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Abstract

Almeida, Alexandre A. A.; Anteneodo, Celia (Advisor); Defaveri,
Lucianno (Co-Advisor). A study on thermal conduction and
rectification. Rio de Janeiro, 2021. 107p. Dissertação de mestrado
– Departamento de Física, Pontifícia Universidade Católica do Rio
de Janeiro.

It is a known result in the literature that a one-dimensional chain
of particles that interact harmonically with its first neighbors does not
conduct heat, and nonlinear forces are needed to reproduce Fourier’s law of
heat conduction. When asymmetries are introduced in such a conducting
system, a rectifying effect is obtained where the thermal current shows
different magnitudes depending on which side of the chain has higher
temperature, such devices being called thermal diodes. In this work we
study both phenomena, heat conduction and thermal rectification, in a one-
dimensional chain of particles, with fixed boundary conditions, coupled to
two thermal baths, one at each end, modeled as Langevin thermostats.
The particles interact with their first neighbors harmonically and have a
nonlinear on-site potential, for which we study two types, Frenkel-Kontorova
and φ4 potentials. We verify that, for both cases, Fourier’s law is observed,
where the temperature profile and the thermal conductivity are dependent
on the relation between the harmonic and anharmonic amplitudes, and
the system’s average temperature. Next, to create an asymmetry in the
chain, we coupled two different segments of equal lengths. We observed
a rectifying effect, where the preferential direction differs for each of the
two on-site potentials studied. How the heat-bath temperatures changes
the magnitude of rectification was also observed. We also investigated the
effect of interfacial nonlinearities through a power-law potential, coupling φ4

segments. By changing the power-law exponent, we looked for the conditions
under which optimal rectification is achieved.

Keywords
nonlinear dynamics; stochastic dynamics; heat conduction; ther-

mal diode.
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Resumo

Almeida, Alexandre A. A.; Anteneodo, Celia; Defaveri, Lucianno.
Um estudo sobre condução e retificação térmica. Rio de
Janeiro, 2021. 107p. Dissertação de Mestrado – Departamento de
Física, Pontifícia Universidade Católica do Rio de Janeiro.

É um resultado conhecido na literatura que uma cadeia unidimensional
de partículas, que interagem harmonicamente com seus primeiros vizinhos,
não conduz calor, e forças não lineares são necessárias para reproduzir a lei
de Fourier da condução de calor. Quando são introduzidas assimetrias em
tal sistema condutor, se obtém um efeito retificador onde a corrente térmica
apresenta magnitudes diferentes dependendo de qual lado da cadeia tem
maior temperatura, tais dispositivos sendo chamados de diodos térmicos.
Neste trabalho estudamos os dois fenômenos, condução de calor e retificação
térmica, em uma cadeia unidimensional de partículas, com condições de
contorno fixas, acopladas a dois banhos térmicos, um em cada extremidade,
modelados como termostatos de Langevin. As partículas interagem com
seus primeiros vizinhos harmonicamente e estão sujeitas a um potencial
localizado externo não linear, para o qual estudamos dois tipos, os potenciais
Frenkel-Kontorova e φ4. Verificamos que a lei de Fourier é observada, para
ambos os casos, com o perfil de temperatura e a condutividade térmica
dependendo da relação entre as amplitudes harmônica e anarmônica, e
a temperatura média do sistema. Em seguida, para criar uma assimetria
na cadeia, nós acoplamos dois segmentos de mesmo tamanho. Observamos
um efeito retificador onde a direção preferencial difere para cada potencial
localizado estudado. A forma como as temperaturas dos banhos térmicos
mudam a magnitude da retificação também foi observada. Nós também
investigamos o efeito de não linearidades interfaciais, por meio de uma lei de
potência que acopla segmentos φ4. Alterando o expoente da lei de potência,
nós buscamos as condições sob as quais a retificação ótima é atingida.

Palavras-chave
dinâmica não linear; dinâmica estocástica; condução de calor;

diodo térmico.
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"He fixes radios by thinking!" The whole idea
of thinking, to fix a radio - a little boy stops
and thinks, and figures out how to do it - he
never thought that was possible.

Richard P. Feynman, Surely you’re joking Mr. Feynman!.
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1
Introduction

In 2006, four researchers from the University of California at Berkeley
published what was perhaps the first experimental evidence of a thermal diode,
a material whose thermal conductivity along a given axis changed depending
on the direction of the heat flux along it [1].

They used an experimental apparatus consisting of two pads with plat-
inum resistors that could operate as either a heater - through Joule effect - or
as a sensor - through their resistivity variation with temperature.

Each pad was connected to each end of a nanotube which was coated
inhomogeneously with trimethyl-cyclopentadienyl platinum (C9H16Pt) and
measured the conductivity along its axis with two different configurations,
the first one with the heater on the side with more mass and then with the
heater on the side with less mass, effectively changing the direction of heat
flow, as expected. What was surprising was that the magnitude of the heat
flow changed too, with the thermal conductivity of the material changing as
much as 7%.

The experiment was repeated with different materials such as carbon
nanotubes - CNTs - and boron nitride nanotubes - BNNTs. These materials
have high thermal conductivity (compared to the hydrocarbon), dominated by
phononic carriers.

Following these results, different research groups were able to devise
new ways of obtaining such asymmetric conductivity, with higher and higher
differences in the thermal conductivity [2, 3, 4, 5, 6, 7].

Theoretical ways of building such a device were envisioned before this
first experimental evidence, being the paper by Terraneo, Peyrad and Casati
[8], published in 2002, one of the pioneering works.

In order for us to begin studying this phenomenon, we must first discuss
the basic concepts of heat conduction and of the theory of thermal conductivity
in solids.
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Chapter 1. Introduction 11

1.1
Basic notions of heat conduction

Before diving into the microscopic understanding of the problem at hand,
we need first to look at the basic macroscopic heat conduction problem to
develop some intuition [9].

First let us consider a system delimited by a given closed surface ∂V ∈ R3

with normal vector ~n pointing outside the system’s volume, as in figure 1.1.

Figure 1.1: Control volume system.

From the first law of thermodynamics, we have that

dU

dt
= Q̇+ Ẇ , (1-1)

where U is the internal energy of the system, Q̇ is the rate of heat that enters it,
and Ẇ is the rate of work done by the environment on the system. Assuming
no external work is applied, we get a continuity equation, using the internal
energy density u and the fact that heat into the system is given by −~̇q · ~n,
where ~̇q is the heat flux (Q̇ by surface area) into the system, namely,

d

dt

˚
V

u dV +
¨
∂V

~̇q · ~n dS = 0. (1-2)

Now assuming the internal energy is sufficiently smooth so that we can
put the derivative inside the integral, apply Gauss’s theorem on the second
term, and rewrite the internal energy density as u = CρT , using the specific
heat capacity C, we have the continuity equation

˚
V

[
Cρ

∂T

∂t
+ ~∇ · ~̇q

]
dV = 0, (1-3)

and hence

Cρ
∂T

∂t
+ ~∇ · ~̇q = 0. (1-4)

In the XIX century, the mathematician Jean-Baptiste Joseph Fourier
coined the phenomenological law that takes his name, Fourier’s law of con-
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Chapter 1. Introduction 12

duction, that the flow of heat developed in a material due to a temperature
gradient ~∇T is proportional to such a gradient [10], so mathematically we have

~̇q = −κ~∇T, (1-5)

κ being the thermal conductivity, which is always positive. Putting equations
1-4 and 1-5 together, we have a derivation of the famous heat equation

α2∂T

∂t
−∇2T = 0, (1-6)

where α = Cρ/κ. This equation describes the dynamics of the temperature of
the system with time.

Let us look at a simple one-dimensional case [11]. Suppose we have a
solid bar with length L, cross-sectional area A, and thermal conductivity κ,
in contact with two thermal baths, one on each side and with temperatures
TL, TR such that TL > TR, as illustrated in figure 1.2.

TL TR
x

L

Figure 1.2: One-dimensional heat transport.

We further assume that L2 � A, the lateral surface of the bar is
isolated from the environment, and κ is homogeneous and does not vary with
temperature. In this case, Fourier’s law takes the form

q̇ = −κdT
dx
. (1-7)

It is expected that, as time goes to infinity, the system approaches a steady
state where the heat flux q̇ is constant, and as such we can use the boundary
conditions T (x = 0) = TL and T (x = L) = TR to integrate the temperature
and get

T = −(TL − TR)
L

x+ TL, (1-8)
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Chapter 1. Introduction 13

showing that the temperature profile along the bar in the steady state is linear,
as in figure 1.3. The fact that the system approaches the steady state, with q̇
constant in time, can be proven from an analysis of the heat equation [12].

x = 0 x = L

TL

TR

Figure 1.3: Linear temperature profile.

If we replace this result back to Fourier’s law we get

q̇

∆T = −κ
L
, (1-9)

where ∆T = TL − TR, showing us that the heat flow is inversely proportional
to the length of the bar.

The theoretical proposals for thermal diodes came as a consequence of
many works that tried to understand what properties are needed by micro-
scopic models to reproduce, at least approximately, the properties described
by equations 1-9 and 1-8.

1.2
Thermal conductivity of solids

Most solids are composed by a regular lattice of atoms or ions that
vibrate near their equilibrium positions. The range of their interactions can
vary, depending on the nature of the system, from nearest neighbors to more
distant ones, with the simplest description given by a chain of atoms interacting
harmonically with their first neighbors, such as depicted in figure 1.4.

Figure 1.4: Lattice of atoms.

The lattice vibrations affect the thermal conductance of solids differently
depending on the material. When looking at their electrical conductivity, solids
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Chapter 1. Introduction 14

are classified as conductors and insulators. Electrical conductors are usually
good thermal conductors, for their free electrons act as the main thermal energy
carrier in the material. In this case, although the lattice vibrations have to be
taken into account to explain some phenomena, they represent generally higher
order corrections [13]. Insulators, however, although they do not have such
good thermal conductance as they lack electrons in free conducting bands of
energy, they do conduct heat with their main carriers being lattice vibrations.
These vibrations carry energy on their normal modes, which can interact
between them and with other systems such as X-ray electrons, as well as
propagate along the crystal as wave packets.

Quantum mechanically, these excitations can be described as quasiparti-
cles called phonons, permitting us to describe the heat transport of insulators
by means of a kinetic theory of phonons. In this case, the phononic version of
the Boltzmann equation is called Peierls-Boltzmann equation, in honor to sir
Rudolf Ernst Peierls who first discovered it [14].

He is also credited with another important discovery, the role of anhar-
monic interaction terms in the conduction of heat. Perfectly harmonic crystals
would have infinite thermal conductivity.

The argument, which can be found in his book [15], first published in
1955, and in ref. [13], goes as follows: in a perfectly harmonic crystal, the
distribution of phonons is always composed of stationary modes and, as such,
if we prepared them in a way that they were transporting heat, they would
remain even without thermal gradient, meaning that the crystal would have
infinite thermal conductivity.

In fact, when considering the total potential U on the chain, if we were
to expand it as a Taylor series around the lattice equilibrium position as

U = U0 + 1
2!
∑
i,j

∂2U

∂qiqj

∣∣∣∣∣
qi,qj=0

qiqj + 1
3!
∑
i,j,k

∂3U

∂qiqjqk

∣∣∣∣∣∣
qi,qjqk=0

qiqjqk + . . . , (1-10)

with qi being the displacement from equilibrium for the i-th particle, we would
need to consider terms of order higher than two to overcome the infinite
conductivity problem.

These corrections give rise to umklapp processes, which are phonon-
phonon collisions that do not conserve total crystal momentum, leading to
some thermal resistance in the material.

The fact that the harmonic model does not describe real materials well
has also been shown, for one dimensional formulations, from the point of view
of classical statistical mechanics by Rieder, Lebowitz and Lieb in [16]. They
found the exact form of the temperature profile and the thermal conductivity,
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Chapter 1. Introduction 15

for a harmonic chain of particles, in contact with two heat baths at different
temperatures.

They showed that the temperature is approximately flat in the bulk of the
chain (with deviations at the extremities [17]), with value (TL+TR)/2, instead
of the linear temperature profile we would expect from Fourier’s law (see figure
1.5). They also proved that the heat current in the chain is proportional to
the temperature difference between both heat baths J ∝ (TL − TR), instead
of the temperature gradient, as in section 1.1, and hence κ ∝ N (diverging in
the thermodynamic limit N →∞).

Figure 1.5: Temperature profile calculated using the theoretical results from
Rieder, Lebowitz and Lieb [16, 14] for N = 50. For the heat conduction, they
find κ ∝ N , and so it increases linearly with the number of particles in the
chain.

After their work, many others followed on using the framework of classical
mechanics to prove that, in general, non conservation of momentum, or of other
quantities, is required to reproduce Fourier’s law [18].

Many models were able to reproduce these results, such as the ding-a-
ling model [19, 20], the ding-dong model [21], the Frenkel-Kontorova model
[22] and the φ4 model [23]. Others, like the Fermi-Pasta-Ulam-Tsingou model,
does not show the wanted properties, even though it have nonlinearities in the
Hamiltonian [24].

All these works culminated in the proposal of thermal rectification using
an asymmetric chain of particles.

1.3
Thermal diode

In 2002, Terraneo, Peyrad and Casati [8] published a paper on low-
dimensional heat conduction using harmonic interactions between the particles
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and a Morse external potential V (x) = D(exp(−αxi)−1)2. They showed that,
when D varies along the chain, we could theoretically have a thermal rectifier.

The rationale presented was that changing this parameter, the overlap
of the phonon bands in different parts of the chain is lessened, hampering the
capacity of the phonons to travel along it.

Following this work, Li, Wang and Casati showed in 2004 [25] such a
heat current rectifying mechanism in a 1D nonlinear lattice with a Frenkel-
Kontorova potential A[1−cos(2πxi)] and an harmonic inter-particle interaction
by choosing different parameters for the left and right segments of the lattice.

Like we stated previously, the experimental confirmation of a thermal
diode came in 2006 [1], albeit with a really small efficiency. Many other
papers followed suit with new ways of achieving this asymmetrical thermal
conductivity, striving to achieve higher and higher efficiencies, with a work in
2015 by Martínez-Pérez, Fornieri and Giazotto, from the Istituto Nanoscienze-
CNR and the Scuola Normale Superiore, showing a heat current in one
direction two orders of magnitude higher than the heat current in the opposite
direction, when combining normal metals with superconductors [4].

