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Abstract

Torres, Pedro Henrique Lopes; Lopes, Hélio Côrtes Vieira (Advisor);
Silva, Thuener Armando (Co-Advisor). A robust real-time com-
ponent for personal protective equipment detection in an in-
dustrial setting. Rio de Janeiro, 2021. 61p. Dissertação de mestrado
– Departamento de Informática, Pontifícia Universidade Católica do
Rio de Janeiro.

In large industries, such as construction, metallurgy, and oil, workers
are continually exposed to various hazards in their workplace. Accordingly
to the International Labor Organization (ILO), there are 340 million occu-
pational accidents annually. Personal Protective Equipment (PPE) is used
to ensure the essential protection of workers’ health and safety. There is a
great effort to ensure that these types of equipment are used properly. In
such an environment, it is common to have closed-circuit television (CCTV)
cameras to monitor workers, as those can be used to verify the PPE’s proper
usage. Some works address this problem using CCTV images; however, they
frequently can not deal with multiples safe equipment usage detection and
others even skip the verification phase, making only the detection. In this
paper, we propose a novel cognitive safety analysis component for a moni-
toring system. This component acts to detect the proper usage of PPE’s in
real-time using data stream from regular CCTV cameras. We built the sys-
tem component based on the top of state-of-art deep learning techniques for
object detection. The methodology is robust with consistent and promising
results for Mean Average Precision (mAP) and can act in real-time.

Keywords
Artificial Intelligence; Industrial Application; Computer Vision;

Real-time System; Detection Equipment.
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Resumo

Torres, Pedro Henrique Lopes; Lopes, Hélio Côrtes Vieira; Silva,
Thuener Armando. Um componente robusto em tempo real
para detecção de equipamentos de proteção individual em
um ambiente industrial. Rio de Janeiro, 2021. 61p. Dissertação
de Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Em grandes indústrias, como construção, metalúrgica e petróleo,
trabalhadores são continuamente expostos a vários tipos de perigos em
seus locais de trabalho. Segundo a Organização Internacional do Trabalho
(OIT), anualmente ocorrem cerca de 340 milhões de acidentes de trabalho.
Equipamentos de Proteção Individual (EPI) são utilizados para garantir
a proteção essencial da saúde e segurança dos trabalhadores. Com isto,
há um grande esforço para garantir que esses tipos de equipamentos sejam
usados de maneira adequada em ambientes de trabalho. Em tais ambientes, é
comum ter câmeras de circuito fechado de televisão (CFTV) para monitorar
os trabalhadores, pois essas podem ser usadas para verificar o uso adequado
de EPIs. Alguns trabalhos presentes na literatura abordam o problema de
verificação automática de EPIs usando imagens de CFTV como entrada;
no entanto, muitos destes trabalhos não conseguem lidar com a detecção
de uso seguro de múltiplos equipamentos e outros até mesmo pulam a fase
de verificação, fazendo apenas a detecção. Neste trabalho, propomos um
novo componente de análise de segurança cognitiva para um sistema de
monitoramento. Este componente atua para detectar o uso adequado de
EPIs em tempo real, usando fluxo de dados de câmeras de CFTV comuns.
Construímos este componente do sistema com base nas melhores técnicas
de Aprendizado Profundo voltadas para a tarefa de detecção de objetos. A
metodologia proposta é robusta com resultados consistentes e promissores
em termos da métrica Mean Average Precision (mAP) e pode atuar em
tempo real.

Palavras-chave
Inteligência Artificial; Aplicação Industrial; Visão Computacional;

Sistema em tempo real; Detecção de Equipamentos.
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Salve guerreiras e guerreiros
Escolas libertárias e terreiros
Amores de todos os tipos
Verdades de todas as cores.

Salve nossos ancestrais e espíritos prote-
tores
Coragem, atenção, irmã, irmão
Fé no coração, sempre siga em frente
Respiração profunda oxigena corpo e mente
Que a esperança renasça como a fênix.

Resistência, resistência
Força, sabedoria, inteligência, coletividade
Serenidade em tempos de tempestade
Liberdade sempre.

Salve.

BaianaSystem, O futuro não demora - Salve.
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1
Introduction

Workers, especially in an industrial setting, are continually exposed to
various hazards in their workplace. Unfortunately, this susceptibility can lead
to several occupational injures. The Brazilian Protection Statistical Yearbook1

shows an average of six hundred thousand occupational accidents and 2600
deaths per year, registered between 2010 and 2017. For this reason, regulatory
agencies require that workers operating in areas that are subject to exposure
to hazards make appropriate use of personal protective equipment (PPE).

A company, such as an oil and gas refinery, could avoid occupational
injuries by monitoring its workers to prompt corrective measures when there
is no use (or inadequate use) of personal protective equipment. This activity
is often performed by a human from a constant visual local inspection or
closed-circuit television (CCTV) but looking from a practical perspective; this
task can be exhaustive since monitoring a large number of workers for PPE
compliance takes a lot of time and resources (Mneymneh et al., 2019). In this
scenario, an industry could benefit from a system powered by Machine Learning
and Computer Vision techniques to automate this task to prevent accidents
and minimize costs. Figure 1.1 illustrates a possible industrial system to
monitor the use of PPE automatically and emit alarms when they are missing
or not used appropriately. The system is supplied with RGB images from
a CCTV, each image initially passes through the detection and verification
component. This component is the fundamental basis of the system and is
responsible for producing evidence of deviations from inappropriate use of
workers’ equipment. Finally, the ID association component can match those
evidence with the worker’s identity in the company database and alert the
worker’s identification and type of deviation.

In literature, the methods used for automated monitoring of PPE com-
pliance can be categorized into two types: sensor-based and vision-based. The
sensor-based methods usually install a sensor in each personal protective equip-
ment (commonly just hard hat) and process emitted signals continuously to
monitor PPE compliance (Barro-Torres et al., 2012; Naticchia et al., 2013). Al-

1https://bc.pressmatrix.com/pt-BR/profiles/1227998e328d/editions/
0e55e8eba33a3ed62b2e/pages/page/40

https://bc.pressmatrix.com/pt-BR/profiles/1227998e328d/editions/0e55e8eba33a3ed62b2e/pages/page/40
https://bc.pressmatrix.com/pt-BR/profiles/1227998e328d/editions/0e55e8eba33a3ed62b2e/pages/page/40
https://bc.pressmatrix.com/pt-BR/profiles/1227998e328d/editions/0e55e8eba33a3ed62b2e/pages/page/40
DBD
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Chapter 1. Introduction 15

Figure 1.1: Example of industrial system to monitor the use of PPEs.

though, this approach requires the acquisition, installation, and maintenance
of several sensors, which can demand a significant investment for a company.
In contrast, the vision-based methods use cameras installed in the work en-
vironment to process images using Computer Vision techniques to provide a
richer comprehension of the scene, enabling automated PPE compliance (Seo
et al., 2015).

Regarding vision-based methods, most of the existing works for mon-
itoring PPE compliance simply focus on identifying one type of PPE: hard
hats (Fang et al., 2018; Wu et al., 2019; Mneymneh et al., 2019). This suggests
that multiple PPE detection is a more challenging problem. But, despite being
scarce, already possible thanks to the advancement of Deep Learning algo-
rithms (Zheng et al., 2019; Nath et al., 2020). It is important to emphasize that
identifying only the presence of PPE in an image is not enough. It is also nec-
essary to recognize the contextual relationship of the use of PPE by a worker.
This verification of proper PPE usage remains an open question and needs to
be answered from a contextual analysis of the work environment (Nath et al.,
2020). In this way, the PPE monitoring compliance problem can be addressed
in two stages: detection and verification 1.2. The detection step consists of
locating workers and equipment. The verification step analyzes if a worker is
appropriately using PPE components. It is worth mentioning that when deal-
ing with the problem of identifying multiple PPE, the level of complexity of
the verification step grows exponentially; since there are 2n possible combina-
tions of use for n different types of PPE. For this study, we choose to focus on
two types of PPE, hard hat and protective clothing. Since these equipment are
often used to ensure the safety of workers in the oil and gas industry. Thus,
we have n = 2, which leads to four (22 = 4) combinations, that is, a worker
using no equipment, a worker wearing hard hat, a worker wearing protective
clothing, and a worker wearing both types of equipment.

Although important in the scenario described in the Figure 1.1, we
will not conduct an in-depth exploration of the challenges related to the ID
Identification component, as they lay outside of the scope of this work. We shall

DBD
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Figure 1.2: Detection and verification stages.

focus on exploring the two main approaches for implementing a detection and
verification component (highlighted as the blue box of the Figure 1.1) that
is both robust and capable of act in real-time for monitoring systems in an
industrial environment, especially oil and gas refineries.

