
Cleber Oliveira Damasceno

Automated Synthesis of Optimal Decision
Trees for Small Combinatorial Optimization

Problems

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática.

Advisor : Prof. Thibaut Victor Gaston Vidal
Co-advisor: Prof. Eduardo Uchoa Barboza

Rio de Janeiro
July 2021

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Cleber Oliveira Damasceno

Automated Synthesis of Optimal Decision
Trees for Small Combinatorial Optimization

Problems

Dissertation presented to the Programa de Pós-graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee.

Prof. Thibaut Victor Gaston Vidal
Advisor

Departamento de Informática – PUC-Rio

Prof. Eduardo Uchoa Barboza
Co-advisor

Engenharia de Produção – UFF

Prof. Marcus Vinicius Soledade Poggi de Aragao
Departamento de Informática – PUC-Rio

Prof. Túlio Ângelo Machado Toffolo
Departamento de Computação – UFOP

Rio de Janeiro, July 28th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

All rights reserved.

Cleber Oliveira Damasceno

Cleber Oliveira Damasceno holds a Bachelor Degree in Com-
puter Science from the Pontifícia Universidade Católica de
Minas Gerais, since 2018.

Bibliographic data
Damasceno, Cleber Oliveira

Automated Synthesis of Optimal Decision Trees for Small
Combinatorial Optimization Problems / Cleber Oliveira Dam-
asceno; advisor: Thibaut Victor Gaston Vidal; co-advisor: Ed-
uardo Uchoa Barboza. – Rio de janeiro: PUC-Rio , Departa-
mento de Informática, 2021.

v., 54 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia

1. Informática – Teses. 2. Otimização combinatória;. 3.
Politopos;. 4. Diagramas de Voronoi;. 5. Busca por Vizinho
mais Próximo;. 6. Modelo de Árvores de Decisão Lineares.. I.
Vidal, Thibaut Victor Gaston. II. Barboza, Eduardo Uchoa. III.
Pontifícia Universidade Católica do Rio de Janeiro. Departa-
mento de Informática. IV. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Acknowledgments

To my advisor Thibaut Vidal for the stimulus and partnership to carry out this
work, and Eduardo Uchoa and Maximilian Schiffer for their ideas and constant
support.

To my friends at TECGRAF and PUC-Rio, for all their help, education and
support in these years.

To all my friends for always being there for me during all this time.

To CNPq, FAPERJ, and PUC-Rio, for the aids granted, without which this
work could have been accomplished.

This study was financed in part by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) - Process 131104/2019-5.

This study was financed in part by the Fundação de Amparo à Pesquisa do
Estado do Rio de Janeiro (FAPERJ) - Process E-26/200.289/2020.

This study was financed in part by the Coordenação de Aperfeiçoaento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Abstract

Damasceno, Cleber Oliveira; Vidal, Thibaut Victor Gaston (Advisor); Bar-
boza, Eduardo Uchoa (Co-Advisor).Automated Synthesis of Optimal
Decision Trees for Small Combinatorial Optimization Problems.
Rio de Janeiro, 2021. 54p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Classical complexity analysis for NP-hard problems is usually oriented to
“worst-case” scenarios, considering only the asymptotic behavior. However, there
are practical algorithms running in a reasonable time for many classic problems.
Furthermore, there is evidence pointing towards polynomial algorithms in
the linear decision tree model to solve these problems, although not explored
much. In this work, we explore previous theoretical results. We show that the
optimal solution for 0-1 combinatorial problems can be found by reducing these
problems into a Nearest Neighbor Search over the set of corresponding Voronoi
vertices. We use the hyperplanes delimiting these regions to systematically
generate a decision tree that repeatedly splits the space until it can separate
all solutions, guaranteeing an optimal answer. We run experiments to test the
size limits for which we can build these trees for the cases of the 0-1 knapsack,
weighted minimum cut, and symmetric traveling salesman. We manage to find
the trees of these problems with sizes up to 10, 5, and 6, respectively. We also
obtain the complete adjacency relations for the skeletons of the knapsack and
traveling salesman polytopes up to size 10 and 7. Our approach consistently
outperforms the enumeration method and the baseline methods for the weighted
minimum cut and symmetric traveling salesman, providing optimal solutions
within microseconds.

Keywords
Combinatorial Optimization; Polytopes; Voronoi Diagrams; Nearest

Neighbor Search; Linear Decision Tree Model.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Resumo

Damasceno, Cleber Oliveira; Vidal, Thibaut Victor Gaston; Barboza,
Eduardo Uchoa. Síntese Automatizada de Árvores de Decisão
Ótimas para Pequenos Problemas de Otimização Combinatória.
Rio de Janeiro, 2021. 54p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

A análise de complexidade clássica para problemas NP-difíceis é geralmente
orientada para cenários de “pior caso”, considerando apenas o comportamento
assintótico. No entanto, existem algoritmos práticos com execução em um tempo
razoável para muitos problemas clássicos. Além disso, há evidências que apontam
para algoritmos polinomiais no modelo de árvore de decisão linear para resolver
esses problemas, embora não muito explorados. Neste trabalho, exploramos esses
resultados teóricos anteriores. Mostramos que a solução ótima para problemas
combinatórios 0-1 pode ser encontrada reduzindo esses problemas para uma
Busca por Vizinho Mais Próximo sobre o conjunto de vértices de Voronoi
correspondentes. Utilizamos os hiperplanos que delimitam essas regiões para
gerar sistematicamente uma árvore de decisão que repetidamente divide o
espaço até que possa separar todas as soluções, garantindo uma resposta ótima.
Fazemos experimentos para testar os limites de tamanho para os quais podemos
construir essas árvores para os casos do 0-1 knapsack, weighted minimum
cut e symmetric traveling salesman. Conseguimos encontrar as árvores desses
problemas com tamanhos até 10, 5 e 6, respectivamente. Obtemos também as
relações de adjacência completas para os esqueletos dos politopos do knapsack
e do traveling salesman até os tamanhos 10 e 7. Nossa abordagem supera
consistentemente o método de enumeração e os métodos baseline para o weighted
minimum cut e symmetric traveling salesman, fornecendo soluções ótimas em
microssegundos.

Palavras-chave
Otimização combinatória; Politopos; Diagramas de Voronoi; Busca

por Vizinho mais Próximo; Modelo de Árvores de Decisão Lineares.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Table of contents

1 Introduction 11
1.1 Related Work 12

2 Preliminaries 17
2.1 Polytopes 17
2.2 Voronoi Diagrams and Delaunay Triangulations 20
2.3 Nearest Neighbor Search 24

3 Construction 26
3.1 The Decision Tree 27
3.2 The Algorithm 28
3.3 Implementation 28
3.4 Iterative Tree with Sampling 36

4 Applications 39
4.1 Problems 39
4.2 Baseline Methods 40

5 Experiments and Results 42
5.1 Polytopes and Structure 42
5.2 Decision Tree Construction 44
5.3 Generation of Benchmark Sets 47
5.4 Performance Evaluation 47

6 Concluding Remarks 50

7 References 52

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

List of symbols

Sets

X – Set of points with 0-1 coordinates
φ(X) – Set of the transformed points of X with function φ(x) = −2x + 1
S(

√
d) – Sphere centered at the origin with radius

√
d

P – Polytope associated to x, the convex hull of φ(X)
hij – Bisector hyperplane of pi and pj

Vi – The Voronoi face of pi

H – Set of all divider hyperplanes with i < j
H+ – Extended set of divider hyperplanes with i ≠ j
χ – Set of delimiting hyperplanes, a subset of H+

χi – Set of hyperplanes delimiting Vi
χη – Set of hyperplanes delimiting the region in node η
R(χ) – Restricted region delimited by χ
N – Set of decision tree nodes
∆η – Set of divider hyperplanes of a node η
Ση – Set of solutions contained in the region of η
ΓL(η, h) – Set of solutions in η on the left of h
ΓR(η, h) – Set of solutions in η on the right of h

Other objects

S(P) – Skeleton graph of P
Ð⇀pq – Line segment connecting point p and q
V – Voronoi diagram associated to P
D – Delaunay triangulation associate to P
η – Node in the decision tree
ηLh – Node corresponding to the region on the left of hη
ηRh – Node corresponding to the region on the right of hη
hη – Best hyperplane to be used as comparison in node η

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Functions

fc(x) – Linear function defined as the inner product of c and x
hij(x) – Hyperplane function determining the position of a point
δ(η) – Minimal depth of tree that has η as root
δ(T) – Minimal depth of a tree T
µ̂Sη(x, y) – Heuristic function to evaluate split configurations

Values

m – Number of points in set X
d – Dimension of the point in X
r – Number of delimiting hyperplanes in a region, the size of χ
κ – Maximum number of hyperplanes to be considered in each node
s – Percentage of the hyperplanes to have the position calculated
H – Number of unique divider hyperplanes, the size of H
Dη – Number of divider hyperplanes of a node η
Sη – Number of solutions contained in the region of η
δη – Number of comparisons to classify the solutions in η using hη
dη – Distance from the root

Relations

h ∣ χ – h divides R(χ)
h ∤ χ – h divides R(χ)
x ≺ h – x is on the left of hyperplane h
x ≻ h – x is on the right of hyperplane h
χ ≺ h – R(χ) is on the left of hyperplane h
χ ≻ h – R(χ) is on the right of hyperplane h

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

But the wisdom of men is small, and the ways
of nature are strange, and who shall put a
bound to the things which may be found by

those who seek for them?

Arthur Conan Doyle, Lot No. 249.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

1
Introduction

Combinatorial Optimization (CO) problems play an important role in
several areas such as operations research, artificial intelligence, and machine
learning. Through the lenses of classical complexity analysis, these problems are
studied considering their asymptotic behavior in “worst-case” scenarios. Since
many of them are NP-hard, obtaining a solution for large instances of these
problems is deemed impracticable, due to the time needed for the computation.
However, for certain classes of problems, there has been progress on solution
methods, making them practical for increasingly larger instances, useful in
real-world applications. Moreover, in almost all real-world applications, the
optimization goal is not to solve a single problem but to solve several instances
of the same problem, with only slight data variations, depending on specific
parameters.

Interestingly, even for some of these NP-hard problems, the existence
of polynomial-time algorithms in the Random Access Machine (RAM) model
(Kolinek, 1987; Meyer auf der Heide, 1984, 1988) shows that there are decision
trees of polynomial depth to solve them. Still, these results have been mainly
of theoretical interest and did not lead to readily applicable algorithms. In
contrast, in this is work, we propose a framework to automatically synthesize
such optimal decision trees, 1 i.e., in the Linear Decision Tree (LDT) model of
computation (Aho and Hopcroft, 1974).

We push the boundaries of knowledge representation for small CO
problems. Many previous studies (Boyd and Cunningham, 1991; Christof
et al., 1991; Christof and Reinelt, 1996, 2001) aimed to determine complete
descriptions (i.e., linear characterizations of the convex hull of the feasible
solutions) of polytopes corresponding to combinatorial problems of small
size. In a similar fashion, we pose the question of finding the most compact
representation of a decision tree that returns the optimal solution for any input
of a given size. As seen in this work, this task can be achieved for small-scale
instances of some classical problems.

Our approach maps the set of solutions for a given problem into a Voronoi
diagram. The solutions are represented as their corresponding Voronoi regions,
and the problem is reduced to locating which region contains the query point.