Such devices open the door to very exciting applications.
One option is using thermal diodes for nanoscale refrigeration cycles,

where they act as a wall for blocking undesired heat leakages [26]. They
could also be applied for solar thermal energy harvesting, by maintaining a
temperature difference between two points, even during the night [26]. Such
difference would then be used in a heat engine.

Another option are thermal analogs of some electrical circuits could be
built [26]. Some examples, by Wehmeyer et. al., are detectors of temperature
peaks and DC restorers (also called clampers, they add an offset to oscillatory
signals), so that we could avoid freezing materials subject to temperature
oscillations. In fact, this open the way for looking at phonons not as wasted
energy carriers, but as information carriers, and doing "thermal computations"
with them (such control of phonons is studied by an emerging field called
phononics) [27, 28].
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2
Heat flow in particle chains

The transport of phonons in one dimension is commonly modeled by
replacing the bar in figure 1.2, where heat conduction takes place, by a chain
of interacting particles (see figure 2.1) and framing the problem in a classical
point of view, but interpreting the results with the language of phonons. In
accordance to what we discussed in section 1.2, each particle will also be
subjected to an anharmonic on-site potential. An in-depth discussion is given
in section 2.1.

TL TR

Figure 2.1: Pictorial representation of the mathematical model.

The heat baths also need some kind of microscopic description, and there
are two main ways to achieve this. The first one, which we shall use here, is
the Langevin thermostat, where a random noise term and a dissipation term
are added directly into the equations of motion of the particles in contact with
the bath. The second one, called Nosé-Hoover thermostat, adds new terms to
the system Hamiltonian that depend on a new degree of freedom s. These will
be discussed in section 2.2.

2.1
Particle chain

For the particle chain, we shall always consider the case of first-neighbor
interactions. To understand what this means, let us label the particles in figure
2.1 starting from the left and going from 1 to N . Then, each particle n only
interacts with particles n− 1 and n+ 1, where n = 1, 2, . . . , N . For n = 1, N ,
the interactions with n = 0, N + 1, respectively, are defined by the boundary
conditions (discussed at the end of this section).

DBD
PUC-Rio - Certificação Digital Nº 1812657/CA



Chapter 2. Heat flow in particle chains 18

This is not the only possible case, however, as there is much research
on how long-range interactions (for example, if we consider charged particles)
would affect thermal conduction [29, 30].

A general chain Hamiltonian can be written as

H =
N∑
n=1

1
2
p2
n

mn

+
N∑
n=1

U(xn+1 − xn) +
N∑
n=1

V (xn), (2-1)

with xn being the position of the n-th particle (remembering that x0, xN+1 are
defined by the boundary conditions), pn the momentum of particle n and mn

its mass, U(xn − xn+1) the inter-particle potential between particles n, n + 1,
V (xn) is the on-site potential of particle n.

The equations of motion are derived from 2-1 by means of the Hamilton
equations,

ṗn = − ∂H
∂xn

, ẋn = ∂H
∂pn

. (2-2)

It is common, however, to look at the equations of motion using the
displacement from equilibrium qn = xn − na for each particle (a is the lattice
distance). This is a canonical transformation and as such it does not affect our
equations of motion.

In fact, since any function of the position f(xn) can be rewritten in terms
of qn by substituting xn = qn + na, the chain rule gives

∂f

∂qn
= ∂f

∂xn

∂xn
∂qn

= ∂f

∂xn
, (2-3)

which means we can rewrite the equations of motion in the equivalent form

ṗn = −∂H
∂qn

, q̇n = ∂H
∂pn

. (2-4)

Not only are the values of the coordinates (qn, pn) much easier to read
and interpret than (xn, pn), they will also simplify the equations of motion for
our chain of particles. Hence, we shall adopt this system of coordinates for
much of this work.

All models considered here have harmonic inter-particle interactions, and
so their potential energy will be

Uint =
N∑
i=1

U(xn+1 − xn) =
N∑
i=1

k

2(xn+1 − xn − a)2, (2-5)

where a is the distance between the lattice points. Using the displacement qn,
we can rewrite the interaction energy as

Uint =
N∑
i=1

k

2(qn+1 − qn)2. (2-6)

We could actually consider more general interactions than just harmonic,
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Chapter 2. Heat flow in particle chains 19

but in general they wouldn’t be enough to avoid anomalous heat conduction,
since they would conserve momentum due to Newton’s third law. Hence, we
shall add anharmonicity by means of the on-site potential V (xn), for which we
use the φ4 potential and, alternatively, the Frenkel-Kontorova potential.

2.1.1
φ4 potential

The φ4 potential used here is a special case of the one used in ref. [31].
It is given by

V (xn) = AQ
4 (xn − na)4 , (2-7)

or using our variables qn,
V (qn) = AQ

4 q4
n , (2-8)

where we set to be zero the coefficient of the quadratic term from the potential
definition used in the cited reference. This is exactly the same as in ref. [23].
A graph of the function is given in figure 2.2.

Figure 2.2: The graph of the φ4 potential for AQ = 1 is represented by the solid
line. The dashed line is the harmonic potential with A = 1, for comparison.

The φ4 potential has been thoroughly studied in the literature, and it is
known to generally have normal heat conduction [32, 33, 23, 34, 35, 36].

2.1.2
Frenkel-Kontorova potential

The Frenkel-Kontorova potential [22, 37] is a periodic function with
period as and amplitude AFK ,

V (xn) = AFK
2π

[
1− cos

(2πxn
as

)]
, (2-9)

but we will rewrite it in terms of the displacement from equilibrium for each
particle, giving
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Chapter 2. Heat flow in particle chains 20

V (qn) = AFK
2π

[
1− cos

(2πna
as

+ 2πqn
as

)]
. (2-10)

The ratio a/as defines the number of particles falling in each potential
well and this somewhat corresponds to the degree of disorder in the system,
enabling one to simulate different types of solid defects with the model [37].

In our case, we are not interested in studying such defects, and we choose
a/as = 1, so that we have

V (qn) = AFK
2π

[
1− cos

(2πqn
as

)]
, (2-11)

and with the assumption that a = 1,

V (qn) = AFK
2π [1− cos (2πqn)] , (2-12)

which would be akin to thinking of qn as a dimensionless variable representing
the displacement from equilibrium in terms of the lattice separation [22].

Figure 2.3: The graph of the Frenkel-Kontorova potential for AFK = as = 1 is
represented by the solid line. The dashed line is the harmonic potential with
A = 1, for comparison.

This model has been already shown to reproduce equations 1-8 and 1-9
[33, 23, 38, 39]. We have to take care, however, to avoid choosing a very high
temperature, because when the thermal energy kBT is of the same order as a
threshold energy E0, the particles will leave their wells and start occupying
other wells, giving rise to a transition in the behavior of the transport
coefficients [37].

2.1.3
Boundary conditions

The last consideration needed for the chain is on the choice of the
boundary conditions.
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In analytical calculations, it is common to use periodic boundary condi-
tions, connecting the endpoints of the chain so that xN+1 = x1 and x0 = xN ,
because they simplify many calculations. However, in this work we will use
fixed boundary conditions, such that xN+1 = x0 = 0, for all time. This is
very common in the literature of heat conduction and is computationally very
simple.

It is important to notice that, whenever one simulates heat conduction,
temperature discontinuities will appear in the boundaries due to the Kapitza
resistance [14]. There are some results in the literature on how the number of
particles in the chain, together with the parameters of the heat baths, affects
this resistance [40]. Since the dependence on the parameters is highly non-
trivial,a systematic analysis of this interface resistance is outside the scope of
our thesis.

2.2
Heat baths

For any model used to reproduce a heat bath at constant temperature
T , we expect that equilibrium properties are recovered, i.e., the probability
density of the velocities must follow the Maxwell-Boltzmann distribution,

f(vx) =
(

m

2πkBT

)1/2
exp

(
− mv2

x

2kBT

)
, (2-13)

when applied to a system of particles in equilibrium. In this one-dimensional
case, the velocity distribution f(vx) is just a Gaussian distribution with
variance σ2 = kBT/m and zero mean.

The most commonly used thermostats, in the models of low-dimensional
heat conduction that we studied, are the Langevin and the Nosé-Hoover
thermostat [14]. Their main difference is that the former models the system
with stochastic differential equations, while the latter changes the deterministic
equations of motion of the system. Any results should be robust under the
choice of the thermostat.

2.2.1
Nosé-Hoover thermostat

The Nosé-Hoover thermostat consists of adding one more degree of
freedom s, along with its conjugated momentum ps [41]. Using the same
notation as in [42], let H0(q,p) be the many-body Hamiltonian from equation
2-1, the Nosé Hamiltonian is then defined as

HN = H0(q,p/s) + gKT ln s+ p2
s

2Q, (2-14)
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where g is the number of degrees of freedom of the system and Q is a parameter
describing the rate at which the fluctuations in the energy are dampened out.
Although it is not clear from 2-14 why this additional degree of freedom would
give us the expected equilibrium property, it was already proved that we indeed
get the desired distribution [41, 43] due to the dynamics of ps, which maintains
the temperature of the system by dissipating or adding energy [14], and it was
also shown that it behaves as we would expect when in the linear regime of
nonequilibrium [42]. In this work, we shall use the Langevin equation approach
to simulate our heat baths.

2.2.2
Langevin bath

In the XIX century, the botanist Robert Brown studied what is now called
the Brownian motion which is the seemingly random motion of pollen grains in
a viscous media such as water or acetone [44]. After Albert Einstein brought
forward a microscopical physical intuition of the phenomenon in 1905, Paul
Langevin tried to explain it dynamically in 1908 by using Newton’s second
law and adding a random force, thus devising the Langevin equation [45],
whose one-dimensional version can be written as

mr̈ = −γ′ṙ + η(t), (2-15)

where r is the position of the pollen, −γṙ is a term representing a drag force
due to the medium and η(t) is called a white noise, i.e., a Gaussian stochastic
process defined by having zero mean, 〈η(t)〉 = 0 and autocorrelation function

〈η(t)η(t′)〉 = Γ′δ (t− t′) , (2-16)

with Γ′ > 0.
Equation 2-15 was made mathematically precise with the advent of

stochastic calculus [46]. In that framework it is known (with the change ṙ = v)
as the Ornstein-Uhlenbeck process, which in differential form is written as

dv = −γ
′

m
vdt+

√
Γ′
m

dWt, (2-17)

where Wt is the Wiener process [47, 48] with unit variance.
The way this equation can be seen as rigorous is to look at the terms

as a sum of infinitesimal variations, so there is an integral on each term, and
the integral on the "measure of randomness" (dWt) is a stochastic integral.
There are many types of stochastic integrals, but the main ones are the
Itô integral and the Stratonovich integral (also called Itô and Stratonovich
prescriptions). The difference between the two are the terms in the summation
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(in the definition of the integral). Itô integral sums terms using only the present
time g(x)(Wt+∆ − Wt), and Stratonovich integral is a summation of terms
[(g(x+∆)+g(x))/2](Wt+∆−Wt), taking a "middle point" between t and t+∆
[46]. For a given function g(x), the Itô integral is written g(x) · dWt, while the
Stratonovich integral is written as g(x) ◦ dWt.

Now, it is important to say that from the standpoint of physics, the
Langevin equation is more appropriately described by a Stratonovich integral,
because its mathematical properties better conforms to our physical intuition
[46]. However, since

√
Γ′/m is a constant, both the Itô and the Stratonovich

prescriptions give the same results in this case.
From a physical point of view, one can look at this problem as a massive

particle in a bath composed of smaller ones. The drag force comes from
averaging out the dampening that the motion of the bigger particle suffers
from the collisions with the bath, corresponding to slower degrees of freedom,
while the random force arises from the many collisions of the lighter bath
particles, causing a fluctuation on the speed of the main one, corresponding to
the faster degrees of freedom [49].

Figure 2.4: Physical representation of a Langevin heat bath. The smaller red
particles represents the bath.

It is important to notice that the velocity of the bigger particle v = ṙ

is being modeled here as a random variable, and the above remarks give us a
motivation on why this makes sense. This means that by using the Langevin
approach, we are modeling our problem as a stochastic differential equation.

To see how the probability distribution of v is indeed given by equation 2-
13 and give a physical meaning to Γ′, we follow the derivation by Ornstein and
Uhlenbeck [50] (which can be seen in many sources, such as refs [51, 52, 48, 47]),
but using the language of Itô integrals [53, 54, 55, 56]. To do this, we need to
solve equation 2-15 for the mean, variance and higher order moments.
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In order to scale out the mass, let us redefine γ = γ′/m, Γ = Γ′/m2, so
that

dv = −γvdt+
√

ΓdWt. (2-18)
Now we multiply eγt on both sides, which after some rearragements gives

us
eγtdv + γeγtvdt =

√
ΓeγtdWt. (2-19)

For Itô integrals, the chain rule gives way to Itô’s lemma [53], which says
that for a given function g(v, t), its differential will be

dg = ∂g

∂t
dt+ ∂g

∂v
dv + 1

2
∂2g

∂v2 (dv)2, (2-20)

where (dv)2 is found by using that dt · dt = 0, dt · dWt = dWt · dt = 0 and
dWt · dWt = dt.

Then, from Itô’s lemma,

d(veγt) = eγtdv + γeγtvdt, (2-21)

which we plug on equation 2-19 to get

v(t) = v(0)e−γt +
√

Γ
ˆ t

0
e−γ(t−s)dWs. (2-22)

To find the ensemble average and standard deviation of the velocity, we
use the property of Itô integrals [53] that〈ˆ B

A

f(t)dWt

〉
= 0, (2-23)

and so we have
〈v(t)〉 = v(0)e−γt. (2-24)

We then substitute back to equation 2-22 and get
〈
(v(t)− 〈v(t)〉)2

〉
= Γ

〈(ˆ t

0
e−γ(t−s)dWs

)2〉
. (2-25)

Now considering the Itô isometry [53], the property of Itô integrals that〈(ˆ B

A

g(t, v)dWt

)2〉
=
〈ˆ B

A

g2(v, t)dt
〉
, (2-26)

one can show that 〈
v2(t)

〉
− 〈v(t)〉2 = Γ

ˆ t

0
e−2γ(t−s)ds, (2-27)
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and finally,

〈
v2(t)

〉
− 〈v(t)〉2 = e−2γtΓ

ˆ t

0
e2γsds (2-28)

= e−2γt Γ
2γ
(
e2γt − 1

)
(2-29)

= Γ
2γ
(
1− e−2γt

)
. (2-30)

When t → ∞, we would expect our system to go to equilibrium, and
according to the kinetic theory of gases we should have

1
2m

〈
v2
〉

= 1
2kBT, (2-31)

but in this case 〈v〉 = 0 and 〈v2〉 = Γ/2γ, thus

Γ = 2γkBT
m

, (2-32)

showing that Γ and Γ′ define the temperature of the heat bath.
With the mean and the standard deviation, it is possible to calculate the

higher-order moments of the velocity [52, 51, 57]. Defining ∆v = v(t)− 〈v(t)〉,
in equilibrium we have

〈
(∆v)2n+1

〉
= 0, (2-33)〈

(∆v)2n
〉

= (2n− 1)!!
〈
(∆v)2

〉
, (2-34)

which are the exact formulae for the moments of a Gaussian distribution,
and since this distribution is defined by its moments [58], then v is normally
distributed. This means that the probability density function of the velocity v
follows a Maxwell-Boltzmann distribution when the system is in equilibrium.

