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Abstract 

Meneses, Giovanny Alberto Arboleda; Anderson Pereira (Advisor). An 

Effective Compatibility Scheme in Multiscale Topology Optimization of 

Structures. Rio de Janeiro, 20210. 128p. Doctoral thesis – Mechanical 

Engineering Department, Pontifical Catholic University of Rio de Janeiro. 

Recent advances in additive manufacturing techniques have increased their 

flexibility in making complex parts on a smaller scale. In this context, the design of 

porous microstructures has been standing out in the scientific community due to the 

ability to optimize the cell topology to meet the design requirements. However, 

there are several challenges that inhibit the fabrication of optimized parts obtained 

by the multi-scale topology optimization method, such as the connectivity of 

microstructures. The multiscale topological optimization consists of the 

optimization of both the macro-scale, global structure, and the micro-scale, 

microstructure of the material. The main objective of this work is to develop an 

effective scheme to guarantee compatibility in the transition between the different 

material microstructures obtained in multiscale optimization. The multiscale 

methodologies for simultaneous topological optimization of both scales and the 

homogenization procedures are described. The main numerical and computational 

aspects of these methods are presented, as well as representative examples to 

illustrate the capabilities of the proposed scheme. 
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Material with Penalization.  
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Resumo 

Meneses, Giovanny Alberto Arboleda; Anderson Pereira. Um Esquema 

Eficaz de Compatibilidade na Otimização Topológica Multiescala de 

Estruturas. Rio de Janeiro, 2021. 128p. Tese de Doutorado - Departamento 

de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro. 

Os recentes avanços das técnicas de manufatura aditiva vêm ampliando a sua 

flexibilidade em fabricar peças complexas em escala cada vez menores. Neste 

contexto, o projeto de microestruturas porosas vem se destacando na comunidade 

científica devido a capacidade de se otimizar a topologia da célula para atender aos 

requisitos de projeto. No entanto, existem vários desafios que dificultam a 

fabricação de peças obtidas pelo método de otimização topológica multiescala, 

dentre eles, a conectividade das microestruturas. A otimização topológica 

multiescala consiste na otimização tanto da macroescala, estrutura global, quanto 

da microescala, microestrutura do material. O objetivo principal deste trabalho é 

desenvolver um esquema eficaz para garantir a transição entre as diferentes 

microestruturas de material obtidas na otimização multiescala. As metodologias 

multiescala de otimização topológica simultânea de ambas as escalas e os 

procedimentos de homogeneização são descritos. Apresentam-se os principais 

aspectos numéricos e computacionais destes métodos, assim como exemplos 

ilustrativos. 
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1  
Introduction 

 

 

 

 

1.1  

Hierarchical Materials 

 

In nature, several materials are able to combine stiff and soft components, such 

as nacre, bone, and silk; or stiff and porous elements like cancellous bone or wood. 

These combinations were designed for specific purposes. For example, in many of 

these materials, the soft phase works as a toughness mechanism in a fracture 

process. The hard phase, a highly mineralized material, minimizes wear and 

provides protection. Stiff-porous materials are characterized as lightweight and 

high stiffness but tend to be weak [1]. These materials use different structures or 

structural orientations to achieve different objectives. This kind of arrangement is 

called hierarchical structures. As defined by Lake in [2], hierarchical structures 

contain structural elements which themselves have structure and their hierarchical 

order may be defined as the number of levels of scale with recognized structure. 

The minimum order scale is zero (0) and can be viewed as continuous solid. Order 

one (1) can be seen either as a latticework of the continuous ribs or the ordered 

arrangement of atoms (or molecules) in a crystalline material. Figure 1-1 shows the 

hierarchical structure of bamboo. Bamboo is composed of cellulose fibers 

imbedded in a lignin–hemicellulose matrix shaped into hollow prismatic cells of 

varying wall thickness [1]. 

 

 

Figure 1-1 – Hierarchical structure of bamboo [1]. 
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In this context, cellular solids play an important role. Cellular solids consist of 

an array of periodic structures called cells, which are composed of two phases: one 

is solid and the other one is an empty space or a fluid [2]. These cells are composed 

of small compartments that can be closed or open and can be grouped by periodic 

or stochastic processes in 2D or 3D structures. Examples of these structures are 

honeycombs, Figure 1-2, corks, sponges, and foams [3, 4], Figure 1-2. Cellular solid 

are not hierarchical but can be used to make hierarchical structures [2]. 

 

 

Figure 1-2 – a) 2D Honneycomb b) Open-Cel foams c) Closed-Cell foams [3]. 

 

The cellular solids extend the range of physical, mechanical, and thermal 

properties, which creates applications that cannot easily be filled by dense solids 

[3]. Having low densities allows for lightweight and stiff components, in both static 

and dynamic applications. Some examples of these applications include sandwich 

panels and portable structures [3, 5]. Having low thermal conductivity enables 

thermal insulation, which only can be beaten with expensive vacuum methods. Low 

stiffness enables cushion applications. With low strengths and large compressive 

strains, cellular solids are a good choice for energy-absorbing applications (that 

allows product packaging), Also enables other properties as tunable thermal 

expansion, buoyancy, among others [3, 6–9]. These applications are suitable for 

almost all industries. 
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1.2  

Structural Optimization 

 

Structural optimization problems are related to the minimization or 

maximization of the structure response when is subject to some constraints, such as 

compliance, deflection, or peak stress. There are three different approaches to solve 

structural optimization problems: size, shape, and topology [10]. In a sizing 

problem, the objective is to find the optimal size for a given structure, for example, 

find the optimal thickness distribution of the area in a truss structure. In a shape 

optimization problem, the aim is to find the optimum shape of the domain, 

modifying its contour. Finally, the topology optimization problem implies 

determining the number of holes, the form, and the connectivity along with the 

domain. Figure 1-3 shows the three different approaches abovementioned. 

 

 

Figure 1-3 – Structural optimization approaches [10]. On the left side are the initial problems and on the right 

side are the optimal solution. (a) Sizing optimization, (b) Shape optimization, and (c) topology optimization. 

 

Originally, Topology Optimization (TO) was conceived as a binary or discrete 

problem (0-1) and therefore can be considered poorly conditioned, leading to a lack 

of existence of solution [11]. Bendsøe et al. [12] relaxing the problem by assuming 

the microstructure (i.e. microscale) as a homogeneous material. Similar approaches 

follow [13–15]. Later, Bendsøe [16] proposed a more simplified density-based 

method also know as Solid Isotropic with Penalization (SIMP), which focused the 

TO research efforts on the optimization of single-scale structures (i.e. macroscale), 

generating a revolution in both the research [17, 18] and industry community [19–

22]. Thanks to the advance in the field of materials science, and the new facilities 

in the control of microstructure composition [23–25], the idea of concurrently 
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designing both the macro and microscale came to the spotlight. News approaches 

were proposed suggesting materials tailored for the specific application, where 

every point in the structure should be designed to the specific local load conditions. 

The idea of tailored materials was presented by Ashby [26], suggesting the design 

of structural shapes in combination with material microstructures. In [2], Lakes 

discussed the use of hierarchical structures and the role of rapid prototyping in their 

manufacture. Bendsøe et al. [27] suggest that the optimal structure can be obtained 

by the free parametrization of the elasticity tensor. 

The multiscale topology optimization determines the optimal spatial material 

layout distribution at the macroscopic scale and the optimal local use of the cellular 

material at the microscopic scale [28] (see Figure 1-4). To model the microstructure, 

the homogenization is commonly applied to link both structural an material scales 

[13, 29–32]. In the homogenization is assumed that the microscopic length scale is 

much smaller than the macroscopic length scale, and the microstructure model can 

be considered as periodically ordered pattern. The key hypotheses of the 

homogenization are the separation of scales and the periodicity [32]. 

 

 

Figure 1-4 – Illustration of multiscale TO of structure and materials [28]. 

 

TO has been used in a wide range of applications such as aerospace, automotive, 

electromagnetic, electrochemical, electrothermal actuators, piezoelectric 

transducers, Microelectromechanical systems (MEMS), Stokes flows problems, 

acoustic devices, bio-mechanical simulations, etc [17]. However, due to the 

complexity of these forms, new manufacturing problems have emerged that cannot 
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be solved with traditional manufacturing methods, but can be avoided with additive 

manufacture. Some of these problems include the limitations to construct 

complicated internal patterns, the use of multiples material in a single piece, fully 

functional assembled mechanisms, high customization, among other [33, 34]. 

The American Society for Testing and Materials (ASTM) [35] defines the 

Additive Manufacture (AM) technique as the process of joining materials to make 

objects from 3D model data, usually layer upon layer, as opposed to subtractive 

manufacturing methodologies. Allows the creation of very complex solids and high 

customization capacity with low material waste compared to traditional 

manufacturing processes. Also, it is characterized by having great compatibility 

with different materials. However, this manufacturing technique has drawbacks as 

well [36–42]. In particular, it is not structurally self-supporting during the 

manufacturing process [39, 43], and the combination of nanoscale precision and the 

fabrication of large-scale components turn out this technique a slow process. 

Nevertheless, the self-supporting restriction can be considered in the design process 

without sacrificing versatility when building complex solids. This technology, far 

from being the ideal way of fabricating hierarchical structures, for now, provides a 

powerful platform for isolating and testing specific design concepts [1]. 

 

1.3  

Problem Formulation 

 

TO can be used to design hierarchical structures with predefined properties, such 

as materials with negative Poisson’s ratio, maximum bulk modulus and maximum 

shear modulus. To this aim, several frameworks have been proposed. Liu et al. [44] 

introduced the Porous Anisotropic Material with Penalization (PAMP) method, a 

concurrent scheme based on the SIMP method. Yan et al. [45] Perform the TO using 

genetic algorithms [46, 47], among others [48–50]. Therefore, it seems natural to 

exploit this capability to create a porous solid object with different cellular regions, 

where each region can have different properties. In this sense, some schemes have 

been proposed [28, 51–55]. Xia et al. [28] propose a FE2 nonlinear multiscale 

analysis using genetic algorithms. Sivapuram et al. [51] introduces a multiscale 

optimization using Level Set method [56] that allows any number of unique 

microstructures. Wang et al. [55] present a concurrent two-scale optimization 
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framework combing the velocity level set method [57] and SIMP method. However, 

as geometric complexity increases, the connectivity of the microstructures becomes 

a key limitation. Figure 1-5 shows the macroscale (blue) and the microscale (red) 

illustrating the connectivity issues.  

 

 

Figure 1-5 – Disconnected microstructures using Level Set method [58]. 

 

The irregularities in the interface create stress concentration points causing crack 

propagation or even internal penetration, which can lead to catastrophic failures on 

large scale. To overcome this problem, some approaches have been proposed [52, 

55, 58–64]. Schumacher et al. [59] proposed interchanging different prescribed 

cells with similar properties to improve compatibility. Du et al. [58] suggest 

penalizing the cell’s border area to enforce the connection. Zhang et al. [60] 

proposed dividing the body into layers to have a smooth transition; Wang et al. [61] 

use a three-dimensional shape to ensure partial connection in a 2D space. Zhou et 

al. [62] proposed three methods: 1) Pseudo Load (PL), 2) kinematical connective 

constraints (KC), and 3) the Unified formulation (UF) with nonlinear diffusion. 

Both, PL and KC methods employs a fixed area in the cell that functions as an 

interface. Despite the advances, these approaches cannot ensure well-connected 

transitions (see Figure 1-6) and the entire regions needs to be modified to achieve 

good connectivity. This involves restricting the design space of the solution to 

match connectivity, resulting in a decrease in stiffness [65]. 
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Figure 1-6 – Challenges in existing methods for compatibility microstructure: a) imperfect connection using 

implicit control method with genetic algorithms [63]. b) connectivity problem using three-dimensional shape 

[61]. 

 

This work builds on that literature and proposes a novel compatibility scheme to 

ensure the connection between adjacent cells in a multicellular solid without 

substantially compromising stiffness. The scheme consists of a transition 

microstructure that bonds two different cellular groups using a non-periodic cell. 

The proposed approach uses the PAMP method, a density-based method, to perform 

the TO of the hierarchical structure, the homogenization process is used to link the 

scales and a two-step Pseudo Load-based method combined with KC to ensure the 

compatibility on the transition microstructure. 

 

1.4  

Objectives 

 

The main objective of this thesis is to propose a compatibility scheme to ensure 

the connectivity between cells in a hierarchical solid with different kinds of 

microstructures. In order to achieve this objective, the following specific objectives 

have been set: 

 

 Define the mathematical formulation for the multiscale topology 

optimization approach and the compatibility scheme. 

 

 To implement the code to design a porous material by means of a multiscale 

topology optimization method for single and multi-region. 
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 To test the proposed scheme with different problems and compare it with 

the existing solutions to show the effectiveness. 

 

1.5  

Thesis Outline  

 

Chapter 1: This chapter is the introduction to this research. Section 1.1 describes 

the hierarchical materials and their properties. Section 1.2 presents the role of 

structural optimization in the design of materials. Also is presents the AM as a 

platform to test the design of hierarchical materials. Section 1.3  presents the 

problem formulation and the motivation to conduct this research. Section 1.4 

presents the objectives that must be accomplished. 