1Note that when we refer to the optimally of these decision trees, we always mean that
for any input, they always give the optimal solution. Optimally in the sense of minimizing
the tree depth is not guaranteed.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 1. Introduction 12

First, we show that the optimal solution for any problem whose solution set is a
subset of the 0-1 hypercube can be found by reducing it into a Nearest Neighbor
Search (NNS) over the set of corresponding Voronoi vertices. Second, we use
the adjacencies of the original problem’s polytope to identify the hyperplanes
that delimit the Voronoi regions and use them to generate a decision tree
systematically. The tree uses the hyperplanes to repeatedly consider smaller
regions at each level so that the regions in the leaves contain a single solution.
We use three problems (0-1 knapsack, weighted minimum cut, and symmetric
traveling salesman) to evaluate the method proposed and generate a set of
instances used as a benchmark to compare the running time of our method with
other known methods for these problems. In summary, we make the following
contributions:

– We establish the equivalence between the class of 0-1 combinatorial
optimization problems and the nearest neighbor search problem.

– We tackle the task of finding the adjacency relations for skeletons of the
0-1 knapsack and symmetric traveling salesman, describing them for sizes
up to 10 and 7.

– We introduce a method of constructing decision trees for a given polytope.
The generated tree can solve any instances for that polytope without
further changes.

– We find decision trees for the three studied problems with sizes up to
10, 5, and 6, achieving a minimum depth for the sizes up to 4, 3, and 4,
respectively. These trees consistently outperform the enumeration method
for all problems, and the baseline methods for the weighted minimum cut
and symmetric traveling salesman, providing optimal solutions within
microseconds.

1.1
Related Work

To our knowledge, very few studies have focused on designing practical
and fast algorithms to solve small instances of combinatorial optimization
problems. Still, several tasks are closely related to this topic, and they will be
discussed further in the next subsections.

The main works regarding this problem, although mainly theoretical,
represent an important result in the field of computational complexity, asserting
the existence of polynomial time complexity in the decision tree model of
computation. On a more practical side, some works approach NP-complete
problems of small sizes in hopes of either describing their structure or even

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 1. Introduction 13

providing ways of solving them. Other methods use these NP-complete problems
in subroutines with smaller sizes to obtain the solution for the original problem;
there is interest in solving them as fast as possible in these cases. Finally, some
studies approach the solutions of optimization problems with the lenses of
machine learning, either applying methods to solve the problems or identifying
strategies that will help solve them.

1.1.1
Decision Tree Model of Computation

Meyer auf der Heide (1984, 1988) has shown that some NP-complete
problems are solvable in polynomial time in the LDT model of computation.
Meyer auf der Heide (1984) and Kolinek (1987) use an approach based on
identifying the location of a point relative to a set of hyperplanes to show that
an algorithm in the decision tree model can solve some NP-complete problems
in polynomial time (in the considered computation model). Meyer auf der Heide
applies it to solve the n-dimensional knapsack problem, while Kolinek shows
it for the cases of the traveling salesman problem, many other shortest path
problems, and integer programming. Then, Meyer auf der Heide (1988) uses a
construction process to convert programs in the RAM model to their equivalent
in the LDT model to expand the number of NP-hard problems of fixed size
that can be solved in polynomial time.

A polynomial-time complexity is possible because we do not consider
the amount of time necessary to perform arithmetic operations and storage
allocation when considering the decision tree model of computation (Aho and
Hopcroft, 1974). We only account for the computational complexity associated
with the comparisons in the tree nodes. The complexity, in this case, is the
maximum number of comparisons that must be made to find a way from the
root to one of the leaves (i.e., the tree depth). However, even when such trees
have a polynomial depth, it is often the case that they have an exponential
number of leaves (and total nodes). Therefore the space needed to allocate all
instructions and the time to access the next operation can take an exponential
time, as a function of the input size, on a standard computer.

Even though the memory size of modern computers has grown quite large,
allowing the construction of such algorithms for several small instances, there
have not been many practical advances in this area.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 1. Introduction 14

1.1.2
Tiny Problems

Without directly using the previous theoretical results, there are papers
already considering problems with small sizes. Chikalov et al. (2013) study the
problem of finding totally optimal decision trees, i.e., decision trees that are
minimal in regards to space and time complexity, for small instances of boolean
functions. In this case, the goal is to minimize three parameters: maximum
depth, average depth, and the number of nodes. Note that the problem of
finding an optimal decision tree is considered NP-complete (Hyafil and Rivest,
1976). Given the difficulty of the work, the authors managed to find good
results for instances with less than six input variables. Still, they only proved
total optimality regarding maximum depth and number of nodes for instances
with up to four variables and total optimality regarding the three parameters
for instances with up to three variables.

As small as it may seem, these results have a big impact when we consider
the progressive study of these problems. An example that shows this slow
progress is the task of finding “good” representations of the solution space
for integer problems, i.e., finding all facet-defining inequalities of their convex
hull. Studies on this have been pursued for decades, and each new complete
representation (e.g., TSP with 8, 9, or 10 nodes) is seen as a breakthrough and
methodological tour de force.

While the non-negative and sub tour facets can completely describe the
TSP with up to 5 nodes, (Grötschel and Padberg, 1985), the instances with
more nodes need more work. Boyd and Cunningham (1991) extended the
descriptions for the cases with 6 and 7 nodes presenting two more classes
of inequalities and proving that they completely describe the polytopes, but
extrapolating their proof for larger sizes would be difficult with the present
methods. Following closely, Christof et al. (1991) was able to describe the case
with 8 nodes completely using computer code. After that, it took a few years,
a lot more computational effort, and a new approach to characterize all facets
of the TSP with 9 nodes (Christof and Reinelt, 1996). The last update we find
from Christof and Reinelt (1996) presents a complete description for the case
with 10 nodes. Decomposition and parallelization techniques were needed to
achieve these results.

The TSP example shows us how difficult the process of expanding the
boundaries of the knowledge of small CO problems can be. In this work, we
focus on a slightly different task, that of producing a decision process, in the
form of a decision tree that guarantees the solution’s optimality and aims for
minimum size.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 1. Introduction 15

1.1.3
Decomposition Algorithms

While solving these small problems as best as we can is an interesting
topic by itself, there are situations in real-world applications that could greatly
benefit from it. That is the case of several decomposition algorithms that have
their efficiency connected to the speed to solve the small subproblems.

Many heuristics to solve the Vehicle Routing Problem (VRP) have been
developed through the years, and some rely heavily on the quick solution of
small CO problems. First, Taillard (1993) presents a heuristic for solving the
VRP that decomposes the problem into several subproblems with smaller sizes.
Each subproblem, modeled as a TSP, must be solved as quickly as possible
to obtain an efficient algorithm. Then, Toffolo et al. (2019) introduces other
heuristics, including one that presents the need to solve many instances of a
variant of the TSP very quickly during the course of a local search. They even
point to a situation where the repeated solution of the TSP seems promising,
but the computational effort to do it is prohibitive. Finally, Arnold et al. (2021)
introduces a local search strategy based on pattern mining that identifies
useful high order moves. The subproblems used for completing solutions (after
injecting a frequent pattern) are generally smaller (a few nodes) but must be
solved quickly.

For the Minimum Spanning Tree (MST), Pettie and Ramachandran (2000)
used optimal decision trees as a sub-component in their proof of the algorithm
with best-possible complexity. They found that the smallest possible complexity
for solving the problem is equal to the corresponding decision tree complexity.

Though the previous algorithms, especially the one for the MST, often
involve fairly large subproblems, the need for fast methods can serve as
motivation to improve the development of decision trees for larger problem
sizes. The availability of such decision trees will represent a big breakthrough
for these methods since the trees can take advantage of the problem’s structure
to speed up the computation times.

1.1.4
A Machine Learning Approach

Given the hard nature of several CO problems, many state-of-the-art
methods for these problems rely on handcrafted heuristics for making some
decisions that would be too expensive to compute otherwise. Machine Learning
(ML) rises as a candidate to optimize the process in this scenario. Bengio et al.
(2021) surveys recent attempts of applying ML to solve CO problems. They
point that ML can be used in this context in two ways: (a) given the knowledge

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 1. Introduction 16

of the optimization algorithm, we can replace some heavy computation steps
by fast approximations; (b) without good knowledge, we use the learning
process to explore the space of decisions and identify better policies. There are
also two possibilities when we consider what we want to “learn”. We can use
generalization to either learn the solution itself or find a strategy to help solve
the actual problem.

Bertsimas and Stellato (2021) use the strategies as the solutions themselves
and aim to replace the process of solving the problem by the strategies. Like
all classical ML methods, they use a set of possible solutions (restricted to
distributions in certain ranges) for the training phase of their method. They use
a probabilistic approach to identify the possible strategies and then build the
corresponding decision tree to answer the problems with inputs in the chosen
range.

Beunardeau et al. (2020) seeks to establish optimal strategies for identify-
ing infected patients in a pool of tests. Unlike the classical ML methods, they
do not use learning based on data/solution points; instead, the learning process
is derived from the problem structure (they consider all possible solutions to
determine the correspondence between input and answer). In this case, with no
knowledge of the algorithm, the learning process is used to explore the space
fully. The strategies represent the testing procedures that need to be performed
to identify the infected cases optimally, and a meta procedure is used to identify
all possible procedures and when to use each of them. They present results for
the cases where there are 3 or 4 samples to be tested and show that for values
greater than 4, the results could not be determined within a reasonable time.

These two types of machine learning (data-based and structure-based)
represent an important distinction in achieving optimality. The classical data-
based approach allows the exploration of much larger instances of problems.
Still, it cannot offer any guarantee of optimality, especially when we consider
the entire solution space instead of restricting it to a region like Bertsimas and
Stellato (2021). On the other hand, the structure-based gives the possibility of
optimally but with the trade-off of a much more limited range of instance sizes
because we need to consider all possible solutions.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

2
Preliminaries

Let X ⊂ {0,1}d be a set of m points, S(
√
d) = {x ∈ Rd ∣ ∥x∥ =

√
d} the

sphere centered at the origin with radius
√
d, and fc ∶ X → R be the linear

function defined as fc(x) = c ⋅ x for c ∈ Rd.
Regarding the notation, to distinguish the elements of R from Rd we will

always refer to the latter in bold font. Accordingly, while a and 1 are both real
numbers, a = (a1, a2, . . . , ad) and 1 = (1,1, . . . ,1) are vectors in the dimension
that makes sense.

The following proposition states a relation between linear transformations
that will be useful in the next chapters.

Proposition 2.1 Let X ⊂ Rd and φ(x) = ax + b a fixed linear map. Then
∀c ∈ Rd we have

x∗ = arg min
x∈X

fc(x) ⇔ x∗ = arg min
x∈X

fc(φ(x)) if a > 0

x∗ = arg min
x∈X

fc(x) ⇔ x∗ = arg max
x∈X

fc(φ(x)) if a < 0

Remark 2.2 Take φ(x) = −2x + 1 and −φ(x) = 2x − 1. Then, optimizing fc

over the set X ⊂ {0, 1}d is the same as doing it over −φ(X), with the additional
benefit that both φ(X) and −φ(X) are subsets of S(

√
d).

2.1
Polytopes

Let P = Conv(φ(X)) be the polytope associated to X, defined as the
convex hull of φ(X). The skeleton of P, denoted by S(P), is the undirected
graph whose vertices are the points in P and the edges are the adjacent pairs
of vertices2. We denote by E(S) the set of edges in the skeleton and note that
if (pi,pj) ∈ E(S) then (pj,pi) is also in E(S).

