (Bavota et al., 2015) biased the results with too
many false positives.

The data sets explored by our work and the previous one are quite
different as well. Although both studies analyzed open source systems only,
the previous work mined only three systems, i.e., ArgoUML, Ant, and Xerces2
Java, against the 23 systems mined by us, including those three systems.
We included 20 more systems to diversify our database by means of the
number of refactorings and commits. Furthermore, while our work relied on
the full commit history of each system, the previous work analyzed only major
system releases. Thus, previous work possibly overlooked refactorings applied
in between release-related commits.

At least implicitly, both studies explored the same five internal attributes.
Nevertheless, the metric sets differ a lot. We explored 25 metrics against 11
metrics by the previous work. Five metrics, namely CBO, DIT, LOC, NOC,
and WMC, were explored by both studies (see Table 2.1 for metric definitions);
we replaced the much criticized original Lack of Cohesion (LCOM) with
alternative metrics (Chidamber and Kemerer, 1994; Li and Henry, 1993). We
hypothesize that our larger metrics set allowed us a more comprehensive
understanding of how refactorings and metrics inter-relate from the perspective
of internal attributes.

3.3.3
Summary of RQ1

Our quantitative data suggests that 94% of (re-)refactorings are ap-
plied to code elements with critical attributes. By contradicting a previous

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 49

work (Bavota et al., 2015), we confirm that refactorings and internal attributes
are indeed interrelated. Such a high rate of refactored code elements with at
least one critical attribute suggests that these attributes are relevant degrada-
tion symptoms to evolving features. Moreover, 73% of refactorings constitute
floss refactorings, i.e. refactorings applied in conjunction with other changes
often intended at evolving features. This result suggest that addressing critical
attributes is important to the success of feature additions and enhancements.
Otherwise, developers would not refactor those code elements while evolving
features.

3.4
Refactoring Effect on Internal Attributes (RQ2)

3.4.1
Improvement of Internal Attributes

Table 3.4 summarizes the refactoring effect for each internal attribute
(columns) and refactoring type (rows). For facilitating discussion, the refac-
toring types are grouped by the type of refactored code element: class (and
interface), attribute, and method (Table 2.3). The first column lists all 11 refac-
toring types. The second column discriminates the study results by analysis
approach: Most correspond to the Most Metrics approach, while One denotes
the At Least One Metric approach. For each attribute, we present the refactor-
ing effect on the attribute in the columns E – of Effect – and the percentage
of refactorings that caused such effect is in the columns labeled with %.

Table 3.4: Refactoring Effect on Internal Attributes by Refactoring Type
Type Appr. Cohesion Complexity Coupling Inheritance Size

ρE % E % E % E % E %
Extract
Interface

Most − 83.46 − 94.74 − 69.92 ↑ 64.66 − 42.11 0.98One − 83.46 − 94.74 − 63.16 ↑ 68.42 − 39.85
Extract
Superclass

Most ↑ 51.32 − 60.12 − 53.67 − 54.25 ↑ 73.02 0.99One ↑ 51.32 − 60.12 ↑ 48.68 ↑ 92.67 ↑ 81.52
Move
Attribute

Most ↑ 63.31 − 88.40 − 55.57 − 90.13 − 50.95 0.99One ↑ 63.31 − 88.40 − 49.00 − 87.83 − 48.45
Pull Up
Attribute

Most ↓ 59.35 − 68.60 ↓ 66.45 − 81.94 ↓ 63.87 0.89One ↓ 59.35 − 68.60 ↓ 66.45 − 70.97 ↑ 81.29
Push Down
Attribute

Most ↓ 47.44 − 87.18 ↑ 41.03 − 97.44 ↑ 46.15 0.82One ↓ 47.44 − 87.18 ↑ 53.85 − 94.87 ↑ 79.49
Extract
Method

Most ↓ 59.03 ↑ 44.95 ↓ 45.77 − 93.81 ↓ 58.53 1.00One ↓ 59.03 ↑ 47.03 ↑ 71.40 − 93.09 ↑ 85.81
Inline
Method

Most ↑ 58.30 − 48.92 ↓ 39.87 − 92.92 ↑ 56.59 0.68One ↑ 58.30 − 48.07 ↑ 77.64 − 91.48 ↑ 88.98
Move
Method

Most ↓ 46.44 − 68.87 ↓ 41.17 − 81.05 ↑ 43.73 0.23One ↓ 46.44 − 68.87 ↑ 48.01 − 74.29 ↑ 82.55
Pull Up
Method

Most ↓ 43.88 − 69.16 ↓ 67.89 − 85.06 ↓ 52.94 1.00One ↓ 43.88 − 69.16 ↓ 67.89 − 83.47 ↑ 82.99
Push Down
Method

Most ↓ 42.11 − 59.65 ↑ 44.74 − 89.47 ↓ 58.77 0.66One ↓ 42.11 − 59.65 ↑ 77.19 − 85.09 ↑ 78.07
Rename
Method

Most − 100.00 − 97.98 − 82.93 − 100.00 − 86.11 1.00One − 100.00 − 97.98 − 80.63 − 100.00 − 85.74
E stands for effect: improved (↑), worsened (↓), and kept unaffected (−)

Cells with bold font mean that the respective attribute should improve
after the application of the respective refactoring type; Table 2.4 presents all
the expected associations of attributes and refactoring types. The last column

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 50

presents the ρ coefficient computed from the Pearson’s correlation test for the
results by type. ρ denotes the correlation between Most and One frequencies.
Aimed at a fair correlation computation, we computed correlation only for
those attributes whose effect remained the same. Taking Extract Superclass
as an example, cohesion kept unaffected for both Most and One approaches,
while coupling had a different effect per analysis approach.

Most Metrics analysis approach. Pull Up Attribute, Pull Up
Method, and Rename Method did not improve any of the five internal at-
tributes. This result is quite reasonable because the changes underlying Pull
Up Attribute and Rename Method refactoring types are too little; thus, we
conclude that they have small importance when it comes to avoid code qual-
ity decay. Extract Interface, Extract Method, Move Attribute, Move Method,
and Push Down Method improved exactly one attribute. Curiously, only Move
Method and Extract Interface improved attributes that one would expect to
improve through these types, according to Table 2.4.

Although developers often apply Extract Method and Move
Method (Murphy-Hill et al., 2012), both types rarely suffice in fully ad-
dressing complex degradation symptoms, such as Large Class and Feature
Envy (Bibiano et al., 2019). Our study provides complementary insights by
showing that both types rarely improve more than just one attribute. Thus,
one should not expect both types are capable of fully addressing complex
degradation symptoms, which require the improvement of multiple attributes,
such as cohesion and coupling, to be removed. We then conclude that these
refactoring types in especial should be combined with others in order to
support the effective enhancement of code structures.

Extract Superclass, Inline Method, and Push Down Attribute improved
exactly two attributes. All three types improved size, Push Down Attribute
also improved coupling, while Extract Superclass and Inline Method improved
cohesion. It was quite surprising that Push Down Attribute improve many
more attributes than Pull Up Attribute. This observation may result from the
particularities of class coupling in the analyzed systems; perhaps a recurring
coupling issue in these systems would be simply resolved by moving attributes
from the parent to the child classes. Fowler’s Refactoring book (Fowler, 2018)
recommends these types for fully addressing design smells, such as Duplicated
Code and Large Class, that may harm software evolution. Our study confirms
that these types are indeed effective in improving internal software quality,
and matches recent observations that Pull Up refactorings can fully address
various degraded code structures (Bibiano et al., 2019).

At Least One Metric analysis approach. Once this analysis ap-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 51

proach is less strict, an overall improvement was expected. Indeed, the number
of refactoring types that did not improve any of the five attributes has dropped
from three to one. The only type that kept without improving attributes is Re-
name Method; this observation is fair when considering that Rename Method
has no direct effect on the code structure. Extract Interface, Move Attribute,
Pull Up Attribute, and Pull Up Method improved exactly one attribute. All
these four types improved attributes that one would expect to improve.

Extract Method, Extract Superclass, Inline Method, Move Method, Push
Down Attribute, and Push DownMethod improved from two to four attributes.
Especially, Extract Superclass improved all attributes but complexity. The
variety of levels in which these refactoring types affect the source code is
quite impressive. This result somehow reinforces previous assumptions that
combining different refactoring types can succeed in fully addressing complex
degradation symptoms (Bibiano et al., 2019; Fowler, 2018).

3.4.2
Worsening of Internal Attributes

Most Metrics analysis approach. Extract Interface, Extract Super-
class, Move Attribute, and Rename Method did not worsen any of the five
internal attributes. This result surprises because Extract Interface and Ex-
tract Superclass imply substantially changing both coupling and hierarchy of
classes. The results encourage the application of both types if necessary.

Conversely, the results for Rename Method are reasonable, thereby
confirming this type as harmless to code structures. Nevertheless, wors-
ening was surprisingly more frequent than improvement in general. Inline
Method and Push Down Attribute worsened exactly one attribute. Partic-
ularly, Inline Method worsened rather than improved coupling. This result
suggests that developers should be careful while applying Inline Method
across different classes; otherwise, they may increase the coupling between
classes (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006).

Extract Method, Move Method, Pull Up Attribute, Pull Up Method,
and Push Down Method worsened either two or three attributes. It is worth
mentioning that four out of the five types apply to the method level. We
conclude that developers are more likely to worsen the code structural quality
while performing method-level refactoring. This result may derive from the
high occurrence of these types in floss refactoring; thus, developers are more
likely to overlook the code quality decay that results of applying these
types. This result emphasizes the importance of the automated support for
recommending refactoring (Tsantalis et al., 2013), especially at the method

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 52

level.
At Least One Metric analysis approach. Our less strict analysis

approach revealed different insights on the refactoring effect for each type. This
analysis approach increased, from four to five, the number of refactoring types.
In fact, Extract Interface, Extract Superclass, Move Attribute, Inline Method,
and Rename Method that did not worsen any of the five internal attributes.
This result reinforces that Extract Superclass and Inline Method, which are
two of the types that improve many internal attributes (Section 3.4.1), can
be applied without major concerns with code quality decay. These types will
probably improve rather than worsen the code structural quality of systems.

Extract Method, Move Method, Push Down Attribute, and Push Down
Method worsened exactly one attribute. All four types worsened cohesion. This
result is quite unexpected because Pull Up and Move refactoring types are typ-
ically recommended for moving code elements across classes (Fowler, 2018);
thus, the class cohesion should improve rather than worsen. Pull Up Attribute
and Pull Up Method worsened exactly two attributes. This result is also un-
expected once Pull Up refactorings suggest an improvement of class cohesion.

3.4.3
Most Metrics versus At Least One Metric

We rely on the thirteenth column of Table 3.4 to analyze the statistical
difference of results obtained from the two analysis approaches, i.e., Most
Metrics and At Least One Metric. We adopted the criteria discussed in
Section 3.2 to classify the correlation strength indicated by each ρ coefficient.
We discuss below the main insights obtained from the correlation analysis.

Except for Inline Method, Move Method, and Push Down Method,
the overall results changed little according to the analysis approach. In the
case of Inline Method (moderate correlation) and Move Method (very weak
correlation), the size attribute was the most affected one. As the analysis
became more strict, i.e., from the At Least One Metric to Most Metrics, the
frequency in which the two refactoring types improve size have decayed in at
least 32%. This result is quite expected because, as shown in Table 2.1, size is
computed by the largest set of metrics, i.e., eight metrics in total.

In the particular case of Push Down Method (moderate correlation),
coupling was the most affected attribute. The use of a more strict analysis
approach decreased in about 32% the frequency of coupling improvement.
Coupling is computed from five different metrics (Table 2.1), which is a lot
to sustain the coupling improvement when the Most Metrics approach is
considered. In summary, our data reveal that the analysis results are ultimately

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 53

consistent regardless of the analysis approach.

3.4.4
Root-canal versus Floss Refactoring

Table 3.5 summarizes the refactoring effect on attributes by tactic, i.e.,
root-canal and floss refactoring. The first column lists the three refactoring ef-
fects: improve, keeps unaffected, and worsen. The second column discriminates
the two analysis approaches used in this work: Most and One. From Table 3.4,
we counted how many times each of the 11 refactoring types were expected to
improve any of the five internal attributes – these are the so-called associated
attributes. The resulting count equals 20 for each analysis approach and 40 re-
gardless of the analysis approach. We used this count to compute the general
refactoring effect specifically on the associated attributes.

Table 3.5: General Refactoring Effect on Internal Attributes by Refactoring
Tactic

Refactoring
Effect on
Attributes

Appr.
Associated Attributes All Attributes

Root-canal Floss Root-canal Floss
Abs. % Abs. % Abs. % Abs. %

Improve Most 8 40.00 5 25.00 14 25.45 10 18.18
One 13 65.00 11 55.00 23 41.82 23 41.82

Keeps
Unaffected

Most 8 40.00 8 40.00 30 54.55 25 45.45
One 7 35.00 7 35.00 27 49.09 21 38.18

Worsen Most 4 20.00 7 35.00 11 20.00 20 36.36
One 0 0.00 2 10.00 5 9.09 11 20.00

Note: Percentage values may not total 100.00 due to the two-decimals rounding

The third to sixth columns provide the absolute number (Abs.) and
percentage (%) of times in which associated attributes have either improved,
kept unaffected, or worsened. In total, we have 11 refactoring types and five
attributes, totaling 11 * 5 = 55 pairs of type and attribute. We used this count
to compute the general refactoring effect for all attributes; the results are
presented in the remaining columns in both Abs. and %. We split the results
by refactoring tactic aimed at capturing any differences. Cells with bold font
indicate the highest values obtained through each analysis approach.

Results for Associated Attributes only. Regardless of refactoring
tactic, refactorings are more likely to improve and keep unaffected rather than
worsen internal attributes. In the Most Metrics approach, i.e., the strictest,
attributes that either improved or kept unaffected summed 80% for root-
canal refactoring against 65% for floss refactoring. In the At Least One Metric
approach, i.e., the less strict one, the sum of attributes that improved and
kept unaffected impressively reached 100% for root-canal refactoring against
90% for floss refactoring. Nevertheless, the considerable frequency of attribute
worsening due to floss refactoring, which is less expressive for root-canal
refactoring, is quite revealing. It seems that developers actually need guidance

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 54

to enhance code structures while performing refactoring accompanied by other
changes, e.g., changes intended at evolving features (Fernandes, 2019a).

Results for All Attributes. Our results are slightly different when
considering all attributes regardless of being associated with specific refactoring
types. In the Most Metrics approach, i.e., the strictest, attributes that either
improved or kept unaffected summed 80% for root-canal refactoring against
63.63% for floss refactoring. In the At Least One Metric approach, i.e., the
less strict one, the sum of attributes that improved and kept unaffected
impressively reached 90.91% for root-canal refactoring against 80% for floss
refactoring. The sums decreased in up to 10% but they still surpass the
frequency of refactorings that worsened attributes. Comparing results for All
and Associated Attributes suggests that refactorings affect associated and
unassociated attributes similarly, for the good or for the bad.

3.4.5
Summary of RQ2

Refactorings tend to either improve or keep unaffected the internal
attributes, regardless of the refactoring types being associated with a particular
attribute. Our results pointed out at least 64% of attributes improved or
unaffected for the strictest analysis approach, i.e. Most Metrics, against at
least 80% for the less strict approach, i.e. At Least One Metric. There are two
way of interpreting the high rate of attributes kept unaffected.

One the one hand, it may be the case in which refactorings in general
are insufficient to overcome such a complex degradation symptom while
evolving features. On the other hand, it is possible that developers only
fully address degradation symptoms that really harm software evolution. As
a result, developers end up postponing the correction or ignoring less relevant
symptoms. Our qualitative study (Chapter 4) further investigates this issue.

Finally, the rates of attribute improvement in isolation only slightly sur-
pass the rates of attribute worsening. Thus, developers need further assistance
for addressing critical attributes while evolving features.

3.5
Re-Refactoring Effect on Internal Attributes (RQ3)

3.5.1
Improvement of Internal Attributes

Table 3.6 summarizes the re-refactoring effect by internal attribute
(columns) and refactoring type (rows). The table structure is the same of

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 55

Table 3.4. Due to trace loss of methods that remained the same except for the
name, we did not compute re-refactorings of the Rename Method type. Thus,
we discarded this refactoring type from our analysis.

Table 3.6: Re-refactoring Effect on Internal Attributes by Refactoring Type
Type Appr. Cohesion Complexity Coupling Inheritance Size

ρE % E % E % E % E %
Extract
Interface

Most − 85.71 − 100.00 − 76.19 ↑ 57.14 − 54.76 0.98One − 85.71 − 100.00 − 69.05 ↑ 59.52 − 50.00
Extract
Superclass

Most ↑ 54.39 − 57.89 ↑ 55.26 ↑ 95.61 ↑ 86.84 1.00One ↑ 54.39 − 57.89 − 61.40 − 50 ↑ 71.93
Move
Attribute

Most ↑ 65.70 − 90.24 − 59.74 − 91.37 − 56.86 0.99One ↑ 65.70 − 90.24 − 54.34 − 89.46 − 54.73
Pull Up
Attribute

Most ↓ 47.88 − 61.00 ↓ 59.07 − 77.22 ↓ 69.50 0.99One ↓ 46.98 − 61.00 ↓ 59.07 − 72.20 ↑ 85.71
Push Down
Attribute

Most ↑ 40.00 − 85.71 ↑ 42.86 − 97.14 ↓ 54.29 0.98One ↑ 40.00 − 85.71 ↑ 54.29 − 97.14 ↑ 82.86
Extract
Method

Most ↓ 59.11 ↑ 44.93 ↓ 45.77 − 93.82 ↓ 58.53 1.00One ↓ 59.11 ↑ 46.99 ↑ 71.40 − 93.10 ↑ 85.85
Inline
Method

Most ↑ 58.32 − 48.98 ↓ 39.91 − 92.90 ↑ 56.54 0.68One ↑ 58.32 − 48.13 ↑ 77.65 − 91.45 ↑ 89.02
Move
Method

Most ↓ 47.52 − 71.17 ↓ 38.29 − 84.23 ↑ 44.26 0.25One ↓ 47.52 − 71.17 ↑ 51.01 − 77.59 ↑ 85.25
Pull Up
Method

Most ↓ 39.20 − 67.77 ↓ 72.43 − 91.36 ↓ 59.47 1.00One ↓ 40.32 − 67.77 ↓ 72.99 − 91.03 ↑ 83.72
Push Down
Method

Most ↓ 48.57 − 51.43 ↑ 42.86 − 94.29 ↓ 57.14 0.67One ↓ 49.02 − 51.43 ↑ 80.00 − 94.29 ↑ 84.29
E stands for effect: improved (↑), worsened (↓), and kept unaffected (−)

Most Metrics analysis approach. Pull Up Attribute and Pull Up
Method did not improve any of the five internal attributes. This result is ex-
pected for Pull Up Attribute once its effect on code structures is quite small.
Conversely, this result is counter-intuitive for Pull Up Method because apply-
ing Pull Up Method after other refactorings is often recommended for fully ad-
dressing complex degradation symptoms (Bibiano et al., 2019; Fowler, 2018).

Extract Interface, Extract Method, Move Attribute, Move Method, and
Push Down Method improved exactly one attribute. This result is equiv-
alent to the one obtained for refactorings in general (Section 3.4.1). In-
line Method and Push Down Attribute improved exactly two attributes. In
this case, the results obtained for refactorings in general has remained the
same. Once these types have been recommended for fully addressing design
smells (Bibiano et al., 2019; Fowler, 2018), our results further encourage their
use.

Finally, Extract Superclass surprisingly improved four attributes except
complexity, which differs from the previously discussed results; thus, our results
strongly suggest applying this refactoring type.

At Least One Metric analysis approach. With this less strict
analysis approach, all refactoring types have improved at least one attribute.
Extract Interface, Move Attribute, Pull Up Attribute, and Pull Up Method
improved exactly one attribute. Curiously, this result is shared by the analysis
of refactorings in general (see Section 3.4.1 for details).

Extract Superclass, Move Method, and Push Down Method have im-
proved exactly two attributes. This result is especially interesting in the case

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 56

of Move Method and Push Down Method, which are often recommended to
succeed other refactoring types, e.g., Extract Method and Inline Method, in
order to fully address certain types of design smells (Bibiano et al., 2019;
Fowler, 2018). These types include Large Class, Long Method, and oth-
ers (Fowler, 2018; Lanza and Marinescu, 2006).

Finally, Push Down Attribute, Extract Method, and Inline Method
improved three attributes. Again, we found evidence that applying these types
after other refactorings can indeed enhance code structures.

3.5.2
Worsening of Internal Attributes

Most Metrics analysis approach. The re-refactoring effect on wors-
ening attributes is exactly the same when compared to general refactorings
(Section 3.4.1) – except by the exclusion of Rename Method from our analy-
sis. Extract Interface, Extract Superclass, and Move Attribute did not worsen
any of the five internal attributes. In other words, even after applying other
refactorings to a particular code class, the application of these three refactoring
types did not cause the code quality decay.

Extract Method, Move Method, Pull Up Attribute, Pull Up Method,
and Push Down Method worsened either two or three attributes. This result
at least partially explains why combining these types with others, or their
successive application to the same code element, often fails to fully remove
design smells (Bibiano et al., 2019). We recommend that tool designers take
into account the possibly negative effect of applying these types while they
provide developers with refactoring recommendations.

At Least One Metrics analysis approach. By excluding Rename
Method, the re-refactoring effect on worsening attributes is quite similar to the
one observed for general refactorings (Section 3.4.2). Extract Interface, Extract
Superclass, Move Attribute, Push Down Attribute, and Inline Method did not
worsen any of the five internal attributes. Extract Method, Move Method, and
Push Down Attribute worsened exactly one attribute. This result emphasizes
the need for carefully applying both Extract Method and Move Method, oth-
erwise there is an increasing risk of code quality decay (Bibiano et al., 2019).

Finally, Pull Up Attribute and Pull Up Method worsened exactly two
attributes. For both types, cohesion and coupling usually become critical. This
observation conflicts with the common wisdom that Pull Up refactorings help
to properly distribute the features implemented by each class (Fowler, 2018).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 57

3.5.3
Most Metrics versus At Least One Metric

According to the thirteenth column of Table 3.6, the overall results
obtained for refactorings in general (Section 3.4.3) occurred again for re-
refactorings only. Except for Inline Method, Move Method, and Push Down
Method, the results changed little according to the analysis approach.

In the case of Inline Method (moderate correlation) and Move Method
(very weak correlation), size was the most affected attribute. As the analysis
became more strict, i.e., from the At Least One Metric to Most Metrics, the
frequency in which the two refactoring types improve size have decayed in at
least 32%. Once again, this result is expected because we selected seven metrics
in total to compute size (Table 2.1), which makes it harder to keep the results
consistent when considering a more strict analysis approach.

In the case of Push Down Method (moderate correlation), coupling was
the most affected attribute. The attribute improvement decreased in 37%
when considering the strictest analysis approach, i.e., Most Metrics. Similar
reasoning applies to this result when compared to size: many metrics capture
coupling, five in total. In summary, our results are consistent regardless of the
analysis approach, even for re-refactoring.

3.5.4
Root-canal versus Floss Refactoring

Table 3.7 summarizes the re-refactoring effect on internal attributes by
tactic, i.e., root-canal and floss refactoring. The first column lists the three
alternatives for the re-refactoring effect: improve, keeps unaffected, and worsen.
The second column discriminates our two analysis approaches: Most and One.
We relied on Table 3.6 to compute how many times each out of the 10
refactoring types, except Rename Method, were expected to improve any of the
five internal attributes – the so-called associated attributes. The resulting count
equals 19 for each analysis approach and 38 regardless of the analysis approach.
We used this count to compute the general re-refactoring effect specifically on
the associated attributes.

The third to sixth columns provide the absolute number (Abs.) and
percentage (%) of times in which associated attributes have either improved,
kept unaffected, or worsened. In total, we have 10 refactoring types and five
attributes, totaling 10 * 5 = 50 pairs of type and attribute. We used this count
to compute the general re-refactoring effect for all attributes; the results are
presented in the remaining columns in both Abs. and %. We split the results

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 58

Table 3.7: General Re-refactoring Effect on Internal Attributes by Refactoring
Tactic

Refactoring
Effect on
Attributes

Appr.
Associated Attributes All Attributes

Root-canal Floss Root-canal Floss
Abs. % Abs. % Abs. % Abs. %

Improve Most 9 47.37 16 32.00 5 26.32 9 18.00
One 13 68.42 26 52.00 12 63.16 22 44.00

Keeps
Unaffected

Most 6 31.58 23 46.00 7 36.84 22 44.00
One 6 31.58 19 38.00 6 31.58 17 34.00

Worsen Most 4 21.05 11 22.00 7 36.84 19 38.00
One 0 0.00 5 10.00 1 5.26 11 22.00

Note: Percentage values may not total 100.00 due to the two-decimals rounding

by refactoring tactic aimed at capturing any differences. Cells with bold font
indicate the highest values obtained by analysis approach.

Results for Associated Attributes only. Re-refactorings rarely
worsen internal attributes, regardless of refactoring tactic. In the Most Metrics
approach, i.e., the strictest, attributes that either improved or kept unaffected
summed 78.95% for root-canal refactoring against 78% for floss refactoring.
This result considerably differs from the one observed for refactorings in general
(Table 3.5). Thus, the frequency did not change between refactoring tactics.

In the At Least One Metric approach, i.e., the less strict one, the sum
of attributes that improved and kept unaffected impressively reached 100%
for root-canal refactoring against 90% for floss refactoring. These results are
equivalent to those observed previously, which is quite expected due to the
loose analysis approach we have defined.

Results for All Attributes. Our results are slightly different when
considering all attributes regardless of being associated with specific refactoring
types. In the Most Metrics approach, i.e., the strictest, attributes that either
improved or kept unaffected summed 63.16% for root-canal refactoring against
62% for floss refactoring.

In the At Least One Metric approach, i.e., the less strict one, the sum
of attributes that improved and kept unaffected impressively reached 94.74%
for root-canal refactoring against 78% for floss refactoring. The sums changed
little when compared to the analysis of Associated Attributes.

In summary, regardless of the analysis of associated attributes or all at-
tributes, root-canal refactoring outperformed floss refactoring in improving the
internal attributes. To the current knowledge, this result is quite new because
it reveals that developers are more likely to enhance code structures when they
perform “pure” refactorings, i.e., refactorings without any other changes. Still,
we are aware that developers frequently have to perform refactorings while
performing other changes, e.g. aimed at evolving features (Fernandes, 2019a;
Murphy-Hill et al., 2012; Paixao et al., 2019; Silva et al., 2016a). Thus, our re-
sults emphasize the need for supporting developers in performing floss refac-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 59

toring via refactoring recommendations.

3.5.5
Summary of RQ3

Our quantitative data suggests that re-refactorings tend to improve or
keep unaffected the internal attributes, just as refactorings in general. How-
ever, the rates of attribute improvement are slightly greater than the rates
of worsening: up to 26% greater in the case of root-canal refactoring for the
associated attributes. Thus, developers may re-refactor for gradually address-
ing more complex degradation symptoms while evolving features. Otherwise,
developers would not refactor the same code element successively, or even im-
prove rather than worsen the code structure and its design.

3.6
Comparison of Refactoring and Re-refactoring Effect (RQ4)

3.6.1
Quantitative Results

Table 3.8 summarizes the Pearson’s correlation coefficients, i.e., the
ρ coefficients, obtained from a comparison of study results obtained for
refactoring in general and re-refactoring. The first column discriminates two
natures of study results: the (re-)refactoring effect by refactoring type, which is
reported by Tables 3.4 and 3.6, and the general (re-)refactoring effect regardless
of refactoring type, which is reported in Tables 3.5 and 3.7. The second column
lists the alternatives analyzed across our study: rows three to 12 list the
ten refactoring types whose refactoring effect we analyzed in both scenarios:
refactoring effect and re-refactoring effect. Rows 13 to 15 list the variants of
(re-)refactoring effect analyzed regardless of refactoring type.

Table 3.8: Correlation of Effect Observed for Refactoring in General and Re-
refactoring

Analysis Alternatives ρ Coefficients
Most At Least One

Effect by
refactoring type

Extract Interface 0.93 0.94
Extract Superclass 0.95 1.00
Move Attribute 1.00 1.00
Pull Up Attribute 0.81 0.98
Push Down Attribute 1.00 0.99
Extract Method 1.00 1.00
Inline Method 1.00 1.00
Move Method 1.00 1.00
Pull Up Method 0.97 0.98
Push Down Method 0.96 0.95

General effect
regardless of type

Improve 0.98 0.55
Keeps Unaffected -0.12 0.71
Worsen 0.81 0.97

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 60

(Re-)refactoring effect for each refactoring type. Using the Most
Metrics analysis approach, the frequency results obtained for refactoring in
general and re-refactoring changed very little for all refactoring types. We
draw this observation from the third column, which points out either a strong
correlation or a very strong correlation for all types. The same observation is
valid for the At Least One Metric approach, for which all refactoring types
obtained a very strong correlation. Thus, when not considering each internal
attribute in isolation, we concluded that both refactoring in general and re-
refactoring presented the same effect on attributes.