Chapter 2: This chapter presents a state-of-the-art of Topology Optimization 

(TO) for the design of cellular materials, the different techniques, and the different 

strategies to guarantee the connectivity between multi-microstructures solids. In 

addition, some additive manufacture (AM) techniques are described. 

Chapter 3: This chapter comprises the theoretical background of topology 

optimization to design optimized solid and porous solid objects. Section 3.1 

describes the mathematical formulation of the topology optimization method, the 

sensitivity analysis, and the filtering function. Section 3.2 presents a variation of 

topology optimization called Solid Isotropic Material with Penalization (SIMP). 

Section 3.3 embraces the mathematical formulation of Porous Anisotropic Material 

with Penalization (PAMP) method to design porous solid objects as a multiscale 

approach for single material and their extension to multi-material. Section 3.4 

discusses the homogenization of porous material as a method to obtain the 

equivalent mechanical properties of the cell. Finally, section 3.5 shows two 

methods widely used in literature to ensure the connectivity between different cells 

in hierarchical solid with different kinds of microstructures. 

Chapter 4: This chapter presents the motivation of the proposed approach to 

ensure the connectivity between cells on topologically optimized multi-region 

porous solids, the mathematical formulation and the advantages and drawbacks of 

the method also are analyzed. 

Chapter 5: In this chapter, the numerical results for MBB-beam and L-shape 

problems are presented using two methods to design porous material including the 
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approach proposed in Chapter 4, which are evaluated and compared. In addition, 

the verification of the code implemented and a comparison between 3D printed 

samples and FEM analysis are presented. Chapter 6 contains the main conclusions 

and suggestions for future work. Finally, Chapter 7 contains the references used in 

this text. 
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2  
Literature Review on Multiscale Topology Optimization 

 

 

 

 

The next sections contain a review of the recent works that have been proposed 

for the design of architected material and some AM techniques. Here is a summary 

of the different techniques, methods, and intrinsic problems that serve as a 

background for this thesis.  

 

2.1  

Design of Porous Solid 

 

The design of porous solids can be roughly divided into two main paths. The 

single-scale and the multiscale design. On the following will be presented  

 

2.1.1  
Single-Scale Method 

 

One way to design a porous solid in a single-scale is just to fill the entire body 

with a prescribed pattern or cell, for example: Foam [66] (see Figure 2-1 a) or a grid 

pattern [67, 68] (see Figure 2-1 b). Another way is to use hybrid approaches, where 

the prescribed cell fills the body taking into consideration the solution of an 

optimization process. Lin et al. [69] use an optimization algorithm based on the 

concept of honeycomb-cell structure (see Figure 2-1 c). Jun et al. [40] proposed the 

use of a self-support geometric structure. The method consists of the split of a 

rhombic base form by means of TO in order to enhance the mechanical stiffness, 

static stability (see Figure 2-1 d), and buoyancy. 
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Figure 2-1 – a) Foam infill [66]. b) Grid pattern infill [67, 68]. c) Honeycomb-cells infill [69]. d) Rhombic 

infill [40]. 

 

The literature is plenty of examples of single-scale methods that perform a TO 

and then fill the density output with a prescribed cellular shape, commonly called 

Variable-density [70–74]. Panesar et al. [70] introduced different variations, such 

as “intersected lattice”, “Graded Lattice”, and “Scaled Lattice” (see Figure 2-2 a). 

The Variable-density approach can be used to maximize diverse objectives such as 

the shear performance [75] or the natural frequency [76, 77]. Primo et al. [78] 

present a hybrid approach where different parts of the TO solution are replaced by 

the microstructures (see Figure 2-2 b). Han et al. [79] use a size gradient method to 

generate a non-uniform lattice structure with a distribution of different sizes of unit 

cells (see Figure 2-2 c). 
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Figure 2-2 – a) MBB-beam Lattice structures [70]. b) hybrid Variable-density with lattice [78]. c) Cantilever 

beam with nonuniform lattice [79]. 

 

Wu et al. [80] presented an approach to generate a bone-like porous material by 

regulating the local distribution and aligning the material to accommodate the 

mechanical loads in an optimized manner, as illustrated in Figure 2-3 a). 

Schumacher et al. [59] created different and independent families of microstructural 

cells for different volume fractions (Figure 2-3 b). These families of microstructural 

cells are projected into a metamaterial space (Figure 2-3 c) which permits analyze 

potential overlapping characteristics. Then, the cells with similar behavior (close in 

space) can be chosen to guaranteeing connectivity between them. This technique is 

used to generate flexible objects in 3D printing (Figure 2-3 d). 
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Figure 2-3 – a) Porous bone-like solution [80], b-d) Microstructures to Control Elasticity [59]. 

 

2.1.2  
Multiscale Method 
 

The second way to design a porous solid is the multiscale approach. In this 

approach, two scales are considered, the macroscale and the microscale. The 

macroscale defines the optimal spatial material layout distribution and finds the 

optimal local use of the cellular material at the microscopic scale. To deal with 

different scales, the optimization needs to link/characterize the material properties 

(i.e., homogenization [32]), The multiscale design can be used to generated 

homogeneous [44, 50, 81, 82] or heterogeneous [51–53, 83] solids. Hence, it can 

be divided into two types [84]. The first type only uses a single microstructure 
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throughout the domain (homogeneous) and the second one uses multiple 

microstructures in different regions on the solid (heterogeneous). 

 

2.1.2.1  
Single Material or Single Cell 
 

Liu et al. [44] introduced the Porous Anisotropic Material with Penalization 

(PAMP). Figure 2-4 shows a macro structural topology (a) and the microstructural 

topology (b) of which is composed. The method was based on the SIMP and was 

proposed to optimize the system compliance. Other works then extend it to thermal 

load [85, 86] and fundamental frequencies [82], among others [87]. 

 

 

Figure 2-4 – A structure composed of a porous anisotropic material [44]. 

Yan et al. [45] use topology optimization with BESO algorithm (Bi-directional 

Evolutionary Structural Optimization) [46, 47] (Figure 2-5 a). Wang et al.[48] 

proposed a framework using Level Set Method (LSM) (Figure 2-5 b). Chen et al. 

[49] introduced the Moving Iso-Surface Threshold (MIST) to the concurrent 

optimization (Figure 2-5 c). In [50], the authors presented Isogeometric Analysis 

(IGA,[88]) for TO also called Isogeometric TO (ITO). 

 

a) b) 
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Figure 2-5 –  a) TO with BESO [45]. b) TO using (LSM) [48]. c) TO using MIST [49]. 

Despite the existence of a variety of methods, to our knowledge, only one is open 

source. The work presented in [84] is an open source implementation of concurrent 

topology optimization for 2D and 3D lattice material written in MATLAB. The 

method uses a modification of SIMP and the Energy-Based Homogenization 

Method (EBHM). 

 

2.1.2.2  
Multi-material or Multi-region 

 

The second type of design porous solid in a multiscale TO problem employs 

multi-microstructures or materials. Xia et al. [28] use a FE² non-linear analysis with 

high computational cost (Figure 2-6 a). Sivapuram et al. [51] decomposed the 

problem, allowing parallel computing (Figure 2-6 b). Li et al. [52], applied the 

topology optimization process with multi-patch microstructures by a parametric 

LSM as shown in Figure 2-6 c. 
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Figure 2-6 – a) TO with non-linear analysis [28].b) TO decomposed with LSM [51] c) TO with multi-patch 

microstructures [52]. 

The work done by Gao et. al. [89] presents a multiscale topology optimization 

method for multiples design regions, which considers three design elements: the 

macrostructural topology, the topological microstructures, and their overall 

distribution at the macrostructure (Figure 2-7 a). Wang et al. [90] use PAMP to 

design non-uniform microstructures (Figure 2-7 b). The work proposed by Zhang 

et al. [60] consists of concurrent topology optimization as sectorization of the solid 

as layer-wise (Figure 2-7 c). In [91] the PAMP method is extended to multiples 

microstructures under random load. 
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Figure 2-7 – a) cells by density distribution [89]. b) PAMP and non-uniform microstructures [90]. c) TO with 

layer-wise sectorization [60]. 

 

Rodrigues et al. [53] described a hierarchical optimization procedure based on 

the SIMP method (Figure 2-8 a) which were later extended to 3D problems in [83]. 

Xu et al. [54] presented a multi-resolution topology optimization (MTOP) scheme 

with IGA to obtain a high-resolution representation for complex geometries. The 

scheme was implemented with two different mesh discretization, and a non-uniform 

rational basis spline (NURBS) to do a projection scheme and compute the density 

variables (Figure 2-8 b). The work presented in [55] is a concurrent optimization 

process wherein the macroscale is used the Velocity Field Level Set method (VSFL) 

[57] and for the microscale is used the SIMP method. 

 

 

 

a) b) 

Figure 2-8 – a) hierarchical optimization [53]. b) MTOP [54]. 
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Different from the first case where the periodicity of the cells ensures the self-

compatibility, the multiscale TO with multiple types of cells lacks of connectivity 

between cells and this becomes a big issue in porous solids design, since there may 

be internal penetration between cells and a potential stress concentration. Figure 

2-9 shows the TO solution for two different problems with their respective 

microstructures, the green circles denoted the  

 

 

Figure 2-9 – Microstructure self-compatibly issues, adapted from [28, 51]. 

 

To tackle this connectivity issue, different strategies have been proposed [54, 58, 

60–64]. Du et al. [58] introduced the Connectivity Index (CI) constraint in order to 

improve the connection. Zhang el at. [60] divided the design region into multiple 

layers to generate a smooth connection, but it does not ensure the full connectivity 

between layers. Zhou et al. [62] proposed three approaches to establish the 

connection: a) Kinematic Connective constrain (KC), b) Pseudo-Load (PL), and c) 

Unified Formulation (UF) with nonlinear diffusion. Wang et al. [61] used a shape 

metamorphosis approach [92], however, this implicit control cannot guarantee fully 

connectivity (Figure 2-10 a). The work done in [63] uses BESO method to design 

a Functionally Graded Material (FGM) [62, 93] and a filter to smooth the 

connection between adjacent cells, this method can create discontinued members 

(Figure 2-10 b) which can lead to stress concentrations. Garner et al. [64] introduced 

“compound cells” (Figure 2-10 c) to perform a “global” density filter to connect the 

cell along the x-direction, similar to [63]. Although the authors claim that, the 

method can be adapted for more than one direction, the scheme presents poor 

performance. The most commonly used strategies used are to modify the whole set 

of cells that compose the solution [52, 55, 58, 61, 62] and create a predefined shape 
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with self-compatibility [40, 70, 75–79], which restring the design space of the 

solution [65].  

 

 

Figure 2-10 – a) Shape metamorphosis [61]. b) BESO FGM [63]. c) Compound cells [64]. 

 

2.2  

Additive Manufacturing (AM) 

 

The fine and high complexity forms that can be obtained in TO were considered 

prohibitive solutions for the manufacturing methods until the arrival of additive 

manufacturing (AM). This process, commonly called 3D printing, allows to build 

a physical object adding material layer-upon-layer from a computational 3D model. 

The most used materials are plastic, paper, resin, and metal. In the following, the 

most used methods of AM that are compatible with the manufacturing of 

microstructures will be briefly explained below. 

 

2.2.1  

Stereolithography 

 

The Stereolithography Apparatus (SLA) is a common process used in digital 

manufacturing, being one of the first methods in AM based on the solidification of 

a liquid material (stored inside of a container), with the help of a light beam that 

draws a pre-programmed shape. The liquid is composed of an acrylic monomer, 
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oligomer, and a photochemical compound [94]. When the solidification process is 

completed at 75-85% it is exposed to the light and finishes in the absence of the 

laser [95]. At the end of the process, the support material is broke up and removed, 

later the prototype is placed in an oven to complete the curing. 

The manufactured method can take hours or even days, without taking into 

account the post process of painting and polish. An advantage of this method is the 

precision, reaching up to 432 𝑛𝑚 in the micro and nanostereolithography [96], 

which is used in Microelectromechanical Systems (MEMS) [97, 98]. The versatility 

of this method allows to use in the aerospace industry [99], the arms industry, 

automotive [100], electronics, toys, industrial equipment, medical applications as 

surgery, and odontology [101–104]. Figure 2-11 shows a) a bull made by 

microstereolithography and b) a micro-oscillator. 

 

  
a) b) 

Figure 2-11 – a) Microbull made by two-photon microstereolithography. b) micro-oscillator system. Scale 

bar 2𝜇𝑚 [105]. 

2.2.2  

Selective Laser Sintering 

 

The selective laser sintering (SLS) consists of the fusion and solidification of 

metallic or not metallic powder (SLM- selective laser melting, DMLS direct metal 

laser sintering [106]). The process is similar to the SLA, but in this case, it is used 

thermoplastic powder or a thermoplastic binder. 

