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Abstract

Neiva, Mateus B.; Menezes, Ivan F. M. (Advisor); Almeida, Carlos
A. (Co-Advisor). 3D Numerical Elastoplastic Analysis of
Stress and Strain Distributions Around Crack Tips. Rio
de Janeiro, 2021. 194p. Dissertação de Mestrado – Departamento
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio
de Janeiro.

In structure life prediction analysis the occurrence of crack defects are
of paramount importance to be considered. Basic studies using Linear Elastic
Fracture Mechanics approach shows that the Stress Intensity Factor (SIF)
parameter controls Fatigue crack growth (FCG). However, overloads may
induce material “memory effects” that delay, arrest or accelerate the FCG
rate, a behavior that is not described by considering a single elastic parameter.
To account for service variable amplitude loadings, the use of a prescribed
stress-strain distribution has been proposed in recent research studies, as
the driving force of FCG, using the critical damage approach. Due to the
assumptions considered in the analytical derivations, important equilibrium
and compatibility conditions are violated in the obtained solutions, since
an idealized singular stress-strain field at the crack front region is used. In
this work a comprehensive review of the recently published analytical results
for solutions under the elastic and elastoplastic material behavior regimens
are presented: Williams and HRR with singular stress distribution field and
Creager-Paris with a non singular stress field, but with the material elastic
approach. These solutions are compared, throughout the study, to results
obtained from the numerical analysis using a 3D finite element discretization
with elastoplastic von Mises yielding criteria employed for the modeling of
the crack tip blunt and some comprehensive conclusions are derived regarding
application limits of the theoretical models as well as the required extent of the
numerical model representation. In addition to monotonic increasing applied
loads, unloading conditions were also considered in the numerical analysis,
although no reference to this condition is available in the literature, considering
the analytical approach. For the numerical simulations presented elastoplastic
algorithms were implemented in a plugin based framework.

Keywords
Finite Element Method; Plasticity; Fracture Mechanics; Fatigue Crack

Growth.
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Resumo

Neiva, Mateus B.; Menezes, Ivan F. M.; Almeida, Carlos A.. Aná-
lise Numérica Elastoplástica 3D da Ditribuição de Ten-
sões e Deformações em Torno de Trincas Passantes. Rio de
Janeiro, 2021. 194p. Dissertação de Mestrado – Departamento de
Engenharia Mecânica, Pontifícia Universidade Católica do Rio de
Janeiro.

Na análise da predição de vida de estruturas a presença de defeitos por
trincas é de fundamental importância. Estudos iniciais utilizando a Mecânica
da Fratura Linear Elástica mostram que o Fator de Intensidade de Tensão
controla o crescimento de trinca por fadiga. Contudo, sobrecargas podem in-
duzir efeitos de memória no material ao reduzir, parar ou acelerar taxas de
propagação, comportamento não previsto considerando-se um único parâme-
tro elástico. Devido às hipóteses consideradas, as soluções fornecidas pelos
métodos analíticos não verificam condições importantes de equilíbrio e com-
patibilidade, especialmente quando são usados campos singulares idealizados
de tensão e de deformação na região da ponta da trinca. Neste trabalho uma
extensa revisão dos resultados analíticos recentemente publicados para mate-
riais nos regimes elástico e elastoplástico são apresentadas: Williams e HRR
com campo de distribuição singular das tensões e Creager-Paris com campo
não-singular das tensões com o material elástico. Neste estudo, estas soluções
são comparadas com resultados da análise numérica utilizando a discretização
por elementos finitos tridimensionais elastoplásticos com o critério de escoa-
mento do material de von Mises na representação do cegamento da ponta da
trinca e importantes conclusões são apresentadas com referência aos limites de
aplicação dos modelos teóricos bem como a extensão dos requerimentos para
o modelo numérico. Além de carregamentos monotonicamente crescentes, o
descarregamento foi também considerado na análise numérica, apesar desta
condição não estar presente nas referências consideradas para as soluções ana-
líticas. Para as simulações numéricas consideradas algoritmos de elastoplasti-
cidade foram implementados em um framework com arquitetura baseada em
plugins.