We can use the solution for the velocity to find the mean and variance
of the position [52], giving

〈r(t)〉 = r(0) + v(0)
γ

(
1− e−γt

)
, (2-35)

〈
(r(t)− 〈r(t)〉)2

〉
= Γ
γ2

[
t− 2

γ

(
1− e−γt

)
+ 1

2γ
(
1− e−2γt

)]
, (2-36)

which for long times tend, respectively, to

〈r(t)〉 = r(0) + v(0)
γ
, (2-37)

〈
(∆r(t))2

〉
= Γ
γ2 t. (2-38)
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For computational purposes, hereafter we will use the forces in equation
2-15 in the form of additional terms in the equations of motion of the particles
in contact with the baths, giving a system of two first-order equations, namely,

dv(t)
dt

= F

m
− γv(t) +

√
Γε (t) , (2-39)

dr(t)
dt

= v(t), (2-40)

ε being somewhat analogous to what would be a term of the form dWt/dt. This
is just an intuitive standpoint, rigorously such a term is impossible since the
Wiener process is nowhere differentiable [53], and F being the forces on the
particle not related to the bath. This model for a heat bath cannot be written
using a Hamiltonian, and so we have to plug the drag and the random forces
directly into the equations of motion of the end particles of the chain, located
in positions n = 1, N , to be able to couple the heat baths with the chain.

2.3
Thermodynamic properties

Interpreting the dynamics of such a mechanical system in thermodynamic
terms is not trivial, since Thermodynamics is concerned with macroscopic
quantities normally derived in the limit N → ∞ that does not apply to our
study here.

The problem of defining temperature and heat current for small systems
can be tackled in a rigorous fashion, like what was done by Lepri, Livi and
Politi in ref. [14], and by Dhar in ref. [34], but we will simplify the discussion
and put forward the intuitions involved and the end result.

Physically we know that the temperature of a system is related to its
average energy, while heat is the transport of disordered energy from one
point to another. With this in mind, let’s define the temperature in terms
of the kinetic energy of the particles, and define the heat current from the
exchange of energy between particles.

The kinetic temperature of particle n is given by

Tn =
〈
p2
n

m

〉
, (2-41)

and for a particle with unit mass it can be rewritten as

Tn = 〈v2
n〉, (2-42)

since in this case the numerical value of pn is equal to vn.
The heat current transferred from particle n to particle n + 1 depends
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on the inter-particle potential, and is defined as the average rate of work done
by the former on the latter,

Jn = 〈vn+1Fn→n+1〉 , (2-43)

which is the energy that passes through a plane between the particles with

Fn→n+1 = −Fn+1→n = − ∂U
∂qn

, (2-44)

Fn+1→n being the force that particle n+ 1 applies on particle n.
Now, from Newton’s third law, Fn+1→n is a reaction pair to Fn→n+1, and

so we could question ourselves on the choice of the particle velocity we look at
for our definition. However, in the stationary regime, we have

〈vn+1Fn→n+1〉 = 〈vnFn→n+1〉, (2-45)

and so we can average both terms to get the equivalent definition that we will
use,

Jn =
〈1

2 (vn + vn+1)Fn→n+1

〉
. (2-46)

For the harmonic interaction between both particles, definition 2-46
would be written as

Jn =
〈1

2 (vn + vn+1) k(qn − qn+1)
〉
, (2-47)

where k is the stiffness constant.
An important remark should be made on the signal of the heat current.

Consider the axis along which the particles interact as the x-axis. Then, the
expression used here considers the positive x-axis being defined to the right
(from particle n to particle n + 1 in figure 2.1), and so Jn > 0 when the heat
is being transferred from the left to the right (TL > TR) while Jn < 0 in the
opposite case (TL < TR).

It is also important to notice that in the stationary state, we would expect
Tn to stop depending on the time, and that implies Jn becomes constant along
the chain [14].

One last thermodynamic variable we look at is the conductivity, which
for such a system will be defined in the stationary state, when J = Jn, n =
1, 2, . . . , N , as

κ = JN

TL − TR
. (2-48)

2.4
Homogeneous chain model

With the discussions on the particle chain and the heat baths, we can now
describe the working model for heat conduction. To do this, the amplitudes of
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the particle-particle interactions and of the on-site potentials will be constant
along the chain. We will also consider all particles have the same mass m.

Summarizing, the Hamiltonian is

H =
N∑
n=1

1
2
p2
n

m
+

N∑
n=1

k

2(qn+1 − qn)2 +
N∑
n=1

V (qn), (2-49)

where for V (qn), we will consider the Frenkel-Kontorova chain (FKC) and
φ4 chain (QC) described in section 2.1. The heat bath considered will be a
Langevin thermostat

2.4.1
Equations of motion

We apply the discussion at the beginning of this chapter to explicitly
write the equations of motion. As said in section 2.2, Langevin heat baths
cannot be written as a Hamiltonian and thus only show in ad-hoc terms. One
last remark is that we will not use the momentum of each particle, but its
velocity, and so we substitute vn = pn/m.

The equations of motion are then
dqn
dt

= vn, (2-50)

for all particles. Now, for the boundaries,

dv1

dt
= − k

m
q1 −

k

m
(q1 − q2)− 1

m

dV

dq1
− γv1 +

√
2γTL
m

εL(t), (2-51)

dvN
dt

= − k
m
qN −

k

m
(qN − qN−1)− dV

dqN
− 1
m
γvN +

√
2γTR
m

εR(t), (2-52)

where εL(t) and εR(t) are independent white noises with zero mean and
autocorrelations 〈εL(t)εL(t′)〉 = δ(t − t′) and 〈εR(t)εR(t′)〉 = δ(t − t′). The
temperatures TL and TR have units of energy, since they are in units of kBT .
The remainder of the chain follows

dvn
dt

= − k
m

(2qn − qn−1 − qn+1)− 1
m

dV

dqn
, n = 2, . . . N − 1. (2-53)

For the φ4 potential, from equation 2-8, we have
dV

dqn
= AQq

3
n , (2-54)

and the resulting model will be called φ4 chain (QC), while for the Frenkel-
Kontorova potential, from equation 2-11,

dV

dqn
= AFK

as
sin

(2πqn
as

)
, (2-55)
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the model being called the FK chain (FKC).
With the initial conditions qn(0) = qn,0, vn(0) = vn,0, our working

stochastic dynamical system is now fully specified.

2.5
Thermal Diode

With the insights gained in chapter 1 about the possible causes of
anomalous heat conduction, we presented in section 2.4 two working models
that are known to verify Fourier’s law. These models are the basis to construct
devices capable of heat rectification, i.e., thermal diodes.

Quoting the words by Terraneo, Peyrard and Casati [8]:

Once the general mechanism of the thermal conduction in a com-
posite nonlinear lattice has been understood, this opens many pos-
sibilities. For instance, one can design a thermal rectifier[...].

To change the overlap of phonon bands on the chain according to the
direction of the heat current, it is common to introduce a source of asymmetry
by dividing the chain in two segments. The amplitude of the potential on
each segment (left and right) is different, and a central part connects both
segments [8]. Such a device would give a heat current with different magnitudes
when the temperature sources in figure 2.1 are exchanged. We then say that
our device rectified the thermal current of lower magnitude.

There are a few ways to quantify how good this device is. The most
common one used in simulations is the rectification coefficient [26], defined as

R = |J+ − J−|
|J−|

, (2-56)

where J+ = max {|JL→R|, |JR→L|} and J− = min {|JL→R|, |JR→L|}.
In section 2.5.1, we discuss the modelling of the central (or interfacial)

part of the chain. In section 2.5.2, we present the equations of motion that are
going to be numerically investigated in the rest of the work.

2.5.1
Interface Interaction

The central part of a thermal diode can be modeled in different ways. It
can be a third segment with many particles and a different potential, such as in
ref. [59], or the left and right segments can be connected directly through the
interaction between the rightmost particle of the left segment and the leftmost
particle of the right segment [25]. This is an interesting degree of freedom we
are going to explore here.
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In our case, the interface interaction will be given by a power-law
potential, parameterized by its exponent µ > 1, between particles N/2 and
N/2 + 1, with even N . This is defined as

U
(
xN

2 +1 − xN2
)

= kµ
µ

∣∣∣xN
2 +1 − xN2 − a

∣∣∣µ , (2-57)

or, rewritten in terms of qn,

U
(
qN

2 +1 − qN2
)

= Uµ
(
qN

2 +1 − qN2
)

= kµ
µ

∣∣∣qN
2 +1 − qN2

∣∣∣µ . (2-58)

When µ = 2 the harmonic force between both segments is recovered.

2.5.2
Equations of motion

We will change the equations of motion from section 2.4.1 to take into
consideration the separation of chain segments. The resulting models will
be called the two-segment Frenkel-Kontorova chain (TSFKC) and the two-
segment φ4 chain (TSQC). The Hamiltonian is

H =
N∑
n=1

1
2
p2
n

m
+

N/2−1∑
n=1

kL
2 (qn+1 − qn)2 +

N∑
n=1

VL(qn)

+ kµ
µ

∣∣∣qN
2 +1 − qN2

∣∣∣µ
+

N∑
n=N

2 +1

kR
2 (qn+1 − qn)2 +

N∑
n=N

2 +1

VR(qn),

(2-59)

which generalizes the diode model defined in ref. [25] (the latter recovered
when µ = 2).

The parameters kL and kR are the coefficients of the harmonic interaction
inside the left and right segments, respectively, kµ is the strength of the
interface interaction, AL and AR are the amplitudes of the on-site potentials
for the left and right segment, respectively. Like in section 2.4.1, we always
substitute vn = pn/m.

Let us first look at the time derivative of the displacement. Since only
the kinetic energy has a dependency on the momenta, we will always have

dqn
dt

= vn, (2-60)

for all particles in both segments, n = 1, 2, . . . , N .
For the momenta, there are three cases. First let us look at particles 1

and N , in contact with the heat baths at temperatures T1 and T2, respectively.
Assuming fixed boundary conditions and remembering the discussion on
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Langevin thermostats given in section 2.2, the equations of motion shall be

dv1

dt
= −kL

m
q1 −

kL
m

(q1 − q2)− 1
m

dVL
dq1
− γv1 +

√
2γTL
m

εL(t), (2-61)

dvN
dt

= −kR
m
qN −

kR
m

(qN − qN−1)− 1
m

dVR
dqN
− γvN +

√
2γTR
m

εR(t), (2-62)

where εL(t) and εR(t) are independent white noises with zero mean and
autocorrelation 〈εL(t)εL(t′)〉 = δ(t − t′) and 〈εR(t)εR(t′)〉 = δ(t − t′), and we
assume the temperatures are given in units of the Boltzmann constant kB (so
TL and TR have units of energy).

The dynamics of particles N/2 and N/2+1, at the interface, will be given
by the following equations:

dvN
2

dt
= −kL

m
(qN

2
− qN

2 −1)− kµ
m

sgn
(
qN

2
− qN

2 +1

) ∣∣∣qN
2
− qN

2 +1

∣∣∣µ−1
− 1
m

dVL
dqN

2

(2-63)
dvN

2 +1

dt
= −kR

m
(qN

2 +1 − qN2 +2)− kµ
m

sgn
(
qN

2 +1 − qN2
) ∣∣∣qN

2
− qN

2 +1

∣∣∣µ−1
− 1
m

dVR
dqN

2 +1
.

(2-64)

In equations 2-63 and 2-64, sgn is the sign function, defined as

sgn(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0.

(2-65)

Finally, for the rest of the particles, the differential equations take on
much simpler forms,

dvn
dt

= −kL
m

(2qn − qn−1 − qn+1)− 1
m

dVL
dqn

, n = 2, . . . N2 − 1, (2-66)

dvn
dt

= −kR
m

(2qn − qn−1 − qn+1)− 1
m

dVR
dqn

, n = N

2 + 2, . . . , N. (2-67)

For completeness, we again write the forces due to the φ4 and Frenkel-
Kontorova potential,

dV

dqn
= AQq

3
n, (2-68)

dV

dqn
= AFK

as
sin

(2πqn
as

)
. (2-69)

The initial conditions, qn(0) = qn,0, pn(0) = pn,0, complete the diode model.
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3
Heat conduction results

In chapter 2, we discussed the basic components necessary for building
simple microscopic models of heat conduction and built the equations of motion
in section 2.4.1 for the QC and the FKC.

In appendix A, we raise the problem that obtaining an analytic solution
for most nonlinear models is difficult, or even impossible, and thus showed
numerical schemes that are used for simulating such systems. Due to having
worse convergence properties, the Euler scheme raised there will not be used
here. We will use the fourth-order Runge-Kutta scheme, also described in
appendix A.

One simulation using stochastic numerical integration is itself just one
sample taken from a random distribution of possible paths. Hence to take the
thermodynamic average for the kinetic temperature and the heat current, we
use many independent sample paths (a proxy of the thermodynamic ensemble)
over which we average.

We will do this procedure for the QC and FKC models, calculating a
few thermodynamic properties of interest, specifically the temperature, the
heat current and the thermal conductivity, for different values of the chain
parameters.

The temperature profile of the system is given by the sequence of kinetic
temperatures of the particles, {Tn, n = 1, 2, . . . , N}. Since we consider a unit
lattice distance, the equilibrium point of the i-th particle in the x axis is i,
and so we represent all particle positions as i/N , the normalized equilibrium
positions. So the temperature profile can also be seen as the graph T (i/N).