The SLS consists of three platforms, one is the solid’s container, and the other 

two supplies the material that will be melted with a laser beam and subsequently 

cooled. When the process ends, the solid is removed from the platform to further 

apply a post-processing step that can be a thermic treatment or a micro rotatory tool 
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and file [107]. The process is more complex when compared to the SLA (the final 

object is rough and demand post-process), but as an advantage, the object can be 

functional. This method is compatible with micro manufacture as MEMS [108, 

109], injection molds [106, 110], and other applications as exoskeletons [111]. 

Figure 2-12 shows a two-component printed object (Copper-Tin). 

 

 

Figure 2-12 –  Two-component liquid-phase sintering of Cu–Sn. Line width=470 µ𝑚 [108]. 

 

2.2.3  

Fused Deposition Modelling 
 

Fused Deposition Modeling (FDM) also called Fused Filament Fabrication 

(FFF) is one of the more popular methods of 3D printing. The method use fused 

material to deposit tiny layers. Normally is a gantry crane device, similar to those 

used in the industry these motor-assisted machines let the load move on all axes. 

The material can be thermoplastic or wax in thread form [94]. When it is finished 

the tridimensional object and the supports can be removed with sandpaper or 

dissolved in a chemical solution when printed with more of one material [112]. 

Figure 2-13 shows three FDM printed objects with bone-like porous infill. 

 

 

Figure 2-13 – FDM bone-like porous infill [80]. 

 

DBD
PUC-Rio - Certificação Digital Nº 1513228/CA



Chapter 2. Literature Review on Multiscale Topology Optimization 44 

The method permits to quickly create small parts and use a variety of material 

such as ABS, ABSi, wax, PLA, Flexi PLA, Nylon, Benlay, Laywood, Laybrick, 

Polyphensulfone (PPFS), PC, PC-ISSO, Chocolate, PTZ, aluminum Oxide, 

stainless steel, Hydroxyapatite and iron [113, 114], and a high variety of composite 

materials [115]. The method is used in almost any industry, such as aerospace [116–

118], medical equipment [119–124], architecture [125–127], food industry [128–

131], human organs for study and transplantation [132–136], toys [137, 138] and in 

general commerce. 

As can be seen, these AM's techniques have the versatility to manufacture 

objects in a wide range of sizes achieving the micrometers length. They can also be 

used to produce topologically optimized objects with a range of materials.  
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Multiscale Topology Optimization 

 

 

 

 

This chapter presents the theoretical background used in this study. First 

Topology Optimization and the Solid Isotropic Material with Penalization (SIMP) 

method are described. In the following, the multiscale design using Porous 

Anisotropic Material with Penalization (PAMP) method single and multi-region 

(materials), is introduced. Next, the homogenization theory is discussed and finally, 

some approaches that have been proposed to preserve the connectivity between 

adjacent cells are detailed. 

 

3.1  

Topology Optimization (TO) 

 

Considering a mechanical element as a body that occupies a domain Ω in ℝ𝑑  𝑑 =

2,3; that is subject to a set of constraints, such as prescribe displacement in a non-

zero measurement surface 𝚪𝐷 and non-zero traction forces 𝐭 is applied at 𝚪𝑁 (see 

Figure 3-1). The principal objective of topology optimization is to find the optimal 

material distribution (𝜔) that can minimize or maximize a certain objective. 

 

 

Figure 3-1 – Illustration of Domain and boundary conditions. 

 

𝐭 

𝚪D 𝚪N 
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The mathematical formulation of the TO reads as [16, 17]  

 

 min
𝛒

𝑐(𝛒) = 𝐔𝑻𝐊𝐔

subject to 
𝑉(𝛒)

𝑉𝟎
= 𝑉𝑓

𝐊𝐔 = 𝐅
0 ≤ 𝛒 ≤ 1

 (1) 

   

where 𝑐(𝛒) is the compliance (in this case the objective function), 𝐊 is the global 

stiffness matrix, 𝐔 and 𝐅 are the global displacement and force vectors, 

respectively. 𝑉0 and 𝑉(𝛒) are the volume of the design domain and volume 

function, respectively, 𝑉𝑓 is the prescribed volume fraction, and 𝝆 are the vector 

design variables. The global stiffness 𝐊 can be obtained as  

 

 

𝐊 = ∑ 𝐊𝑒

𝑁

𝑒=1

 (2) 

   

Where 𝑁 is the number of elements, and 𝐊𝑒is the stiffness matrix for the e-th 

element denoted as follow 

 
𝐊𝑒 = ∫ 𝐁𝑒

𝑇𝐃𝑒(𝜌𝑒)𝑩e𝑑V
𝛀𝒆

   (3) 

   

where 𝐁𝑒 is the strain/displacement matrix and 𝐃𝑒 is the element constitutive 

matrix. 

Figure 3-2 shows the flowchart of the TO process. The first step is to initialize 

the Finite Element Method (FEM) and set the initial guess of the design variables 

𝝆, followed by the evaluation of the Finite Elements (FE) analysis and the objective 

function. Later the sensitivity analysis is evaluated, the restriction function and the 

filter are applied, and then the material is redistributed. This process is repeated 

until either the maximum number of iterations is exceeded or the change in design 

variables is smaller than the prescribed tolerance. 
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Figure 3-2 – Flowchart of the topology optimization process. 

 

3.1.1  

Sensitivity Analysis 

 

The sensitivity analysis allows us to measure the variation of performance with 

respect to the design variables [10]. In this analysis, structural compliance can be 

written as 

 

 𝑐 = 𝐅𝑇𝐔 (4) 
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Sensitivity analysis 

Constraint Function 

 

Filtering 

Stop 

Yes 

No 
  Converged ? 

Optimization (Optimality Criteria)  

(material redistribution) 

Post-processing / 
plot result 
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Differentiating the two sides with respect to the design variables, we have  

 

 𝜕𝑐

𝜕𝜌
=

∂𝐅𝐓

𝜕𝜌
𝐔 + 𝐅T

𝜕𝐔

𝜕𝜌
 (5) 

   

and deriving the equilibrium equation 𝐊𝐔 = 𝐅  

 

 𝜕𝐅

𝜕𝜌
=

𝜕𝐊

𝜕𝜌
𝐔 + 𝐊

∂𝐔

𝜕𝜌
 (6) 

   

isolating ∂𝐔 𝜕𝜌⁄  

 

 𝜕𝐔

𝜕𝜌
= 𝐊−1 (

𝜕𝐅

𝜕𝜌
−

𝜕𝐊

𝜕𝜌
𝐔) (7) 

   

and replacing equation (7) in equation (5) we have 

 

 𝜕𝑐

𝜕𝜌
=

𝜕𝐅𝑇

𝜕𝜌
𝐔 + 𝐅𝑇𝐊−𝟏 (

𝜕𝐅

𝜕𝜌
−

𝜕𝐊

𝜕𝜌
𝐔) (8) 

   

and knowing that the force does not depend on the design variables, the final 

expression of the sensitivity of the compliance function with respect to 𝜌 is 

 

 𝜕𝑐

𝜕𝜌
= −𝐅𝑇𝐊−1

𝜕𝐊

𝜕𝜌
𝐔 = −𝐔𝑇

𝜕𝐊

𝜕𝜌
𝐔. (9) 

   

 

3.1.2  

Optimality Criteria Method 

 

The Optimality Criteria method (OC) is one of several different approaches used 

to solve the OT problems. Its development for continuum problems can be dated 

back to Taylor et al. [139] where is present a method fir the optimal design of 

sandwich structures, and the use in continuum design problems also can be found 

in [140–142]. OC is a heuristic updating scheme.  
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Following [143, 144], the TO problem (1) can be solved using OC and 

formulated as 

 𝜌𝑒
𝑛𝑒𝑤

= {

max(0, 𝜌𝑒 − 𝑚) 𝑖𝑓 𝜌𝑒𝐵𝑒
𝜂

≤  max(0, 𝜌𝑒 − 𝑚)

min(1, 𝜌𝑒 + 𝑚) 𝑖𝑓 𝜌𝑒𝐵𝑒
𝜂

≥ min(1, 𝜌𝑒 + 𝑚)

𝜌𝑒𝐵𝑒
𝜂

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(10) 

   

where 𝑚 is a positive move limit, 𝜂 is a damping coefficient equals 1/2, and the 

value 𝐵𝑒 is the optimality condition described as  

 

𝐵𝑒 =

−𝜕𝑐
𝜕𝜌𝑒

⁄

𝜆 𝜕V
𝜕𝜌𝑒

⁄
 (11) 

   

Being 𝜆 the Lagrangian multiplier found by means of a bisection algorithm and 

based on the assumption that each element has unit volume  

 

 𝜕V

𝜕𝜌𝑒
= 1. (12) 

   

3.1.3  

Filtering 
 

To ensure the solution of topology optimization and prevent some problems as 

a checkerboard pattern [11, 145, 146]; the sensitivity filter is commonly used as a 

restriction in the design. The sensitivity filter modifies the sensitivities [10, 143, 

144] as follows 

 𝜕𝑐

𝜕𝜌𝑒

̂
=

1

max(𝛾 − 𝜌𝑒) ∑ 𝐻𝑒𝑖𝑖∈𝑁𝑒

∑ 𝐻𝑒𝑖𝜌𝑖

𝜕𝑐

𝜕𝜌𝑖
𝑖∈𝑁𝑒

 (13) 

   

where 𝛾 is a small positive number to avoid division by zero, 𝑁𝑒 is the set of 

elements that are at a distance from center to center ∆(𝑒, 𝑖) less than the value of 

the radius of the filter 𝑟min, and the weight factor 𝐻𝑒𝑖 defined as follows  

 

 𝐻𝑒𝑖 = max(0, 𝑟min − Δ(𝑒, 𝑖)). (14) 
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3.2  

Solid Isotropic Material with Penalization (SIMP) 
 

In SIMP [16, 147–149] interpolation is applied a penalization to the design 

variables (𝜌) to eliminate the intermediate values and recover the binary (black-

white) nature of the problem [16, 17, 148]. For penalization values 𝑝 > 1 the 

intermediate densities are seen as unfavorable because the stiffness obtained is less 

than the volume of the material forcing the elimination of these ensuring a black-

white solution (Solid material and void). So, the stiffness of each element 𝑒 depends 

on its density 𝜌 and following the modified approach [150] is calculated as 

 

 𝐸𝑒(𝜌𝑒) = 𝐸min + 𝜌𝑒
𝑝(𝐸0 − 𝐸𝑚in)   𝜌𝑒 ∈ [0,1] (15) 

   

where 𝐸min is Young’s modulus of the Ersatz material, which is an approximation 

for void material [151] to prevent the singularity of the stiffness matrix, and 𝐸0 is 

the Young`s modulus of the solid material. For higher values of 𝑝, the influence of 

the elements with intermediate density values (𝜌) decreases as shown in Figure 3-3. 

The horizontal axis is the density value and the vertical axis is the value of the 

density after the penalization is applied. The density variation for five different 

values of 𝑝 is shown. It is frequently advised to raise the power value in a 

continuous fashion (𝑝 = 1 − 4) through the computation until the design is 

finished [10]. 
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Figure 3-3 – Density (𝜌) against penalized density (𝜌𝑝)  for different penalization factors 𝑝. 

 

3.3  

Porous Anisotropic Material with Penalization 
 

The structure shown in Figure 3-4 is composed of a porous material with uniform 

microstructures, theses microstructures are made of a base material that can be of 

any type of solid material. Hence, the structure consists of “two types” of material, 

the solid (microscale), and the porous material (macroscale). To solve this problem, 

Liu et al. [44] proposed the Porous Anisotropic Material with Penalization (PAMP) 

approach, that different from SIMP, this tries to obtain a “grey-white” solution i.e. 

porous and void. Here the problem becomes concurrent and is divided into 2 parts. 

The first one is the microscale that needs to be interpreted or characterized to be 

used and the second one, the macroscale that must be optimally distributed in the 

design area. The microscale design can be characterized as a porous material by 

means of a homogenization method, using the smallest representative unit called 

“unit cell”. 
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Figure 3-4 – A macrostructure composed of a porous anisotropic material. 

 

To carry out the solution to this problem is necessary to define two classes of 

design independent variables, i.e. the macro density 𝝆𝑀𝐴 in the structural domain, 

and the micro density 𝝆𝑀𝐼 in a cell (see Figure 3-4). The mathematical formulation 

of the minimization problem reads as follows: 

 

 min
𝝆 = [𝝆𝑀𝐴, 𝝆𝑀𝐼] 𝑐 = 𝐅𝑇𝐔

subject to 𝑣 =
𝜌𝑃𝐴𝑀 ∫ 𝝆𝑀𝐴 𝑑Ω

Ω

𝐴𝑀𝐴
= 𝑣̅

𝜌𝑃𝐴𝑀 =
∫ 𝝆𝑀𝐼 𝑑𝑌

Y

𝐴𝑀𝐼
= 𝑣̅𝑀𝐼

0 ≤ 𝝆𝑀𝐴 ≤ 1,    0 ≤ 𝝆𝑀𝐼 ≤ 1

with 𝐊𝐔 = 𝐅

 (16) 

   

where 𝝆𝑀𝐼 and 𝝆𝑀𝐴 are the density of micro and macroscale, respectively, 𝑣 is the 

relative volume that is smaller than the prescribed macroscale volume 𝜈̅, 𝜌𝑃𝐴𝑀 is 

the relative density of the porous material that should be equal to the prescribed 

volume at the microscale 𝜈 ̅𝑀𝐼, 𝐴𝑀𝐴, and 𝐴𝑀𝐼 is the area of the macro and microscale 

design respectively. 