Two vertices pi,pj ∈ P are called adjacent if, and only if, they share
a common edge (i.e., a 1-face of P). The next lemma states a basic result
regarding adjacency in polytopes. The first three equivalencies are presented
by Gurgel and Wakabayashi (1997); here, we extend the third statement into a
stronger version (the last statement).

2Unless specified, when we say a point in P we always mean a point in φ(X).

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 18

Lemma 2.3 (Adjacency on Polytopes) Let P ⊂ Rd be a polytope and let
pi and pj be two distinct vertices of P. Then the following are equivalent:

(a) pi and pj are adjacent

(b) The point 1
2pi + 1

2pj can be represented uniquely as a convex combination
of vertices of P

(c) Any point on ÐÐ⇀pipj, the line segment connecting pi and pj, can be
represented uniquely as a convex combination of vertices of P

(d) No point on ÐÐ⇀pipj, the line segment connecting pi and pj, can be represented
as a convex combination of vertices of P, excluding pi and pj

Proof. We will prove that statements (c) and (d) are equivalent.
The direction (c) ⇒ (d) is trivial. Since the unique representation of the

line segment involves only the vertices pi and pj, it follows that no representation
containing the other vertices exclusively is possible.

We prove the direction (c) ⇐ (d) using the contrapositive3. We state
it as: “If there exists a point p on ÐÐ⇀pipj such that it has two distinct convex
combinations of vertices of P , then there is a point onÐÐ⇀pipj that can be expressed
as a combination of vertices of P, disregarding pi and pj”. Furthermore, we
will prove that these two points are the same.

Without loss of generality assume that p ∈ ÐÐ⇀p1p2. First we will show
that if p has two distinct convex combinations we can also write p in two
other ways: (i) a convex combination using any vertex except p1; and (ii) a
convex combination using any vertex except p2. Then, combining the two
representations with the fact that p ∈ ÐÐ⇀p1p2 we will derive a representation that
contains neither p1 nor p2.

Let p ∈ ÐÐ⇀p1p2 have two representations:

p = α1p1 + α2p2 α1 + α2 = 1 (2-1)

p =
n

∑
k=1
βkpk

n

∑
k=1
βk = 1 (2-2)

Note that we consider both α1 ≠ 0 and α2 ≠ 0, since otherwise p would be
a vertex, which has a unique representation. Also α1 ≠ β1 and α2 ≠ β2 because
no vertex can be expressed as a combination of any of the other vertices. Then,
isolating p1 in (2-1) and replacing it into (2-2) gives us:

3The outline for this proof was given by M. Lavrov (personal communication, April 26,
2021).

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 19

p = α1

α1 − β1
[(β2 −

β1α2

α1
)p2 +

n

∑
k=3
βkpk] (2-3)

The equation (2-3) is a linear combination of the vertices {p2,p3, . . . ,pn}.
So we just need to show that the sum of the coefficients is equal to 1.

α1

α1 − β1
[(β2 −

β1α2

α1
) +

n

∑
k=3
βk] =

α1

α1 − β1
[−β1 −

β1α2

α1
+ β1 + β2 +

n

∑
k=3

βk]

= α1

α1 − β1
[−β1 −

β1α2

α1
+

n

∑
k=1

βk]

= α1

α1 − β1
[−β1 −

β1α2

α1
+ 1]

= α1

α1 − β1
[−β1α1 − β1α2 + α1

α1
]

= α1 − β1(α1 + α2)
α1 − β1

= α1 − β1

α1 − β1

= 1

Thus, we just showed that p has a representation as convex combination
of the vertices {p2,p3, . . . ,pn}. Analogously, we can show that p also has a
representation as convex combination of the vertices {p1,p3, . . . ,pn}. Now
take:

p = β2p2 +
n

∑
k=3
βkpk β2 +

n

∑
k=3

βk = 1 (2-4)

p = γ1p1 +
n

∑
k=3

γkpk γ1 +
n

∑
k=3
γk = 1 (2-5)

Now, let c1 = α1
γ1

and c2 = α2
β2
. Isolating p2 in (2-4) and p1 in (2-5) and

replacing it into (2-2) gives us:

p = 1
c1 + c2 − 1 [

n

∑
k=3

(c1γk + c2βk)pk] (2-6)

Similarly, equation (2-6) is a linear combination of the vertices
{p3,p4, . . . ,pn} and we only need to show that the sum of coefficients is
equals to 1.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 20

1
c1 + c2 − 1 [c1

n

∑
k=3
γk + c2

n

∑
k=3

βk] =
1

c1 + c2 − 1 [c1 (−γ1 + γ1 +
n

∑
k=3
γk) + c2 (−β2 + β2 +

n

∑
k=3
βk)]

= 1
c1 + c2 − 1 [c1 (−γ1 + 1) + c2 (−β2 + 1)]

= c1 − c1γ1 + c2 − c2β2

c1 + c2 − 1
= c1 + c2 − α1 − α2

c1 + c2 − 1

= c1 + c2 − 1
c1 + c2 − 1

= 1

Therefore, p can be represented as convex combinations of the vertices
{p3,p4, . . . ,pn}, which concludes the proof. ∎

Note that, even with this definition of adjacency, the task of checking the
adjacency of two vertices might still be complicated. There are polynomial-time
algorithms to perform this task for some polytopes related to NP-hard problems.
However, for other polytopes, such as the TSP, this task is an NP-complete
problem (Papadimitriou, 1978). Therefore, we cannot expect to determine the
skeletons for large polytopes so easily.

2.2
Voronoi Diagrams and Delaunay Triangulations

For an arbitrary finite set Y ⊂ Rd and any two points pi,pj ∈ Y , we define
the bisector of pi and pj as

hij = {x ∈ Rd ∣ ∥pi − x∥ = ∥pj − x∥}

and the half-space containing pi as

Dij = {x ∈ Rd ∣ ∥pi − x∥ < ∥pj − x∥}

which is separated from the half-space Dji containing pj by hij.
Following Fortune (2017), we denote by

Vi = ⋂
pj∈Y,i≠j

Dij

the Voronoi face of pi with respect to Y , the set of all points in Rd strictly
closer to pi than to any other point in Y . The boundary of a Voronoi face
consists of Voronoi edges equidistant from two points and Voronoi vertices

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 21

equidistant from at least three points. Finally, the Voronoi diagram of Y , V(Y),
is defined as the union of all Voronoi faces.

Let Bi = {pj ∣ hij is the boundary of Vi}. Then we can alternatively define
the Voronoi faces as

Vi = ⋂
pj∈Bi

Dij (2-7)

which is a shorter representation, since ∣Bi∣ < ∣Y ∣.
The dual of a Voronoi diagram, the Delaunay triangulation, can be

defined in terms of a convex hull in a higher dimension. Consider the lifting
map λ ∶ Rd → Rd+1 defined by λ(x) = (x1, x2, . . . , xd, x2

1 +x2
2 +⋯+x2

d). Now take
Q =Conv(λ(Y)), then the Delaunay triangulation of Y , D(Y), is exactly the
orthogonal projection of Q into Rd.

Figure 2.1 shows the effect of the lifting map in 2D. We can see that when
the points are projected back into the original space, we add a Delaunay edge
between the adjacent points on the convex hull.

(a) Lifting (b) Convex hull (c) Projection

Figure 2.1: The lifting map: (a) the projection of Y into the unit paraboloid;
(b) the computation of the lower convex hull of the projected points; (c) the
projection back into the original space.

The Delaunay edges, which are the adjacent pairs of Q, have a one-one
correspondence with the Voronoi edges. So, we say that two regions Vi and
Vj share a common Voronoi edge (called adjacent) if, and only if, there is a
Delaunay edge connecting pi with pj.

Figure 2.2 shows an example of the definitions for a better understanding.
We can easily notice that adjacent regions, as A and F in 2.2b, have a common
boundary (denoted by the red line) and have an edge between them in the
Delaunay triangulation (2.2d). In contrast, nonadjacent regions (E and F in
2.2c) have no common boundaries and no edges connecting them.

Remark 2.4 Considering Y = φ(X) we have Y ⊂ S(
√
d) and the set hij is also

the hyperplane through the center of the segment ÐÐ⇀pipj with normal n⃗ = pj − pj.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 22

The segment ÐÐ⇀pipj is a chord of S(
√
d) so it follows that hij passes trough the

origin, being alternatively defined as hij ∶= n⃗ ⋅ x = 0 for x ∈ Rd.

(a) Voronoi diagram (b) Adjacent regions

(c) Non adjacent regions (d) Delaunay triangulation

Figure 2.2: Example of a Voronoi diagram: (a) the original Voronoi diagram; (b)
two adjacent regions are highlighted; in red, we can see their shared boundary;
(c) two nonadjacent regions are highlighted; they do not share a boundary; (d)
the corresponding Delaunay triangulation.

2.2.1
Voronoi Diagram of a Polytope

Let V = V(φ(X)) be the unique Voronoi diagram associated to P with
its correspondent Delaunay triangulation D = D(φ(X)). The main result in
this subsection regards the existing relation between S(P), the skeleton of P,
and D. To achieve this, we need the following proposition presented by Ziegler
(1995).

Proposition 2.5 (Affine Isomorphism) Two polytopes P ⊂ Rd and Q ⊂ Re

are affinely isomorphic, denoted by P ≅ Q, if there is an affine map f ∶ Rd → Re

that is a bijection between the points of the two polytopes. (Note that such a
map need not be injective or surjective on the spaces Rd and Re).

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 23

Remark 2.6 (Affine Maps) Let Y ∈ Rd and Z ∈ Re. We say that f ∶ Y → Z

is an affine map if there exists a linear map mf ∶ Rd → Re such that
mf(x − y) = f(x) − f(y) for all x,y ∈ Y .

Now we are ready to state the theorem that establishes the equivalence
we want. Associated with Lemma 2.3 and Equation (2-7), this theorem provides
a way to compute the Voronoi faces for a polytope, which will be explored in
the next chapter.

Theorem 2.7 (Equivalence of Polytopes and Voronoi Diagrams) Let
X as defined previously, with its associated polytope P. Then, S(P) is equivalent
to D, in the sense that (pi,pj) is an edge in S(P) if, and only if, (pi,pj) is a
Delaunay edge.

Proof. To prove this result we need to show that two points pi,pj ∈ P are
adjacent in P ⊂ Rd if, and only if, λ(pi) and λ(pj) are adjacent in Q ⊂ Rd+1.
To achieve this we will prove a stronger result; we will show that P ≅ Q, thus
their structure (along with their adjacency relations) is equivalent.

Reminding that we are working with points in φ(X) ⊂ S(
√
d), our

candidate for the affine map is already given by the definition of Q as
λ(x) = (x1, x2, . . . , xd, d). We have to prove that: (a) λ is an affine map and (b)
it is a bijection between P and Q. Since these conditions are quite clear from
the definition of λ, we will not go into too much detail.
(a) Consider mλ(x) = (x1, x2, . . . , xd,0). Firstly, mλ is a linear map:

mλ(cx + y) = (c ⋅ x1 + y1, c ⋅ x2 + y2, . . . , c ⋅ xd + yd,0)
= c ⋅ (x1, x2, . . . , xd,0) + (y1, y2, . . . , yd,0)
= c ⋅mλ(x) +mλ(y)

We can also easily verify that

mλ(x − y) = (x1 − y1, x2 − y2, . . . , xd − yd,0)
= (x1 − y1, x2 − y2, . . . , xd − yd, d − d)
= (x1, x2, . . . , xd, d) − (y1, y2, . . . , yd, d)
= λ(x) − λ(y)

Therefore, based on Remark 2.6, we have shown that λ is an affine map.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 24

(b) The surjectivity of λ is trivial, because of the definition of Q. To show
injectivity take x,y ∈ P and assume that λ(x) = λ(y). Then,

λ(x) = λ(y) ⇒ (x1, x2, . . . , xd, d) = (y1, y2, . . . , yd, d)
⇒ xi = yi,1 ≤ i ≤ d
⇒ x = y

From (a) and (b), we have shown the conditions established in Proposition
2.5. Therefore, the two polytopes are affinely isomorphic, and skeleton edges
are equivalent to Delaunay edges. ∎

2.3
Nearest Neighbor Search

Several combinatorial optimization problems can be thought of as search
problems for the optimum of a linear functional over the vertices of a convex
polytope. It happens that when the vertices are points of {0,1}d and our goal
is minimizing the linear function, we can reduce our problem to a Nearest
Neighbor Search. The Nearest Neighbor Search problem is defined as the task
of finding the nearest point to a query point c among m points in Rd, and it is
closely related to Voronoi diagrams.

