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Abstract

Ferreira,Matheus Esteves; Temporão, Guilherme (Advisor). Study and
implementation of a single pixel camera by compressive sam-
pling. Rio de Janeiro, 2021. 88p. Dissertação de Mestrado – Departa-
mento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio
de Janeiro.

Single-pixel imaging consists in computationally reconstructing 2-
dimensional images from a set of intensity measurements taken by a single-
point detector. To derive the spatial information of a scene, a set of modulation
patterns are applied to the transmitted/backscattered light from the object and
combined with the integral signal on the detector. First, we present an overview
of such optical systems and implement a proof of concept that can perform
image acquisition using three different modes of operation: Raster scanning,
Hadamard basis scanning, and Hadamard compressive sampling. Second, we
explore how the different experimental parameters affect image acquisition.
Finally, we compare how the three scanning mode perform for acquisition of
images of sizes ranging from (8px, 8px) to (128px, 128px).

Keywords
Single Pixel Cameras; Compressive Sampling; Ghost Imaging; Com-

putational Imaging.
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Resumo

Ferreira,Matheus Esteves; Temporão, Guilherme. Estudo e implemen-
tação de uma câmera de pixel único por meio de sensoriamento
compressivo. Rio de Janeiro, 2021. 88p. Dissertação de Mestrado – De-
partamento de Engenharia Elétrica, Pontifícia Universidade Católica do
Rio de Janeiro.

Câmeras de pixel único consistem em reconstruir computacionalmente
imagens em duas dimensões a partir de um conjunto de medidas feitas por
um detector de único pixel. Para que se obtenha a informação espacial, um
conjunto de padrões de modulação são aplicados à luz transmitida/refletida
do objeto e essa informação é combinada com o sinal integral do detector.
Primeiro, apresentamos uma visão geral desses sistemas e demonstramos a
implementação de uma prova de conceito capaz de fazer aquisição de ima-
gem usando três modos de operação: Varredura, escaneamento por base de
Hadamard, e escaneamento por base de Hadamard com sensoriamento com-
preensivo. Segundo, discutimos como os diferentes parâmetros experimentais
do sistema ótico afetam a aquisição. Finalmente, comparamos a performance
dos três modos de operação quando usados para a aquisição de images com
tamanhos entre (8px, 8px) e (128px, 128px).

Palavras-chave
Câmeras de Píxel Único; Sensoriamento Compressivo; Ghost Ima-

ging; Imageamento Computacional.
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1
Introduction

In past years, advances in camera hardware, especially in consumer
electronics, focused on increasing the pixel density in digital cameras. For a
long time, the number of megapixels a camera had was an important indicator
of its quality, and each year manufacturers would boast how their sensors had
more pixels than their competitors.

In conjunction with the increase in resolution came the increase in file
size for the aforementioned pictures. To handle these increased file-sizes, ever
in more demand, many compression techniques were developed, of which,
arguably, JPEG is one of the most widely known.

JPEG is based upon the idea that most images are sparse in the frequency
domain, i.e., certain frequencies will be more relevant to the image than others.
Using a discrete cosine transform (DCT), JPEG compression will store the
coefficients of the most relevant frequencies in the image while discarding
the frequencies where there is less or no information. Although JPEG is just
one example of a compression method, most compression schemes will use a
similar rationale. In that sense, it is possible to say that the current digital
photography paradigm is based on:

1. Sampling a scene using a sensor array and quantitating it into a digital
representation (bit).

2. Taking the raw image format and compressing it into a file type that
yields a lower-sized digital file.

That said, with advances in machine learning and AI applications in
mobile devices, the race for the highest number of pixels has been replaced by
a competition for the best image processing algorithms in an area known as
computational photography.

Computational photography exploits novel image capture and processing
techniques intending to improve a camera’s capabilities or to allow for function-
ality that would not be possible in film-based or classical digital photography.
Like the High Dynamic Range Image Acquisition, some of these techniques
have been around for a while. However, as AI-processors in mobile devices get
more powerful, new capabilities have been developed, like improving low-light
acquisition, stitching together parts of different images to improve exposure,
and reconstructing scenes using deep learning algorithms.
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These advances in computer science have not limited themselves to
consumer technologies. Much of the advances that allowed for computational
photography in mobile phones have now been used to create novel image
acquisition techniques like super-resolution (1), non-line of sight (2), and single-
photon 3D imaging (3).

With these new advances in signal processing, two main questions arise.
First, whether more pixels are necessarily better for image acquisition, and if,
considering that the scene is sparse, is it paramount to sample the whole scene,
or is it possible to acquire only those frequencies that will be relevant for the
compressed data?

With these questions in mind, we come to the field of single-pixel imaging
(SPI), where a set of signal processing techniques is used to reconstruct an
image from a set of measurements from a single-pixel detector. SPI has been
demonstrated to allow for the development of multi-spectral cameras (4),
three-dimensional image acquisition (3), and the development of relatively
inexpensive cameras in wavelengths where sensors are not widely available
(5). This work aims to (i) demonstrate how such single-pixel image acquisition
systems can be built; (ii) provide a proof of concept; and (iii) build a python
library that could potentially be used to allow for the development of new
applications in this area.

Chapter 2 provides the theoretical framework behind SPI and discusses
some of the work done in the past few years. Chapter 3 will provide details
on the experimental implementation of the SPI system used in this work, and
Chapter 4 will examine the results acquired. Finally, Chapter 5 will conclude
and provide a vision of possible follow-up works. The python library developed
during this study is included in Appendix 6.
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2
Theoretical Overview

While typical image acquisition systems rely on sensor arrays for two-
dimensional image acquisition, single-pixel cameras spatially correlate the
point-sensor data by employing computational reconstruction based on struc-
tured illumination shined upon an object. Historically, the first implementa-
tions of such imaging systems were based on Quantum Ghost Imaging, which
uses entangled photons for the spatial reconstruction of point detector data.

Considering these two closely related techniques, in section 2.1 we
will commence with Quantum Ghost Imaging (QGI), introducing the basic
concepts underpinning the approach used in single-pixel imaging systems.
Following the introduction of QGI, we will spend section 2.2 discussing the
essential components of SPI systems and how they work together. In the
subsequent sections, we will provide an overview of the current developments
behind different aspects of such systems, discussing the different modulation
schemes in section 2.2.1, modulation patterns in section 2.2.2, and imaging
modes in section 2.2.3. Finally, in section 2.2.4, we will explore some current
applications of these systems and trends in this research area.

2.1
Ghost Imaging

To understand the ghost imaging framework, it is helpful to interpret
an image as a two-dimensional map of the optical interaction between a light
source and a given object.

In the case of a classical camera, the spatial and interaction intensity
information is acquired simultaneously as each pixel in the detector array is
responsible for measuring the intensity shining upon it, with each one having a
defined position. In this scenario, a single measurement is capable of capturing
enough information for a map (i.e., the image) to be constructed. On the
other hand, Ghost Imaging consists in acquiring the spatial and amplitude
information independently, relying on the correlation of different measurements
to reconstruct a scene.

Although there are several ways to implement a ghost imaging measure-
ment, its first demonstration relied on entangled photons for image reconstruc-
tion (6). This necessity of using a correlated biphoton light source has led this
method to be initially interpreted as a quantum phenomenon, being called
Quantum Ghost Imaging. Later, experimental and theoretical work demon-
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Figure 2.1: While in classical imaging systems (b) the spatial and object
information are captured at the same time, in a Quantum Ghost Imaging
system (a) this information is split between the two entangled photons.
Adapted from (6)

strated that ghost imaging could be performed using non-quantum sources
by employing, for example, pseudo-thermal light (7) or structured illumina-
tion, which ended up paving the way for Computational Ghost Imaging and
Single-pixel cameras (7).

2.1.1
Quantum Ghost Imaging

Figure 2.1 shows a representation of a ghost imaging system implemented
with position-momentum entangled photons, where the correlations shared
by such photons allow imaging without the necessity of a spatially resolving
detector. In such systems, the entangled photons generated by pumping a
non-linear -Barium Borate (BBO) crystal with a laser (25) are orthogonally
polarized and can be separated into signal and idler beams by a polarizing
beamsplitter (PBS). In one of the beams, we place the object to be imaged,
and after it a bucket detector (i.e., A detector that will integrate all the light
that shines upon it, providing no spatial information), in the other, we place
a spatially resolving detector. If we consider both paths individually, neither
contains enough information to recreate the image of the object. By assuming
that the entangled photons are correlated in position and momentum, it’s
possible to reconstruct the image by considering each pathway’s coincident
measurements. In this case, whilst the spatially resolving detector will provide
information about the pixel position where the measurement was done, the
bucket detector will give the amplitude information on that point. Considering
that the image was formed without directly obtaining any spatially resolved
image information from the object itself, the term "Ghost Imaging" was coined.

Considering the necessity of employing entangled photons, the question

DBD
PUC-Rio - Certificação Digital Nº 1812686/CA



Chapter 2. Theoretical Overview 19

Figure 2.2: One of the uses of quantum ghost imaging is in allowing the use of
non-degenerate entangled photons to leverage different wavelengths for image
acquisition. In this figure, adapted from (5) , an object is imaged at 1.55µm,
while the spatial information is detected at 460nm.

of whether this is a quantum phenomenon arises. Although the parametric
down-conversion is a quantum effect, here it is used only as a source of spatial
correlation, which could, in principle, be derived from a classical source. As
we’ll discuss further in the Computational Ghost Imaging section, this spatial
correlation can be recreated classically in several ways, such as modulating a
laser beam with spatial patterns and using it to extract spatial information of
the scene.

While, at first glance, this image acquisition method can be considered
less efficient than classical cameras, it allows applications not supported by
other methods. In one of these applications, the parametric down-conversion
can be tuned to yield correlated idler and signal photons of different wave-
lengths. Using these entangled photons, it’s possible to illuminate the object
at one wavelength and record the spatial information at another, perhaps where
the imaging detector is more sensitive or less noisy (5)(6). Figure 2.2 shows
an example of such ghost imaging system, allowing to "image" a sample in
1.55µm, while acquiring the spatial information of the scene in 460nm. By en-
abling the separation of the amplitude and spatial information, this imaging
method allows the mix and match of detectors to increase the overall system
efficiency and lower the costs.

2.1.2
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Computational Ghost Imaging

Considering that only the spatial correlation between the photons is
needed for image reconstruction, attention was given to identify other ways
to implement such imaging systems without needing an entangled photon
source. From the different implementations that arose in this area, the most
prominent one was developed by Shapiro et al. (8), coined Computational
Ghost Imaging (CGI). This classical implementation uses a spatial light
modulator (SLM) to create binary intensity patterns (masks) to be projected
onto the object. As the modulation patterns are well-defined and known
prior to the measurement, the spatial information can be derived from the
correlations between the optical beam and projected masks. In this scenario,
it’s possible to reconstruct an image by employing a single-element detector
to measure the intensity of the light that is transmitted or backscattered
from the object when the light is modulated with a respective modulation
pattern (6). The image mapping will then, in simple terms, be derived by the
weighted sum of the measured amplitudes from each projected pattern. Besides
being far more straightforward to implement than its "Quantum" counterpart,
this computational implementation easily allows the combination of different
detectors to improve the wavelength coverage and polarization sensitivity.

2.1.3
Single-Pixel Imaging vs Computational Ghost Imaging

Once it became clear that CGI could lead to different acquisition schemes,
other optical implementations were derived, of which single-pixel cameras are
one of the most prominent. From an optical perspective, CGI and single-
pixel imaging are the same, even though they are commonly treated as
separate research fields. In a nutshell, the distinction stems from optical
scheme employed for the measurement. While SPI places the SLM after the
object (structured detection), computational GI places it before the object
(structured illumination). Besides the SLM placement, in SPI systems, the use
of a compressive sampling approach is common. Figure 2.3 shows two common
representations of CGI and SPI systems, where it can be seen that these two
schemes can be demonstrated by interchanging the locations of the light source
and the detector.