Similar to SIMP, the elastic matrix at the microscale can be written as 

 

 𝐃𝑀𝐼 = 𝜌𝑀𝐼
𝑝𝑀𝐼𝐃𝐵  (17) 

   

where 𝐃𝐵 is the elastic matrix of the base material and 𝑝𝑀𝐼 is the penalization factor 

(see Figure 3-4). At the macroscale the material is porous anisotropic, therefore, the 
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SIMP is not applied. However, the process is quite similar. Given a porous material 

with a homogenized elastic matrix 𝐃𝐻(for more details to how obtain this value, 

see section 3.4), a point with a density value 𝜌𝑀𝐴, and a penalization value 𝑝𝑀𝐴, the 

elastic matrix at the macroscale is calculated as  

 

 𝐃𝑀𝐴 = 𝜌𝑀𝐴
𝑝𝑀𝐴𝐃𝐻(𝐃𝑀𝐼)  (18) 

   

therefore, to solve problem (16) the finite element analysis for the macroscale is 

formulated as follows  

 𝐊𝐔 = 𝐅. (19) 

   

The element stiffness matrix 𝐊𝒆 is  

 

 
𝐊𝑒 = ∫ 𝐁𝑒

𝑇𝐃𝑀𝐴𝐁𝑒 𝑑V
Ω𝑒

   (20) 

   

𝐃𝑀𝐴 is a function of 𝐃𝐻, as shown in equation (18), being the link between scales 

because defines the effective material properties that depends on the microstructural 

configuration and can be calculated by means of a homogenization method. 

Figure 3-5 shows a flowchart of the PAMP process. The first step is to initialize 

the FEM and the design variables for both macro and microscale. The second step 

is to evaluate the FE analysis and the objective function in the two scales. The next 

step is to apply the constrain functions and evaluate the sensitivity analysis also in 

both scales, and finally, the material is redistributed until the model converges. 
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Figure 3-5 –  Flowchart of the Porous Anisotropic Material with Penalization process. 

 

3.3.1  
Sensitivity Analysis 
 

Rewriting the structural compliance from equation (4) in terms of the N-

element’s compliance. 

 

 

𝑐 = ∑ 𝑐𝑒 = ∑ 𝐅𝑒
𝑇𝐔𝑒

𝑁

𝑒=1

𝑁

𝑒=1

 (21) 

   

Let 𝑿 be the set with of all design variables and can be written as  

Post-processing / 
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 𝑿 = [
𝝆𝑀𝐴

𝝆𝑀𝐼
] (22) 

   

using equations (21), (22), and (9) we have,  

 

 𝜕𝑐

𝜕𝑿
= − ∑ 𝐔𝑒

𝑇
𝜕𝐊𝑒

𝜕𝑿
𝐔𝑒 

𝑁

𝑒=1

. (23) 

   

3.3.1.1  
Macroscale  
 

To derivate, the sensitivity with respect to the macroscale variable we begin with 

equation (23), but this time the design variables are the density of the macroscale 

(𝜌𝑀𝐴)𝑖 

 

 𝜕𝑐

𝜕(𝜌𝑀𝐴)𝑖
= − ∑ 𝐔𝑒

𝑇
𝜕𝐊𝑒

𝜕(𝜌𝑀𝐴)𝑖
𝐔𝑒

𝑁

𝑒=1

 (24) 

   

and replacing (20) in the equation (24) we have 

 

 𝜕𝑐

𝜕(𝜌𝑀𝐴)𝑖
= − ∑ 𝐔𝑒

𝑇
𝜕

𝜕(𝜌𝑀𝐴)𝑖

𝑁

𝑒=1

( ∫ 𝐁𝑒
𝑇𝐃𝑒

𝑀𝐴𝐁𝑒𝑑V
Ω𝑒

) 𝐔𝑒 (25) 

   

with (18) we have 

 

 𝜕𝑐

(𝜕𝜌𝑀𝐴)𝑖

= − ∑ 𝐔𝑒
𝑇

𝜕

𝜕(𝜌𝑀𝐴)𝑖

𝑁

𝑒=1

( ∫ 𝐁𝑒
𝑇(𝜌𝑀𝐴)𝑖

𝑝𝑀𝐴𝐃𝑒
𝐻𝐁𝑒 𝑑V

Ω𝑒

) 𝐔𝑒 

(26) 

   

and doing the derivate and taking it out some terms of the integral 

 

 𝜕𝑐

𝜕(𝜌𝑀𝐴)𝑖
= −𝑝𝑀𝐴(𝜌𝑀𝐴)𝑖

𝑝𝑀𝐴−1
𝐔𝑖

𝑇   ∫ 𝐁𝑒
𝑇𝐃𝑒

𝐻𝐁𝑒 𝑑V  
Ω𝑒

𝐔𝑖. (27) 
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3.3.1.2  
Microscale  
 

To derivate, the sensitivity with respect to the microscale variable we begin with 

equation (23), but this time the design variables are the density of the microscale 

(𝜌𝑀𝐼)𝑗  

 𝜕𝑐

𝜕(𝜌𝑀𝐼)𝑗
= − ∑ 𝐔𝑒

𝑇  
𝜕𝐊𝑒

𝜕(𝜌𝑀𝐼)𝑗
𝐔𝑒

𝑁

𝑒=1

 (28) 

   

using the stiffness matrix from equation (20) in equation (28), we have 

 

 𝜕𝑐

𝜕(𝜌𝑀𝐼)𝑗
= − ∑ 𝐔𝑒

𝑇
𝜕

𝜕(𝜌𝑀𝐼)𝑗
(∫ 𝐁𝑒

𝑇𝐃𝑒
𝑀𝐴𝐁𝑒 𝑑V

Ω𝑒

) 𝐔𝑒

𝑁

𝑒=1

 (29) 

   

and with equation (18), we have 

 

 𝜕𝑐

𝜕(𝜌𝑀𝐼)𝑗

= − ∑ 𝐔𝑒
𝑇  ( ∫ 𝐁𝑒

𝑇(𝜌𝑀𝐴)𝑒
𝑝𝑀𝐴

𝜕𝐃𝑒
𝐻

𝜕(𝜌𝑀𝐼)𝑗
𝐁𝑒 𝑑V

Ω𝑒

) 𝐔𝑒

𝑁

𝑒=1

 

(30) 

   

where the 𝐃𝐻 and the derivative with respect to 𝝆𝑀𝐼 are shown in section 3.4.  

 

3.3.2  

PAMP Multi-region 

 

The PAMP method can also be used to generate different design regions [91]. 

The process is similar to the Discrete Material Optimization method (DMO) [152] 

which was originally proposed to choose the fiber orientation in a set of composite 

materials and later was extended to topology optimization [153, 154]. In the DMO, 

the elastic matrix 𝐃𝑒 is denoted as the sum of the elastic matrix from different 

materials 𝐃𝜛 and his weight factor 𝑥𝜛, as follows. 
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𝐃𝑒 = ∑ 𝑥𝜛𝑖
𝑝𝜛

𝑁𝜛

𝑖=1

𝐃𝜛𝑖 (31) 

   

where 𝑁𝜛 is the number of candidate materials, 𝑝𝜛 is the penalization factor, 

adopted from SIMP [17] to push towards 0 or 1, and 𝑥𝜛 are the design variables. 

The derivate with respect to 𝑥𝜛 can be written as follows 

 

 𝜕𝐃𝑒

𝜕𝑥𝜛
= 𝑝𝜛𝑥𝜛

𝑝𝜛−1
𝐃𝜛 (32) 

   

so, the sensitivity analysis from equation (23) can be rewritten as follows  

 

 𝜕𝑐

𝜕𝑥𝜛𝑖
= − ∑ 𝐔𝑒

𝑇
𝜕𝐊𝑒

𝜕𝑥𝜛𝑖
𝐔𝑒

𝑁

𝑒=1

= − ∑ 𝐔𝑒
𝑇

𝜕

𝜕𝑥𝜛𝑖
 (∫ 𝐁𝑒

𝑇𝐃∗𝐁𝑒  𝑑V
Ω𝑒

) 𝐔𝑒

𝑁

𝑒=1

 

(33) 

   

with  

 𝐃∗ = 𝜌𝑝𝐃𝑒 (34) 

   

This method allows us to determine automatically the material (microstructure) 

for each subdomain. Figure 3-6 shows the topology optimization for a porous 

material at the macroscale with three different prescribed materials (red, green, 

blue). 
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Figure 3-6 – Macrostructure optimized with DMO and composed of three different materials. 

 

Figure 3-7 shows an arbitrary macrostructure composed of different porous 

material distributed by regions; these materials are made of a base material and can 

be of any type of solid material. As in the single region’s PAMP [44], “two types” 

of material can be signalized in multi-region PAMP, the solid and porous material. 

 

 

Figure 3-7 – An arbitrary Macrostructure composed of multiple porous regions. 
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The mathematical formulation is similar to PAMP [44] but with a few small 

differences, As in PAMP two, independent variables are also defined i.e. the density 

at the macroscale 𝜌𝑀𝐴 in the structural domain, and the density at the microscale 

𝜌𝑀𝐼. However, different from PAMP single-region, the number of micro densities 

is increased by each new material (region). The minimization problem shown in 

(16) can be rewritten as  

 

 min
[𝛒𝑀𝐴𝜛 , 𝛒𝑀𝐼𝜛] 𝑐 = 𝐅𝑇𝐔

subject to 𝑣 = ∑
(𝜌𝜛

𝑃𝐴𝑀)𝑖 ∫ (𝛒𝑀𝐴𝜛)𝑖 𝑑Ω𝜛𝑖Ω𝜛𝑖

𝐴𝜛𝑖
𝑀𝐴

𝑁𝜛

𝑖=1

≤ 𝑣̅

(𝜌𝜛
𝑃𝐴𝑀)𝑖 =

∫ (𝛒𝑀𝐼𝜛)𝑖 𝑑YϖiYϖi

𝐴𝜛𝑖
𝑀𝐼 ≤ (𝑣̅𝜛

𝑀𝐼)𝑖

0 ≤ 𝛒𝑀𝐴𝜛 ≤ 1,    0 ≤ 𝛒𝑀𝐼𝜛 ≤ 1
𝑖 = 1, … , 𝑁𝜛

 (35) 

   

where 𝜌𝑀𝐴𝜛 and 𝜌𝑀𝐼𝜛 are the density of macro and microscale for all elements of 

each region, 𝜛 are the material’s regions into which the problem is divided 

(different porous materials). (𝜌𝜛
𝑃𝐴𝑀)𝑖 are the relative density of each porous 

materials that should be equals to the prescribed volume fraction of the material 

region (𝜈𝜛
𝑀𝐼)𝑖. 

So, the equation (18) is rewritten using (31) as follows 

 

 (𝐃𝜛
𝑀𝐴)𝑖 = (𝜌𝑀𝐴𝜛

𝑝𝑀𝐴 )
𝑖
𝐃𝑒  (36) 

   

predefining the weighting factor of each subdomain in (32), i.e. 
𝜕𝐃𝑒

𝜕𝑥𝜛
= 0, leads a 

𝐃𝐻 to be a vector composed by 𝑁𝜛 different subdomains and the new vector of 

design variables 𝐗 of the equation (22) can be rewritten as follows 

 

 

𝐗 = [
𝛒𝑀𝐴

(𝛒𝑀𝐼𝜛)𝑖
] = [

𝛒𝑀𝐴

(𝛒𝑀𝐼𝜛)𝑖

⋮
(𝛒𝑀𝐼𝜛)𝑛

] (37) 
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where 𝛒𝑀𝐴 is the set of design variables at the macroscale, and (𝛒𝑀𝐼𝜛)𝑖 is the set 

of design variables at the microscale for the 𝑖𝑡ℎ prescribed region. 

 

Sensitivity Analysis  

 

For the sensitivity analysis at the macroscale, the equation (27) is rewritten as 

follows 

 

 𝜕𝑐

𝜕(𝜌𝑀𝐴𝜛)𝑖

= −
𝑝𝑀𝐴

(𝜌𝑀𝐴𝜛)𝑖
𝐔𝑗

𝑇 (∫ 𝐁𝑒
𝑇(𝜌𝑀𝐴𝜛

𝑝𝑀𝐴 )
𝑖
𝐃𝑒

𝐻𝐁𝑒 𝑑Ω
Ω

) 𝐔𝑗 

(38) 

   

and for the microscale, the equation (30) can be rewritten as  

 

 𝜕𝑐

𝜕(𝜌𝑀𝐼𝜛)𝑖,𝑗

= − ∑ 𝐔𝑟
𝑇

𝑁𝜛

𝑟=1

( ∫ 𝐁𝑒𝜌𝑀𝐴𝑟
𝑝 𝜕

𝜕(𝜌𝑀𝐼𝜛)𝑖,𝑗

(𝐃𝜛
𝐻 )𝑖 𝐁𝑒 𝑑Ω) 𝐔𝑟 

(39) 

   

where the 𝑁𝜛 are the number of macro-elements in the each 𝜛 region and 𝑗 are the 

design variables of each microstructure. 