Palavras-chave
Elementos Finitos; Plasticidade; Mecânica da Fratura; Propagação de

trinca por fadiga.
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Notation

– All tensors are represented in bold

– A→ Area

– a→ Crack size

– B→ Deformation matrix

– CTO → Consistent Tangent Operator

– D→ Constitutive matrix

– De → Elastic constitutive matrix

– Dep → Elastoplastic constitutive matrix

– EPFM → Elastoplastic fracture mechanics

– E → Young’s modulus

– EP → Potential energy

– ES → Strain energy

– E∗ → Complementary energy

– FBD → Free-body-diagram

– FCG → Fatigue crack growth

– FEM → Finite elements method

– G→ Shear modulus

– G → Griffith’s Energy Balance

– III → Identity operator

– IIId → Deviatoric operator

– IIIS → Symmetric operator

– IIIT → Transposition operator

– J → J integral

– J2 → Second invariant

– K → Bulk’s modulus

– K→ Stiffness matrix

– Kt → Stress concentration factor
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1
Introduction

1.1
Motivation

The evaluation of a crack presence is of paramount importance in engi-
neering practice such as the design and life prediction of mechanical compo-
nents. These tasks are generally achieved by mechanical behavior evaluations
using the numerical simulation of crack effects and their growth. For example,
in high cycle fatigue crack growth analysis (FCG), the damage extension and
integrity of a component are of study considerations, where for material linear
elastic behavior stress intensity factor (SIF) is adopted for the prediction of
the crack propagation.

Although being an important step in fracture mechanics understanding,
the SIF as a single driven force of FCG does not provide all required answers
for realistic variable amplitude loadings. For instance, material memory effects
can delay, arrest or accelerate a FCG rate after an overload has been reached.
Moreover, material local plasticity due to cyclic loading ahead of a crack
tip is not well described by a single linear elastic parameter without a
somehow adjustment, simply because SIF superposition of solutions is not
a possible solution. Some additional methods were then elaborated to predict
the appropriate changes in FCG rates.

This work is intended to provide a numerical tool to consider the
analysis of crack effects in a mechanical component, including plasticity-
induced residual strains in the material behavior. Other phenomena such as
oxidation and phase transformations can also affect the FCG rate but are not
considered in this study.

One of the first publications to use a simple phenomenological method to
estimate the FCG rate in a cracked model was proposed by Willenborg, Engle
and Wood in 1971 [14] to treat the overload phenomenon. A similar method
was proposed by Wheeler [15]. However, these procedures are too simplistic
for not providing accurate mechanical analysis responses.

In 1970 Elber [12, 13] proposed a method to control FCG rate that,
instead of using the range of SIF as the driven force, employs the effective

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Chapter 1. Introduction 18

stress intensity factor range (∆Keff), a parameter dependable on the load that
opens the crack (Pop).

Later, James Newman proposed, in [7], a FEM formulation for the
analysis of 1D structures, using a strip-yield material model to obtain Pop,
which provides the ∆Keff to perform FCG.

The critical-damage method for FCG prediction provides modeling and
numerical representation with stronger physical arguments [8, 9, 10]. It esti-
mates that a volume element breaks whenever the accumulated damage reaches
its maximum allowed value. In [11] a model similar to Newman’s strip-yield
applying 1D elements placed along the plastic zone ahead of the crack tip, as
presented in figure 1.1. In this model, every element is represented as a fatigue
εN specimen, allowing damage calculation for every load event. A mandatory
particularity of this model is the use of a non-singular stress field, otherwise
the damage would also be singular.

Figure 1.1: Critical-damage representation

1.2
Objectives and main contributions

The purpose of the present dissertation is to obtain appropriate esti-
mates of stresses and strains inside a plastic zone, at the nearby region of a
crack tip. To accomplish this a 3D finite element model formulation was devel-
oped accounting for stress and strain evaluations with material elastoplastic
behavior, especially at the crack tip plastic zone. In the numerical model, me-
chanical considerations of equilibrium, compatibility and material constitutive
conditions are guaranteed to represent the blunt of the crack.