In this work, the structured detection scheme was chosen and used in
tandem with compressive sensing. Thus, we’ll refer to the optical system
herein described as "single-pixel imaging" even though this distinction can be
interpreted as a convention.
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Figure 2.3: Comparison between a computational ghost imaging (a) and a
single pixel camera system (b). Although the overall principle is the same,
the distinction is made according to the use of structured illumination, or
detection, respectively. Adapted from (6)

2.2
Fundamentals of Single-Pixel Imaging

As introduced in the previous section, single-pixel imaging consists of
shining the transmitted or backscattered light from an object into a spatial
light modulator and then detecting the integral signal using a point-detector.
The correlation between the modulation mask and the measured intensity
can be used to reconstruct an image computationally. Figure 2.4 shows an
example of such a system, where the modulation patterns are multiplied
by the corresponding measurement of the point-detector and summed to
yield a reconstructed image. Although there are several ways to acquire and
reconstruct images in the SPI scheme, this is one of the simplest examples.

Considering this simple setup, the single-pixel camera can be interpreted
as an optical computer that sequentially measures the inner products between
the incident light field of the scene and a set of two-dimensional test functions.
Mathematically, given a N × N pixel image, a single-pixel system can be
understood as:

Let us consider I the image of the object with N2 pixels. We note P k as
a 2D-pattern loaded on the SLM and the respective mk measurement collected
by the point-sensor, such as:

mk = P k
1×N2 · IN2×1 (2-1)

As theN2 P k patterns are projected onto the sample, a correspondent measure-
ment mk will be collected by the point-sensor. Considering this formulation, a
single-pixel imager can be understood as the linear systemM = P ·I, whereM
is the N2 × 1 measurement vector, P is the N2 ×N2 set of measurement pat-
terns and I the image vector that needs to be determined. Given this system,
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Figure 2.4: A structured detection setup. (a) The transmitted/back-scattered
light from the object is shined upon a SLM and modulated before being de-
tected by a single-pixel detector. (b) The image is reconstructed by combining
the amplitude measurements from the single pixel detectors with the modula-
tion patterns supplied to the SLM. Adapted from (7)

two main aspects need to be taken into account:

– Acquisition: How to choose/design the sequence of P patterns that will
be projected?

– Restoration: Knowing the set of P patters and M measurements, how
to restore the image I?

In the coming sections, we’ll discuss different approaches to deal with
both Acquisition and Restoration in single-pixel imaging and outline the
choices used in this work.

2.2.1
Modulation Schemes

As discussed in the previous sections, an SPI system depends on estab-
lishing spatial correlations between the illumination beam hitting the sample
and a set of modulation patterns. The aim of using a spatial light modulator

DBD
PUC-Rio - Certificação Digital Nº 1812686/CA



Chapter 2. Theoretical Overview 23

is to modulate the intensity of the incoming beam as a function of the spatial
distribution of the mask, allowing for later reconstruction of the scene.

To modulate the beam intensity, several modulation schemes can be used.
In this section, we’ll provide a brief overview of the most common modulation
techniques for spatial-light modulators and how they function.

2.2.1.1
Pseudothermal

One type of modulation pattern employed by SLMs is a random or
pseudo-random modulation pattern. When utilizing such patterns, a simple
weighted sum is used to reconstruct the image of the scene.

Although there are several ways to generate those patterns, one is to
create a source of pseudothermal light by passing a laser beam through a
diffuser. The diffuser can take many forms, as, for example, a rotating ground-
glass diffuser (9). As the diffuser is rotated, the intensity pattern generated
from the constructive and destructive interference of the light beam will vary
with time. By further passing the beam through a turbid medium, the patterns
can be further spatially randomised(7). In order to provide the required spatial
correlation, the incoming light is passed through an optical beamsplitter to
divide it into reference and object beams (7).As the reference beam will reveal
the spatial information of the scene, the object will return the interaction
information between the light and the object.

Despite this method being highly inefficient, due to being limited to
random patterns and the complexity involved in the implementation, it allows
modulation of wavelengths where other types of SLMs are not usually present.

Figure 2.5 shows an example of a SPI system for X-rays (9). In this
implementation, the speckle pattern is generated by modulating the incoming
beam with a rotating diffuser and recording the speckle patterns over time. In
a second step, the X-ray is shined on a sample, and the recorded patterns are
used to correlate the point-sensor data for image reconstruction spatially. As
this kind of method requires only a single point sensor, the overall X-ray dose
used for imaging can be decreased, allowing the imaging of fragile samples.

2.2.1.2
Liquid Crystal Spatial Light Modulators

While it’s possible to establish a modulation pattern using beam diffusers,
it would be preferred to modulate the laser beam’s intensity using a computer-
controlled SLM that would attune the signal as a function of an arbitrary
pattern. This alternative would allow the spatial correlation without the need
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Figure 2.5: In a pseudothermal modulation setup, a reference speckle patterns
is pre-recorded and subsequently used to modulate an incoming light source.
By referencing the pre-recorded patterns and the measurements from the
detector, it’s possible to reconstruct an image of the object. Adapted from
(9)

Figure 2.6: Comparison between the different molecular organizations of liquid
crystals. Adapted from (17)

for a reference beam (as the computer will store in memory the modulation
pattern used) and enable the use of masks different from random patterns,
which are inefficient for image reconstruction. Although several techniques
would allow this addressable modulation, one of the most common (and the
one used in this work) employs liquid crystals to spatially modulate a laser
beam.

A liquid crystal (LC) consists of a collection of elliptical organic molecules
whose properties lie between those of solids and liquids. While they lack
positional order, they maintain orientational order. Usually, these molecules
can be classified by how they are organized and fall within three primary forms
(Figure 2.6). In Neumatic form, the rod-shaped molecules are all oriented in
the same direction, but their position is random. In smectic, the molecules’
orientation remains the same, but their centers are stacked in parallel layers
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Figure 2.7: By placing a twisted nematic liquid-crystal cell between two
conductors, it’s possible, by controlling an external electric field, to change
the cell’s orientation by switching the field off (a) and on (b). Adapted from
(17)

within which they have random positions; they, therefore, have positional order
only in one dimension. The final form, cholesteric, consists of a distorted form
in which the orientations undergo helical rotation about an axis.

Due to its anisotropic nature, LC interacts with light locally as a
collection of uniaxial crystals, modifying the incident light’s properties in the
optical axis parallel to the elongated direction. These materials can be used to
modulate the incident light to alter its phase, polarization, or amplitude.

To allow polarization modulation, a Twisted nematic liquid crystal (TN-
LC) form is used, which corresponds to nematic liquid crystals on which a
twist is externally imposed. At rest, TN-LC show a twist of the optical axis
(elongated size) as a function of the depth (z). When an external electric
field is imposed, the rods tilt and untwist Figure 2.7. Considering that the LC
molecules interact with light in the elongated axis, the twisting and untwisting
of these molecules can be used to modulate the incoming beam’s polarization,
and consequently, its amplitude when the LC cells is placed between polarizers.

In a rest state, the incoming linearly polarized light will interact will each
plane of the LC and rotate its polarization by the twist angle. As the light
travels through the crystal, the overall polarization rotation will correspond to
the twist coefficient (degrees per unit length) and the travel distance. On the
other hand, when an external electric field is imposed on the cell, the molecules
will align themselves with the elongated axis in the direction of the electric
field. In the new orientation, light passing through the cell won’t be affected
by the molecules, and will maintain the original polarization state. Figure 2.8
shows the amplitude modulation process of TN-LC when placed between two
linear polarizers. In this use-case, by switching the external field, it’s possible
to control it the light will be transmitted or absorbed by the polarizers.
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Figure 2.8: The control of the orientation of liquid crystal cells can be combined
with linear polarizers to modulate the polarization of a light beam travelling
through the cell. In this example, when the electric field is off (a), the
polarization is changed due to the interaction with the liquid crystal molecules,
whereas when an external electric field is applied (b), there is no modulation.
Adapted from (17)

The use of LC in SLMs consists of arraying several independently
addressable TN-LC cells that can be modulated with a defined voltage.
Supplying the SLM with a greyscale image addresses each cell with a different
voltage correspondent to the intensity value. This voltage causes a tilt of the
LC molecules, which will modulate the polarization of the light shining on the
array. As the SLM is placed between linear polarizers, it’s possible to modulate
the amplitude of the incoming light independently in each cell.

In a SPI system, the modulation patterns will result in a structured illu-
mination hitting the sample. By storing in the computer memory information
about the modulation masks, image reconstruction can be carried out.

2.2.1.3
Digital Micromirror Devices

Besides LC-SLMs, another category of widely used devices for illumina-
tion modulation is digital Micromirror devices (DMD). DMDs provide supe-
rior modulation range and broader wavelength response, with commercially
available systems able to achieve display rates allowing near-video rate image
reconstruction on a standard performance computer.

As the name suggests, DMDs consist of an array of microscopic mirrors
that can be individually controlled and can be tilted in two positions, in and
out of the optical axis (Figures 2.9). By feeding the DMD with binary patterns,
it is possible to create structured illumination/detection masks for CGI and
SPI, respectively. Besides generating binary patterns, the DMD also offers the
possibility to load 8-bit gray-level patterns employing pulse width modulation
(PWM).
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Figure 2.9: A close-up of a DMD’s active region. Adapted from (10)

2.2.1.4
LED Arrays

Although all examples described until this point consisted of an external
light source modulation, it isn’t the only option. Considering the architecture
of a structured illumination system (CGI), any form of illumination that allows
for 2D modulation of the light source whilst recording the modulation patterns
for later use could be used in principle.

Considering these boundary conditions, other systems have been pro-
posed to circumvent the limited frame rate of many SPC and CGI systems.
One of such systems consists of using 2D LED arrays for high-speed structured
illumination. By levereging the fast switching time of the LEDs and the use of
a orthonormal basis set like the Hadamard, there have been demonstrations of
systems with acquisition rates of to 1000fps (7).

2.2.2
Pattern Choice

The use of modulation patterns to generate spatial information is nothing
new. In the early days of mechanical televisions, a rotating Nipkow disk has
been used to extract spatial information of a scene. In this example, the signal
was measured as each of the holes rotated past the scene and shined upon a
detector, and line-by-line, this would construct an image. As discussed in the
previous section, the modern version of this approach uses a SLM to generate
and display a set of carefully chosen masks.

The most straightforward approach would be to mimic the concept of
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mechanical televisions and measure a single area per-pixel, raster scanning a
single pixel over the scene; Although this per-pixel measurement method works
well, it is highly inefficient and usually depends on high light levels. Another
approach is to use an orthogonal basis set to systematically sample a scene by
breaking it down its component spatial frequencies.

In this section, we’ll explore the most common sets of modulation masks
used in SPI systems.

2.2.2.1
Random Binary

One of the simplest ways to implement an SPC, other than raster
scanning, is to use random binary patterns. In this method, a SLM is used
to display masks of randomly generated binary patterns. As the modulated
laser light hits the detector, the overall signal intensity will be given by the
integrated signal coming from all-white pixels displayed by the SLM.