Then, we look at the heat current along the chain {Jn, n = 1, 2, . . . , N},
again using the graph J(i/N). In the stationary state, J should be approxi-
mately constant, J(n/N) ≈ J(m/N), ∀n,m = 1, 2, . . . , N .

Finally, we get the average of the heat current along the chain,

J = 1
N

N∑
n=1

Jn, (3-1)

and use it to calculate the thermal conductivity κ of the system, as defined in
equation 2-48, that is,

κ = JN

TL − TR
, (3-2)
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for different parameter values.
The parameters used for the heat baths, as discussed in appendix A,

are the average temperature, Tm = (TL + TR)/2, and the relative temperature
difference, ∆rel = (TL − TR)/Tm, instead of TL and TR. To calculate TL and
TR back, we use

TL = Tm

(
1 + ∆rel

2

)
, (3-3)

TR = Tm

(
1− ∆rel

2

)
. (3-4)

In all cases, here we assume a non-dimensional version of the equations of
motion, so all parameters and dynamical thermodynamic quantities are non-
dimensional (see appendix A.4).

3.1
Quartic chain

Let us begin with the QC model. The effects of the number of particles in
the chain are discussed first. After that, the changes caused by the amplitude
of the particle-particle interaction k and the amplitude of the quartic potential
A are verified.

All cases are assumed to have total simulation time tmax = 3 × 105,
transient time ttrans = 105, and integration time step δt = 10−3. The number
of copies in the ensemble is N = 100.

Any deviation from these parameters will be raised on a case-by-case
basis.

3.1.1
Varying the number of particles

How the number of particles in the chain changes the system properties
was first analyzed by setting k = 1.0, A = 1.0. For the heat baths, Tm = 1.0
and ∆rel = 1.0. The results are shown in figures 3.1 and 3.2. Each curve was
obtained for a different value of N .

The total simulation time and transient time were changed (tmax =
2× 105, ttrans = 5× 104).
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Figure 3.1: Temperature profile along the φ4 chain, varying the number of
particles in the chain N . The parameters are A = 1.0, k = 1.0, while for the
baths we have Tm = 1.0 and ∆rel = 1.0. The inset shows the slope of the profile
in absolute value (calculated using least squares linear regression, as shown in
the appendix) versus N , with the abscissa in logarithmic scale. The dashed
red line is the slope of the straight line joining the heat bath temperatures.

Figure 3.2: Heat current along the φ4 chain, varying the number of particles
N . The parameters are A = 1.0, k = 1.0, while for the baths we have Tm = 1.0
and ∆rel = 1.0. (a) Linear graph of the local heat current and (b) conductivity
κ versus N .

From figure 3.1, it appears, due to the almost linear temperature profile,
normal heat conduction was achieved with our choice of parameter values.
However, a small convexity can be seen. This curvature can be explained with
the fact that κ = κ(T ) for the QC model [60]. The linear temperature profile
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was derived assuming that the conductivity is constant, but if we assume
κ ∝ Tα in equation 1-7, then we would actually get at the steady state [61] (if
α 6= −1)

q̇ = −κ0T
αdT

dx
=⇒ T =

(
−T

α+1
L − Tα+1

R

L
x+ Tα+1

L

) 1
α+1

, (3-5)

which gives a curved profile. If κ ∝ T−1, the correct profile would be

T = TL

(
TR
TL

)x/L
, (3-6)

but it also describes a slightly curved profile. In any case, for the general φ4

model, theoretical considerations have been used to argue that α = −2 from
linear response theory [32, 35], while molecular dynamics simulations have
found α ∈ [−1.83,−1.35] [36, 62].

Since this curvature is very small, we can make a good linear approx-
imation of the profile in the bulk (without the heat baths) by least-square
regression (see appendix B). From this we see how the slopes increase with
N . Since the Kapitza resistance is defined as the temperature jump in the
extremities divided by the heat current [40], the fact that these slopes are get-
ting closer to the slope between the temperatures of the heat baths show this
resistance is decreasing with N .

In figure 3.2, the function κ(N) does not reach a constant value, as
expected for a system with normal conduction. As a matter of fact, larger
values of N , N > 400 [23], are required.

For different choices of temperature, the amplitude might not be enough
to reproduce normal conduction. In fact, when we choose different values of the
parameters (Tm = 0.09,∆rel = 0.5, A = 5.0/2π, with the standard simulation
times), results for the purely harmonic chain are recovered (that is a flat
temperature profile and conductivitity that increases linearly with N , which
can be seen in figures 3.3 and 3.4). The reason for such a drastic change with
temperature (notice A varies ever so slightly) will be discussed in section 3.1.3.
To reproduce normal conduction, smaller values of Tm require higher values of
A.
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Figure 3.3: Temperature profile along the φ4 chain, varying the number of
particles in the chain N . The parameters are A = 5.0/2π, k = 1.0, while for
the baths we have Tm = 0.09 and ∆rel = 0.5. The inset shows the slope of
the profile in absolute value (calculated using least squares linear regression,
as shown in the appendix) versus N , with the abscissa in logarithmic scale.
The dashed red line is the slope of the straight line joining the heat bath
temperatures.

Figure 3.4: Heat current along the φ4 chain, varying the number of particles
N . The parameters are A = 5.0/2π, k = 1.0, while for the baths we have
Tm = 0.09 and ∆rel = 0.5. (a) Linear graph of the local heat current and (b)
conductivity κ versus N .

3.1.2
Varying the interaction strength

To see how the interaction amplitude k affects the thermodynamic
properties of the system, we set A = 5.0, N = 20. For the heat baths, Tm = 0.09
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and ∆rel = 0.5. The effect of the interaction strength k is shown in figures 3.6
and 3.5.

The total simulation time and transient time were changed back to the
standard set before (tmax = 3× 105, ttrans = 105).

Figure 3.5: Temperature profile along the φ4 chain, varying the interaction
strength k. The parameters are A = 5.0, N = 20, while for the baths we
have Tm = 0.09 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus k, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.

Figure 3.6: Heat current along the φ4 chain, varying the interaction strength
k. The parameters are A = 5.0, N = 20, while for the baths we have Tm = 0.09
and ∆rel = 0.5. (a) Linear graph of the local heat current and (b) Log-log
graph of the conductivity κ versus k.

As k increases, for fixed A, the harmonic interaction progressively dom-
inates the dynamics, flattening the temperature profile (see figure 3.5). Con-
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cerning the conductivity κ, we see in figure 3.6 that it increases with k, when
A and N are fixed. This is consistent with the fact that κ becomes divergent
in the thermodynamic limit for the harmonic case.

3.1.3
Varying the anharmonicity strength

When we fix k and N , the effects of varying A can be observed for the
system. In this case we set k = 1.0 and N = 20, while for the heat baths,
Tm = 0.09 and ∆rel = 0.5.

Figure 3.7: Temperature profile along the φ4 chain, varying the anharmonicity
strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 0.09 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.
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Figure 3.8: Heat current along the φ4 chain, varying the anharmonicity strength
A. The parameters are k = 1.0, N = 20, while for the baths we have Tm = 0.09
and ∆rel = 0.5. (a) Linear graph of the local heat current and (b) Log-log
graph of the conductivity κ versus A.

In figure 3.7 it is shown that, for a wide range of amplitudes A, the
harmonic potential dominates the dynamics. To understand for which values
of A the system presents normal conduction, we see that the harmonic and
anharmonic potentials intercept at the point

(x, VQ(x)) =
√√√√ 2k

AQ
,
k2

AQ

 . (3-7)

Since the thermal energy of the particle is of the order Tm (see appendix
A), then the quartic potential starts dominating the dynamics near the
point Tm = k2/AQ. The same can be obtained from non-dimensionalization
considerations (as shown in appendix A.1).

Figure 3.9: Sketch to understand the relation between (Tm, k, AFK) for the φ4

potential.
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From this relation, we can estimate the value of AQ for which the system
starts behaving according to Fourier’s law. In this case, AQ = k2/Tm ≈ 11.
The inset of figure 3.7 shows that indeed there is an inflection point between
A = 10 and A = 20 for the temperature profile slopes.

In figure 3.8, it is shown that the conductivity κ, as a function of A, is
almost constant for small enough A, and decays for larger values. The crossover
between both regimes is around AQ = 10, as predicted. In the next section we
discuss in more depth how the non-dimensional group AQTm/k2 defines when
the conduction is normal.

One last remark is that, for very high values of AQ, the temperature
profile seems to follow a sigmoid curve (see figure 3.7).

3.1.3.1
Interplay between anharmonicity and temperature

The previous discussion shows that, when the temperature increases and
k is kept constant, we would need smaller values of AQ to obtain normal
conduction (shown by the inflection point of the graph of temperature profile
slopes).

To see this effect, we reproduce the previous analysis for different values
of Tm, specifically 0.09 (figure 3.10), 0.25(figure 3.11) and 1.0(figure 3.12),
while fixing k = 1.0 and ∆rel = 0.5.

Figure 3.10: Temperature profile along the φ4 chain, varying the anharmonicity
strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 0.09 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.
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Figure 3.11: Temperature profile along the φ4 chain, varying the anharmonicity
strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 0.25 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.

Figure 3.12: Temperature profile along the φ4 chain, varying the anharmonicity
strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 1.0 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.

To be able to compare the insets of figures 3.10, 3.11 and 3.12, we divided
all the slopes in each inset by the value of the dashed red line (which is the
slope between the baths temperatures). The result can be seen in figure 3.13.
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There, it is shown that, in fact, the higher the temperature, the smaller
the value of AQ for the inflection point. Since we set k = 1.0, then our
approximations give AQ ≈ 11, 4, 1 for Tm = 0.09, 0.25 and 1.0, respectively.
In figure 3.13.a, it is shown this is a good approximation. The changes in the
conductivity for these values are seen in figure 3.13.b.

Figure 3.13: φ4 chain model. (a) Comparing the magnitude of the temperature
profile slope divided by the slope of the straight line joining the heat bath
temperatures, with different Tm. (b) Comparing conductivity for different Tm.
In both cases,the parameters are k = 1.0, N = 20 and ∆rel = 0.5.

Since we gave an heuristic argument that the relation between
(Tm, k, AQ), which determines if the model behaves as eexpected by Fourier’s
law, would be AQTm/k2, we then plot the conductivities from figure 3.13 using
this variable. The result is that all curves collapse into a single one, as seen in
figure 3.14.
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Figure 3.14: The conductivities for varying AQ and Tm, when written in terms
of AQTm/k2, collapse into a single curve. The dashed line was drawn to show
how all points fall in the same curve.

The previous results were obtained for k = 1. Then, to know what
happens otherwise, we repeated the aforementioned simulations, for the same
choices of A and Tm, now using k = 0.5, 1.5 and 2.0 (see figure 3.15). It can be
seen that each value of k gives a different curve. We argue this is due to the
harmonic model conductivity depending on k, and so the harmonic regime,
obtained for small values of AQTm/k2, show different conductivities. When we
account for this dependency, by dividing the entire curve by the harmonic limit
conductivity, we again get a common curve for all cases (see figure 3.16).

Figure 3.15: Conductitivies written in terms of AQTm/k2, when varying AQ,
Tm and k. The dashed lines were drawn to show how points with the same k
fall in the same curve.
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Figure 3.16: Conductitivies divided by the harmonic limit conductivity, written
in terms of AQTm/k2, when varying AQ, Tm and k. The dashed line was drawn
to show how all points fall in the same curve.

3.2
Frenkel-Kontorova chain

In the next sections, the effects of each chain parameter on the FKC
model will be studied, beginning with the number of particles in the model.
Then, we will see how the strength of the harmonic interaction and the strength
of the anharmonic potential changes the thermodynamic properties.

In all cases, unless stated otherwise, the bath temperature values are
given by Tm = 0.09 and ∆rel = 0.5, while the total simulation time was
tmax = 3× 105, with a transient ttrans = 105, while the integration time step is
δt = 10−3 and N = 100.

3.2.1
Varying the number of particles

In order to see how the number of particles in the chain affects each of
the aforementioned properties, we set k = 1.0, A = 5/2π. The results on the
temperature profile are shown in figure 3.17, while the heat current and the
conductivity are shown in figure 3.18. Each curve was obtained for a different
value of N . In this case we used N = 100.
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Figure 3.17: Temperature profile along the FK chain, varying the number of
particles in the chain N . The parameters are A = 5/2π, k = 1.0, while for
the baths we have Tm = 0.09 and ∆rel = 0.5. The inset shows the slope of
the profile in absolute value (calculated using least squares linear regression,
as shown in the appendix) versus N , with the abscissa in logarithmic scale.
The dashed red line is the slope of the straight line joining the heat bath
temperatures.

Figure 3.18: Heat current along the FK chain, varying the number of particles
N . The parameters are A = 5/2π, k = 1.0, while for the baths we have
Tm = 0.09 and ∆rel = 0.5. (a) Linear graph of the local heat current and
(b) conductivity κ versus N .

We can observe that the heat currents are constant along the chain within
the precision shown in figure 3.18. This is a clear indication that the system
has reached a stationary state.

As N grows, the discontinuity in the boundary of the temperature
profile gets smaller, something that has already been shown extensively in
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the literature [63]. This shows that the Kapitza resistances decrease with N .
The profile slope, calculated using least squares linear regression, seems to
be increasing up to a maximum value (see inset of figure 3.17), as does the
conductivity (see figure 3.18.b).

According to Fourier’s law, κ should become independent of N , for large
N . However, depending on the temperature of the system, the range of N for
which κ is constant changes, generally being higher than N = 200 [22]. This
is consistent with our results slowly approaching a limiting value.

Now, although the slope of T (i/N) increases together with κ when
varying N , we will see this is not the case when varying A and k, so it should
not be seen as a general rule.

Also, for higher values of N , a small curvature appears for the tempera-
ture profile, which gets slightly convex. A closer look at the graphs of the linear
regression show this convexity (see appendix B), but as was the case for the φ4

model, this can be explained by the fact that the thermal conductivity of the
FKC model depends on the local temperature of the particles [64, 63, 33, 39].
In ref. [22] the profile is also curved (albeit it is concave). This is due to the
range of temperatures is large relative to Tm.

The behavior of κ as a function of Tm (not shown in this work) is
complex, decreasing until a minimum value and then increasing [64, 63, 33].
Qualitatively, this is consistent with κ ∝ Tα if, for small Tm, α < 0, while
α > 0 otherwise.