(Re-)refactoring effect regardless of the refactoring type. Using
the Most Metrics analysis approach, we observed a strong or very strong
correlation of results regarding the improvement and the worsening of internal
attributes. Thus, both refactoring in general and re-refactoring ultimately
improved the same attributes, while there was a slight difference in the
worsened attributes. When comparing Tables 3.4 and 3.6, we observe that
re-refactorings worsened a few less attributes when compared to refactorings.
This result is surprising because we expected that re-refactorings would imply
on further quality improvements, which our analysis revealed to be very little
in practice. Nevertheless, the benefit of performing re-refactoring was not
significantly superior to the one obtained by performing simple refactorings.

This result is consisted with our most recent achievements regarding the
ineffectiveness of composite refactoring (Section 2.4) in fully removing design
smells (Bibiano et al., 2019). Finally, we observed a very weak correlation of
results with respect to keeping unaffected the internal attributes. We discussed
in Section 3.5.4 that re-refactorings are more likely to either improve or worsen
attributes, probably because re-refactoring a code element has a cumulative
effect on the attributes. For instance, the more code extractions (e.g., via
Extract Method) you apply on the same code element, the greater the chances
of substantially changing the size of a code element. Thus, this weak correlation
is reasonable.

Using the At Least One Metric approach, we observed a different effect
on internal attributes. We observed a very strongly correlation regarding the
attribute worsening, while a strong correlation was observed with respect to
keeping unaffected the attributes. In other words, both refactoring in general
and re-refactoring worsened and kept unaffected the same attributes. Con-
versely, the attributes improved by one or another changed considerably, which
is confirmed by the moderate correlation observed for attribute improvement.
This result is reasonable because, when considering the At Least One Method
approach, the improvement of any metric leads to the overall improvement of

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 61

the respective internal attribute.
In summary, regardless of the adopted analysis approach, we observed

a consistency of results obtained for both refactoring in general and re-
refactoring. Such consistency contrasts with our assumptions that our results
would be sensitive to the different analysis approaches (Section 3.2). The Most
Metrics approach did not outperform At Least One Metric.

3.6.2
Summary of RQ4

When considering each refactoring type in isolation, re-refactoring affects
the internal attributes similarly to refactoring in general (RQ2). This study
result contradicts assumptions that re-refactoring boosts the code quality
improvement significantly.

However, when considering all data regardless of the refactoring type,
the results change considerably for attributes improved and kept unaffected.
Particularly, developers seem to evolve features in the same code elements con-
stantly, so that a slightly greater attribute improvement is observed in compar-
ison with attribute worsening. Developer may have been gradually addressing
degradation symptoms as they hinder feature additions or enhancements.

Finally, it is possible that changes applied in conjunction with refactor-
ings, in floss refactoring, prevent a more significant code quality improvement.
Further studies are required to confirm whether these changes introduce degra-
dation symptoms to evolving features.

3.7
Our Study Versus Related Work

3.7.1
Study Comparison at the Design Level

While searching for studies on (re-)refactoring, we found a systematic
literature review (Al Dallal and Abdin, 2017) regarding effect on internal and
external quality attributes. We discarded all restricted to external attributes,
as those studies published before 2010, towards a comprehensive and updated
list. We complemented the six remaining papers (Fontana and Spinelli, 2011;
Källén et al., 2014; Kim et al., 2014; Murgia et al., 2011; Szőke et al., 2015b;
Veerappa and Harrison, 2013) with other three studies (Bavota et al., 2015;
Chaparro et al., 2014; Soetens and Demeyer, 2010).

Table 3.9 compares our study with the others by characteristic as follows.
Projects: total number, nature (open or closed source), and analysis made

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 62

by project (oriented to commits or major releases). Refactoring: detection
(manual or tool-supported) and types. Metrics: total number and internal
quality attributes. We draw below some conclusions from the table data,
thereby highlighting the differences among studies.

Table 3.9: Design-level comparison of our study with previous work
Study Projects Refactoring Metrics

Total Nature Analysis Detection Types Total Attributes

Ours 23 Open
source Commits Refactoring-

Miner 11 25
Cohesion, com-
plexity, coupling,
inheritance, size

(Bavota et al., 2015) 3 Open
source

Major
releases

Ref-
Finder 63 11

Cohesion, com-
plexity, coupling,
inheritance, size

(Szőke et al., 2015b) 1 Closed
source Commits n/a n/a* 10

Complexity,
coupling, inheri-
tance, size

(Chaparro et al., 2014) 15 Open
source Commits Unnamed

Tool 12 11
Cohesion, com-
plexity, coupling,
inheritance, size

(Källén et al., 2014) 1 n/a n/a n/a n/a* 8
Cohesion, com-
plexity, coupling,
inheritance, size

(Kim et al., 2014) 1 Closed
source Commits Manual n/a* 16

Complexity, cou-
pling (aka depen-
dency), size

(Veerappa and Harrison, 2013) 8 Open
source n/a n/a n/a* 4 Coupling

(Fontana and Spinelli, 2011) 1 Open
source n/a n/a 3 6

Cohesion, com-
plexity, coupling,
size

(Murgia et al., 2011) 5 Open
source

Major
releases

Ref-
Finder 39 2 Coupling

(Soetens and Demeyer, 2010) 1 Open
source Commits Manual 3* 1 Complexity

n/a: not applicable or unspecified by the paper authors
*Refactoring effect evaluated regardless of type

We have targeted the largest data set composed of 23 projects against 15
for the second largest set. Additionally, our work is among the 70% targeting
open source rather than closed source projects. By analyzing open source
projects, we achieved a certain diversity that certainly constrained studies
such as (Kim et al., 2014; Veerappa and Harrison, 2013).

As discussed in Section 3.3.2, analyzing major releases can over-
look the behavior of code metrics between a pair of releases, which
may comprise dozens of interesting commits. Although only 20% of
studies performed such analysis, 30% did not make it clear the em-
ployed analysis approach (Fontana and Spinelli, 2011; Källén et al., 2014;
Veerappa and Harrison, 2013). Different of past work, we not just performed
a commit-by-commit analysis, but also mitigated threats by deriving metric
thresholds for each commit (Section 3.2).

Only a half of the studies made the refactoring detection technique ex-
plicit. The authors of four out of the ten papers have reportedly used auto-
mated tools. The authors of two papers used Ref-Finder, whose literature crit-
icism we reported in Section 3.3.2; the authors of two other papers performed
a manual detection based on refactoring-related branches and commit logs.
We adopted a state-of-the-art tool with high accuracy (Tsantalis et al., 2013),

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 63

which not just dispensed a manual validation, but also helped in detecting a
large and varied refactoring set.

Only 50% of the papers computed the refactoring effect by types as we
did in this work. We know that each refactoring operation is fine-grained and
varies in granularity. Thus, we encourage the data analysis per type to unveil
the nuances of the refactoring effect.

More critically, only 50% of the papers analyzed all five attributes covered
by our work. Nevertheless, we have evaluated the largest set of 25 traditional
code metrics. We highlight our careful selection of alternative metrics to the
traditional LCOM (Section 3.3.2) for boosting the reliability of our study.

In this work, we employed a tour de force to carefully address many
threats to validity of past research reported by the aforementioned literature
review (Al Dallal and Abdin, 2017). Aimed at providing a large-scale study, we
analyzed 23 open source projects with thousands of refactoring operations and
commits. We also analyzed 15 metrics to expand the scope of previous studies
and derive wide insights on the (re-)refactoring effect. We overcame a lack of
statistical tests via computing and Fisher’s test computation (Section 3.2).

3.7.2
Study Comparison at the Results Level

Most existing studies regarding the refactoring effect lack an
analysis of either each refactoring type or each attribute in isola-
tion (Al Dallal and Abdin, 2017). Hence, it is hard to compare results
across different studies. From the studies listed in Table 3.9, only one
paper (Bavota et al., 2015) is fairly comparable to ours, especially due to
the similar study design. We already compared our work with this particular
study (Section 3.3.2). Thus, this section compares our findings with those
summarized by the literature review (Al Dallal and Abdin, 2017) – rather
than with each previous work separately.

Table 3.10 presents the comparison in terms of three refactoring types
covered by both studies: Extract Method, Move Field, and Move Method. The
third column informs which analysis approach, i.e., Most Metrics and At Least
One Metric, supported the refactoring effect analysis in our work. Matches
counts how many times the refactoring effect summarized by the literature
review (Al Dallal and Abdin, 2017) matches our empirical observations. The
remaining columns present the refactoring effect observed on each internal
quality attribute.

Extract Method. Our results matched previous work observations for
complexity – i.e., complexity usually improves after the refactoring application

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 64

Table 3.10: Design-level comparison of our study with previous work
Type Study Approach Internal Quality Attribute

Cohesion Complexity Coupling Inheritance Size

Extract
Method

Past work n/a Improves Improves Unaffected Unaffected Improves

Ours Most Worsens Improves Worsens Unaffected Worsens
One Worsens Improves Improves Unaffected Improves

Both Matches 0 2 0 2 1

Move
Field

Past work n/a Improves n/a Worsens n/a n/a

Ours Most Improves Unaffected Unaffected Unaffected Unaffected
One Improves Unaffected Unaffected Unaffected Unaffected

Both Matches 2 n/a 0 n/a n/a

Move
Method

Past work n/a Improves Worsens Worsens n/a n/a

Ours Most Worsens Unaffected Worsens Unaffected Improves
One Worsens Unaffected Improves Unaffected Improves

Both Matches 0 0 1 n/a n/a
Past work: Al Dallal and Abdin (2017)
n/a: not applicable or unspecified by the paper authors

– and inheritance – i.e., inheritance keeps unaffected regardless of the analysis
approach. Our results also matched the previous ones for size. Size improved
according to the At Least One Metric analysis approach, but such improvement
did not resist to a more strict analysis approach. Finally, there was a complete
mismatch between our results and the previous ones for cohesion – i.e., cohesion
worsens rather than improves after the refactoring application – and coupling
– i.e., the more strict the analysis approach, the worst was the observed effect.

Move Field. Our study results matched previous work observations for
cohesion. Indeed, cohesion typically improves after the refactoring application.
However, our results did not match those observed by the literature with
respect to coupling. Contrary to previous work that observed the coupling
worsening caused by theMove Field application, we observed that the attribute
kept unaffected most of the times. Our results were consistent for both the
less strict and the most strict one analysis approach. Note that we quantified
coupling through five metrics (Table 2.1), which gives our results a certain
robustness.

Move Method. Our study matched previous observations for coupling,
i.e., cohesion worsens rather than improves after the refactoring application,
using our strictest analysis approach. Although a mismatch occurred with the
less strict approach, the coupling worsening is the most reliable finding. Con-
versely, our results mismatched the previous ones for cohesion and complexity,
regardless of analysis approach. Cohesion worsens rather than improves, while
complexity keeps unaffected rather than worsens. We highlight that our analy-
sis covered three cohesion metrics and five complexity metrics. Once our results
were not sensitive to the analysis approach, we conclude that cohesion typi-
cally worsens while complexity typically keeps unaffected after applying Move
Method.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 65

3.8
Threats to Validity

Construct Validity. We followed strict procedures for selecting sys-
tems to conduct the analysis. We collected many systems from GitHub open
repositories. After that, we applied filters to select Java systems, all open
source and with many refactorings to be analyzed. We relied on our pre-
vious work (Chávez et al., 2017) to define fair criteria, thereby avoiding the
system selection bias and subjectivity. With respect to the refactoring de-
tection, we looked for a detection tool with high accuracy rates and able
to detect different refactoring types. Unlike the previous work closest to
ours (Bavota et al., 2015), we relied on a highly accurate tool called Refac-
toringMiner. Although the number of detected refactoring types dropped from
63 to 11, the detection accuracy has increased substantially. Thus, we expected
to reduce the rates of false positives, thereby reaching a reliable set of refac-
torings by system.

We investigated the literature on software evolution to cherry-pick met-
rics for analysis. We relied on 25 metrics either proposed or exploited by previ-
ous work, e.g., (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006;
Lorenz and Kidd, 1994; McCabe, 1976). Especially, we replaced a traditional
cohesion metric with others that are more reliable, in order to avoid data noise.
Finally, this work inherited a random set of manually classified refactorings by
tactic explored in a previous work (Chávez et al., 2017). Three refactoring spe-
cialists participated in the manual classification aimed to avoid biases; one of
them has helped in solving ties and reaching a consensus.

Internal Validity. Section 2.4 describes how we computed re-refactoring
instances for each system analyzed. For a refactoring r to be a re-refactoring
instance, another refactoring r’ must have occurred previously during software
evolution and share the same granularity (attribute, method or class). We
acknowledge that using this definition implies a threat to the study validity,
especially regarding the set of re-refactorings whose effect on internal attributes
we assessed. In particular, we may have overlooked cases where refactorings
applied at different granularities affect a common subset of code elements that
constitute part of the code structure and its design.

An example of possibly overlooked case is this: if developers applied a
refactoring r’ (e.g. Move Method) to a method m() and, after, a refactoring r
(e.g. Move Class) to class C which implements m(). Although we did not address
this threat in our current work, we explored other mechanisms for assessing the
successive applications of refactorings to a (subset of) code elements in other
studies (Bibiano et al., 2019; Bibiano et al., 2020; Fernandes et al., 2019b).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 66

Examples of these mechanisms are composite refactoring (Bibiano et al., 2020)
and batch refactoring (Bibiano et al., 2019; Fernandes et al., 2019b) – both
briefly mentioned in Section 2.4 once they are not explored in the thesis.

Another threat to validity of the re-refactoring computation may be the
interval of application between refactorings r’ and r. We did not restrict the
interval of application to a particular time span of number of commits in
between refactorings. This decision may have led to the computation of too
distant re-refactorings, which may relate little with the code structure enhance-
ment intended for the same code elements through the original refactoring. At
least in the context of batch refactoring (Section 2.4), it seems to rarely takes
more than a few weeks (or up to three months) for developers to re-refactor
the same (subset) of code elements (Ferreira, 2018). Thus, this threat may
have been minimal, though further analyses are required to confirm this in the
particular context of re-refactoring.

Finally, we payed special attention to the data collection and tabula-
tion. Once our quantitative study relies on large amounts of data, we used
spreadsheets and databases for storing and manipulating all (re-)refactorings,
metrics, and internal attributes data. At least two researchers engaged in the
data tabulation. By doing that, we expected to avoid missing and duplicated
data as much as possible.

Conclusion Validity. We carefully planned the data analysis proce-
dures documented in Section 3.2 prior to the analysis execution. Again, at
least two researchers contributed to the descriptive analysis aimed at answer-
ing our research questions (Sections 3.3, 3.4, and 3.5). Our descriptive analysis
consisted of presenting both absolute numbers and percentages with respect
to the (re-)refactoring effect on attributes; our goal was providing a detailed
view on the phenomenon by refactoring type and tactic.

As a complement to our previous work (Chávez et al., 2017), and in
accordance with suggestions of a recent work (Al Dallal and Abdin, 2017), we
applied statistical tests. We opted for the Fisher’s exact test to understand the
application of (re-)refactorings to critical code elements (Section 3.3). We also
computed correlation to understand how different were the results obtained
through each analysis approach (Sections 3.4 and 3.5), besides comparing the
results obtained for refactoring in general and re-refactoring. Statistical testing
aimed to leverage our data analysis, thereby allowing us to understand the (re-
)refactoring effect on attributes.

We highlight that our quantitative study reported in this chapter targets
a correlation analysis rather a causality analysis. In particular, our quantitative
data extracted from the 23 systems analyzed does not reveal much of the

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 67

developer’s intents behind refactorings. There is also little to conclude, based
on purely quantitative data, about the extent to which the refactoring effect on
internal attributes is expected, planned or not by developers while performing
refactorings. Due to this inherent limitation of our study design, we propose a
qualitative study approach in Chapter 4 based on the developer’s perception of
critical attributes. Thus, we expect to better understand the role of refactorings
in managing critical attributes during software evolution.

External Validity. As observed by a recent literature review on the
study of refactorings (Al Dallal and Abdin, 2017), previous studies explored
the refactoring effect in very limited scopes. More critically, we did not find
studies on the re-refactoring effect. In general, a limited scope leads to the
threat of little study generality. We addressed this threat by performing a
large quantitative study with 23 systems, which expands a lot the previous
studies scopes. We discussed that the systems selected for analysis (Table 3.1)
are diversified in terms of commit and refactoring count.

Nevertheless, we are aware that our focus on Java open source sys-
tems also represents a scope limitation. We encourage researchers to address
this limitation by exploring the (re-)refactoring effect in trending program-
ming languages, such as JavaScript and Python. Similar reasoning applies
to the explored sets of 11 refactoring types and 25 metrics. We explored
metrics listed in well-known catalogs, e.g., (Chidamber and Kemerer, 1994;
Lanza and Marinescu, 2006; Lorenz and Kidd, 1994), and refactoring types of-
ten applied by developers in practice (Murphy-Hill et al., 2012). Still, we en-
courage researchers to investigate other metrics and refactoring types.

3.9
Chapter Summary

In this study, we presented and discussed the outcomes of a quantitative
study on the relationship between (re-)refactorings and internal attributes.
Particularly, we assessed the effect of either refactorings in general or re-
refactorings on improving and worsening five attributes: cohesion, complex-
ity, coupling, inheritance, and size. The analysis for each attribute contrasted,
to some extent, with the evidence that refactorings often fall short in remov-
ing design smells (Bibiano et al., 2019; Yoshida et al., 2016). This is because,
while refactorings may not fully remove design smells, they can sometimes ben-
efit certain internal attributes. In summary, through our study, we provided
a more fined-grained view of the (re-)refactoring effect towards an enhanced
code structure.

Answering RQ1 revealed that critical attributes are potentially relevant

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 3. Relationship between Refactorings and Internal Attributes 68

degradation symptoms in practical settings. RQ2 showed that most refactorings
either improve or keep unaffected internal attributes, regardless of being
critical. Still, our results did not clarify whether i) refactorings are insufficient
to overcome critical attributes or ii) developers only mitigate or fully address
critical attributes that are actually relevant for evolving features. RQ3 and
RQ4 show that both refactorings and re-refactorings perform similarly with
respect to enhancing code structure and its design.

We address the majority of aforementioned issues in the second
study that constitutes this doctoral thesis. The next chapter intro-
duces a case study (Runeson and Höst, 2009) based on focus group ses-
sions (Kontio et al., 2004). By selecting two industry cases where software
evolution is a major task, we promote discussion on how much (and why) crit-
ical attributes are relevant for evolving features. Chapter 4 describes the study
goal and presents our study results, including refactoring recommendations to
help manage critical attributes while evolving features.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



4
On the Relevance of Critical Attributes for Evolving Features

Development teams typically have to apply hundreds of changes to
their software systems along with the software evolution (Burke, 2014;
Kim et al., 2014; Paixao et al., 2019). A major side effect of applying changes
while adding or enhancing features is unexpectedly degrading the source
code structure and its design (Le et al., 2016; Tufano et al., 2017). This is
because, consciously or not, developers sometimes introduce degradation
symptoms (Bavota et al., 2013; Tufano et al., 2017). Each degradation symp-
tom is a potential threat to understanding and changing code elements,
e.g. classes (Fowler, 2018; Yamashita and Moonen, 2013). Hence, periodically
monitoring the occurrence of degradation symptoms may help enhancing the
internal software quality, as the longevity of systems (Le et al., 2016).

Several techniques have been proposed for monitoring the oc-
currence of degradation symptoms in a system (Chávez et al., 2017;
Fernandes et al., 2016b; Lanza and Marinescu, 2006; Lorenz and Kidd, 1994).
The majority of existing techniques rely on measuring the code structure aimed
at spotting degraded code structures and design (Fernandes et al., 2016b).
Using internal quality attribute is a major technique (Chávez et al., 2017).
Each internal attribute captures a particular aspect of internal software qual-
ity (Fernandes et al., 2020). Two examples of popular internal attributes are
cohesion (Chidamber and Kemerer, 1994) and complexity (McCabe, 1976).
While cohesion captures the interrelation degree of attributes and methods
within a class (Chidamber and Kemerer, 1994; Lanza and Marinescu, 2006),
complexity captures the cognitive difficulty of understanding code ele-
ments (Nejmeh, 1988).

Monitoring internal attributes usually requires measuring code struc-
tures through traditional software metrics (Fernandes et al., 2020). Lack of
Cohesion (LCOM2) is an example of metric aimed at capturing the degree
of class cohesion (Chidamber and Kemerer, 1994). In turn, Cyclomatic Com-
plexity (CC) is a metric designed for capturing the complexity degree of a
method (McCabe, 1976). Developers may compare metric values to a reference
value (Vale et al., 2018). Thus, a development team may reason on how ade-
quate the metric values are based on the developer’s expertise, metrics distribu-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 70

tion analysis, or other factors (Bavota et al., 2013; Pantiuchina et al., 2018).
Assessing metric values allows to draw strategies for managing criti-

cal internal attributes, e.g. low cohesion and high complexity. A critical at-
tribute is an internal attribute whose metrics used for capturing it assume
anomalous values in comparison to the reference value (Fernandes et al., 2020;
Vale et al., 2018). Section 3.2 discusses two scenarios where critical attributes
emerge. However, in this chapter, we are particularly concerned on metrics
that become critical as their values increase. This scenario applies to metrics
like LCOM2 and CC, whose high values suggest classes with non-cohesive
features or a high complexity, respectively (Chidamber and Kemerer, 1994;
McCabe, 1976). In summary, critical attributes characterize degradation
symptoms that developers should consider managing – either mitigating or
fully addressing – for the sake of software evolution (Chávez et al., 2017;
Fernandes et al., 2020).

Refactorings are largely advertised as effective means to help
manage different types of degradation symptoms (Kim et al., 2014;
Murphy-Hill et al., 2012), including critical attributes (Chávez et al., 2017).
For instance, Extract Method and Move Method can help manage the large
size and high complexity of a method, respectively (Bibiano et al., 2019;
Fowler, 2018). However, until recently, there was little empirical evidence on
how refactorings affect internal attributes, regardless of being critical. We
addressed this literature gap in Chapter 3 through a large quantitative study
targeting five internal attributes: cohesion, complexity, coupling, inheritance,
and size.

Although refactorings may enhance source code structure and its de-
sign (Fowler, 2018; Murphy-Hill et al., 2012), Chapter 3 suggests the refactor-
ing effect on internal attributes is diverse. Only a few refactoring types, such
as Extract Superclass and Push Down Attribute (Fowler, 2018), often improve
many attributes together (Section 3.4.1). Thus, developers are encouraged to
apply these refactorings. However, refactoring types like Extract Method and
Move Method improve one or another attribute while worsening others (Sec-
tion 3.4.2). Thus, developers should carefully apply these refactorings in order
to avoid the unexpected worsening of internal attributes that may possibly
become critical for software evolution.

The design of our quantitative study (Chapter 3) limited our findings
to the frequency in which refactorings improve, worsen, or keep unaffected
each internal attribute. Contrary to a previous work (Bavota et al., 2013),
we have found that most refactorings (94%) affect code elements with at
least on critical attribute. Moreover, we characterized those refactoring types

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 71

more likely to improve each internal attribute. These types are the most
recommended for either mitigating or fully addressing critical attributes. Still,
the purely quantitative nature of our previous study led to a major question:
how much (and why) are critical attributes perceived as relevant by developers
while evolving features?

Answering this question could significantly contribute to how we assist
developers in refactoring while performing software evolution. For instance,
let us suppose that developers find little relevance in an internal attribute
that refactorings often worsen, e.g. coupling (see Table 3.4 for details). That
is, worsening this internal attributes does not necessarily hinder the task of
evolving features. Thus, applying those refactorings would be less threatening
than it appeared based on what was observed in our quantitative study where
the perceived relevance was not considered. Conversely, there may be internal
attributes often worsened by refactorings that developers find very relevant in
practice. In this case, we should further assist refactorings in order to prevent
these internal attributes from worsening and becoming critical.

This chapter presents a qualitative study aimed at filling this literature
gap. We carefully designed and conducted an industrial case study based on
strict research guidelines (Runeson and Höst, 2009). Our study goal is three-
fold. First, we investigate the relevance degree reported by developers on
critical attributes spotted by the five internal attributes assessed in Chapter 3
– cohesion, complexity, coupling, inheritance, and size. Second, we elicit
reasons why developers find each critical attribute relevant (or irrelevant)
while evolving features. Third, we recommend refactorings to help manage
critical attributes from a data crossing between Chapter 3 – refactoring effect
on internal attributes – and this chapter – relevance of critical attributes.

We recruited two development teams of an industry-academy joint ini-
tiative for Research and Development (R&D) in Brazil called ExACTa1. Each
team engaged in a particular focus group session (Kontio et al., 2004). Devel-
opers discussed the relevance of six critical attributes: low class cohesion, high
class complexity, high class coupling, large class hierarchy depth, large class
hierarchy breadth, and large class size. We refer to relevance as the need for
either mitigating or fully addressing critical attributes while evolving features.

We targeted critical attributes at the class level, thereby discarding
others, such as high method complexity and large method. We did that
because classes are key code elements constituted of many others, including
attributes and methods. In addition, we did that for fitting all discussions
among developers in up to two hour focus group sessions, so we discarded

1http://www.exacta.inf.puc-rio.br/

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 72

other critical attributes, e.g. at the method level – which are encompassed by
class level attributes to some extent.

We aimed at promoting healthy discussions among developers, where
each one would be able to express his perception of the critical attributes
completely. Therefore, we recruited only three active developers per team. We
discuss data on the relevance degree of critical attributes through descriptive
analysis. We also applied thematic synthesis (Cruzes and Dyba, 2011) proce-
dures for aggregating and extracting major lessons on why each critical at-
tribute is critical while evolving features. Finally, we crossed data of Chapter 3
and this chapter. Our study results suggest that:

– Two critical attributes are ultimately perceived as relevant for devel-
opers while evolving features: low class cohesion and high class com-
plexity. Developers pointed out that both critical attributes potentially
increase the difficulty for understanding and changing classes in different
occasions. These occasions include software testing, fault tracking, fea-
ture additions. This is particularly interesting because popular refactor-
ings (Murphy-Hill et al., 2012; Silva et al., 2016a), e.g. Extract Method,
Move Method, and Pull Up Method, often worsen cohesion (e.g. see Ta-
ble 3.4). Conversely, complexity is rarely sensitive to any of the 11 refac-
toring types investigated in our qualitative study.

– The other four critical attributes are not necessarily perceived as rele-
vant by developers while evolving features: high class coupling, large class
hierarchy depth, large class hierarchy breadth, and large size. Develop-
ers argued that using design patterns like Object Pool, implementing
particularly complicated features, and reusing code via class hierarchy
might lead to degraded code structure and design. Although these crit-
ical attributes have their impact on the internal software quality, they
are acceptable in those circumstances. This results is curious because
refactorings rarely worsen inheritance, and only a few refactoring types
worsen coupling and size – e.g., Pull Up Attribute and Pull Up Method.

– Based on the reasons reported for considering each critical attributes
as relevant or irrelevant, we found out that certain critical attributes
are closely related. For instance, i) large class size may cause low class
cohesion, ii) high class complexity may lead to high class coupling,
iii) large class hierarchy breadth may increase class complexity, and so
forth. This result could support the design of novel refactoring tools for
enhancing code structures, especially those based on the optimization of
critical attributes that depend on one another.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 73

– We crossed our quantitative data of Chapter 3, regarding the refactoring
effect on internal attributes, with those discussed in this chapter, regard-
ing the developer’s perception of critical attributes as relevant for evolv-
ing features. Thus, based on our empirical observations, we were able to
derive a catalog of refactoring recommendations to help manage critical
attributes during software evolution. These recommendations partially
rely on data regarding critical attributes at the class level. Thus, gen-
eralizing our study results to critical attributes at other system levels
requires further investigation.

We organized the remainder of this chapter as follows. Section 4.1
provides the study characterization. We describe the research problem, our
research objectives, and the context of each case study. Section 4.2 describes
the case studies design in detail. We justify each research question and explain
our procedures for collecting and analyzing data. Section 4.3 summarizes our
study results in order to address each research question. Section 4.4 discusses
threats to the study validity. Section 4.5 concludes this chapter.

4.1
Study Characterization

This section introduces the reader to the overall study
characterization. As aforementioned, we proposed an industry
case study (Runeson and Höst, 2009) based on focus group ses-
sions (Kontio et al., 2004) aimed at investigating the developer’s perception of
critical attributes that are relevant for evolving features. The remainder of this
section presents our research problem statement (Section 4.1.1), objectives
(Section 4.1.2), and context (Section 4.1.3).