Solutions considering numerical strategies and element model enrich-
ments are discussed and compared to results available in the literature.

As a remark, it should say that this work is not intended to provide
a FCG algorithm, but a numerical procedure to evaluate stress and strain
distributions under the elastoplastic analysis. However, for FCG simulations

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Chapter 1. Introduction 19

to be considered larger computational efforts would be required to account
for its use, for general loadings. In this regard, this dissertation is a step to
provide the numerical tools for a possible and more appropriate finite element
representation.

This dissertation is organized in seven chapters. In chapter 2 the im-
portant aspects of the basics of the Fracture Mechanics Theory are reviewed
and discussed. Next, in chapter 3, the elastoplastic formulation with von Mises
yielding and aspects of its numerical implementation is presented. The FEM
basis needed as a plugin framework for the simulations is considered in chapters
4 and 5, respectively. In chapter 6 details of a numerical simulation are pre-
sented and the obtained numerical results are evaluated and discussed. Finally,
conclusions and perspectives for future work are treated in chapter 7.
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2
Fracture Mechanics Review

Fracture Mechanics is an important area of study in Mechanical Engi-
neering aiming to understand, evaluate, and prevent crack effects in fracture
damaged components. Because of major difficulty in making the significant
measurements at a cracked region, evaluations of its structural significance in
the component integrity have been accomplished by models in two kinds of
representations: analytical, in the past, and, at present, numerically. In this
chapter the basics of Fracture Mechanics are reviewed and discussed by pre-
senting the features and derivations of earlier analytical models, considering
the material linear and elastoplastic behaviors. Analytical solutions are pre-
sented for two material conditions: a linear elastic stress field, defining the
so-called Linear Elastic Fracture Mechanics (LEFM), and second, the Elasto-
plastic Fracture Mechanics (EPFM) introduced by considering the material
elastoplastic behavior.

2.1
Griffith’s Energy Balance

In a pioneering work, Charles Edward Inglis (1875 - 1952)[17] presented
a solution for the stress concentration (magnification) factor occurring in
elliptical notches (see Appendix A), showing its dependence on the crack’s
length and radius at the tip as

Kt ∼
√
a

ρ
(2-1)

Although simple and straightforward to use, this theory fails to explain
why a cracked brittle material does not resist positive nominal stress as the tip
radius ρ becomes very small, i.e. close to 0 (Kt → ∞). By Inglis derivations,
the stress singularity at a crack comes from an idealized crack tip with ρ = 0,
assumption, employed to simplify the mathematical problem. However, for
physical reasons, near to the crack tip, conditions of the singular behavior of
stresses or strains, are not sustainable.

In 1920, Griffith [18] proposed, to circumvent stress singularity at the
crack tip, a model based on energy conservation which postulates that a crack
can only grow if a given work increment δW can deliver enough energy to
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Chapter 2. Fracture Mechanics Review 21

increase the crack influence area of a given δA quantity, by a force acting at
the crack face which is equal to thickness time crack size increment δa plus an
incremental strain energy δES stored in the body. Thus, the equation

δW > δES + T · δA (2-2)

should hold, T is the material toughness (J/m2), the total strain energy is

ES =
∫
V
U dx dy dz (2-3)

with

U = σσσV · εεεV

2 (2-4)

written in Voigt notation. For a specimen with a crack and under loading,
the stored potential energy (EP ), given by the strain energy (ES) minus the
external work (W ), which is released as the crack grows. Thus,

EP = ES −W (2-5)

G = −∂EP
∂A

(2-6)

The equation in above was defined by Irwin [34] as a crack driving force.
Note that this procedure avoids unrestricted energy, as noticed in idealized
cracks of ρ→ 0 when Kt →∞, since Griffith’s energy is finite by guaranteeing
energy conservation.
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Chapter 2. Fracture Mechanics Review 22

2.2
Linear Elastic Fracture Mechanics

As previously described, a linear elastic procedure is a basic approach for
modeling a fracture problem. In this section, two analytical solutions presented
by Williams and Creager-Paris are discussed. Despite every fracture being
under an elastoplastic behavior, a LEFM, under some conditions, predicts
FCG. This non-intuitive aspect is presented in the following sections as well
as the limitations of using a LEFM.