In this scenario, image reconstruction will be given by the sum of the
N2 × 1 binary masks weighted by the measurement signal:

IN2×1 =
N2∑
1
mk · PN2×1 (2-2)

Where, mk represents the photon count detected and P the N2 × N2

binary masks.
Although this method can be easily implemented, even without exter-

nally controlled SLMs (see pseudothermal modulation), it can take many it-
erations to reconstruct a low noise image (7). One way to improve image ac-
quisition is to use a differential measurement, which also captures the signal
corresponding to the negative modulation mask for each iteration. In this case,
the SNR is expected to improve and be less affected by fluctuations in the light
source. A differential signal acquisition can be described by:

I(x, y) = 〈(δmk − 〈δmk〉)〉〈(Pk(x, y)− 〈Pk(x, y)〉)〉 (2-3)

Wheremk represents the measured differential signal, Pk represents the k-
th pattern, and the angle brackets denote an ensemble average for k iterations,
1
M

∑
mk, where M is the number of measurements.

2.2.2.2
Hadamard Transform

While random binary masks can be easily implemented, the number of
M measurements required to reconstruct an image tends to be M >> N2,
where N2 is the number of pixels in the image. This inefficiency is a result of
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the number of repeated measurements that exist when randomly sampling a
scene.

One way to circumvent this issue is to use a method analogous to JPEG
compression, where the image is treated as sparse and is decomposed into
a set of coefficients of an orthonormal basis set. By sampling with binary
masks from a basis set, the image compression occurs simultaneously as the
sampling. As we’ll discuss in the next section, this approach enables the use
of compressive sensing techniques that may allow M<N2 measurements to
reconstruct a scene.

One of such orthonormal basis sets is the Walsh-Hadamard basis.
Hadamard patterns are a generalized example of Fourier transforms charac-
terized by being orthogonal with binary entries made up of either +1 or 1.
This transformation decomposes a signal into a set of orthogonal, rectangular
waveforms called Wash functions. A Hadamard basis set can be constructed
by:

H(21) =
1 1
1 −1

 (2-4)

H(22) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1

 (2-5)

H(2k) =
H(2k−1) H(2k−1)
H(2k−1) −H(2k−1)

 (2-6)

One of the advantages of Hadamard transforms is that they are closely
related to their inverse (H ·HT = nInd, with Ind being the identify matrix),
which enables image reconstruction without the need of matrix inversion,
lowering the computational demand.

For a Hadamard acquisition of a N2 pixel image (N × N), a N2xN2

Hadamard matrix is created (encoder). For each iteration, a row of the encoder
matrix is reshaped into the image size (N × N), generating a binary pattern
representing a set of frequencies (Figure 2.10). For each binary pattern, a
signal mk is captured from the single-pixel detector. A final image can be
reconstructed by multiplying the N2xN2 encoder by the N2x1 measurement
vector M to produce a one-dimensional vector of the output image, I, that
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Figure 2.10: A comparison of different modulation patterns used for single-
pixel imaging. In general random binary patterns will require a greater number
of measurements to reconstruct the image when compared to Hadamard and
Fourier basis sets. Adapted from (7)

can be then reshaped to the image size (N ×N):

I = H ·M

As with random sampling, a differential measurement can be applied to
improve the SNR. In a differential approach, for each iteration, a measurement
is taken for both the Hadamard binary mask and its negative (−H). Although
this method requires twice the number of patterns, it can account for offsets in
the image caused by variations in the background or source illumination (7).

By sampling with an orthonormal basis, the number of displayed patterns
can be reduced and still enable recovering of an image. In Figure 2.11 we see
the effects of reducing the number of patterns used in the image reconstruction
when compared with ground truth by calculating the Power signal-to-noise
ratio (PSNR), defined as (7):

PSNR = 10× log10
MAX2

IGT

MSE
(2-7)

Where the mean squared error (MSE), is given by (7):

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

(IGT (i, j)− I(i, j))2 (2-8)

In the Hadamard spectrum, the zero-frequency component in the top left,
and the maximum frequency in the lower right. As we see in Figure 2.11, as
the number of sampling patterns decreases, the image quality also decreases,
but it’s still possible to distinguish the object. This sampling effect can be
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Figure 2.11: The effect of the reduction of the number of patterns in the image
reconstruction done with Hadamard and Fourier basis sets. Adapted from (7)

interpreted as reducing the number of pixels in the image as the number of
Hadamard patterns is decreased.

2.2.2.3
Fourier Basis

Besides the Hadamard basis, other sampling schemes have been proposed.
In Fourier encoding, the pattern sets are constructed from greyscale masks. In
this case, for a square image consisting of N2 pixels, the masks are created for
spatial frequencies 0 to (N − 1) in both x and y dimensions and frequencies u
and v. Each pattern P (u, v) is given by (7):

P (u, v) = cos(2π(ux
N

+ vy

N
) + φ) (2-9)

Given that the intensity signal is insufficient to reconstruct an image,
a phase measurement is performed by changing the phase term between four
different values spaced between 0 and 2π. The Fourier spectrum component
F (u, v) for the spatial frequencies u and v are is defined as (7):

F (u, v) = (Dπ −D0)− i(D 3π
2
−Dπ

2
) (2-10)
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Where Dφ represents the intensity measurement of each pattern P with
a phase φ.

In this method, final image reconstruction is given by applying an inverse
Fourier transform. As with the Hadamard encoding, the Fourier basis allows
filtering of the number of patterns needed to reconstruct the image. Figure
2.11 compares the effect of sampling reduction between the two modes.

2.2.3
Image Acquisition and Reconstruction

As introduced in section 2.2, a SPI measurement can be summarized as:

1. Illuminating a scene and shining the light over a SLM;

2. Generating patterns in the SLM to encode spatial information of the
scene;

3. Collecting the encoded light from the SLM into a detector and measuring
the correspondent signal;

4. Using the set of mask patterns and signals to decode the scene’s spatial
information and reconstruct an image.

In the previous sections, we’ve discussed each of these steps and how they
are related. In this section, we’ll provide an in-depth overview of three scanning
techniques used in the SPI system implemented in this work, discussing each
method from both the acquisition and reconstruction perspectives.

2.2.3.1
Raster Scan

Raster scanning consists in measuring each pixel (or set of) individually
and recording the corresponding signal from the detector.

Acquisition:
Raster scan image acquisition is given by generating 2D binary masks

that contain a single white pixel in the position (i, j) of the N ×N mask. For
each iteration, a different pixel is set to ’on’ while the rest of the mask is kept
’off’, and the correspondent signal is recorded by the detector.

Reconstruction:
The final reconstruction will be given by the sum of the unitary patterns

multiplied by their respective signal:

IN2×1 =
N2∑
1
mk · P k

N2×1 (2-11)
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Where P k represents the k-th unitary mask and mk the corresponding
signal.

For a N×N image, a set of N2 measurements will be necessary for image
reconstruction, one for each pixel position.

2.2.3.2
Differential Hadamard Basis Scan

As discussed in section 2.2.2, an orthonormal basis set can provide a
more efficient way to encode and reconstruct an image in a SPI system by
sampling specific frequencies of a given basis and measuring the correspondent
coefficients.

From the various basis sets available for encoding, the Walsh-Hadamard
transform is one of the most widely used due to its simplicity and properties
that allow for image reconstruction without matrix inversion. A Hadamard
encoder can be operated in a differential measurement to decrease the noise
introduced by fluctuations in the scene illumination.

Acquisition
For a givenN×N square image, aN2×N2 Hadamard matrix is generated

as encoder. For each iteration, a 1 × N2 row of the encoder is selected and
reshaped to N × N to generate the mask pattern Pk. As the mask pattern is
displayed in the SLM, the correspondent measurement mk is recorded.

To achieve a differential measurement, the negative −Pk of each mask
pattern will be computed, and the correspondent measurement −mk will be
stored as well. The difference between both measurements will be calculated,
and a differential measurement δmk will be stored.

Finally, the averages of the differential measurements and mask patterns
will be subtracted from each measurement δmk and its corresponding pattern
Pk. The final differential signal can be described by:

I(x, y) = 〈(δmk − 〈δmk〉)〉〈Pk(x, y)− 〈Pk(x, y)〉)〉 (2-12)

Where δmk represents the measured differential signal, Pk represents
the k-th pattern, and the angle brackets denote an ensemble average for k
iterations, 1

M

∑
mk, where M is the number of measurements.

Reconstruction
For an image I, a set ofM measurements, and P patterns, we can describe

a basis scan measurement as:

MN2×1 = PN2×N2 · IN2×1 (2-13)

Considering the properties of a Hadamard matrix that:
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HHT = nInd (2-14)

with Ind being the identity matrix,
And

HT = H (2-15)
We can write,

HHT = n(HH−1) (2-16)

H = nH−1 (2-17)
Thus, given a Hadamard matrix H and the system:

MN2×1 = PN2×N2 · IN2×1 (2-18)

The reconstruction
H−1
N2×N2MN2×1 = IN2×1 (2-19)

Can be given simply by
1
n
HN2×N2MN2×1 = IN2×1 (2-20)

Thus, to reconstruct the image, a simple dot product must be calculated
between the differential Hadamard encoder and the correspondent differential
signals. For a N × N image, a set of N2 measurements will be necessary to
reconstruct the scene.

2.2.3.3
Differential Hadamard Compressive Scan

All acquisition modes described until now share the requirement of
M ≥ N2 measurements to allow image reconstruction, being N2 the number
of pixels in a N × N image. Considering that the number of measurements
required for image acquisition is one of the main limitations of SPI systems, it
would be beneficial if it was possible to approximate the scene with M < N2

measurements. One possible approach to allow subsampled images to be
correctly estimated is to employ a compressive sampling (CS) approach.

In CS, we consider that the image to be captured is sparse in the
frequency domain (i.e., that most frequencies will have zero elements, while
some dominant frequencies will carry out most of the information), similar to
the approach used in techniques like JPEG compression. In this case, instead
of compressing the image after acquisition, CS aims to compress the signal
during the sampling of a scene and store only the critical information required
for signal reconstruction.

In a traditional image compression, a camera acquires a picture of a scene
using N2 pixel array sensor. After sampling, the N2-pixel image is translated
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into a N2×1 image vector I and decomposed as coefficients of an orthonormal
basis (10):

I = ψα (2-21)
Where α represents the N2× 1 set of coefficients of the N2×N2 basis vectors
ψ.

The compression aims to find a basis set ψ such as α is sparse, that
is, only M < N2 coefficients are nonzero. After the basis set is defined, the
compression algorithm will store the information about the coefficients and
their locations and discard the rest.

The main disadvantage of this compression approach is that although we
strive to find a small number of M coefficients, N2 samples are collected and
its respective coefficients calculated. This means that although the full scene
information is stored, most of it will end up being discarded.

To circumvent these issues, CS aims to use a set of test functions to
sample a scene and directly acquire M < N2, such as a sparse image signal
can be recovered and used for image reconstruction.

In this case, we consider a set of M 1 × N2 test functions φm and their
respective measurements ym by the single pixel sensor, such as (10):

ym = 〈φm, I〉 (2-22)

We can represent the CS process by the linear system (10):

yM×1 = φM×N2IN2×1 = φψα (2-23)

Where, φ represents the M × N2 matrix of test functions (encoder
matrix), where the 1 × N2 test functions φm test functions are stacked as
rows. As we can see above, this transformation constitutes a dimensionality
reduction from N2 toM . CS aims to utilize test functions φ such as the sparse
vector α can be recovered (10).

Acquisition
In the CS framework used in this work, Hadamard matrices were used as

test functions. The measurement approach was the same discussed in section
2.2.3.3 where a differential measurement was used. The acquisition approach
used in this scan mode differs only in the number of measurements taken.
While in the Differential Hadamard Basis scan N2 measurements were taken
(equal to the number of pixels in the image), we acquire onlyM measurements,
where M ≤ N2.