3.2.2
Varying the interaction strength

When varying k, we will fixA = 5 andN = 20. The resulting temperature
profiles are shown in figure 3.19, while the heat current and the conductivity
are shown in figure 3.20. Each curve is for a different value of k.
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Figure 3.19: Temperature profile along the FK chain, varying k. The parame-
ters of the chain are A = 5.0/2π,N = 20, while for the baths we have Tm = 0.09
and ∆rel = 0.5. The inset shows the slope of the profile in absolute value (cal-
culated using least squares linear regression) versus k, with the abscissa in
logarithmic scale. The dashed red line is the slope of the straight line joining
the heat bath temperatures.

Figure 3.20: Heat current along the FK chain, varying the strength of interac-
tion k. The parameters are A = 5.0/2π, N = 20, while for the baths we have
Tm = 0.09 and ∆rel = 0.5. (a) Linear graph of the local heat current and (b)
Log-log graph of the conductivity κ versus k.

In figure 3.19, the slope of the profile get smaller with higher values of
k. This is to be expected, since in this case the harmonic interaction would
be the dominating term in the dynamics, and a purely harmonic chain has a
flat temperature profile. Thus higher values of k, relative to A, should result
in flatter temperature profiles. The heat conductivity κ increases with k, in
agreement with the results for QC discussed in the section 3.1.2.
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3.2.3
Varying the anharmonicity strength

When varying A, we will set k = 1.0 and N = 20. The resulting
temperature profiles are shown in figure 3.21, while the heat current and the
conductivity are shown in figure 3.22. Each curve is for a different value of A.

Figure 3.21: Temperature profile along the FK chain, varying A. The parame-
ters are N = 20, k = 1.0, while for the baths we have Tm = 0.09 and ∆rel = 0.5.
The inset shows the slope of the profile in absolute value (calculated using least
squares linear regression, as shown in the appendix) versus A, with the abscissa
in logarithmic scale. The dashed red line is the slope of the straight line joining
the heat bath temperatures.

Figure 3.22: Heat current along the FK chain, varying A. The parameters are
N = 20, k = 1.0, while for the baths we have Tm = 0.09 and ∆rel = 0.5. (a)
Linear graph of the local heat current and (b) Log-log graph of the conductivity
κ versus A
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When we increase the strength of the periodic anharmonic potential in
the FK chain, the slope of the temperature profile increases up to a maximum,
and then decreases (see the inset of figure 3.21).

In the case of small A, the harmonic particle-particle interaction domi-
nates the dynamics, resulting in a flat profile. As we increase A, the Frenkel-
Kontorova potential starts dominating. At this point, we need to compare the
quadratic and higher-order terms of the Taylor expansion for the cosine,

A [1− cos(x)] = A

[
x2

2! −
x4

4! + . . .

]
. (3-8)

The thermal fluctuations of the particle depend on the mean temperature
of the baths, Tm, and on the strength of the anharmonic potential, A. Now
if the displacement qn is near zero most of the time, the cosine can be well
approximated by a parabola, while the quartic term is important for higher
qn.

When A is too big, relative to Tm, the particle thermal fluctuations
are confined to the potential well near equilibrium and the quadratic term
dominates the dynamics, thus flattening the temperature profile. For A not as
big, qn varies enough for the particle to feel the quartic term, thus showing the
expected linear profile.

Looking at figure 3.22 (b), we see that κ decreases with A, in accordance
with ref. [63]. This makes sense in the context of our discussion on the
temperature profile slope. Higher values of A would make each particle vibrate
less, thus making the thermal current smaller. The conductivity then decreases.

Because the potential is bounded, the relation between Tm, k and AFK
that produces normal conduction is not as clear as before. When Tm is higher
than the periodic potential amplitude, Tm > AFK/π, the particles have enough
energy to hop between the potential wells and as we increase Tm, the harmonic
interactions tend to dominate the dynamics [25]. For Tm < AFK/π, depending
on the relative values of (Tm, k, AFK), either the harmonic or the anharmonic
terms can dominate.
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Figure 3.23: Sketch to understand the relation between (Tm, k, AFK) for the
Frenkel-Kontorova potential. Notice the amplitude of the periodic potential is
AFK/π, due to the fact that 0 < 1− cos(2πq) < 2.

If we use nondimensionalization arguments for the Frenkel-Kontorova
model (analogous to the ones used for the φ4 model), we would find that the
adimensional anharmonic amplitude is

A∗FK = AFK
a

√
1

kTm
. (3-9)

The relation between (Tm, k, AFK) will be further discussed in the next
section.

3.2.3.1
Interplay between anharmonicity and temperature

To understand the interplay between the parameters (Tm, k, AFK) that
reproduces normal conduction, we will fix k = 1.0, while varying A for different
values of Tm. Like in the QC model, we use the values 0.09, seen in figure 3.24,
0.25, seen in figure 3.25, and 1.0, in figure 3.26
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Figure 3.24: Temperature profile along the FK chain, varying the anharmonic-
ity strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 0.09 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.

Figure 3.25: Temperature profile along the FK chain, varying the anharmonic-
ity strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 0.25 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.
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Figure 3.26: Temperature profile along the FK chain, varying the anharmonic-
ity strength A. The parameters are k = 1.0, N = 20, while for the baths we
have Tm = 1.0 and ∆rel = 0.5. The inset shows the slope of the profile in
absolute value (calculated using least squares linear regression, as shown in
the appendix) versus A, with the abscissa in logarithmic scale. The dashed red
line is the slope of the straight line joining the heat bath temperatures.

As discussed previously, when Tm is increased above AFK/π, the har-
monic interactions tend to dominate the dynamics. By the same argument, if
Tm is fixed, it must be AFK > πTm to avoid this harmonic regime. In figure
3.27.a, we see that this is a good approximation for the inflection point of
the slope. For Tm = 0.09, 0.25 and 1.0, the expected values of AFK would be
0.28, 0.79 and 3.14, respectively. When Tm < AFK/π, increasing AFK makes
the particle dynamics be dominated by the quadratic term of the anharmonic
potential, and so the slope tends to zero.

Similar to the φ4 model, κ, as a function of A (figure 3.27), is approxi-
mately constant for small values of A, and then decreases (see figure 3.13.b).
However, for values of AFK bigger than the plateau one (in the slope graph),
the conductivity decreases more slowly.

DBD
PUC-Rio - Certificação Digital Nº 1812657/CA



Chapter 3. Heat conduction results 53

Figure 3.27: FK chain model. (a) Comparing the magnitude of the temperature
profile slope divided by the slope of the straight line joining the heat bath
temperatures, with different Tm. (b) Comparing conductivity for different Tm.
In both cases,the parameters are k = 1.0, N = 20 and ∆rel = 0.5.

Like we did for the φ4 model, we try to redraw the graphs in terms of a
relation between the amplitudes and the temperature. In this case, we use the
parameter achieved from nondimensionalization, and the result, which is not
as good as the aforementioned case, can be seen in figure 3.28.

Figure 3.28: Collapsing the conductivities of the Frenkel-Kontorova model in
a single curve.

3.3
Final Remarks

In this chapter, we made a preliminary study about heat conduction,
in order to familiarize ourselves with this subject in order to study the more
complex problem of heat current rectification in the next chapter.
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For this study, we addressed two different models, with the minimal re-
quirements for the validity of Fourier’s law (an anharmonic potential that
does not conserve momentum). We considered two potentials, one bounded
(Frenkel-Kontorova potential) and one unbounded (φ4 potential), for compar-
ison.

As a control for choosing the parameters of the thermal diode models,
we performed numerical simulations to verify how changing the parameters of
both models changed the thermodynamic properties of the system.

We studied the relation between the harmonic interaction amplitude,
k, the anharmonic on-site potential amplitude, A, and the average system
temperature, Tm, to obtain normal heat conduction, and how they affect the
system thermal conductivity. It was discussed how the conductivity depends
on the temperature, κ = κ(T ).
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4
Thermal diode results

In chapter 3, we showed numerical results for heat conduction in the FKC
and QC models. There we discussed how the magnitudes of k and A, relative
to Tm, affect the temperature profile and conductivity, and tried to get insights
by zooming in the dynamics of the system.

In this chapter, we will investigate how non-homogeneity and the inter-
face interaction, in the TSFKC and TSQC models, bring forth the rectification
of the heat current along the chain.

Here we use the same numerical schemae as before, the stochastic fourth-
order Runge-Kutta method. All thermodynamic properties are also calculated
in the same way. The difference is that now we have to define the parameters
of both left (kL, AL) and right (kR, AR) segments, as well as those of their
interaction (µ, kµ).

Since we have seen in the previous chapter that the ratio of the ampli-
tudes dictates if the conductivity of each segment is normal, following Fourier’s
law, we shall always consider kL/AL = kR/AR. To do this, the parameter
λ = kR/kL = AR/AL was defined in section A.4.

To be able to observe the rectification of the heat current, we will need to
always compare the cases TL > TR and TL < TR, with |TL − TR| and Tm being
kept constant. As discussed in chapter A, instead of using the temperature
difference, we will use the relative difference ∆rel = (TL − TR)/Tm. When
∆rel > 0, TL > TR, and when ∆rel < 0, TL < TR. In this case, we define
JL→R as the heat current when ∆rel > 0, and JR→L as the heat current when
∆rel < 0.

The rectification coefficient was defined in equation 2-56 as

R = |J+ − J−|
|J−|

, (4-1)

where J+ and J− were the absolute values of the higher and lower heat currents,
respectively.

This chapter will be separated in two parts. First, we discuss how inho-
mogeneity, λ 6= 1, changes the system dynamics,creating thermal rectification.
In the sequence, we will change the exponent µ of the interfacial interaction
and see its effects.
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4.1
Varying the asymmetry

To look at how λ 6= 1, compared with the previous chapter where λ = 1,
affects the rectification of the TSQC and TSFKC models, we keep µ = 2.0
and change the values of the parameters of the chains and thermal baths.
Unless stated otherwise, we will always assume the chain is small, with N = 4.
The quartic chains will be discussed first, before moving on to the Frenkel-
Kontorova chains.

In order to compare the magnitude of the forward and backward currents,
we always consider both positive and negative values of ∆rel, but with the same
absolute value, thus we represent both cases using |∆rel|.

In both cases, we use a total simulation time of tmax = 2× 105, transient
time ttrans = 5 × 104, and integration time step δt = 10−3, with N = 100
samples.

4.1.1
Two-segment φ4 chain

From the definition of λ, the difference between the on-site potential
amplitudes of the left and right segments is given by |AL − AR| = AL|1 − λ|.
Because of this, we will now look how λ and AL alter the rectification coefficient
for the φ4 chain.

Let us first look at varying λ. The parameters of the left segment of
the chain are kL = 1.0, AL = 10.0, while the parameters of the right segment
depend on λ. The parameters of the baths are Tm = 0.25 and ∆rel = 0.5.
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Figure 4.1: Magnitude of the heat current as a function of λ, for the TSQC.
The dashed and solid lines correspond to |JR→L| and |JL→R|, respectively. The
parameters of the chains are kL = 1.0, AL = 10.0, kµ = 1.0, µ = 2.0, while for
the baths we have Tm = 0.25, |∆rel| = 0.5.

Figure 4.2: Rectification coefficient against λ, for the TSQC. The parameters
of the chains are kL = 1.0, AL = 10.0, kµ = 1.0, µ = 2.0, while for the baths
we have Tm = 0.25, |∆rel| = 0.5.

We will set λ > 1.0, because we can increase |AL −AR| with no bounds,
for fixed AL. In this case, we have |JL→R| > |JR→L|. This shows that the heat
current is bigger when going from the segment whose on-site potential has lower
amplitude to the one with higher amplitude. In section 4.2, we will see how this

DBD
PUC-Rio - Certificação Digital Nº 1812657/CA



Chapter 4. Thermal diode results 58

is the opposite of the TSFKC model. We notice that when λ increases, the heat
current decreases, which makes sense, since the on-site potential amplitudes
will increase and restrain the particle vibrations.

The rectification coefficient increases with λ, indicating that it enhances
(dampens) the phonon bands overlap for ∆rel > 0 (∆rel < 0), as seen in [25].

To understand the role of the amplitude difference |AL − AR| in the
rectification R, we fix λ = 2.0 and vary the values of AL.

Figure 4.3: Magnitude of the heat current as a function of AL, for the TSQC.
The dashed and solid lines correspond to |JR→L| and |JL→R|, respectively. The
parameters of the chains are kL = 1.0, λ = 2.0, kµ = 1.0, µ = 2.0, while for
the baths we have Tm = 0.25, |∆rel| = 0.5.
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Figure 4.4: Rectification coefficient against AL, for the TSQC. The parameters
of the chains are kL = 1.0, λ = 2.0, kµ = 1.0, µ = 2.0, while for the baths we
have Tm = 0.25, |∆rel| = 0.5.

Again, as the amplitudes increases, the heat current decreases while R
increases. However, now it seems as if R is approaching a plateau.

4.2
Varying the temperatures of the heat baths

Now that we understand how λ brings the rectification effect, we look
how the bath temperatures affects it. In all cases, we use a total simulation
time of tmax = 3 × 105, transient time ttrans = 105, and integration time step
δt = 10−3, with N = 100 samples.

4.2.1
Two-segment φ4 chain

The first results are the variation of the rectification with Tm and
∆rel for the TSQC. The parameters of the left segment of the chain are
kL = 1.0, AL = 5/2π, while the parameters of the right segment are calculated
using λ = 0.2.
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Figure 4.5: Heat current of the chain against ∆rel for different values of Tm
for the TSQC. The parameters of the chains are kL = 1.0, AL = 5.0/2π, λ =
0.2, kµ = 1.0, µ = 2.0.

Figure 4.5 shows how the heat current changes with the variation of the
bath parameters. When ∆rel < 0, we have TL < TR, while ∆rel > 0 implies
TL > TR.

Although our choice of parameter values does not show much difference
in the magnitude of heat currents for positive and negative ∆rel, it is still
possible to see a slight asymmetry. Figure 4.6 makes this clearer, by looking
only at the magnitudes of the heat currents against the same absolute value
of temperature difference, |∆rel|.
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Figure 4.6: Magnitude of the heat current as a function of |∆rel|, for different
values of Tm, for the TSQC. The dashed and solid lines correspond to |JR→L|
and |JL→R|, respectively. The parameters of the chains are kL = 1.0, AL =
5/2π, λ = 0.2, kµ = 1.0, µ = 2.0.