 

3.4  
Homogenization 
 

The equivalent properties of a microstructure can be obtained using the 

homogenization method [13]. According to [155] several methods have been 

proposed to obtain the equivalent properties of a microstructure such as the Surface 

average approach, volume average approach, force-based approach, Asymptotic 

Homogenization, among others. This process is widely used in different fields as 

piezoelectric actuators [156–163], biomedical applications [164–166], determine 

thermal and mechanical properties [167–170], and composite material in general. 

Using the asymptotic homogenization [12, 13, 29, 30, 84], the homogenized 

stiffness tensor can be obtained by the average of the integral over the cell 
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D𝑖𝑗𝑘𝑙

𝐻 =
1

|𝑌|
∫ D𝑝𝑞𝑟𝑠 ( 𝜀𝑝𝑞

0(𝑖𝑗)
− 𝜀𝑝𝑞

∗(𝑘𝑙)
) 𝑑𝑌

𝑌

 (40) 

   

where the ε𝑝𝑞
0(𝑖𝑗)

 is the two-dimensional or three-dimensional unit test strain fields 

and ε𝑝𝑞
∗(𝑘𝑙)

 is the Y-periodic solution of the microscopic displacement [30]. 

According to [32, 171, 172], the characterization of the equivalent behavior of 

composite materials can be done using an energy-based approach [173]. This 

approach employs the average stress and strain theorem over the entire cell Y in 

terms of the element mutual energies as  

 

 
D𝑖𝑗𝑘𝑙

𝐻 =
1

|𝑌|
∫D𝑝𝑞𝑟𝑠𝜀𝑝𝑞

𝐴(𝑖𝑗)
𝜀𝑟𝑠

𝐴(𝑘𝑙)
𝑑𝑌

𝑌

 (41) 

   

where 𝜀𝑝𝑞
𝐴(𝑖𝑗)

 is the superimposed strain field (ε𝑝𝑞
0(𝑖𝑗)

− ε𝑟𝑠
∗(𝑘𝑙)

) in equation (40), |𝑌| 

is the area (or volume) of the cell, and D𝑝𝑞𝑟𝑠is the 𝐃𝑀𝐼used in (17). With a cell 

discretized into 𝑁 finite elements. Equation (41) can be rewritten for a finite 

element analysis as 

 

 

D𝑖𝑗𝑘𝑙
𝐻 =

1

|𝑌|
∑ (𝐔𝑒

A(𝑖𝑗)
)

𝑇

𝐊𝑒𝐔𝑒
𝐴(𝑘𝑙)

𝑁

𝑒=1

 (42) 

   

where 𝐔𝑒
𝐴(𝑘𝑙)

 is the element displacement corresponding to the solution of the unit 

strain field test ε𝑒
𝐴(𝑘𝑙)

, and 𝐊𝑒 is the element stiffness matrix. The equation (42) in 

the 2D case can be written in the expanded form as 

 

 

𝐃𝐻 = [

D11
𝐻 D12

𝐻 D13
𝐻

D21
𝐻 D22

𝐻 D23
𝐻

D31
𝐻 D32

𝐻 D33
𝐻

] (43) 

   

Figure 3-8 shows a base cell, before and after applying the unit test strain field. 
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Figure 3-8 – Periodic Boundary Conditions (PBC), a) Base cell. b) Deformation induced by unit initial strain 

in the vertical direction. c) Deformation induced by unit initial strain in the horizontal direction. d) 

Deformation induced by unit initial shear strain. 

 

The sensitivity analysis of the equation (42) as a function of the design variables 

[32, 172, 174] is  

 

 𝜕D𝑖𝑗𝑘𝑙
𝐻

𝜕𝜌𝑀𝐼
= 

   
1

|𝑌|
𝑝𝑀𝐼𝜌𝑀𝐼

𝑝𝑀𝐼−1(𝐸0 − 𝐸𝑚𝑖𝑛) (𝐔𝑒
𝐴(𝑖𝑗)

)
𝑇

𝐊0𝐔𝑒
𝐴(𝑘𝑙)

  

 

(44) 

where 𝐊0 is the element stiffness matrix for an element with unit Young’s 

modulus. 

 

Periodic boundary conditions 

 

The 𝜀𝑝𝑞
𝐴(𝑖𝑗)

 from (41) are evaluate by solving the equilibrium problem subject to 

the unit test strain ε𝑝𝑞
0(𝑖𝑗)

. On the assumption of periodicity, the displacement of the 

cell subject to a given strain 𝜀𝑖𝑗
0  can be written as the sum of a macroscopic 

displacement and a periodic fluctuation field 𝑢𝑖
∗ [31, 172] as 

 

 𝑢𝑖 = 𝜀𝑖𝑗
0 𝑦𝑗 + 𝑢𝑖

∗. (45) 

   

Since 𝑢𝑖
∗ is unknown, equation (45) cannot be directly imposed on the 

boundaries. So, need to be described in explicit constraints between the 

corresponding pairs of nodes in the opposite surfaces of the cell. Figure 3-9 shows 
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a cell in 2D at the microscopic scale where the 𝑘 − and 𝑘 + are the opposite parallel 

surfaces that are in perpendicular directions [175]. 

 

 

Figure 3-9 – Rectangular cell model in 2D adapted from [32]. 

 

So, the displacement of the pairs of nodes on the opposite boundary can be 

expressed as  

 

 
{

𝑢𝑖
𝑘+ = 𝜀𝑖𝑗

0 𝑦𝑗
𝑘+ + 𝑢𝑖

∗

𝑢𝑖
𝑘− = 𝜀𝑖𝑗

0 𝑦𝑗
𝑘− + 𝑢𝑖

∗ (46) 

   

The periodic term 𝑢𝑖
∗ in equation (46) can be eliminated through the difference 

between the displacements as follow 

 

 𝑢𝑖
𝑘+ − 𝑢𝑖

𝑘− = 𝜀𝑖𝑗
0 (𝑦𝑗

𝑘+ − 𝑦𝑗
𝑘−) = 𝜀𝑖𝑗

0 𝛥𝑦𝑗
𝑘 (47) 

   

for a parallelepiped, the 𝛥𝑦𝑗
𝑘 is constant with a specific 𝜀𝑖𝑗

0  and it can be directly 

imposed in the finite element model by constraining the corresponding pairs of 

nodal displacements [32]. 

 

3.5  
Connections Methods  
 

There are different methods to guarantee connectivity between cells, some of 

them have been compiled and tested in different works [55, 58, 62]. Here, will be 

introduced two of them. 
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3.5.1  
Kinematical Connective Constraint Method (KC) 
 

The method consists of prescribing connectors in the cell’s edge that work to 

impose connective constraints. These connectors need to be permanently occupied 

by solid material, serving as imposed connective region to enforce the continuous 

edge-to-edge bonds between adjacent cells. The size, location, and number should 

be approximated to the periodic boundary conditions. It’s worth pointing out that 

these connectors modify the solution and lead to different final topologies in the 

homogenization process [62]. Figure 3-10 shown the FGM (Functionally Graded 

Material) [62, 93] with an N number of cells with different volumes (Gradient 

Direction), and they are periodically repeated (periodic direction). The prescribed 

connectors in all the base cells are shown in red. 

 

 

Figure 3-10 – Kinematical connector adapted from [62]. 

 

3.5.2  
Pseudo Load 
 

The main idea of the connectivity between cells is that they can transfer and 

sustain the imposed force through the whole body with a certain stiffness. Hence, a 

Pseudo Load (PL) can be applied, as shown in Figure 3-11, attempting to preserve 

the periodic condition like in the kinematical connector method [62]. 
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Figure 3-11 – Pseudo Load adapted from [62]. 

 

Then, through the application of the method, it is possible to include a pseudo 

stiffness criterion at the objective function, in a compliance term, as 

 

 

min 𝑗(𝜌) = ∑ (𝐃̇𝑖𝑗𝑘𝑙
𝐻 − 𝐃𝑖𝑗𝑘𝑙

𝐻 )
2

3

𝑖𝑗𝑘𝑙=1

+ 𝜂 ∫ 𝛆𝐿(𝐮𝐿)𝐃(𝜌)𝛆𝐿(𝐮𝐿) 𝑑Ω
Ω

 

(48) 

   

where the first term is the least-squares of the difference between the target 𝐃̇𝑖𝑗𝑘𝑙
𝐻  

and the homogenized effective elastic tensor 𝐃𝑖𝑗𝑘𝑙
𝐻  so-called inverse 

homogenization [62, 173]. The strain and displacement induced by the PL are 

denoted as 𝛆𝐿 and 𝐮𝐿, respectively, and 𝜂 is a weighting factor. To avoid over-

control of the PL in the design process the second term needs to be small when 

compared with the first term of equation (48), therefore, 𝜂 must have low values (≈

0.02). The method can be applied together with the KC method usually lead to 

proper connective zones. 
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4  
Transitional Microstructure for Smooth Connections 
Between Adjacent Regions (TrMIC) 

 

 

 

 

This chapter describes the proposed transitional microstructure for smooth 

connection between adjacent regions (TrMIC) method. The following sections will 

be discussed the motivation, the idea that inspired the scheme, and the mathematical 

formulation of the proposal. Also, will be explained how the proposed scheme is 

applied concurrently with the TO process. In addition, will be discussed the inherent 

problems of the method and how to address them. Finally, the advantages and 

disadvantages regard to the literature will be discussed. 

 

4.1  

Motivation 

 

As discussed in the introduction of this thesis, the need for materials design 

emerged when the first composite materials appear, and all efforts were focused on 

the design of efficient structures (here every point in the structure should be 

designed for local conditions) through the combination of structural shape and 

microstructural material design [2, 26, 27]. 

In the design of hierarchical structures with different microstructures, where 

different parts or regions of the structure must be designed for specific needs, the 

lack of connectivity becomes a key limitation. In this context, topology 

optimization can give a solution where adjacent regions with different 

microstructures are not fully connected. The irregularities between microstructures 

can create stress concentration points and internal penetrations that can propagate 

cracks leading to failure on a large scale. Figure 4-1 illustrates the above-mentioned 

problem. Figure shows a topologically optimized solid with two different types of 

microstructures (1 and 2) and an enlarged area of the interface. As observed, the 

two microstructures are not fully connected on the edges (red circles). 
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Figure 4-1 – Topologically optimized solid with two different types microstructures with discontinuities. 

 

This thesis proposes a compatibility scheme for multiscale topology 

optimization by the introduction of a transitional microstructure, inspired by the 

role of the tendons tissue in the human body. The human body has about 200 

different types of cells, with different sizes and shapes [176]. Cells jointly form 

different types of tissues that are the building blocks of organs. The skeletal muscle, 

the bones, and tendons are three different tissues that permit mobility. The bone 

provides structure and support, the skeletal muscle permits the movement of the 

body, and the tendons are the mechanism by which muscles connect to bone (see 

Figure 4-2) [177, 178]. In a simplified way, it could be said that the muscle and 

bone are the two principal microstructures in a hierarchical solid, and tendons are a 

transition microstructure that joins the first two. 

 

 

Figure 4-2 – Muscle, tendons, and bone [178]. 
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Inspired by the above, this work proposes a Transitional MICrostructure 

(TrMIC) that uses the pseudo load (PL) and the kinematical constraint (KC) to 

perform the same function as tendons, bounding adjacent microstructures with 

different topologies.  

To develop the scheme, the PAMP method [44] was used to design both the 

macro and microstructure for a single material, and in order to design a multi-

material solid, the PAMP method is combined with the DMO method [152]. The 

link between scales was achieved by employing an energy-based homogenization 

process, and applying periodic boundary conditions [172, 173]. To ensure de 

compatibility of the transition microstructure, a two-step Pseudo Load-based (PL) 

method in combination with kinematical constraints (KC) is proposed, and this 

process is applied concurrently to the TO process. 

Figure 4-3 shows a solid with three different types of microstructure, two of them 

are the principal regions, which represent the bone and the muscle (1 and 2), and 

the third in the middle is the TrMIC (3), which represents the tendons. 

 

 

Figure 4-3 – Two cell (1 and 2) bonded by the TrMIC (3). 

 

The next section will discuss the process necessary to obtain the solution 

illustrated in Figure 4-3, the mathematical formulation, and the steps needed to 

implement the proposed scheme concurrently with TO. 