Reconstruction
As we are trying to estimate the image with M ≤ N2 measurements, the

N2 × 1 coefficient vector α is longer than the M × 1 measurement vector M ,
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which means that there will be an infinite amount of solutions y∗that solve the
equation. To resolve this problem, convex optimization algorithms can be used
to minimize the linear problem and approximate the sparsest solution, i.e. the
solution where α has the lest amount of non-zero elements. In this work, we
used the CVXPY convex optimization library (11)(12).

Although to properly resolve this minimization problem a L0 norm would
be theoretically be required, it has been shown that the use of the L1 norm can
be used to approximate the image precisely or very closely in a computationally
scalable way (10). In this case, the minimization problem is given by:

min||α||1 (2-24)

Such that,
||φψα− y|| = 0 (2-25)

with the Ln norm defined as:

||x||n := (
n∑
i=1
|xi|p)1/p (2-26)

2.2.4
Applications and Current Trends

The versatility of single-pixel cameras comes from its system require-
ments. As long as there are point-based sensors and some way to spatially
modulate the incoming light, it should be possible to implement a SPI setup.
This flexibility has led these imaging systems to be applied to several use cases,
from multispectral imaging (4) to secure communications (13). In general, it’s
possible to bundle the many applications and advances of SPCs into one of
two categories: Acquisition and Reconstruction.

In the acquisition approach, the main concern is to enable imaging in
domains where traditional 2D arrays cameras are not widely available, such as
multispectral imaging, 3D imaging, etc. In reconstruction, the aim generally
revolves around improving the computational methods that recover the image
information.

In this section, we’ll provide some examples of SPC applications and
discuss how they can be used to enable new possibilities in image acquisition.

2.2.4.1
Multispectral Imaging

Multispectral imaging refers to image acquisition of multiple wavelength
ranges across the electromagnetic spectrum. Traditional multispectral cameras
require one or more sensor arrays capable of independently resolving or sep-
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Figure 2.12: An example of a gas leak image taken by a single pixel camera
tuned to the gas’ absorption frequency (a), the post processed and smoothed
image (b) and its superposition with a classical camera image to provide leak
localisation (c). Adapted from (14)

arating the channels corresponding to the different imaging bands. Although
these cameras have been available for quite some time, there are two main
disadvantages with these systems. Firstly, broadband sensors can be costly
and have limited availability. Secondly, when compared to their narrowband
counterparts, these sensors usually suffer from lower resolution and SNR.

On the other hand, by employing SPC, it’s possible to build multispectral
systems by operating multiple narrow single-pixel sensors in tandem. This
approach can use high-resolution sensors that are usually less expensive than
their 2D array analogues in exchange for computational complexity, which
is generally easier to scale. Furthermore, it’s possible to combine SPC with
traditional digital cameras to provide a lower resolution image overlay of
specific wavelengths of interest.

Figure 2.12 demonstrates a SPI system tuned to image in the absorption
spectra of methane gas. In this work, the low-resolution image coming from a
single pixel camera is combined with a digital camera to provide an overlay
capable of recognizing the position of gas leaks. With the high-resolution
camera proving accurate depiction of the scene, the SPC can be operated
in low resolution, allowing real-time operation (14).

Figure 2.13 demonstrates another setup where the light hitting a broad-
band detector is split into different wavelengths. Applying a compressive sam-
pling algorithm makes it possible to separate the information coming from
the different bands and reconstruct independent 2D images for multiple wave-
lengths (4).

2.2.4.2
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Figure 2.13: A multispectral single pixel imaging system capable of recon-
structing images of a color checker film in multiple frequencies. Adapted from
(4)

Figure 2.14: 3D reconstruction of an object using a single pixel camera.
Adapted from (3)

3D Imaging

Another area where single-pixel cameras can be applied is in depth
estimation and 3D imaging. In this scenario, multiple SPC are used to derive
2D images of a scene. From the differences in shading between the images, it’s
possible to derive the scene’s surface gradients and reconstruct a 3D image of
the object.

Figure 2.14 shows one example where multiple single-pixel detectors were
used together with a light projector to create 3D scans of an object (3). As
the different spatially separated sensors acquire the same structure patterns,
it’s possible to achieve pixel registration and compare the different images for
reconstruction.
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Figure 2.15: In a lensless image acquisition setup, a pulsed modulated light
source is used to illuminate a scene (a) and a ominidirection ultrafast sensor(s)
used to reconstruct the image given its relative position to the object (b).
Adapted from (15)

2.2.4.3
Lensless Imaging

SPC can also be employed in lensless imaging, where a single-pixel
detector is used to reconstruct a scene without the need for optical lenses.
In one implementation, the scene is illuminated with a pulsed light source
modulated with a mask. As the light hits an object and is reflected into
the detector, the time delay is used to estimate the reflected signal’s spatial
position. In this method, other SPC can be placed to improve the spatial
determination of the scene. Overall, this method allows lensless imaging with
fewer modulation patterns than regular non-time-tagged SPCs. Figure 2.15
shows a schematic of such imaging system (15).

2.2.4.4
Machine Learning and Image Reconstruction

One approach explored to improve SPC image acquisition is to use
machine learning approaches for image reconstruction. These methods aim
to use deep learning in the form of convolutional neural networks (CNNs)
to perform image reconstruction with fewer measurements than traditional
compressive sampling.

In deep-learning SPI, CNNs are trained to produce both the sampling
pattern to be displayed in the SLM and the reconstruction algorithm. Figure
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Figure 2.16: An example of a single-pixel imaging reconstruction using deep-
learning. (a) shows the reconstruction calculated using 4% sampling of a set
of Hadamard patterns, while (b) shows the reconstruction using a trained
neural network using deep-learned pattern sets. (c) shows examples of the
deep-learned patterns. Adapted from (7)

2.16 shown an example where this approach was used to reconstruct an image
using only 4% of the measurements, allowing for video-rate image acquisition
of higher resolution images.

As new reconstruction methods are explored and optimized, SPC be-
comes more widespread and can be applied to other use-cases.
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3
Experimental Implementation

In the last section, we introduced the theoretical framework behind
single-pixel cameras, their operation and provided details on the different
image acquisition methods used in this work. In this section, we’ll give
an in-depth look into the experimental implementation used in this study
and provide the rationale behind the choices taken, paving the way for the
discussion of the experimental results in Chapter 4.

3.1
Optical Setup

As introduced in chapter 2, single-pixel cameras rely on modulating
the illumination being shined upon a sample, storing information about
the modulating pattern, measuring the light-sample interaction, and finally
processing the arrays of patterns and their corresponding measurements to
reconstruct an image computationally. Figure 3.1 shows a diagram of the
system employed in this work and its components. In general terms, the system
can be described by :

1. Expanding the laser beam to cover the sampling area;

2. Cleaning the laser mode and collimating the beam;

3. Projecting the beam upon the sample and into the SLM active area;

4. Focusing the beam onto a single photon detector;

5. Converting and processing the signal from the single-photon detector and
the SLM modulation pattern to reconstruct the image.

This section will expand on each of these steps, providing further infor-
mation about how and why they were implemented in this work.

3.1.1
System Enclosure

In a system that relies on photon counts for image reconstruction, the
control of the stray photons hitting the detector becomes a significant concern.
To decrease the effect of illumination changes and improve the signal-to-noise
ratio (SNR) of the system, an enclosure was built around the main optical
components (Figure 3.2).
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Figure 3.1: A visual schematic of the optical implementation used in this work

Figure 3.2: To decrease the effect of stray light into the system, an enclosure
was constructed
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The enclosure’s structure was build from cardboard around the grey area
shown in Figure 3.2 and a tarp was placed on top of it to prevent outside light
from getting into the system. Due to size constraints, the optical path between
the laser and the first iris was left open, but tests didn’t seem to show it as a
problem, as most of the stray photons that get into the optical path will be
filtered out by the bandpass filter in the detector.

3.1.2
Beam Cleaning and Collimation

The first step towards implementing the SPI system is to make sure
that the incident illumination hitting the sample is big enough to cover the
sampling area and small enough to be contained inside the active region of
the spatial light modulator. To achieve those constraints, the laser beam was
first collimated through a Gaussian spatial filter composed of two confocal
lenses (30 and 500mm focus length respectively) with an iris placed in the
focal point Figure 3.3. The beam path was aligned so the laser light (Cobolt
Samba 150 532nm, Cobolt) would hit the iris’ center, cutting away part of
the noise and acting as a Gaussian filter. The ratio between the lenses’ focal
points was chosen to magnify and expand the beam size by a factor of 16.7
approximately. An optical chopper (SR540, Stanford Research Systems) was
added to modulate the laser light and gate the universal counter (53131A,
Agilent). After benchmarking the acquisition modes, the optical chopper didn’t
seem to improve the SNR much when compared to setting a constant gate time.
For simplicity, the synchronization between the counter and chopper was tested
and implemented in the automation library but ultimately was not used in this
work.

After passing through the spatial filter and being expanded, the laser
beam hits a secondary iris placed on the optical path (Figure 3.4 ). The use
of an auxiliary iris gives the user control of the beam diameter, which may be
increased or decreased as a function of the sample size to ensure that the size
constraints are respected.

3.1.3
Sample and Beam Modulation

The sample used in this work consisted of a 3D printed (Objet 30
Pro, Stratasys) optical target with a 1.5x1.5cm cross-shaped hole. The beam
diameter was set to cover the whole sample region. Before hitting the sample,
the incoming beam passes through a linear polarizer (Figure 3.5) to make sure
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Figure 3.3: The laser first goes through a light chopper (not used in this work)
and is then coupled into a Gaussian spatial filter to clean up the laser’s mode.

that the incoming line is linearly polarized. The polarizer’s angle was set by
maximizing the photon count hitting the detector.

After hitting the target, the beam hits the SLM’s active region (SDE1024,
Cambridge Correlators). Once hitting the SLM, the beam’s polarization will
be modulated as a function of the binary pattern displayed. Another linear
polarizer Figure 3.6 is set after the SLM to allow for amplitude modulation,
and its angle was determined to maximize and minimize the photon count
when white and black patterns were displayed in the SLM, respectively.

The SLM modulation is done via a VGA port connected to an external
computer. The computer recognizes the SLM as an external monitor and
modulates the liquid cristal active region as a function of the greyscale values
being displayed. The binary masks, and consequently the spatial modulation,
are constructed by displaying white (RGB: 255,255,255) or Black (RGB: 0,0,0)
pixels in different regions of the SLM’s digital monitor.

3.1.4
Detection and Information Processing

After being modulated, the beam is focused (f=250mm) onto an iris
(Figure 3.7) to remove unintended diffracted light coming from the SLM,
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Figure 3.4: An image showing the disposition of the optical elements inside the
enclosure.

capturing only the light traveling through the optical path. To improve the
SNR and decrease the number of stray photons getting into the detector, a
bandpass filter (λ=532nm, Line Width = 10nm) was added after the iris. After
hitting the iris and the bandpass filter, the incoming light is coupled into an
optical fibre and taken to a single photon detector (ID100, ID Quantique).

To count the number of photons being detected as a function of time,
the detector was connected to a universal counter (53131A, Agilent). When
a photon hits the detector, it outputs a square-wave signal inputted into
the counter and represents one count. The counter will then totalize the
number of counts inside a given gate time and average then along with a
given measurement time window.

To store the number of photon counts for a given measurement and allow
for the correlation with the binary masks displayed in the SLM, a GPIB-
USB instrument control device is connected to the counter ( GPIB-USB-HS,
National Instruments), allowing for control through a computer. To interface
with the GPIB-USB controller, the pyvisa (16) library was used.

3.2
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Figure 3.5: The object consists in a 3D printed target placed in the optical
axis.

Figure 3.6: The spatial light modulator used in this work
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Figure 3.7: The detector assembly consisted of an iris, bandpass filter and fibre
coupler taking the incoming light to a single photon detector.