4.1.1
Problem Statement

Many studies, e.g. (Bavota et al., 2015; Chaparro et al., 2014;
Du Bois and Mens, 2003; Veerappa and Harrison, 2013), investigated the
refactoring effect on internal attributes. These studies helped, to some extent,
validate the benefits and drawbacks of refactoring application in terms of
internal software quality. Unfortunately, the current knowledge in this topic
was quite scarce and limited due to the strict design of past work. In fact, these
studies analyzed only a few refactoring types, internal attributes, and systems
under software evolution. Aiming at addressing this literature gap, we have
introduced the large quantitative study (Fernandes et al., 2020) described in
Chapter 3.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 74

By extending the current knowledge on the refactoring effect of internal
attributes, while comparing study results of the literature, we acquired a
broader understanding on this topic. In particular, we revealed that 94%
of (re-)refactorings are applied to code elements with critical attributes.
Once 73% of refactorings constitute floss refactorings, i.e. they co-occur with
feature additions and enhancements, we concluded that critical attributes are
potentially relevant for evolving features. In other words, developers seem to
be concerned with mitigating or fully addressing critical attributes in order to
successfully add and enhance features.

Nevertheless, our results regarding the refactoring effect on each internal
attribute are diverse. On the one hand, refactorings quite often enhance
code structure and its design, thereby helping in managing critical attributes,
regardless of the applied refactoring type (Sections 3.4.1 and 3.5.1). Thus,
we confirm certain assumptions (Fowler, 2018) on the benefits of applying
refactorings to the internal structure of the source code. On the other hand, in
the case of floss refactorings – which often co-occur with feature additions and
enhancements – 35-55% of refactorings keep unaffected the critical attributes
(Table 3.5). More critically, also in the case of floss refactorings, 9-35% of
refactorings worsen these attributes (Table 3.5).

The design of our quantitative study did not allow us to investigate the
reasons behind such a high rate of refactorings that either keep unaffected or
worsen internal attributes. We had two major hypotheses on these reasons.
Our first hypothesis was that refactoring is generally insufficient to over-
come complex degradation symptoms while evolving features. Recent stud-
ies (Bibiano et al., 2019; Bibiano et al., 2020; Yoshida et al., 2016) reinforce
this hypothesis to some extent. Indeed, these studies suggest that refactor-
ings rarely suffice for fully removing design smells – degradation symptoms
whose detection may depend on combining two or more critical attributes.

Our second hypothesis was that developers only remove those degra-
dation symptoms that really matter for evolving features. Thus, developers
tend to postpone or discard the removal of other, less relevant, degradation
symptoms. Unfortunately, empirical evidence that supports this assumption
is scarce. Drawing a parallel among different degradation symptoms, a con-
siderable amount of studies such as (Palomba et al., 2014; Taibi et al., 2017;
Yamashita and Moonen, 2013) investigated the developer’s perception of de-
sign smells relevance for evolving features. Still, we did not find similar studies
in the context of critical attributes.

This chapter targets the research problem of characterizing how develop-
ers perceive a well-defined set of critical attributes as relevant (or irrelevant).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 75

We investigate critical attributes associated with the five internal attributes
largely debated in our quantitative study (Chapter 3). The set of internal at-
tributes is composed of cohesion, complexity, coupling, inheritance and, size.
The set of critical attributes is exclusively limited to the class level: low class
cohesion, high class complexity, high class coupling, large class hierarchy depth,
large class hierarchy breadth, and large class size.

We opted for discarding critical attributes at other system levels (e.g.,
methods) due to time constraints for performing case studies in the in-
dustry. Still, we acknowledge that classes are a fundamental component of
the code structure of any system. Moreover, developers should constantly
monitor and enhance the internal quality at the class level (Fowler, 2018;
Lanza and Marinescu, 2006).

4.1.2
Research Objectives

We structured our research objectives based on the Goal Question Metric
methodology (Basili and Rombach, 1988) as follows: analyze the perception of
software developers; for the purpose of understanding how much (and why)
critical attributes are relevant while evolving features; with respect to the
relevance of critical attributes individually and relatively, reasons why each
critical attribute becomes relevant, and interrelations of critical attributes;
from the viewpoint of developers engaged in software evolution tasks; in the
context of a Brazilian industry-academy initiative for R&D called ExACTa,
two development teams, and two systems partially implemented in Java.

We designed and performed industry case studies based on focus
group sessions. Case study is a research methodology for observing phe-
nomena in their natural context (Runeson and Höst, 2009). It has been
used to observe practitioners while performing various tasks, e.g. code
review (Sadowski et al., 2018). Thus, case study is suitable for contextu-
alized discussions of developers on evolving features. Focus group is a
qualitative research method for extracting experiences from the partici-
pants (Kontio et al., 2004). This method was designed for promoting discus-
sions and knowledge sharing among participants. Thus, focus group is suitable
for understanding the developer’s perception of critical attributes in the con-
text of evolving features.

We also expect to provide developers with refactoring recommendations
to help manage critical attributes that they typically find relevant for evolving
features. Thus, developers may improve critical attributes of interest while
preserving other internal attributes that may become critical over time. In

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 76

addition, we expect to inspire study replications in other industry contexts –
once generality of case studies tends to be limited.

4.1.3
Context

We decided to conduct our case study in the context of the
Experimentation-based Agile Co-creation initiative for digital Transfor-
mation (ExACTa). ExACTa is an industry-academia R&D initiative
launched in September 2019 by the Pontifical Catholic University of Rio
de Janeiro (PUC-Rio) in cooperation with Petrobras. The latter is the
largest Brazilian company operating in the energy, natural gas, and oil in-
dustries (Kalinowski et al., 2020). ExACTa developed and delivered dozens of
software-based solutions, each targeting a particular business need. The selec-
tion of the development teams at ExACTa was by convenience, because the
author of this doctoral thesis had a direct contact with one of the development
project managers at that institution.

Our case study aims at investigating the relevance of critical attributes
based on metrics computed for Java systems in our previous study (Chapter 3).
As a result, we opted for selecting only teams using the Java programming
language. We ended up selecting two cases for study: ADN and Smart Frete –
see Section 4.2.2 for details. Due to the subjective nature of the qualitative
data analyzed and discussed throughout this work (e.g., the developer’s
perception on their own source code), we kept the developers associated with
the development of each system anonymous. Thus, we expect to preserve
participants from any personal judgment on their perception.

The two cases followed a Lean R&D development ap-
proach (Kalinowski et al., 2020). Concerning the implementation, both cases
use Git2 for performing code review through pull requests, as well as Azure
DevOps3 for managing software development tasks. Finally, both systems rely
on the Spring MVC Framework4 for implementing Web systems using the
Model-View-Controller (MVC) architectural pattern.

4.2
Case Study Design

This section introduces the case study design. Section 4.2.1 introduces
our research questions. Section 4.2.2 describes each case and its respective
subjects. Finally, Section 4.2.3 presents our data collection procedures.

2https://git-scm.com/systems
3https://azure.microsoft.com/pt-br/services/devops/
4https://spring.io/

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 77

4.2.1
Research Questions

We defined the three research questions below.
RQ1: What is the relevance degree of each critical attribute

for evolving features from the developer’s perception? – Monitor-
ing the internal software quality is essential to assure the longevity
of systems (Lanubile and Visaggio, 1995; Mens et al., 2010). Thus,
developers have largely adopted techniques for performing such
monitoring (Chidamber and Kemerer, 1994; Fernandes et al., 2016b;
Lanza and Marinescu, 2006). Degradation symptoms are usually an
effective mechanism for spotting degraded code structure and de-
sign (Pantiuchina et al., 2018; Yamashita and Moonen, 2013). Among
several types of degradation symptoms proposed so far, critical at-
tributes emerge as means for capturing different aspects of internal soft-
ware quality (Chávez et al., 2017; Fernandes et al., 2020). They also con-
tribute to detect broader symptoms, e.g. design smells (Fowler, 2018;
Lanza and Marinescu, 2006).

Each critical attribute in isolation is advertised as capable of revealing
a particular extent of quality decay, such as low cohesion, high coupling, and
large size (Chávez et al., 2017). Nevertheless, the current empirical knowledge
on how relevant these critical attributes are for developers while evolving
features is scarce if not non-existent. It may be true that developers tend
to either mitigate or fully address only those critical attributes that hinder
features from being added or enhanced in the system. As a result, knowing
what critical attributes usually represent threats to evolving features could
help recommending refactorings to help manage critical attributes properly.

Through RQ1, we investigate two aspects of the relevance of critical
attribute. First, we investigate the relevance degree of each critical attribute
in isolation. In this case, we aim at understanding how important it is for
developers to either mitigating or fully address a critical attribute to favor
software evolution. Second, we investigate the relative relevance of the six
critical attributes altogether: low class cohesion, high class complexity, high
class coupling, large class hierarchy depth, large class hierarchy breadth, and
large class size. Thus, we expect to understand what critical attributes have
the highest priority when it comes to evolving features.

RQ2: What are the reasons behind considering a critical attribute as
relevant for evolving features? – Each critical attribute in isolation reflects a
particular aspect of the internal software quality. Thus, one could hypothesize
that some critical attributes are more relevant than others are while performing

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 78

software evolution. That is, developers may easily decide to mitigate or
fully address certain critical attributes, once they hamper feature additions
or enhancements. On the other hand, there may be critical attributes that
developers learned to live with, i.e. whose occurrence is acceptable given a
potential benefit to evolving features – or the lack of time for addressing them.

For a critical attribute to become relevant strongly depends on how
each developer perceives its advantages, drawbacks, and inherent conditions
to software evolution. For instance, let us consider a development team
responsible for evolving classes whose features are naturally complex due to
intricate business rules. Thus, developers may expect – and accept – certain
classes to be little cohesive, highly complex, or even too large. Still, developers
may prioritize delivering new features rather than addressing critical attributes
that have little impact on software evolution after all.

Via RQ2, we aim at exploring what circumstances make certain critical
attributes actually relevant for evolving features. In other words, we ask
participants of each focus session group to argue why each critical attributes
deserves special attention while either adding or enhancing features. This
knowledge is particularly useful for supporting decision-making in development
teams with too short time to delivering features. Indeed, there is usually
hundreds of stakeholders’ demands and operating environment systems for
developers to worry about while performing software evolution (Lehman, 1980;
Mens et al., 2010). Consequently, they may find certain critical attributes
worth managing in the detriment of other critical attributes.

RQ3: How to assist developers with refactoring to help manage crit-
ical attributes while evolving features? – An undisciplined application of
changes eventually degrades the source code structure and its design. De-
velopers often introduce degradation symptoms that may (or may not)
make it harder to performing software evolution. Previous studies regarding
other types of degradation symptoms (Palomba et al., 2014; Taibi et al., 2017;
Yamashita and Moonen, 2013) provide us with sufficient evidence for speculat-
ing that certain critical attributes are less relevant than others while evolving
features. Still, the empirical investigations driven by RQ1 and RQ2 may confirm
this speculation in practical settings.

Understanding the refactoring effect on internal attributes is the first
step towards assisting developers in managing critical attributes. We achieved
this understanding through our quantitative study reported in Chapter 3.
Characterizing how much (and why) critical attributes are relevant for evolving
features is another step towards the same purpose (RQ1 and RQ2). With
RQ3, we aim at completing the cycle with refactoring recommendations to

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 79

help manage critical attributes from the developer’s perception when evolving
software features, preserving other internal attributes from becoming critical.

We discuss in Section 2.5 that several techniques have
been proposed to help manage degradation symptoms such as
design smells (Bibiano et al., 2019; Chidamber and Kemerer, 1994;
Fernandes et al., 2016b; Lanza and Marinescu, 2006), which are strongly
associated with critical attributes (Section 2.2). A few of these tech-
niques (Lin et al., 2016; Szőke et al., 2015a) rely on Search-Based Software
Engineering (SBSE) techniques (Simons et al., 2015) for optimizing the im-
provement of anomalous metric values. Unfortunately, these tools lack the
developer perspective on which critical attributes really concern developers
while evolving features. Thus, they provide generic support rather than a
support shaped to particular needs of software evolution.

4.2.2
Case and Subject Selection

As discussed in Section 4.1.3, we selected two cases from the ExACTa
initiative for analysis. We describe below the particularities of each case.

Case A: ADN – The ADN case consists of designing, implementing,
and testing a software solution for shipping logistics management purposes at
Petrobras. Such management occurs through an integrated network of multiple
systems, which allow practitioners to identify and cope with situations in
which a chartered ship is not available for delivering a service. The proposed
system heavily depends on calculus, e.g. with respect to payments and available
fuel computation. Four Petrobras practitioners often participate with feedback
and orientations during the software development process. They support the
ExACTa team in SCRUM planning and review cycles whenever possible.

Case B: Smart Frete – The Smart Frete case consists of designing, imple-
menting, and testing a software solution for handling with freight calculation.
It is responsible for assisting practitioners at Petrobras in predicting freight
prices to transport materials via road transport. The system relies on a large
data set, including information of truck size, axes, weight of materials, distance
between cities, and so forth. The proposed system also estimates fair prices to
transport materials between refineries, Petrobras units, etc. Thus, this system
is also heavily grounded in calculus and data processing.

Table 4.1 provides a general view on the participant background for each
case. We collected the table data from an online Background Form, which
we sent to participants minutes before the start of his respective focus group
session. Appendix A presents the full form. Regarding the highest instruction

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 80

degree, we observe that both cases have similar results. Although Case A has a
PhD, both cases counted on the participation of one Master and on Specialist
in knowledge areas related to Computer Science. Although participants of
Case A have 4.33 years of experience in average against 8.33 years for Case B,
participants in both cases have participated in the development of 5 systems in
average. Thus, we assume the development expertise is balanced across cases.

Table 4.1: Participant Background Collected via Background Form
Question (Q) Case A Case B

A1 A2 A3 B1 B2 B3
Q1: Highest
instruction degree MSc Specialist PhD Specialist MSc BS

Q2: Years of
industry experience 5 2 6 5 10 10

Q3: Number of
software projects 7 4 4 2 6 7

Q4: Familiarity with
software metrics Q4.c Q4.c Q4.b Q4.d Q4.c Q4.d

Q5: Concerned with
improving quality Agree Agree Indifferent Strongly

agree Agree Strongly
agree

Q6: Familiarity with
internal attributes Q6.e Q6.c Q6.b Q6.d Q6.d Q6.d

Q4.b: I have heard about them but I am not so sure what they are
Q4.c: I have a general understanding, but do not use them in my software projects
Q4.d: I have a good understanding, and use them in my software projects sometimes
Q6.b: I have heard about them but I am not so sure what they are
Q6.c: I have a general understanding, but do not analyze them in my software projects
Q6.d: I have a good understanding, and analyze them in my software projects sometimes
Q6.e: I have a strong understanding, and analyze them in my software projects frequently

In our Background Form, participants were asked to report on their
familiarity with software metrics (Q4). According to the data of Table 4.1,
two participants of Case A said they have heard of metrics but are not
really sure about what metrics mean (Q4.b), while one participant said to
have a general understanding but does not use metrics in his projects (Q4.c).
Case B participants claimed to be slightly more familiar with metrics: while
one participant said to have a general understanding but not to use metrics
(Q4.c), two participants said they have a good understanding and use metrics
sometimes (Q4.d).

We also asked participants on how much they are concerned with
improving the quality of source code in their systems (Q6). While participants
of Case A simply agreed with this statement, participants of Case B showed
to be significantly more concerned about this matter. Judging by the lower
familiarity of participants in Case A with metrics, this result is reasonable.

Finally, we asked in the Background Form about the familiarity of
participants with the concept of internal attributes. Once this term is rather
academic than recurring in industry settings, we presented as example the five
internal attributes assessed through this doctoral thesis: cohesion, complexity,
coupling, inheritance, and size. Thus, we supported the participants by slightly
driving their responses to the context of our work. Data of Table 4.1 showed

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 81

some interesting results. Participants of Case A oscillated a lot in terms of
expertise in internal attributes: one of them only heard about it (Q6.b), another
one said to have a general understanding but not analyze internal attributes in
his projects (Q6.c), and the last one said to have a strong understanding and
analyze internal attributes frequently (Q6.e). One could say these participants
know at least a little about internal attributes because of the metrics they
are familiar with. Conversely, all participants of Case B said to have a good
understanding and analyze internal attributes occasionally (Q6.d).

The bottom line is that participants of Case A are less familiar with
internal quality and its management when compared to participants of Case B.
Still, all participants are considerably experienced in software development.

4.2.3
Data Collection Procedures

Figure 4.1 depicts the procedures adopted for collecting data throughout
the case study. We organized these procedures in three major phases: Prepara-
tion for the focus group session, Discussion by critical attribute, and Discussion
of all critical attributes. We describe below each phase and procedure.

Phase 3: Discussion for all 
critical attributes

Phase 2: Discussion by 
critical attribute

Phase 1: Preparation for 
the focus group session

1. Select software 
projects

2. Recruit developers

3. Characterize 
participants

1. Introduce attribute 
and metrics

2. Discuss attribute 
(ir-)relevance

3. Discuss relevance 
degree

ExACTa

Background 
forms

1. Discuss relative 
relevance of attributes

2. Collect participant 
feedback

Feedback 
forms

Key Phase Step ArtifactRepository

While there are 
critical attributes?

Figure 4.1: Data Collection Procedures

Phase 1: Preparation for the focus group session – This phase aimed at
driving the collection of preliminary resources for supporting the execution of
each focus group session. Besides defining what cases would be assessed, and
recruiting participants to engage in discussions, we collected the background
information. This phase is composed of the three procedures below.

1. Select software projects – As discussed in Section 4.1.3, we contacted a
development project manager at ExACTa aimed at asking for software
projects whose systems are implemented using (at least partially) the

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 82

Java programming language. This decision was taken to assure that
participants are minimally familiar with concepts of object-oriented
languages, which permeate all this work (e.g., the refactoring types and
metrics explored here are mostly applicable to these languages). We
ended up selecting two projects (Case A and Case B).

2. Recruit developers – For each project, we asked for permission to invite
developers for participating in our study. Due to the intensively collab-
orative nature of ExACTa projects, both cases share developers, which
contribute in the development of multiple systems. We then opted for
selecting two independent sets of participants, one per system. No par-
ticipant engaged in two focus group sessions, even though they may have
contributed to the development of both systems. The project manager
played an essential role in defining what developers are more active in the
development of each system. We recruited three participants per case.

3. Characterize participants – We carefully designed and revised our Back-
ground Form aimed at collecting basic information on the participant
expertise. Our major goal was profiling each case so we could better in-
terpret our study results. We opted for a short and simple form in order
to prevent participants from being tired or discouraged to participate in
discussions right after filling the form. As shown in Table 4.1, we col-
lected data on the participant instruction (Q1), experience with software
development in industry (Q2 and Q3), familiarity with two key concepts
of this work, i.e. software metrics (Q4) and internal attributes (Q6), and
the concern degree of developers in improving code quality (Q5).

Before discussing Phase 2 and Phase 3, we illustrate the online
environment used for promoting discussions on critical attributes. Figure 4.2
depicts the virtual template that we carefully designed using the MURAL
online tool5. The MURAL team kindly granted us with a free workspace at
MURAL for Education program. Each session started with a mural as the
template depicted in the figure. This mural has seven well-defined sections.
Sections A to F aimed at driving the discussion regarding each critical
attribute: low class cohesion, high class complexity, high class coupling, large
class hierarchy depth, large class hierarchy breadth, and large class size. Section
G aimed at driving the discussion on the relative relevance of all six critical
attributes.

Figure 4.3 depicts only Section A, which was designed for aggregat-
ing all discussions on low class cohesion. Section A1 contains the short de-

5https://www.mural.co/

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 83

Figure 4.2: Template of Focus Group Session Defined at MURAL

scription of the critical attribute based on the literature (Chávez et al., 2017;
Fernandes et al., 2020; Fowler, 2018; Lanza and Marinescu, 2006). Section A2
provides the participants with examples of metrics aimed at capturing the
respective critical attribute. Section A3 was designed for developers to add
notes on why the critical attribute is relevant for evolving features. Section A4
is similar but focused on why critical attributes may be irrelevant for evolving
features. Finally, Section A5 is designed for capturing the relevance degree of
the critical attribute based on a five-point scale: very irrelevant, irrelevant,
neutral, relevant, and very relevant.

Phase 2: Discussion by critical attribute – This is the first phase
associated with focus group session itself. During this phase, we collected all
data regarding the developer’s perception of critical attributes as relevant (or
irrelevant) for evolving features. However, in this phase each critical attribute
is discussed in isolation. We defined the three procedures below.

1. Introduce attribute and metrics – The discussion on each critical at-
tribute starts with a brief theoretical introduction. We provided the
participants with a short definition of the critical attribute based on
the literature (Chávez et al., 2017; Fernandes et al., 2020; Fowler, 2018;
Lanza and Marinescu, 2006). After that, we provided them with a few
examples of metrics designed for capturing the respective internal at-
tribute. We sample metrics arbitrarily based on our notion of metrics that

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 84

Figure 4.3: Section Dedicated to Discussing Low Class Cohesion

developers could understand more easily. For instance, we opted for ex-
emplifying Lack of Cohesion (LCOM2) (Chidamber and Kemerer, 1994)
rather than LCOM3 (Li and Henry, 1993) because the latter implies ex-
plaining concepts like disjoint components in a graph.

2. Discuss attribute (ir-)relevance – We asked the participants to elicit rea-
sons why each critical attribute is relevant (or irrelevant) for evolving
features. Each reason should be documented as a note in the appro-
priate section: Section A3 for relevant and Section A4 for relevant (cf.
Figure 4.3). From time to time, we reminded participants that evolving
features include adding new features as much as enhancing existing fea-
tures of the system. In addition, we constantly recommended participants
to share knowledge and experiences surrounding each critical attribute,
especially when discussions lost intensity. All participants we asked to
collaborate with circumstances where mitigating or fully addressing a
critical attribute is important for facilitating software evolution.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 85

3. Discuss relevance degree – After discussing why a critical attribute is
relevant (or irrelevant) for evolving features, the instructor of the focus
session group promoted a recap. Each note on the (ir-)relevance of the
critical attribute was read out loud. Whenever the instructor felt that
a note is poorly written, he asked the participants to provide further
considerations on the note. At the end of this procedure, we asked each
participant to assign one vote to the relevance degree of the critical
attribute according with the five-point scale depicted in Figure 4.3.
Each participant voted individually, without knowing the votes of his
colleagues until the discussion by critical attribute has finished.

Phase 3: Discussion for all critical attributes – After discussing each
critical attribute in isolation, the focus session group ended with a discussion
about the relative relevance of critical attributes. This phase has two proce-
dures described below.

1. Discuss relative relevance of attributes – We asked participants to rank
those critical attributes that matter the most while evolving features.
Each participant received five votes in total. These votes were meant to
be distributed throughout the six critical attributes: low class cohesion,
high class complexity, high class coupling, large class hierarchy depth,
large class hierarchy breadth, and large class size. We arbitrarily chose to
assign five votes per participant in order to prevent them from assigning
one vote for each critical attribute, thereby making it hard to conclude
anything on the relative relevance.

2. Collect participant feedback – By the end of each focus group session,
we asked participants to fill out a Feedback Form. We aimed at assuring
that each developer felt confident and comfortable to discuss critical
attributes together with their colleagues. We further discuss the results
of this form in Section 4.6. Appendix B presents the full form.

Each focus group session was conducted online via a Zoom Meeting6

chat. We kept video and audio records of all sessions to support the analysis of
data provided by participants through our virtual workspace at MURAL. We
often accessed the video and audio records for understanding what developers
meant with each note. In addition, the records were very helpful in translating
the notes from Brazilian Portuguese to English, once part of the participant’s
intent with a note may be lost in translation. The focus group sessions for
Case A and Case B occurred in October 16, 2020 and October 20, 2020,
respectively. Each session lasted no longer than two and a half hours.

6https://zoom.us/pt-pt/meetings.html

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 86

4.3
Results and Discussion

This section discusses our study results as follows. Section 4.3.1 elabo-
rates on how developers perceive each critical attribute as relevant for evolving
features. Sections 4.3.2 and 4.3.3 discuss the reasons why each critical attribute
is pointed out as relevant or irrelevant by case study. Section 4.3.4 provides
refactoring recommendations to help manage critical attributes while evolving
features, based the crossing of quantitative (Chapter 3) and qualitative data.
Section 4.3.5 summarizes participant feedback on the focus group sessions.

4.3.1
Relevance of Critical Attributes for Evolving Features (RQ1)

Figure 4.4 depicts how many participants voted for a certain degree
of relevance with respect to each critical attribute under investigation. We
grouped the results by case: Case A data in the left and Case B in the right.

Figure 4.4: Relevance of Critical Attributes per Case

Regarding Case A, three critical attributes are ultimately perceived as
relevant by the developers while evolving features: low class cohesion, high
class complexity, and large class size. These are the only critical attributes for
which no participant reported perceptions as either neutral or (very) irrelevant.
According to background data of Table 4.1, we assume that participants of
Case A are the less familiar with metrics and internal attributes. Thus, one
could speculate that low class cohesion, high class complexity, and large class
size are intuitive degradation symptoms – and potentially harmful to evolving
features.

With respect to Case B, our study results changed considerably. First,
only low class cohesion and large class complexity are reportedly relevant

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 87

for evolving features. Curiously, in the opposite way of Case A, large class
size was ultimately considered irrelevant while performing software evolution.
None of the participants assigned the very irrelevant degree, but they also did
not assign any relevant degree. This result may be associated with the fact
that participants of Case B are the more familiar with metrics and internal
attributes (Table 4.1). Maybe they are experienced enough to acknowledge that
certain large classes are acceptable depending on factors such as the system
domain and the inherent difficulty of a business rule.

Figure 4.5 depicts the overall developer’s perception on how relevant each
critical attribute is, regardless of the case. Two critical attributes are ultimately
relevant for developers: low class cohesion and high class complexity. The other
four critical attributes are not necessarily relevant for developers while evolving
features: high class coupling, large class hierarchy depth, large class hierarchy
breadth, and large size. Curiously, the aggregated data shows that developers
are not exactly sure whether large class hierarchy depth. The high rate of
neutral votes suggest that this critical attribute is not even an issue when
debating and performing software evolution.

Figure 4.5: Relevance of Critical Attributes for Both Cases

4.3.2
Reasons Behind the (Ir-)relevance of Critical Attributes (RQ2) – Case A

As discussed in Section 4.2.3 about Phase 2 (Discussion by critical at-
tribute), we asked participants of each focus session to provides us with reasons
why each critical attribute is relevant (or irrelevant) for evolving features. We
have collected these reasons through notes posted by the participants in the
session’s virtual mural (as depicted in Figure 4.3). Appendices E and F present
prints of the mural with all notes provided by the participants (in Brazilian
Portuguese) via MURAL platform.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 88

Aimed at analyzing these reasons, we first transcribed all notes exactly
as they were written by the participants into a spreadsheet. Based on our
impressions as instructors of the focus group sessions, and after watching the
video and audio records, we rewrote the notes aimed at fixing typos, filling
communication gaps (e.g. omitted words), and making it explicit what is
the target critical attributes of each note. Finally, we translated the notes
from Brazilian Portuguese to English. Appendix C presents the full video
transcription for the Focus Group Session 1 (Case A).

Overall Results for Case A: Table 4.2 lists the notes provided by
participants on why each critical attribute is either relevant or irrelevant for
evolving features. The first column refers to each critical attribute, while the
second column distinguishes notes about the attribute relevance or irrelevance.