Our main contributions are:

– Evaluating two approaches to solve the PPE detection problem. In
our first approach, we built a one-stage classifier. While in our second
approach, we build a multi-stage classifier.

– A dataset for PPE detection that addresses multiple types of equipment.

– Exploring how ensemble classifiers performs for the verification stage of
a multi-stage implementation.

1.1
Document Structure

This work is structured as follows: Chapter 2 presents the theoretical
background for Machine Learning, Deep Learning, and Computer Vision
methods addressed in this work; Chapter 3 presents a literature review about
works that address the problem of detecting personal protectives equipment
automatically using sensor and vision-based methods; Chapter 4 describes the
construction and exploration process adopted for the proposed approaches to
automatically detect and verify the appropriate use of equipment by workers.
The Chapter 4 also includes details regarding dataset generation; Chapter 5
presents the performance comparison of models and approaches; Chapter 6,
the conclusion.

DBD
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2
Background

2.1
Machine Learning

Machine Learning is a subfield of Artificial Intelligence (AI) that has
been consolidated over time based on concepts explored in other areas,
such as Statistics and Computer Theory. The studies carried out in the
Machine Learning area are focused on building computer programs that can
automatically improve from a set of experiences. As Mitchell (1997) defined:
“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T ,
as measured by P , improves with experience E”.

Commonly, Machine Learning problems can be divided into two main
branches: supervised learning and unsupervised learning. There is also a third
branch (Reinforcement Learning) that can be included, but for the scope of
this work we will not be addressing it.

2.1.1
Supervised Learning

In Supervised Learning, the algorithms are designed to learn by exam-
ples. Given a data set made up of N pairs (xi, yi), where yi is the output
corresponding to the entry xi. The algorithm aims to learn a function that
maps an input x to an output y, commonly called label. After training, the
algorithm will receive new inputs out of the data set used to learn and deter-
mine which label the new inputs will be classified as based on prior training
data. In a simplistic form, a supervised learning algorithm can be described
as Y = f(x). Where Y is the predicted output, determined by a mapping
function (f) that assigns a output value to an input value x. Supervised learn-
ing problems are categorized into two types: classification and regression. In
a classification problem, the algorithm tries to predict results in a discrete
output, such as animal classification. Given x find y ∈ {1, ..., k} with k ∈ N.
Where k is the number of possible classes in the classification problem. In a
regression problem, the algorithm tries to predict results within a continuous

DBD
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output, such as predict the profit of a store during Christmas. Given x find
y ∈ R.

2.1.2
Unsupervised Learning

Unsupervised Learning is the branch of Machine Learning that is used
to find underlying patterns in data. Since the data does not need to be
labeled, classified, or categorized. This allows approaching problems with little
knowledge of data variables. In Unsupervised Learning, instead of responding
to feedbacks (as in Supervised Learning), the algorithms will often find
subgroups or hidden patterns within the dataset that can not be easily
observed.

Two types of tasks that stand out in Unsupervised Learning are clustering
and dimensionality reduction. In clustering, the input data is automatically
partitioned, creating groups according to the degree of similarity present in
the data distribution. In general, some patterns on a two-dimensional are
easy to see. But when dealing with real-world problems, we often deal with
higher-dimensional data. For these type of problems, dimensionality reduction
algorithms, like Principal Component Analysis (PCA) (Abdi and Williams,
2010), can be very effective. The goal is finding a subspace representing the
data, in which turn possible the data projection, for a better analysis.

2.2
Learning Algorithms

Once we identify the branch that a problem is in, it is time to choose
an algorithm. The literature has a range of approaches that can be used in
the most diverse types of problems. As there is no single solution, it is crucial
to choose an algorithm that best suits the input data, giving the expected
outputs. Here, we choose to briefly describe one of some commonly adopted
Machine Learning approaches for each type of task (Figure 2.1):

– Support Vector Machine (SVM): A supervised learning algorithm
that is often used for classification tasks but is also suitable for regres-
sion tasks. The algorithm builds a non-linear classifier by finding the
hyperplane that bests separates data points into two classes. The dis-
tance between the closest data points and the hyperplane is referred to
as the margin. The larger the margin, the more optimal the hyperplane
is. Despite being an accurate algorithm, especially when dealing with
high dimensional spaces where the number of dimensions is greater than

DBD
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Figure 2.1: Machine Learning algorithms.

the number of samples, SVMs do not scale well over a large dataset;
because the required training time is considerably high.

– Linear Regression: A supervised learning algorithm that models the
relationship between the set of input variables (x) and an output variable
(y). This output is a continuous variable and has a constant slope.
There are two main types of Linear Regression, where both have simple
representations:

– Simple regression: When there is only one input, the Linear
Regression is expressed as the traditional slope-intercept form y =
mx + b. The algorithm finds out and evaluates the values of the
coefficients m and b that produce the most accurate predictions.

– Multi-variable regression: In practice, the problems have more
than one input, in that case, we have the a multi-variable linear
equation f(x1, . . . , xn) = w1x1 + . . . + wnxn, where w represents
the coefficients (model weights), that the model will learn. The
variables (x1, . . . , xn) represents the attributes that we have about
each observation.

– Principal Component Alaysis (PCA): PCA is a linear dimensional-
ity reduction algorithm that, in simple terms, derives a new set of features
from the existing ones. The algorithm seeks to keep as much informa-
tion as possible in a reduced dimension. These new derived features are
called principal components. Each component is a linear combination of
the original variables, the order of these components is determined ac-
cording to the variance of the explainable data. Since each component is
orthogonal to one another, there is zero correlation between these com-
ponents.

The dimensionality reduction brings some gains, for example, the removal
of highly correlated features. These features usually end up hindering

DBD
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learning models in their decision making. Besides, the training time of
the algorithms reduces significantly with less number of features. In terms
of data visualization, when we reduce the number of features and bring
the problem to a dimension where we can visualize, is easier to have a
better understanding of the problem.

– K-Means: One of the simplest and popular unsupervised machine
learning clustering algorithms. K-means implements a partition-based
clustering technique that aims to partition data into k clusters in a
way that points belonging to the same cluster are the most similar.
The similarity of points p and q is determined by the distance between
them. During partitioning, K-means tries to minimize distances between
points that share the same cluster and maximize the distance between
centroids of different clusters. One of the tasks that require attention is
the definition of the number of clusters (k) to be used. This task can
be challenging since the K-means is not able to calculate the number
of clusters that best fits the data. In this way, if there is a non-
linear structure separating groups in the data, K-means will not work
appropriately. K-means is also good in generalizes to clusters of different
shapes and sizes but can have some problems with certain datasets.
Figure 2.2 compares the intuitive clusters on the left side with the clusters
actually found by K-means on the right side. Note that clusters with
different densities and sizes can present some challenges.

Figure 2.2: Comparison of intuitive clusters versus clusters found by K-
means (Developers, 2021).

2.3
Deep Learning

In the previous section, we presented some of the principal Machine
Learning approaches and examples of learning algorithms that can solve
specifics types of tasks. However, when using conventional Machine Learning
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Figure 2.3: Deep representations learned by a object-classification model.

algorithms, performance depends heavily on the representation of the given
data. When we know how to design the right set of features for solving a
task it is possible to take great advantage of such algorithms. Nevertheless,
sometimes, it is not easy to know what features should be extracted. One
approach to get rid of this problem is using a representation learning algorithm.
Such type of algorithm not only discovers the mapping from representation to
output but also the representation itself. This technique makes possible to
automatically discover a good set of features, saving precious time and effort
for researchers (Goodfellow et al., 2016). It is in this context that the use of
Deep Learning becomes extremely relevant.

Deep Learning is a specific subfield of Machine Learning based on
learning data representations, allowing a computer to build complex concepts
out of more straightforward concepts. The deep in Deep Learning comes from
the idea of successive layers of representations. The modern deep learning
architectures often have hundreds of successive layers, where a model, often
called deep neural networks, learn these representations.