The value of |JR→L| is bigger than |JL→R|, showing the rectification effect.
Since λ = 0.2, kL = 1.0 and AL = 5/2π, the chain is such that kR = 0.2 and
AR = 1/2π, in accordance with section 4.1. We can also observe that the
heat currents increase with the average temperature of the baths and with the
temperature difference.

The discrepancy between |JL→R| and |JR→L|, measured through the recti-
fication factor R, depends on Tm and |∆rel|, as shown in figure 4.7. Notice that,
for sufficiently large values of Tm and |∆rel|, the rectification increases with
both parameters, while for small values, that monotonic tendency changes.

A closer look on the behavior of the rectification coefficient is presented
in figures 4.8 and 4.9, that represent different cuts of figure 4.7.
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Figure 4.7: Surface of the rectification coefficient for different values of Tm
and |∆rel| for the TSQC. The parameters of the chains are kL = 1.0, AL =
5.0/2π, λ = 0.2, kµ = 1.0, µ = 2.0.

Figure 4.8: Rectification coefficient against |∆rel| for different values of Tm
for the TSQC. The parameters of the chains are kL = 1.0, AL = 5.0/2π, λ =
0.2, kµ = 1.0, µ = 2.0.
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Figure 4.9: Rectification coefficient against Tm for different values of |∆rel|
for the TSQC. The parameters of the chains are kL = 1.0, AL = 5.0/2π, λ =
0.2, kµ = 1.0, µ = 2.0.

The interplay between Tm and |∆rel| is highly non-trivial. In figure 4.8,
notice that for fixed Tm, R has a local minimum for |∆rel| = 0.5 when Tm

takes the lowest investigated value, while for higher values of the average
temperature, R is an increasing function of |∆rel|.

In figure 4.9, the rectification increases with Tm for |∆rel| > 0.2. However,
it decreases for |∆rel| = 0.2.

4.2.2
Two-segment Frenkel-Kontorova chains

Now we study the impact of Tm and ∆rel on the rectification R, for
the TSFKC model. Again the parameters of the left segment of the chain
are kL = 1.0, AL = 5.0/2π, while the parameters of the right segment are
calculated using λ = 0.2.
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Figure 4.10: Heat current of the chain against ∆rel for different values of Tm
for the TSFKC. The parameters of the chains are kL = 1.0, AL = 5.0/2π, λ =
0.2, kµ = 1.0, µ = 2.0.

The asymmetry, present in figure 4.10 but mitigated by the scale,
becomes far more evident in figure 4.11.

Also in figure 4.12 we see that, as Tm increases, the difference between
|JR→L| and |JL→R| first increases and then decreases.

Figure 4.11: Magnitude of the heat current against |∆rel|, for different values
of Tm, for the TSFKC. The dashed and solid lines correspond to |JR→L|
and |JL→R|, respectively. The parameters of the chains are kL = 1.0, AL =
5.0/2π, λ = 0.2, kµ = 1.0, µ = 2.0.
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Figure 4.12: Magnitude of the heat current against Tm, for different values
of |∆rel|, for the TSFKC. The dashed and solid lines correspond to |JR→L|
and |JL→R|, respectively. The parameters of the chains are kL = 1.0, AL =
5.0/2π, λ = 0.2, kµ = 1.0, µ = 2.0.

Unlike the quartic potential, the current in the Frenkel-Kontorova chain
is stronger from the larger to the smaller potential amplitudes.

How much the currents, |JR→L| and |JL→R|, differ is seen by the recti-
fication coefficient variation with the temperatures in figures 4.13, 4.14 and
4.15.

DBD
PUC-Rio - Certificação Digital Nº 1812657/CA



Chapter 4. Thermal diode results 66

Figure 4.13: Surface of the rectification coefficient, as a function of Tm and
|∆rel|, for the TSFKC. The parameters of the chains are kL = 1.0, AL =
5.0/2π, λ = 0.2, kµ = 1.0, µ = 2.0.

Figure 4.14: Rectification coefficient against |∆rel|, for different values of Tm,
for the TSFKC. The parameters of the chains are kL = 1.0, AL = 5.0/2π, λ =
0.2, kµ = 1.0, µ = 2.0.
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Figure 4.15: Rectification coefficient against Tm for different values of |∆rel|
for the TSFKC. The parameters of the chains are kL = 1.0, AL = 5.0/2π, λ =
0.2, kµ = 1.0, µ = 2.0.

In figure 4.15, we see that as the temperature increases, the rectification
coefficient tends to zero, and the diode effect is lost. It shows a maximum near
Tm = 0.1, and also increases with higher |∆rel|.

The fact thatR decreases as Tm increases is not surprising. For sufficiently
high Tm, the Frenkel-Kontorova potential becomes negligible, and the particles
are able to freely hop between the potential wells. In this regime, the dynamics
is mainly governed by the harmonic potential. Then the rectification would
depend only on the asymmetry of the particle-particle linear interactions. A
purely harmonic chain is such that κ does not depend on the temperature, and
so is not expected to show rectification [65].

4.3
Nonlinear interfacial interaction

Now we want to understand how changing the interaction between both
segments of the two-segment models affects our previous results. To achieve
this, we will be using the power-law potential defined in equation 2-58, namely

Uµ (qn+1 − qn) = kµ
µ
|qn+1 − qn|µ , n = N/2, (4-2)

and vary its parameter µ. For each exponent chosen, we will see the effects of
changing kµ, Tm and |∆rel|.

As before, we use N = 4 in all cases. The quartic chains will be the
focus, and the Frenkel-Kontorova chains will not be considered. Like in the
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inhomogeneous case, we use the notation |∆rel| to show we are using both the
positive and negative values of ∆rel.

4.3.1
Impact of kµ and µ

We start by looking at how kµ changes the rectification, for different
values of µ. We choose kL = 1.0, AL = 1.0 and λ = 5.0, meaning that the
right-side potential has bigger amplitude than the left-side one.

For the baths, Tm = 1.0, |∆rel| = 1.0, and the results are shown in figures
4.16 and 4.17.

The total simulation time is tmax = 105, while the transient time is
ttrans = 103, and the integration time step is δt = 10−3. We always simulate
N = 100 samples.

Figure 4.16: Log-log plot of the heat current against µ for different values of kµ
for the TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ = 5.0,
while for the baths we have Tm = 1.0, |∆rel| = 1.0. The solid and dashed lines
correspond to |JR→L| and |JL→R|, respectively.
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Figure 4.17: Log-log plot of the heat current against kµ for different values of µ
for the TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ = 5.0,
while for the baths we have Tm = 1.0, |∆rel| = 1.0. The solid and dashed lines
correspond to |JR→L| and |JL→R|, respectively.

In these figures, we notice that the heat currents in both directions
(R → L and L → R) increase non-linearly with µ and kµ, although for the
case L→ R we notice a minimum for µ = 2.0.

The values of |JL→R| and |JR→L| become closer for higher values of kµ,
which indicated that the interplay between the potential amplitudes becomes
hampered and the interfacial interaction Uµ dominates the dynamics. A closer
look at the rectification shows this is indeed the case, as depicted in figures
4.18, 4.19 and 4.20.
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Figure 4.18: Surface plot of rectification coefficient against (kµ, µ) for the
TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ = 5.0, while
for the baths we have Tm = 1.0, |∆rel| = 1.0.

Figure 4.19: Linear plot of the rectification coefficient against µ for different
values of kµ for the TSQC. The parameters of the chains are kL = 1.0,
AL = 1.0, λ = 5.0, while for the baths we have Tm = 1.0, |∆rel| = 1.0.
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Figure 4.20: Log-linear plot of the rectification coefficient against kµ for
different values of µ for the TSQC. The parameters of the chains are kL = 1.0,
AL = 1.0, λ = 5.0, while for the baths we have Tm = 1.0, |∆rel| = 1.0.

We can clearly see in figure 4.19 that for higher kµ, R is an extremum
for µ u 2.0, and for smaller values the extremum is achieved for higher µ.

4.3.2
Impact of the heat-bath temperatures

Now for simulations varying ∆rel, we choose kL = 1.0, AL = 1.0, λ = 5.0,
kµ = 0.1, Tm = 1.0. The parameters of the numerical integration are the same
as for the previous section. In this case, the results for the heat currents are
shown in figures 4.21 and 4.22.
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Figure 4.21: Linear-log plot of the heat current against µ for different values
of |∆rel| for the TSQC. The parameters of the chains are kL = 1.0, AL = 1.0,
λ = 5.0, kµ = 0.1, while for the baths we have Tm = 1.0. The solid and dashed
lines correspond to |JR→L| and |JL→R| respectively.

Figure 4.22: Linear-log plot of the heat current against |∆rel| for different values
of µ for the TSQC. The parameters of the chains are kL = 1.0, AL = 1.0,
λ = 5.0, kµ = 0.1, while for the baths we have Tm = 1.0. The solid and dashed
lines correspond to |JR→L| and |JL→R| respectively.
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From figure 4.21, we can see that |JL→R| have a minimum near µ = 2.0
when |∆rel| = 1.0, and for lower temperature differences the minimum appears
for lower values of µ. In contrast, |JR→L| is strictly increasing with µ. For any
value of µ, both currents are strictly increasing with |∆rel|.

For fixed µ, the rectification increases with |∆rel|. In figure 4.23 it is
shown that, for |∆rel| = 0.2, R is maximal at µ = 2.0. As |∆rel| increases, the
maximum shifts larger values of µ, being located at µ = 4.0 for |∆rel| = 1.0.
See also figures 4.24 and 4.25.

Figure 4.23: Surface plot of rectification coefficient against (|∆rel|, µ) for the
TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ = 5.0, kµ = 0.1,
while for the baths we have Tm = 1.0.
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Figure 4.24: Linear plot of the rectification coefficient against µ, for different
values of |∆rel|, for the TSQC. The parameters of the chains are kL = 1.0,
AL = 1.0, λ = 5.0, kµ = 0.1, while for the baths we have Tm = 1.0.

Figure 4.25: Linear plot of the rectification coefficient against |∆rel|, for
different values of µ, for the TSQC. The parameters of the chains are kL =
1.0, AL = 1.0, λ = 5.0, kµ = 0.1, while for the baths we have Tm = 1.0.

Finally, we look at the dynamics for different values of Tm, at fixed |∆rel|.
In this case, kL = 1.0, AL = 1.0, λ = 5.0, kµ = 0.2, |∆rel| = 1.0.
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Figure 4.26: Linear-log plot of the heat current against µ, for different values
of Tm, for the TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ =
5.0, kµ = 0.2, while for the baths we have |∆rel| = 1.0. The solid and dashed
lines correspond to JR→L and JL→R respectively.

Figure 4.27: Linear-log plot of the heat current against Tm, for different values
of µ, for the TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ =
5.0, kµ = 0.2, while for the baths we have |∆rel| = 1.0. The solid and dashed
lines correspond to JR→L and JL→R respectively.
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The higher the average temperature, the higher the heat currents (since
|TL−TR| = Tm|∆rel| and ∆rel is fixed). However, if Tm < 0.2, the heat currents
actually decrease with µ, in stark contrast with the previous cases.

For higher temperatures, the heat current seems to have a minimum that
depends on its direction. As an example, |JL→R| have a minimum at µ = 1.2 for
Tm = 1.2, while |JR→L| have a minimum at µ = 2.0 for the same temperature.

In figure 4.28, we can see that the dependency of R with (µ, Tm) is very
non-trivial. A saddle point appears near Tm ≈ 1.1 and µ ≈ 2.3, indicating the
overlap of regions with very different dependencies of R in (µ, Tm). The cuts
of the surface R = R(µ, Tm), shown in figures 4.29 and 4.30, make this even
clearer.

Figure 4.28: Surface plot of rectification coefficient against (Tm, µ) for the
TSQC. The parameters of the chains are kL = 1.0, AL = 1.0, λ = 5.0, kµ = 0.2,
while for the baths we have |∆rel| = 1.0.
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Figure 4.29: Linear plot of the rectification coefficient against µ, for different
values of Tm, for the TSQC. The parameters of the chains are kL = 1.0, AL =
1.0, λ = 5.0, kµ = 0.2, while for the baths we have |∆rel| = 1.0.

Figure 4.30: Linear plot of the rectification coefficient against µ, for different
values of ∆rel, for the TSQC. The parameters of the chains are kL = 1.0, AL =
1.0, λ = 5.0, kµ = 0.2, while for the baths we have |∆rel| = 1.0.

For lower values of Tm, it seems that R always increases with µ, but for
higher values we have a maximum. These maxima show at lower values of µ
as we increase Tm.
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4.4
Final remarks

In this chapter, our study of the thermal diode was divided in three parts.
First we wanted to understand the properties of the diode with harmonic inter-
segment interaction, for both the φ4 and Frenkel-Kontorova chains.

Firstly, for the φ4 model, it was shown that the rectification increases
with the asymmetry AL/AR, indicating it hampers the phonon band overlap
of the two segments.

Secondly, the effect of the heat bath temperatures was analyzed for
both models. We have seen that the average temperature Tm increases the
heat currents, but not necessarily the rectification. A maximal value of the
rectification for the Frenkel-Kontorova model, when plotted as a function of
Tm, was observed (in the analyzed case, Tm = 0.2). In contrast, for the φ4

model, the rectification generally increased with Tm.
Another interesting observation, when comparing both models, was the

preferred direction for the rectification. For the φ4 chain, we have seen a
preferred direction from the lower anharmonic amplitude to the higher one,
while the Frenkel-Kontorova chain was the opposite.

Thirdly, as a contribution of this work, not found in the literature, the
effect of the interfacial interaction nonlinearity, together with the heat baths
temperatures, was analyzed on the φ4 model.

In most cases, we noticed that there was a maximal value of the
rectification, as a function of the exponent µ, depending on the parameters
of the system. In particular, when the inter-segment potential amplitude
decreases, the rectification increases, while the maximum occurs for larger
values of µ (see figure 4.18).

The rectification also increases with |∆rel| (see figure 4.23), while the
value of µ for maximal rectification slightly increases (from 2 to 4).

This occurs for Tm ≈ 1, but for lower temperatures the behavior changes
(see figure 4.28).
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5
Conclusions

The motivation for this work was the growing interest in nanoscale
thermal rectification, after the theoretical proposal by Terraneo, Peyrard and
Casati, in 2002, [8] and the experimental confirmation by Chang, Okawa,
Majumdar and Zettl, in 2006 [1]. This phenomenon also has a plethora of
interesting possible applications, as discussed in chapter 1 [26].