Large class size was the most discussed critical attribute in terms of
number of notes, which is not surprising because it is a top-three most rel-
evant attribute according to Figure 4.4. This is interesting the usefulness
of size metrics for assessing the internal software quality is quite debat-
able (Briand et al., 2000; Fernandes et al., 2017a; Lanza and Marinescu, 2006;
Li and Henry, 1993). On the one hand, participants reported, for instance that
“large class size makes it hard to maintain source code” and “large class size
increases error proneness of the source code,” both topics discussed by previous
work (Briand et al., 2000; Fernandes et al., 2017a). On the other hand, partic-
ipants mentioned that “large class size is irrelevant when developers deal with
urgency in program delivery” which, by the way, is a major issue presented in
Chapter 1. Curiously, Participant C associated large class size with the system
domain as suggested by the transcription quotes below:

“Does this comment mean that, sometimes, it is fine to keep large a class
implementing several features which are hard to decouple?” – Applicant

“Yes! This scenario has something to do with program domain. It is harder to
maintain two classes that are equivalent to a single class.” – Participant C

The second most discussed critical attribute is low class cohesion,
which is also a top-three most relevant attribute according to Figure 4.4.
This is an attribute whose applicability in measuring internal quality has
been shown in different development scenarios (Bieman and Kang, 1995;
Chidamber and Kemerer, 1994). On the one hand, participants said that “high
class cohesion facilitates source code reuse,”, something that previous work
have assessed (Bieman and Kang, 1995). Participants also said that “low class
cohesion makes it hard to find errors,” which is a recurring argument through
the responses of both cases (Case A and Case B).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 89

Table 4.2: Notes on (Ir-)relevance of Critical Attributes for Case A

Low
class
cohesion
(9)

Rel. (7)

- High class cohesion facilitates source code reuse
- High class cohesion helps optimizing the most used parts of the source code
- High class cohesion may help understanding the source code
- High class cohesion prevents code duplication
- Low class cohesion makes it hard to find errors
- Low class cohesion makes it harder to organize code than usual
- Non-cohesive classes tend to larger than necessary

Irrel. (2) - Low class cohesion is irrelevant when the time to delivering code is short
- Low class cohesion is irrelevant when you are fixing bugs in legacy code

High
class
complex-
ity (6)

Rel. (5)

- High class complexity leads to high class coupling
- High class complexity makes it hard to perform program testing
- High class complexity makes it hard to understand and evolve code
- High class complexity makes it hard to understand and maintain code
- High class complexity may cause unnecessary slowness, thereby harming
the class performance

Irrel. (1) - High class complexity is irrelevant when having a complex method is
necessary

High
class
coupling
(6)

Rel. (3)
- Class coupling makes the source code rigid and hard to evolve
- High class coupling makes it dangerous to update method signatures
- High class coupling may favor error propagation

Irrel. (3)

- High class coupling is acceptable when coding a highly coupled entity of the
Entity Relationship Diagram
- High class coupling is irrelevant when adopting the Object Pool pattern
- Keeping the high coupling of a class for a while may speed up programming

Large
class
hierarchy
depth (7)

Rel. (4)

- Large depth is relevant because changes at the highest hierarchy levels may
affect all classes at the lowest levels
- Large depth is relevant when a subclass is unnecessarily specialized
- Large depth is relevant when the class must implement several abstract
methods inherited from other classes
- Large depth makes it hard to understand what can be implemented at
the subclass level

Irrel. (3)

- Class hierarchy is an advantageus feature of object-orientation
- Large depth is irrelevant when a subclass is necessarily specialized
- Large depth is irrelevant when it allows reusing reuse located at
the highest hierarchical levels

Large
class
hierarchy
breadth
(6)

Rel. (2)
- Large breadth is relevant because errors affecting the parent class impact
a considerable part of the source code
- Large breadth may increase the class complexity

Irrel. (4)

- Large breadth allows defining generic code that benefits child classes
- Large breadth helps distributing program features
- Large breadth is irrelevant because several subclasses may reuse methods
provided by the parent class
- Large breadth is irrelevant when reusing properties used by all entities of
the Entity Relationship Diagram

Large
class
size (10)

Rel. (6)

- Large class size increases error proneness of the source code
- Large class size is relevant because classes should be small whenever possible
- Large class size makes it hard to maintain source code
- Large class size makes it hard to organize source code
- Large class size makes it hard to perform program testing
- Large class size makes it hard to understand source code

Irrel. (4)

- Large class size is irrelevant when a class has several methods that are
hard to decouple
- Large class size is irrelevant when developers deal with urgency in program
delivery
- Large class size is irrelevant when it affects Proof of Concept (PoC) classes
- Large class size is irrelevant when the methods are naturally very complex

On the other hand, participants discussed that “low class cohesion is
irrelevant when the time to delivering code is short,” which has been discussed
with respect to large class size as well. Curiously, in the particular case of low
class cohesion, participants seem to have more arguments on the relevance of
this critical attributes for evolving features.

The remaining critical attributes were also significantly discussed through
this focus group session. Large class hierarchy depth had many notes regarding

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 90

its relevance for evolving features, as well as high class complexity, high class
coupling, and large class hierarchy breadth. Curiously, high class complexity
had the highest number of notes on its relevant while evolving features;
this results is interesting because high class complexity is the last top-three
most critical attribute according to Figure 4.4. Participants showed different
perspectives on large class hierarchy breadth, as suggested by these quotes:

“Participant B, I disagree when you say it: ’large hierarchy breadth may
increase class complexity’. What do you mean?” – Participant A

“What do I mean? I see no problem with large hierarchy depth, but with large
hierarchy breadth. Large breadth may increase class complexity, because

several features come from a single source. Right?” – Participant B

“Is not that good?” – Participant A

“This is polymorphism. I am not saying this is bad, but... Look, I have added
a comment to ’Irrelevant – Why?’ saying that large breadth may help

decouple and split program features. Still, I see no negative effect of large
hierarchy depth.” – Participant B

Regarding the two critical attributes associated with inheritance (namely,
large class hierarchy depth and large class hierarchy breadth), participants
tended to discuss irrelevance by means of the practical usefulness of class
hierarchies in a system. Examples of quotes that illustrate this issue are
“large depth is irrelevant when it allows reusing code located at the highest
hierarchical levels” and “large breadth is irrelevant when reusing properties
used by all entities of the Entity Relationship Diagram.” Quotes like these
justify, at least in parts, why the majority of participants assigned a neutral
or irrelevant degree for the relevance of both attributes (cf. Figure 4.4).

Is is worth reminding that, during each focus group session, we constantly
stimulated participants to report as many aspects of either relevance or irrele-
vance by critical attribute. Judging by the considerable number of arguments
favor and against the relevant of all attributes, we concluded that our effort in
promoting a healthy and productive discussion among participants paid off.

Thematic Synthesis Results for Case A: As briefly discussed in
Chapter 1, we have applied thematic synthesis (Cruzes and Dyba, 2011) pro-
cedures for aggregating and extracting major lessons on why each critical at-
tribute is critical while evolving features. We performed these procedures for
each case (Case A and Case B). Shortly, we have adopted the following proce-
dures.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 91

First, we separated all translated notes regarding the relevance of all
critical attributes altogether from those regarding irrelevance. Second, for
each set of notes (relevant and irrelevant), we arbitrarily grouped the notes
according to their core theme, i.e. fine-grained themes discussed throughout
each note. Third, we grouped these core themes into macro-themes, i.e. themes
that are more comprehensive than the core themes. Fourth, we separated those
macro-teams in two categories: Code Structure and Design regards aspects of
the code structure and design of a system and System Functionality regards
aspects of the features realized by a system.

Figure 4.6 is a tree that depicts our results for the thematic synthesis
procedures applied to notes on why critical attributes are relevant for evolving
features. The root note of the tree corresponds to the major theme, i.e.
the relevance of critical attributes altogether. The first intermediate level
corresponds to the two categories mentioned above (Code Structure and Design
and System Functionality). The second intermediate level corresponds to the
macro-themes. We assigned in brackets the critical attributes associated with
each micro-theme or macro-theme whenever the node corresponds to a leaf
from the tree – i.e. the node has no variants. We have found seven macro-
themes, four of them associated with code structure and its design. The leaves
correspond to the micro-themes, which are nine in total.

Figure 4.6: Themes on Why Attributes are Relevant for Case A

With respect to Code Structure and Design, participants mentioned that
critical attributes in general are relevant for: Comprehension, i.e., the ability of
reading and understanding the code elements; Critical Attribute, i.e. analyzing
and reasoning about other critical attributes; Design Smell i.e. assessing or
reasoning about the occurrence of Fowler-like design smells (Fowler, 2018);
and Organization, i.e. the way how code elements are organized within the
source code structure. The micro-themes have quite intuitive names, but it is

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 92

worth saying Overall Organization includes those aspects not associated with
Hierarchy and not closely associated with Reuse.

Regarding System Functionality, participants said that critical at-
tributes are relevant for: Change Propagation, i.e. critical attributes may spot
cases in which certain changes are unexpectedly or undesirably propagated
throughout the system; Failure, i.e. the occurrence of bugs, faults, or fail-
ures (Ferreira et al., 2018); and Performance, i.e. aspects of the system per-
formance such as the speed to respond to requests. All micro-themes have
intuitive naming, so there is no need to discuss them.

Complementarily, Figure 4.7 is a tree of themes on why critical attributes
are irrelevant while evolving features (cf. tree root). The first intermediate
level corresponds to the categories Code Structure and Design and System
Functionality. The second intermediate level corresponds to seven macro-
themes identified, four of them associated with system functionality. The
leaves are the five micro-themes identified. We assigned in brackets the critical
attributes associated with each micro-theme or macro-theme whenever the
node corresponds to a leaf from the tree – i.e. the node has no variants.

Figure 4.7: Themes on Why Attributes are Irrelevant for Case A

With respect to Code Structure and Design, participants mentioned
that critical attributes in general are irrelevant for: Critical Attribute, i.e.
analyzing and reasoning about other critical attributes; Organization, i.e. the
way how code elements are organized within the source code structure; and
Programming Language, i.e. aspects derived from the syntax, structure, and
features provided by the programming used during software evolution. The
micro-themes have quite intuitive names, but we highlight that Design Pattern

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 93

refers to Gamma-like design patterns (Gamma et al., 1993). The participants
argued that adopting certain patterns might lead to critical attributes. Despite
of their theoretical or practical impact on the internal software quality, the
critical attributes are either irrelevant or impossible/unfeasible to manage.

Regarding System Functionality, participants reported that critical at-
tributes are irrelevant for: Failure, i.e. certain circumstances associated with
bug fixing – in this case, when “fixing bugs in legacy code”; Product Delivery,
i.e. aspects of delivering a system; Proof of Concept, i.e. aspects associated
with implementation of source code particularly aimed at proving concepts
to stakeholders during the iterative development cycles of agile processes like
Lean R&D; and Software Requirements, i.e. requirements in general.

Via the Critical Attribute macro-attribute, we have found interesting
insights on the interrelation between different critical attributes.

With respect to relevance, participants of Case A said that: i) “high
class complexity leads to high class coupling,” ii) “large breadth may increase
the class complexity,” and iii) “non-cohesive classes tend to be larger than
necessary.” In summary, we found three tuples of interrelations: i) (high
class complexity, high class coupling), ii) (large class hierarchy breadth, high
class complexity), and iii) (low class cohesion, large class size), respectively.
This interesting result could support the design of novel refactoring tools for
enhancing code structures, especially those based on the optimization of critical
attributes that depend on one another.

Regarding irrelevance, participants of Case A said that: i) “high class
coupling is acceptable when coding a highly coupled entity of the Entity
Relationship Diagram” and ii) “large class size is irrelevant when the methods
are naturally very complex.” Thus, we found two tuples of interrelations: i)
(high class coupling, high entity coupling) associating attributes at the levels
of class and Entity Relationship (ER) model, and ii) (large class size, high
method complexity) associating attributes at the levels of class and method,
respectively. Again, these results could drive the design of novel refactoring
tools for enhancing code structure and its design.

4.3.3
Reasons Behind the (Ir-)relevance of Critical Attributes (RQ2) – Case B

Overall Results for Case B: For consultation purposes, Appendix D
presents the full video transcription for the Focus Group Session 2 (Case B).
Table 4.3 lists the notes on why each critical attribute is either relevant or
irrelevant for evolving features.

Large class size tied with high class coupling as the critical attributes

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 94

Table 4.3: Notes on (Ir-)relevance of Critical Attributes for Case B

Low
class
cohesion (6)

Relev. (3)
- Low class cohesion makes it hard to maintain a program
- Low class cohesion makes it hard to track errors
- Low class cohesion makes it hard to evolve a program

Irrel. (3)

- Low class cohesion is irrelevant if it affects an utility class
- Low class cohesion is irrelevant in very small programs
- Low class cohesion is irrelevant if the methods share concepts although
they do not share attributes/parameters

High
class
complex-
ity (4)

Relev. (3)
- High class complexity makes it hard to maintain a program
- High class complexity makes it hard to understand program features
- High class complexity makes it hard to implement new business rules

Irrel. (1) - High class complexity is irrelevant if affecting a class with a single author
and recently maintained

High
class
coupling
(7)

Relev. (4)

- High class coupling is relevant when implementing fault tolerance/error
handling
- High class coupling is relevant when CBO is high but the class is coupled
with classes at different program levels
- High class coupling is relevant when affecting non-cohesive classes
- High class coupling is relevant when the class uses variable of
concrete types rather than variables of interfaces

Irrel. (3)

- High class coupling is irrelevant when CBO is high but the class is
coupled with classes at the same program level
- High class coupling may support source code reuse
- High class coupling is irrelevant when the class is highly cohesive

Large
class
hierarchy
depth (5)

Relev. (3)

- Large depth makes it hard to know where to implement a new
program feature
- Large depth makes it hard to understand the source code structure
- Large depth may cause code duplication

Irrel. (2)
- Large depth is irrelevant when DIT is inherited from libraries, especially
stable libraries
- Large depth is irrelevant because high DIT is rare

Large
class
hierarchy
breadth (3)

Relev. (2)
- Large depth makes large breadth worse
- Large breadth is relevant if child classes redefine the concrete behavior
inherited from their parent class

Irrel. (1) - Large breadth is irrelevant if child classes do not redefine the
concrete behavior inherited from their parent class

Large
class
size (7)

Relev. (2) - Large size is relevant if the programming screen size is small
- Large size rarely occurs in isolation

Irrel. (5)

- Large size is irrelevant if the affected class is not complex
- Large size rarely occurs in isolation
- Large size is irrelevant if the methods are cohesive
- Large size is irrelevant in utility classes
- Large size is irrelevant if the integrated development environment (IDE)
can collapse large source code blocks

with the highest number of notes. Curiously, these critical attributes were the
only ones to have at least one vote for irrelevant (Figure 4.4). As previously
discussed with respect to Case A, the usefulness of size metrics for assessing the
internal software quality has been debated by previous work with mixed opin-
ions (Briand et al., 2000; Fernandes et al., 2017a; Lanza and Marinescu, 2006;
Li and Henry, 1993). This debate is reflected by the highest number of votes
for irrelevant from the entire case study (Figure 4.5). On the one hand, partic-
ipants said that “large size is relevant if the programming screen size is small”
and because “large size rarely occurs in isolation” in terms of problems associ-
ated with internal software quality. On the other hand, participants also said
that “large size is irrelevant in utility classes” and “large size is irrelevant if
the integrated development environment (IDE) can collapse large source code
blocks.” These comments particularly suggest that large class size a problem
of the development environment rather than a system problem.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 95

Regarding high class coupling, participants also showed different per-
spectives on relevance and irrelevance. On the one hand, participants reported
that “high class coupling is relevant when implementing fault tolerance/error
handling.” They also were very specific on the metrics used for computing this
critical attribute, with statements like “high class coupling is relevant when
CBO is high but the class is coupled with classes at different program levels.”
CBO is the Coupling between Objects metric of Table 2.1, which we displayed
in our virtual mural during the focus session group for exemplification. By
the way, with “program level” the participants clarified that they refer to a
system package or module. On the other hand, participants said that “high
class coupling [is irrelevant because it] may support source code reuse” and, in
opposition to the previous case, “high class coupling is irrelevant when CBO
is high but the class is coupled with classes at the same program level.” I is
worth mentioning that, although is has mostly seen as relevant for evolving
features (Figure 4.4, this critical attribute receive one vote for irrelevant.

The third most discussed critical attributes is low class cohesion. Partic-
ipants of Case B reported that “low class cohesion makes it hard to maintain
a program” and “low class cohesion makes it hard to track errors.” On the
other and, from the developer’s perception, “low class cohesion is irrelevant if
it affects a utility class” and “low class cohesion is irrelevant in very small pro-
grams,” for instance. The quotes below, extracted from the video transcription,
suggest different perspectives for the same issue:

“Certain classes host features that fit no other part of the program – they are
the so-called utility classes. Examples are classes responsible for handling

objects, converting or editing data, counting... all useful in many part of the
program. In these cases, low class cohesion is irrelevant.” – Participant B

“I would easily find the best place to add features in a cohesive class. Web
programs usually have a controller layer [...]. Adding the new feature to the

controller layer is reasonable if the feature validates data forms, for instance.
If classes within the controller layer are cohesive, I will know where to add

the feature.” – Participant B

“I have been thinking of small programs that evolve little. Maintaining this
program will require little changes once the program has only a few features.
The program will grow little and, then, low class cohesion is irrelevant.” –

Participant A

Comments like these suggest that the relevance of low class cohesion
strongly depends on what the system implements. If the system is too simple or

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 96

the class provides features to the whole system, low class cohesion is acceptable.
Regardless of that, this critical attribute is curiously the one with most votes
for relevant (with one vote for very relevant) – according to data of Figure 4.5.

The other three critical attributes – high class complexity, large class
hierarchy depth, and large class hierarchy breadth – were less discussed
in comparison with the same attributes in Case A. Curiously, the overall
perception of developers in Case B are quite different and valuable. Regarding
the attribute relevance, participants report that “high class complexity makes
it hard to implement new business rules,” “large depth makes it hard to know
where to implement a new program feature,” and “large breadth is relevant if
child classes redefine the concrete behavior inherited from their parent class.”
These notes add up as they confirm how different critical attributes may hinder
feature additions and enhancements, which are the basis of software evolution.

We present below some quotes that illustrate the discussion above:

1) “High class coupling is relevant while implementing fault tolerance. I
mean, highly coupled classes depend on many others to realize their features

and of those classes many have problems of different natures. It implies
handling with different faults.” – Participant B

2) “Do you see cases in which deciding where in the class hierarchy to add a
new feature is challenging? It may be necessary to duplicate code.” –

Applicant

“Yes, I may have to duplicate source code because of that.” – Participant B

“The most relevant comment so far is the one Participant B added about how
hard is to know where to add a new feature.” – Participant A, later on

3) “Large class hierarchy breadth is irrelevant if the child classes cannot
change features inherited by the parent class, because the implementation
focuses on the parent class. Otherwise, large breadth becomes relevant.” –

Participant B

We highlight each of the three aforementioned attributes (high class
complexity, large class hierarchy depth, and large class hierarchy breadth)
received at least one vote for relevant – see Figure 4.4. It is worth mentioning
that the two critical attributes regarding inheritance received neutral votes.
This results suggest that, for developers considerably concerned on internal
software quality (Table 4.1), inheritance is not a major concern.

Thematic Synthesis Results for Case B: Figure 4.8 is a tree showing
results for the thematic synthesis procedures applied to notes on why critical

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 97

attributes are relevant during software evolution. The root note of the tree
corresponds to the major theme, that is, the irrelevance of critical attributes
altogether. The first intermediate level corresponds to the two major categories
of themes: Code Structure and Design and System Functionality. The second
intermediate level corresponds to the macro-themes. We have derived seven
macro-themes where the majority (five of them) is associated with code
structure and its design. The leaves are the seven micro-themes found in total.
We assigned in brackets the critical attributes associated with each micro-
theme or macro-theme whenever the node corresponds to a leaf from the tree
– i.e. the node has no variants.

Figure 4.8: Themes on Why Attributes are Relevant for Case B

With respect to Code Structure and Design, participants mentioned that
critical attributes in general are relevant for: Comprehension, i.e., the ability of
reading and understanding the code elements; Critical Attribute, i.e. analyzing
and reasoning about other critical attributes; Design Smell i.e. assessing or
reasoning about the occurrence of Fowler-like design smells (Fowler, 2018);
Organization, i.e. the way how code elements are organized within the source
code structure; and Programming, i.e. aspects of programming a system that
may affect how the internal software quality is perceived. All micro-themes
received intuitive names with no need for further explanation.

Regarding System Functionality, participants reported only two macro-
themes; Failure Correction, i.e. the ability to fix bugs, faults, or failures
affecting the system behavior; and Failure Detection, i.e. the task of tracking
unexpected system behaviors realized by bugs, faults, or failures in a system.

As a complement to the discussion above, Figure 4.9 depicts the themes
derived the topic of why critical attributes are irrelevant while evolving features
(see the tree root). The first intermediate level corresponds to the categories

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 98

Code Structure and Design and System Functionality. The second intermediate
level corresponds to five macro-themes identified, three of them associated with
code structure and its design. The leaves correspond to four micro-themes. We
assigned in brackets the critical attributes associated with each micro-theme
or macro-theme whenever the node corresponds to a leaf from the tree – i.e.
the node has no variants.

Figure 4.9: Themes on Why Attributes are Irrelevant for Case B

With respect to Code Structure and Design, participants reported that
critical attributes in general are relevant for: Critical Attribute, i.e. analyzing
and reasoning about other critical attributes; Organization, i.e. the way how
code elements are organized within the source code structure; and Program-
ming, i.e. aspects associated with activity of programming a system. All micro-
themes have intuitive names. Still, it is worth mentioning that Authorship refers
to the source code authorship as discussed in past work (Avelino et al., 2019).

Regarding System Functionality, participants reported that critical at-
tributes are irrelevant in cases associated with: Concern, i.e. nature of the
features realized by the system, pretty much as discussed in the field of soft-
ware requirements (Chung and do Prado Leite, 2009); and Utility, i.e. classes
of the system that serve as feature providers to the majority of the system –
also known as utility classes.

By investigating the Critical Attribute macro-attribute, we derived
interesting insights on the interrelation between different critical attributes.

With respect to relevance, participants of Case B said that: i) “high class
coupling is relevant when affecting non-cohesive classes,” ii) “large depth makes
large breadth worse,” and iii) “large size rarely occurs in isolation.” Based on

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 99

these quotes, we identified three tuples of interrelations: i) (high class coupling,
low class cohesion), ii) (large class hierarchy depth, large class hierarchy
breadth), and iii) (large class size, any critical attribute), respectively. We
did not find any similarities with the interrelations of Case A and Case B.

Regarding irrelevance, participants of Case B said that: i) “high class
coupling is irrelevant when the class is highly cohesive,” ii) “large size is
irrelevant if the affected class is not complex,” iii) “large size is irrelevant
if the methods are cohesive,” iv) “large size rarely occurs in isolation,” and v)
“low class cohesion is irrelevant in very small programs.” Thus, we found five
tuples of interrelations: i) (high class coupling, low class cohesion), ii) (large
class size, high class complexity), iii) (large class size, low method cohesion),
iv) (large class size, any critical attribute), and v) (low class cohesion, high
system size), respectively. Once again, we could not find any similarities with
the interrelations of Case A and Case B.

4.3.4
Managing Critical Attributes through Refactorings (RQ3)

We crossed our quantitative data of Chapter 3, regarding the refactoring
effect on internal attributes, with those discussed in this chapter, regarding the
developer’s perception of critical attributes as relevant for evolving features.
Thus, we were able to derive a simple, but empirically derived, catalog of
refactoring recommendations to help manage critical attributes during software
evolution. We discuss these recommendations below.

Table 4.4 summarizes data discussed in Sections 4.3.2 and 4.3.3 on the
critical attributes that are interrelated from the developer’s perception.

Table 4.4: Relevance and Interrelation of Critical Attributes from the Devel-
oper’s Perception

Critical Attribute

Relevant? Interrelated Critical Attributes

C
as
e
A

C
as
e
B

A
ll
C
as
es

L
ow

cl
as
s

co
he

si
on

H
ig
h
cl
as
s

co
m
pl
ex
it
y

H
ig
h
cl
as
s

co
up

lin
g

L
ar
ge

cl
as
s

hi
er
ar
ch
y

de
pt
h

L
ar
ge

cl
as
s

hi
er
ar
ch
y

br
ea
dt
h

L
ar
ge

cl
as
s

si
ze

Low class cohesion X X X X X
High class complexity X X X X X X
High class coupling X X X X X
Large class hierarchy depth X X
Large class hierarchy breadth X X X
Large class size X X X X X X X

The first column lists all six critical attributes. The second to fourth
columns mark those cases (Case A, Case B or both) where each critical
attribute was voted as either relevant or very relevant by half of participants –
three participants for isolated cases and six for all cases combined. We did not

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 100

consider neutral votes. The remaining columns mark those critical attributes
that interrelate with others. We considered interrelations only between critical
attributes at the class level. Thus, we discarded any interrelations at system
or method levels reported by the participants. This table will support the
understanding of the following discussion.

Table 4.5 provides refactoring recommendations to help manage each of
the six critical attributes. We derived this table by analyzing whether each
refactoring type (columns two to twelve) tends to improve or worsen the inter-
nal attributes associated with each critical attribute. It is worth mentioning
that we only considered data derived from the Most Metrics analysis approach,
i.e. the strictest one. In addition, both large class hierarchy depth and breadth
are associated with the same internal attribute, i.e. inheritance. The crossing
of our quantitative and qualitative data is the key to understand whether de-
velopers could apply a particular refactoring type without major side effects to
the internal software quality perceived as relevant by developers when evolv-
ing features. We discuss below some examples of how these recommendations
based on the data crossing occurs.

Table 4.5: Refactoring Recommendations per Critical Attribute

Critical Attribute

Is This Refactoring Type Recommended?

E
xt
ra
ct

In
te
rf
ac
e

E
xt
ra
ct

M
et
ho

d

E
xt
ra
ct

Su
pe

rc
la
ss

In
lin

e
M
et
ho

d

M
ov
e
A
tt
ri
bu

te

M
ov
e
M
et
ho

d

P
ul
l
U
p
A
tt
ri
bu

te

P
ul
l
U
p
M
et
ho

d

P
us
h
D
ow

n
A
tt
ri
bu

te

P
us
h
D
ow

n
M
et
ho

d

R
en

am
e
M
et
ho

d

Low class cohesion N Y Y Y N N N N N
High class complexity Y
High class coupling N N N N N Y Y
Large class hierarchy depth Y
Large class hierarchy breadth Y
Large class size N Y Y Y N N Y N
Y: Yes, because refactoring often improves the internal attribute
N: No, because refactoring often worsens the internal attribute

As discussed in Section 4.3.1, two critical attributes are ultimately per-
ceived as relevant by developers while evolving features: low class cohesion
and high class complexity. Developers pointed out that both critical attributes
potentially increase the difficulty for understanding and changing classes in
different occasions. These occasions include software testing, failure tracking,
and feature additions. This is particularly interesting because popular refactor-
ings (Murphy-Hill et al., 2012; Silva et al., 2016a), e.g. Extract Method, Move

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 101

Method, and Pull Up Method, often worsen cohesion (e.g. see Table 3.4). How-
ever, as our qualitative data suggests (Table 4.5), developers should take into
account any side effects on high class coupling and large class size, which are
possibly interrelated to low class cohesion.

Our quantitative data also suggested that only Extract Method often
improves complexity and, therefore, could be used for addressing high class
complexity. In addition, the data shows that complexity is rarely sensitive
to any of the 11 refactoring types investigated in our qualitative study
(Table 3.4). However, this critical attribute is closely related with three other
attributes: high class coupling, large class hierarchy breadth, and large class
size. Consequently, applying refactorings for addressing high class complexity
may be non-trivial because developers must take into account any side effects
on those three critical attributes.

The other four critical attributes tend to be irrelevant for developers
(Section 4.3.1): high class coupling, large class hierarchy depth, large class
hierarchy breadth, and large size. Developers argued that using design patterns
like Object Pool, implementing particularly complicated features, and reusing
code via class hierarchy might lead to degraded code structure and design.
Although these critical attributes have their impact on the internal software
quality, they are acceptable in those circumstances. This results is curious
because refactorings rarely worsen inheritance, and only a few refactoring types
worsen coupling and size – e.g., Pull Up Attribute and Pull Up Method.

It is worth noting that the recommendations above partially rely on data
regarding critical attributes at the class level. Thus, generalizing our study
results to critical attributes at other levels of the system may be unfeasible
without further investigation. We strongly recommend researchers to replicate
our work in other industrial contexts, especially those where evolving features
is a major development task.

4.3.5
Participant Feedback

Table 4.6 summarizes the participant feedback collected from our Feed-
back Form. This form had three questions aimed at capturing the degree of
confidence and comfort of developers in participating of the focus group ses-
sions. All participants agree or strongly agree that they were able to discuss
the relevant of critical attributes (Q1), rank these attributes (Q2) and, more
importantly, share knowledge among their respective development teams (Q3).

The last form question (Q4), which does not appear in the table, asked
participants about any other degradation symptoms they may find relevant

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 102

Table 4.6: Participant Feedback Collected via Feedback Form
Case Case A Case
Participant A1 A2 A3 B1 B2 B3
Q1: Confident to discuss
relevance by attribute Agree Agree Agree Agree Agree Strongly

agree
Q2: Confident to rank
attributes by relevance

Strongly
agree Agree Agree Agree Agree Strongly

agree
Q3: Comfortable to share
opinion during discussion

Strongly
agree Agree Strongly

agree Agree Strongly
agree Agree

while evolving features. Only one participant of Case A replied, which is
expected once Case A participants are the less concerned on improving the
quality of source code. Participant A1 said that “bad names of attributes and
methods” may hinder adding or enhancing features.

Differently, all participants of Case B had something to say about
degradation symptoms that go beyond critical attributes. Participant B1
said that “lack of detailing of features” can make feature additions and
enhancements harder to perform than usual. Participant B2 reported that both
“a limited understanding of the business rules” and “a high complexity of using
libraries and development environments” can also hamper evolving features.
Finally, Participant P3 said that “an inconsistent mapping of business rules
into source code implementation” can lead to difficulties in evolving features.

Curiously, issues that emerged from Q4 are closely associated with
aspects of software development other than code structure and its design.
This short feedback just reinforces our assumption that supporting software
evolution depends on much more than simply enhancing code structures.

4.4
Threats to Validity

Construct Validity: We carefully defined the case study protocol and
artifacts based on strict guidelines of research in empirical software engi-
neering (Cruzes and Dyba, 2011; Runeson and Höst, 2009). We used previous
studies (Chávez et al., 2017; Fernandes et al., 2020) as a reference for defining
our study steps and procedures. Thus, we expected to support the proper data
collection and analysis (Section 4.2.3. We performed both protocol and arti-
facts definition prior to the case study execution. As a result, we expected to
prevent the study mischaracterization along with its execution.