The next theorem will show the map we use to transform one problem
into another, and it will prove the equivalence between them. Exploring this
relation will give us a simple approach to search for the optimal vertex, as we
will show in the next chapter.

Theorem 2.8 (Minimization and Nearest Neighbor Search) Let X as
defined previously and c ⊂ Rd. Then the following are equivalent:

(a) x∗ = arg minx∈X fc(x)

(b) φ(x∗) = arg minx∈φ(X) ∥c − x∥2

Proof. For a fixed c and recalling that ∥x∥ =
√
d for all x ∈ φ(X) we can apply

Proposition 2.1:

x∗ = arg min
x∈X

fc(x) ⇔ x∗ = arg max
x∈X

fc(φ(x))

⇔ x∗ = arg min
x∈X

−fc(φ(x))

⇔ φ(x∗) = arg min
x∈φ(X)

−fc(x)

⇔ φ(x∗) = arg min
x∈φ(X)

∥c − x∥2

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 2. Preliminaries 25

∎

Remark 2.9 We can conclude from this equivalence that a point pi ∈X is the
optimal solution for the minimization of fc(x) if, and only if, c ∈ Vi, where Vi
is the associated Voronoi face with respect to φ(X).

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

3
Construction

Given a set X, we compute P with its skeleton as described in Section
2.1. Then, for each pair of vertices, (pi,pj), we define the bisector hij as shown
in Remark 2.4 with the associated function hij(x) = n⃗ ⋅ x. Also, we define the
sets of hyperplanes H = {hij ∣ i < j} and H+ = {hij ∣ i ≠ j}, with H = ∣H∣.

For χ ⊂ H+ with ∣χ∣ = r, we call R(χ) = {x ∣ h(x) ≥ 0 ∀h ∈ χ} the
r-restricted region of χ. Given a set χ and a hyperplane h ∈ H, we say that h
divides R(χ) and denote it by h ∣ χ if there exits a,b ∈ R(χ) such that h(a) > 0
and h(b) < 0. Otherwise we say that h does not divide R(χ) and denote it by
h ∤ χ. Additionally, we say that a point x is on the right of h, notated by x ≻ h,
if h(x) ≥ 0, while if h(x) < 0 we say that x is on the left of h, notated by x ≺ h.
Therefore, when h ∤ χ we can further classify their relation saying that χ ≻ h
(χ ≺ h) if for all x ∈ R(χ) we have x ≻ h (x ≺ h).

For each point pi ∈ P we define χi, the set of limiting hyperplanes, as

χi = {hij ∣ (pi,pj) ∈ E(S)}

and, consequently, we have R(χi) = cl(Vi), where cl(⋅) denotes the closure
operator. Note that for a given edge (pi,pj) the hyperplane hij is in χi whereas
the hyperplane hji is in χj . While hij = hji as sets, when regarding their normal
form they present opposite normal vectors and we say that hij = −hji.

Our goal is to define a decision tree that uses the hyperplanes in H as
comparisons in each node. This tree must be constructed in a way that for any
point c ∈ Rd defining the function fc, the traversal of tree should provide the
region Vi that contains c.

We can easily construct such comparisons with a simple enumeration-like
process, where in each node we consider the hyperplane hij, with pi and pj

being possible solutions. In this way, at each step we decide whether the point
c is closer to pi or pj. Then the derived node on the right will have all previous
solutions except pi, and the node on the left will have all previous solutions
except pj. This process gives an initial upper bound of O(n) hyperplane
comparisons to solve the problem. To achieve the optimal solution with fewer
comparisons, we construct a decision tree that will exploit the results of the
previous comparisons to refine the search space.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 27

3.1
The Decision Tree

A node η in the tree can be defined as the tuple (χη, hη, δη, ηLh , ηRh) with
five elements: (a) the hyperplanes delimiting its region, with R(χη) ≠ ∅; (b)
the best known hyperplane to be used as comparison; (c) the minimal known
number of comparisons to classify the solutions using the chosen hyperplane;
(d) the node corresponding to the region on the left of the hyperplane; and (e)
the node corresponding to the region on the right of the hyperplane. Associated
to each node η we also have the following properties:

– ∆η = {h ∈ H ∣ h ∣ χη}, the set of divider hyperplanes;
– Ση = {pi ∈ P ∣ R(χη) ∩ Vi ≠ ∅}, the set of contained solutions;
– Dη = ∣∆η ∣, the number of divider hyperplanes;
– Sη = ∣Ση ∣, the number of contained solutions;
– dη = ∣χη ∣, the distance from the root.

Initially, we can create a node with just the set of hyperplanes χη. In
this case we write η = (χη) to say that η = (χη, h∞,∞, η∞, η∞) where h∞ and
η∞ are placeholders to indicate that those elements are not defined yet. When
χη = ∅ we say that R(χη) = Rd and we denote the associated node by η0 = (∅).

New nodes can be obtained from a given node η and a hyperplane h in
two ways: (a) a right derivation, generating ηRh = (χη ∪ {h}), the right node
derived through h; and (b) a left derivation, generating ηLh = (χη ∪ {−h}), the
left node derived through h. When no solution is contained in the region derived
from a node we also denote that by the special node η∞.

Therefore we have three types of nodes: (a) unexplored nodes of the form
(χη, h∞,∞, η∞, η∞); (b) explored leaf nodes of the form (χη, h∞,0, η∞, η∞);
and (c) explored internal nodes (χη, hη, δη, ηLh , ηRh), with both ηLh and ηRh being
explored nodes, and δη < ∞.

We say that a set of nodes N defines a valid tree T = T (N) if the following
conditions are true:

– η0 ∈ N ;
– ∀η ∈ N , δη < ∞;
– ∀η ∈ N , either ηLh ∈ N or ηLh = η∞;
– ∀η ∈ N , either ηRh ∈ N or ηRh = η∞;

Finally, for any given tree T we define its depth as d(T) = maxη∈N dη
where η is a node that be be reached from the root. Among all valid trees T our
goal is two find the minimal tree T ∗ based on comparisons over the hyperplanes
in H such that T ∗ = arg minT ∈T d(T).

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 28

3.2
The Algorithm

To construct the optimal decision tree we apply a Dynamic Programming
approach, considering the function δ ∶ N → N, the minimal depth of a node η
defined as:

δ(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if Sη = 1

1 if Sη = 2

minh∈∆η max{δ(ηLh), δ(ηRh)} + 1 otherwise

(3-1)

Note that for any pair of points pi,pj ∈ Ση with i < j, hij ∈ ∆η, which
allows us to solve all cases, as in the worst case the enumeration method
mentioned in the beginning of the chapter can be applied. Also, we know that
R(χηR

h
) ⊂ R(χη) and R(χηL

h
) ⊂ R(χη) because we only consider the hyperplanes

in ∆η. This two conditions guarantees us that the algorithm will terminate,
and we will find the optimal solution.

Using these functions, the basic process to compute the optimal tree
is described in Algorithm 1. We consider the set of nodes N as a record in
memory indexed by the corresponding regions. Associated with it we have the
functions MemorizeNode(η) and UpdateNode(η). MemorizeNode(η) will update
the values of hη, δη, ηLh , ηRh for the region χη in N , or it will create a new record
for the region χη if none is found. UpdateNode(η) will check whether there is a
record for the given region in N and retrieve the information stored into the
node η. Then we have d(T ∗) = BuildTree(η0) and the tree can be obtained
from N by starting at node η0 and following their children.

3.3
Implementation

To implement the previous algorithm, we take advantage of previous values
using additional structures that allow us to compute the sets and functions
described in the earlier sections more efficiently. We also avoid keeping many
copies of points and hyperplanes by storing them in a single place and keeping
only the corresponding indexes.

We represent the regions as a list of the indexes of the hyperplanes that
delimit it. Positive values indicate the half-space on the right of the hyperplane,
whereas negative values indicate the half-space on the left of it. We also enforce
an ordering of this list considering the absolute value of the indexes. Therefore,
the list [1,−3,4,5] is the unique representation for the region whose set of
limiting hyperplanes is χ = {h1,−h3, h4, h5}.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 29

Algorithm 1: Calculate minimal tree
Input: A node η
Output: δη, the minimal depth of η

1 function BuildTree(η):
2 UpdateNode(η)
3 if δη < ∞ then
4 return δη

5 Compute Ση and ∆η

6 if Sη = 1 then
7 δη ← 0
8 MemorizeNode(η)
9 return 0

10 else if Sη = 2 then
11 δηL

hij

← 0
12 δηR

hij

← 0
13 hη ← hij
14 δη ← 1
15 MemorizeNode(ηLhij)
16 MemorizeNode(ηRhij)
17 MemorizeNode(η)
18 return 1
19 else
20 upperBound ← Sη − 1
21 lowerBound ← ceil(log(Sη))
22 foreach h ∈ ∆η do
23 dLeft ← BuildTree(ηLh)
24 if dLeft < δη then
25 dRight ← BuildTree(ηRh)
26 if dRight < δη then
27 hη ← h
28 δη ← max(dLeft,dRight) + 1
29 upperBound← δη

30 if upperBound = lowerBound then
31 break

32 MemorizeNode(η)
33 return δη

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 30

With this representation we can store the set of nodes N as a hash table.
We use the hash function BLAKE2 (Aumasson et al., 2013) to generate the
hash digests of the lists (as strings). This hash function is faster than MD5,
SHA-1, SHA-2, and SHA-3 and has been adopted by many projects due to
its high speed, security, and simplicity. In our case, it will work as a quick way
to consult the previously computed values.

The next subsections will go into more details of the implementation for
the steps described before: (a) how we determine the adjacencies on a polytope;
(b) how we decide whether a given hyperplane h divides the region R(χ); (c)
how we keep track of Ση and ∆η when deriving new nodes; and (d) how we
sort ∆η to improve the computations.

3.3.1
Checking adjacencies

Consider the set Λij = {λ ∈ Rm ∣ λ ≥ 0} subjected to the additional
following constraints:

∑
k≠i,j

λkpk = λipi + λjpj pk ∈ P (3-2)

∑
k≠i,j

λk = 1 1 ≤ k ≤m (3-3)

λi + λj = 1 1 ≤ i < j ≤m (3-4)

Based on the last statement of Lemma 2.3 we know that pi and pj will
be adjacent if, and only if, Λij = ∅. Therefore, to determine the adjacencies on
a polytope P we apply Algorithm 2, which uses a Linear Programming (LP)
model, to obtain a list of all adjacent pairs.