Figure 2.3 illustrates how a deep learning model can perform an image
recognition task, combining simpler concepts, such as corners and contours,
which are defined in terms of edges, to recognize the objects present in
the image. What the network is doing is transforms the car image into
representations. These representations are different from the original image,
but they are more informative to reach the final result.
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2.3.1
How Learning Happens

The purpose of deep neural networks is to do input-to-target mapping
via a deep sequence of data transformations learned by exposure to examples.
The transformations that occur when a layer receives its input data are
implemented from a parametrization of the layer’s weights (illustrated as the
blue box in Figure 2.4). In this context, the learning process is based on finding
the right values for all layer’s weights. Such that the network will correctly map
data inputs to their associated targets (Francois, 2017). But there is a problem.
A deep neural network contains millions of parameters. Finding the correct
values for all these parameters is not an easy task, since the modification of
one parameter will affect the behavior of all the others.

To manage the output of a neural network, we have to be able to measure
if the results (predictions) are matching what is expected. For this, we can use
a loss function. The loss function takes the network’s predictions and the true
target and computes a distance score. With this, it is possible to know how
well the network is going for a specific set of examples (illustrated as the green
box in Figure 2.4). In addition, this score serves as feedback to update the
network parameters (weight values). This update is the job of the optimizer,
through the implementation of the central algorithm in deep learning, called
backpropagation, that seeks to minimize the loss score, making the predictions
of a set of examples made by the network closer to the real targets. Figure 2.4
illustrates how the learning process occurs.

Figure 2.4: Neural network learning process. Adapted from Francois (2017).
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It is worth mentioning, that initially the network merely implements a
series of random transformations since all the weights are randomly assigned.
With this, is expected that outputs are far from what it should be, which results
in a very high loss score. During the network training phase, for each input
example that net processes, the weights are adjusted, correcting the direction
of predictions. Consequently decreasing the loss score. This process is repeated
for a sufficient number of iterations and over thousands of examples, to make
the network produce the outputs as close to the targets.

2.4
Computer Vision

Computer Vision (CV) is an interdisciplinary field interested in making
machines capable of understanding and interpreting the visual world from
the extraction of information in digital images. The Computer Vision field
emerged in the early 1970s with concepts similar to those approached by the
Digital Image Processing area. It didn’t take long for the two areas to become
distinct since CV methods started to use information extracted from real-world
images to take a new step, which sought to enable a total understanding of
a scene (Szeliski, 2010). Briefly, Computer Vision works based on three basic
steps:

– Image acquisition: in this step, cameras are used to collect images (2D
or 3D) or videos in real-time;

– Image processing: in this step, it is common to use conventional image
processing methods, such as linear and non-linear filters application, geo-
metric transformations. To get an enhanced image or feature information
that may be useful later;

– Image understanding: this final step is interpretative, in which it is
sought to identify or classify different types of objects about an image.

Figure 2.5 presents some of the most active topics of research in Com-
puter Vision until today. In a more actual context, it is possible to notice many
CV applications that perform a visual recognition task combined with sophis-
ticated Machine Learning techniques to solve real-life problems. For example,
the use of CV in the manufacturing industry to automatically identify and in
real-time defects in pieces resulting from a production line, using only images
or video processing, enables cost reduction and safety.

The combination of Machine Learning and Computer Vision brought
considerable gains and ended up being another factor that made AI become
mainstream in the last decade (2010-20). Once, the Big Data field caused an
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Figure 2.5: A rough timeline of some of the most active topics of research in
computer vision. Adapted from Szeliski (2010).

explosion in the growth of data volume, which was a requirement to realize
that sufficiently large models trained on sufficiently large data (a byproduct of
the rise of the consumer internet) was all that was necessary for the emergence
of Deep Learning (Francois, 2017). That led to the construction of significantly
large datasets containing hundreds of thousands to tens of millions of examples,
a crucial factor for the advancement of Deep Learning and Computer Vision.
Some examples of these datasets are: ImageNet (Russakovsky et al., 2015),
Sports-1M (Karpathy et al., 2014) and Street View House Numbers (Netzer
et al., 2011). The need to develop larger models has also led to a series of
studies regarding parallel GPU computing, bringing a considerable advance
in GPU performance in recent years (Figure 2.6). This trend is expected to
remain positive in the future (Goodfellow et al., 2016).

Figure 2.6: Comparison of GPUs performance along the years (Sapunov, 2018).
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2.4.1
Convolutional Neural Networks

The use of Deep Learning methods has achieved state of the art in dif-
ferent Computer Vision tasks in recent years. Convolutional Neural Networks
(CNN) have emerged as an important approach to perform a broad range of
visual tasks (Krizhevsky et al., 2012; Toshev and Szegedy, 2014; Long et al.,
2015; Ren et al., 2015). CNNs are composed of layers of filters that represent
neighborhood spatial connectivity patterns. It is the use of convolutions, non-
linear activation functions, and downsampling (pooling), commonly followed
by one or more fully connected layers, that results in a hierarchical under-
standing of image features. Figure 2.7 illustrates a CNN that combines the
extraction of different features along with the network, sought for the forma-
tion of high-level features that enable the classification of an image based on
the attribution of a label.

Figure 2.7: Convolutional Neural Network example.

In the following, we present four CNN architectures: VGG-16, Inception-
v3, RestNet50, and ResNet101. These architectures are commonly adopted
by the Computer Vision community due to the excellent results obtained
in different competitions, such as ImageNet. In this work context, we use
those architectures for the verification step implementation of a multi-stage
approach.

VGG-16 Simonyan and Zisserman (2014) proposed the VGG-16 model that
won the localization task in ImageNet competition in 2014, reaching 92.7% of
accuracy. The VGG-16 makes an improvement based on the settings of the
AlexNet (Krizhevsky et al., 2012) by replacing large kernel-sized filters (5× 5
and 11× 11) with multiple 3× 3 filters, one after another. The use of smaller
kernels brings greater depth to the network and an increase in its non-linearity,
which ends up being a positive aspect for Deep Neural Networks. Regarding
the number of parameters, VGG-16 employed about 3×more parameters when
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compared to AlexNet (which has 60 million parameters) and that brings a high
cost: evaluating the network requires a lot of computation.

Figure 2.8: VGG-16 architecture (Neurohive, 2018).

Figure 2.8 illustrates the VGG-16 architecture. The input receives a fixed
size 224 × 224 RGB image. The image is passed through a combination of
stacked convolutional layers followed by the ReLU (Equation 2-1) activation
function. Downsamples are done using max-pooling layers. After the last stack
of convolutional layers, there are three fully connected layers. The final layer
uses the Softmax function (Equation 2-2), which in this case performs a 1000-
way ILSVRC classification. The Softmax function returns probabilities of each
class, with the target class having the highest probability.

R(x) = max(0, x) (2-1)

σ(xi) = exi∑K
j=1 e

xj
(2-2)

Inception-v3 Szegedy et al. (2016) proposed the Inception-v3 model, the
third version of Google deep learning architecture series. The first Inception
convolutional architecture was introduced as GoogLeNet (Szegedy et al., 2015).
The Inception architecture was refined later with the Batch Normalization
method (Ioffe and Szegedy, 2015), which became the second version of the
architecture, namely Inception-v2. The Batch Normalization method seeks to
coordinate the update of multiple model layers by standardizing the activations
of each input variable per mini-batch. This method has the effect of stabilizing
the learning process, reducing the number of iterations required to train deep
neural networks.
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Inception-v3 architecture implemented methods for factorization of con-
volutional kernels. Factorizing convolutions aim to reduce the number of con-
nections and parameters of the network without decreasing the efficiency. Fig-
ure 2.9 illustrates the process of replacement of a 5 × 5 convolution for two
3× 3 convolutions. In this case, the number of parameters is reduced by 28%
(5 × 5 = 25 against 3 × 3 + 3 × 3 = 18). A similar technique was already
mentioned in VGG networks (Simonyan and Zisserman, 2014).

Figure 2.9: Two 3 × 3 convolutions replacing one 5 × 5 convolution (Szegedy
et al., 2016).

Inception-v3 also implements another factorization method that does a
factorization into asymmetric convolutions (Figure 2.10). In this case, one 3×3
convolution is replaced by a 3×1 convolution followed by one 1×3 convolution.
This causes a reduction in the parameter numbers of up to 33% (3 × 3 = 9
against 3× 1 + 1× 3 = 6).

Figure 2.10: One 3× 1 convolution followed by one 1× 3 convolution replacing
one 3× 3 convolution (Szegedy et al., 2016).

Figure 2.11 illustrates the Inception-v3 architecture. The model is made
up of symmetric and asymmetric building blocks. The input receives a fixed
size 299× 299 RGB image. Each convolutional layer is followed by Batch Nor-
malization and ReLU activation function. Downsamples are done using max
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and average pooling layers. The architecture also uses a Dropout layer (Srivas-
tava et al., 2014) to mitigate overfitting. The fully connected layer has a shape
of 8× 8× 2048. Which is turned into 1001 output classes after the application
of the Softmax function in the final layer.