Although we did not submit our study protocol to evaluation by the
Ethics in Research Committee at PUC-Rio, we did our best to respect
ethical issues in our work. First and foremost, we relied on the design of
our most recent qualitative studies (Ferreira et al., 2020; Oliveira et al., 2020b;

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 103

Ralph et al., 2020) to assure all participants we comfortable with reporting on
their perceptions. Second, two researchers contributed with insights on how
to organize and conduct the focus group sessions. We discussed refinements
in meetings before the study execution aimed at supporting a successful data
collection. Third, Section 4.1.3 discusses we kept anonymous the identity of the
focus group participants once we capture their perception of industry practices
they apply in their jobs daily.

This study targeted six critical attributes: low class cohesion, high
class complexity, high class coupling, large class hierarchy depth, large class
hierarchy breadth, and large class size. These attributes have been typi-
cally used for monitoring the internal software quality (Bavota et al., 2013;
Chávez et al., 2017; Fernandes et al., 2020). Thus, we expected to understand
the developer’s perception of critical attributes in the large, i.e., in an extensive
scope. An immediate advantage of the large scope is deriving insights that go
beyond the common wisdom on popular critical attributes, such as low class
cohesion and large class size.

All six critical attributes investigated are derived from the five internal at-
tributes of our quantitative study: cohesion, complexity, coupling, inheritance,
and size (Chapter 3). We also analyzed the same set of 11 refactoring types
introduced in Table 2.3. By deciding to focus on the same set of attributes and
refactorings, we expected to support the comparison of both quantitative and
qualitative studies – as we discuss in Section 4.3.4.

Internal Validity: Due to the COVID-19 pandemic, we could not per-
form face-to-face focus group sessions. We then created Zoom chats for hosting
our discussions (Section 4.2.3). One could argue that the online environment
may have discouraged developers to contribute and share knowledge. We did
our best to promote a healthy environment so that everyone was comfortable –
this can be confirmed by the data of Table 4.6. For instance, we asked each de-
veloper to share his perception of the attributes relevance. In addition, aimed
at stimulated participants to engage in the focus group sessions, we informed
our agreement in donating food to charity for each engaged participant.

We controlled the time spent by the development teams for discussing
and reporting their perception of critical attributes. Each focus group session
lasted no longer than two hours and a half. Thus, we aimed at preventing
unnecessary spent of working in industry settings. The chosen time limit was
sufficient for us to understand the relevance of each critical attribute and derive
important insights on this matter.

During the focus groups sessions, we instructed participants on the
formal definition of each critical attribute and metrics frequently used for

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 104

capturing them. By doing this, we expected to normalize the participants’
knowledge, thereby preventing certain participants from being unprepared for
the discussions. However, one could argue that developers would have been
biased in their responses, e.g. with respect to the samples set of metrics. To
this regard we defend the need for introducing examples of metrics because
some participants, especially in Case A, showed either little background on
metrics or little concern on improving code quality (cf. Section 4.1).

We carefully kept video and audio records of each focus group session,
with the permission of all participants, to support our posterior data analysis.
This procedure was essential for either correcting the tabulated data or
validating our discussions surrounding the reasons why each critical attribute
is relevant for evolving features (details in Section 4.2.3). Thus, we expected
to avoid missing and incorrect data while makes reliable our findings.

External Validity: We have conducted our focus group sessions in only
one software development company and two development teams. The choice for
this company was made by convenience (Section 4.1.3). In this particular case,
we highlight that we opted for performing case studies, whose definition implies
observing a phenomenon in its natural context (Runeson and Höst, 2009).
Studies like this typically encompass only a small set of subjects, so that this is
not a threat to our study. Nevertheless, we are aware that our study results, as
their implications, may not apply to any companies and development teams.

We recruited only three participants for each focus group session. This
may be a small number of participants. Besides, one could argue that
such a limited set would have hindered the derivation of relevant study re-
sults on developer’s perception of critical attributes. Although we partially
agree with this argument, focus groups are not intended at large scale ana-
lyzes (Runeson and Höst, 2009). Rather, these studies aim at promoting dis-
cussions among a few participants in such a way controlling their participation
becomes possible. Thus, it is reasonable that our study results are valid to a
very limited scope.

Finally, the two systems analyzed in this work are at least partially
implemented in the Java programming language. Although the development
company is responsible for evolving dozens of systems, we opted for Java-based
projects based on well-defined Section 4.1.3. We expect not just allow the study
replication, but also make our qualitative data studies somehow comparable
with those of our quantitative study (Chapter 3). Nevertheless, we observed
some aspects of the developers’ discussions during the focus group sessions that
suggest other software domains could be further explored. For instance, the
session transcriptions for Case B (Appendix D) suggest different perceptions

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 105

of the relevance by critical attributes according to the programming paradigm –
e.g. object-oriented versus functional programming. We encourage researchers
to replicate our study to yet unexplored contexts like this.

Reliability: Aimed at bringing reliability to our qualitative study,
we performed descriptive analysis similar to other studies on refactor-
ings (Bibiano et al., 2019; Bibiano et al., 2020; Chávez et al., 2017). In addi-
tion, we performed thematic synthesis procedures (Cruzes and Dyba, 2011)
with the purpose of systematically extracting themes of why critical attributes
are relevant (or irrelevant) for evolving features. Thus, we expected at achiev-
ing a minimum degree of study replication as well as clarity in our data and
discussions.

Regarding our qualitative study (Chapter 4), we discussed how critical
attributes are perceived as interrelated by the participants of our two industry
cases (see Section 4.3.4). We used this interrelation data for reasoning on how
developers could perform refactorings for addressing critical attributes when
evolving features (Table 4.4). However, one could argue that the developer’s
perception may not be the best way of establishing interrelations of critical
attributes. Particularly, there may be other interrelations not covered by our
study or neglected by the developers for some reason.

Still, we believe that our choice is quite reasonable for many reasons.
For instance, developers argue that low class cohesion and high class cou-
pling are interrelated, which is reflected in recurring strategies for detecting
design smells such as Large Class (cf. Section 2.2). Similar reasoning ap-
plies to other interrelations, such as high class complexity and large class
size (Fowler, 2018; Lanza and Marinescu, 2006). In summary, interrelations re-
ported by the participants may not saturate all possibilities but, still, serve as a
starting point for assisting refactorings to help in managing critical attributes.

Qualitative methods for empirical research in software engineering
are powerful when employed by a team of researchers (Kontio et al., 2004;
Runeson and Höst, 2009), each with different perceptions on the qualitative
data under analysis. Thus, we acknowledge this threat to the validity of our
study: only one research was responsible for analyzing most of the data, even
when a second researcher provided support in double-validation or feedback.
A implication of this is a possible decrease in reliability of the study results,
especially because of the interpretative nature of the qualitative analysis.

Although we did not properly address this threat, it is worth mention-
ing that the researcher responsible for the qualitative analysis had previ-
ous experiences on this matter in different occasions (Fernandes et al., 2016a;
Oliveira et al., 2020b; Uchôa et al., 2019). For instance, he has been in-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 4. On the Relevance of Critical Attributes for Evolving Features 106

volved with the application of thematic synthesis procedures in past
work (Oliveira et al., 2020a; Oliveira et al., 2020b) and qualitative stud-
ies with practitioners, researchers, and students (Fernandes et al., 2016a;
Ferreira et al., 2020; Uchôa et al., 2019).

4.5
Chapter Summary

This chapter discussed the outcomes of a qualitative case
study (Runeson and Höst, 2009) based on focus groups (Kontio et al., 2004).
We carefully designed and conducted two industrial case studies aimed at
understanding the relevance of six critical attributes at the level of classes in
the context of software evolution – all based on the five internal attributes an-
alyzed in our previous quantitative study (Chapter 3). As a result, we derived
many interesting insights that may help both practitioners and researchers in
managing critical attributes while evolving features. For instance, low class
cohesion and high class complexity are ultimately perceived as relevant when
evolving features. Thus, popular refactorings (e.g. Extract Method and Move
Method) should be carefully applied for preventing a major worsening of code
structure and its design.

We also filled some critical literature gaps that prevented us from further
understanding the refactoring effect on internal attributes. Particularly, we
elicited factors that lead developers to consider certain critical attributes as
relevant, e.g. the difficulty to perform testing and feature additions. Finally,
we discuss how refactorings may help in managing critical attributes when
evolving features through recommendations derived on crossing quantitative
data (Chapter 3) and qualitative data (this chapter).

The next chapter concludes this doctoral thesis. In Chapter 5, we
summarize the implications of the results obtained through our quantitative
and qualitative studies. We also discuss key publications achieved during this
PhD course – some of them directly derived from this doctoral thesis.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



5
Conclusion

Software change is the basis of what we know as software evolution.
Developers daily apply hundreds of changes to their systems (Kim et al., 2014;
Murphy-Hill et al., 2012), aimed at meeting ever-changing stakeholders’ de-
mands and operating environment settings (Lehman, 1980; Mens et al., 2010).
As a system evolves (Martin, 2002), developers must carefully apply
changes (Elfatatry, 2007). Indeed, each change in isolation may affect the
system in different granularities, from fined-grained code elements to the
entire system architecture (Chávez et al., 2017; Paixao et al., 2019). Addi-
tionally, every change has one or more developer intents, which range from
purely enhancing code structure and its design to fixing bugs and evolving
software features (Gousios et al., 2015; Paixao et al., 2019; Silva et al., 2016a;
Tao et al., 2012).

Although developers perform several changes in the regular basis, apply-
ing certain changes may be quite challenging in practice. Indeed, an undisci-
plined application of changes may eventually degrade, rather than improve, the
code structure and its design (Fernandes et al., 2017b; Tufano et al., 2017).
More critically, performing other changes with major underlying intents, es-
pecially evolving features, tends to becomes hard than usual or even un-
feasible (Fernandes, 2019a). Evolving features means either adding new fea-
tures or enhancing existing features (Burke, 2014). Therefore, both miti-
gating and fully addressing degradation symptoms is essential to enhance
the internal software quality (Bavota et al., 2013; Fernandes et al., 2017b;
Tufano et al., 2017).

The literature regarding degradation symptoms is exten-
sive. Examples of degradation symptoms are anomalous met-
ric values (Chidamber and Kemerer, 1994; Fernandes et al., 2017a;
Pantiuchina et al., 2018), critical internal attributes (Chávez et al., 2017;
Fernandes et al., 2020) and design smells (Fowler, 2018). Most of these
degradation symptoms are quantifiable via traditional software metrics,
e.g. Coupling between Objects (CBO) (Chidamber and Kemerer, 1994;
Lanza and Marinescu, 2006). By definition, a degradation symptom is just a
hint of degraded code structure and its design. A degradation symptom is rel-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 108

evant for evolving features when developers have the need of either mitigating
or fully addressing it before performing feature additions and enhancements.

Previous studies (Bavota et al., 2015; Bibiano et al., 2019;
Chaparro et al., 2014; Palomba et al., 2014; Pantiuchina et al., 2018),
partially investigated the relationship between degradation symptoms
and changes designed for enhancing code structures, i.e., refactor-
ings (Fowler, 2018). Unfortunately, there is still scarce knowledge on
what degradation symptoms are relevant for practitioners in the in-
dustry. In addition, most studies targeted either critical metric val-
ues (Bavota et al., 2015; Chaparro et al., 2014; Pantiuchina et al., 2018) or
design smells (Bibiano et al., 2019; Palomba et al., 2014) rather than critical
attributes. This is a major opportunity for addressing literature gaps and
further assist developers in enhancing code structures, via refactorings, while
evolving features.

This doctoral thesis discussed two complementary studies aimed at
empirically addressing two issues, thereby filling literature gaps, such as limited
analysis scopes (variety of systems, internal attributes and so forth). The first
issue is the scarce and imprecise knowledge on how refactorings affect internal
attributes used for capturing critical attributes such as low class cohesion and
high class complexity. The second issue is the lack of empirical evidence on how
much (and why) developers perceive critical attribute as relevant (or irrelevant)
for evolving features.

Via a large quantitative study (Chapter 3), we explored the relation-
ship between refactorings and internal attributes. We extended previous
work (Chávez et al., 2017) on 23 open source systems with new analyses, sta-
tistical testing, and discussions. We analyzed 11 refactoring types, 25 metrics,
and five internal attributes: cohesion, complexity, coupling, inheritance, and
size. Besides revealing new insights on the refactoring effect, we contradict
literature assumptions (Bavota et al., 2015; Fowler, 2018).

Through a case study (Runeson and Höst, 2009) based on focus group
sessions (Kontio et al., 2004), we complemented the findings of the previous
study and shed light on the relevance of critical attributes in industry, when
evolving software features (Chapter 4). We investigated six (all the class
level) critical attributes derived from the five internal attributes mentioned
above. We asked participants of each session on the relevance of these critical
attributes when evolving features: low class cohesion, high class complexity,
high class coupling, large class hierarchy depth, large class hierarchy breadth,
and large class size. Crossing the findings from both conducted studies, we
discuss how critical attributes can be addressed through refactoring, when

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 109

evolving features.
We structured this final chapter of the doctoral thesis as follows. Sec-

tion 5.1 summarizes major implications of our quantitative study (Chapter 3)
about the refactoring effect on internal attributes. We display insights for both
researchers and practitioners, with an emphasis on mechanisms for assisting de-
velopers in improving internal attributes – especially during software evolution.
Section 5.2 presents major implications of our qualitative study (Chapter 4)
on the developer’s perception of critical attributes for evolving features. We
highlight the need for re-designing the current automated refactoring tools to
help manage critical attributes based on this empirically validated perception.
Section 5.3 lists some closely related publications achieved during the PhD
course. Finally, Section 5.4 discusses peripheral yet relevant publications also
achieved during the PhD course.

5.1
Quantitative Study Implications

Implication for Practitioners 1: Developers should carefully plan the
refactoring application, especially when combined with intents such as
evolving features, in order to prevent software degradation.

Some previous studies (Chávez et al., 2017; Murphy-Hill et al., 2012;
Paixao et al., 2019; Silva et al., 2016a) showed that developers not very often
intend to purely enhance the code structure and its design while refactoring
systems. On the other hand, our study corroborates that developers often apply
refactorings on those code elements that are more likely to represent relevant
degradation symptom (Chapter 3.3). Indeed, the majority of refactorings and
re-refactorings (above 90% of the total) occur in code elements with at least
one critical attribute. This result suggest that developers are possibly aware
of degraded code structure and design while performing refactorings in the
regular basis.

We conclude it is equally crucial to raise awareness on the need for apply-
ing changes in a careful rather than an undisciplined fashion. Such awareness is
particularly necessary in the case of floss refactorings, i.e. refactorings applied
in conjunction with other changes. Floss refactorings represent about 73% of
all refactorings, and their typically negative effect on internal attributes may
be caused by those other changes, e.g. changes intended to evolving features.
A careful refactoring planning and application could prevent developers from
unexpectedly (and undesirably) degrading the code structure and its design.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 110

Implication for Practitioners 2: Applying certain refactoring types
requires parsimony – and a pretty clear code structure enhancement intent.

Our quantitative study results reveal that each refactoring type has its
advantages and drawbacks with respect to code structure enhancement. Let
us take Extract Method, which is a very popular refactoring type in indus-
try (Murphy-Hill et al., 2012; Silva et al., 2016a), as an example. While Ex-
tract Method can improve many attributes together, especially when applied
as a re-refactoring (Section 3.5), it can worsen other attributes as well (Sec-
tion 3.4).

Further research is still required to understand the trade-off between im-
proving and worsening different attributes for each refactoring type. However,
our study suffices to raise awareness on the fact that applying (re-)refactorings
requires parsimony, but also a clear code enhancement intent. That is, develop-
ers have to state clearly the internal attributes that really matter in a certain
system, so that they can mitigate or fully address degradation symptoms with-
out unnecessarily increasing software evolution costs.

Implication for Researchers 1: Techniques aimed at either prioritiz-
ing and ranking of refactoring opportunities should strongly consider the
refactoring effect on internal attributes.

Our study results suggest that, consciously or not, developers very of-
ten apply (re-)refactorings on code elements affected by one or more criti-
cal attributes. Besides contradicting the literature (Bavota et al., 2015), this
result reinforces that critical attributes are useful hints of degraded code
structures that require refactoring. Consequently, the existing techniques
for prioritizing and ranking refactoring opportunities, e.g. (Lin et al., 2016;
Szőke et al., 2015a; Tsantalis et al., 2013), should strongly consider the (re-
)refactoring effect on internal attributes.

Implication for Researchers 2: Search-Based Software Engineering
(SBSE) can support the refactoring composition towards a more significant
enhancement of the code structure and its design.

Integrated development environments (IDEs) provide limited support
for supporting developers in tailoring their refactorings to achieve their in-
tents (Kim et al., 2014), such as adjusting the outcome of each change. In

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 111

particular, they provide a restrict support for customizing and compos-
ing refactorings in a way that is suitable to the working context of a de-
veloper. Our most recent studies (Bibiano et al., 2019; Bibiano et al., 2020;
Fernandes et al., 2019b; Fernandes, 2019a) aims at understanding the process
of composing two or more refactorings to mitigate or fully address degraded
code structures, including those revealed by design smells (Fowler, 2018). Our
major goal is defining strategies to compose multiple refactorings in such
a way they can overcome the limited benefits of applying isolated refactor-
ings (Yoshida et al., 2016).

There may be many alternatives for composing refactoring
types (Fernandes et al., 2019b), each with a different effect on the critical
attributes. Similar to a previous work (Lin et al., 2016), SBSE techniques
could help in finding compositions that optimize the improvement of certain
attributes while avoid the worsening of other attributes. In future work, we
aim to explore the potential of supporting the customization and compo-
sition of refactorings (Fernandes et al., 2019b). The resulting customization
and composition should be able to improve multiple internal attributes in
conjunction with the achievement of other intents, e.g. evolving features.

5.2
Industry Case Study Implications

Implication for Practitioners 1: Existing techniques could help in
mitigating or fully addressing critical attributes while evolving features.

Through our focus group sessions, we were able to reveal what criti-
cal attributes were perceived as relevant by developers while evolving fea-
tures in industry. We aimed at confirming and complementing prelimi-
nary insights of previous studies (Palomba et al., 2014; Taibi et al., 2017;
Yamashita and Moonen, 2013) on the importance of addressing critical at-
tributes for facilitating software evolution. Our major results include the val-
idation of low class cohesion and high class complexity as ultimately relevant
from the developer’s perspective. On the one hand, existing techniques for de-
tecting designs smells – which are usually combinations of two or more critical
attributes – could be handful for assisting developers in analyzing critical at-
tributes in their systems. There is a myriad of options in the literature for this
particular purpose (Fernandes et al., 2016b; Lin et al., 2016; Liu et al., 2011;
Oliveira et al., 2020b; Szőke et al., 2015a).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 112

In addition, the technical literature of anomalous metric
values and critical attributes is quite diverse and comprehen-
sive (Bavota et al., 2013; Bavota et al., 2015; Chaparro et al., 2014;
Chávez et al., 2017; Fernandes et al., 2020; Lanza and Marinescu, 2006;
Lorenz and Kidd, 1994). Still, our Background Form in particular (Sec-
tion 4.2.2) reminded us that developers may not be sufficiently aware of the
techniques already proposed for supporting the analysis of critical attributes
in practical settings. Raising such awareness is fundamental for developers to
discuss and manage critical attributes, especially in cases of short time for
delivery products – a recurring issue (cf. Table 4.2 and Table 4.3).

Implication for Practitioners 2: Our refactoring recommendations
could be a starting point for development teams to discuss managing critical
attributes while evolving features.

As previously discussed, we systematically crossed our quantitative data
of Chapter 3 – about the refactoring effect on five internal attributes – with
our qualitative data of Chapter 4 – regarding the developer’s perception of
critical attributes as relevant for evolving features. After that, we discuss how
developers may perform refactorings to help manage critical attributes along
with software evolution. Although these recommendations are not extensive,
they serve as a starting point for discussing the role of refactorings in enhancing
code structure and its design.

For instance, we discussed that low class cohesion and high class com-
plexity are ultimately relevant for developers while evolving features. In this
case, refactoring types such as Extract Method, Move Method, and Pull Up
Method could effectively help in managing critical attributes like low class
cohesion (Table 3.4). Another example is that Extract Method could help ad-
dressing high class complexity without major side effects on other internal
attributes that may become critical after performing the refactorings.

The value of our recommendations is in demonstrating to developers
that enhancing code structures is not trivial and requires a careful planning
and execution. Otherwise, an unexpected decay of internal software quality
is expected. We believe our refactoring recommendations serve as a starting
point for decision-makings on critical attributes during software evolution.

Implication for Researchers 1: Existing techniques should be adapted
to prioritize the management of critical attributes that really concern
developers while evolving features.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 113

Our qualitative study revealed how much (and why) critical attributes
may be relevant for developers during software evolution. It also supported
refactoring recommendations that developers could incorporate to enhance
code structure and its design. Nevertheless, such a simple set of recommenda-
tions is probably insufficient for assisting developers in refactoring in practice.
Thus, automated refactoring assistance is beyond desired: it is necessary.

Additionally, each system may have several critical attributes to manage.
In cases like this, automation becomes fundamental and a major feature
should be prioritizing critical attributes that concern developers the most.
We encourage researchers to re-design their tools for assisting software quality
assessment by considering the developer’s perception of critical attributes that
concern them the most while evolving features.

Implication for Researchers 2: Recommender systems should incorpo-
rate mechanisms for driving changes aimed at other intents than the pure
enhancement of code structure and its design.

A few recommender systems, e.g. (Lin et al., 2016; Szőke et al., 2015a)
aim to assist developers in enhancing code structures (Szőke et al., 2015a) and
evolving software architectures (Lin et al., 2016). In both cases, the traditional
refactorings of Fowler’s Refactoring book (Fowler, 2018) are employed towards
a facilitated software development in general. These tools rely on the assump-
tion that code structure and design free of degradation symptoms is favorable
to adding or enhancing features. This assumption is not incorrect per se. How-
ever, the ideal code structure and design suggested by these tools may be either
unnecessary or too costly in practice.

Our qualitative study results (Sections 4.3.2 and 4.3.3) suggest that,
during software evolution, developers tend to concentrate effort in applying
only those changes necessary to achieve their major intent. While existing
recommender systems typically suggests at once dozens of changes, their
practical adoption sounds unrealistic at times. This observation is especially
valid when the developer wants to add or enhance features very locally in
the code. Our study results could help researchers in re-designing tools for
addressing degradation symptoms – including critical attributes with fewer
changes and focused on problems that actually affect the tasks of evolving
features. For instance, tool designers could try incorporating our refactoring
recommendations to assist disciplined refactorings aimed at mitigating or fully
addressing critical attributes.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 114

5.3
Closely Related Publications

The first publication (Chávez et al., 2017) closely related to this doc-
toral thesis was a best paper at the 31st Brazilian Symposium on Software
Engineering (SBES) in 2017. This paper empirically assessed the relationship
between refactoring and critical attributes. Differently of previous studies quite
limited in scope, we analyzed five internal attributes: cohesion, complexity, cou-
pling, inheritance, size. Our study encompassed 11 popularly adopted refac-
torings (Murphy-Hill et al., 2012; Silva et al., 2016a), e.g. Extract Method and
Move Method, and 25 traditional metrics. We have significantly contributed
with the study design, writing, and the effect analysis. We also documented
related work, from which we tracked limitations of the automated refactoring
support.

Aimed at filling additional literature gaps and extending our
past work (Chávez et al., 2017), we have led a second publica-
tion (Fernandes et al., 2020) at the Information and Software Technology
(IST) journal. We have performed and documented an unprecedented study
on a recently proposed concept called re-refactoring. Re-refactoring means
refactoring a previously refactored code element, e.g. a class or a method.
We addressed some major threats to the validity of our previous work by i)
applying different statistical methods and ii) performing an extensive litera-
ture comparison. This study has helped us to realize that i) managing critical
attributes is insufficient to mitigate and fully address degradation symptoms,
and ii) change recommendations should consider other intents such as partially
improving attributes to evolve features.

The third publication (Bibiano et al., 2019) closely related to this doc-
toral thesis was a large study published in the 13th International Symposium
on Empirical Software Engineering and Measurement (ESEM) in 2019. We as-
sessed the refactoring effect on both introducing and removing design smells.
We have contributed with phases such as the study design, writing, and im-
pact analysis. This was the first empirical study to assess composite refac-
torings (formerly batch refactorings). A composite refactoring is constituted
of two or more refactorings combined and applied together with a shared in-
tent (Bibiano et al., 2019), which rages as much as for each single refactor-
ing (Fernandes et al., 2019b; Fernandes, 2019a). This study has helped us to
confirm that i) evolving features strongly depends on systematically applying
composite refactoring, and ii) evolving features should be tool-aided.

The fourth publication (Bibiano et al., 2020) is derived from the third
one. It consists of a quantitative study accepted in the 28th International

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 115

Conference on Program Comprehension (ICPC) in early 2020. This study
targeted a phenomenon we called incomplete composite refactoring. Shortly,
incomplete composite is a composite that fell short in fully removing a design
smell it was supposed to remove. Once again, we performed some major
contributions, from the study design definition to the paper writing and review.
This was the first study aimed at investigating internal attributes in the context
of composite refactoring. We have contributed with phases such as the study
design, writing, and text review. Contrary to expectations, our study revealed
that, at the class level, incomplete composites have a slight or no effect on
internal attributes after all. Thus, coping with critical attributes via composite
refactoring is much harder than one could expect.

The first attempt to formalize this doctoral thesis, our fifth publica-
tion (Fernandes, 2019a), was presented in the Doctoral Symposium of the 41st
International Conference on Software (ICSE) in 2019. At that time, we pro-
posed investigating what we called obstacles to evolving features. Similarly
to our definition of critical attributes that are relevant for evolving features
(Section 1.1), these are obstacles that make it hard or impossible to evolve
features. The paper was praised in both reviews and the face-to-face presen-
tation, but our study required major refinements. Instead of focusing most of
our effort in drawing refactoring recommendations to enable feature additions,
we should clarify what critical attributes are ultimately relevant for evolving
features. Thus, we shifted our study focus from designing a recommender sys-
tem to understanding the relevance of critical attributes from the developer’s
perception.

Our sixth publication was an exercise aimed at discussing the pos-
sible alternatives for combining two or more refactorings within a compos-
ite refactoring. We searched for scenarios of refactoring composition in open
code review repositories, specifically those powered by the Gerrit Code Re-
view platform1. We analyzed some examples of discussions made by devel-
opers along with the code reviews. One of our goals was tracking scenarios
in which the collaboration among developers could lead to the recommenda-
tion of effective composite refactorings. This publication was presented at the
3rd International Workshop on Refactoring (IWoR), co-located with the 41st
ICSE (Fernandes et al., 2019b). Our exercise was fruitful in revealing more
limitations of the state of the art refactoring tools, especially when it comes to
evolving features.

1https://www.gerritcodereview.com/

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Chapter 5. Conclusion 116

5.4
Other Publications

We have contributed with other publications along with this PhD course.
Some of them have significantly contributed with useful insights to this
doctoral thesis, although they targeted quite different challenges in software
engineering. We briefly introduce these studies below.

The first publication (Ferreira et al., 2018) was a poster paper pre-
sented at the 40th International Conference of Software Engineering (ICSE)
in 2018. This study assessed the relationship between refactorings and bug
introductions. As in the first closely related publication (Chávez et al., 2017),
we substantially contributed with the study design, writing, and analysis. We
summarized related work, which revealed additional limitations of the cur-
rent refactoring tools. We also proposed means to compute the distance from
refactorings to bug-introducing commits. However, our “turning point” was
realizing that i) change recommendations should consider potential bug intro-
ductions and ii) analyzes commit by commit often overshadow the changes
applied within each commit. Thus, researchers should carefully address threats
to validity associated with a too coarse-grained analysis of the refactoring effect
on the software quality.

The second (Fernandes et al., 2019c) and third publica-
tions (Uchôa et al., 2019), both published in 2019, are interrelated. The
former we published in the 16th International Conference on Information
Technology: New Generations (ITNG). The later appeared in the 1st Inter-
national Workshop on Software Engineering for Healthcare (SEH), co-located
with the 41st ICSE. These two publications derived from our practical ex-
perience with adding gamification features into a system. This experience,
documented in details in our seventh related publication (Section 5.3) helped
us to understand how hard can be evolving features in a legacy source code
and software architecture.

Finally, the fourth (Oliveira et al., 2020a) and fifth publica-
tions (Oliveira et al., 2020b) were published in Empirical Software Engi-
neering (EMSE) journal and the Information and Software Technology (IST)
journal, respectively. In both studies, we have largely contributed with the
study design, execution, and writing. These studies included interviews with
practitioners in order to understand a particular development task: respec-
tively, identifying highly productive developers and detecting design smells.
In particular, these studies were fruitful exercises to perform and discuss the
outcomes of thematic synthesis procedures (Cruzes and Dyba, 2011), which
we also applied to our qualitative study (Chapter 4).

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography

[Al Dallal and Abdin, 2017] AL DALLAL, J.; ABDIN, A.. Empirical evalua-
tion of the impact of object-oriented code refactoring on quality
attributes: A systematic literature review. IEEE Transactions on
Software Engineering, 44(1):44–69, 2017.