Python Single Pixel Imaging Library

As described in the previous sections, the operation of a single-pixel
camera relies not only on an optical setup but also on an external controller
that sets the light source modulation and synchronizes it with the detection
system. The controller needs to present the SLM with a set of modulation
masks, record the number of photons detected as a function of the masks,
and use these mask-photon count pairs to reconstruct the images using the
methods described in Chapter 2.

In this work, an external computer (Macbook Pro 2019, Apple) was used
for instrument control by using the PyVisa library (National Instruments) in
a python environment running in a jupyter notebook. During this study, a
set of algorithms were created to allow for measurement and reconstruction of
images using the raster, basis, and compressive scanning modes. The library
was structured to allow for future extension and implementation of new
measurement modes and encoding masks.

In this section, we’ll explain the rationale behind the implementation
of the library, the main code used to run the experiments, and an in depth
overview of the implementation of the three acquisition modes, showing, when
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possible, where the library could be extended to allow for future functionality.

3.2.1
Acquisition Modes Implementation

In terms of instrument automation, the only two parts of the system
that depend on external control are the SLM and the detector. The single-
photon sensor depends on an external counter for totalizing the number of
photons hitting the detector in a given moment and storing that information
as a vector, while the SLM relies on the choice of binary masks for modulation.

The detector class (code block 1) corresponds to the python class
responsible for sending commands to the universal counter by USB-GPIB
interface and storing the measurement information in NumPy arrays. This
class can be broken down into three components:

(i.) Initialization: The class initialization given by the "__init__"
command sets the instrument parameters used by the universal counter. In
these experiments, the counter was operated in channel 1, with DC coupling,
50 impedance, and 10000ms timeout.

(ii.) Timed Measurement: The timed totalization measurement func-
tion given by the “measure_gate” class function. This function takes in
two input parameters, the "gate" and "meas_time". The "gate" param-
eter corresponds to the gate time that the counter will use, i.e., the time
during which the counter will totalize the counts coming from the detector.
The "meas_time" corresponds to the total measurement time in which the
counter will be gated, and the results averaged. In an experiment that uses
0.1ms gates and 1ms measurement time, for example, that would mean that
the detector would totalize the number of photons counted in each 0.1ms gate
10 times up to a total time of 1ms when it would average the gate measure-
ments and return a single value and its standard deviation.

(iii.) Externally Gated Measurement: The externally gated mea-
surement function given by the “measure_external” class function. This
function takes in one input parameter, "n", which corresponds to the number
of repetitions. In this measurement mode, an external TTL signal is used to
externally gate the universal counter and used to start and stop a totalization
measurement, when the measurement will then be repeated n times. In the
case of an optical chopper connected to the universal counter, the chopper’s
frequency will define the gate’s window and will trigger the counter. Normally
this measurement mode would be preferred to increase the signal-to-noise-ratio
(SNR), but due to limitations with the SLM used in this work, the SNR didn’t
seem to improve. Due to its higher complexity and the lack of synchronization
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port in the SLM, this mode was ultimately not used in this work but was
implemented to allow for future improvements in the system.

Code Block 1: Detector Class

class detector:
def __init__(self):

rm = visa.ResourceManager()
universal_Counter_GPIB = rm.list_resources()[0]
self.Counter = rm.open_resource(universal_Counter_GPIB)
self.Counter.timeout = 10000
self.Counter.write(":INPut1:IMPedance 50")
self.Counter.write(":INPut1:COUPling DC")
self.Counter.write(":EVENT1:LEVEL 2")

def measure_gate(self, gate, meas_time):
self.Counter.write(":CONFigure:TOTalize:TIMed")
crr_time = time.time()
data = []
while (time.time() - crr_time) < meas_time:

data.append(float(
self.Counter.query(":MEASure:TOTalize:TIMed? {}".format(gate))))

data = np.array(data)
data_stats = np.mean(data), np.std(data)
return data_stats

def measure_external(self, n=1):
data = np.zeros(n)
for i in range(n):

self.Counter.write(":TOTalize:ARM:SOURce EXTernal")
self.Counter.write(":TOTalize:ARM:STOP:SOURce EXTernal")
self.Counter.write(":INITIATE")
data[i] = float(self.Counter.query(":FETCH?"))

return np.array([data.mean(), data.std()])

The SLM used in this work doesn’t have any external control ports, hav-
ing only a VGA interface. When connected to a computer, it will recognise the
SLM as an external monitor, and graphics projected on it will be converted
to grayscale and used to modulate the active region. Considering these limi-
tations, the general mode of operation relies on generating binary masks on a
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GUI window and projecting them on the SLM’s monitor, which is controlled
by class (code block 2). This class is composed of three class methods:

(i.) Initialization: The "__init__" class method will create a new
window with a size equal to the SLM’s resolution (800x600 pixels). When the
window is first created, it will project a solid greyscale color (the greyscale
given by the k value), allowing for the projection of totally white or black
masks used for optical alignment.

(ii.) Mask Projection: The "ShowArray"method will take a 2D array
as input and project it to the SLM’s screen. In case the input array’s shape is
different from the SLM’s resolution, it will be padded with black pixels around
it. In this work, all binary masks used are N ×N square masks, which means
that black padding will always be projected around the masks.

(iii.) Exit: The exit class method is used to close all GUI windows and
stop the measurements.

Code Block 2: SLM Class

class slm:
def __init__(self, resolution = (600,800), k=255,
native_res=(800,600)):

self.resolution = resolution
self.native_res = native_res
self.slm_window = 'SPI Mask Generator'
cv2.namedWindow(self.slm_window, cv2.WINDOW_NORMAL)
mask = np.ones(self.resolution)*k
mask_show = cv2.resize(mask.astype('uint8'), self.native_res)
cv2.imshow(self.slm_window, mask_show.astype('uint8'))
cv2.waitKey(0)

def ShowArray(self, array, native_res=(600,800)):
out = np.zeros(native_res)
out[:array.shape[0], :array.shape[1]] = array
cv2.imshow(self.slm_window,out)
cv2.waitKey(1)

def exit(self):
cv2.destroyAllWindows()

The Detector and slm classes are the building blocks of the instrument
automation. In the subsections below, we’ll go through the implementation of
each measurement function and how they use these methods described above.

DBD
PUC-Rio - Certificação Digital Nº 1812686/CA



Chapter 3. Experimental Implementation 51

3.2.1.1
Raster Scan Implementation

Raster scanning depends on setting each pixel individually to white, one
at a time, and recording the correspondent photon counts. Whilst projecting
each pixel separately is best for the measurement resolution, it will decrease
the number of photons being collected at each iteration, decreasing the SNR.
The raster scan implementation allows the binning of pixels to increase the
measurement area per iteration by reducing the overall resolution to allow
more refined control of the tradeoff between SNR and resolution.

As will be the case in the other modes, before being projected onto the
SLM’s display, the N × N binary masks will need to be resized to fit the
SLM’s resolution. To account for this difference in resolution, all measurement
modes have a corresponding auxiliary function responsible for upscaling the
N×N binary masks to fit into the SLM’s display area. In the case of the raster
scan mode, this functionality is given by the "generate_encoded_raster"
function (code block 3).

Code Block 3: Raster Scan Encoder

def generate_encoded_raster(self, n, idx, native_res=(600,800)):

seed = np.zeros((n, n))
seed.ravel()[idx] = 1

y_size = int(native_res[0]/n)
x_size = int(native_res[1]/n)
shape = min(y_size, x_size)

encoded = np.repeat(seed.repeat(shape).reshape(n,n*shape), shape, axis=0)

return encoded

The "generate_encoded_raster" function takes as input the binary
mask size (n) and the corresponding pixel index and generates the correspon-
dent binary mask. The upscale factor is calculated as a function of the mask’s
and SLM’s resolution and used to generate a larger N ×N mask that will be
projected onto the SLM (code block 3).

The measurement itself is carried out by the "raster_scan" function.
This function takes as input the N × N image size (n) and the gate and
measurement times. For an N×N image, the "raster_scan" function iterates
the "generate_encoded_raster" function to create a binary mask that
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contains a single (or binned) white pixel and project it to the SLM. Once
projected, the SLM modulates the laser light, and the universal counter
totalizes the gate counts during the total measurement time. Each average
count is then assigned as a value for that given pixel (or set of), allowing image
reconstruction just by presenting the pixel values in a 2D array (code block
4). As each pixel is acquired individually, the total number of measurements
will be equal to the total number of pixels in the image (N2).

Code Block 4: Raster Scanning Mode

def raster_scan(self, n, gate=.1, meas_time=.5, Save=True):

pd = detector()
image = np.empty((n, n))
for i in tqdm.tqdm_notebook(range(n**2)):

crr_mask = self.generate_encoded_raster(n, i)*255
self.ShowArray(crr_mask)
image.ravel()[i] = pd.measure_gate(gate, meas_time)[0]

if Save==True:
encoded = np.ones((n, n))
counts = image
save_measurement(encoded, counts, image)

return image

3.2.1.2
Hadamard Basis Scan Implementation

As previously discussed, in this work, we employ a Hadamard transform
as an encoder to allow for a more effective sampling of the scene. While being
the only mask encoder available in the current implementation of the PySPI,
the code was written to allow for easy implementation of other transforms for
image sampling. Independently of the transform used, as was the case in the
raster scan, we’ll have a set of mask generating and measurement functions for
each measurement mode.

The mask generation is given by the "generate_encoded_hadamard"
function. This function takes as input the N×N image size (n), the mask index
(idx) and the seed encoder matrix (encoded). In the Hadamard transform,
the encoder matrix corresponds to an N2 × N2 Hadamard matrix generated
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by the Numpy Walsh-Hadamard function. For each iteration, a column of the
encoder matrix will be chosen (idx) and will be reshaped to a N×N 2D array
representing one of the transform’s frequencies. This reshaped column will be
upscaled as a function of the SLM’s resolution and projected (code block 5).

Code Block 5: Hadamard Basis Scan Encoder

def generate_encoded_hadamard(self, n, idx, encoded, native_res=(600,800)):

seed = encoded[idx]

y_size = int(native_res[0]/n)
x_size = int(native_res[1]/n)
shape = min(y_size, x_size)

encoded = np.repeat(seed.repeat(shape).reshape(n,n*shape), shape, axis=0)

return encoded

As discussed in chapter 2, the implementation of a differential mea-
surement can improve the SNR by compensating for fluctuations in the
illumination. The implementation of such measurement is done by the
"basis_scan_diff_hadamard_timed". This function will compute the
N × N basis scan image of the scene by iteratively calling the "gener-
ate_encoded_hadamard" function to generate a given 2D Hadamard bi-
nary mask (representing one of the frequencies) from the N2 ×N2 Hadamard
encoder and measuring the respective number of photons in a timed measure-
ment. A similar measurement will be acquired after each iteration for the nega-
tive binary mask and the difference between the counts computed (differential
counts). Subsequently, the mean of the set of differential counts and encoder
will be subtracted from the respective arrays. Finally, the dot product will
be computed between the differential Hadamard encoder (encoder minus its
mean) and the differential counts (differential counts minus its mean). The fi-
nal array is then reshaped into a N×N array that represents the reconstructed
image (code block 6). As was the case of the Raster Scan measurement, image
reconstruction will require a total of measurements equal to the number of
pixels in the image (N2).