Figure 2.11: Inception-v3 architecture (Szegedy et al., 2016).

ResNet He et al. (2016a,b) proposed the ResNet model, which was designed
to enable the increase of more convolutional layers. Since the conception of
AlexNet, another CNN architectures were designed to go deeper and deeper
(like VGG-16 and Inception architectures). However, increasing the number
of layers in a network is not enough to achieve better performance; as the
gradient is back-propagated to earlier layers, repeated computations can take
the gradient infinitely small. Thus, as the network goes deeper, its performance
can get saturated or even starts degrading quickly. This problem is well known
as the vanishing gradient problem (Hochreiter, 1998).

Figure 2.12: A building block for residual learning (Zhang et al., 2020).

The core idea of ResNet is introducing residual blocks which applies
skip connections, also called identity shortcut connection (Figure 2.12). These
blocks make it possible to skip one or more layers, taking advantage of residual
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learning from the previous layers, allowing the faster propagation of inputs
through layers.

Figure 2.13 illustrates the ResNet architecture. The model can treat
different input image shapes but should not be smaller than 32 × 32. ResNet
architecture has four modules made up of residual blocks, where each block
has the same number of output channels. Similar to the Inception model,
ResNet also uses Batch Normalization after each convolution. Since ResNet
architecture is designed to enable hundreds or thousands of convolutional
layers, this architecture has some size variations that directly influence time
and resources available for computation. In this work, we make use of two
alternatives, ResNet50 and ResNet101.

Figure 2.13: ResNet architecture (He et al., 2016a).

2.4.2
Deep Neural Networks for Object Detection

Object detection is one of the fundamental Computer Vision problems.
This task can provide valuable information for semantic understanding of
images and video streams that go beyond the image classification task,
precisely estimating the concepts and locations of objects in an image (Zhao
et al., 2019). Object detection models aim to determine objects locations in
a given image (object localization) and which label each object belongs to
(object classification), using bounding boxes to show the confidences of objects
existence. The object detection methods can mainly be categorized into two
types:

– Region proposal-based: this method follows a traditional object de-
tection pipeline, a two-step process, where the region proposals are gen-
erated at first, then each region is classified into different classes.

– Regression or classification based: this method regards objection
detection as a regression or classification problem. In this case, one
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framework is unified to achieve categories and locations of each object
directly.

In the following, we present two object detection models: R-CNN and
YOLO-v4. The R-CNN model implements the region proposal-based method,
and YOLO-v4 adopts the regression-based method. In this work, we use the
YOLO-v4 model as a basis for implementing two proposed approaches.

R-CNN Girshick et al. (2014) proposed The R-CNN model, which improved
significantly the quality of candidate bounding boxes using a Convolutional
Neural Network to extract high-level features. The R-CNN model obtained
a mean average precision (mAP) of 53.3%, which was an improvement of
more than 30% when compared with the previous best result (DPM HSC
proposed by Ren and Ramanan (2013)) on PASCAL VOC objection detection
dataset (Everingham et al., 2010).

Figure 2.14: R-CNN flowchart (Girshick et al., 2014).

Figure 2.14 illustrates the flowchart of R-CNN. The R-CNN model
consists of three stages:

1. Region proposals generation: the R-CNN adopts a selective search
method (Uijlings et al., 2013). This method relies on a simple bottom-up
grouping strategy that generates about two thousand region proposals
for an image, providing more accurate candidate boxes of arbitrary sizes
that reduces considerably the searching space;

2. CNN based feature extraction: in this stage, each generated region
proposal is warped (or cropped) into a fixed resolution. Then a CNN is
used to extract a high dimensional feature as the final representation;

3. Region classification: In this last stage, the different region proposals
are scored positively or negatively (which indicates the background)
using a set of pre-trained linear SVMs for multi-classification. Then, all
positive regions are adjusted using bounding box regressions and filtered
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with non-maximum supression (Neubeck and Van Gool, 2006), producing
the final bounding boxes.

YOLO-v4 Redmon et al. (2016) proposed You only look once (YOLO), a
one-stage object detection model that has continuously improved and is now
in its fourth version, namely YOLO-v4 (Bochkovskiy et al., 2020). YOLO-v4
achieved state-of-the-art results (65.7% AP50) at a real-time speed (~65 FPS)
on the COCO dataset (Lin et al., 2014). The YOLO-v4 architecture is mainly
composed of three parts:

– Backbone: a Convolutional Neural Network, usually trained on Ima-
geNet dataset that is used for feature extraction. YOLO-v4 uses the
CSPDarknet53 model (Wang et al., 2020). The CSPDarknet53 contains
29 convolutional layers (using 3× 3 filters) and counts with 27.6 millions
of parameters;

– Neck: a component composed of several bottom-up paths and several
top-down paths that seeks to collect and prepare information (feature
maps) from different layers of the backbone to the detector. For this
component, YOLO-v4 implements Spatial Pyramid Pooling (He et al.,
2015) and Path Aggregation Network (Liu et al., 2018);

– Head (detector): YOLO-v4 implements the same detector as the
YOLO-v3 (Redmon and Farhadi, 2018), called dense prediction. This
component is responsible for the final prediction, which is composed of
a vector containing the coordinates of the predicted bounding box, the
confidence score of the prediction, and the label.

The YOLO-v4 performs detections in three scales (Figure 2.15), for this,
initially, it does downsamplings of size 32, 16, and 8 in the input dimensions.
Thus, assuming that an input RGB image with 416 × 416 size, will result in
three feature maps: one with 13 ×13 cells (FM-1), another with 26× 26 cells
(FM-2) and another with 52×52 cells (FM-3). Each of these is associated with
three anchor boxes. Where the three largest anchor boxes are assigned to FM-
1, the three smallest anchor boxes are assigned to FM-3, and the remaining
three (medium-sized) anchor boxes to FM-2. These associations allow objects
of larger scales to be detected by FM-1, medium scales by FM-2 and small
scales by FM-3. To perform the prediction detection kernels are applied to
each of the cells of these feature maps.

A detection kernel has the format 1 × 1 × (B ∗ (5 + C)), where B = 3,
this value corresponds to the number of bounding boxes that a cell in the
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feature map predicts. The value of C corresponds to the number of classes
to be detected. Finally, we have four more coordinates (tx, ty, tw, th) of the
bounding boxes location next to the object’s confidence score (po).

Figure 2.15: YOLO-v4 detection step.

DBD
PUC-Rio - Certificação Digital Nº 1912720/CA



3
Related Works

In this chapter, it will be presented some works proposed in the literature
to address the personal protective equipment (PPE) detection problem. The
methods used for automated monitoring of PPE compliance can be categorized
into two types: sensor-based and vision-based. The sensor-based methods
usually install a sensor in each equipment (commonly just hard hat), process,
and analyze its emitted signals continuously to produce PPE compliance
evidences. Although, this approach requires the acquisition, installation, and
maintenance of several sensors which can demand a significant investment for
a company. Another factor that can be problematic in this kind of approach
is that some types of sensors (e.g. pressure sensors) need to be installed inside
the equipment and are in direct contact with the skin of a worker, causing
discomfort after long hours of use, especially in a hot and humid construction
environment (Zheng et al., 2019). In contrast, the vision-based methods use
cameras installed in the work environment to process images using Computer
Vision techniques to provide a richer comprehension of the scene, enabling
automated PPE compliance (Seo et al., 2015). This type of approach can
be a convenient solution, thanks to its practical potential and cost-effective
implementation.

3.1
Sensor-Based

Zhang et al. (2019) creates a smart hard hat system using an Internet
of Things (IoT)-based architecture. The proposed architecture includes: the
installation of an infrared beam detector, a thermal infrared sensor, and
radio-frequency identification (RFID) in each worker hard hat; a smartphone
application for workers that communicates with a cloud server, sending hardhat
uses information and receiving personalized warnings; and a web application
for data visualization and alarms for managers.

Figure 3.1 illustrates the proposed IoT-based architecture. The devices
installed in the hard hat communicates with a smartphone application via
Bluetooth, sending evidence (worker identifier, time, and location) of the
inappropriate use of the equipment by a worker. Then, the smartphone
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Figure 3.1: IoT-based architecture of the smart hard-hat system (Zheng et al.,
2019).

communicates with the cloud via a 4G wireless network. Since the cloud service
records all evidence, the web application retrieves this information and alerts
a manager when a deviation occurs. This approach shows the potential to
promote safety in workplace environments. But it is common to present some
limitations, like communication bottlenecks, causing a delay between sensors
and web or smartphone applications. Also, there is the possibility of internet
unavailability in some areas. In terms of evidence production, there is no visual
record, such as an image that points out the inappropriate equipment use,
which not allows a complete assessment of the deviation by the manager.