Algorithm 2: Determine adjacencies
Input: Polytope P
Output: Array containing the adjacent pairs

1 function DetermineAdjacencies(P):
2 adjacencies ← []
3 for i← 0 to m do
4 for j ← i + 1 to m do
5 Create a LP with restrictions (3-2), (3-3), and (3-4)
6 if problem does not have a feasible solution then
7 Insert (pi,pj) into adjacencies

8 return adjacencies

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 31

3.3.2
Determining the position of a region

As defined previously, to check whether h ∣ χ we need to verify the
existence of two distinct point a,b in R(χ) located in opposite sides of h. In
order words, these points must satisfy the following equations:

hχ(a) ≥ 0 ∀hχ ∈ χ (3-5)

hχ(b) ≥ 0 ∀hχ ∈ χ (3-6)

h(a) ≥ ε (3-7)

h(b) ≤ ε (3-8)

We accomplish this by dividing the intersection problem into two
subproblems: PositionR(h, χ) and PositionL(h, χ). For each subproblem
we create the corresponding LP model that we solve for feasibility. Algorithm
3 shows the two subproblems. Based on these subproblems we say that:

– h ∣ χ if PositionR(h, χ) = True and PositionL(h, χ) = True

– χ ≻ h if PositionR(h, χ) = True and PositionL(h, χ) = False

– χ ≺ h if PositionR(h, χ) = False and PositionL(h, χ) = True

Algorithm 3: Determine positions
Input: Hyperplane h and region limiting hyperplanes χ
Output: Whether there is a point satisfying the constraints

1 function PositionR(h, χ):
2 Create a LP with restrictions (3-5) and (3-7)
3 return whether problem has a feasible solution

4 function PositionL(h, χ):
5 Create a LP with restrictions (3-6) and (3-8)
6 return whether problem has a feasible solution

Note that each linear programming model contains d variables (the space
dimension) and r+1 equations, where r ≤H. We denote by `(d,H) the number
of operations to solve each subproblem, in the worst case.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 32

3.3.3
Selecting contained solutions and divider hyperplanes

Given χη, the set of hyperplanes delimiting a node’s region, recall that Ση

is the set of solutions contained in R(χη), with Sη = ∣Ση ∣. Our goal is to compute
the elements in this set in a way that we avoid unnecessary calculations. To
achieve this, we show how to obtain the set of contained solutions for the
derived nodes, ΣηL

h
and ΣηR

h
, given Ση.

We want to determine the positions of the solutions in Ση relative to a
hyperplane h ∈ ∆η, the set of dividing hyperplanes. Thus, for each solution
pi ∈ Ση we use the method described in Subsection 3.3.2 to say that:

– h divides Vi in R(χη), notated by h ∣χη Vi, if h ∣ (χη ∪ χi)

– Vi is on the right of h in R(χη), notated by Vi ≻χη h, if (χη ∪ χi) ≻ h

– Vi is on the left of h in R(χη), notated by Vi ≺χη h, if (χη ∪ χi) ≺ h

Now we define two functions to determine the set of solutions on each
side of h in R(χη). ΓL ∶ N ×H → 2Σ gives the set of solutions of the left of h,
while ΓR ∶ N ×H → 2Σ gives the set of solutions on the right. These functions
are defined as:

ΓL(η, h) = {pi ∈ Ση ∣ Vi ≺χη h} and ΓR(η, h) = {pi ∈ Ση ∣ Vi ≻χη h}

Using these functions we keep track of the possible solutions in each node
more easily. Instead of computing the set Ση for each node we start by defining
Ση0 ∶= φ(X). Then each time we derive the nodes ηRh and dηLh from η we say that
ΣηL

h
∶= Ση ∖ ΓR(η, h) and ΣηR

h
∶= Ση ∖ ΓL(η, h), with SηL

h
= ∣ΣηL

h
∣ and SηR

h
= ∣ΣηR

h
∣.

Note that, if h ∣χη Vi we have pi as a possible solution on both nodes.
The computed values of the Γ functions can also determine the set of

divider hyperplanes. If one side of a hyperplane h contains all the solutions and
the other contains none, this hyperplane does not intersect the region defined
by χη. So we alternatively say that h ∣ χη if, and only if, both SηL

h
and SηR

h

are greater than zero. Start with ∆η0 ∶= H. Then for each derivation we let
∆ηh ∶= {h′ ∈ ∆η ∣ h′ ≠ h and h′ ∣ χη}. Note that the set of diving hyperplanes is
the same for both derived nodes.

To determine the sets of possible solutions relative to a single hyperplane,
we need to solve Sη intersection problems instead of m if we considered the
definition. To determine the divider hyperplanes, we must repeat this process
for all hyperplanes in ∆η. Therefore, in each node we execute this process with
a complexity of O(Dη ⋅ Sη ⋅ `(d,H)) operations. Instead of computing Ση and

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 33

∆η each time, this approach allows us to exchange a fixed number of problems
for a decreasing one since the sets Ση and ∆η are monotonically decreasing.

Now we improve the algorithm we have in two ways. First, we extend
the representation of a node to include two more elements. A node η is now
defined as the tuple (χη, hη, δη, ηLh , ηRh ,Ση,∆η). When created, the node η = (χη)
represents the tuple η = (χη, h∞,∞, η∞, η∞,Ση,∆η), where the last two sets
are obtained as described before. Second, we add another hash table indexed
by the region χη, P, that will store the pair (ΣηL

h
,ΣηR

h
) for each hyperplane in

∆η. We use a map that takes the indexes of the hyperplanes as keys and the
previous pairs as values.

Algorithm 4 shows how the step described in line 5 of Algorithm 1 is
implemented Also, when creating the nodes ηLh and ηRh , in lines 23 and 25, we
set their solutions and hyperplanes using P as a reference. The solutions can
be retrieved directly by accessing P[χη][h]. The set of divider hyperplanes is
computed as the hyperplanes in ∆η that have a nonempty list of left and right
solutions in P[χη].

Algorithm 4: Compute Σ and ∆ for the children of η
Input: Node η

1 function ComputeSigmaDelta(η):
2 foreach h ∈ ∆η do
3 if P[χη] does not contain key h then
4 Initialize leftSolutions and rightSolutions as an empty lists
5 foreach i ∈ Ση do
6 if PositionR(h,χη ∪ χi) then
7 Insert i into rightSolutions
8 if PositionL(h,χη ∪ χi) then
9 Insert i into leftSolutions

10 P[χη][h] ← (leftSolutions, rightSolutions)

3.3.4
Sorting the divider hyperplanes

Since we have to test all hyperplanes to find the best one, we propose a
heuristic to select an order that should yield better results. This heuristic is
based on the greedy intuition that the “best” hyperplane is the one that best
separates the solutions, in the sense that the number of solutions on each side
is as equal as possible while avoiding repeated solutions on both sides.

For a given node with region χη and a hyperplane h, we consider the
values of Sη, SηL

h
, and SηR

h
as defined in Subsection 3.3.3. Our goal is to define a

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 34

function µ̂Sη ∶ N×N→ R such that h∗ = arg minh∈∆η
µ̂Sη(SηLh , SηRh) is the “best”

hyperplanes to separate the solutions in R(χ).
Given a pair of natural numbers (x, y), we call it a possible split

configuration if Sη ≤ x + y ≤ 2Sη. We want µ̂Sη to represent a total ordering in
the space of possible split configurations, where smaller values of µ̂Sη indicate
better candidates. To achieve this we expect this function to have the the
following properties:

(a) µ̂Sη(x, y) = µ̂Sη(y, x)

(b) µ̂Sη(x1, y1) = µ̂Sη(x2, y2) if (x1, y1) = (x2, y2) or (x1, y1) = (y2, x2)

(c) µ̂Sη(x1, y) ≤ µ̂Sη(x2, y) if x1 ≤ x2

(d) µ̂Sη(x1, y1) ≤ µ̂Sη(x2, y2) if x1 + y1 = x2 + y2 and x2 ≤ x1 ≤ y1 ≤ y2

Each of these properties indicates different characteristics we want: (a)
indicates symmetry, because it should not matter the hyperplane side where the
solutions lie, only their cardinality; (b) enforces a total ordering and guarantees
that no additional tie-breaking criteria are required, since no two different
configurations would have the same value of µ̂Sη ; (c) says that we should always
prefer a configuration that has the least total number of solutions; and (d)
known as the Pigou-Dalton Transfer Principle (Fleurbaey and Trannoy, 2003)
stipulates that when two configurations have the same total number of solutions,
the one with the smallest difference between the two sides should be preferred.

Let z = ⌈Sη2 ⌉, then we define a function µ̂Sη for Sη ≤ x + y ≤ 2Sη as:

µ̂Sη(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(y − z + 1)2 − (y − x) if x ≤ y and s is even

[(y − z + 1)2 + (y − z + 1)] − (y − x) if x ≤ y and s is odd

µ̂Sη(y, x) if x > y

An example for Sη = 8 and Sη = 7 is shown in Table 3.1 and 3.2, respectively.
Note that the values in the main diagonal (in blue) are defined by the first term
in the equation, while the second term is responsible for the displacements of
the previous values. We can verify in the table that the four properties hold for
the function we defined:

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 35

(a) the last case guarantees the symmetry in the function definition;

(b) the table shows that the only repeated values occur for the pairs of
symmetrical configurations;

(c) the values in all rows and columns are continuously increasing;

(d) the values in the diagonal defined by x+y = k for some value of k decrease
as it approaches the main diagonal.

0 1 2 3 4 5 6 7 8
0 - - - - - - - - 17
1 - - - - - - - 10 18
2 - - - - - - 5 11 19
3 - - - - - 2 6 12 20
4 - - - - 1 3 7 13 21
5 - - - 2 3 4 8 14 22
6 - - 5 6 7 8 9 15 23
7 - 10 11 12 13 14 15 16 24
8 17 18 19 20 21 22 23 24 25

Table 3.1: Values of µ̂Sη for an even value of Sη

0 1 2 3 4 5 6 7
0 - - - - - - - 13
1 - - - - - - 7 14
2 - - - - - 3 8 15
3 - - - - 1 4 9 16
4 - - - 1 2 5 10 17
5 - - 3 4 5 6 11 18
6 - 7 8 9 10 11 12 19
7 13 14 15 16 17 18 19 20

Table 3.2: Values of µ̂Sη for an oddvalue of Sη

Before running Algorithm 1, we calculate all possible ordering tables of
µ̂Sη and store than in a 3D array L, where L[Sη] references the values of µ̂Sη
for Sη. Consequently, the value of µ̂Sη(x, y) is given by L[Sη][x][y]. When
creating each node η, as described in the last paragraph of Subsection 3.3.3, we
compute the value of µ̂η(h) = µ̂Sη(SηLh , SηRh) for each hyperplane in ∆η, using
the values stored in P as inputs.4 Then we sort the set ∆η in ascending order of
the values µ̂η(h)5, so the first hyperplanes of ∆η would always have the “best”
results.

4If P does not have the values, we compute and store them as described in the last
Subsection.

5Since the sets are implemented as lists, it makes sense to talk about their order.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 36

3.4
Iterative Tree with Sampling

Constructing the optimal tree exploring all possible hyperplanes as
described in Algorithm 1 can take much time, even with the structures we used.
In this way, we need to evaluate a node thoroughly, find its minimal depth, and
only then can we start taking advantage of the bounds we get. Besides that,
we only get a valid tree at the end, which can take an impracticable amount of
time.

To get around these issues, we propose a slightly different approach based
on a relaxation of the function δ(η). We consider the function δ(η, κ) that is
defined like in Equation 3-1 but instead of considering all hyperplanes in ∆η it
considers only the first κ hyperplanes in the ordered set. Note that a particular
case for the iterative process happens when κ = 1. This case is equivalent to a
greedy solution where at each node, we always choose hη as the first element
in ∆η.