Code Block 6: Hadamard Basis Scanning Mode

def basis_scan_diff_hadamard_timed(self, n, gate=.1, meas_time=.5, Save=True):
pd = detector()
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encoded = la.hadamard(n**2)
# np.save('hadamard_mask', encoded)
counts = []

for i in tqdm.tqdm_notebook(range(n**2)):
crr_mask = ((self.generate_encoded_hadamard(n,
i, encoded) -(-1))/(1-(-1)))*255

self.ShowArray(crr_mask)
photon_count = pd.measure_gate(gate, meas_time)[0]
# photon_count = np.random.random()*10000

self.ShowArray(1-crr_mask)
photon_count_inv = pd.measure_gate(gate, meas_time)[0]
# photon_count_inv = np.random.random()*10000

diff_count = photon_count - photon_count_inv
counts.append(diff_count)

encoded_mean = encoded.mean(axis=1).reshape(n**2,1)
diff_encoded = encoded - encoded_mean
diff_counts = np.array(counts).reshape(n**2, 1)
diff_counts = diff_counts - diff_counts.mean()
reconstruct = np.dot(diff_encoded, diff_counts).reshape(n, n)

# np.save('photon_count', diff_counts)

if Save==True:
save_measurement(encoded, diff_counts, reconstruct)

return reconstruct

Although this code is meant for the Hadamard transform, the "gen-
erate_encoded_hadamard" function could be modified to take as in-
put other transform encoders as seed (eg. Fourier, Cosine) and the "ba-
sis_scan_diff_hadamard_timed" modified to use these new transforms
for the measurements. In the future, the PySPI library could allow for the im-
plementation of different transforms, allowing for further work on how different
transforms affect the basis scan measurement.
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3.2.1.3
Hadamard Compressive Sensing Implementation

The compressive sensing imaging mode follows the same implementation
rationale as the basis scan, differing only in the image reconstruction algo-
rithm employed. In the case of the compressive measurement, an additional
input (M) is given to the measurement function, representing the number of
measurements that will be acquired to reconstruct the N ×N image. If M is
set equal to the number of pixels in the image (N2), the result given by the
compressive sensing algorithm will converge to that of the basis scan mode
(code block 7).

In the compressive mode, the reconstruction algorithm will recreate the
scene from M ≤ N2 measurements. As previously discussed, this reconstruc-
tion can be done by minimizing the L1 norm of the inverse linear problem
M = P · I, where P is the differential encoder matrix, I the N2 × 1 image
vector, and M the differential count array.

Code Block 7: Compressive Hadamard Scanning Mode

def compressive_scan_diff_hadamard_timed(self, n, m, gate=.1,
meas_time=.5, Save=True):

pd = detector()
encoded = la.hadamard(n**2)
counts = []
encoded_m = encoded[:M,:]

for i in tqdm.tqdm_notebook(range(m)):
crr_mask = ((self.generate_encoded_hadamard(n,
i, encoded) -(-1))/(1-(-1)))*255

self.ShowArray(crr_mask)
photon_count = pd.measure_gate(gate, meas_time)[0]
# photon_count = np.random.random()*10000

self.ShowArray(1-crr_mask)
photon_count_inv = pd.measure_gate(gate, meas_time)[0]
# photon_count_inv = np.random.random()*10000

diff_count = photon_count - photon_count_inv
counts.append(diff_count)

DBD
PUC-Rio - Certificação Digital Nº 1812686/CA



Chapter 3. Experimental Implementation 56

encoded_mean = encoded_m.mean(axis=1).reshape(m,1)
diff_encoded = encoded_m - encoded_mean
diff_counts = np.array(counts).reshape(m, 1)
diff_counts = diff_counts - diff_counts.mean()
diff_counts_m = diff_counts.squeeze().reshape(m, 1)

try:
vx = cvx.Variable((n**2,1))
objective = cvx.Minimize(cvx.norm(vx, 1))
constraints = [encoded_m*vx == diff_counts_m]
prob = cvx.Problem(objective, constraints)
result = prob.solve(verbose=True)
reconstruct = np.array(vx.value).squeeze().reshape(n,n)

except:
print('Could not Reconstruct')

if Save==True:
save_measurement(encoded_m, diff_counts_m, reconstruct)

return reconstruct

In code block 7 we see that the reconstruction starts by setting the
N2 × 1 image vector as a variable for our linear problem (vx) and the L1
norm as the minimization objective (objective). The Ax = B linear problem
is set (constraints) from the M differential encoder and count measurements
acquired during the scan (encoded and diff_counts, respectively). The
algorithm will then try to minimize the L1 norm of the set problem and
approximate the N2 × 1 image vector (result). Finally, if the minimization is
successful, the image vector is reshaped into a N ×N 2D image and returned.
In case theM number of measurements isn’t enough for image approximation,
the function will return an error.
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4
Results

As stated in chapter 1, this study aimed to provide a proof of concept of
these novel imaging systems and build the foundations (both experimentally
and computationally) that would allow further work in this research area. In
the upcoming sections, we’ll discuss the results obtained and demonstrate the
system’s functionalities and its limitations.

Section 4.1 will start by discussing the experiments carried out to
characterize the system and to define the operational parameters used in the
final dataset. Section 4.2 will then discuss the results obtained in the Raster
and Basis scanning modes and how they compare with each other. Afterward,
in Section 4.3, the focus will be given to the compressive Hadamard scanning
mode and how its experimental parameters affect the final image acquisition.

4.1
System Characterization

Although the imaging modes described in this work use different im-
age acquisition methods and restoration, they all depend on the binary mask
modulation and photon counts provided by the SLM and detector, respectively.
Considering this shared backend, before we can go ahead towards image ac-
quisition and mode comparison, it’s necessary to understand how the different
experimental parameters affect the overall acquisition and to benchmark the
capabilities allowed by the current experimental implementation.

In a nutshell, when optimizing the system’s parameters, it’s necessary to
maximize the contrast between the photon counts given by white and black
pixels, and minimize the total acquisition time. The former is necessary to
ensure that the photon counts measured as a function of a given binary mask
are primarily due to the white pixels in the modulation pattern, an essential
requirement to allow image reconstruction. The latter is necessary to ensure
that images can be captured in a reasonable time, as when measuring an N×N
image, usually, N2 measurements are needed.

To allow for optimization of these constraints, a curve was constructed
by modulating the SLM with masks of solid greyscale color of increasing values
ranging from black (RGB: 0,0,0) to white (RGB: 255,255,255) and measuring
the respective photon totalization counts in different gate values.

Figure 4.1 shows the greyscale curves associated with different gate set
points whilst maintaining a constant total measurement time of 1s. In Figure
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4.1A, we see that a longer gate time leads to more accumulated counts when
compared to shorter times. This offset in photon counts is expected as the
photon flux reaching the detector is constant, and its order of magnitude
ranges from around 100K photons/s to 10M photons/s for black and white
masks, respectively. When normalizing the curves (Figure 4.1 B), we see that
the overall curve shape remains the same regardless of the gate time, showing
the differences only as an offset. Considering these results, we can attest that
the SLM modulates the incoming light in a similar way in the parameter ranges
chosen for this work. All in all, given the proportion of the photon flux in black
and white pixels, we should expect a SNR in the order of magnitude of 100x.
In this case, the SNR comes from the optical system itself and is limited by
the maximum amplitude modulation that the SLM/Polarizer set can achieve.

After ensuring that the SLM’s modulation response was comparable
between different gate setpoints, the question of which gate and measurement
times to use in image acquisition arises. Figure 4.2A shows how the integration
time affects the counts hitting the detector and the overall SNR when the
gate time is maintained constant at 10ms. The integration time seems to have
little to no effect on the counts, maintaining the SNR primarily constant.
This response is expected as an increase in the measurement times means
essentially that there will be a larger number of gates being averaged, affecting
predominantly the estimation of the mean. The experiments showed that even
for low measurement times (0.1s) the SNR didn’t seem to fluctuate much. The
average SNR from all counts was calculated to be (133 +- 1.4).

Following the study of the effects of the total measurement time, a
similar study was carried out for the gate time, maintaining the integration
at 1s. Figure 4.2B shows that longer gate times lead to higher photon counts,
whilst the SNR remains mostly constant around 130x. This response seems to
corroborate the findings in the greyscale curve analysis, as we are seeing only
an offset of the photon counts while the response remains the same.

Once measuring these parameters’ effects on the SNR, experiments
followed to describe what those results meant for image acquisition properly.
Figure 4.3 shows the impact of the integration and gate times in the basis scan
mode for an image of 16 by 16 pixels whilst maintaining the other parameter
constant, just as before. All images in Figure 4.3 were normalized between 0
and 1 to allow for proper comparison. As shown in the figures below, there isn’t
much difference between the images, as the normalization would compensate
for the offset caused by different gate times.

Considering the results obtained, a gate time of 10ms and an integration
time of 100ms were determined to be a good compromise and defined as the
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Figure 4.1: Effect of the gate time in the greyscale response curve of the spatial
light modulator when maintaining the total measurement time constant at 1s.
Although larger gate times yield more photon counts (a), when the curves are
normalized, the overall shape stays the same (b).
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Figure 4.2: The effects of the integration (a) and gate (b) times on the overall
signal to noise ratio.
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parameters for subsequent acquisitions.

4.2
Raster and Basis Scan

Before moving to a compressive measurement, we first needed to char-
acterize the image acquisition in the non-compressive modes, i.e., raster and
basis scanning. With the gate and integration parameters defined as described
in the last section (10ms and 100ms, respectively), several NxN square images
with sizes ranging from 8x8px to 128x128px were capture using these modes
(Figure 4.4).

Figure 4.4A compares the normalized image acquisition between the
raster and basis scanning. Overall, the SNR seems dependent on both the
image size and the scanning mode. In terms of the image resolution effect,
the SNR seems to be inversely proportional to the acquisition size, with
larger images appearing to have lower contrasts and more noise, which would
make sense given that each binned pixels would be receiving less light. When
comparing both modes, the raster scan leads to clearer images and less noise
when compared to the other, but the SNR seems to decrease at a higher rate.
When comparing the 128x128px image, we see that although the target is
occluded in the raster scan measurement, it can still be distinguished in the
Hadamard scan. Another issue in the Hadamard scan is the appearance of
fringes on the image resembling interference patterns not present in the raster
scan. One possible explanation for the appearance of the interference patterns
is the laser light’s coherence. As the light is reflected by different pixels within
the SLM, the beams interfere with each other and cause the patterns to show.
In the case of a raster scan measurement, as only one pixel (or binned set) is
being used per iteration, the interference is decreased. Figure 4.5 shows the
values of the linearized image (with the pixels of the image distributed along
the x axis) array for all cases and how the noise floor changes as a function of
each acquisition.

To better gauge how distinguishable the cross-shaped target is in these
images, a binary segmentation was calculated using the Yen algorithm from
the sci-kit image python library (Figure 4.4B). In these results, it’s possible to
see that this simple binarization allows, in most cases, to clearly distinguish
the cross-shaped target, the only exception being the 128x128px raster scan
image. Here again, we see that although the overall contrast generated in the
raster scan measurement is greater, the Hadamard basis scan measurement
scales better with the increase in resolution. Again, it’s possible to distinguish
clear interference patterns in the Hadamard scan, which are not present in
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the other mode. These binary images show the promise of the SPI system,
as additional post-processing steps could be implemented (e.g., morphological
reconstruction and machine learning classification) to allow for detection of
the target even with a small set of measurements.

Finally, when comparing the acquisition time, we see that the Hadamard
basis scan takes longer, with a total acquisition time 2x the one found in the
raster scan (Figure 4.6). This longer acquisition is expected as the differential
Hadamard scan will carry out two sets of measurements (mask and its inverse)
for each mask, whereas the raster scan will only acquire one.

4.3
Compressive Hadamard Scan

As discussed in Chapter 3, the Hadamard compressive sampling scan
relies on the same measurement algorithm as the basis scan discussed in
Section 4.2, differing only in the image restoration step. In this section,
we’ll demonstrate how the compressive sensing of the scene enables the
reconstruction of the target’s shape with fewer measurements and discuss how
it compares with the other modes.