3.2
Vision-Based

Li et al. (2017) proposed a vision-based framework for hard hat detection
that consists in three stages: background modeling, pedestrian classification,
and hard hat detection. The application is used in a power substation scenario
and receives images extracted from a surveillance camera. This camera has a
fixed install position to ensure that the image’s background undergoes minimal
modifications along a sequence. The first stage of the proposed solution
consists of modeling the background. Hence, the ViBe algorithm (Barnich
and Van Droogenbroeck, 2010) is applied to segment moving objects from a
video sequence, seeking to isolate static objects, leaving only the worker as an
object of interest in the scene. Then, each moving foreground object is classified
by a Support Vector Machine (SVM) into two classes: pedestrians and non-
pedestrians. The SVM input is a feature description of a pedestrian calculated
using the Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005).
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Finally, to determine if a worker is wearing a hard hat, a simple color feature
recognition is applied in the top region (one-fifth of the total height) of
each classified pedestrian. The experimental results showed that the proposed
framework obtained an accuracy of 80.19%, running at up to 7 frames per
second. What is a satisfactory outcome for the application context. However,
the implemented methods show some limitations. For example, different light
intensities have affected the classifier’s performance, leading to negative results.
Also, the choice of a fixed region of interest assumes that workers will always be
standing, and the method can fail if the worker performs a different movement,
like bending down.

3.3
Vision-Based Methods Using Deep Learning

Fang et al. (2018) proposed one of the first works that use deep neural
network architectures for dealing with the PPE detection problem. The pro-
posed method uses a Faster R-CNN model (Ren et al., 2015) for non-hard hat
detection in far-field surveillance video frames. Compared to other methods, an
object detection model empowered with Deep Learning, like Faster R-CNN,
has some advantages. One of the main benefits is the capability of learning
features automatically. In the context of PPE detection, it is possible to use
those benefits to automatically establishing various workers’ posture models
(like standing, bending). Also, the model offers robust worker detection despite
weather and illumination, which was also a problem in some previous works.

To train the learning model to automatically detect the non-hard hat use
by a worker, the authors built a dataset with more than one hundred thousand
images from security cameras installed in a construction scenario. The dataset
covers a variety of visual conditions that may occur on construction sites. In-
cluding visual range, weather, illumination, individual posture, and occlusions.
In these images, workers who are not wearing a hard hat are labeled with a
bounding box. Thus, during the inference stage, the R-CNN model will provide
the location (bounding box) and a confidence value for each detected object,
which in this case, is the probability of a worker being a non-hard hat use. The
experimental results indicate that the proposed method could successfully de-
tect non-hard hat use by workers with a precision and recall rate of 95.7%
and 94.9%, respectively. Regarding the processing time, Faster-RCNN has a
frame rate of 5 FPS. In this way, the proposed method offers an opportunity
to contribute to real-time site monitoring, improving the workers’ safety on
construction sites.

Bo et al. (2019) use the YOLO-v3 model (Redmon and Farhadi, 2018)
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for hard hat detection in an electric power construction scenario. For this,
the proposed model was re-trained using the fine-tuning technique from the
pre-computed weights of the network in the COCO dataset to detect two
classes: hard hat and head. The dataset built in this work includes 1555
images, annotated with 2253 and 2346 instances of the hard hat and head
classes, respectively. For the model evaluation stage, the authors adopted three
metrics: precision, false alarm (Equation 3-1), and missing alarm (Equation 3-
2). Table 3.1 presents YOLO-v3 fined-tuned model results. The experimental
results indicate that the proposed method obtained promising results. However,
the method has no verification stage, which does not guarantee that a worker
is making appropriate use of his hard hat. For example, if a worker is holding
his helmet in his hand, the model would probably detect that hard hat. But
not its improper use.

False alarm = FP

TP + FP
(3-1)

Missing alarm = FN

TP + FN
(3-2)

Precision False alarm Missing alarm
Hard hat 96.58% 0.89% 3.42%
Head 97.12% 0.69% 2.88%

Table 3.1: YOLO-v3 fine-tuned model results (Bo et al., 2019).

The works presented above aims to construct a model for hardhat wearing
detection. However, in some cases, we are interested in detect multiple PPE,
such as hard hats, gloves, and worker vests. In this sense, Zheng et al. (2019)
and Nath et al. (2020) proposed methods to handle a higher amount of PPE.

Zheng et al. (2019) implement a simplified version of YOLO-v2 architec-
ture (Redmon and Farhadi, 2017) aiming at a low computational complexity
network for PPE detection in real-time. The proposed architecture consists
only of nine convolutional layers and six pooling layers (maximum). The au-
thors also embed a dense connection block in the convolutional layer with the
lowest resolution (16 × 16), which allows the following layer to receive multi-
layer convolutions, aiming to minimize information losses and strengthen fea-
ture propagation.

To address the multiple PPE detection, which in this work are: hard
hat, safety glove, and safety vest. The authors build three different models
(using the same architecture), where each model is responsible for one type of
equipment. In this way, each model is trained separately to detect the presence
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or absence of a single piece of personal protective equipment. During the
inference stage, the three models receive the same input image and perform the
detections. Table 3.2 presents the detection results for the test dataset, which
consists of 526 images of three categories: safety gloves samples (211 images),
hard hat samples (182 images), and safety vest samples (133 images). Despite
the qualities of the results obtained for the precision and recall metrics, the
proposed method has some limitations. The main disadvantage comes from the
three different models use (one for each PPE) that share the same architecture.
In this way, there is no sharing of information between the different models
about the features learned. Thus, the Deep Neural Network capacity for multi-
classification problems is not well used, bringing unnecessary computational
complexity to the task.

Precision Recall
Hard hat 98.90% 93.67%
Safety glove 94.79% 91.22%
Safety vest 94.74% 91.10%

Table 3.2: Detection results for each PPE type (Zheng et al., 2019).

Nath et al. (2020) proposed three approaches to detect multiple PPE
(hard hat and safety vest) in a construction scenario. All approaches use a
different implementation of YOLO-v3 (Redmon and Farhadi, 2018) model as
the basis of the method. Approach-I is a multi-stage method that performs
the detection and verification phases using two models. First, given an input
image, a YOLO-v3 model detects three objects: worker, hard hat, and safety
vest. Next, a simple Machine Learning classifier receives the object detection
model outputs (bounding box coordinates) as inputs and determines what
equipment is being used properly by a worker. In approach-II, the detection
and verification phases are performed by a single model, so it is a one-stage
method. In this case, a YOLO-v3 localizes workers in the input image; and
direct classifies each worker into four classes: worker without PPE (W), a
worker using a hard hat (WH), a worker using a safety vest (WV), and a
worker using a hard hat and a safety vest (WHV). Finally, the approach-III
is a multi-stage method. First, a YOLO-v3 detects only workers in an input
image. Then, each worker detection is cropped and given as input to a CNN
(or a Bayesian framework of CNNs). This CNN is responsible for performing
the verification stage, which in this case, given the cropped image, the model
classifies it in one of the four classes previously mentioned (W, WH, WV,
WHV). The CNN architectures investigated in this approach implementation
are VGG16, ResNet50, and Xception (Chollet, 2017). The dataset used to train
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and evaluate the models contains 1472 annotated images with approximately
4700 instances of workers wearing different combinations of PPE components.
The dataset is named Pictor-v3, and it is composed of two sources: Crowd-
sourcing (Yuen et al., 2011) and web-mined images. Figure 3.2 presents the
comparison in terms of Average Precision (AP) and Mean Average Precision
(mAP) of the overall performance obtained for each approach.

Figure 3.2: Comparison of the overall performance of each approach (Nath
et al., 2020).

Deep neural networks have been revealed to be quite useful for solving
object identification tasks (Nath et al., 2020). Despite the meaningful results
described in the literature, in the industrial domain, this approach has limita-
tions considering the time of inference and precision. In this work, we propose
robust approaches that can be used as a fundamental component of a mon-
itoring system for PPE detection that uses YOLO-v4 model as a basis for
implementing the proposed approaches. We also experiment with new adapta-
tions, in terms of models and parameters for the multi-stage approach, where
we create a solution that uses ensemble classifier. As one will see in the next
sections, our approaches present promising results (in terms of mAP) and still
capable of act in real-time.
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4
Methodology

This chapter presents the construction and exploration process for the
two proposed approaches, including dataset generation, used to carry out
model training and evaluation. In this work, we evaluate whether these ap-
proaches are ready to act in real-time and with robustness when implemented
as a fundamental component of a monitoring system that seeks to detect
which workers are making the appropriate use of personal protective equip-
ment (PPE).