However, many questions about thermal diodes are still unanswered,
and few theoretical results exist [65]. Since it is still an emerging field, most
results rely on computer simulations, although the number of experimental
realizations is growing.

In this work, we first reviewed the simpler problem of heat conduction
in a chain of particles, interacting harmonically. This was done to build some
understanding of the systems to be studied for the thermal diode.

To obtain normal heat conduction, we added an anharmonic on-site
potential in the chain, and studied two cases, the Frenkel-Kontorova potential
and the φ4 potential. The main reason for this choice is that the former is
bounded, while the latter is unbounded.

We have seen that the relative values between the anharmonic potential
amplitude, the harmonic potential amplitude, and the mean temperature of
the baths, establish if the system will in fact conduct heat. This makes sense
if we think in terms of the vibrations of the particles.

According to the literature [36, 39], the conductivity of both models
depends on the temperature (κ = κ(T )), and we have observed this on the
slight curvature of their heat profiles for higher number of particles in the
chain.

For the thermal diode, we divided the previous chains in two segments,
and defined different values for the amplitudes of the potentials on both
sides, creating an asymmetry. Then we observed how different parameters
changed the rectification of this new system. The interpretation in terms of the
dynamics of the particles was not as simple, since the thermal diode is analyzed
mostly in terms of heat currents, which depend more on the covariance between
neighboring particles than on their individual vibrations.

When fixing the inter-segment potential as harmonic, we have seen ev-
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idences that higher asymmetries, AL/AR, decrease the phonon band overlap
between the segments. The temperature of the heat baths also affects the mag-
nitude of the rectification, with higher temperatures increasing the rectification
for the φ4 potential (which is unbounded), while having an optimal value in
the case of the Frenkel-Kontorova one (which is bounded). In this case, it was
interesting to observe that the preferred heat current direction changed for
each model. In the φ4 chain, currents from the segment with lower anharmonic
amplitude to the higher one are higher, while in the Frenkel-Kontorova chain
the inverse occurs.

Finally, this work’s original contribution to the literature was looking
at how a non-linear inter-segment interaction changes the previous results. In
most cases, when looking at the rectification R as a function of the interaction
exponent µ, we found that there was a maximal value different from two.
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A
Numerical solutions

In the previous chapter, we defined models that should reproduce normal
heat conduction (see section 2.4) and heat current rectification (see section 2.5).
Now, we want to know how to solve the equations of motion laid out before.

Since both models use a Langevin thermostat, they have the implicit
assumption that the dynamical variables qn, vn are random variables. This
means we have to solve a system of stochastic differential equations (SDEs).
Two difficulties make this highly non-trivial. Due to the particle-particle
interaction, the n equations (one for each particle) are coupled, and due to
on-site potentials, the equations are nonlinear and cannot be decoupled. We
do not even know if these systems have analytical solutions. These problems
motivate us to use numerical methods.

Whatever analytical form the solution may or may not have, its numerical
values surely depend on the choice of parameters for the system. Which brings
forth the question, what are realistic choices for such systems?

This clearly depends on the units we are working with, bringing another
difficulty forward. Instead of spending much time with this discussion, we will
try to bypass it entirely by redefining our equations in a non-dimensional form.
Thus, before discussing the numerical methods we use for solving each system
of SDEs considered in the previous chapter, we will redefine those models in a
way that the dynamic variables and constants of the model have no units.

A.1
Nondimensionalization

Nondimensionalization is a common tactic in the field of fluid
mechanics[66]. Using non-dimensional equations not only helps bring for-
ward physical insights, it also gives solutions that do not depend on the scale
of a system. Hence such solutions are transferable to different scales, if the
physical phenomena in question are still the same.

Just like in that field, here we will focus on nondimensionalizing directly
the equations of motion, instead of beginning over from a Hamiltonian descrip-
tion of the system.
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Two examples of this process were already discussed before. In section
2.4, we showed how one can think of qn as a dimensionless variable in the scale
of the lattice separation a. We also discussed how the temperatures would
be thought of in units of energy, since the Boltzmann constant kB is just an
artifice for changing units of temperature to units of energy. The temperature
of the heat baths were then redefined as TL → kBTL and TR → kBTR.

The nondimensionalization process then just consists of dividing and
multiplying our variables by factors of scale, redefining them as their non-
dimensional counterparts. In the following arguments, we will use the notation
[z] to represent what is the unit of a variable z.

Let us first define three factors of scale, Θ1 for the displacement from
equilibrium, Θ2 for the time and Θ3 for the mass, and use those to redefine
our dynamic variables qn, vn, the system evolution time t, and the particles
mass. The non-dimensional versions of our variables will be

m∗n = mn

Θ3
, (A-1)

q∗n = qn
Θ1
, (A-2)

v∗n = vn
(Θ1/Θ2) , (A-3)

t∗ = t

Θ2
, (A-4)

which will be substituted in the equations of motion for each model. When
looking at the equations for the particles of the bulk ({n = 2, 3, . . . , N − 1}),
this is enough. However, for the particles in contact with the heat baths
(n = 1, N), we have one more term that needs to be adapted to a non-
dimensional version, and that is the random noise.

The random noise dWt actually has dimensions of square root of time,
while ε(t) has dimensions of time to the power of minus half.

To see why that is the case, take the Wiener process W (t). One of
the defining properties of such a random process is that its increments are
independent and identically distributed Gaussian variables. We write, as we
did in section 2.2,

〈∆W (t)∆W (t′)〉 = δ(t− t′), (A-5)
to find the units of ∆W (t). The Dirac delta function δ(z) has units of the
inverse of its argument, since its defining property [67] is thatˆ ∞

∞
g(z)δ(z)dz = g(0), (A-6)

for an arbitrary function g(z). A function always has the same dimension,
independent of the value of its argument, so [g(z)] = [g(0)]. The ensemble
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average does not add any dimension to a variable, since it is defined as

〈z〉 =̇
ˆ
R
zp(z)dz, (A-7)

where p(z) is a probability density function, hence [p(z)] = 1/[z]. This means
that [〈z〉] = [z].

Now, from equations A-5, A-6 and A-7, we see that [∆W (t)] = [t]1/2.
Since we argued in section 2.2 that ε(t) is analogous to what would be dWt/dt,
then [ε(t)] = [∆W (t)]/[t] = [t]−1/2.

This means that to nondimensionalize ε(t), we need to define ε∗(t) =
Θ1/2

2 ε(t). However, notice that we are using another time variable, t∗, and so
we should actually write

ε∗(t∗) = Θ1/2
2 ε(Θ2t

∗), (A-8)

which not only has no dimensions, but also has unit variance. To see this, we
use another property of the Dirac delta function [67], namely

δ(αz) = 1
|α|

δ(z). (A-9)

Substituting equations A-9 and A-8 in equation A-5, we recover the property

〈ε∗(t∗)ε∗(t′∗)〉 = δ(t∗ − t′∗). (A-10)

Now we use what we discussed here, inside the equations of motion. The
arguments will not change much for both cases.

A.1.1
Homogeneous chain

We will substitute the scale groups in each equation of motion. The first
ones are trivial, dq∗n

dt∗
= v∗n, (A-11)

since they are just the definition of velocity, and for the initial conditions
q∗n(0) = q∗n,0, v

∗
n(0) = v∗n,0.

Then, for the particles of the bulk, we write

Θ1/Θ2

Θ2

dv∗n
dt∗

= − kΘ1

m∗nΘ3
(2q∗n − q∗n−1 − q∗n+1)− 1

m∗nΘ3

dV

dqn
, (A-12)

dv∗n
dt∗

= − kΘ2
2

m∗nΘ3
(2q∗n − q∗n−1 − q∗n+1)− Θ2

2
m∗nΘ3Θ1

dV

dqn
, (A-13)

where the force due to the on-site potential have to be rewritten in terms of
q∗n. This is is obtained through V ∗(q∗n) = V (Θ1q

∗
n), giving
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dV

dqn
= 1

Θ1

dV

dq∗n
. (A-14)

Thus, for the φ4 chain, we have
dV

dqn
= AQΘ3

1q
∗3
n , (A-15)

while for the FK chain,

dV

dqn
= AFK

as
sin

(
2πΘ1

as
q∗n

)
. (A-16)

Notice that the on-site potential force term in equation A-13 already defines a
nondimensional force, since Θ3Θ1/Θ2

2 has dimensions of force. So we did not
need to define a nondimensional V , equation A-13 (together with equation
A-14) already defined it for us, V ∗ = Θ2

2V/Θ3Θ2
1.

Now we just nondimensionalize the equations of motion for the particles
in contact with the heat baths (n = 1, N),

dv∗n
dt∗

= − kΘ2
2

m∗nΘ3
q∗n−

kΘ2
2

m∗nΘ3
(q∗n−q∗n±1)− Θ2

2
m∗nΘ3Θ1

dV

dqn
−γΘ2v

∗
n+Θ2

2
Θ1

√
2γTn

m∗nΘ3Θ2
ε∗n(t∗),

(A-17)
where if n = 1, then Tn = TL, ε∗n(t∗) = ε∗L(t∗) and we use the plus sign for the
second term in the right-hand side of the equation, q∗n − q∗n+1, while if n = N ,
then Tn = TR, ε∗n(t∗) = ε∗R(t∗) and we have q∗n − q∗n−1.

We then redefine all our parameters,

k∗ = kΘ2
2

Θ3
, (A-18)

A∗Q = AQΘ2
1Θ2

2
Θ3

, (A-19)

A∗FK = AFKΘ2
2

asΘ3Θ1
, (A-20)

a∗s = as
Θ1
, (A-21)

γ∗ = γΘ2, (A-22)

T ∗L = Θ2
2TL

Θ2
1Θ3

, (A-23)

T ∗R = Θ2
2TR

Θ2
1Θ3

, (A-24)

and the equations will have the exact same analytical form they had before,
but changing all variables and parameters to their non-dimensional version.
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A.1.2
Thermal diode

The discussion on nondimensionalizing the thermal diode equations of
motion is similar to the one on heat conduction. We just need to take care to
separate the left and right segment parameters, and to nondimensionalize an
extra parameter for the interface particles, kµ.

The list of non-dimensional parameters will be

k∗L = kLΘ2
2

Θ3
, (A-25)

k∗R = kRΘ2
2

Θ3
, (A-26)

A∗Q,L = AQ,LΘ2
1Θ2

2
Θ3

, (A-27)

A∗Q,R = AQ,RΘ2
1Θ2

2
Θ3

, (A-28)

A∗FK,L = AFK,LΘ2
2

asΘ3Θ1
, (A-29)

A∗FK,R = AFK,RΘ2
2

asΘ3Θ1
, (A-30)

a∗s = as
Θ1
, (A-31)

γ∗ = γΘ2, (A-32)

T ∗L = Θ2
2TL

Θ2
1Θ3

, (A-33)

T ∗R = Θ2
2TR

Θ2
1Θ3

. (A-34)

(A-35)

For the parameter kµ, we take a look at the interfacial interaction term,
that show on the equations of particles n = N/2, N/2 + 1 as

− kµ
mn

sgn (qn − qn±1) |qn − qn±1|µ−1 , (A-36)

where the signal inside the displacement index is positive for n = N/2 and
negative for n = N/2 + 1.

Before, we implicitly used the assumption that the scale groups
Θ1,Θ2,Θ3 were non-zero, but now we will also assume that they are posi-
tive. Then substituting qn → Θ1q

∗
n, using the fact that sgn (αz) = sgn (z) if

α > 0, and multiplying by the scale factor (Θ1/(Θ3Θ2
2))−1 (due to the left-hand

side of equations 2-63 and 2-64), we get the non-dimensional parameter

k∗µ = kµΘµ−2
1 Θ2

2
Θ3

, (A-37)
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so that the interfacial interaction now has the form

−
k∗µ
m∗n

sgn
(
q∗n − q∗n±1

) ∣∣∣q∗n − q∗n±1

∣∣∣µ−1
. (A-38)

A.1.3
Advantages of nondimensionalization

Using the non-dimensional version of our equations of motion, we can
reduce the number of parameters needed to define our system. In fact, since
the scale factors Θ1,Θ2,Θ3 are completely arbitrary, we can choose them so
that some adimensional constants are 1.0, effectively taking them out of the
equations. As an example, assume all particles have equal mass (mn = m, for
n = 1, 2, . . . , N), then choose Θ1 = as = a, Θ2 = 1/γ, and Θ3 = m. This gives
m∗n = m∗ = 1.0, a∗ = a∗s = 1.0, and γ∗ = 1.0, so these three parameters are
always one unit, and we do not need to specify them anymore.

The effect they have on the system is also embedded in the other
parameters, so when we choose A∗Q, we are actually choosing AQ with respect
to mγ2/a2, since in this case

A∗Q = AQ
mγ2/a2 . (A-39)

We could also choose the scale factors in such a way as to remove the
effect of m, k and the temperatures, effectively making their nondimensional
version equal to one. However, it is not possible to make T ∗L = 1 and T ∗R = 1
simultaneously, by this choice, because of the restrictions m∗ = 1 and k∗ = 1.
We can only choose three parameters to remove.

So, let the average temperature be Tm = (TL + TR)/2, and choose Θ1,
Θ2 and Θ3 so that T ∗m = 1.0. When this is done, the anharmonic amplitude of
the φ4 chain will be

A∗Q = AQTm
k2 , (A-40)

and so the nondimensional group AQTm/k2 should determine the behavior of
the QC model.

Also, since from here on out we will mainly use the non-dimensional
equation of motion, we will not bother to write the asterisk for the non-
dimensional constants and variables. Always consider that none of them have
dimensions.

A.2
Stochastic numerical integration

Before diving in the stochastic version of numerical integration methods,
let us first remind the basic ideas for a system of ordinary differential equations
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(ODEs). Let the system be described as

d~x

dt
= f(~x, t), (A-41)

where ~x are independent variables and t is the time. The solution for this
problem is a function ~x = ~x(t) that satisfies the system of ODEs considered.

The idea behind the numerical integration of a system along
a time interval [0, tmax] is to define a partition of such interval,
0 < t1 < . . . < tl < . . . < tmax, and try to approximate the
true function points (~x(tn), tn) by some sequence (~yn, tn) [68, 69]. Each nu-
merical schema then defines a way to partition the interval, and with that,
compute this sequence in an iterative way.