As introduced in section 3.2.1.3, the compressive scan works by acquiring
M ≤ N2 measurements of the scene and applying an optimization algorithm to
estimate the image vector. To allow a fair comparison with the results obtained
in the basis scan measurement, the compressive reconstruction was applied to
the set of encoders and associated photon counts acquired in the measurements
in Section 4.2.

Code block 8 shows the reconstruction code used to compressively
reconstruct the dataset from the basis scan measurement. In summary, given
that the acquisition code is the same for both modes, a set of measurementsM
(and its respective masks) were selected from the N2 measurements in the basis
scan dataset and used as input to the reconstruction algorithm. Subsequently,
the RMSE between the compressively reconstructed images and the basis scan
image (equivalent to a sampling ratio of 100%) was calculated.

Code Block 8: Compressive Sampling Reconstruction

def spi_image_reconstruct(encoded, counts, pixel_size, sampling, verbose=True):
N = int(pixel_size**2)
M = int(pixel_size**2 * sampling)

encoded_m = encoded[:M,:]
counts_m = counts[:M].squeeze().reshape(M,1)
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vx = cvx.Variable((N,1))
objective = cvx.Minimize(cvx.norm(vx, 1))
constraints = [encoded_m@vx == counts_m]
prob = cvx.Problem(objective, constraints)
result = prob.solve(verbose=verbose)
Xat2 = np.array(vx.value).squeeze()

return Xat2.reshape(pixel_size, pixel_size)

Figure 4.7 shows how the sampling ratio affects the image acquisition
as a function of the image size. It’s possible to see both a dependency of
the sampling ratio and image size in the image quality. As expected, the more
measurements are taken into account, the closer the reconstructed image comes
to the reference image. When comparing different resolutions, it seems that
images with a larger number of pixels need fewer measurements to allow for
image reconstruction. To provide a quantitative account, Figure 4.8 shows the
calculated RMSE as a function of the sampling ratio and image size. The
RMSE appears to decrease linearly as a function of the sampling ratio, while
the image size reduces the number of measurements required to arrive at the
same value.

To understand how these effects affect the final image quality and its
capacity to distinguish the target, images with sizes ranging from 8x8px to
64x64px were reconstructed with sampling ratios between 0.1 and 1. Also, to
provide a better account of the distinguishability of the target, the images were
binarized using the same segmentation algorithm as in Section 4.2 (Figures 4.9
4.10, 4.11, 4.12).

Looking at the binarized images, it’s possible to corroborate that larger
images allow the target reconstruction with fewer measurements. While in the
8x8px image, a sampling ratio of 60-70% seems to be required to discern the
target, in the 64x64px image, a ratio of 30-40% is enough.

Finally, when we consider the acquisition time, it decreases linearly as
a function of the sampling ratio, as expected (Figure 4.13). Compared to
raster scanning, a sampling ratio downwards or equal to 50% is necessary
to make it faster than an equivalent raster scan. As we’ve shown in the images
above, for images larger or equal to 16x16px, a sampling ratio between 40-
50% is achievable, making the compressive sampling the faster approach. That
said, it is expected that an increase in SNR and post-processing techniques
would further decrease the sampling ratio necessary for image reconstruction,
potentially allowing the compressive scan to be the faster approach in smaller
images.
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Figure 4.3: The effects of the integration (a) and gate (b) times on the image
acquisition.
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Figure 4.4: Comparison of the image acquisition from the raster and basis
scanning modes. (a) shows the normalized image reconstruction. (b) Shows the
output of the imaged after binarization with a Yen thresholding algorithm.
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Figure 4.5: Comparison of the linearized (pixels of the image distributed along
the x axis) intensity of the normalized images acquired from the raster and
basis scanning modes and the respective noise floors.
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Figure 4.6: Comparison between the acquisition time from the raster and basis
scanning modes for different image sizes.
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Figure 4.7: Effect of the sampling ratio on the image reconstruction from
a compressive sampling acquisition mode (a) shows the normalized image
reconstruction for different sampling rations. (b) Shows the output of the
imaged after binarization with a Yen thresholding algorithm.
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Figure 4.8: The RMSE of the image reconstruction as a function of the
sampling ratio with respect to a 100% sampled image.
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Figure 4.9: Effect of the sampling ratio on a (8px, 8px) image reconstruction
from a compressive sampling acquisition mode (a) shows the normalized image
reconstruction for different sampling ratios. (b) Shows the output of the imaged
after binarization with a Yen thresholding algorithm.
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Figure 4.10: Effect of the sampling ratio on a (16px, 16px) image reconstruction
from a compressive sampling acquisition mode (a) shows the normalized image
reconstruction for different sampling ratios. (b) Shows the output of the imaged
after binarization with a Yen thresholding algorithm.
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Figure 4.11: Effect of the sampling ratio on a (32px, 32px) image reconstruction
from a compressive sampling acquisition mode (a) shows the normalized image
reconstruction for different sampling ratios. (b) Shows the output of the imaged
after binarization with a Yen thresholding algorithm.
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Figure 4.12: Effect of the sampling ratio on a (64px, 64px) image reconstruction
from a compressive sampling acquisition mode (a) shows the normalized image
reconstruction for different sampling ratios. (b) Shows the output of the imaged
after binarization with a Yen thresholding algorithm.
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Figure 4.13: Comparison between the acquisition time from the raster and
compressive scanning modes for different sampling ratios.
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5
Conclusion

This study aimed to develop a proof of concept of a SPI system and
create a framework that would allow this topic to be further studied. To that
objective, we’ve discussed the theoretical foundations necessary to understand
a SPI system, described and implemented an optical setup to carry out such
measurements, and finally, developed an open-source python library for system
control and automation.

After identifying the raster, basis, and compressive scanning modes as
the fundamentals of the single-pixel image acquisition, we have implemented
and demonstrated the use of all three modes for scene detection.

Although the raster scan measurement yields faster and less noisy results,
the basis scanning mode allows for imaging in higher resolutions. When using a
compressive sampling approach, it’s possible to achieve faster image acquisition
when compared with the raster scan for images sizes larger or equal to 16x16
px. Considering these results, the compressive sampling approach seems to be
the best candidate for imaging higher resolution images in a relatively short
time compared to the other modes. Here, we have also demonstrated how
experimental parameters such as the integration time, gate time, sampling
ratio, and image size affect image quality and object occlusion.

During this study, we have identified several areas that could be further
developed to yield better results. In terms of the optical system, it became clear
that the current implementation is limited by the overall SNR, and improve-
ments in this area could significantly impact the compressive measurements,
allowing scene reconstruction with fewer acquisitions. It was also discussed
how improvements in the PySPI library could allow for further exploration of
new encoding bases and post-processing techniques for scene reconstruction
and classification through ML models.

Overall, this study aimed to provide the foundations of SPI systems with-
out exhausting new possibilities in the optical and computational domains. We
hope that the work discussed here can empower new research by decreasing the
entry barrier for such an exciting and novel field, allowing further exploration
of the SPI framework and its applications for new technologies.
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Appendix A - Python Single Pixel Imaging Library (PySPI)

1 ##########################################
2 ## Python Single Pixel Imaging Library - pySPI
3 ## Matheus Esteves Ferreira
4 ## August 2020
5 ## LAB-OPTO
6 ## CETUC, PUC-RIO, Rio de Janeiro, Brazil
7 #########################################
8 ##Importing Packages
9

10 import matplotlib as mpl
11 import matplotlib.pyplot as plt
12 import numpy as np
13 import cv2
14 from skimage import data
15 import skimage.transform
16 import scipy as spy
17 import os
18 import sys
19 import time
20 import visa
21 import tqdm
22 import scipy.linalg as la
23 import os
24 from PIL import Image
25 import random
26 import scipy.optimize as spopt
27 import scipy.fftpack as spfft
28 import scipy.ndimage as spimg
29 import cvxpy as cvx
30

31

32 #############################################################################
33 ##Useful Functions
34

35 def savefig(img, normalize=False, format='png'):
36 ##Saves a numpy array as an image with name equal to user input.
37 if normalize == True:
38 img = ((img - img.min())/(img.max() - img.min()))*255
39 fig = Image.fromarray(img.astype('uint8'))
40 fig.save('{}.{}'.format(input('Enter image name: '), format))
41

42 def Directory(message="Enter the directory name "):
43
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44 # Create directory ,it's a directory name which you are going to create.
45

46 Directory_Name = input(message)
47 #try and catch block use to handle the exceptions.
48 try:
49 # Create Directory MyDirectory
50 os.mkdir(Directory_Name)
51 #print if directory created successfully...
52 print("Directory " , Directory_Name , " Created ")
53 except FileExistsError:
54 ##print if directory already exists...
55 print("Directory " , Directory_Name , " already exists...")
56 return Directory_Name
57

58 def save_measurement(encoded, counts, reconstruct, format='png'):
59 cwd = os.getcwd()
60 folder = Directory(message="Enter the measurement name ")
61 np.save(cwd+'/'+folder+'/encoded_mask', encoded)
62 np.save(cwd+'/'+folder+'/photon_count', counts)
63 np.save(cwd+'/'+folder+'/reconstruct', reconstruct)
64

65 fig = reconstruct
66 fig = ((fig - fig.min())/(fig.max() - fig.min()))*255
67 fig = Image.fromarray(fig.astype('uint8'))
68 fig.save(cwd+'/'+folder+'/reconstruct.{}'.format(format))
69 print('DONE!!!!')
70

71 def RMSE(img1,img2):
72 n = len(img1)
73 dif = img1 - img2
74 dif2 = dif ** 2
75 rmse = np.sqrt(np.sum(dif2) / (n))
76 return rmse
77

78 def normalize_img(img):
79 return (img - img.min())/(img.max() - img.min())
80 ############################################################################
81 ##Detector Programming - Agilent 53131A
82

83 class detector:
84 def __init__(self):
85 ##Initializes the Agilent Universal counter. Any default settings may be added here.
86 rm = visa.ResourceManager()
87 universal_Counter_GPIB = rm.list_resources()[0]
88 self.Counter = rm.open_resource(universal_Counter_GPIB) # "GPIB0::4"
89 self.Counter.timeout = 10000
90 self.Counter.write(":INPut1:IMPedance 50")
91 self.Counter.write(":INPut1:COUPling DC")
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92 self.Counter.write(":EVENT1:LEVEL 2")
93

94 def measure_gate(self, gate, meas_time):
95 ##Initializes a Totalize measurement in Channel 1
96 for a total time equal meas_time and a geta time
97 equal gate.
98 self.Counter.write(":CONFigure:TOTalize:TIMed")
99 crr_time = time.time()

100 data = []
101 while (time.time() - crr_time) < meas_time:
102 data.append(float(self.Counter.query(":MEASure:TOTalize:TIMed? {}".format(gate))))
103 data = np.array(data)
104 data_stats = np.mean(data), np.std(data)
105 return data_stats
106

107 def measure_external(self, n=1):
108 ##Initializes a Totalize measurement in Channel 1 by using the optical chopper
109 frequency output as gate reference. This measurement will be repeated n times.
110 data = np.zeros(n)
111 for i in range(n):
112 self.Counter.write(":TOTalize:ARM:SOURce EXTernal")
113 self.Counter.write(":TOTalize:ARM:STOP:SOURce EXTernal")
114 self.Counter.write(":INITIATE")
115 data[i] = float(self.Counter.query(":FETCH?"))
116 return np.array([data.mean(), data.std()])
117

118 ###########################################################################
119 ##SLM Programming
120