 

4.2  
Proposed Method 

 

Figure 4-4 a) shows two well-defined cells (1 and 2) that should be bonded by 

the TrMIC (3). The black regions in the cells’ edges (1 and 2) are the points where 
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the TrMIC needs to add the material for a better transition. To achieve the 

connectivity, PL and KC methods could be used (see section 3.5). In Figure 4-4 a) 

the black regions become the pseudo loads and kinematic boundaries. However, by 

using the PL and KC as originally formulated, undesired solutions may appear 

(Figure 4-4 b) and c)) since the transition region doesn’t fit the periodic boundary 

conditions (PBC). Nonetheless, this study proposes an adaptation to the PL method 

to address this problem. The proposed modification consist in a two-step PL-based 

method that combines the two-pseudo loads cases present in TrMIC. 

 

 

Figure 4-4 – a) TrMIC under non-PCB. b) Case 1: load on the right (fixed-left) and c) Case 2: load on the left 

(fixed right). 

 

Using equations (42) and (48); the following equation is proposed 

 

 

min 𝑗(𝜌) =
1

|𝑌|
∑ (𝐔𝑒

A(𝑖𝑗)
)

𝑇

𝐊𝑒𝐔𝑒
𝐴(𝑘𝑙)

𝑁

𝑒=1

+ 𝜂𝜆 ∫ 𝛆𝐿𝜆(𝐮𝐿𝜆)𝐃(𝜌)𝛆𝐿𝜆(𝐮𝐿𝜆) 𝑑Ω
Ω

  

(49) 

   

 

where 𝛆𝐿𝜆. 𝐮𝐿𝜆 and 𝜂𝜆 with 𝜆 = 1,2 Are the strain, displacement and weighting 

factor for both PL cases. 

The sensitivity analysis of equation (49) as a function of the design variables is 

given by 

 

DBD
PUC-Rio - Certificação Digital Nº 1513228/CA



Chapter 4. Transitional Microstructure For Smooth Connections 70 

 𝜕𝐃𝑖𝑗𝑘𝑙
𝐻

𝜕𝜌𝑀𝐼
 = −

1

|𝑌|
𝑝𝑀𝐼𝜌𝑀𝐼

𝑝𝑀𝐼−1(𝐸0 − 𝐸min)  

((𝐔𝑒
𝐴(𝑖𝑗)

)
𝑇

𝐊0𝐔𝑒
𝐴(𝑘𝑙)

+ ∑ 𝜂𝜆(𝐔𝑒
𝐿𝜆)

𝑇
𝐊0𝐔𝑒

𝐿𝜆

2

𝜆=1

) . 

(50) 

   

 

The two-step PL and the KC must be added concurrently to the PAMP TO multi-

region, as shown in Figure 4-5. The process is gradual and must be applied as soon 

as the boundary elements reach a density value at least 1% greater than the initial 

guess value in the optimization process (represented by the black regions). Figure 

4-5 a) shows the first iterations of the optimization process, where the first black 

regions (i.e. the connection regions) emerge in the principal cells (1 and 2), and 

each step of the two-step PL and KC are applied. Figure 4-5 b) shows an iteration 

at some point in the middle of the optimization process. Here more black regions 

emerge, and more pseudo loads need to be added. Finally, Figure 4-5 c) shows the 

final topology for all cells. Notice that the TrMIC is now fully connected. 

 

 

Figure 4-5 – Two-step PL-based process. a) First iterations. b) Intermediate iterations. c) Final topology. 
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The weight factors 𝜂𝜆 in equation (50), are proposed to calculated as the ratio 

between the magnitude of the pseudo load and the homogenization sensitivities. 

Therefore, 𝜂𝜆 can be expressed as 

 

 
𝜂𝜆 =

max(𝐀)

max(𝐁)
  (51) 

   

where 𝐀 is the first part of the equation (50) 

 

 
𝐀 = (𝐔𝑒

𝐴(𝑖𝑗)
)

𝑇

𝐊0𝐔𝑒
𝐴(𝑘𝑙)

  (52) 

   

and 𝐁 is the second part of the equation (50) 

 

 𝐁 = (𝐔𝑒
𝐿𝜆)

𝑇
𝐊0𝐔𝑒

𝐿𝜆 (53) 

   

 

Equation (51) allows being dynamically calculated the weight factor throughout the 

optimization process, leaving both parts in the same order preventing the 

dominance of either. 

 

4.3  
Final Considerations and Discussion 
 

One drawback of the proposed scheme is the additional computational effort that 

is added. Every interface needs a TrMIC that must be homogenized, increasing the 

computational time to process the TO. Another problem that arises when modifying 

the final shape of the cell to adapt to connectivity is the loss in stiffness.  

In contrast, compared with other methods [61, 62], the proposed scheme does 

not need predefined points to fit the connectivity because these are self-defined 

during the optimization process. Furthermore, different from other methods [58, 

62], the proposed scheme does not require a tuning process for the weighting factor 

since it is calculated on the fly. Finally, the proposed scheme could potentially 

connect microstructures with different volume fractions, a problem that can be 

observed in [61, 63, 64] and was discussed at the end of section 2.1.2.2. 
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Numerical Examples 

 

 

 

 

This chapter presents the verification of the homogenization implementation 

also is present numerical examples for the PAMP method for single and multiscale 

cases, and the proposed approach. In addition, a comparison with different 

examples in literature is performed in order to evaluate the compatibility scheme. 

Finally, 3D printed samples and the ANSYS analysis for the MBB-beam problem 

[179] for classic TO and the Variable-density are presented and analyzed. 

 

5.1  
Evaluating the implemented codes 
 

This section presents the verification of the implementation of the 

homogenization and the PAMP method. To implement these examples was used a 

MATLAB [180] code based on previous research, the 88 lines code [143], and the 

topX code [32, 172]. 

 

5.1.1  
Homogenization 

 

To verify the code implementation, the solution was compared with the example 

presented by Wang et.al [90]. Figure 5-1 shows the comparison for two different 

microstructures (left), their homogenized tensor (middle), and the result obtained in 

this study (right). The experiments were carried out using a Young’s module 𝐸 =

1000 𝑀𝑃𝑎, a Poisson’s ratio 𝜈 = 0.3, and a mesh with 100 × 100 elements. As 

observed, both implementations presents similar results. Since there is not enough 

information to design a cell that match perfectly those reported in [90], we construct 

cells as close as possible keeping the width of the horizontal and vertical branches. 

This explain the small difference in the values.  
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microstructure 
Homogenized tensor from 

[90] 

Homogenized tensor with 

the implemented code 

 

236.29 107.57 0

107.57 236.29 0

0 0 101.99

 
 
 
  

 

234.28 112.53 0

112.53 234.28 0

0 0 105.50

 
 
 
  

 

 

319.62 36.24 0

36.24 319.62 0

0 0 15.30

 
 
 
  

 

320.38 36.33 0

36.33 320.38 0

0 0 14.36

 
 
 
  

 

Figure 5-1 – Comparison between homogenized tensors. 

 

5.1.2  
Single Region MBB-beam Problem 

 

In order to compare the implementation of the PAMP method, different tests 

were conducted and compared with other solutions reported in the literature. Figure 

5-2 shows an MBB-beam [179, 181] problem, with height (h), a length (L), and a 

force (F).  Due to the symmetry of the problem the experiment was conducted only 

in one half (the gray one) at the macroscale. Also, on the right side is pointed out 

the micro design domain of which is composes the macroscale. 

 

 

Figure 5-2 – MBB-beam example (macro and micro design) adapted from [44]. 

 

Figure 5-3 shows the solution using the ConTop2D code [84] for different values 

of volume at the macroscale (first column) with a fixed volume for the microscale 

domain (second column), the value of resulting compliance using the homogenized 

stiffness tensor. (third column), the final topology for the macroscale (fourth 

column), and the microscale final topology (fifth column) are presented. The 

discretization of the macroscale is 50 × 25 elements and 100 × 100 elements for 

the microscale. A density filter is applied with radius at the macroscale 𝑟𝑚𝑖𝑛 = 2 
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(in element`s number) and a penalization factor 𝑝 = 3. The length 𝐿 = 4, and the 

height ℎ = 1, the base material has Young’s modulus 𝐸 = 2.5 × 105,and Poisson’s 

ratio 𝜈 = 0.3. 

 

 

Figure 5-3 – MBB-beam using multiscale composite [84]. 

 

Figure 5-4 shown the result of the PAMP using our implementation. In our test 

was used a density filter with radius at the macroscale 𝑟𝑚𝑖𝑛𝑀𝐴 = 1.2 (in element`s 

number), at the microscale 𝑟𝑚𝑖𝑛𝑀𝐼 = 3 (in element`s number), also was used a 

penalization factor at the macroscale 𝑝𝑀𝐴 = 1 − 3, and for the microscale 𝑝𝑀𝐼 = 4, 

the cell initialization is the same used in [172]. This was the best parameter 

configuration found in a preliminary test. 
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Figure 5-4 – Results of PAMP MBB-beam 1 cell. 

 

The macro-structural topology, as expected, has considerable changes when 

more base material is added, and therefore, better stiffness is achieved. The 

microstructure for both, Figure 5-3 and Figure 5-4, does not have visual significant 

changes (similar stiffness tensor), which is normal behavior since all the macro-

structural elements are subjected to the same stress distribution in all tests. 

 

5.1.3  
Single Region L-shape Problem 
 

The second test used a problem with an L-shape domain [182], as shown in 

Figure 5-5, where the dimensions are A and 𝐵 = 𝜆𝐴. F is a distributed force on the 

right edge. 
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Figure 5-5 – L-shape problem 1. 

 

Figure 5-6 shows the solution using the ConTop2D code [84] for a fixed volume 

fraction at the macroscale (first column), a fixed volume fraction at the microscale 

(second column), and a variable multiplier value 𝜆 (third column). The ratio 

between de x and y components of Young’s module (fourth column). Finally, the 

structural topology at macro and microscale (fifth – last column). For this 

experiment A was setting equals 40 (elements). 

 

 

Figure 5-6 – L-shape using multiscale composite [84]. 

 

Figure 5-7 shows our results for the L-shape shown in Figure 5-5 using the 

PAMP method. 
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Figure 5-7 – Results and comparison of L-shape problem. 

 

As shown in Figure 5-6 and Figure 5-7, the modulus ratio D11 D22⁄  varies 

because the material is arranged to strengthen the porous material in the x-direction 

as 𝜆 varies. With 𝜆 = 0 bar A is dominant and this is reflected in the modulus ratio 

with the D22 (vertical) 60% higher, as shown in Figure 5-7. On the other hand, 

when 𝜆 = 3, the “lever” has a major influence and D11 (horizontal) reaches its 

maximum value. 

To better understand this behavior, the L-shape beam problem was divided into 

3 regions considering the internal stress conditions (see Figure 5-8). In region #1, 

the moments are imposed in the upper and lower faces, and the principal 

deformation is in the vertical direction. In region #3 the moments are imposed on 

the left and right faces, and the principal deformation is in the horizontal direction. 

These two conditions are contradictory for the optimization of a single cell which 

cause the above mention behavior and therefore, a better solution could be a multi-

region (multi-cell) approach. 
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Figure 5-8 – Decomposition of the L-shape beam [44]. 

 

5.2  
Experiments for PAMP 
 

This section presents the verification of the homogenization and the PAMP 

method single region for the MBB-beam and the L-shape problems. Next, 

numerical examples of PAMP with different regions are presented. In addition, 

examples of the TrMIC scheme and a comparison with other connections methods 

are given. The values related to the mbb-beam problem were chosen in such a way 

that the solution obtained can be manufactured in a 3D printer and will be shown in 

section 5.3. 

 

5.2.1  
Experiments for the MBB-beam Problem 
 

 

Test 1: Single Region Solution  

 

Figure 5-9 shows the PAMP single region solution for the MBB-beam problem 

shown in Figure 5-2. The parameters configuration consist of 𝐿 = 270 and ℎ = 90 

(in element`s number), cells with 100 × 100 elements, a volume fraction at 

macroscale of 𝑣𝑜𝑙𝑓𝑟𝑎𝑐𝑀𝐴 = 0.42, a volume fraction at microscale 𝑣𝑜𝑙𝑓𝑟𝑎𝑐𝑀𝐼 =

0.6, Young’s modulus 𝐸 = 5.1 × 106, a force 𝐹 = 1000, radius at the macroscale 

𝑟𝑚𝑖𝑛𝑀𝐴 = 9 elements, radius at the microscale of 𝑟𝑚𝑖𝑛𝑀𝐼 = 5 elements, and a 

penalization factor for the macrostructure 𝑝𝑀𝐴 = 3 and for the micro 𝑝𝑀𝐼 = 4. With 
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this configuration and using the homogenized stiffness tensor the TO achieved an 

objective function value equals to 2299. 

 

 

Figure 5-9 – Half MBB-beam solution using PAMP with 1 cell. 

 

Test 2: Multi-Region Solution for 3 Regions 

 

Figure 5-10 shows the implementation of PAMP multi-region for 3 different 

cells. The final macro (Figure 5-10 a) and microscale topology and their 

homogenized tensor (Figure 5-10 b) are presented. The three regions are composed 

of 30 × 270 elements. As pointed out by the orange ellipse (Figure 5-10 b) there 

are different regions where did not exists a connection between cells or the 

connection is poor. Using the homogenized stiffness tensor the TO achieved an 

objective function value equals to 2172. 
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Figure 5-10 – Half MBB-beam solution using PAMP with 3 cells, a) macrostructure, b) microstructure, and 

homogenized stiffness tensor. The orange ellipse denotes the regions where did not exists a connection 

between cells or the connection is poor. 