2.2.1
Williams’ Solution

In another proposal, Williams’1957 presented a solution for the crack
stress distribution problem imposing the crack geometry as described below,
having zero radii.

Figure 2.1: Crack coordinates

Using basic stress functions from Theory of Elasticity, associated to
a plane stress state, equilibrium, compatibility, and boundary conditions
imposed for three different loading conditions what resulted in


σxx

σyy

σxy

 = KI√
2πr

cos
(
θ

2

)


1− sin
(
θ
2

)
· sin

(
3θ
2

)
1 + sin

(
θ
2

)
· sin

(
3θ
2

)
sin

(
θ
2

)
· cos

(
3θ
2

)

 (2-7)


σxx

σyy

σxy

 = KII√
2πr


− sin

(
θ
2

)[
2 + cos

(
θ
2

)
· cos

(
3θ
2

)]
sin

(
θ
2

)
· cos

(
θ
2

)
· cos

(
3θ
2

)
cos

(
θ
2

)[
1− sin

(
θ
2

)
· sin

(
3θ
2

)]

 (2-8)

σxz
σyz

 = KIII√
2πr

− sin
(
θ
2

)
cos

(
θ
2

)
 (2-9)
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where eqs. (2-7), (2-8) and (2-9) are known as as the stress intensity factor
(SIF) for modes I, II and III :

Further information on these equations’ analytical derivations is reported
in Appendix B, where a complete derivation for KI is presented.

From a mathematical point of view, SIF is a constant on the stress
function solution obtained by Williams, which must hold for a full elastic
problem, any crack geometry, and loading. This was certified in an alternative
proof also given by Irwin [33], where the stress intensity (SIF) factor comes
naturally, obtained for the case of an infinite plate under in-plane biaxial
loading, with a centered crack, as compared to nominal Williams solution
given in eq. (2-7). Irwin’s solution derivations are presented in Appendix C.

It is important to remark that Williams’ stress field presumes a linearisa-
tion only valid for small values of x. This aspect is clearly observed from Irwin’s
solution (Appendix C) when the equation below is simplified as following

σyy = σn(x+ a)√
(x+ a)2 − a2

≈ σna√
2ax

= KI√
2πx

(2-10)

As a consequence, the KI-induced LE stresses are exact only at a
region very close to the crack tip, without verifying boundary and equilibrium
conditions.

2.2.1.1
Creager Paris

In a different move, Creager and Paris in [20] and [21] proposed an
analytical solution motivated by the study of corrosion on elongated notches,
considering the crack as in an elliptical shape. This problem falls into Williams’
stress field solution in the case of crack surface radius ρ at the tip goes
to 0, being also dependent on an intensity factor. To avoid singularity in
the obtained stress distributions at the crack tip, the considered reference
coordinate system r and θ was moved to a position inside the notch, as shown
in fig. 2.2.

Figure 2.2: Coordinate system used in Creager-Paris model for stress field.
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Based on a proposed stress function that satisfies equilibrium, compat-
ibility, and boundary conditions the authors presented an analytical solution
for the stress field around the tip as a function of SIF and the tip radius ρ

2 as


σxx

σyy

σxy

 = KI√
2πr

cos
(
θ

2

)


1− sin
(
θ
2

)
· sin

(
3θ
2

)
1 + sin

(
θ
2

)
· sin

(
3θ
2

)
sin

(
θ
2

)
· cos

(
3θ
2

)

+ KI√
2πr

ρ

2r


− cos 3θ

2

+ cos 3θ
2

− sin 3θ
2

 (2-11)


σxx

σyy

σxy

 = KII√
2πr


− sin

(
θ
2

)[
2 + cos

(
θ
2

)
· cos

(
3θ
2

)]
sin

(
θ
2

)
· cos

(
θ
2

)
· cos

(
3θ
2

)
cos

(
θ
2

)[
1− sin

(
θ
2

)
· sin

(
3θ
2

)]