With this approach we can compute each node iteratively up to optimality,
increasing the value of κ. At each iteration we obtain a valid tree Tκ such that
d(Tκ2) ≤ d(Tκ1) if κ2 > κ1. When dealing with the bounds, we can use the value
of d(Tκ−1) as an upper bound for the minimum depth at iteration κ, so we do
not have to explore nodes that are deeper than what we already have. However,
we cannot update the lower bound anymore because our results are not optimal
yet.

The iterative process allows us to obtain valid trees and limit the search
space by using the upper bounds faster. Still, it takes much time because of
the number of operations performed in the computation of contained solutions
and divider hyperplanes (Dη ⋅Sη ⋅ `(d,H)). A way to speed up the process is to
avoid evaluating the positions of all Dη hyperplanes.

We introduce a strategy of randomly selecting a portion of the hyperplanes
to evaluate at each iteration. This strategy is defined by the parameter s that
represents the percentage of hyperplanes to be evaluated. Still, to guarantee
that the number of solutions keeps decreasing at each iteration, we first favor
the hyperplanes that split the pair of solutions in that node.

This strategy affects directly the behavior of Algorithm 4. Its up-
dates version with all modifications is shown in Algorithm 5. A last ex-
tension is made to the node representation to include the number κ of hy-
perplanes computed. So our final representation for a node η is the tuple
η = (χη, h∞,∞, η∞, η∞,Ση,∆η, κη), where κη is initialized with zero when the
node is created.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 37

Algorithm 5: Compute Σ and ∆ for the children of η with sampling
Input: Node η and percentage of hyperplanes s

1 function ComputeSigmaDelta(η, s):
2 if P does not contain key χη then
3 Sort ∆η to place the bisectors of the solutions in Ση first

4 evaluatedHyperplanes ← 0
5 numberHyperplanes ← min(1,ceil(s ⋅ Sη))
6 foreach h ∈ ∆η do
7 if P[χη] does not contain key h then
8 Initialize leftSolutions and rightSolutions as an empty lists
9 foreach i ∈ Ση do

10 if PositionR(h,χη ∪ χi) then
11 Insert i into rightSolutions
12 if PositionL(h,χη ∪ χi) then
13 Insert i into leftSolutions

14 P[χη][h] ← (leftSolutions, rightSolutions)
15 Increment evaluatedHyperplanes
16 if evaluatedHyperplanes ≥ numberHyperplanes then
17 break

18 Sort the evaluated hyperplanes in ∆η in ascending of order of µ̂Sη

Algorithm 6 shows the final version of the algorithm to build trees
iteratively and considering the sampling. For simplicity, in the base cases
(lines 8 and 13), we just added the additional lines and omitted the others that
are the same from Algorithm 1. The function BuildTree(η, κ, s) can be called
iteratively starting with the value of κ = 1 up to κ =H. Note that the greedy
case we mentioned before, with the addition of the sampling, is equivalent to
calling BuildTree(η,1,1.0).

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 3. Construction 38

Algorithm 6: Calculate minimal tree iteratively with sampling
Input: Node η, number of hyperplanes to consider κ, and percentage of

hyperplanes s
Output: δ(η, κ), the depth of η considering κ hyperplanes

1 function BuildTree(η, κ, s):
2 UpdateNode(η)
3 if κη ≥ κ then
4 return δη

5 ComputeSigmaDelta(η, s)
6 if Sη = 1 then
7 κη ←H
8 ⋯
9 else if Sη = 2 then

10 κηL
hij

←H

11 κηR
hij

←H

12 κη ←H
13 ⋯
14 else
15 upperBound ← min(Sη − 1, δη)
16 lowerBound ← ceil(log(Sη))
17 foreach hi ∈ ∆η do
18 dLeft ← BuildTree(ηLh , κ, s)
19 if dLeft < δη then
20 dRight ← BuildTree(ηRh , κ, s)
21 if dRight < δη then
22 hη ← h
23 δη ← max(dLeft,dRight) + 1
24 upperBound← δη

25 if upperBound = lowerBound or i ≥ κ then
26 break

27 if upperBound = lowerBound then
28 κη ←H
29 else
30 κη ← κ

31 MemorizeNode(η)
32 return δη

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

4
Applications

The LDT is a good model of computation for dealing with many concrete
problems in which the input data can be treated just as a vector in a d-
dimensional Euclidean space, and all solutions of the problem correspond to a
partitioning of the space into regions bounded by hyperplanes (Kolinek, 1987).

Among the problems with such geometrical character, we can find
variations of the shortest paths (e.g., the travelling salesman), the knapsack, and
integer linear programming, which are considered hard combinatorial problems,
particularly when we allow the input entries to assume both positive and
negative values.

4.1
Problems

We select three problems of different natures to study the behavior of
our method. First, the 0-1 knapsack problem (in the case we consider) can be
solved in polynomial time with a dynamic programming approach. Then, the
weighted minimum cut problem has a known polynomial-time algorithm if the
entries are positive. However, when we allow both positive and negative values,
this problem becomes NP-complete. Lastly, the symmetric traveling salesman
is NP-complete even with positive entries.

4.1.1
The 0-1 Knapsack Problem (KNP)

Given a set of n items numbered from 1 up to n, each with a weight wi
and a value vi, the problem consists of choosing a collection of the items so
that the total weight is less than or equal to a given limit W and the total
value is as large as possible. We consider the particular case where each item
has weight wi = i and the weight limit is W = n.

The space dimension d is the same as the number of items, and if we let
a(n) be the number of partitions of n into distinct parts6, then the number of
possible solutions7 is

m = ∑
1≤i≤n

a(i).

6https://oeis.org/A000009
7https://oeis.org/A026906

https://oeis.org/A000009
https://oeis.org/A026906
DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 4. Applications 40

This problem can be expressed in our model as: given an input c ∈ Rd
+

representing the values of each item and the set X ⊂ {0, 1}d of possible solutions;
our goal is to find x∗ ∈X such that f−c(x∗) = minx∈X f−c(x). Each coordinate
of x∗ indicates whether the corresponding item is included in the optimal
collection, and the total value is given by fc(x∗).

4.1.2
The Weighted Minimum Cut Problem (CUT)

Given an undirected graph G with n nodes numbered from 1 up to n
and positive weights on the edges, this problem consists in partitioning the
nodes into two disjoint subsets such that the weights of the edges across the
subsets are minimal. We consider the particular case where G is required to be
connected.

In this case, the space dimension is the same as the number of node pairs
d = (n2), and the number of possible solutions is half the number of subsets of
the nodes excluding the empty set and the set itself, m = 2n−1 − 1.

In our model we say that, given an input c ∈ Rd of the edge values of
G where a value ci = 0 indicates that the graph does not contain the edge
i and the set of solutions X ⊂ {0,1}d; our goal is to find x∗ ∈ X such that
fc(x∗) = minx∈X fc(x). The nonzero coordinates of x∗ indicates the edges to be
removed to obtain the minimum cut, and fc(x∗) is the total weight of that cut.

4.1.3
The Symmetric Travelling Salesman Problem (TSP)

Given a set of n cities numbered from 1 up to n and the distances between
each pair of cities, the problem consists of finding the shortest possible route
that visits each city exactly once and returns to the origin city.

In the symmetric case, the space dimension is also the same as the number
of city pairs d = (n2), but the number of possible solutions is half the number of
circular permutations, m = (n−1)!

2

Converting to our model: given an input c ∈ Rd
+ of the edge values of G

and the set X ⊂ {0,1}d of possible solutions; our goal is to find x∗ ∈ X such
that fc(x∗) = minx∈X fc(x). The nonzero coordinates of x∗ indicate the edges
in the optimal route, and fc(x∗) is the total distance in that route.

4.2
Baseline Methods

To compare the performance of the proposed method, we selected a
baseline method for each of the problems. Table 4.1 shows these methods

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 4. Applications 41

and their corresponding complexities in the worst case, replacing the general
variables for their values in the cases we selected.

Problem Method Time Complexity
KNP Dynamic programming O(n2)
CUT Stoer–Wagner algorithm O(n3 + n2 logn)
TSP Dynamic programming O(n22n)

Table 4.1: Baseline methods and complexities

As previously mentioned, not all problems are NP-hard, so some of them
present a polynomial-time complexity that we discuss now. The classical version
of the 0-1 knapsack problem is NP-complete, and the dynamic programming
approach to solve has a complexity of O(nW). However, for the particular
considered where W = n, it can be quickly solved in polynomial time in O(n2).
The Stoer-Wagner algorithm (Stoer and Wagner, 1997) is a recursive algorithm
to solve the weighted minimum cut problem in undirected weighted graphs. Its
complexity is O(V ⋅E + V 2 log(V)) with V being the number of nodes and E
the number of edges. In our case, that complexity translates to O(n3 +n2 logn)
since we consider graphs with about half of the edges, as we further detail
in the experiments. Lastly, in the symmetric traveling salesman problem, the
dynamic programming approach is also non-polynomial, and we maintain the
usual time complexity of O(n22n).

To use these methods, we implement both dynamic programming
algorithms and use the Boost implementation of the Stoer-Wagner algorithm8.
Note that while the Stoer-Wagner algorithm can only handle the cases with non-
negative weights, the dynamic programming for the two problems mentioned
can handle both positive and negative inputs.

8https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/stoer_wagner_min_
cut.html

https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/stoer_wagner_min_cut.html
https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/stoer_wagner_min_cut.html
DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

5
Experiments and Results

In this chapter we explore the problems studied with the selected
polytopes, detailing their characteristics and discussing the issues faced. We
call a problem the tasks defined in Section 4.1 that can be executed for any
case. A polytope is the particular case when we fix a value of n and an instance
is the point whose values correspond to a particular objective function for a
polytope. Thus, we say that KNP is the knapsack problem, KNP-n3 is the
knapsack polytope for the case with 3 items, and (0.5,0.2,0.4) is an instance
for the KNP-n3 polytope.

The following sections will discuss: (a) the structure of the polytopes
and the computation of their skeletons; (b) the construction process for the
decision trees of each polytope; (c) the generation of the instances used in the
benchmark sets; and (d) the performance evaluation of the method proposed.

5.1
Polytopes and Structure

When producing the decision tree of a polytope, the first step is to
describe its skeleton completely, with all adjacent pairs. As mentioned before,
the task of checking adjacency in some polytopes is an NP-complete problem
(Papadimitriou, 1978). Therefore, we already face an issue regarding the
computation of the skeletons. Due to their number of solutions, the skeletons for
the KNP polytopes were straightforward to compute. For the CUT polytopes,
there is a known result stating that every pair of vertices is adjacent (Barahona
and Mahjoub, 1986). So for this polytope, no testing was required. However,
the TSP polytopes represented quite an extensive task.

Table 5.1 presents the polytopes with basic attributes and additional
information regarding their skeletons. In order we have: (a) the size n given by
the problem; (b) the space dimension d where the points are inserted; (c) the
number of possible solutions m; (d) the total number of unique hyperplanes H;
(e) the number of unique hyperplanes corresponding to skeleton edges; (f) the
number of edges in the skeleton graph; and (g) the average number of neighbors
for each vertex.