Stochastic integration schemes work in the same way. They try to, in
some sense, approximate the true points of a stochastic process, (Xtn , tn), by
some sequence of random variables, (Ytn , tn). The true process X(t) is defined
by a system of stochastic differential equations (SDEs), namely

d~x

dt
= ~a(~x, t) +G(~x, t)~ε(t), (A-42)

where G is the matrix for the amplitude of the noise term of each component
of ~x, the noise itself being a vector of Wiener processes ~ε with unit variance.

In this case, we can look at how well a numerical method approaches
the original solutiong pathwise (called strong convergence), or at how well
it approximates the moments of the process (called weak convergence) [69].
These are commonly discussed in terms of the time step employed. We will
not discuss them at length here, restraining ourselves on citing convergence
results from the literature.

It is interesting to just try and adapt the classical methods for stochastic
problems, because they are easier to understand and generally uses less
computations. The methods discussed here are then the stochastic Euler
method and the stochastic Runge-Kutta method [69, 70]. In what follows, we
will partition the time interval for the simulation in fixed width sub-intervals,
tl − tl−1 = δt, for all l = 0, 1, 2, . . . ,max.

A.2.1
Euler scheme

The deterministic Euler method consists of approaching the evolution of
the system by a Taylor series truncated at the linear terms at each step

~x(tn + τ) ≈ ~x(tn) + δt

(
d~x

dt

)
t=tn

, (A-43)
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the derivative being given by the ordinary differential equation itself.
When the time step goes to zero, δt → 0, the approximate solution is

known to converge under certain weak assumptions on the ODEs [71] and thus
it is expected that for small enough δt and a fixed time interval such a method
works reasonably well.

However, the Euler scheme is not stable. This means that, if we do not
choose δt small enough, then as the time interval increases, the numerical algo-
rithm diverges from the true solution [72], and the error increases indefinitely.
For some systems of ODEs, such a time step may be impossible to choose.

In the case of the one-dimensional harmonic oscillator, whatever the
time step chosen, the system will always diverge for higher time intervals [73].
Physically, the energy of the system increases indefinitely, just due to the choice
of numerical scheme.

The stochastic Euler method is similar, although the definition of a Taylor
series in the framework of stochastic calculus has some changes [69]. From
section A.1, we know that the random noise ε(t) is of the order of O(t1/2), thus
we scale the time step for the Euler scheme accordingly.

For solving the Langevin equation by itself [52], the stochastic Euler
method is thus

vn+1 = vn − (δt)γvn +
√

(δt)Γξn, (A-44)

xn+1 = xn + (δt)vn, (A-45)

where ξn is a sequence of independent and identically distributed (i.i.d.)
random variables sampled from a Gaussian distribution N(0, 1). The general
case, for a system of SDEs, does not present any difficulties. It can be written
[69] as

~xn+1 = ~xn + δt~a(~xn, tn) + δtG(~xn, tn)~ξn, (A-46)
with ~ξn now being sampled from a multivariate normal distribution with no
correlation terms (N(~0, I), where I is the identity matrix). This is the same as
sampling each component of ~ξn, independently, from a Gaussian distribution.

This scheme is known to generally have strong convergence of order
(δt)1/2 [69], which is different to its deterministic case, when it converges with
order (δt) [71].

A.2.2
Runge-Kutta scheme

The Runge-Kutta family of methods are the most commonly used
algorithms for the numerical solution of deterministic systems of ODEs. This
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is due to the fact that they can attain accuracy of higher orders in the time
step without using higher-order derivatives [74].

These schemae are multi-step methods, with iteration algorithm given
by

~un+1 = ~un + ~φ(δt), (A-47)
where φ depends on the function f evaluated on many different points. The
increment function φ is written as a series

~φ =
m∑
j

aj ~Kj, (A-48)

with each aj being a constant that depends on which Runge-Kutta algorithm
is being used. The terms ~Kj are functions of the form

~Kj = ~f

tn + pj−1δt, ~un + δt
j−1∑
i=1

qj−1,i ~Ki

 , (A-49)

where p0 = 0, and the pj, qj−1,i are constants that also depend on the specific
method used.

All constants aj, pj, qj−1,i, are commonly chosen to increase the accuracy
of the method. We will not reproduce here the way this is done.

The most commonly used scheme used in this family of schemae is the
fourth order Runge-Kutta method [74], where the constants are such that

~un+1 = ~un + δt

6
(
~K1 + 2 ~K2 + 2 ~K3 + ~K4

)
, (A-50)

~K1 = ~f(tn, ~un) (A-51)
~K2 = ~f(tn + 1

2δt, ~un + δt

2
~K1) (A-52)

~K3 = ~f(tn + 1
2δt, ~un + δt

2
~K2) (A-53)

~K4 = ~f(tn + δt, ~un + δt ~K3), (A-54)

which have global truncation error of the order O((δt)4).
Like the Euler scheme, the fourth-order Runge-Kutta scheme is not stable

[71], although the value of δt, such that its approximation diverges indefinitely,
is generally higher. In the case of the one-dimensional harmonic oscillator, it
is possible to choose a δt so that the Runge-Kutta approximation step error is
bounded.

To adapt this method to a stochastic version, we will follow ref. [70],
where they add a random noise term for each computation of the functions
~Kj. The stochastic fourth order Runge-Kutta method will then read
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~un+1 = ~un + δt

6
(
~K1 + 2 ~K2 + 2 ~K3 + ~K4

)
+ 1

6 (M1 + 2M2 + 2M3 +M4) ~ξn,
(A-55)

where

~K1 = ~f(tn, ~un), (A-56)
~K2 = ~f(tn + 1

2δt, ~un + δt

2
~K1 + 1

2M1~ξn), (A-57)

~K3 = ~f(tn + 1
2δt, ~un + δt

2
~K2 + 1

2M2~ξn), (A-58)
~K4 = ~f(tn + δt, ~un + δt ~K3 +M3~ξn), (A-59)

M1 = G(tn, ~un), (A-60)

M2 = G(tn + 1
2δt, ~un + δt

2
~K1 + 1

2M1~ξn), (A-61)

M3 = G(tn + 1
2δt, ~un + δt

2
~K2 + 1

2M2~ξn), (A-62)

M4 = G(tn + δt, ~un + δt ~K3 +M3~ξn), (A-63)

and as was the case for the Euler scheme, ~ξn is sampled from a N(~0, I)
distribution. This method reproduces Stratonovich calculus, and has strong
convergence of order δt [70].

The fourth-order stochastic Runge-Kutta algorithm is the main one used
in the literature of heat conduction and thermal diodes, in great part due to
being the most common deterministic scheme and having good accuracy. Due
to this, we also use the Runge-Kutta algorithm.

A.3
Pseudo-random number generator

In both the Euler and Runge-Kutta schemae, a sequence of random
vectors, ~ξn, is sampled from the distribution N(~0, I). To be able to do that
computationally, we use pseudo-random number generators.

This is done by using a deterministic algorithm, from which we get a
sequence of numbers (from a starting seed) that behaves randomly [73]. Good
algorithms will then produce numbers that are non-correlated and uniformly
distributed. Also, different seeds should give non-correlated sequences.

Then, to simulate a random variable with any given probability distribu-
tion, it is possible to define a random variable Y = g(X), where X is uniformly
distributed, that have the wanted distribution [73].

In this work, we use the GNU Scientific Library [75] to generate random
numbers, by means of the Mersenne Twister generator. In the models discussed
in this work, only two seeds are necessary (one for each heat bath). We then
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number each simulation sample as l (see chapter 3), with l = 1, 2, . . .N , and
use 2l and 2l + 1 as the seeds.

A.4
Simulation parameters

We have four models to choose the parameters, QC, FKC, TSQC, and
TSFKC. However, it is simple to see how the TSQC and TSFKC models are
just generalizations of the QC and FKC models, respectively. We can actually
get the latter by choosing µ = 2.0, AL = AR and kL = kR = kµ in the former.
This means that in all simulations, we can use the same equations of motion
but with a suitable choice of parameters.

In all the simulations, all particles have the same mass, so mn = m for
n = 1, 2, . . . , N . As a simplifying assumption, the scale factors are chosen so
that all cases also have m = 1.0, γ = 1.0, and a = as = 1.0.

The velocity and momentum of a particle are related by vn = pn/mn,
but since in our case we assume unit masses, both will have the same value.
This means that we can interpret the equations of motion interchangeably in
terms of the velocities or the momenta, and the heat current can be calculated
using the velocities.

Beyond that, instead of inputting the parameters directly in the simula-
tion, we define some closely related ones that give us deeper physical under-
standing of the system. This was also done in order to more closely follow the
work by Li, Wang and Casati [25].

Thus, to begin with, we define the mean temperature between the baths
as Tm = (TL + TR)/2, and the temperature difference relative to Tm is given
by ∆rel = (TL − TR)/Tm. These definitions can be rewritten as

TL = Tm

(
1 + ∆Trel

2

)
, (A-64)

TR = Tm

(
1− ∆Trel

2

)
. (A-65)

The ratio between the force strengths of the left and right segments of
the chain is considered to be constant and equal to λ, so λ = kR/kL = AR/AL.
For the homogeneous systems QC and FKC, λ = 1.0 always.

It is also important to define the parameters of the numerical algorithm,
which are the integration time step δt, the total simulation time tmax (being δt
multiplied by the total number of steps in the simulation) and the number
of independent sample paths N in the ensemble on which we will take
thermodynamic averages.
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For each sample path, we measure the kinetic temperature and the heat
current along the chain as a time average after an interval of time we call the
transient time ttrans.

The last parameter to take in consideration is the number of particles
in the chain, N . For the two-segment models, each segment always has N/2
particles.
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B
Linear regression of temperature profiles

When simulating heat conduction, a purely harmonic particle chain gives
a flat temperature profile. To obtain the linear profile expected by Fourier’s
law, when κ does not depend on the temperature, in this work we add an
anharmonic on-site potential, so that the system does not conserve momentum.

However, the exact temperature profile depends on the parameters of the
chain. Some choices of parameters still give a flat profile, due to the harmonic
interaction dominating the dynamics (we show this in chapter 3).

Thus, it is natural to question ourselves when the transition happens,
from mainly harmonic behavior to normal conduction. To try to see this
happening, we check the slope of the temperature profile for each choice of
parameters. This slope is calculated by using least-squares linear regression
[76], specifically the SciPy implementation [77], on the chain, excluding the
particles in contact with the heat baths (to avoid the Kapitza resistance
discontinuity).

Here we show the results of the linear regression when varying the number
of particles N in the chain, for both models. How well the linear regression
describes the data is given by the determination coefficient [76], r2, that is
calculated by squaring the correlation between the particle number i/N and
the temperature T (i/N).

B.1
φ4 model varying N

In the following figures, we give the results of the linear regression for
the φ4 model. The values for the number of particles N , the determination
coefficient r2, the slope and the intercept, are given in the legend. In most
cases, the temperature profile shows a clear convexity, but it is so small that
the r2 > 0.9, showing a good linear approximation. So using the slope to see
when the profile stop being flat should be a good approximation.
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Figure B.1: Linear regression, for the φ4 model of heat conduction, with N = 4,
AQ = 1.0, k = 1.0, Tm = 1.0 and ∆rel = 1.0. The dashed line is the regression,
while the solid line is the simulated points.

Figure B.2: Linear regression, for the φ4 model of heat conduction, with
N = 10, AQ = 1.0, k = 1.0, Tm = 1.0 and ∆rel = 1.0. The dashed line is
the regression, while the solid line is the simulated points.
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Figure B.3: Linear regression, for the φ4 model of heat conduction, with
N = 20, AQ = 1.0, k = 1.0, Tm = 1.0 and ∆rel = 1.0. The dashed line is
the regression, while the solid line is the simulated points.

Figure B.4: Linear regression, for the φ4 model of heat conduction, with
N = 30, AQ = 1.0, k = 1.0, Tm = 1.0 and ∆rel = 1.0. The dashed line is
the regression, while the solid line is the simulated points.
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Figure B.5: Linear regression, for the φ4 model of heat conduction, with
N = 40, AQ = 1.0, k = 1.0, Tm = 1.0 and ∆rel = 1.0. The dashed line is
the regression, while the solid line is the simulated points.

Figure B.6: Linear regression, for the φ4 model of heat conduction, with
N = 10, AQ = 1.0, k = 1.0, Tm = 1.0 and ∆rel = 1.0. The dashed line is
the regression, while the solid line is the simulated points.
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B.2
Frenkel-Kontorova model varying N

Linear regression results for the Frenkel-Kontorova model. As for the
φ4 mode, N , r2, the slope and the intercept, are shown in each figure. The
temperature profiles in this case also show a clear convexity, although, for the
linear approximation, we have r2 > 0.9, because the curvature is small.

Figure B.7: Linear regression, for the Frenkel-Kontorova model of heat con-
duction, with N = 4, AQ = 5/2π, k = 1.0, Tm = 0.09 and ∆rel = 0.5. The
dashed line is the regression, while the solid line is the simulated points.
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Figure B.8: Linear regression, for the Frenkel-Kontorova model of heat con-
duction, with N = 10, AQ = 5/2π, k = 1.0, Tm = 0.09 and ∆rel = 0.5. The
dashed line is the regression, while the solid line is the simulated points.

Figure B.9: Linear regression, for the Frenkel-Kontorova model of heat con-
duction, with N = 20, AQ = 5/2π, k = 1.0, Tm = 0.09 and ∆rel = 0.5. The
dashed line is the regression, while the solid line is the simulated points.
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Figure B.10: Linear regression, for the Frenkel-Kontorova model of heat
conduction, with N = 30, AQ = 5/2π, k = 1.0, Tm = 0.09 and ∆rel = 0.5. The
dashed line is the regression, while the solid line is the simulated points.

Figure B.11: Linear regression, for the Frenkel-Kontorova model of heat
conduction, with N = 40, AQ = 5/2π, k = 1.0, Tm = 0.09 and ∆rel = 0.5. The
dashed line is the regression, while the solid line is the simulated points.

DBD
PUC-Rio - Certificação Digital Nº 1812657/CA



Appendix B. Linear regression of temperature profiles 107

Figure B.12: Linear regression, for the Frenkel-Kontorova model of heat
conduction, with N = 50, AQ = 5/2π, k = 1.0, Tm = 0.09 and ∆rel = 0.5. The
dashed line is the regression, while the solid line is the simulated points.
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