+ KII√
2πr

ρ

2r


+ sin 3θ

2

− sin 3θ
2

− cos 3θ
2


(2-12)σxz

σyz

 = KIII√
2πr

− sin
(
θ
2

)
cos

(
θ
2

)
 (2-13)

As observed from eqs. (2-11) to (2-13) the analytically obtained solution
for an elliptical shape reduces to Williams’ stress distributions presented in
eqs. (2-7) to (2-9) as tip radius ρ goes to zero and, conversely, the coordinate
system moves to the crack tip as expected in William’s solution. Figure 2.3
below illustrates both Williams’ and Creager and Paris’ coordinate systems
used. In Appendix D the derivations related to the results obtained in Creager
and Paris’ model are presented.

Figure 2.3: a) Creager and Paris’ e b) Williams’ Coordinate systems used for
stress field definitions
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2.2.1.2
Stress intensity factor as driving force for fatigue crack growth

As shown in the previous section, the stress intensity factor (SIF) was
presented as a single parameter to characterize the stress field in the region
ahead of a crack tip. However, in the literature, SIF is commonly defined as
an expression to achieve the driven forces of fatigue crack growth (FCG), ∆K
and Kmax, without supporting why they are related, where ∆K is computed,
for an increment load, by the variation of SIF and Kmax the maximum value
of SIF in this interval.

According to [5], Paris, Gomez, and Anderson on [23] stated that the
range of stress intensity factors would control the fatigue crack growth (FCG).
However, the work was rejected by important scientific journals arguing that
a linear elastic parameter could not control a phenomenon caused by cyclic
plasticity in brittle failures. Later on, in a more elaborated work, Paris and
Erdogan on [24], demonstrated with experimental results that the range of
stress intensity factor controls FCG. In reality, FCG is also dependable on
Kmax.

da

dN
= f(∆K) (2-14)

Although, the propagation rule, as in eq. (2-14), is a function of the range
SIF, because it controls the stress field ahead of a crack tip, Paris and Erdogan
did not explain why this linear elastic parameter, a constant on the series of
the stress function, could predict a crack growth.

Yielding condition, with von Mises equation, may predict with reasonable
accuracy metallic materials as

σMises =
√

(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2
xy + σ2

xz + σ2
yz)

2
(2-15)

definition of the stress field, in eq. (2-7), can be expressed in the following
generalized form 

σxx

σyy

σxy

 = KI√
2πr


fxx(θ)
fyy(θ)
fxy(θ)

 (2-16)

which brought into eq. (2-15) results in

σMises = KI√
2πr

√
f 2
xx(θ) + f 2

yy(θ)− fxx(θ) · fyy(θ) + 3f 2
xy(θ) (2-17)
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This equation shows the yield stress in the polar coordinates r and θ by a
givenKI , which is the constant that covers the geometric and load contribution
to the problem. From this equation, the boundary of the plastic zone (pz) can
be estimated with a simple numerical solver, by fixing a θ parameter to obtain
the corresponding r coordinate. Indirectly, SIF also predicts the size of the
region with the highest damage in the structure. And, accumulated damage
inside the plastic zone is used as an estimation for the FCG which is the basis
for the critical-damage method.

Thus, the procedure presented explains why the SIF furnishes a predic-
tion for FCG. However, in an additional consideration, the elastic parameter
KI can control the size of the pz if the majority of the specimens are under
the elastic regimen.

The Linear Elastic Fracture Mechanics is applicable if pz is small in
comparison to the rest of the domain.
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2.3
Elastoplastic Fracture Mechanics

In the previous section, it was shown that the SIF parameter, obtained
within LEFM, controls FCG whenever the pz coordinate is sufficiently small
when compared to the cracked component dimensions. In what follows, the
elastoplastic fracture mechanics (EPFM) procedure presented allows for treat-
ment of stresses and strains occurring ahead of the crack tip and provides a
robust tool for the analysis of elastoplasticity in fracture mechanics, under
small displacements conditions.