For this study, we choose to focus on two types of PPE, hard hat and
protective clothing. These types of equipment are often used to ensure the
safety of workers in the oil and gas industry and civil construction. Our
approaches are based on techniques for detecting and classifying objects in
images. In this way, we have four possible classes to perform the classification
(Figure 4.1), which are: worker with no PPE (W), worker wearing a hardhat
(WH), worker wearing protective clothing (vest) (WV), and worker wearing a
hard hat and protective clothing (WHV). Note that implemented approaches
can be extended to any number of PPE. However, the complexity level of
the verification step (PPE compliance) grows exponentially. Once there are 2n

possible combinations of use for n different types of PPE.

Figure 4.1: Possible classes to perform classification.

The detection and verification component is based on models that
empower Deep Learning methods capable of being executed in real-time. In
Nath et al. (2020) work, which also addresses the problem of detecting multiple
PPE, the authors adopt as the definition for real-time system one that can
process at least five frames per second (FPS). When this is not possible,
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values ≥ 1 FPS are considered "near real-time". These definitions emerge
from previous work (Redmon et al., 2016) which also raise this concern. In
this work, we follow the same definition since the context is quite similar. We
expect that our implementation can act in real-time with a prompt response
when a worker’s life is exposed to risk.

In particular, both approaches employ YOLO-v4 architecture and carry
some of the steps in a similar manner, such as preparing data and the models’
training. In Approach-I, for each image, we annotate a bounding box for each
worker. The class of this bounding box informs which PPE the worker is
wearing. This way, we create a single model based on YOLO-v4 architecture
for detection and verification phases. Approach-II uses one model for the
detection stage and another model for the verification stage. First, we detect
workers’ locations (bounding boxes) from the input image using a model
based on the YOLO-v4 architecture. For the PPE compliance verification
stage, a Convolutional Neural Network receives cropped-image regions (for
each worker detected) and classifies them according to possible states (W,
WH, WV, WHV). The details for both approaches are clarified in Section 4.4
and Section 4.5.

4.1
Dataset Generation

Supervised Machine Learning applications requires a large annotated
dataset to provide the learning model a way to create and recognize patterns
through the data. As we did not have access to a large image dataset available
for multiple PPE detection, it was necessary to create a annotated dataset to
feed the learning model.

The dataset used in this work is composed of images from the following
sources: Crowd-sourced (as used by Nath et al. (2020)), GDUT-Hardhat
wearing detection (GDUT-HWD) (Wu et al., 2019), Web-scrapped, and images
captured by the authors. Of the datasets that already had annotation (Crowd-
sourced and GDUT-HWD), the only one that deals with multiple PPE
detection is Crowd-sourced, where the annotation of classes is the same as
that used in this work. For GDUT-HWD, only the images were used, since
the dataset annotations are only for the individual identification of safety
helmets. To compose the Web-scrapped source, images were obtained from
public databases using search engines that perform searches by keywords,
for example, "workers in refinery", "workers in platforms". After the complete
collection of these images, there was a visual inspection to remove images
that were out of context or that had low quality. The images captured by
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the authors were taken in a controlled environment that sought to reproduce
the conditions of an industrial environment. Figure 4.2 shows the number of
instances for each data source.

Figure 4.2: Distribution of instances per class for each data source.

The annotation procedure to mark bounding boxes of objects in images
for training the models was carried out in the YOLO mark tool1, an open-
source library for image annotation. Aiming to minimize the annotation bias,
the whole dataset was divided into batches of equal sizes and assigned to one of
the annotators (two participated). After the completion of a batch of images, a
second annotator checked all annotations. If there was any divergence regarding
an annotation (concerning an annotated class or a bounding box region), this
instance was separated and discussed among the annotators until they reached
a consensus for the real ground truth definition.

4.2
Data Preprocessing

In the dataset preparation, we divided the images into three subsets:
training (70%), validation (20%), and testing (10%). Since the dataset used
is composed of four different sources. The images of each source were propor-
tionally distributed (randomly) among the subsets. i.e., training, testing, and
validation sets have the same percentage of each data source. This kind of di-
vision ensures that the subsets have similar distributions, making them more
homogeneous. As an image can have several instances and it is not possible to
distribute the instances of a single image to different subsets. The proportion

1github.com/AlexeyAB/Yolo_mark

github.com/AlexeyAB/Yolo_mark
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of the number of instances may end up being affected. Thus, to verify whether
the instances proportion for each subset is similar, we analyzed the distribution
of the number of instances, as shown in Figure 4.3. According to the figure, the
proportion of instances remained close to expected for all subsets. The same
can be observed for the distribution of the number of classes per subset. More-
over, it is possible to observe that the dataset has few examples of the WV
(worker with a safety vest) class compared with other classes. This unbalance
may hinder the learning model from generalizing that class.

Figure 4.3: Number of instances per class for each subset.

To improve the ability to detect objects accurately, YOLO-v4 uses nine
anchor boxes, which must be defined for use during the training and inference
phases. With the anchor boxes defined, the model can specialize in objects of
certain sizes and with particular aspect ratios (height × width).

In practice, during the training phase, each cell of the feature maps of
the network’s output layers has an associated anchor box. Thus, the model
learns how to shift and scale a predicted bounding box based on anchor box
references so that the output coordinates fit an object of interest. The K-Means
clustering algorithm was used with training set bounding boxes as input to
define the anchor boxes. Since YOLO-v4 architecture uses nine anchor boxes
as a reference, the number of centroids in K-Means is equal to nine. In this way,
we have one correspondent centroid that defines the characteristic patterns
(height and width) of each anchor box (Figure 4.4).
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Figure 4.4: Corresponding anchor boxes for the nine centroids.

4.3
Data Augmentation

To avoid the problem of lack of data, which can lead to the overfitting
of Machine Learning models during the training stage, we use different data
augmentation techniques. Data augmentation techniques seek to apply trans-
formations to the input images to increase the diversity of examples in the
training dataset. Some conventional data augmentation techniques use simple
transformations, such as rotation, translation, and scale. The application of
data augmentation requires a lot of care. Some transformations may end up
not preserving the labels of the input data, which would end up causing an
opposite effect, hindering the training stage of a model. Figure 4.5 illustrates
examples of applications of this technique in a fictitious input image.

Figure 4.5: Data augmentation transformations examples.

In this work, we implemented two data augmentation techniques during
the training stage of object detection models. The first technique consists of
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an HSV color space change, where the saturation and exposure values are
randomly adjusted by up to a factor of 1.5. The second technique is the
Mosaic method (Bochkovskiy et al., 2020). This method brings a new data
augmentation technique that mixes four training images into a single image
(Figure 4.6). Hence, four different contexts are mixed and could allow the
model to learn to detect objects outside of their usual context.

Figure 4.6: Mosaic data augmentation (Bochkovskiy et al., 2020).

Data augmentation techniques have also been used during CNNs training
stage. In this case, the following transformations are adopted:

– Random zoom in the range [0.80, 1.20];

– Shear range with a factor of up to 20 degrees (counter-clockwise direc-
tion);

– Horizontal flip in 50% of images.

4.4
Approach-I

The first approach uses a single YOLO-v4 model, which we will call
YOLO-v4-AP1, to perform the detection and verification steps in a one-
stage implementation. The YOLO-v4-AP1 model detects workers’ location
and directly classify each worker according to the PPE attire (W, WH,
WV, WHV). Figure 4.7 illustrates how Approach-I is performed. One of the
main advantages of this approach is that it takes advantage of the YOLO-v4
architecture’s capabilities to make predictions with objects’ locations and their
respective classes using a single network. What makes it a simple and effective
implementation.
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Figure 4.7: Approach-I.

During the inference phase, only predictions with a confidence score
above 50.0% are admitted as final predictions. It is worth mentioning that
the model can produce duplicate detections, presenting different classes for the
same worker. But following the problem definition, a worker can belong to only
one class. For example, if there is a worker detection with the WHV class, this
detection supersedes any W, WH, or WV detections for the same worker. To
avoid duplicate detections, the model uses non-maximum suppression. Usually,
non-maximal suppression adds 2-3% in mAP (Redmon et al., 2016).