121 class slm:
122

123 ############################UI Calls##################################
124 def __init__(self, resolution = (600,800), k=255,
125 native_res=(800,600)):
126 self.resolution = resolution
127 self.native_res = native_res
128 self.slm_window = 'SPI Mask Generator'
129 cv2.namedWindow(self.slm_window, cv2.WINDOW_NORMAL)
130 mask = np.ones(self.resolution)*k
131 mask_show = cv2.resize(mask.astype('uint8'), self.native_res)
132 cv2.imshow(self.slm_window, mask_show.astype('uint8'))
133 cv2.waitKey(0)
134

135 def showImage(self, oriimg, W, H, native_res=(800,600)):
136 height, width= oriimg.shape
137 scaleWidth = float(W)/float(width)
138 scaleHeight = float(H)/float(height)
139 native_res = native_res[::-1]
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140

141 if scaleHeight>scaleWidth:
142 imgScale = scaleWidth
143 else:
144 imgScale = scaleHeight
145

146 newX,newY = oriimg.shape[1]*imgScale, oriimg.shape[0]*imgScale
147 newimg = cv2.resize(oriimg,(int(newX),int(newY)))
148 projection = np.zeros(native_res)
149 projection[:int(newY), :int(newX)] = newimg
150 cv2.imshow(self.slm_window,projection.astype('uint8'))
151 cv2.waitKey(1)
152

153 def ShowArray(self, array, native_res=(600,800)):
154 out = np.zeros(native_res)
155 out[:array.shape[0], :array.shape[1]] = array
156 cv2.imshow(self.slm_window,out)
157 cv2.waitKey(1)
158

159 def exit(self):
160 cv2.destroyAllWindows()
161

162 ############################General Measurements######################
163 def Calculate_Exp_Param(self, gate=.1, meas_time=.5):
164 ## Measures the photon_flux, dark_count for a given measurement time & gate.
165 pd = detector()
166 light_mask = np.ones(self.native_res[::-1]) * 255
167 dark_mask = np.zeros(self.native_res[::-1])
168

169 ## Measuring Photon Count
170 cv2.imshow(self.slm_window, light_mask.astype('uint8'))
171 cv2.waitKey(1)
172 photon_count = pd.measure_gate(gate, meas_time)[0]
173

174 ## Measuring Dark Count
175 cv2.imshow(self.slm_window, dark_mask.astype('uint8'))
176 cv2.waitKey(1)
177 dark_count = pd.measure_gate(gate, meas_time)[0]
178

179 self.photon_count = photon_count
180 self.dark_count = dark_count
181 self.meas_time = meas_time
182

183 return photon_count, dark_count, meas_time
184

185 def slm_greyscale_curve(self, k, gate=.1, meas_time=.5):
186 pd = detector()
187 encoded = np.ones((600, 800))
188 encoded[:,600:] = 0
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189 counts = []
190

191 for i in tqdm.tqdm_notebook(range(256)):
192 crr_mask = encoded*i
193 photon_count = np.empty(k)
194 cv2.imshow(self.slm_window, crr_mask.astype('uint8'))
195 cv2.waitKey(1)
196 for j in range(k):
197 photon_count[j] = pd.measure_gate(gate, meas_time)[0]
198 counts.append(photon_count.mean(axis=0))
199

200 return counts
201 ############################Raster Scanning###########################
202

203 def generate_encoded_raster(self, n, idx, native_res=(600,800)):
204

205 seed = np.zeros((n, n))
206 seed.ravel()[idx] = 1
207

208 y_size = int(native_res[0]/n)
209 x_size = int(native_res[1]/n)
210 shape = min(y_size, x_size)
211

212 encoded = np.repeat(seed.repeat(shape).reshape(n,n*shape), shape, axis=0)
213

214 return encoded
215

216 def raster_scan(self, n, gate=.1, meas_time=.5, Save=True):
217 ## Executes a raster scan by binning the total SLM resolution
218 by pixel_bin and measuring for a given gate and meas_time.
219

220 pd = detector()
221 image = np.empty((n, n))
222 for i in tqdm.tqdm_notebook(range(n**2)):
223 crr_mask = self.generate_encoded_raster(n, i)*255
224 self.ShowArray(crr_mask)
225 image.ravel()[i] = pd.measure_gate(gate, meas_time)[0]
226

227 if Save==True:
228 encoded = np.ones((n, n))
229 counts = image
230 save_measurement(encoded, counts, image)
231

232

233 return image
234

235

236 ############################Basis Scanning############################
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237 ######Auxiliary Functions#############################################
238 def generate_encoded_random(self,height,width):
239 encoded = np.random.choice([0,1],
240 p=[.5,.5], size=(height*width, height*width)).astype('float64')
241 if np.linalg.det(encoded) != 0:
242 break
243 return encoded * 255
244

245 def generate_encoded_hadamard(self, n, idx, encoded, native_res=(600,800)):
246

247 seed = encoded[idx]
248

249 y_size = int(native_res[0]/n)
250 x_size = int(native_res[1]/n)
251 shape = min(y_size, x_size)
252

253 encoded = np.repeat(seed.repeat(shape).reshape(n,n*shape), shape, axis=0)
254

255 return encoded
256

257

258 # def generate_encoded_hadamard_disk(n, idx, seed, native_res=(600,800)):
259

260 # seed = seed[idx]
261

262 # y_size = int(native_res[0]/n)
263 # x_size = int(native_res[1]/n)
264 # shape = min(y_size, x_size)
265

266 # encoded = np.repeat(seed.repeat(shape).reshape(n,n*shape), shape, axis=0)
267

268 # return encoded
269

270

271

272

273 ######Measurement Functions#######
274

275 ######Measurement Functions##########################################
276

277 def basis_scan_diff_hadamard_timed(self, n, gate=.1, meas_time=.5, Save=True):
278 pd = detector()
279 encoded = la.hadamard(n**2)
280 # np.save('hadamard_mask', encoded)
281 counts = []
282

283 for i in tqdm.tqdm_notebook(range(n**2)):
284 crr_mask = ((self.generate_encoded_hadamard(n, i, encoded) -(-1))/(1-(-1)))*255
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285

286 self.ShowArray(crr_mask)
287 photon_count = pd.measure_gate(gate, meas_time)[0]
288 # photon_count = np.random.random()*10000
289

290 self.ShowArray(1-crr_mask)
291 photon_count_inv = pd.measure_gate(gate, meas_time)[0]
292 # photon_count_inv = np.random.random()*10000
293

294 diff_count = photon_count - photon_count_inv
295 counts.append(diff_count)
296

297 encoded_mean = encoded.mean(axis=1).reshape(n**2,1)
298 diff_encoded = encoded - encoded_mean
299 diff_counts = np.array(counts).reshape(n**2, 1)
300 diff_counts = diff_counts - diff_counts.mean()
301 reconstruct = np.dot(diff_encoded, diff_counts).reshape(n, n)
302

303 # np.save('photon_count', diff_counts)
304

305 if Save==True:
306 save_measurement(encoded, diff_counts, reconstruct)
307

308 return reconstruct
309

310 def basis_scan_diff_hadamard_external(self, n, k, Save=True):
311 pd = detector()
312 encoded = la.hadamard(n**2)
313 # np.save('hadamard_mask', encoded)
314 counts = []
315

316 for i in tqdm.tqdm_notebook(range(n**2)):
317 crr_mask = ((self.generate_encoded_hadamard(n, i, encoded) -(-1))/(1-(-1)))*255
318

319 self.ShowArray(crr_mask)
320 photon_count = pd.measure_external(n=k)[0]
321 # photon_count = np.random.random()*10000
322

323 self.ShowArray(1-crr_mask)
324 photon_count_inv = pd.measure_external(n=k)[0]
325 # photon_count_inv = np.random.random()*10000
326

327 diff_count = photon_count - photon_count_inv
328 counts.append(diff_count)
329

330 encoded_mean = encoded.mean(axis=1).reshape(n**2,1)
331 diff_encoded = encoded - encoded_mean
332 diff_counts = np.array(counts).reshape(n**2, 1)
333 diff_counts = diff_counts - diff_counts.mean()
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334 reconstruct = np.dot(diff_encoded, diff_counts).reshape(n, n)
335

336 # np.save('photon_count', diff_count)
337 if Save==True:
338 save_measurement(encoded, diff_counts, reconstruct)
339

340 return reconstruct
341

342 def compressive_scan_diff_hadamard_timed(self, n, m, gate=.1, meas_time=.5, Save=True):
343 pd = detector()
344 encoded = la.hadamard(n**2)
345 counts = []
346 encoded_m = encoded[:M,:]
347

348 for i in tqdm.tqdm_notebook(range(m)):
349 crr_mask = ((self.generate_encoded_hadamard(n,
350 i, encoded) -(-1))/(1-(-1)))*255
351

352 self.ShowArray(crr_mask)
353 photon_count = pd.measure_gate(gate, meas_time)[0]
354 # photon_count = np.random.random()*10000
355

356 self.ShowArray(1-crr_mask)
357 photon_count_inv = pd.measure_gate(gate, meas_time)[0]
358 # photon_count_inv = np.random.random()*10000
359

360 diff_count = photon_count - photon_count_inv
361 counts.append(diff_count)
362

363 encoded_mean = encoded_m.mean(axis=1).reshape(m,1)
364 diff_encoded = encoded_m - encoded_mean
365 diff_counts = np.array(counts).reshape(m, 1)
366 diff_counts = diff_counts - diff_counts.mean()
367 diff_counts_m = diff_counts.squeeze().reshape(m, 1)
368

369

370

371 try:
372 vx = cvx.Variable((n**2,1))
373 objective = cvx.Minimize(cvx.norm(vx, 1))
374 constraints = [encoded_m*vx == diff_counts_m]
375 prob = cvx.Problem(objective, constraints)
376 result = prob.solve(verbose=True)
377 reconstruct = np.array(vx.value).squeeze().reshape(n,n)
378 except:
379 print('Could not Reconstruct')
380

381 if Save==True:
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382 save_measurement(encoded_m, diff_counts_m, reconstruct)
383

384 return reconstruct
385

386 def compressive_scan_diff_hadamard_external(self, n, m, k, Save=True):
387 pd = detector()
388 encoded = la.hadamard(n**2)
389 idx = list(np.arange(n**2))
390 idx = np.array(random.sample(idx, m))
391 idx.sort()
392 counts = []
393 encoded_m = encoded[idx,:]
394

395 for i in tqdm.tqdm_notebook(range(m)):
396 crr_mask = ((self.generate_encoded_hadamard(n,
397 idx[i], encoded) -(-1))/(1-(-1)))*255
398

399 self.ShowArray(crr_mask)
400 photon_count = pd.measure_external(n=k)[0]
401 # photon_count = np.random.random()*10000
402

403 self.ShowArray(1-crr_mask)
404 photon_count_inv = pd.measure_external(n=k)[0]
405 # photon_count_inv = np.random.random()*10000
406

407 diff_count = photon_count - photon_count_inv
408 counts.append(diff_count)
409

410 encoded_mean = encoded_m.mean(axis=1).reshape(m,1)
411 diff_encoded = encoded_m - encoded_mean
412 diff_counts = np.array(counts).reshape(m, 1)
413 diff_counts = diff_counts - diff_counts.mean()
414 diff_counts_m = diff_counts.squeeze().reshape(m, 1)
415

416

417

418 try:
419 vx = cvx.Variable((n**2,1))
420 objective = cvx.Minimize(cvx.norm(vx, 1))
421 constraints = [encoded_m*vx == diff_counts_m]
422 prob = cvx.Problem(objective, constraints)
423 result = prob.solve(verbose=True)
424 reconstruct = np.array(vx.value).squeeze().reshape(n,n)
425 except:
426 print('Could not Reconstruct')
427

428 if Save==True:
429 save_measurement(encoded_m, diff_counts_m, reconstruct)
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430

431 return reconstruct
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