[Apel and Kästner, 2009] APEL, S.; KÄSTNER, C.. An overview of feature-
oriented software development. Journal of Object Technology, 8(5):49–
84, 2009.

[Avelino et al., 2019] AVELINO, G.; PASSOS, L.; HORA, A. ; VALENTE, M. T..
Measuring and analyzing code authorship in 1+ 118 open source
projects. Science of Computer Programming, 176:14–32, 2019.

[Basili and Rombach, 1988] BASILI, V.; ROMBACH, D.. The TAME project:
Towards improvement-oriented software environments. IEEE
Transactions on Software Engineering, 14(6):758–773, 1988.

[Bavota et al., 2013] BAVOTA, G.; DIT, B.; OLIVETO, R.; DI PENTA, M.;
POSHYVANYK, D. ; DE LUCIA, A.. An empirical study on the devel-
opers’ perception of software coupling. In: PROCEEDINGS OF THE
35TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
(ICSE), p. 692–701, 2013.

[Bavota et al., 2015] BAVOTA, G.; DE LUCIA, A.; DI PENTA, M.; OLIVETO,
R. ; PALOMBA, F.. An experimental investigation on the innate
relationship between quality and refactoring. Journal of Systems
and Software, 107:1–14, 2015.

[Bibiano et al., 2019] BIBIANO, A. C.; FERNANDES, E.; OLIVEIRA, D.; GAR-
CIA, A.; KALINOWSKI, M.; FONSECA, B.; OLIVEIRA, R.; OLIVEIRA, A. ;
CEDRIM, D.. A quantitative study on characteristics and effect of
batch refactoring on code smells. In: PROCEEDINGS OF THE 13TH
INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEER-
ING AND MEASUREMENT (ESEM), p. 1–11, 2019.

[Bibiano et al., 2020] BIBIANO, A. C.; SOARES, V.; COUTINHO, D.; FERNAN-
DES, E.; CORREIA, J. L.; TARCÍSIO, K.; OLIVEIRA, A.; GARCIA, A.;

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 118

GHEYI, R.; RIBEIRO, M.; FONSECA, B.; BARBOSA, C. ; OLIVEIRA, D..
How does incomplete composite refactoring affect internal qual-
ity attributes? In: PROCEEDINGS OF THE 28TH INTERNATIONAL
CONFERENCE ON PROGRAM COMPREHENSION (ICPC), p. 1–11, 2020.

[Bieman and Kang, 1995] BIEMAN, J.; KANG, B.-K.. Cohesion and reuse in
an object-oriented system. ACM SIGSOFT Software Engineering Notes,
20(SI):259–262, 1995.

[Briand et al., 2000] BRIAND, L.; WÜST, J.; DALY, J. ; PORTER, D. V.. Ex-
ploring the relationships between design measures and software
quality in object-oriented systems. Journal of Systems and Software,
51(3):245–273, 2000.

[Burke, 2014] BURKE, J.. Utilizing feature location techniques for fea-
ture addition and feature enhancement. In: PROCEEDINGS OF THE
29TH INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE
ENGINEERING (ASE), p. 879–882, 2014.

[Chaparro et al., 2014] CHAPARRO, O.; BAVOTA, G.; MARCUS, A. ; DI PENTA,
M.. On the impact of refactoring operations on code quality met-
rics. In: PROCEEDINGS OF THE 30TH INTERNATIONAL CONFERENCE
ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME), p. 456–460,
2014.

[Chávez, 2017] LÓPEZ, A.. How does refactoring affect internal quality
attributes? A multi-project study. Master’s dissertation: Informatics
Department (DI), Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
p. 1–80, 2017.

[Chávez et al., 2017] CHÁVEZ, A.; FERREIRA, I.; FERNANDES, E.; CEDRIM,
D. ; GARCIA, A.. How does refactoring affect internal quality
attributes? A multi-project study. In: PROCEEDINGS OF THE 31ST
BRAZILIAN SYMPOSIUM ON SOFTWARE ENGINEERING (SBES), p. 74–
83, 2017.

[Chidamber and Kemerer, 1994] CHIDAMBER, S.; KEMERER, C.. A metrics
suite for object oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

[Chung and do Prado Leite, 2009] CHUNG, L.; DO PRADO LEITE, J. C.. On
non-functional requirements in software engineering. In: CON-
CEPTUAL MODELING: FOUNDATIONS AND APPLICATIONS, p. 363–
379. Springer, 2009.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 119

[Cruzes and Dyba, 2011] CRUZES, D.; DYBA, T.. Recommended steps for
thematic synthesis in software engineering. In: PROCEEDINGS OF
THE 5TH INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE
ENGINEERING AND MEASUREMENT (ESEM), p. 275–284, 2011.

[Destefanis et al., 2014] DESTEFANIS, G.; COUNSELL, S.; CONCAS, G. ;
TONELLI, R.. Software metrics in agile software: An empirical
study. In: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFER-
ENCE ON AGILE SOFTWARE DEVELOPMENT (XP), p. 157–170, 2014.

[Du Bois and Mens, 2003] DU BOIS, B.; MENS, T.. Describing the impact
of refactoring on internal program quality. In: PROCEEDINGS OF
THE INTERNATIONAL WORKSHOP ON EVOLUTION OF LARGE-SCALE
INDUSTRIAL SOFTWARE APPLICATIONS (ELISA), CO-LOCATED WITH
THE 19TH INTERNATIONAL CONFERENCE ON SOFTWARE MAINTE-
NANCE (ICSM), p. 37–48, 2003.

[Elfatatry, 2007] ELFATATRY, A.. Dealing with change: Components
versus services. Communications of the ACM, 50(8):35–39, 2007.

[Fernandes, 2019a] FERNANDES, E.. Stuck in the middle: Removing
obstacles to new program features through batch refactor-
ing. In: PROCEEDINGS OF THE 41ST INTERNATIONAL CONFERENCE
ON SOFTWARE ENGINEERING (ICSE), COMPANION PROCEEDINGS, p.
206–209, 2019.

[Fernandes et al., 2016a] FERNANDES, E.; FERREIRA, F.; NETTO, J. A. ;
FIGUEIREDO, E.. Information systems development with pair
programming: An academic quasi-experiment. In: PROCEEDINGS
OF THE 12TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS
(SBSI), p. 486–493, 2016.

[Fernandes et al., 2016b] FERNANDES, E.; OLIVEIRA, J.; VALE, G.; PAIVA, T. ;
FIGUEIREDO, E.. A review-based comparative study of bad smell
detection tools. In: PROCEEDINGS OF THE 20TH INTERNATIONAL
CONFERENCE ON EVALUATION AND ASSESSMENT IN SOFTWARE
ENGINEERING (EASE), p. 18:1–18:12, 2016.

[Fernandes et al., 2017a] FERNANDES, E.; FERREIRA, L. P.; FIGUEIREDO, E. ;
VALENTE, M. T.. How clear is your code? An empirical study with
programming challenges. In: PROCEEDINGS OF THE 20TH IBERO-
AMERICAN CONFERENCE ON SOFTWARE ENGINEERING (CIBSE), EX-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 120

PERIMENTAL SOFTWARE ENGINEERING (ESELAW) TRACK, p. 1–14,
2017.

[Fernandes et al., 2017b] FERNANDES, E.; VALE, G.; SOUSA, L.; FIGUEIREDO,
E.; GARCIA, A. ; LEE, J.. No code anomaly is an island: Anomaly
agglomeration as sign of product line instabilities. In: PROCEED-
INGS OF THE 16TH INTERNATIONAL CONFERENCE ON SOFTWARE
REUSE (ICSR), p. 48–64, 2017.

[Fernandes et al., 2019b] FERNANDES, E.; UCHÔA, A.; BIBIANO, A. C. ; GAR-
CIA, A.. On the alternatives for composing batch refactor-
ing. In: PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP
ON REFACTORING (IWOR), CO-LOCATED WITH THE 41ST INTERNA-
TIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 9–12,
2019.

[Fernandes et al., 2019c] FERNANDES, E.; UCHÔA, A.; SOUSA, L.; OLIVEIRA,
A.; DE MELLO, R.; BARROCA, L. P.; CARVALHO, D.; GARCIA, A.; FON-
SECA, B. ; TEIXEIRA, L.. VazaZika: A software platform for surveil-
lance and control of mosquito-borne diseases. In: PROCEED-
INGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATION
TECHNOLOGY: NEW GENERATIONS (ITNG), p. 617–620, 2019.

[Fernandes et al., 2020] FERNANDES, E.; CHÁVEZ, A.; GARCIA, A.; FER-
REIRA, I.; CEDRIM, D.; SOUSA, L. ; OIZUMI, W.. Refactoring effect
on internal quality attributes: What haven’t they told you yet?
Information and Software Technology, 126:106347, 2020.

[Ferreira, 2018] FERREIRA, I.. Assessing the bug-proneness of refactored
code: Longitudinal multi-project studies. Master’s dissertation:
Informatics Department (DI), Pontifical Catholic University of Rio de Janeiro
(PUC-Rio), p. 1–90, 2018.

[Ferreira et al., 2018] FERREIRA, I.; FERNANDES, E.; CEDRIM, D.; UCHÔA,
A.; BIBIANO, A. C.; GARCIA, A.; CORREIA, J. L.; SANTOS, F.; NUNES,
G.; BARBOSA, C.; FONSECA, B. ; DE MELLO, R.. The buggy side
of code refactoring: Understanding the relationship between
refactorings and bugs. In: PROCEEDINGS OF THE 40TH INTERNA-
TIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), COM-
PANION PROCEEDINGS, p. 406–407, 2018.

[Ferreira et al., 2020] FERREIRA, F.; FERNANDES, E.; OLIVEIRA, J.; SOUZA,
M. ; FIGUEIREDO, E.. How difficult and effective is writing asser-

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 121

tions for observing bugs at runtime? In: PROCEEDINGS OF THE
23RD IBERO-AMERICAN CONFERENCE ON SOFTWARE ENGINEER-
ING (CIBSE), EXPERIMENTAL SOFTWARE ENGINEERING (ESELAW)
TRACK, p. 1–14, 2020.

[Fontana and Spinelli, 2011] FONTANA, F. A.; SPINELLI, S.. Impact of refac-
toring on quality code evaluation. In: PROCEEDINGS OF THE 4TH
WORKSHOP ON REFACTORING TOOLS (WRT), CO-LOCATED WITH
THE 33RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING (ICSE), p. 37–40, 2011.

[Fowler, 2018] FOWLER, M.. Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 2nd edition, 2018.

[Gamma et al., 1993] GAMMA, E.; HELM, R.; JOHNSON, R. ; VLISSIDES,
J.. Design patterns: Abstraction and reuse of object-oriented
design. In: PROCEEDINGS OF THE 7TH EUROPEAN CONFERENCE ON
OBJECT-ORIENTED PROGRAMMING (ECOOP), p. 406–431, 1993.

[Gousios et al., 2015] GOUSIOS, G.; ZAIDMAN, A.; STOREY, M.-A. ;
VAN DEURSEN, A.. Work practices and challenges in pull-based
development: The integrator’s perspective. In: PROCEEDINGS OF
THE 37TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEER-
ING (ICSE), p. 358–368, 2015.

[Henry and Kafura, 1981] HENRY, S.; KAFURA, D.. Software structure
metrics based on information flow. IEEE Transactions on Software
Engineering, SE-7(5):510–518, 1981.

[Hinkle et al., 2002] HINKLE, D.; WIERSMA, W. ; JURS, S.. Applied Statis-
tics for the Behavioral Sciences. Houghton Mifflin, 5th edition, 2002.

[Jiau et al., 2013] JIAU, H.; MAR, L. ; CHEN, J.. OBEY: Optimal batched
refactoring plan execution for class responsibility redistribution.
IEEE Transactions on Software Engineering, 39(9):1245–1263, 2013.

[Kalinowski et al., 2020] KALINOWSKI, M.; LOPES, H.; TEIXEIRA, A. F.;
DA SILVA CARDOSO, G.; KURAMOTO, A.; ITAGYBA, B.; BATISTA, S. T.;
PEREIRA, J. A.; SILVA, T.; WARRAK, J. A.; DA COSTA, M.; FISCHER, M.;
SALGADO, C.; TEIXEIRA, B.; CHUEKE, J.; FERREIRA, B.; LIMA, R.; VIL-
LAMIZAR, H.; BRANDÃO, A.; BARBOSA, S.; POGGI, M.; PELIZARO, C.;
LEMES, D.; WALTEMBERG, M.; LOPES, O. ; GOULART, W.. Lean R&D:

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 122

An agile research and development approach for digital transfor-
mation. In: PROCEEDINGS OF THE 21ST INTERNATIONAL CONFER-
ENCE ON PRODUCT-FOCUSED SOFTWARE PROCESS IMPROVEMENT
(PROFES), p. 106–124, 2020.

[Källén et al., 2014] KÄLLÉN, M.; HOLMGREN, S. ; ÞÓRA HVANNBERG, E..
Impact of code refactoring using object-oriented methodology
on a scientific computing application. In: PROCEEDINGS OF THE
14TH INTERNATIONAL WORKING CONFERENCE ON SOURCE CODE
ANALYSIS & MANIPULATION (SCAM), p. 125–134, 2014.

[Kataoka et al., 2002] KATAOKA, Y.; IMAI, T.; ANDOU, H. ; FUKAYA, T.. A
quantitative evaluation of maintainability enhancement by refac-
toring. In: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFER-
ENCE ON SOFTWARE MAINTENANCE (ICSM), p. 576–585, 2002.

[Kim et al., 2014] KIM, M.; ZIMMERMANN, T. ; NAGAPPAN, N.. An empir-
ical study of refactoring: Challenges and benefits at Microsoft.
IEEE Transactions on Software Engineering, 40(7):633–649, 2014.

[Kontio et al., 2004] KONTIO, J.; LEHTOLA, L. ; BRAGGE, J.. Using the
focus group method in software engineering: Obtaining practi-
tioner and user experiences. In: PROCEEDINGS OF THE 3RD IN-
TERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEER-
ING (ISESE), p. 271–280, 2004.

[Lanubile and Visaggio, 1995] LANUBILE, F.; VISAGGIO, G.. Iterative reengi-
neering to compensate for quick-fix maintenance. In: PROCEED-
INGS OF THE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE
MAINTENANCE (ICSM), p. 1–7, 1995.

[Lanza and Marinescu, 2006] LANZA, M.; MARINESCU, R.. Object-oriented
Metrics in Practice: Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented Systems.
Springer Science & Business Media, 1st edition, 2006.

[Le et al., 2016] LE, D.; CARRILLO, C.; CAPILLA, R. ; MEDVIDOVIC, N.. Re-
lating architectural decay and sustainability of software systems.
In: PROCEEDINGS OF THE 13TH WORKING CONFERENCE ON SOFT-
WARE ARCHITECTURE (WICSA), p. 178–181, 2016.

[Lehman, 1980] LEHMAN, M.. Programs, life cycles, and laws of software
evolution. Proceedings of the IEEE, 68(9):1060–1076, 1980.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 123

[Li and Henry, 1993] LI, W.; HENRY, S.. Object-oriented metrics that
predict maintainability. Journal of Systems and Software, 23(2):111–
122, 1993.

[Lin et al., 2016] LIN, Y.; PENG, X.; CAI, Y.; DIG, D.; ZHENG, D. ; ZHAO,
W.. Interactive and guided architectural refactoring with search-
based recommendation. In: PROCEEDINGS OF THE 24TH INTERNA-
TIONAL SYMPOSIUM ON FOUNDATIONS OF SOFTWARE ENGINEER-
ING (FSE), p. 535–546, 2016.

[Liu et al., 2011] LIU, H.; MA, Z.; SHAO, W. ; NIU, Z.. Schedule of bad
smell detection and resolution: A new way to save effort. IEEE
Transactions on Software Engineering, 38(1):220–235, 2011.

[Lorenz and Kidd, 1994] LORENZ, M.; KIDD, J.. Object-oriented Software
Metrics: A Practical Guide. Prentice Hall, 1st edition, 1994.

[Mantyla et al., 2004] MANTYLA, M.; VANHANEN, J. ; LASSENIUS, C.. Bad
smells: Humans as code critics. In: PROCEEDINGS OF THE 20TH IN-
TERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE (ICSM),
p. 399–408, 2004.

[Martin, 2002] MARTIN, R.. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall, 1st edition, 2002.

[McCabe, 1976] MCCABE, T.. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308–320, 1976.

[Meirelles et al., 2010] MEIRELLES, P.; SANTOS JR, C.; MIRANDA, J.; KON,
F.; TERCEIRO, A. ; CHAVEZ, C.. A study of the relationships
between source code metrics and attractiveness in free software
projects. In: PROCEEDINGS OF THE 24TH BRAZILIAN SYMPOSIUM
ON SOFTWARE ENGINEERING (SBES), p. 11–20, 2010.

[Mens et al., 2010] MENS, T.; GUEHÉNÉUC, Y.-G.; FERNÁNDEZ-RAMIL, J. ;
D’HONDT, M.. Guest editors’ introduction: Software evolution.
IEEE Software, 4(27):22–25, 2010.

[Murgia et al., 2011] MURGIA, A.; TONELLI, R.; COUNSELL, S.; CONCAS, G.
; MARCHESI, M.. An empirical study of refactoring in the context
of FanIn and FanOut coupling. In: PROCEEDINGS OF THE 18TH
WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE), p. 372–
376, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 124

[Murphy-Hill et al., 2012] MURPHY-HILL, E.; PARNIN, C. ; BLACK, A.. How
we refactor, and how we know it. IEEE Transactions on Software
Engineering, 38(1):5–18, 2012.

[Nejmeh, 1988] NEJMEH, B.. NPATH: A measure of execution path
complexity and its applications. Communications of the ACM,
31(2):188–200, 1988.

[Oliveira et al., 2020a] OLIVEIRA, E.; FERNANDES, E.; STEINMACHER, I.;
CRISTO, M.; CONTE, T. ; GARCIA, A.. Code and commit metrics
of developer productivity: A study on team leaders perceptions.
Empirical Software Engineering, 25(4):2519–2549, 2020.

[Oliveira et al., 2020b] OLIVEIRA, R.; DE MELLO, R.; FERNANDES, E.; GAR-
CIA, A. ; LUCENA, C.. Collaborative or individual identification
of code smells? On the effectiveness of novice and professional
developers. Information and Software Technology, 120:106242, 2020.

[Paixao et al., 2019] PAIXAO, M.; KRINKE, J.; HAN, D.; RAGKHITWETSAGUL,
C. ; HARMAN, M.. The impact of code review on architectural
changes. IEEE Transactions on Software Engineering, p. 1–19, 2019.

[Palomba et al., 2014] PALOMBA, F.; BAVOTA, G.; DI PENTA, M.; OLIVETO,
R. ; DE LUCIA, A.. Do they really smell bad? A study on devel-
opers’ perception of bad code smells. In: PROCEEDINGS OF THE
30TH INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE
AND EVOLUTION (ICSME), p. 101–110, 2014.

[Pantiuchina et al., 2018] PANTIUCHINA, J.; LANZA, M. ; BAVOTA, G.. Im-
proving code: The (mis) perception of quality metrics. In: PRO-
CEEDINGS OF THE 34TH INTERNATIONAL CONFERENCE ON SOFT-
WARE MAINTENANCE AND EVOLUTION (ICSME), p. 80–91, 2018.

[Potvin and Levenberg, 2016] POTVIN, R.; LEVENBERG, J.. Why google
stores billions of lines of code in a single repository. Commu-
nications of the ACM, 59(7):78–87, 2016.

[Prete et al., 2010] PRETE, K.; RACHATASUMRIT, N.; SUDAN, N. ; KIM,
M.. Template-based reconstruction of complex refactorings.
In: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON
SOFTWARE MAINTENANCE (ICSM), p. 1–10, 2010.

[Ralph et al., 2020] RALPH, P.; BALTES, S.; ADISAPUTRI, G.; TORKAR, R.;
KOVALENKO, V.; KALINOWSKI, M.; NOVIELLI, N.; YOO, S.; DEVROEY,

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 125

X.; TAN, X.; ZHOU, M.; TURHAN, B.; HODA, R.; HATA, H.; ROBLES, G.;
MILANI FARD, A. ; ALKADHI, R.. Pandemic programming. Empirical
Software Engineering, 25:4927–4961, 2020.

[Revelle et al., 2011] REVELLE, M.; GETHERS, M. ; POSHYVANYK, D.. Using
structural and textual information to capture feature coupling
in object-oriented software. Empirical Software Engineering, 16(6):773–
811, 2011.

[Runeson and Höst, 2009] RUNESON, P.; HÖST, M.. Guidelines for con-
ducting and reporting case study research in software engineer-
ing. Empirical Software Engineering, 14(2):131, 2009.

[Sadowski et al., 2018] SADOWSKI, C.; SÖDERBERG, E.; CHURCH, L.; SIPKO,
M. ; BACCHELLI, A.. Modern code review: A case study at Google.
In: PROCEEDINGS OF THE 40TH INTERNATIONAL CONFERENCE ON
SOFTWARE ENGINEERING (ICSE), SOFTWARE ENGINEERING IN PRAC-
TICE (SEIP) TRACK, p. 181–190, 2018.

[Samarthyam et al., 2016] SAMARTHYAM, G.; SURYANARAYANA, G. ;
SHARMA, T.. Refactoring for software architecture smells. In:
PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON REFAC-
TORING (IWOR), CO-LOCATED WITH THE 31ST INTERNATIONAL
CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE), p.
1–4, 2016.

[Silva et al., 2016a] SILVA, D.; TSANTALIS, N. ; VALENTE, M. T.. Why we
refactor? Confessions of GitHub contributors. In: PROCEEDINGS
OF THE 24TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF
SOFTWARE ENGINEERING (FSE), p. 858–870, 2016.

[Silva et al., 2016b] SILVA, M.; VALENTE, M. T. ; TERRA, R.. Does technical
debt lead to the rejection of pull requests? In: PROCEEDINGS
OF THE 12TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS
(SBSI), p. 248–254, 2016.

[Simons et al., 2015] SIMONS, C.; SINGER, J. ; WHITE, D.. Search-based
refactoring: Metrics are not enough. In: PROCEEDINGS OF THE
7TH INTERNATIONAL SYMPOSIUM ON SEARCH BASED SOFTWARE
ENGINEERING (SSBSE), p. 47–61, 2015.

[Soetens and Demeyer, 2010] SOETENS, Q. D.; DEMEYER, S.. Studying the
effect of refactorings: A complexity metrics perspective. In:

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 126

PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON THE
QUALITY OF INFORMATION AND COMMUNICATIONS TECHNOLOGY
(QUATIC), p. 313–318, 2010.

[Szőke et al., 2015a] SZŐKE, G.; NAGY, C.; FÜLÖP, L.; FERENC, R. ; GY-
IMÓTHY, T.. FaultBuster: An automatic code smell refactoring
toolset. In: PROCEEDINGS OF THE 15TH INTERNATIONAL WORK-
ING CONFERENCE ON SOURCE CODE ANALYSIS AND MANIPULATION
(SCAM), p. 253–258, 2015.

[Szőke et al., 2015b] SZŐKE, G.; NAGY, C.; HEGEDŰS, P.; FERENC, R. ; GY-
IMÓTHY, T.. Do automatic refactorings improve maintainability?
An industrial case study. In: PROCEEDINGS OF THE 31ST INTER-
NATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVO-
LUTION (ICSME), p. 429–438, 2015.

[Taibi et al., 2017] TAIBI, D.; JANES, A. ; LENARDUZZI, V.. How developers
perceive smells in source code: A replicated study. Information and
Software Technology, 92:223–235, 2017.

[Tao et al., 2012] TAO, Y.; DANG, Y.; XIE, T.; ZHANG, D. ; KIM, S.. How
do software engineers understand code changes? An exploratory
study in industry. In: PROCEEDINGS OF THE 20TH INTERNATIONAL
SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING
(FSE), p. 1–11, 2012.

[Tsantalis et al., 2013] TSANTALIS, N.; GUANA, V.; STROULIA, E. ; HINDLE,
A.. A multidimensional empirical study on refactoring activity.
In: PROCEEDINGS OF THE 23RD CONFERENCE OF THE CENTER FOR
ADVANCED STUDIES ON COLLABORATIVE RESEARCH (CASCON), p.
132–146, 2013.

[Tsantalis et al., 2018] TSANTALIS, N.; CHAIKALIS, T. ; CHATZIGEORGIOU,
A.. Ten years of JDeodorant: Lessons learned from the hunt for
smells. In: PROCEEDINGS OF THE 25TH INTERNATIONAL CONFER-
ENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING
(SANER), p. 4–14, 2018.

[Tufano et al., 2017] TUFANO, M.; PALOMBA, F.; BAVOTA, G.; OLIVETO, R.;
DI PENTA, M.; DE LUCIA, A. ; POSHYVANYK, D.. When and why
your code starts to smell bad (and whether the smells go away).
IEEE Transactions on Software Engineering, 43(11):1063–1088, 2017.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Bibliography 127

[Uchôa et al., 2019] UCHÔA, A.; FERNANDES, E.; FONSECA, B.; DE MELLO,
R.; BARBOSA, C.; NUNES, G.; GARCIA, A. ; TEIXEIRA, L.. On gamifying
an existing healthcare system: Method, conceptual model and
evaluation. In: PROCEEDINGS OF THE 1ST INTERNATIONAL WORK-
SHOP ON SOFTWARE ENGINEERING FOR HEALTHCARE (SEH), CO-
LOCATED WITH THE 41ST INTERNATIONAL CONFERENCE ON SOFT-
WARE ENGINEERING (ICSE), p. 9–16, 2019.

[Vale et al., 2018] VALE, G.; FERNANDES, E. ; FIGUEIREDO, E.. On the pro-
posal and evaluation of a benchmark-based threshold derivation
method. Software Quality Journal, p. 1–32, 2018.

[Veerappa and Harrison, 2013] VEERAPPA, V.; HARRISON, R.. An empirical
validation of coupling metrics using automated refactoring. In:
PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON EM-
PIRICAL SOFTWARE ENGINEERING AND MEASUREMENT (ESEM), p.
271–274, 2013.

[Yamashita and Moonen, 2013] YAMASHITA, A.; MOONEN, L.. Do develop-
ers care about code smells? An exploratory survey. In: PROCEED-
INGS OF THE 20TH WORKING CONFERENCE ON REVERSE ENGINEER-
ING (WCRE), p. 242–251, 2013.

[Yoshida et al., 2016] YOSHIDA, N.; SAIKA, T.; CHOI, E.; OUNI, A. ; INOUE,
K.. Revisiting the relationship between code smells and refactor-
ing. In: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE
ON PROGRAM COMPREHENSION (ICPC), p. 1–4, 2016.

[Zimmermann et al., 2007] ZIMMERMANN, T.; PREMRAJ, R. ; ZELLER, A..
Predicting defects for Eclipse. In: PROCEEDINGS OF THE 3RD IN-
TERNATIONAL WORKSHOP ON PREDICTOR MODELS IN SOFTWARE
ENGINEERING (PROMISE), CO-LOCATED WITH THE 29TH INTERNA-
TIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), p. 1–7,
2007.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



1. Email address *

2.

A study on critical a�ributes -
Background form
Dear participant, 

This form is part of a study on critical attributes of software systems proposed by Eduardo 
Fernandes, a PhD candidate in Informatics at DI/PUC-Rio, in the context of his doctoral 
thesis. 

By filling out and submiting this form, you confirm that you have deliberately and 
voluntarily accepted to participate in this study. In addition, you allow us to collect, store, 
analyze, and report your study data in the context of Eduardo's study. Finally, you allow us 
to keep audio and video records of the discussions that follow this form filling (via Zoom 
app), in the context of the same study. 

We respect your privacy, and your study data will be anonymized for the purpose of data 
report in scientific publications and dissemination of this study. 

Thanks for participating in this study! 

Best wishes, 

Eduardo Fernandes, PhD candidate at DI/PUC-Rio 
Prof. Dr. Marcos Kalinowski, PhD advisor

* Required

What is your full name? *
Please enter your full name, including first name and last name

A
Background Form for All Focus Group Sessions

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



3.

Mark only one oval.

Other:

High school

Undergraduate

Specialization

Master's

Doctorate

4.

5.

6.

Mark only one oval.

I have never heard of them

I have heard about them but I am not so sure what they are

I have a general understanding, but do not use them in my software projects

I have a good understanding, and use them in my software projects sometimes

I have a strong understanding, and use them in my software projects frequently

What is your highest instruction degree? *
Please enter only the highest degree for which you have a conclusion certificate or a diploma

How many years of experience in the industry do you have? *
Please count both 1) development in software companies and 2) development in academia for industry
partners

How many software development projects have you participated in? *
Please count both 1) projects developed in software companies and 2) projects developed in academia
for industry partners

How familiar are you with software metrics? *

Appendix A. Background Form for All Focus Group Sessions 129

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



7.

Mark only one oval.

Strongly disagree

Disagree

Indifferent

Agree

Strongly agree

8.