From this data, we notice two interesting things. First, when we compare
the number of skeleton hyperplanes with the number of edges (in the KNP and
TSP polytopes), we note that their proportion seems to present a decreasing

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 43

Po
ly
to
pe

Si
ze

D
im

en
sio

n
So

lu
tio

ns
To

ta
lH

yp
er
pl
an

es
Sk

el
et
on

H
yp

er
pl
an

es
Ed

ge
s

Av
er
ag
e
N
ei
gh

bo
rs

K
N
P-

n3
3

3
4

6
6

6
3.
00

K
N
P-

n4
4

4
6

13
11

13
4.
33

K
N
P-

n5
5

5
9

27
20

29
6.
44

K
N
P-

n6
6

6
13

59
32

51
7.
85

K
N
P-

n7
7

7
18

11
0

53
91

10
.1
1

K
N
P-

n8
8

8
24

18
9

76
14
1

11
.7
5

K
N
P-

n9
9

9
32

32
7

12
3

23
3

14
.5
6

K
N
P-

n1
0

10
10

42
53
3

17
6

34
9

16
.6
2

C
U
T
-n
3

3
3

3
3

3
3

2.
00

C
U
T
-n
4

4
6

7
21

21
21

6.
00

C
U
T
-n
5

5
10

15
10
5

10
5

10
5

14
.0
0

C
U
T
-n
6

6
15

31
46
5

46
5

46
5

30
.0
0

C
U
T
-n
7

7
21

63
19
53

19
53

19
53

62
.0
0

C
U
T
-n
8

8
28

12
7

80
01

80
01

80
01

12
6.
00

C
U
T
-n
9

9
36

25
5

32
38
5

32
38
5

32
38
5

25
4.
00

C
U
T
-n
10

10
45

51
1

13
03
05

13
03
05

13
03
05

51
0.
00

T
SP

-n
4

4
6

3
3

3
3

2.
00

T
SP

-n
5

5
10

12
36

30
60

10
.0
0

T
SP

-n
6

6
15

60
10
50

55
5

12
30

41
.0
0

T
SP

-n
7

7
21

36
0

41
83
5

96
60

30
24
0

16
8.
00

Ta
bl
e
5.
1:

C
om

pl
et
e
de
sc
rip

tio
n
of

po
ly
op

te
s
w
ith

sk
el
et
on

at
tr
ib
ut
es

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 44

tendency; this shows that (at least in these cases) the amount of symmetries
increases along with its size. Second, we note very clearly that the number of
skeleton hyperplanes gets smaller than the total number of hyperplanes. This
is a good indicator that a different approach that considers only the skeleton
hyperplanes might perform better when building the corresponding trees. Every
limitation we impose on the number of hyperplanes is a good improvement
since the main bottleneck of our method is determining the position of all
hyperplanes relative to the region of interest.

5.2
Decision Tree Construction

In this step, we experiment with different ways of generating the decisions
trees. Note that, while this part takes the most time, it has to be done just
once. When we have a decision tree, we can use it to run all instances for a
given polytope. To generate the trees we selected six algorithmic configurations
with different values of the parameters κ and s defined on Section 3.4. Table
5.2 summarizes the parameters for each configuration. The first configuration
corresponds to a greedy algorithm, as mentioned before. All other configurations
take a value of κ =H that allows the procure to iteratively keep testing more
hyperplanes until it reaches the time limit.

Configuration κ s

Config #1 1 1.00
Config #2 H 0.10
Config #3 H 0.25
Config #4 H 0.50
Config #5 H 0.75
Config #6 H 1.00

Table 5.2: Algorithm parameters for each configuration

The code to build the trees was developed in Python 3.6 and can be
accessed at https://github.com/cleberoli/tiny-problems. These exper-
iments are run on a single thread of an Intel Gold 6148 Skylake 2.4 GHz
processor with 40GB of RAM, running CentOs 7.8.2003. The limit established
was 86400 seconds (one day), and the results obtained are summarized in Table
5.3. After completion, we tested the trees with the benchmark instances to
ensure that they always give the optimal solution.

The table shows the information for each tree generated. Along with
the number of solutions and hyperplanes (for comparison), we have for each
configuration the depth d of the best tree obtained and the number of

https://github.com/cleberoli/tiny-problems
DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 45

C
on

fig
#
1

C
on

fig
#
2

C
on

fig
#
3

C
on

fig
#
4

C
on

fig
#
5

C
on

fig
#
6

Po
ly
to
pe

So
lu
tio

ns
H
yp

er
pl
an

es
d

κ
d

κ
d

κ
d

κ
d

κ
d

κ
K
N
P-

n3
4

6
3

1
3

1
3

1
3

1
3

1
3

1
K
N
P-

n4
6

13
4

1
4

13
4

13
4

13
4

13
4

13
K
N
P-

n5
9

27
6

1
6

14
6

13
6

13
6

12
6

12
K
N
P-

n6
13

59
7

1
8

6
8

5
7

5
7

4
7

4
K
N
P-

n7
18

11
0

9
1

10
4

10
3

9
3

9
3

9
3

K
N
P-

n8
24

18
9

10
1

12
2

12
2

10
2

10
2

10
2

K
N
P-

n9
32

32
7

12
1

15
1

15
1

12
1

12
1

12
1

K
N
P-

n1
0

42
53
3

15
1

18
1

18
1

15
1

15
1

15
1

C
U
T
-n
3

3
3

2
1

2
1

2
1

2
1

2
1

2
1

C
U
T
-n
4

7
21

6
1

6
15

6
15

6
15

6
15

6
15

C
U
T
-n
5

15
10
5

14
1

14
1

14
1

14
1

14
1

14
1

C
U
T
-n
6

31
46
5

-
-

-
-

-
-

-
-

-
-

-
-

T
SP

-n
4

3
3

2
1

2
1

2
1

2
1

2
1

2
1

T
SP

-n
5

12
36

8
1

8
7

8
7

8
7

8
7

8
7

T
SP

-n
6

60
10
50

-
-

22
1

-
-

-
-

-
-

-
-

T
SP

-n
7

36
0

41
83
5

-
-

-
-

-
-

-
-

-
-

-
-

Ta
bl
e
5.
3:

D
ec
isi
on

tr
ee

co
ns
tr
uc
tio

n
re
su
lts

(b
ol
d
va
lu
es

re
pr
es
en
t
m
in
im

al
tr
ee
s)

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 46

hyperplanes κ tested in each node. We note that optimal trees, in the sense
of minimizing the depth, were found only for one instance of the knapsack
problem besides the trivial cases of each problem.

Analyzing these results, we note two expected behaviors: (a) the number
of hyperplanes that could be tested during the time limit decreases when we
either increase the problem size or the percentage of sampled hyperplanes; and
(b) sampling fewer hyperplanes have a greater probability of not achieving the
best depths. Another interesting result, seen in Config #4, Config #5, and
Config #6, is that a value of s ≥ 0.50, was sufficient to obtain the smallest depth
found for the tested instances. Along with it, the greedy approach (Config #1)
consistently achieves the best-known values. This behavior raises the question
of whether the structure of these problems may offer support for obtaining
optimal decision trees with a greedy algorithm. Another interesting fact is that
when we compare the tree obtained with the greedy configuration with any
other trees with the same depth, they stay the same, i.e., they do not change
internal comparisons or arrangements.

Polytope Minimum Average Maximum Standard Deviation
KNP-n3 3 3.00 3 0.00
KNP-n4 4 4.00 4 0.00
KNP-n5 5 5.67 6 0.47
KNP-n6 6 6.67 7 0.47
KNP-n7 7 8.29 9 0.74
KNP-n8 8 9.47 10 0.75
KNP-n9 9 11.18 12 0.96
KNP-n10 10 12.78 15 1.29
CUT-n3 2 2.00 2 0.00
CUT-n4 6 6.00 6 0.00
CUT-n5 11 13.51 14 0.72
TSP-n4 2 2.00 2 0.00
TSP-n5 5 7.00 8 0.82
TSP-n6 10 16.54 22 1.92

Table 5.4: Statistics for the depth of the trees (through their structure)

Table 5.4 shows more information on the best trees (Config #1). We
analyze some statistical metrics to understand better how is the internal
structure of these trees. The overall behavior displayed is that small size
polytopes have complete trees, but even when the size increases, they do not
present many discrepancies among the depths of the leaves, as shown by the
small standard deviations and gaps between the minimum and maximum depths.
Exceptions start happening with larger sizes, and the biggest gap is found for
the TSP with 6 nodes.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 47

5.3
Generation of Benchmark Sets

To evaluate the performance of the methods, we generated benchmark
sets for each polytope. Each benchmark set is made of randomly generated
instances, amounting to 10000 points for each possible solution according to
the descriptions in the Section 4.1.

Note that not all solutions can be attained if we consider the positivity
constraints established in Section 4.1. For instance, in a knapsack problem with
3 items (1,0,0) and (1,1,0) are possible solutions. However, when the values
are required to be positive, the first solution will never be chosen because the
second will always have a larger total value. Therefore, we also generated a set
of unrestricted instances for each polytope, generated without the positivity
constraint, to cover all solutions.

Let x ∈ U(I) denote that x is an independently and randomly generated
value from the uniform distribution over the interval I. Now we describe in
more detail the parameters for each problem:

– Knapsack Problem: an instance c in a KNP benchmark set is chosen
such that ci ∈ U([0,1]) for all i and ∥c∥ = 1, while a point c in the
unrestricted benchmark set has ci ∈ U([−1,1]) for all i and ∥c∥ = 1.

– Cut Problem: for these polytopes, we use the Erdős–Rényi model where
G(n, p) represents a graph G that has its n nodes randomly connected by
edges with probability p. An instance c in a CUT benchmark is chosen
such that ci ∈ U((0, 1]) if i is an edge of a connected G(n, 0.5) and ci = 0
otherwise. In the unrestricted sets, ci ∈ U([−1,0) ∪ (0,1]) if i is an edge
of the graph and ci = 0 otherwise.

– Travelling Salesman Problem: an instance c in a TSP benchmark
set is chosen such that G = Kn, the complete graph, with distances
ci ∈ U([0,1]) for all i and ∥c∥ = 1, with the additional constraint that
for each triangle in G their corresponding distances respect the triangle
inequality. For c in the unrestricted benchmark we just have ci ∈ U([−1, 1])
for all i and ∥c∥ = 1.

5.4
Performance Evaluation

To evaluate the performance of the resulting algorithms synthesized by
our method, we implement their corresponding trees. We also implement the
basic enumeration method and the baseline method as described in Section 4.2.
The code for this evaluation was developed in C++ and can also be found in

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 48

the GitHub repository. These experiments were conducted on a computer with
an Intel Core i7-8565U CPU @ 1.80GHz processor and 16.0 GB of memory,
running Windows 10 Pro.

In this step, we compute the solutions for all instances in the benchmark
sets using the three methods. To ensure accuracy, we run each benchmark
several times so that each method takes an amount of time proportional to the
number of solutions (in seconds).

Table 5.5 shows the average amount of time (in nanoseconds) to find the
solution for a single benchmark instance. The shorter times are highlighted in
bold font for easier comparison. We see that the algorithm synthesized with
our method consistently outperforms the enumeration method, even for the
CUT instances where the tree height is very close to the number of solutions.
Our method is also better than the baselines for the CUT and TSP. The
exception was the KNP problem which was not surprising since this dynamic
programming method has a good complexity for the case. Still, we see that our
method has a performance improvement with the increase of size, as shown by
the baseline over tree ratio.