2.3.1
Theory Preliminaries - the J-integral

First presented independently in 1967 by Cherepanov [25] and in 1968
by Rice [26], the J-integral consists of a procedure to evaluate area density
of the Potential Energy stored around a crack tip formation in a fractured
component under monotonic loading.

Thus, from energy density around a crack, the balance may be stated as
Ep = W − U , where the external work is given by the integral of the traction
vector times the displacement over the boundary

W =
∮
S
Ti ui ds t (2-18)

with

Ti = σijnj (2-19)

where ui and Ti are ith-components fo the displacement vector uuu and traction
vector TTT and nj the j-th component of nnn unit vector normal to the boundary
(see fig. 2.5).

And U is the strain energy density stored in a ds segment, expressed as

U =
∫
σV · dεV =

∫
σxx dεxx + σyy dεyy + τxy dγxy (2-20)

In the definition employed, the contour integral J for a x-y plane may be
written as

J =
∮
S

[
U dy − Ti

∂ui
∂x

ds

]
(2-21)
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Figure 2.4: J-integral coordinates

Figure 2.5: Coordinates transformation

where the stress tensor and the normal and displacement vectors should
be reduced to the cartesian x-y coordinate system. The traction vector referred
to xy coordinates gives

Txy =
T xy1

T xy2

 =
σxx σxy

σxy σyy

 ·
cos θ

sin θ

 =
σxx cos θ + σxy sin θ
σxy cos θ + σyy sin θ

 (2-22)

In the case of considering the coordinate system x′y′, as presented in fig.
2.5, the displacement vector written in both coordinate systems are

uuuxy =
uxy1

uxy2

 = Rz(θ) · uuux
′y′

=
cos θ − sin θ

sin θ cos θ

 ·
ux′y′1

ux
′y′

2


=

ux′y′1 cos θ − ux
′y′

2 sin θ
ux
′y′

1 sin θ + ux
′y′

2 cos θ


(2-23)

and the same with the traction vector we have,

TTT x
′y′ = σσσx

′y′ · nnn

=
σx′x′ σx′y′
σx′y′ σy′y′

 ·
1

0

 =
σx′x′
σx′y′

 (2-24)

and
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TTT xy =
T xy1

T xy2

 = Rz(θ) · TTT x
′y′

=
cos θ − sin θ

sin θ cos θ

 ·
σx′x′
σx′y′


=
σx′x′ cos θ − σx′y′ sin θ
σx′x′ sin θ + σx′y′ cos θ


(2-25)

Thus, the J-integral, in both cartesian and polar coordinates is obtained
by

J =
∮
S

[
U dy −

(
T xy1

∂ux
∂x

+ T xy2
∂uy
∂x

)
ds

]
(2-26)

The use of a polar coordinate system is quite convenient when deriving
analytical equations for the HRR field.

2.3.1.1
J-integral properties

J-integrals possess the following three important mathematical [5] prop-
erties:

– J = 0 only if S is continuous, i.e., the close path does not contain a crack
inside.

– Otherwise S includes crack traction free faces and J-integral is path-
independent.

– J = −∂Ep
∂A

= −∂(W−ED)
∂a

is the potential energy release rate, so a
parameter to represent elastoplastic crack problem, as well as G is used
in LEFM.

The proof of those properties is presented in Appendix E.
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2.3.2
The HRR Model

The acronym HRR stands for Hutchinson [27] and Rice and Rosengren
[29], who independently developed a model for the stress distribution near to
the tip of a crack in an elastoplastic material, with monotonic small strain
σ − ε hardening.