 

Test 3: Multi-Region Solution for 5 Regions 

 

Figure 5-11 shows the solution of the PAMP multi-region for 5 different cells. 

The final macro (Figure 5-11 a) and microscale topology and their homogenized 

tensor (Figure 5-11 b) are presented. The number of elements of each region are the 

following: 20 × 270 for region one (red), 10 × 270 for region two (yellow), 30 ×

270 for region three (green), 10 × 270 for region four (blue), and 30 × 270 for 

region five (purple). As pointed out by the red circles (Figure 5-11 b) there are 

different regions where did not exists a connection between cells or the connection 

is poor. Using the homogenized stiffness tensor the TO achieved an objective 

function value equals to 2043. 
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Figure 5-11 – Half MBB-beam solution using PAMP TO with 5 cells, a) macrostructure, b) microstructure, 

and homogenized stiffness tensor. The red ellipse denotes the regions where did not exists a connection 

between cells or the connection is poor. 

 

Test 4: Multi-Region for 5 Cells using TrMIC 

 

Figure 5-12 shows the solution of the PAMP multi-region for 5 cells using 

TrMIC. The final macro (Figure 5-12 a) and microscale topology and their 

homogenized tensor (Figure 5-12 b) are presented. The five regions have the same 

number of elements as in Test 3. Region two (yellow) and four (blue) are the 

transition regions. As observed the connection between the cells red-yellow-green 

and green-blue-purple is qualitatively better in comparison with the presented in 

DBD
PUC-Rio - Certificação Digital Nº 1513228/CA



Chapter 5. Numerical Examples 82 

Figure 5-11. Using the homogenized stiffness tensor the TO achieved an objective 

function value equals to 2106. 

 

Figure 5-12 – Half MBB-beam solution using PAMP TO with 5 cells and TrMIC, a) macrostructure, b) 

microstructure, and homogenized stiffness tensor. 

 

Tests Comparison  

 

Table 5-1 shows a comparison between different solutions for the MBB-beam 

problem. As observed, the compliance decreases when the number of materials 

increases. From one to three cells improves 6.22% and from three to five cells, the 
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improvement is 6.31%. Also, it should be noted that when the TrMIC scheme is 

applied there is a gain in compliance of 3.08%. 

 

Table 5-1 – Comparison of half MBB-beam using PAMP. 

Test 𝑣𝑜𝑙𝑓𝑟𝑎𝑐 𝑣𝑜𝑙𝑓𝑟𝑎𝑐𝑀𝐼 Number of cells compliance Compliance (%) 

1 0.42 0.6 1 without TrMIC 2299 112.53 
2 0.42 0.6 3 without TrMIC 2172 106.31 
3 0.42 0.6 5 without TrMIC 2043 100 
4 0.42 0.6 5 with TrMIC 2106 103.08 

 

In order to assess our method, the results were compared with those reported by 

Wang et al. in [55]. Figure 5-13 shows the “fully connected” solution for the MBB-

beam problem, with the macro-structural topology (middle) the microstructural 

topology (top and bottom left), and their stiffness matrix (top and bottom right). 

Was reported a gain in compliance range from 4.84 to 4.85% for the different 

configurations tested. 

 

 

Figure 5-13 – MBB-beam solution from [55] 

 

In both methods, is evident the loss of stiffness (gain in compliance). However, 

the loss in the TrMIC scheme is lower than the solution reported by Wang et al. in 

[55]. It should be noted that the proposed scheme does not need a parameter tuning 
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process. The weighting factor 𝜂 in (50) is calculated automatically and the position 

of the connectivity point does not need to be predefined. 

 

5.2.2  
Experiments for the L-shape Problem 
 

Test 1: Single Region Solution 

 

Figure 5-14 shows an L-shape problem but at this time, the force is applied at 

the top right corner.  

 

Figure 5-14 – L-shape problem 2. 

 

Figure 5-15 shows the solution of the PAMP single region, the macro and 

microstructure, and the homogenized stiffness tensor for the L-shape shown in 

Figure 5-14. With 𝜆 = 1 a ℎ = 100, 𝐿 = 100 and a 𝐴 = 60 (in element`s number), 

a cell with 100 × 100 elements, volume fraction at macroscale of 𝑣𝑜𝑙𝑓𝑟𝑎𝑐𝑀𝐴 =

0.16, volume fraction at microscale 𝑣𝑜𝑙𝑓𝑟𝑎𝑐𝑀𝐼 = 0.4, Young’s modulus 𝐸 = 1 and 

force 𝐹 = 1. Figure 5-15 shows the macroscale topology a), the microscale 

structure of which each element of the macro is composed, and the homogenized 

stiffness tensor b). Using the homogenized stiffness tensor the TO achieved an 

objective function value equals to 12967.05 
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Figure 5-15 – L-shape solution using PAMP. a) macrostructure, b) microstructure, c) stiffness matrix. 

 

Test 2: Multi-Region Solution for 3 Regions 

 

Figure 5-16 shows the solution of the PAMP multi-region with 3 different cells, 

there are the final macro and microscale topology and their homogenized stiffness 

tensor. Region one in red is composed of 60 × 40, region two in green by 40 × 40, 

and region three in blue by 40 × 60 elements. The macroscale topology a), the 

microscale structure b) of which each element of the macro is composed, and the 

homogenized stiffness tensor c). As pointed out by the orange circle (Figure 5-16 

b) there are different regions where did not exists a connection between cells or the 

connection is poor. Using the homogenized stiffness tensor the TO achieved an 

objective function value equals to 9470. 
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Figure 5-16 – L-shape solution using PAMP with 3 cells, a) macrostructure, b) microstructure, and c) 

homogenized stiffness tensor. The orange circle denotes the regions where did not exists a connection 

between cells or the connection is poor. 

 

Test 3: Multi-Region Solution for 5 Regions 

 

Figure 5-17 shows the PAMP multi-region with 5 different cells, there are the 

final macro a) and microscale b) topology and their homogenized stiffness tensor 

c). Region one in red is composed for by 60 × 40, region two in yellow by 1 × 40, 

region three in green by 39 × 39, region fourth in blue by 39 × 1, and region five 

in purple is composed of 40 × 60 elements. As pointed out by the red circles 

(Figure 5-17 b) there are different regions where did not exists a connection 

between cells or the connection is poor. Using the homogenized stiffness tensor the 

TO achieved an objective function value equals to 9301. Comparing with the 

solution for multi-region with 3 cells shown in (Figure 5-16), the PAMP multi-
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region with 5 cells presents a 1.78% better stiffness, and a 28.9% when compared 

to the PAMP single cell. 

 

 

Figure 5-17 – L-shape solution using PAMP with 5 cells. a) macrostructure, b) microstructure and c) 

homogenized stiffness tensor. The red circles denotes the regions where did not exists a connection between 

cells or the connection is poor. 

 

Test 4: Multi-Region for 5 Cells using TrMIC 

 

Figure 5-18 shows the result of the PAMP multi-region for 5 different cells, but 

at this time with TrMIC. There are the final macro a) and microscale topology b) 
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and their homogenized stiffness tensor c), for the L-shape shown in Figure 5-17. 

The proposed approach was used to guarantee the connection and was imposed on 

the cell’s regions two and four (transition cells). The principal cells (1,4,5) it does 

not have substantial changes, but in contrast with the results, shown in Figure 5-17, 

not exist any disconnected point. Using the homogenized stiffness tensor the 

objective function value was 9358. 

 

 

Figure 5-18 – L-shape solution using PAMP with 5 cells and TrMIC. a) macrostructure, b) microstructure 

and c) homogenized stiffness tensor. 
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Tests Comparison 

 

Table 5-2 shows a comparison between the different solutions for the L-shape 

problem, As observed, the compliance decreases when the number of materials 

increases. From one to three cells improves 37.6% and from three to five cells, the 

improvement is 1.81%. Also, it should be noted that when the TrMIC scheme is 

applied there is a gain in compliance of 0.61%. 

 

Table 5-2 – Comparison L shape PAMP. 

Test 𝑣𝑜𝑙𝑓𝑟𝑎𝑐 𝑣𝑜𝑙𝑓𝑟𝑎𝑐𝑀𝐼 Number of cells Compliance Compliance (%) 

1 0.16 0.4 1 without TrMIC 12967 139.41 
2 0.16 0.4 3 without TrMIC 9470 101.81 
3 0.16 0.4 5 without TrMIC 9301 100.00 
4 0.16 0.4 5 with TrMIC 9358 100.61 

 

To compare our the result was used those reported by Du et al. [58], they tested 

different values of penalization for the CI and other parameters. Figure 5-19 shows 

the “fully connected” solution for the L-shape problem. On the left side is shown 

the macro-structural topology and on the right side is shown the three cells. Was 

reported a gain in compliance range from 0.59 to 2.97% for the different 

configurations tested. 

 

 

Figure 5-19 – L-shape with CI solution a) macrostructure, b) from [58]. 
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In both methods, is evident the loss in stiffness (gain in compliance) However, 

the loss in the TrMIC scheme is only 0.61%. It should be noted that the TrMIC 

scheme does not need a parameter tuning process. The weighting factor 𝜂 in (50) is 

calculated automatically. 

 

5.3  
3D Printed Samples 
 

The topology optimization solution present intermediate density values and 

therefore cannot be used directly to perform 3D printing. Hence, a post-processing 

treatment is require, it needs an interpretation of the model. To do this, the 

boundaries of final structures were obtained using the contour function from 

MATLAB [180] and new meshes were obtained using the open-source code 

mesh2d [183] for the solid (as seen in Appendix, Figure A-1 c), the graded lattice 

(as seen in Appendix, Figure A-2), and the PAMP with TrMIC (as seen in Figure 

5-22). 

For the 3D printed samples was used a FORMIGA P110 from the EOS company 

[184], and the PA2200 material. With this printer it was possible to obtain a 

resolution of 0.3 𝑚𝑚. Figure 5-20 shows the MBB-beam solution from classic 

topology optimization presented in Figure A-1 (c), this object has dimensions of 

18 × 3 × 3 𝑐𝑚. The final weight of the printed part was 65.98 g and the density 

0.93 g/𝑐𝑚3, so the volume printed was 70.94 𝑐𝑚3 being the 43.79% of the bar’s 

total volume, there is a difference of 1.79% of the original volume fraction of 42%. 

 

 

Figure 5-20 – MBB-beam solution using Classic Topology optimization. 

 

Figure 5-21 shows the MBB-beam solution from Variable-density presented in 

Figure A-2. This object has a dimension of 18 × 3 × 3 𝑐𝑚. To minimize the error 

in the printing process and tacking into consideration the minimal resolution of the 

printer, the volume fraction was set to 0.3 for every cell to avoid cross member size 

DBD
PUC-Rio - Certificação Digital Nº 1513228/CA



Chapter 5. Numerical Examples 91 

below the limit. The final weight of the printed part was 68.35 g, the density of 

material 0.93 g/𝑐𝑚3. Hence, the volume printed was 73.49 𝑐𝑚3 that corresponds 

to 45.36% which has a difference of 5.24% when compared with the original 

volume fraction of 40,1%. It should be pointed that the original volume fraction of 

the variable density differs from the classical TO. This difference is due to the 

postprocessing of a grouping elements to replace them by the cell. 

 

 

Figure 5-21 – MBB-beam solution using Variable-Density Topology Optimization. 

 

Figure 5-22 a) shows the final arrangement for the MBB-beam solution (Figure 

5-12). The cells are composed of groups of 9 × 9 elements with a mean volume 

value equal to 0.5. Figure 5-22 b) shows the 3D printed object with a dimension of 

18 × 3 × 3 𝑐𝑚. The final weight of the printed part was 95.06 g, so the volume 

printed was 102.21 𝑐𝑚3 that equals to 63.09% of the total volume, and there is a 

difference of 19.83% of the original volume fraction of 43.26%. The original 

volume fraction here also differs from the classic OT for the same reason of the 

variable-density  

 

 

Figure 5-22 – MBB-beam solution using a) PAMP multi-region TO and the 3D printed solid. 

The differences in volume between the printed and the virtual design come from 

the slicing software and mainly for the 3D printer method in itself (the material 
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clogged inside the small holes of the piece, which cannot be extracted). For this 

reason, was discarded. Figure 5-23 shows the physical disposition for the Three-

point flexural test, a) is the solution given by the Classical Topology optimization 

and b) is the Variable-density. 

 

 

Figure 5-23 – MBB-beam disposition for the three-point flexural test. a) Classic TO, b) Variable-density. 