Mark only one oval.

I have never heard of them

I have heard about them but I am not so sure what they are

I have a general understanding, but do not analyze them in my software projects

I have a good understanding, and analyze them in my software projects sometimes

I have a strong understanding, and analyze them in my software projects frequently

This content is neither created nor endorsed by Google.

"I am concerned with improving the quality of source code while participating in
software development projects." How much do you agree with this sentence? *

How familiar are you with internal quality attributes? Examples of these attributes
are cohesion, complexity, coupling, inheritance, and size. *

 Forms

Appendix A. Background Form for All Focus Group Sessions 130

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



1. Email address *

2.

A study on critical a�ributes - Feedback
form
Dear participant, 

This form is part of a study on critical attributes of software systems proposed by Eduardo 
Fernandes, a PhD candidate in Informatics at DI/PUC-Rio, in the context of his doctoral 
thesis. 

You are invited to fill out and submit this form because you have filled out the Background 
Form and successfully participated in the discussions promoted via Zoom app. 

By filling out and submitting this form, you allow us to collect, store, analyze, and report 
your study data in the context of Eduardo's study. We respect your privacy, and your study 
data will be anonymized for the purpose of data report in scientific publications and 
dissemination of this study. 

Thanks, one again, for participating in this study! 

Best wishes, 

Eduardo Fernandes, PhD candidate at DI/PUC-Rio 
Prof. Dr. Marcos Kalinowski, PhD advisor

* Required

What is your full name? *
Please enter your full name, including first name and last name

B
Feedback Form for All Focus Group Sessions

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



3.

Mark only one oval.

Strongly disagree

Disagree

Indifferent

Agree

Strongly agree

4.

Mark only one oval.

Strongly disagree

Disagree

Indifferent

Agree

Strongly agree

5.

Mark only one oval.

Strongly disagree

Disagree

Indifferent

Agree

Strongly agree

"I was confident when discussing the relevance of each critical attribute." How
much do you agree with this sentence? *

"I was confident when ranking the critical attributes by relevance." How much do
you agree with this sentence? *

"I was comfortable with sharing my opinion during the discussions." How much
do you agree with this sentence? *

Appendix B. Feedback Form for All Focus Group Sessions 132

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



6.

This content is neither created nor endorsed by Google.

Besides critical attributes, what else makes it hard for you to either add new
features or enhance existing features?

 Forms

Appendix B. Feedback Form for All Focus Group Sessions 133

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



C
Video Transcription of Focus Group Session 1 (Case A)

C.1
Low Class Cohesion: Relevant or Irrelevant – Why?

Participant B – Many aspects of low class cohesion are relative.
Participant A – Yes.
Participant B – There are performance aspects to consider. Thus, everything

is relative. It is hard to decide whether low class cohesion is relevant or not.
Participant C – It depends on each case.
Participant B – Well, we may think of many cases we have faced.
Applicant – Do these cases suggest that low class cohesion is irrelevant in

practice? If so, you could add a comment to “Irrelevant – Why?,” right?
Participant C – Sure.
Participant B – Apparently yes, but I am not sure about that.
Participant A – With respect to performance, if parts of the source code are

largely used in the program – as in the case of code duplication – one could gather
all those parts in a single class. Thus, one could improve performance. Do you
know what I mean?

Participant B – Sure, but doing that will not necessarily improve class
cohesion. Well...

Participant A – I know that, but it is not about cohesion after all. If one
part of the source code realizes a single feature and the whole program uses it,
you could mark it as a critical point in the program. Thus, you would know your
development time should use this part of the source code.

Participant B – Would not this decision harm class cohesion?
Participant A – No, it would not. One could just find the critical point in the

program only because the code realizing that feature has good cohesion. Otherwise,
one would not even find the feature itself, because the source code is scattered.

Participant B – Got it, you are right.
Participant A – In summary, I think class cohesion may improve program

performance. Still, I think it depends on things beyond good class cohesion.
Participant B – Yes. In this case, good cohesion is a consequence of gathering

features frequently used in the program. Am I right?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 135

Participant A – I would not say that low class cohesion is irrelevant. I cannot
stand non-cohesive source code because... I may take a year to understand it.

Participant B – Yes, you are right. When it comes to irrelevance, I do not
know.

Participant C – Are these comments all?
Participant B – When one needs to deliver fast a part of the code, perhaps

class cohesion is not that important.
Participant A – You are right. Low class cohesion is irrelevant only when

time to delivery is short.
Participant C – This is not hard to happen, correct?
Participant A – Exactly! Short time to delivery is very common.
Participant B – We end up being a little paranoid. Low class cohesion annoys

us, so we try to fix the source code now and then.
Participant C – Yes, you are right.
Participant A – Yes, but you stop fixing things as soon as possible.
Participant C – Participant A is the one in our team who cares about the

beauty of source code the most. Am I wrong?
Participant B – What did you say, Participant C?
Participant C – I said you care a lot about the beauty of source code.
Participant A – Sure, I like to make the source code beautiful.
[...]
Participant A – There is another comment to add to “Irrelevant – Why?”.

This is not cool, but low class cohesion occurs in the case of legacy code.
Participant B – Yes!

C.2
High Class Complexity: Relevant or Irrelevant – Why?

Participant A – I more or less agree that high class complexity is relevant,
so I have no more comments to add.

[...]
Participant A – What were you about to write, Participant B?
Participant B – I was about to write that “complex classes tends to be

coupled,” but this is not exactly what I mean. Maybe I should improve my comment.
Highly complex class tends to be highly coupled, right? I wanted to write it in a
better way, but...

[...]
Participant B – With respect to “Irrelevant – Why”...
Participant A – Does coupling mean that one class depends on another class?
Participant B – Yes, that is right.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 136

Participant A – Well, this is not necessarily a problem. Do you know what I
mean?

Participant B – Yes, I do. Not necessarily. I guess splitting a simple class into
many others is fine, but complex class...

Participant A – I know.
Participant B – ... have too many elements. So, class complexity...
Participant A – What about program maintenance? Where are the comments

about it?
[...]
Participant A – Hey, I thought of something!
Participant B – With respect to “Irrelevant – Why?”...
[...]
Applicant [Comment: “Podem gerar lentidão desnecessária”] – Is slowness

associated with program performance during the execution of features in highly
complex classes?

Participant A – Exactly.
Applicant [Comment: “A complexidade de classes tende ao acoplamento”]

– Based on you discussion I suppose that, as one class becomes more complex, it
may become more highly coupled – due to the many class inter-dependencies.

[...]
Applicant – One of you said that complex classes are not always highly

coupled. Am I right?
Participant B – Yes.
Applicant – If a class is not highly coupled, is high complexity relevant

anyway? May I tolerate high complexity if high complexity does not imply high
coupling?

Participant B – Yes, you may. Still, high complexity may lead to other
problems, right?

Participant A – Sure. Let us think of our class responsible for computing
batch route.

Participant B – Yes.
Participant A – That class is considerable complex but it has to be. Anyway,

our class is not highly coupled – it only depends on “Map”.
Participant B – I guess too complex classes usually become libraries, to be

consumed...
Participant A – I think that, when a class is complex...
Participant B – ... because sometimes a class has to be complex to...
Participant A – ... it must be cohesive. If a class is cohesive...
Participant B – ... perform well.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 137

Participant A – ... and complex, this is fine because the class is isolated from
the rest of the program. In this case, the class is complex but only used by the rest
of the program.

Participant B – Certain classes must perform better, so high complexity...
Participant A – Exactly! High complex and coupled classes...
Participant B – ... is necessary.
Participant A – ... are problematic from my point of view. One could isolate

the source code of this class a little more.

C.3
High Class Coupling: Relevant or Irrelevant – Why?

Participant B – Shortly, high class coupling is terrible but sometimes neces-
sary.

[...]
Applicant [Comment: “Propagação de erro”] – Does this comment refer to

what nature of error propagation? What is the type of error propagation?
Participant A – It refers to when a class is largely used in the program. The

error propagates to all classes trying to use the error-infected class.
[...]
Applicant [Comment: “Object pool”] – Could the author of this comment

explain it?
Participant A – Object Pool is a pattern similar to the Singleton design

pattern, but targeting multiple objects. A cool pattern, by the way.
Applicant – Do you think this pattern leads to high class coupling?
Supervisor – Yes, Object Pool is a highly coupled class, right? This is the

point.
Participant A – Yes. This pattern allows managing many classes at once.

Instead of defining a Singleton per class, you can create an Object Pool. This
pattern is good because...

Supervisor – For instance, a ten-sized Object Pool allows you to share ten
objects at one with the rest of the program.

Participant A – Exactly.
Supervisor – Object Pool naturally leads to high class coupling. On the other

hand, this pattern is helpful when computational resources are scarce – for instance,
when it is necessary to manage the number of connections between objects.

Participant A – Exactly.
Applicant – Participant A, you were saying something like “this pattern is

good because”...

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 138

Participant A – Object Pool is good when part of the source code often deals
with a specific number of static objects. You may pass Object Pool as parameters
to constructors rather than passing each object individually. Thus, this pattern
improves the method signatures.

Applicant [Comment: “Definição de entidades”] – Could you please explain
this comment?

Participant A – Sure! Consider a class that interrelates with many others, an
entity with several relations you need to map.

Applicant – Is this entity a data entity?
Participant A – Yes! Let me further explain it...
Supervisor – Participant A, do you refer to an entity of a conceptual model?

An entity with several relations in the conceptual model?
Participant A – Exactly. If you implement the entity before modeling it, the

class may become highly coupled – because the class has to be this way.
Applicant [Comment: “Em alguns momentos o acoplamento temporário pode

acelerar o desenvolvimento”] – What do you mean by “temporary coupling”?
Participant B – It may be easier to implement source code in a few classes

or a single class, even in a procedural manner, when the software project begins.
“Temporary coupling” refers to this scenario. Splitting code into many classes is
harder, though better. In addition, as the source code becomes more complex and
lengthy, it is necessary to split the code to prevent high coupling. Nevertheless,
while developing a program, there is no way out. To implement code in a single
block may sometimes favor code comprehension.

C.4
Large Class Hierarchy Depth: Relevant or Irrelevant – Why?

Participant A – May I add a comment to both “Relevant – Why?” and “Ir-
relevant – Why?”? On the one hand, very specialized classes are good because the
responsibility of each subclass is well defined. On the other hand, an undisciplined
use of specialized classes may create several little classes that could be a single
one.

Applicant – In this case, you can duplicate your comment.
Participant A [Comment: “Subclasses muito especializadas...”] – Both com-

ments differ a little, so where do I add this one?
Supervisor – You could modify the comment in “Irrelevant – Why?”...
Participant A – Fine.
Supervisor – ... or any of both comments, so the researchers can keep record

of your discussion.
[...]

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 139

Applicant [Comment: “Implementar métodos abstratos demais”] – Could you
explain this comment a little more?

Participant A – Maybe I expressed myself wrongly. I should have written “a
too abstract method.” If a class has five or more abstract properties, the inheriting
classes should implement at least one property. Thus, if any intermediate inheriting
classes do not...

Applicant – Got it! Large hierarchy depth would become a problem because
it is necessary to implement methods in the lowest hierarchy levels. Am I right?

Participant A – Yes! Child classes would have to implement all methods
because their parents did not do it.

Supervisor – Possibly, large hierarchy depth would make child classes at the
lowest hierarchy levels implement several methods, which lacked implementation
at the intermediary levels.

Participant A – Exactly! So here is a question: If the child classes must
implement too many methods, does the established hierarchy make any sense?
Why to define too abstract parent classes if the child classes must implement all
features?

C.5
Large Class Hierarchy Breadth: Relevant or Irrelevant – Why?

Participant A – Participant B, I disagree when you say it: “large hierarchy
breadth may increase class complexity”. What do you mean?

Participant B – What do I mean? I see no problem with large hierarchy depth,
but with large hierarchy breadth. Large breadth may increase class complexity,
because several features come from a single source. Right?

Participant A – Is not that good?
Participant B – This is polymorphism. I am not saying this is bad, but...

Look, I have added a comment to “Irrelevant – Why?” saying that large breadth
may help decouple and split program features. Still, I see no negative effect of large
hierarchy depth.

Supervisor – Does complexity refer to the whole set of classes?
Participant B – For me, hierarchy breadth is more complex than hierarchy

depth. Maybe you see it differently.
Supervisor – All right! Please comment whatever you think about it.
Participant A – Exactly. I just wanted to know you opinion better. That is

all.
[...]
Applicant [Comment: “Reaproveitamento de propriedades utilizadas em to-

das as entidades (Modelo ER)”] – Could you explain this comment a little more?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 140

Participant A – This comment refers to the conceptual model, similar to my
previous comment on large hierarchy depth. Consider a data identifier shared by
the tables of a database. One could create a class to deal with that identifier, to
be inherited by other classes. Thus, it is not necessary to define static identifiers:
one classes handles with this issue.

[...]
Applicant [Comment: “Muitas subclasses podem usar método que foi desen-

volvido na classe mãe”] – Maybe, large hierarchy breadth is not a problem if there
is a reuse benefit...

Participant B – I see large hierarchy breadth as polymorphism. I see large
hierarchy depth similarly, but I thought of this issue with respect to breadth – this
is why I commented on class complexity.

C.6
Large Class Size: Relevant or Irrelevant – Why?

Participant A – Very large classes are possibly non-cohesive.
[...]
Participant A – Have anyone commented that it is hard to test large classes?
Participant C – We left this comment for you to add, Participant A! We

expected you to remember this argument.
Participant A – The “hard to test” argument usually appears very fast.
Participant C – We knew that, right? But we said: “Participant A will

remember”.
Participant A – “After all, he remembered of testing before. He will remember

it again”.
[...]
Participant A – Urgency in delivering a program is always an issue. Am I

right?
Participant C – Yes, urgency in delivery is always there to decrease program

quality.
Participant A – Exactly!
[...]
Participant A – Very large classes may be problematic as Proofs of Concept

(PoC) and, still, they are approved, right?
Participant C – For sure.
Participant A – A PoC class simply proves a concept.
Participant C – Yes.
Participant A – Thus, this class is not in a production environment. Still...

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 141

Participant C – The problem to forward a PoC class to production environ-
ment. Am I right?

Participant A – Yes. This is very common.
Participant C – Exactly!
Participant A [Comment: “PoCs que realmente são PoCs”] – Let me clarify

my point of view: If you expect to forward a PoC class to production environment,
you will not make it too large. If you know that class is just a PoC class, fine.

Participant C – Yes, this is true.
[...]
Participant A – I just read a comment that says “hard to understand”. I will

delete the comment “hard to read,” because “understand” is prettier and both
terms are the same.

[...]
Participant A – The whole “Relevant – Why?” area could be summarized by

“large class is hard to maintain”.
Participant C – Exactly.
Participant B – Large classes are hard, complicated, and complex to maintain.
[...]
Applicant [Comment: “Difícil organização”] – Could you further explain this

comment?
Participant C – I wrote it. A class with five or more elements is too large.

“Organization” refers to the internal organization of source code in each method
rather than the organization of all elements in a class. If a class and its methods
are all very large, organizing the content within each method is harder.

Participant A – Would organize methods within a class be similarly hard? It
would be hard to know what methods call one another and group these methods.
This is the least one should do in large classes. Unfortunately, these tasks are hard
to perform when methods call one another in a zigzag.

Applicant – Great!
Participant A – In this case, the integrated development environment (IDE)

does not help us that much.
[...]
Applicant [Comment: “Métodos que realmente são muito complexos”] –

Does this comment refer to the program domain? Programs belonging to certain
domains, which provide specific services or features, tend to be more complex than
other programs.

Participant A – Yes. One could isolate a very complex part of the source
code in a single class, but this create a large class. You are at least isolating that
complex part of the code, so having a large class is not a problem. I think the same

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 142

reasoning applies to program domains. If you wish to prevent from scattering a
very complex part of the code in a program, you could gather the code and define a
specific error point like “this class may have many errors,” thereby making simpler
the rest of the program.

Applicant – Cool!
[...]
Applicant [Comment: “Quando as funcionalidades são muitas e difícil de

desacoplarem”] – Does this comment mean that, sometimes, it is fine to keep
large a class implementing several features which are hard to decouple?

Participant C – Yes! This scenario has something to do with program domain.
It is harder to maintain two classes that are equivalent to a single class.

Applicant – Understood. Excellent!
[...]
Applicant [Comment: “Urgência na entrega”] – Some of you said this

comment is always applicable, as if urgency in delivery affects the program quality
as a whole. You also said that short time to delivery is always a problem. I found this
comment interesting. Would you like to add a comment like “urgency in delivery”
to the other critical quality attributes? Or is urgency in delivery particularly relevant
in the case of large classes?

Participant A – I guess we added this comment here because urgency in
delivery really stands out in this particular case. For instance, we would not spend
time defining class hierarchies i four time to delivery is short, because hierarchies
are complex to define.

Applicant – Got it.
Participant A – So...
Applicant – Does anyone want to add up something on this matter?
Participant C – No. Participant A is right. Maybe we commented on urgency

in delivery when this argument really stands out.
Participant A – Well, we commented on urgency in delivery while discussing

cohesion, coupling...
Participant C – When better organizing the source code is necessary, we did

not comment on urgency in delivery. In cases like hierarchy depth and breadth, we
discuss that there are to many hierarchical levels. We would never define too many
levels if time to delivery is short. Am I right?

Participant A – Yes.
[...]
Applicant [Comment: “PoCs que realmente não PoCs”] – Could you further

explain this comment?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix C. Video Transcription of Focus Group Session 1 (Case A) 143

Participant A – Working on PoC classes requires fast delivery because you
simply prove concepts. Successfully proving a concept with a large class is fine,
because you will theoretically not send it to production environment. You will
improve the PoC class before sending it to production. Unfortunately, the theory
does not apply to practice: PoC classes often become production classes. Still, if
you create a PoC class only for proof purposes, and you must do it quickly in two
days or a week, fine.

Applicant – Got it. Excellent!
Participant C – One more comment about urgency in delivery. I think that

urgency in delivery possibly affects these critical attributes: low class cohesion, high
class complexity, high class coupling, and large class size.

Applicant – Perfect, thanks!

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



D
Video Transcription of Focus Group Session 2 (Case B)

D.1
Low Class Cohesion: Relevant or Irrelevant – Why?

Participant B – I usually pay attention to the theme each class implement –
for instance, data base access. Then I ask myself if everything implemented within
the class is associated with database access Are the method parameters and the
class attributes all associated with database?

Participant A – It is easier to maintain a program where each class has a
clear team, because those who will maintain the program...

Participant B – Yes! In the case of...
Participant A – ... will know exactly where to find a theme and make any

necessary chances.
Participant B – ... problems with the database access, the developers will

search for classes implementing this particular theme.
Participant A – That is it!
Participant B – On the other hand, bugs affecting a non-cohesive class may

be harder to find.
[...]
Participant B – When low class cohesion occurs, it may be necessary to

debug and trace program behaviors to find where the bug is.
Supervisor – Perfect! There seem to be comments associated with this

discussion.
Participant C – Yes.
Supervisor – For instance, Participant A said that low class cohesion is

relevant because it makes it hard to maintain a program. Am I right?
Participant A – Yes!
Supervisor – Participant B said that low class cohesion makes it hard to

find defects. Correct? You may add comments on these arguments to “Relevant –
Why?”.

Participant C – Participant B, you said that low class cohesion makes it hard
to find defects. Do you assume that a class is non-cohesive because the source
code realizing that particular theme is scattered in other classes?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 145

Participant B – Exactly! Finding the bug will require carefully debugging and
tracing source code. Would not this process be easier if the classes of a program
are cohesive? Sometimes, one can find a bug based on the name of the classes or
methods.

Participant C – Right.
Participant B – Highly cohesive classes may speed up the search for bugs,

because the methods implementing each theme are close to one another within the
program. Besides that, suppose you want to know the impact of changes applied
to method on the rest of the program. You could use the integrated development
environment (IDE) to know where the method has been used the most. Depending
on the class cohesion, close classes use this method the most, so it is easier to
assess the impact of changes.

[...]
Participant B [Comment: “Se a classe for utilitária”] – I may say that low

class cohesion in utility classes is irrelevant. Certain classes host features that fit
no other part of the program – they are the so-called utility classes. Examples are
classes responsible for handling objects, converting or editing data, counting... all
useful in many part of the program. In these cases, low class cohesion is irrelevant.

[...]
Participant B – Any other comments to add?
Supervisor – Some of you said something about program defects, right?
Participant C – Yes. I was about to add a comment like “low class cohesion

makes it hard to track defects”.
Participant B – You are right, but your comment looks like part of another

comment on the difficulty of maintaining a program. The same reasoning applies
to the difficulty of evolving a program. Both defect tracking and evolution are part
of program maintenance.

Supervisor – In this case, you could add a new comment like “low class
cohesion makes it hard to perform evolutive maintenance”. Am I right?

Participant B – Is it possible to draw relations between comments in the
MURAL tool?

Supervisor – Drawing relations is not the purpose of this experiment.
Participant B – Okay.
Supervisor – Do not you worry about it.
Applicant – Participant B, if you think that two comments are interrelated,

say it out loud, so we can take notes of it. Is that okay?
[...]
Participant B [Comment: “Dificulta a rastreabilidade de defeitos” e “Dificulta

evolução”] – Both defect tracking and evolution are part of program maintenance,

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 146

right?
Supervisor – Okay, cool!
Participant B – I thought of two issues regarding the irrelevance of low class

cohesion. One of them I wrote in my comment on utility classes; I forgot the other
one. When is low class cohesion irrelevant?

Participant A – I am also struggling to think of cases where low class cohesion
is irrelevant.

Applicant – Could you speak a little louder, Participant A?
Participant B – Right!
Participant A – Sorry, is my voice that low?
Participant B – Low class cohesion may be irrelevant if the metrics used to

capture cohesion do not consider the theme of a class – I guess this is something
automated tools could never do. If a class that realizes a particular calculus but
its methods share nothing but a common theme, automatically stating the class is
non-cohesive may be irrelevant.

[...]
Participant B – How could I document this argument?
[...]
Participant B [Comment: “Se os métodos compartilharem conceitos...”] –

Suppose I gathered several types of calculus within a single class. If each method
has different parameters, an automated tool would probably ignore it. Instead,
the tool would say the methods neither are interrelated nor share parameters or
attributes, even though the developers sees this scenario differently.

Participant A – Do you think that low class cohesion is irrelevant if the
program is very small?

Participant B – Yes, especially in the case of serverless environments, where
programs are often fragmented in several features and little code blocks. Thus, low
class cohesion is natural.

Participant A – Right.
Applicant [Comment: “Dificulta evolução”] – What do you mean by evolu-

tion?
Participant B – Evolution includes, for instance, deciding where to implement

new features. I would easily find the best place to add features in a cohesive class.
Web programs usually have a controller layer, whose code is the first to run after
triggering a browser request. Adding the new feature to the controller layer is
reasonable if the feature validates data forms, for instance. If classes within the
controller layer are cohesive, I will know where to add the feature. Otherwise, any
less experienced or familiar developer could choose an appropriate place – like the
service layer – and worsen class cohesion.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 147

Applicant – Could this mistake even harm the program architecture?
Participant B – Exactly! Feature addition would depend on the guidance of

either program architects or experienced developers.
Applicant – Understood.
[...]
Applicant [Comment: “Se os membros compartilharem conceitos...”] – I

suppose concepts refer to program features, right?
Participant B – Well, concept at the program or business level.
Applicant – Got it.
[...]
Applicant – Participant A asked if low class cohesion might be irrelevant

for very small programs. Participant B agreed. Could you add a comment on this
matter to “Irrelevant – Why?”?

Participant B – Come on, Participant A! You had the idea.
Participant A – Oh... [UNINTELLIGIBLE].
Participant B – I suggest adding a comment like “too fragmented program

architectures may cause low class cohesion”. Thus, low class cohesion is natural.
Applicant – Is this a problem to evolving program features?
Participant B – Yes.
Applicant – Right.
Participant B – I mean, low class cohesion will be irrelevant because the

program architecture led me to that. Low class cohesion remains relevant anyway,
but this is an architectural issue. If the program architecture led me to create
non-cohesive classes, low class cohesion reports will not bother me.

Applicant – Still, low class cohesion will make it somehow difficult to evolve
features. Regardless of a tool report, do you see cases where low class cohesion is
a problem?

Participant B – Sure. As I said, low class cohesion remains relevant, but I
am constrained by the program architecture.

Applicant – Got it.
Participant B – In a sense, this problem is irrelevant only because there is

nothing to do about it. Still, low class cohesion is relevant by itself.
Applicant – Right. Are you still going to write about very small programs,

Participant A? Did you change your mind on low class cohesion being irrelevant if
the program is small?

Participant A – No, I still think that low class cohesion is irrelevant if the
program is very small. I have been thinking of small programs that evolve little.
Maintaining this program will require little changes once the program has only a
few features. The program will grow little and, then, low class cohesion is irrelevant.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 148

D.2
High Class Complexity: Relevant or Irrelevant – Why?

Participant A – I think high class complexity is relevant for the same
reason that low class cohesion is. I mean relevant for program maintenance. High
complexity is intricate when you must maintain program features, but...

Participant C – For sure, especially you must maintain a program originally
implemented by others.

Participant A – Yes, but...
Participant B – I think high complexity is irrelevant if I am the one who

created the class, ...
Participant C – Exactly!
Participant B – ... preferably not long ago. It is fine if I have created such a

monster and have to maintain it next week. High complexity is very irrelevant
because I still have it clear in my mind what the class does. However, high
complexity will become very relevant three or six months after, because not even
I will remember what the context of the class.

Participant A – Exactly!
Applicant – Interesting! Participant A e Participant B, you can add a

comment on this matter if you will.
Participant C – Participant B, you could write that high class complexity

may be irrelevant in the case of short-term maintenance.
Participant A – Yes, similar to the case of low class cohesion.
[...]
Participant A – Certain classes have to be complex, right? It may be hard to

split certain business rule into different methods of a class.
Applicant – Cool! Do you remember any situation in the context of your

project that illustrates this scenario?
Participant B – Oh, yes! We have our own “pet monsters”.
Participant A – Some classes end up being complex because they implement

too many business rules. I have implemented one of these classes and I always
find it hard to change it. Still, this class is complex only because of it implements
several business rules and has changed a lot along with the program development.

Participant B – Highly complex classes usually have a “father” and a
“mother” who will take care of them.

Participant A – Yes, and take care of them forever.
Participant B – A complex class is like a child. Its parent should take care of it

until maturing. Our programs have parts implementing themes with clear parents:
who implemented each part.

Applicant – Okay.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 149

Participant B – A class implements several features often because of its
context. Certain features require several variables, which probably become too
many parameters because of their scattering in program. While handling with
hierarchies, the developer may forget that these variables could be more accessible
if implemented in a single object. Consider a calculus that creates variables for
reuse in later steps of calculus. If the source code is too fragmented, it may be
hard to identify those variables.

Applicant – Do you mean that the high complexity of the calculus class favors
reuse?

Participant B – Yes.
Applicant – Okay.
Participant B – Fragmenting a feature too much may help reusing certain

parts of the source code in other program features. However, if the calculus itself
needs to reuse those parts, such fragmentation may be a problem.

[...]
Applicant [Comment: “Dificulta o entendimento da funcionalidade”] – Are

you talking about the feature implemented by the complex class?
Participant A – Yes.
[...]
Applicant [Comment: “Dificulta criar novas regras de negócio”] – What do

you mean by creating new business rules?
Participant A – I am talking about the program evolution, that is, when

you either create a new feature or change an existing feature. I refer to when you
need to change a particularly complex feature – for instance, a feature with several
conditional branches.

Applicant [Comment: “Autor único e última manutenção foi a pouco tempo”]
– Does “single author” refer to the author of the whole program or the complex
class only?

Participant B – The complex class only.
Applicant – Okay. Does “last maintenance” refers to the last maintenance

performed on any part of the program?
Participant B – No, it does refer to the last maintenance performed on the

complex class.
Applicant – Was this recent maintenance performed on the program as a

whole or on the highly complex class in specific?
Participant B – I will not care very much if an automated tool says that one

class with a single author and recently changed is complex.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 150

D.3
High Class Coupling: Relevant or Irrelevant – Why?

Participant B – I am a little skeptical about the coupling measurement itself,
...

Participant C – Somehow...
Participant B – ... especially Coupling between Objects (CBO). Bootstrap

classes in our programs may have terrible CBO values...
Participant A – Yes.
Participant B – ... because our bootstrap classes are responsible for data

persistence. Thus, they communicate with each class that interacts with the
database. If a program has ten data entities, our bootstrap class will communicate
with the classes that interact with each of the ten data entities. As a result, CBO for
this class is terrible! However, high coupling in this case will affect the same level,
that is, data persistence classes only. No coupling will occur with external services,
for instance. Therefore, I think that coupling computed by simply counting the
number of coupled classes is unreliable. It is important to know the nature of each
coupled class. Our bootstrap class communicates with them or twenty persistence
classes but okay: all classes belong to the same level.