4.5
Approach-II

For this approach, we use a multi-stage method to perform the identifica-
tion and verification stages. Initially, a YOLO-v4 model is used (which we will
call YOLO-v4-AP2) only to locate the worker (detection step). Thus, there
is only the worker class (W). Then, a CNN is used to carry out the verifica-
tion step. This CNN receives a cropped image for each worker detected by the
YOLO-v4-AP2 model in the input image and classifies it according to one of
the four possible classes (W, WH, WV, WHV). Figure 4.8 illustrates how this
multi-stage approach is performed.

Figure 4.8: Approach-II.

The CNN architectures investigated in the implementation of this ap-
proach are VGG-16, Inception-v3, ResNet50, and ResNet101. The following
modifications have been made (in order) to all architectures to address the
verification stage:

– Change in the input layer to receive 150× 150 size images;
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– Addition of a dropout layer with a probability of drop p = 0.3;

– Addition of a fully connected layer with 256 nodes and regularization
L1 and L2 with penalty value of 0.001 followed by the ReLU activation
function;

– Addition of an output layer (dense) with four nodes (one for each output
class) followed by the Softmax activation function.

We also improve Approach-II by using an ensemble of classifiers with
the majority vote method (Figure 4.9). That is, each classifier assigns his vote
to the class with the highest probability. The final prediction is given to the
class that received the most votes. Thus, when performing the verification
stage for PPE compliance, the learning of an entire set of classifiers (VGG16,
Inception-v3, ResNet50, and ResNet101) is used. We believe that combining
multiple classifiers predictions may reduce the variance and the classification
bias, making the classification less dependent and the class distinction criteria
more expressive. As an even number of classifiers have been adopted, a tie
can happen. In that case, as implementation detail issues, the first class that
obtained the most votes in order of labels indices (W, WH, WV, WHV) is
chosen. However, we believe that there are better strategies to resolve the
cases of ties, for example, to exclude the vote of the classifier that had the
lowest confidence score.

Figure 4.9: Ensemble of classifiers (majority vote).

4.6
YOLO-v4 Model Architectures

For the two proposed approaches, the architecture of YOLO-v4 models
is modified based on the number of considered classes by each approach.
These modifications consist of changing the dimensions of the network’s output
layers. In Approach-I, the YOLO-v4-AP1 model directly classifies each worker
according to the PPE attire. Since we focus on two types of equipment (hardhat
and safety vest), there are four possible classes: W, WH,WV,WHV. As already

DBD
PUC-Rio - Certificação Digital Nº 1912720/CA



Chapter 4. Methodology 47

seen in Subsection 2.4.2, the dimensions of the three output layers of YOLO-
v4 architecture are 13 × 13 × (3 ∗ (5 + C)), 26 × 26 × (3 ∗ (5 + C)), and
52 × 52 × (3 ∗ (5 + C)), respectively. Where the C value corresponds to the
number of classes. Thus, for the model implemented in Approach-I, we have
three output layers with the following dimensions: 13× 13× 27, 26× 26× 27,
and 52 × 52 × 27, respectively. In Approach-II, the YOLO-v4-AP2 model
detects only workers (only W class). Therefore, for the model implemented
in Approach-II, we have three output layers with the following dimensions:
13× 13× 18, 26× 26× 18, and 52× 52× 18, respectively.

4.7
Model Training

Object detection models To carry out the training process, we adopted the
transfer learning method. For this, it was used a pre-trained YOLO-v4 model
that is state-of-the-art in the COCO dataset (Bochkovskiy et al., 2020). In
that way, we can take advantage of the model’s ability to detect up to 80
classes (person, bicycle, car, motorcycle, plane, etc.) from the COCO data set
and apply the knowledge in our domain. Since this model has already been
trained from a more significant number of images, it can generalize its learning
ability to distinguish resources for our task, which has a much smaller number
of images. It may seem that these two tasks have no evident intersection (in
addition to the fact that a worker is also a person). Although in problems
that address classification or detection tasks, some low-level characteristics,
for example, edges, shapes, contours, and intensities, can be shared between
tasks, thus allowing the spread of knowledge between them.

The training process of both models (YOLO-v4-AP1 and YOLO-v4-
AP2) took place in a very similar way. As the models implemented for the
two proposed approaches share almost the same architecture, all layers have
their weights initialized with pre-computed weights from the YOLO model
trained in the COCO dataset. The only exception is in the three output
layers of each model, which had their dimensions modified. These layers, in
turn, have their weights initialized at random. Regarding the hyperparameters
definitions, both models followed the same outlines adopted in Bochkovskiy
et al. (2020). That is, 30 epochs using the stochastic gradient descent (SGD)
optimizer (Qian, 1999) to accelerate the learning convergence process, with a
learning rate = 0.0013, momentum = 0.949, and decay = 0.0005.
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Classification models Approach-II involves additional training of the classi-
fiers models (VGG-16, Inception-v3, ResNet50, and ResNet101). In this case,
the first change consists of the training data, where this data is constructed
from each instance present in the training set of the object detection models.
During the training process, we also use the transfer learning method. The dif-
ference is that the model weights are initialized from the pre-trained weights
for the Imagenet dataset. The models were trained during 30 epochs using
the Adam optimizer with a learning rate of 10−5 with the categorical cross-
entropy loss function (Equation 4-1). Where ti is the ground truth class, pi is
the Softmax probability for ith class, and n is the number of classes.

LCE = −
n∑

i=1
tilog(pi) (4-1)

4.8
Mean Average Precision for Performance Evaluation

The performance of the YOLO models are evaluated using the mAP
(Mean Average Precision) metric, which is used in several object detection
models (for example, Faster R-CNN, R-CNN, SSD). One of the advantages
of the mAP is that we can quantify how well an object detection model is
performing in a data set using a single numerical representation (Turpin and
Scholer, 2006).

To calculate the mAP, initially, all detections must be ordered in de-
scending order based on the confidence level. For each prediction, we calculate
the precision and recall metrics using the accumulated value of valid (true
positives) and non-valid (false positives) detections for the current class. To
determine whether detection is valid or not, the Intersection over Union (Fig-
ure 4.10) of the bounding box resulting from the prediction (Bp) is calculated
with the bounding box of the ground truth (Bgt).

Figure 4.10: Intersection over union (IoU).
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If the value of intersection over union (IoU) is greater than a certain
threshold and the predicted class is equal to the ground truth class, the
detection is a true positive (TP). Otherwise, a false positive (FP). The
confidence IoU threshold adopted to classify a prediction as a true positive
for all experiments in this work is IoU ≥ 0.50.

Each class calculates its Average Precision (AP) by applying the Equa-
tion 4-2, where n represents the total amount of detections; i denotes, in the
list of ordered detections, the rank of a singular detection; p(i) is the calculated
with the cumulative values for false positives and true positives from the first
to the ith detection, ordered by confidence; and ∆r(i) is the variation in recall
from (i− 1)th to ith detection.

AP =
n∑

i=1
p(i)∆r(i) (4-2)
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Experimental Results

5.1
Performance of the YOLO-v4 Models

Figure 5.1 presents the performance results of the object detection models
used in Approach-I (YOLO-v4-AP1) and Approach-II (YOLO-v4-AP2) for
the test set. The YOLO-v4-AP2 model obtained the highest value of mAP
(88.67%), which was expected since there is only one class to be detected.
A factor that may have contributed considerably to the model’s performance
was the use of transfer learning. Thus, the model was able to use the previous
knowledge obtained from the training in the COCO dataset and to identify
classes that present similar features with more precision. In this case, we
have a notable similarity between the person class of the COCO dataset and
the worker class (W). For Approach-I, we have an mAP of 80.65%, which is
a good result since this approach uses only a single model to perform the
detection and verification stages for PPE compliance. It is worth mentioning
that this is the final mAP value for this approach, in contrast to the result
obtained for Approach-II, which will change when the verification stage is
taken into account. Thus, the final mAP will be directly affected according to
the performance of the classifiers. Table 5.1 shows, in addition to the mAP
value, the precision, recall, and f1-score metrics obtained by each model. The
f1-score is the harmonic mean of the precision and recall (Equation 5-1).

F1-score = 2 ∗ precision ∗ recall
precision+ recall

(5-1)

mAP Precision Recall F1-score
YOLO-v4-AP1 80.65% 75.46% 70.11% 72.69%
YOLO-v4-AP2 88.87% 91.23% 83.72% 87.31%

Table 5.1: mAP, precision, recall and f1-score metrics for YOLO-v4-AP1 and
YOLO-v4-AP2 models.
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Figure 5.1: Performance of the proposed models for each approach.