Polytope Enumeration Baseline Tree (Base/Tree) Ratio
KNP-n3 726 129 620 0.21
KNP-n4 939 201 724 0.28
KNP-n5 1295 282 800 0.35
KNP-n6 1786 359 887 0.40
KNP-n7 2658 482 976 0.49
KNP-n8 3535 626 1059 0.59
KNP-n9 4758 767 1148 0.67
KNP-n10 6316 942 1275 0.74
CUT-n3 196 24775 158 157.01
CUT-n4 679 34941 319 109.53
CUT-n5 2148 53700 733 73.30
TSP-n4 287 315 209 1.51
TSP-n5 1711 923 465 1.98
TSP-n6 11238 3107 1006 3.09

Table 5.5: Time comparison for different methods (in nanoseconds)

An unexpected behavior was the amount of time it took to solve the CUT
with the baseline. A possible explanation for this event might have to do with
the library used compared to the other baseline method that was implemented
with simple structures. Alternatively, this could be an impact of the small sizes
since the difference between the baseline and tree times gets smaller with the
increase in size.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 5. Experiments and Results 49

Finally, we ran the time comparisons with the unrestricted benchmark
sets. Since not all baseline methods are equipped to deal with negative input
values, we only compare the enumeration and tree methods. Note that the
problems might not have a well-defined meaning when the inputs take negative
values. However, in the perspective of our method, we only need the solutions
to find the optimal one. We verify again that the trees always find optimal
solutions, and they continue to outperform the enumeration algorithms, as seen
in Table 5.6.

Polytope Enumeration Tree
KNP-n3 725 606
KNP-n4 1002 720
KNP-n5 1307 810
KNP-n6 1805 1053
KNP-n7 2497 920
KNP-n8 3499 1141
KNP-n9 4701 1130
KNP-n10 6628 1309
CUT-n3 204 160
CUT-n4 693 328
CUT-n5 2165 786
TSP-n4 296 212
TSP-n5 1692 475
TSP-n6 11152 983

Table 5.6: Time comparison with unrestricted benchmark (in nanoseconds)

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

6
Concluding Remarks

In this work, we explored the theoretical results that point to the existence
of polynomial-time algorithms in the LDT model for NP-complete problems. We
establish the equivalence between the class of 0-1 combinatorial optimization
problems and the nearest neighbor search problem. Then we address the task of
finding the adjacency relations for skeletons of the 0-1 knapsack and symmetric
traveling salesman. In this process, we prove the equivalence of the Delaunay
triangulation and skeleton graphs for the family of problems we study and use
it to define the Voronoi regions.

We introduce a method that, given a polytope, constructs a decision
tree algorithm that can solve any instances for that polytope without changes.
With our experiments, we could find those trees for the three studied problems
(KNP, CUT, and TSP) with sizes up to 10, 5, and 6, achieving a minimum
depth for the sizes up to 4, 3, and 4, respectively. These trees consistently
outperform the enumeration method for all problems, and the baseline methods
for the weighted minimum cut and symmetric traveling salesman, providing
optimal solutions within microseconds. Furthermore, our method presents the
advantage of working with both positive and negative inputs without changing
the time required to find the optimal solution.

The polytopes for which we managed to find the corresponding trees
are considerably small and could not be practically used for problems like the
ones described in Subsection 1.1.3. Still, we have other relevant results from
the intermediate steps, like the complete definition of the skeleton of the TSP
with up to 7 nodes. Again, this is a number race. We may be able to find it
for polytopes with sizes 5 or 6. Still, each new size will pose challenges and
require significant methodological refinements and a better understanding of
the problems.

A clear path to continue this work is to refine our framework to process
instances with larger sizes. One possible way of doing that would be to consider
only the skeleton hyperplanes instead of all hyperplanes, like mentioned in
Section 5.1. Another approach is investigating the possibility that a greedy
algorithm could guarantee the minimal depth trees since they could achieve
this in the experiments conducted. Also, a possible extension is to compare our
method with other ML approaches (Kool et al., 2019; Wang et al., 2021) that
can find solutions very quickly, even if they are not always optimal.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 6. Concluding Remarks 51

An alternative approach is to modify the trees to generate strategies to
improve other algorithms instead of finding the optimal solutions like mentioned
in Section 1.1.4. We could, for instance, use the hyperplanes down to a certain
specified depth as strategies. These hyperplanes could be used by other solvers
to limit the initial search space

Lastly, once we know that this class of CO problems can be thought of as
an NNS problem and we have the hyperplanes that define those regions, we
can tackle the decision version of these same problems a lot easier. Once we
view the problem of verifying if a given solution is optimal as determining the
location of a point relative to a set of hyperplanes, we can use works like the
one from Meiser (1993). He presents a solution for the point location problem
in arrangements of hyperplanes that has polynomial-time complexity.

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

7
References

A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer Algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1974. ISBN
0201000296. 1, 1.1.1

F. Arnold, Ítalo Santana, K. Sörensen, and T. Vidal. Pils: Exploring high-order
neighborhoods by pattern mining and injection. Pattern Recognition, 116:107957,
2021. ISSN 0031-3203. doi: 10.1016/j.patcog.2021.107957. 1.1.3

J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. Blake2: Simpler,
smaller, fast as md5. In M. Jacobson, M. Locasto, P. Mohassel, and R. Safavi-
Naini, editors, Applied Cryptography and Network Security, pages 119–135.
Springer Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-38980-1_8. 3.3

F. Barahona and A. R. Mahjoub. On the cut polytope. Mathematical Programming,
36(2):157–173, 1986. ISSN 1436-4646. doi: 10.1007/BF02592023. 5.1

Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial
optimization: A methodological tour d’horizon. European Journal of Operational
Research, 290(2):405–421, 2021. ISSN 0377-2217. doi: 10.1016/j.ejor.2020.07.
063. 1.1.4

D. Bertsimas and B. Stellato. The voice of optimization. Machine Learning, 110
(2):249–277, 2021. ISSN 1573-0565. doi: 10.1007/s10994-020-05893-5. 1.1.4

M. Beunardeau, Éric Brier, N. Cartier, A. Connolly, N. Courant, R. Géraud-Stewart,
D. Naccache, and O. Yifrach-Stav. Optimal covid-19 pool testing with a priori
information, 2020. 1.1.4

S. C. Boyd and W. H. Cunningham. Small travelling salesman polytopes.
Mathematics of Operations Research, 16(2):259–271, 1991. ISSN 0364765X,
15265471. 1, 1.1.2

I. Chikalov, S. Hussain, and M. Moshkov. Totally optimal decision trees for
monotone boolean functions with at most five variables. Procedia Computer
Science, 22:359–365, 2013. ISSN 1877-0509. doi: 10.1016/j.procs.2013.09.113.
17th International Conference in Knowledge Based and Intelligent Information
and Engineering Systems - KES2013. 1.1.2

DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 7. References 53

T. Christof and G. Reinelt. Combinatorial optimization and small polytopes. Top,
4(1):1–53, 1996. ISSN 1863-8279. doi: 10.1007/BF02568602. 1, 1.1.2

T. Christof and G. Reinelt. Decomposition and parallelization techniques for
enumerating the facets of combinatorial polytopes. International Journal of
Computational Geometry & Applications, 11(4):423–437, 2001. doi: 10.1142/
S0218195901000560. 1

T. Christof, M. Jünger, and G. Reinelt. A complete description of the traveling
salesman polytope on 8 nodes. Operations Research Letters, 10(9):497–500,
1991. ISSN 0167-6377. doi: 10.1016/0167-6377(91)90067-Y. 1, 1.1.2

M. Fleurbaey and A. Trannoy. The impossibility of a paretian egalitarian.
Social Choice and Welfare, 21(2):243–263, 2003. ISSN 1432-217X. doi:
10.1007/s00355-003-0258-2. 3.3.4

S. Fortune. Voronoi diagrams and delaunay triangulations. In F. Aurenhammer,
R. Klein, and D.-T. Lee, editors, Handbook of Discrete and Computational
Geometry, chapter 27, pages 702–721. CRC Press LLC, Boca Raton, FL, 2017.
2.2

M. Grötschel and M. W. Padberg. Polyhedral theory. In E. Lawler, J. Lenstra, A. R.
Kan, and D. Shmoys, editors, The traveling salesman problem, chapter 8, pages
251–305. John Wiley & Sons, 1985. 1.1.2

M. Gurgel and Y. Wakabayashi. Adjacency of vertices of the complete pre-
order polytope. Discrete Mathematics, 175:163–172, 1997. doi: 10.1016/
S0012-365X(96)00143-4. 2.1

L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5(1):15–17, 1976. ISSN 0020-0190.
doi: 10.1016/0020-0190(76)90095-8. 1.1.2

M. Kolinek. A polynomial-time linear decision tree for the traveling salesman
problem and other np-complete problems. Discrete & Computational Geometry,
2(1):37–48, 1987. ISSN 1432-0444. doi: 10.1007/BF02187869. 1, 1.1.1, 4

W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing
problems! In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=ByxBFsRqYm. 6

S. Meiser. Point location in arrangements of hyperplanes. Information and
Computation, 106(2):286–303, 1993. ISSN 0890-5401. doi: 10.1006/inco.
1993.1057. 6

https://openreview.net/forum?id=ByxBFsRqYm
DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

Chapter 7. References 54

F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional
knapsack problem. Journal of the ACM, 31(3):668–676, 1984. ISSN 0004-5411.
doi: 10.1145/828.322450. 1, 1.1.1

F. Meyer auf der Heide. Fast algorithms for n-dimensional restrictions of hard
problems. Journal of the ACM, 35(3):740–747, 1988. ISSN 0004-5411. doi:
10.1145/44483.44490. 1, 1.1.1

C. H. Papadimitriou. The adjacency relation on the traveling salesman polytope is
np-complete. Mathematical Programming, 14(1):312–324, 1978. ISSN 0025-
5610. doi: 10.1007/BF01588973. 2.1, 5.1

S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. In
U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Automata, Languages and
Programming, pages 49–60. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-
45022-1. 1.1.3

M. Stoer and F. Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
July 1997. ISSN 0004-5411. doi: 10.1145/263867.263872. 4.2

E. Taillard. Parallel iterative search methods for vehicle routing problems. Networks,
23(8):661–673, 1993. doi: 10.1002/net.3230230804. 1.1.3

T. Toffolo, T. Vidal, and T. Wauters. Heuristics for vehicle routing problems:
Sequence or set optimization? Computers & Operations Research, 105:118–131,
2019. ISSN 0305-0548. doi: 10.1016/j.cor.2018.12.023. 1.1.3

H. Wang, Z. Zong, T. Xia, S. Luo, M. Zheng, D. Jin, and Y. Li. Rewriting by
generating: Learn heuristics for large-scale vehicle routing problems, 2021. URL
https://openreview.net/forum?id=xxWl2oEvP2h. 6

G. M. Ziegler. Lectures on Polytopes. Springer-Verlag New York, USA, 1st edition,
1995. ISBN 9781461384311. doi: 10.1007/978-1-4613-8431-1. 2.2.1

https://openreview.net/forum?id=xxWl2oEvP2h
DBD
PUC-Rio - Certificação Digital Nº 1912703/CA

	Automated Synthesis of Optimal Decision Trees for Small Combinatorial Optimization Problems
	Resumo
	Table of contents
	Introduction
	Related Work

	Preliminaries
	Polytopes
	Voronoi Diagrams and Delaunay Triangulations
	Nearest Neighbor Search

	Construction
	The Decision Tree
	The Algorithm
	Implementation
	Iterative Tree with Sampling

	Applications
	Problems
	Baseline Methods

	Experiments and Results
	Polytopes and Structure
	Decision Tree Construction
	Generation of Benchmark Sets
	Performance Evaluation

	Concluding Remarks
	References