 

Figure 5-24 shows the data acquired from the physical tests for the samples 

shown in Figure 5-23. The tests were conducted in an INSTRON 1125 tensile 

compression tester machine at room temperature. The test velocity was set constant 

at 0.0331 𝑚𝑚/𝑠. The reaction forces were measured with an INSTRON load cell 

of 25𝐾𝑁. In Figure 5-24 can be seen the classic TO, in the traced blue line. The TO 

reach 3141 Newton and an extension of 12.07 𝑚𝑚 before collapsing. The variable-

density method, represented by the dotted gray line, reaches 1577 Newton and an 

extension of 17.44. The comparison between both method suggests, that the TO 

has a bigger stiffness and better energy absorption. 
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Figure 5-24 – Three points flexural test for classic and Variable-density 3D printed samples. 

 

As expected, the classic (solid structure) has superior stiffness than the porous 

one [44, 48, 84, 85, 90, 185, 186]. On the other hand, the porous structures tend to 

have increased buckling resistance [52, 55, 187] that allows reaching more than 

four times the buckling load and high energy absorption [86, 90]. Moreover, as 

reported in [188], support material was not required for the porous structure. 

Additionally, by not needing a post-processing step, it is possible to avoid damaging 

the piece. Figure 5-25 shows the results given by Ultimaker Cura [189] software 

where the support material is represented by red color. 

 

 

Figure 5-25 – Simulation of a 3D printed solid from [188]. 
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5.4  
ANSYS Simulation 
 

This section presents the FEM simulation of the previously 3D printed models. 

The analysis was performed on a machine with an Intel® Core i9-7920X, 

@2.90GHz (24 CPUs) processor and 64 GB of RAM, an NVIDIA GeForce GT 710 

with 1GB of RAM, and was use ANSYS 2019R1 Academic Version. 

 

5.4.1  
Classic TO 

 

The analysis was configured as illustrated in Figure 5-26: a) an applied force of 

2250 N, increasing in steps of 50 N in Y direction. The area where the force is 

applied is in the middle of the upper face and has an area of 6 × 30 𝑚𝑚; b) shows 

the displacement lock that works as supports and both have an area of 6 × 30 𝑚𝑚. 

 

 

Figure 5-26 – ANSYS force and supports and force for Classic TO analysis. 

 

Figure 5-27 shows in a) the restriction of the model to prevent the displacement 

in the Z-axis applied in the lateral face and b) is the restriction to prevent the 

displacement in X-axis. 

 

 

Figure 5-27 – ANSYS boundary conditions for Classic TO analysis. 
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To mesh the model was used a quadratic element, the size was set as default with 

a resolution of two (2) in mesh sizing. Four mesh refinements were employed, three 

on the faces and one on the edge, as shown in Figure 5-28. The final number of 

nodes was 1868316 and 917490 elements. 

 

 

Figure 5-28 – ANSYS Mesh refinement for TO classic. 

 

For the mechanical properties was used a bilinear isotropic material as described 

in Table 5-3, some of these values were taken from the datasheet provided by the 

EOS company[184].  

 

Table 5-3 – Material Properties for ANSYS. 

Property Value 

Density 𝜌 0.93 g∙ 𝑐𝑚−3 

Young’s Modulus 𝐸 1700 MPa 

Poisson’s ratio 𝜈 0.33 

Yield Strength 24 MPa 

Tangent Modulus 48 MPa 

 

For the solver controls in the Analysis Settings, was used the “Direct” option 

and the “large deflections” option was activated, the restarts points were left to the 

program controller, and for the nonlinear controls, the “Newton-Raphson” option 

was activated as “full”. 

Figure 5-29 shows the ANSYS solution for the Von-Mises stress for the classic 

TO, there is shown maximum stress of 35.966 MPa and a minimum value of 0.020 

MPa. 
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Figure 5-29 – ANSYS Von-Mises stress for Classic TO. 

 

Figure 5-30 shows the total strain for the classic TO. With a maximum of 

0.19051 𝑚 𝑚⁄  (red color) and a minimum of 1.3315 × 10−5 𝑚 𝑚⁄  (blue color). 

 

 

Figure 5-30 – ANSYS total strain for Classic TO. 

 

Figure 5-31 shows the maximum deformation reached, this deformation occurs 

on the region where the load is applied with a value of 9.8577 × 10−3𝑚, and a 

minimum deformation value of 5.055 × 10−8 located in the support regions. 
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Figure 5-31 – ANSYS total deformation for Classic TO. 

 

Figure 5-32 shows the physical test for the classic TO (the solid blue line) and 

the result from the ANSYS simulation (dotted red line) the simulation was done 

with the data provided by the printer manufacturer, the discrepancy between the 2 

lines is expected because of the uncertainty of the material properties and the 3d 

printed process itself. 

 

 

Figure 5-32 – Comparison TO. 
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5.4.2  
Variable-density 

 

The analysis was configured as shown in Figure 5-33. a) shows an applied force 

of 1200 N increasing in steps of 50 by 50 newton in the Y direction. The area where 

the force is applied is in the middle of the upper face and has an area of 6 × 30 𝑚𝑚. 

b) is the displacement restriction that works as supports in the first three faces of 

the two first cells. 

 

 

Figure 5-33 – ANSYS force and support for Variable-density TO. 

 

Figure 5-34 shows a) the restriction of the model to prevent the displacement in 

the Z-axis applied in the lower side edge and b) the restriction to prevent the 

displacement in X-axis applied in the first face on the first cell. 

 

 

Figure 5-34 – ANSYS boundary conditions for Variable-density TO. 

 

To mesh the model was used a quadratic element, the size was set as default with 

a resolution of four (4) in mesh sizing and any mesh refinements were used. The 

final number of nodes was 2945971, and for the number of elements was 539640, 

the mechanical properties used were the same as in Table 5-3. For the solver 

controls in the Analysis Settings, was used the “Direct” option and the “large 
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deflections” option was activated, the restart points were left to the program 

controller, and for the nonlinear controls, the “Newton-Raphson” option was setting 

as “full”. 

Figure 5-35 shows the ANSYS solution for the von-Mises stress for the 

Variable-density TO. There is shown maximum stress of 69.597 MPa and a 

minimum value of 0.0317 MPa, which are located near the supports, also can see 

a stress concentration in the same region (highlighted in the red circle). 

 

Figure 5-35 – ANSYS Von-Mises stress for Variable-density. 

Figure 5-36 shows the total strain for the Variable-density TO with a maximum 

of 0.898 𝑚 𝑚⁄  and a minimum of 1.938 × 10−5 𝑚 𝑚⁄ , both located near the 

support. 

 

 

Figure 5-36 – ANSYS equivalent total strain for Variable-density. 

 

Figure 5-37 shows the maximum deformation reached in the model, this 

deformation is just in the region where the load is applied with a value of 11.09 ×
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10−3𝑚, and a minimum deformation value of 2.442 × 10−6 located in the support 

regions. 

 

 

Figure 5-37 – ANSYS total deformation for Variable-density. 

 

In order to get a reliable mesh convergence analysis was conducted by 

considering the number of elements and the maximum equivalent stress. Figure 

5-38 summarizes the results of the analysis base on the number of elements. There 

can see that the number of element rise to 5 × 105, but converges at 3.5 × 105. 

 

 

Figure 5-38 – ANSYS mesh convergence analysis for Variable-density. 
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Figure 5-39 shows the physical test for the Variable-density TO (the solid blue 

line) and the result from the ANSYS simulation (dotted red line). The discrepancy 

between the 2 lines is expected because of the uncertainty of the material properties 

and the 3d printed process itself. 

 

 

Figure 5-39 – Comparison Variable-Density. 

 

Table 5-4 shows the maximum load and extension reached for the classic and 

the Variable-density method, for the real test and the ANSYS simulation. The 

maximum load (%) reached is near to 50% but the maximum extension is different 

because the elements in the Variable-density are highly distorted, which suggests 

that a better mesh treatment must be performed. 

Table 5-4 – Comparison of 3D printed models, physical and ANSYS tests. 

 Real Test ANSYS 

Sample 

Test 

Max. 

Load 

(N) 

Max. 

Load 

(%) 

Max. 

Extension 

(𝑚𝑚) 

Max. 

Extension 

(%) 

Max. 

Load 

(N) 

Max. 

Load 

(%) 

Max. 

Extension 

(mm) 

Max. 

Extension 

(%) 

Classic 

TO 
3141 100 12.07 100 2582 100 9.76 100 

Variable-

density 
1577 50.20 17.44 144.49 1186 45.9 11.83 113.93 
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Conclusions and Future Works 

 

 

 

 

The principal contribution of this work is the development of an effective 

compatibility scheme in the context of multiscale topology optimization. The 

scheme is capable of generating smooth, well-connected transitions between 

microstructures composed of unit cells that may not have clear connectivity. It uses 

the kinematical connector method and the two-step pseudo-load-base method where 

the pseudo loads are gradually applied in two opposite parallel surfaces under a 

non-periodic boundary condition. 

To accomplish this, numerical experiments were conducted on topology 

optimization in single-scale and multiscale, as well as different techniques to 

guarantee a smooth and continuous geometric transition between cells in multi-

region porous solid. The Solid Isotropic Material with Penalization (SIMP), a 

single-scale method, and the Porous Anisotropic Material with Penalization 

(PAMP), a multiscale method, were presented. 

The PAMP method was expanded to multi-region using the Discrete Material 

Optimization (DMO) approach. The Asymptotic homogenization and the energy-

based approaches were used to compute the equivalent properties of 

microstructures. The Kinematical Connector and two steps Pseudo Load methods 

were used as connection methods. 

The numerical results presented is this work were obtained using a MATLAB 

implementation based on 88-lines code [143] and topX code [32, 172]. The 

proposed scheme was tested using two popular problems in the literature: The L-

shape beam, and the MBB-beam. These tests suggested that the stiffness of the 

PAMP multi-region is strongly influenced by the number of regions and it is evident 

in the results shown in Table 5-1 and Table 5-2. As we increase the number of 

regions the structure become more efficient in terms of stiffness. The structure 

which has more regions are able to better represent the varying directions and 

magnitudes of the principal stresses. 
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The proposed approach is presented as an effective method to generate smooth 

connections between adjacent cells. The approach presented a drop of 0.61% and 

3.08% in terms of stiffness. With all, the proposed scheme has equal or lower loss 

compared with others methods. Nonetheless, the drop in stiffness could be solved 

by relaxing the restriction in the TrMIC, for example a higher volume. 

To further illustrate the multiscale approaches presented in this work, the MBB 

beam structure was printed out via additive manufacturing and a three-point 

bending beam mechanical testing was performed. Three different solutions to the 

MBB-beam problem were considered, i) the classic topology optimization, ii) the 

variable-density, and iii) the PAMP multi-region with 5 different cells using the 

proposed scheme. The Formiga P110 3D printer from the EOS company was used, 

with the polymeric compound PA2200 and the SLS technology. Due to difficulties 

in removing the trapped powder from the PAMP build, we were unable to perform 

the mechanical test in this specimen. 

From the experimental results, we can see that the variable-density structure has 

much higher compliance than the solid, isotropic case. Although it was expected an 

increase in the compliance, the higher value obtained here is due to the failure of 

lattice cell crushing observed around the support points. This behavior is also 

observed in the numerical analysis using ANSYS for the classic and Variable-

density solutions, as shown in Figure 5-32, Figure 5-39, and Table 5-4. Also, as 

seen in Figure 5-35, Figure 5-36, and Figure 5-37. 

 

6.1  
Future Work 

 

As future work, the results of this thesis indicate several points for improvement:  

 

 Since the performance of Multiscale TO with multiple regions depends on 

where the cellular regions are located and the amount of them. It is 

suggested to design a method to designate automatically the position and 

number of the different regions such as the approach presented in [190]. 

 

 To avoid the trapped powder inside the printed object, it is suggested to 

constrain the minimum size for the void region in the microscale. 
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 Since the optimization process was subjected to a volume constraint without 

considering other parameters such as the maximum stress, the solution can 

suffer stress above the proportional limit. To avoid this, it is suggested to 

add a stress restriction in the optimization design [17].  
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Appendix  

 

 

Variable-density 

 

In our study, the well-known MBB-beam problem will be used to illustrate the 

Variable-density method. The design domain and boundary conditions are provided 

in Figure A-1 a). Using PolyMesher [191] was constructed a 270 × 90 uniform 

quadrilateral mesh and PolyTop [192] was employed to minimize the compliance 

of the structure. The volume fraction is prescribed as volfrac = 42% of the initial 

volume, the applied load is F = 1000 N, Young’s modulus is E = 210GPa, the 

Poisson’s ratio is v = 0.3, and the radius of the filter is R =  0.06. 

 

 

Figure A-1 – Topology optimization. a) Half MBB-beam b) p = 1 b) p = 1‐3. 

 

Figure A-1 shows the final topologies using the SIMP approach with a fixed 

penalization factor p = 1 (a) and with an increasing penalization factor from p =

1‐3, with increments of 1 (b). Using the final topology shown (Figure A-1 b), the 

lattice solution (graded lattice) is obtained by replacing a group of 9 × 9 elements 

by a unit cell with the average of the volume fraction values, giving a total of 60 ×

10 cells. The result for the MBB-beam Variable-density is shown in Figure A-2. 

 

 

Figure A-2 – MBB-beam Variable-density. 
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