5.2
Performance of Classifiers

The instances (bounding boxes) of the test set were used to evaluate the
performance of the classifiers that worked during the approach-II verification
stage. The accuracy of VGG-16, Inception-v3, ResNet50, and ResNet101 for
classifying images into W, WH, WV, and WHV classes are 82.85%, 78.35%,
84.02%, and 82.75%, respectively. Figure 5.2 presents the confusion matrix for
each model. Note that the WHV class has the lowest accuracy in all classifiers.
One reason for that is the confusion with the WH class, which has an average
value of 20.05% for false negatives. That is, once a worker is being detected
with a hard hat, it is difficult for the classifier to distinguish whether a given
worker is wearing protective clothing or not. The individual accuracy for the
rest of the classes (W, WH, WV) presents values higher than 80%, except for
class W when evaluated in Inception, which had a value of 6.6% below the
average accuracy of class W (82.83%).

Figure 5.2: Confusion matrices for VGG-16, Inception, ResNet-50 and ResNet-
101 classifier models.
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5.3
Performance Comparison of Approaches

In this subsection, we will evaluate the final performance of approaches
I and II. Note that for Approach-II, the final mAP value strongly depends
on the classifiers’ performance (or ensemble of classifiers) used during the
verification stage. Figure 5.3 shows that Approach-I obtained the best mAP
(80.65%) value, even when compared with the different model combinations
used in Approach-II (including ensemble). Although the YOLO-v4-AP2 model
presented an mAP of 88.67% in the detection stage, the errors of the classifiers
for the verification step end up reducing the mAP. Since some of the instances
will be classified incorrectly, generating false positives. The best result for
Approach-II presents an mAP value of 71.74%, given from the YOLO-v4-AP2
model plus the ensemble with the classifiers VGG16, Inception-v3, ResNet50,
and ResNet101. However, when the Inception-v3 model is removed from the
ensemble, the result is almost the same (71.73%). That may be because the
Inception-v3 model was the model that presented the least accuracy of all
classifiers (78.35%). In In the scenario where only one classifier was used in
the verification stage, the best result is obtained using ResNet101, which is
69.44% of mAP. Table 5.2 shows, in addition to the mAP value, the precision,
recall, and f1-score metrics obtained by each model.

Figure 5.3: Performance comparison of approaches implementation.

We also compared the processing time spent by each approach. We run
all models on the same machine, which has the following configurations: Intel
Core i9-7900X, 128 GB RAM, TITAN RTX GPU with 24 GB memory, and
operating system Ubuntu 19.10. Figure 5.4 presents the average processing
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mAP Precision Recall F1-score
YOLO-v4-AP1 80.65% 75.46% 70.11% 72.68%
YOLO-v4-AP2 + VGG-16 66.68% 74.68% 75.16% 74.91%
YOLO-v4-AP2 + Inception-v3 66.14% 73.04% 74.24% 73.63%
YOLO-v4-AP2 + ResNet50 68.53% 73.07% 76.31% 74.65%
YOLO-v4-AP2 + ResNet101 69.44% 75.87% 76.96% 76.41%
YOLO-v4-AP2 + [VGG16, ResNet50, ResNet101] 71.73% 78.20% 78.48% 78.34%
YOLO-v4-AP2 + [All classifiers] 71.74% 78.15% 78.64% 78.39%

Table 5.2: Detailed result of each implementation for the values of mAP,
precision, recall, and f-score.

time for a test image in each approach. Approach-I has the best processing
time (12.55ms). For Approach-II, the YOLO-v4-AP2 model processing time
is slightly less (12.38ms) than the model implemented in Approach-I. But
when adding the classifiers’ processing time into account, that time increases
significantly, making Approach-II the slowest. With times in the interval of
53.4ms to 224.67ms. As the proposed models run at a rate of at least 5 FPS
(frames per second), following the definition adopted in this work (same as
Redmon et al. (2016) and Nath et al. (2020)), we can say that these approaches
are capable to process videos in real-time applications and can be implemented
as the base component of a monitoring system.

Figure 5.4: Processing time comparison for approaches implementation.

5.4
Benchmark of Results

Since the dataset or models used in the work of Nath et al. (2020) were not
made available by the authors, we have to find other alternatives. To perform
a fair comparison of the methodology adopted in this work and verify if the
approaches were effective, we establish a comparison with the results obtained
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Criteria Baseline model
(YOLO-v3)

One-stage approach (I)
(YOLO-v4-AP1)

Multi-stage approach (II)
(YOLO-v4-AP2 + Ensemble [VGG16, ResNet50, ResNet101])

mAP 58.67% 80.65% 71.73%
FPS 104 80 7

Table 5.3: Comparison of mAP and FPS values with a baseline model.

from the YOLO-v3 model. This model was trained and tested in a similar
way to the YOLO-v4-AP2 model. Table 5.3 shows the comparison between
models in terms of mAP and FPS. Concerning mAP, we have an increase of
21.52% and 13.96% when comparing the YOLO-v4-AP1 and YOLO-v4-AP2
(with ensemble) models with baseline (YOLO-v3), respectively. On the other
hand, there is an increase in FPS. However, since the models of approaches I
and II are already able to operate in real-time, this gain is not very significant.

Figure 5.5: Example of detections obtained from YOLO-v4-AP1 model. The
first two images are from the Crowd-sourced dataset. The third image is from
the Web-scrapped dataset that is in an industrial setting.
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6
Conclusion

This work explores the implementation of two different approaches based on
Deep Learning to perform the task of detecting the usage of PPEs by workers.
We aimed to develop and evaluate approaches that are robust and capable
of acting in real-time, so that they can be implemented as a fundamental
component (detection and verification) of a monitoring system.

Although in this paper, we focus on two types of PPE (hard hat and
safety vest), our results show that we can employ our methodology to any
number of equipment (for example, goggles, gloves, and masks) changing the
networks’ output layers. The effect of this, is an increase in complexity due to
the number of different combinations of equipment.

To carry out the models’ training, we built a dataset from four different
sources (Crowd-sourced, GDUT-HWD,Web-scrapped, and images captured by
the authors) to supply our models with a more significant number of images
from different devices, angles, lighting, and environments. In order to enhance
our models’ generalization capabilities.

For Approach-I, we built a single model based on YOLO-v4 implemented
in one-stage; that is, the same model is responsible for identifying and verifying
the use of PPE. Hence, when receiving an image as input, the model classifies
each founded region that displays a worker, with one of the following classes:
W, WV, WH, and WHV. In contrast, Approach-II is a multi-stage, with at
least two distinct models for the identification and verification stages. Initially,
a YOLO-v4 based model detects the regions in which workers are located.
Then, a Convolutional Neural Network receives the clipping from each region
and performs the verification stage, which consists of classifying the image into
W, WV, WH, and WHV classes.

Both proposed approaches I and II outperforms the baseline results
relating to mAP. Our results show Approach-I presenting the best mAP for
detecting PPEs (80.65%). Although YOLO-v4-AP2 mAP display superior
results (88.87%), the classifiers’ errors in the verification stage decrease the final
mAP. This effect is evident even for our best implementation, which employs
an ensemble of classifiers VGG16, Inception-v3, ResNet50, and ResNet101,
producing a final mAP of 71.74% . These results may indicate that superior
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results may be obtained from the individual improvement of the classifiers or
methods proposed in this work. The ensemble method achieved an increase of
up to 2.3% compared to the best single classifier (ResNet101) mAP (69.44%)
of Approach-II. Regarding the processing time, Approach-I proved to be more
effective because of its one-stage implementation, which avoids bottlenecks
between the processing phases. Although slower, our results demonstrate that
Approach-II still feasible to use in real-time, both for the use of a single
classifier or with the use of an ensemble.

From the implementation carried out for Approach-I, it is possible
to build a monitoring system that has a robust detection and verification
component. Since the approach proved to be more efficient, not only in terms of
mAP (80.65%) but also in processing time, reaching up to 11x faster (80 FPS)
when compared to Approach-II. Because of this, we believe that the one-stage
approach has a high potential for the construction of an effective monitoring
system that can contribute to the safety of workers, minimizing the number of
accidents and occupational injuries.

Regarding ID association component mentioned in Figure 1.1, we believe
that tracking algorithms such as DeepSORT (Wojke et al., 2017) may present
goods results when employed along with the component explored in this work.
This happens due to those algorithms working well with robust detection
models to track real-time custom objects and assign unique identities for each
object.
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