Participant A – In other words, the bootstrap class is cohesive.
Participant B – On the other hand, if the bootstrap class implements

unrelated features...
[...]
Applicant – Participant B, you said earlier: “if coupled classes are all in the

same hierarchical level, high class coupling is fine”. Am I right?
Participant B – Right.
Applicant – Then you can add a comment about this topic.
[...]
Applicant – Participant B also said, and Participant A agreed, that the

relevance of high class coupling depends on context. You could add a comment on
this topic as well. You discussed an example about relevance depending on context.
What is the name of that class from your program that is highly coupled?

Participant B – Bootstrap, which is responsible for managing test data.
Applicant – Is this class highly coupled by default?
Participant B – Yes, but the class only deals with other data persistence

data.
Participant A – Right.
Applicant – Perfect! So, please, add a comment about this topic.
Participant A – The bootstrap class is cohesive, right?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 151

Applicant – Would you say that highly cohesive classes might be highly
coupled without major problems?

Participant A – Yes!
Applicant – Right.
Participant B – It is natural for a cohesive class to be highly coupled as well.

Thus, high coupling will not cause further problems.
Applicant – Understood.
Participant A – Do you want me to write this comment, Participant B?
Participant B – I thought of writing something like “if the class is cohesive,

its high coupling is not that relevant”.
Participant A – Fine!
[...]
Applicant – Participant C, I see you surrounding the “Relevant – Why?” area

of our mural. What do you think about high class coupling?
Participant C – I think of the opposite scenario. I agree with this: “if a class

is cohesive, its high coupling is not that relevant.” However, ...
Participant B – Well, we could add to “Relevant – Why?” one comment that

opposes to each comment from “Irrelevant – Why?”.
Participant C – Exactly! What problems high coupling could cause on a

non-cohesive class?
Applicant – Interesting!
Supervisor – Please comment on your arguments if you will.
[...]
Participant A – Maybe high coupling becomes more relevant when it co-

occurs with other issues. I think that high coupling is not a problem itself. However,
for instance, if high coupling affects a non-cohesive class, high coupling becomes
a problem.

Applicant – Interesting!
Participant B – I am adding a comment like “fault tolerance.” Once a coupled

class uses several components, each component is a potential point of failure.
Applicant – This is also interesting!
Participant B – If a single class manages email, archives e database, you

should treat different universes of failures. As a result, the fault handling code will
have different natures. In other words, high coupling is relevant when implementing
fault tolerance.

Participant C – I think that, the more you organize source code in reusable
classes, the higher is class coupling. Am I right?

Applicant – Could you repeat what you said, please?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 152

Participant C – The more you organize the source code structure in reusable
classes, the more um tend to create highly coupled classes.

Applicant – This is interesting. In summary, high coupling is not very
problematic when it derives from a reuse-oriented code structure, right?

Participant C – Exactly!
Participant B – There is a concept we did not discuss yet. There is a difference

between using variables provided by interfaces and concrete classes.
Applicant – Could you further explain this comment?
Participant B – One class of our program is responsible for managing

documents. Persistence occurs in a file system. In our PCs, persistence occurs
via file management system and the documents sent via browser are saved in a
folder. Differently, in our servers, we use a REST service for managing documents.
We carefully coupled those objects that manage documents: you can choose in
runtime the persistence mechanism to use.

Applicant – Cool.
[...]
Applicant [Comment: “Se o CBO for alto, mas entre classes em níveis

diferentes”] – Why is high class coupling problematic when affecting classes in
different hierarchical levels?

Participant B – Because the highly coupled class probably implements several
features. The class may be responsible for managing emails, files, database... Maybe
the class is overloaded with responsibilities.

Applicant – Does it occur because the highly coupled class is far below in
the class hierarchy and has several parents, grandparents, and so forth? Are there
many superclasses above this highly coupled class?

Participant B – Not actually. I am not thinking about class hierarchies after
all. Suppose a highly coupled class has many attributes that the class features use.

Applicant – Okay.
Participant B – For instance...
Applicant – Does this scenario occur because the highly coupled class has

inherited many resources from other classes?
Participant B – Not really. The highly coupled class uses many other classes

to realize several features altogether.
Applicant – What does this have to do with the hierarchical level of the

highly coupled class – if I understood your use of the term “level” correctly?
Participant B – Well...
Applicant – I made this question because you mentioned “level” in your

comment.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 153

Participant B – When I wrote “in the same level” in my comment, I was
referring to either a package or a theme of a given program.

Participant A – I thought you were referring to a given concept of the
program. Am I right?

Participant B – Yes, you are. If a class uses other ten classes, but all these
classes deal with data persistence, high class coupling is fine.

Applicant – Okay.
Participant B – But if two out of the ten classes manage email, two other

classes manage REST services and two other manage databases, high class coupling
becomes a problem.

Applicant – Understood. Participant A, do you want to comment on this
matter?

Participant A – No. I just wanted to talk about the levels that you have
mentioned. I thought “level” referred to the “concept” that a class realizes...

Applicant – Oh, yes.
Participant A – ... rather than to a class hierarchy level.
Applicant – So this “level” has nothing to do with class hierarchy, right? Got

it.
Participant B – You are right. “Level” refers to either the package where the

class is...
Applicant – Understood.
Participant B – ... or the module that contains the class.
Applicant – Okay.
[...]
Applicant [Comment: “Se classe não foi altamente coesa”] – Some of you

said that, if a class is not highly cohesive – that is, the class has a few unrelated
elements – high class coupling becomes a problem. Thus, more than one problem
affects the class: low class cohesion and high class coupling. Am I right?

Participant B – If high coupling and low cohesion co-occur, there is clear
need for refactoring the class in order to split responsibilities.

[...]
Applicant [Comment: “Tolerância a falhas/tratamento de erros”] – Could

the author of this comment further explain it?
Participant B – High class coupling is relevant while implementing fault

tolerance. I mean, highly coupled classes depend on many others to realize their
features and of those classes many have problems of different natures. It implies
handling with different faults.

Applicant – Perfect!

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 154

Participant A – Participant B, are you saying that highly coupled classes have
many scattered points of faults?

Participant B – Yes. In this case, a single class may be vulnerable to problems
of different natures.

Applicant – This scenario occurs because the highly coupled class uses several
functions, each possibly affected by faults. It will be barely possible handling all
these faults, even though this is necessary.

Participant B – Correct. There is this policy in our project for notifying,
via email, each time you change a certain entity. A document is attached to the
notification email. After performing a change on an entity, you must create a
document, persist it, and send it by email.

Applicant – Who receives the notification email?
Participant B – The person responsible for the changed entity.
Applicant – Okay.
Participant B – Shortly, our business rule says this: every time the entity

changes, we notify the person who is responsible for the entity.
Applicant – Is this person the class author?
Participant B – No, this person is a business or application expert.
Applicant – I still did not get it. Whom should you notify? A developer?
Participant B – No. A system user.
Applicant – Right. Interesting.
Participant B – A program entity triggers events in the database. Each event

has a responsible, who received an email notification for each change associated
with this event. In case of changing an entity, we create, persist, and send bye mail
a notification document. The problem here is the need for handling failures related
to different issues: sending emails, persisting documents and so forth. This creates
business conflicts all the time. The source code that copes with these issues is
complex.

Applicant – Interesting.
Participant B – The code complexity increased because the class is highly

coupled, and the class is highly coupling due to a business rule associated with
changing entities. Creating fault tolerance mechanisms required handing errors of
different natures and notifying the use about possible faults.

Applicant – Got it.
[...]
Applicant [Comment: “Variáveis de tipos concretos em vez de interface”] –

How does this issue related with high class coupling?
Participant B – In the previous example, the browser sends an archive that

a class must persist using the currently configured persistence mechanism: either

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 155

the PC file system or another document storage system. Using variables from
interfaces allows the class to choose a persistence mechanism in runtime, thereby
making it clear the source code. The program injects in runtime the implementation
corresponding to the chosen mechanism.

Applicant – Right, but what does it have to do with high class coupling
becoming a problem to program evolution?

Participant B – On the other hand, using variables from concrete types
requires source code duplication. For instance, I would duplicate code in the class
the previously mentioned class for addressing browser requests to allow configuring
the persistence mechanism.

Applicant – Would the source code duplication increase the class coupling?
Participant B – Not really. Such duplication is due to the high coupling of

variables from concrete types.
Applicant – Got it.
[...]
Applicant [Comment: “Pode auxiliar o reuso”] – Could you further explain

it?
Participant C – I think that defining well divided and reusable classes increases

coupling because you must call the same source code from many classes, thereby
creating dependencies.

Applicant – Does it occur, for instance, in the case of utility classes?
Participant C – Sure.
Applicant – Do you mean that this scenario applies to class that are called

everywhere in a program?
Participant C – Exactly. But I think that...
Applicant – And certain classes have several utility functions, right?
Participant C – Yes. Still, in this case, I do not see high class coupling as a

problem.
Applicant – Interesting.

D.4
Large Class Hierarchy Depth: Relevant or Irrelevant – Why?

Participant B – I rarely found too deep class hierarchies in the majority of
projects I participated in. We rarely use more than one or two hierarchical levels.

Applicant – Interesting.
Participant B – You may find deeper hierarchies, with four or five levels, when

our classes make use of libraries. This is because libraries tend to define hierarchies
aimed at a better design.

Applicant – Are these hierarchies in libraries deep?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 156

Participant B – Yes, or at least deeper than usual. The library author may
have defined three or four hierarchical levels. We create at most one or two
hierarchical levels when inheriting resources from library classes.

Applicant – That is, large hierarchy depth is not necessarily a problem if
caused by using libraries.

Participant B – You are right, because other developers – the library authors –
are responsible for maintaining the majority of hierarchy levels. Deep hierarchies are
relevant when we authored them. However, if inherited from a library, it is not that
relevant because other developers will maintain it. In addition, the library authors
are usually concerned about cohesion, complexity, etc. Thus, class hierarchy depth
is not that problematic.

Applicant – Got it. But, in this case, considering...
Participant B – But...
Applicant – Sorry. Please, continue.
Participant B – Deep hierarchies that we created are relevant and make us

ask this: How to extend our program? At what hierarchical level to implement a
new feature? Duplicating code may be necessary. [UNINTELLIGIBLE].

Applicant – Do you see cases in which deciding where in the class hierarchy
to add a new feature is challenging? It may be necessary to duplicate code.

Participant B – Yes, I may have to duplicate source code because of that.
Applicant – Interesting. You could add a comment on this topic. Participant

C and Participant A, have you ever had any experiences with deep class hierarchies?
Where these deep hierarchies a problem for you?

Participant A – I agree with Participant B. I think I never had to maintain
classes too deep in the class hierarchy levels for reporting any challenges.

Applicant – Very interesting! What about you, Participant C?
Participant C – I never faced such a situation. However, I think one could

find it hard (or complex) to understand the source code depending on the class
hierarchy depth. It may be challenging to track from what hierarchical level certain
behaviors of a class come from.

Applicant – Understood.
Participant C – As Participant B said, [UNINTELLIGIBLE].
Applicant – Right. Would you like to document this issue? I will give you

two more minutes.
[...]
Applicant – Well, I will give you two more minutes. Please, Participant C,

add a comment on the complexity of understanding the source code, where the
features are... [...] Participant B and Participant A, feel free to add up or discuss
something else.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 157

Participant A – The most relevant comment so far is the one Participant B
added about how hard is to know where to add a new feature.

[...]
Applicant – You have discussed that deep class hierarchies may be prob-

lematic while adding or evolving features – for instance, by making it hard to
understand the code structure.

Participant B – Excuse me. What if we start our discussion from the comment
“DIT is rarely too high” of “Irrelevant – Why?”?

Applicant – Sure!
Participant B – I requested that because class hierarchy depth is rarely large,

especially because Depth of Inheritance Tree (DIT) values are rarely high. However,
when DIT values are high, the class hierarchy depth becomes relevant.

Applicant – Got it.
Participant B – Well, this phenomenon rarely occurs, but when it does...
Applicant – Understood.
[...]
Applicant [Comment: “Pode provocar duplicação de código”] – Is it correct

to assume that duplicating source code is a problem?
Participant B – Yes, it is.

D.5
Large Class Hierarchy Breadth: Relevant or Irrelevant – Why?

Participant B – Is Number of Children (NOC) the only metric for capturing
large class hierarchy breadth?

Applicant – There are other metrics, actually.
Participant B – I am trying to think of another one.
Applicant – Large class hierarchy breadth may affect the descendants of a

given class. Thus, we may extend the counting of child classes from the next
hierarchical level to all the following levels – that is, the sub-tree whose root is the
current class.

Participant B – Okay.
Applicant – This could be another way of computing hierarchy breadth, okay?
Participant B – Okay. In fact, NOC only computes the direct children of a

given class. Got it.
Applicant – NOC is the simplest example, because it only computes the

number of direct children rather than grandchildren, great-grandchildren, and so
forth.

[...]

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 158

Participant B – Large hierarchy breadth is irrelevant when the child classes
do not overwrite the attributes and methods of a class. However, if the attributes
and methods defined by the parent class and only used by the child classes...

Applicant – That is, if these attributes and methods are used rather than
overwritten.

Participant B – ... and none of the child classes overwrites them...
Applicant – Interesting.
Participant B – In this case, the parent class encapsulates its features. Thus,

there is no problem if a class has twenty or thirty child classes. However, if the
child classes overwrite the inherited attributes and methods, you may have a great
complexity – it may be necessary to verify what child classes perform overwriting.

Participant A – [UNINTELLIGIBLE].
Participant B – Large class hierarchy breadth is irrelevant if the child classes

cannot change features inherited by the parent class, because the implementation
focuses on the parent class. Otherwise, large breadth becomes relevant. There may
be a metric based on the number of child classes that overwrite features.

Applicant – Oh, yes. This metric exists.
Participant B – That would be an interesting metric for me. If many child

classes redefine attributes and methods of the parent class, a high metric value may
be a problem. It may be necessary to conduct refactoring for reorganizing features
or, maybe, create a new hierarchical level for separating child classes performing
overwriting differently.

Applicant – Got it.
Participant B – Large class hierarchy breadth is irrelevant if the child classes

do not redefine attributes and methods inherited from the parent class. Am I right?
Participant A – Do you mean redefining behaviors realized by the parent

class?
Participant B – Yes, because I am assuming that the child classes make

use of the concrete features of the parent class. Obviously, child classes must
implement features defined by the parent class as interfaces. Still, in this case...
The object-orientation vocabulary is escaping me.

Applicant – Express yourself freely. Participant A and Participant C, have you
seen cases of problems regarding number of child classes and hierarchy breadth?
For instance, while implementing polymorphism or fixing bugs, are there cases
where large class breadth became a problem?

Participant B – One more thing: large class hierarchy breadth becomes more
problematic when co-occurs with large class hierarchy depth.

Applicant – Interesting. Participant A and Participant C, do you want to add
u something?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 159

Participant A – I would add a comment to “Relevant – Why?” about the
issue of tracking behaviors in the program.

Applicant – Oh...
Participant A – I mean, large hierarchy breadth is relevant when you have to

know what child classes implement a given behavior.
Applicant – Fine.
Participant B – Does this case occur if a child class redefines a behavior of

its parent class?
Participant A – Yes.
Participant C – If the child class redefines a behavior inherited from its class

parent, maintaining the parent class should carefully consider such redefinition. Am
I right?

Applicant – Got it. Feel free to add comments on this topic, because I
gave you two and a half more minutes. And do not you worry about having
similar comments. Each participant adds his own comment and we will analyze
all comments later.

[...]
Participant B – I would like to add something about large class hierarchy

depth. I see this problem recurrently affecting programs in functional programming.
Applicant – How does it occur?
Participant B – There are several property passing among components.

Certain components belong to the lowest hierarchical levels and require properties
located at highest levels. You must either pass or copy properties among functions
because defining global variables is non-recommended in functional programming.
Passing parameters may prevent side effects because the universe of available
properties is constrained by each function. I think large hierarchy depth also
affects functional programming. You may have to adapt several components to
bring properties from the highest to the lowest hierarchical levels. Intermediate
components must propagate properties they do not use, thereby generating false
positives in the analysis of hierarchy depth – that is, several components simply
passing properties.

Applicant – Understood.
Participant B – In other words, several components supposedly use a

property, but most of them only pass the parameter because the distance between
components that hold and actually use a property is large.

Applicant – This situation is very interesting.
Participant B – This scenario often occurs in Web frameworks for front-

end development, which uses functional programming a lot. Developers used to
implement object-orientation in JavaScript, which is weird, but people already

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 160

replaced object-orientation with functional programming. Although we abandoned
some basic concepts of object-orientation, we use composition to distribute features
as an alternative to inheritance.

Applicant – Got it.
Participant B – We establish inheritance through composition. [UNINTEL-

LIGIBLE].
Applicant – Great!
Participant B – In functional programming, composition causes similar

problems to large hierarchy depth.
Applicant – Cool!
Participant B – Object-oriented programs rarely have too deep and broad

hierarchies in practice.
Applicant – Curiously, there seems to be a consensus among you all on this

matter, right?
Participant B – Yes. Using composition in functional programming leads to

similar problems to large hierarchy depth.

D.6
Large Class Size: Relevant or Irrelevant – Why?

Participant B – I believe that classes with hundreds of characters per line are
also large classes. I mean, a method with ten conditional branches in a single line
is lengthy.

Applicant – Right. You all feel free to start the discussions.
Participant A – Fine. I do not think that size is relevant in itself. If a class

has several methods, each with well-defined responsibilities, it will be easier to
understand what each method does, perform changes, and evolve the program.

Participant C – Large size does not imply high class complexity.
Participant A – Yes, right?
[...]
Participant A [Comment: “Monitor ’pequeno”’] – Wow, someone added a

comment about small monitor size!
Participant B – Yes, but this is not a joke. Depending on the monitor size

adopted by the developer, the number of scrolls can make the developer lose his
working context while programming. The developer may be like “what does the
part of source code I just read but disappeared?” The larger a class, the worse
may be this problem. On the other hand, when does large class size is not that
relevant?

Applicant – Interesting...

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 161

Participant B – Large classes rarely lack complexity, coupling, and cohesion
problems.

Participant A – Yes, but now we are only discussing class size, right?
Applicant – You are discussing whether class size is relevant or not.
Participant A – Okay.
Participant B – If you add the content of a figure to the source code of

a class, the class will be lengthy. Once the added content is just one more code
block to scroll, this is fine. The programmer would read the variable declaration
and assignment with about a hundred or two hundred lines, and scroll it until it
finds some code parts of interest. Thus, the scrolled lines will not be a problem for
the developer.

Applicant – Got it.
Participant B – Another scenario is associated with comment line within the

source code. Our program has a class with about 90% of commented lines.
Applicant – Would you say everything is fine in this case?
Participant B – This class has two hundreds of commented lines and other

fifteen non-commented lines. The class has only fifteen lines after all. The source
file of this class may be large, but this is irrelevant. To become a problem, problems
that are more serious should affect the class, like high complexity, high coupling,
and low cohesion.

Applicant – Participant C, do you have...
Participant B – Besides that, in the case of utility classes, large class size is

irrelevant, is not it? The same reasoning applies here.
Applicant – Are you saying that large classes are forgiven if they are utility

classes?
Participant B – I am saying this factor increases the tolerance of large class

size.
Applicant – Right!
Participant B – If the programming language under use does not allow

implementing more cohesive source code, and I need to duplicate code, a large
class size is forgivable. Not forgivable, but irreparable.

Applicant – Do you have any examples to discuss with us?
Participant B – Sure. Clear Architecture recommends not exposing classes

that represent data entities to external parties. While querying the database and
returning a class instance, avoid converting this class into a JSON format file and
sending it via browser. Instead, define a class for realizing this use case and then
manipulate the entities of interest. Depending on the language, you may have to
exchange data field by field. If a data entity has several fields, you may have twenty
or thirty lines only for exchanging data.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 162

Applicant – Understood.
Participant B – In summary, a limitation of language or library led to a

verbose source code.
Applicant – Right.
Participant B – Verbose languages will make the class to become large. An-

other example is associated with exception handling in Java – which is complicated
and requires several code lines even in simple cases. I will pay less attention to large
classes due to the limitations of this language.

Applicant – Got it.
Participant B – Although large class size remains problematic, this is

something imposed by the language.
Applicant – Got it.
Participant B – Although large class size is relevant, there is nothing to do

about it due to other factors. The problem is relevant, but there is no possible
correction.

Applicant – Right. It is good to know that, although large classes may be
problematic, their correction is not always worthwhile.

Participant B – That is it.
Applicant – Interesting.
[...]
Applicant [Comment: “Se não for complexa”] – Did Participant A write this

comment?
Participant A – Yes.
Applicant – At the beginning of the discussion, we said something like “I think

that a large class is not a problem if the class is well documented, structured...”
Participant A – You are right.
Applicant – Does the complexity you mentioned in your comment refer to

that argument?
Participant A – Yes.
Applicant – Great!
Participant A – This case is similar to the one regarding the comment about

“having cohesive methods.” If the methods of a class are well divided, each with
well-defined features, you or another developer in charge of maintaining the class
will not struggle to understand it.

Applicant – Excellent!
Participant A – That is it.
Applicant – Perfect. Class size is associated with the comment on “having

cohesive methods” because both indicators do not indicate a relevant problem.
[...]

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 163

Applicant [Comment: “Dificilmente ocorre sozinho”] – I think Participant B
was the one who wrote large class size is a problem that rarely occurs in isolation.
I found interesting this comment. Do you all agree with this comment? Participant
A, Participant B, and Participant C, do you agree that large class size rarely occurs
in isolation?

Participant B – Well, I agree with myself.
Participant A – I agree.
Applicant – Sure, Participant B!
Participant C – No doubt.
Participant A – Agreed.
Applicant – Perfect.
[...]
Applicant [Comment: “Se o editor conseguir colapsar grandes blocos”] – In

this case, class size is a development environment problem rather than a program
problem.

Participant B – If comments compose a significant part of the class, you may
configure the integrated development environment (IDE) to collapse comments and
method documentations by default. You can expand the collapsed content if you
will. When you have large line blocks at the top of the classes, the IDE may collapse
these blocks automatically.

Applicant – This is the case of Apache projects, for instance. Many classes
have hundreds of commented lines regarding copyright and license.

Participant B – Another example is associated with static object initialization.
The IDE may automatically collapse initialization as well. By doing that, large
classes become manageable. Do you know what I mean?

Applicant – Got it.
Participant B – IDEs may help managing side effects of having lengthy source

files.
Applicant – Perfect. Based on what we have...
Participant A – I would like to add up something about the comment “Rarely

occurs in isolation.” Should we place this comment in the “Relevant – Why?” area?
I am asking this exactly because large class size is a problem that does not occur
in isolation.

Applicant – Understood.
Participant B – No. Solving the other problems affecting a large class makes

its length irrelevant.
Participant A – Oh, no...
Participant B – After all, I have already improved class complexity, coupling,

and cohesion, right?

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix D. Video Transcription of Focus Group Session 2 (Case B) 164

Applicant – Participant A, do you think it is worth replicating this comment
in “Relevant – Why?”?

Participant A – Yes, because my understanding opposes to the current one.
That is, large classes end up being relevant exactly because this problem does not
occur in isolation.

Applicant – Got it.
Participant A – Yes, if...
Applicant – In this case, feel free to replicate the comment.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



E
MURAL Prints of Focus Group Session 1 (Case A)

Figure E.1 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 1 on low class cohesion.

Figure E.1: Raw Discussions on Low Class Cohesion (Case A)

Figure E.2 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 1 on high class complexity.

Figure E.3 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 1 on high class coupling.

Figure E.4 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 1 on large class hierarchy depth.

Figure E.5 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 1 on large class hierarchy breadth.

Finally, Figure E.6 depicts the raw discussions (in Brazilian Portuguese)
among participants of Focus Group Session 1 on large class size.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix E. MURAL Prints of Focus Group Session 1 (Case A) 166

Figure E.2: Raw Discussions on High Class Complexity (Case A)

Figure E.3: Raw Discussions on High Class Coupling (Case A)

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix E. MURAL Prints of Focus Group Session 1 (Case A) 167

Figure E.4: Raw Discussions on Large Class Hierarchy Depth (Case A)

Figure E.5: Raw Discussions on Large Class Hierarchy Breadth (Case A)

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix E. MURAL Prints of Focus Group Session 1 (Case A) 168

Figure E.6: Raw Discussions on Large Class Size (Case A)

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



F
MURAL Prints of Focus Group Session 2 (Case B)

Figure F.1 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 2 on low class cohesion.

Figure F.1: Raw Discussions on Low Class Cohesion (Case B)

Figure F.2 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 2 on high class complexity.

Figure F.3 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 2 on high class coupling.

Figure F.4 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 2 on large class hierarchy depth.

Figure F.5 depicts the raw discussions (in Brazilian Portuguese) among
participants of Focus Group Session 2 on large class hierarchy breadth.

Finally, Figure F.6 depicts the raw discussions (in Brazilian Portuguese)
among participants of Focus Group Session 2 on large class size.

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix F. MURAL Prints of Focus Group Session 2 (Case B) 170

Figure F.2: Raw Discussions on High Class Complexity (Case B)

Figure F.3: Raw Discussions on High Class Coupling (Case B)

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix F. MURAL Prints of Focus Group Session 2 (Case B) 171

Figure F.4: Raw Discussions on Large Class Hierarchy Depth (Case B)

Figure F.5: Raw Discussions on Large Class Hierarchy Breadth (Case B)

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA



Appendix F. MURAL Prints of Focus Group Session 2 (Case B) 172

Figure F.6: Raw Discussions on Large Class Size (Case B)

DBD
PUC-Rio - Certificação Digital Nº 1712679/CA


	On the Relation between Refactoring and Critical Internal Attributes when Evolving Software Features
	Resumo
	Table of contents
	Introduction
	Degradation Symptoms and Software Evolution
	Limited Knowledge on Critical Attributes and Software Evolution
	On the Relationship between Refactorings and Internal Attributes
	On the Relevance of Critical Attributes for Evolving Features
	Thesis Contributions
	Thesis Summary

	Background and Related Work
	Critical Attributes
	Design Smells
	On the Developer's Perception of Degradation Symptoms
	Refactorings and Re-refactorings
	On Addressing Degradation Symptoms through Refactoring
	Chapter Summary

	Relationship between Refactorings and Internal Attributes
	Goal and Research Questions
	Steps and Procedures
	(Re-)Refactoring and Critical Attributes (RQ1)
	Frequency Regardless of Refactoring Type
	Frequency by Refactoring Type
	Summary of RQ1

	Refactoring Effect on Internal Attributes (RQ2)
	Improvement of Internal Attributes
	Worsening of Internal Attributes
	Most Metrics versus At Least One Metric
	Root-canal versus Floss Refactoring
	Summary of RQ2

	Re-Refactoring Effect on Internal Attributes (RQ3)
	Improvement of Internal Attributes
	Worsening of Internal Attributes
	Most Metrics versus At Least One Metric
	Root-canal versus Floss Refactoring
	Summary of RQ3

	Comparison of Refactoring and Re-refactoring Effect (RQ4)
	Quantitative Results
	Summary of RQ4

	Our Study Versus Related Work
	Study Comparison at the Design Level
	Study Comparison at the Results Level

	Threats to Validity
	Chapter Summary

	On the Relevance of Critical Attributes for Evolving Features
	Study Characterization
	Problem Statement
	Research Objectives
	Context

	Case Study Design
	Research Questions
	Case and Subject Selection
	Data Collection Procedures

	Results and Discussion
	Relevance of Critical Attributes for Evolving Features (RQ1)
	Reasons Behind the (Ir-)relevance of Critical Attributes (RQ2) – Case A
	Reasons Behind the (Ir-)relevance of Critical Attributes (RQ2) – Case B
	Managing Critical Attributes through Refactorings (RQ3)
	Participant Feedback

	Threats to Validity
	Chapter Summary

	Conclusion
	Quantitative Study Implications
	Industry Case Study Implications
	Closely Related Publications
	Other Publications

	Bibliography
	Background Form for All Focus Group Sessions
	Feedback Form for All Focus Group Sessions
	Video Transcription of Focus Group Session 1 (Case A)
	Low Class Cohesion: Relevant or Irrelevant – Why?
	High Class Complexity: Relevant or Irrelevant – Why?
	High Class Coupling: Relevant or Irrelevant – Why?
	Large Class Hierarchy Depth: Relevant or Irrelevant – Why?
	Large Class Hierarchy Breadth: Relevant or Irrelevant – Why?
	Large Class Size: Relevant or Irrelevant – Why?

	Video Transcription of Focus Group Session 2 (Case B)
	Low Class Cohesion: Relevant or Irrelevant – Why?
	High Class Complexity: Relevant or Irrelevant – Why?
	High Class Coupling: Relevant or Irrelevant – Why?
	Large Class Hierarchy Depth: Relevant or Irrelevant – Why?
	Large Class Hierarchy Breadth: Relevant or Irrelevant – Why?
	Large Class Size: Relevant or Irrelevant – Why?

	MURAL Prints of Focus Group Session 1 (Case A)
	MURAL Prints of Focus Group Session 2 (Case B)