From Hutchinson’s results, which was derived from applying compatibil-
ity and equilibrium conditions, a stress function was numerically determined,
under the following hypotheses:

– stress and strain singularities at the crack are present;

– small-scale yielding occurs, neglecting elastic behavior near the crack tip;

– non-incremental flow rule condition holds;

– usage as valid, the stress function and compatibility equations are derived
for elastic material behavior;

In what follows stress and strain distribution results at the crack front
region, with respect to angular coordinates r and θ centered at the crack tip,
obtained in [27], are presented, the important parameters are discussed and,
finally, the necessary derivations justified. Thus, Hutchinson’s equations are as
follows,

σij = σ0

(
EJ

ασ2
0Inr

)1/(n+1)

σ̃ij(n, θ) (2-27)

εij = ασ0

E

(
EJ

ασ2
0Inr

)n/(n+1)

ε̃ij(n, θ) (2-28)

where α and n are two parameters from a simplified form of the Ramberg-
Osgood hardening constitutive rule [28]

ε

ε0
= α

(
σ

σ0

)n
(2-29)

using σ0 = E · ε0 = σy.
Moreover in eqs. (2-27) and (2-28) the integration constant In, which is

a function of the type of plane stress state and of the hardening exponent n
considered, is as shown in fig. 2.6. A second set of parameters, σ̃ij and ε̃ij,
expresses the contribution of the angle θ.
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Figure 2.6: The integration constant In

Figures 2.7 and 2.8 show distributions for σ̃ij and ε̃ij parameters, which
are function of the angular position theta, for two discrete values of n : n = 3
and n = 13, respectively.
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Figure 2.7: Plane stress constants for n = 3 and n = 13
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Figure 2.8: Plane strain constants for n = 3 and n = 13

In addition, the size and shape of plastic zones in plane strain for mode
I loading are illustrated in Hutchinson’s work as shown in fig. 2.9 below.
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Figure 2.9: pz for mode I in plane strain

where

κ :=
(
σy
KI

)2

(2-30)
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2.3.2.1
Proof for plane stress

As stated previously, Ramberg and Osgood’s (1943) hardening condition
is employed, which is a scalar condition. Since the problem to be considered is
in a 3D state of stresses, the J2-plasticity must be applied in this derivation.
Thus the von Mises yield function should be applied, defined as

σ2
e = 3 J2 = 3

2SijSij (2-31)

where Sij are components of the deviatoric stress tensor

Sij = σij −
1
3σkkδij (2-32)

Considering the strain-stress relation in the elastic range

εelij = 1 + ν

E
σij −

ν

E
σkkδij (2-33)

which results, after substituting the result in eq. (2-32),

εelij · E = (1 + ν)Sij + 1− 2ν
3 σkkδij (2-34)

From eq. (2-34), rearranging to the definition ε0 = σ0/E and omitting ε0 and
σ0 from the denominator, one may obtain

εelij = (1 + ν)Sij + 1− 2ν
3 σkkδij (2-35)

To compute the plastic strain a flow rule must be applied, as shown in
chapter 3, in the following differential form:

dεεεp = dε̄p · ∂Φ
∂σσσ

(2-36)

where εεεp is the plastic strain tensor, ε̄p is the 1D cumulated strain and is Φ the
yield function, as defined in chapter 3. In this same chapter, results from the
derivative of the yield function with respect to the von Mises stress tensor are
presented. Thus, eq. (2-36) results as,

dεεεp = dεp ·
√

3
2
SSS

‖SSS‖
(2-37)

Considering the normal tensor S as constant, from eq. (2-37) plastic strain
components results as

εpij = ε̄p ·
√

3
2
Sij
‖SSS‖

(2-38)

where from eq. (2-29), ε̄p is obtained considering the plastic component of the
total strain. Substituting into eq. (2-38) results

εpij =
√

3
2
Sij
‖SSS‖
· ασn (2-39)
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where σ is the von Mises stress, that is defined in eq. (2-31) and brings eq.
(2-39) to

εpij = 3
2ασ

n−1
e Sij (2-40)

From strain decomposition, the total strain is, by definition, the sum of
the elastic strain, in eq. (2-35), and the plastic strain, defined in eq. (2-40).
Thus, the generalized elastoplastic strain-stress tensor relation for modeling
monotonic increasing load only, under small strain conditions, is:

εij = (1 + ν)Sij + 1− 2ν
3 σkkδij + 3

2α σn−1
e Sij (2-41)

Thus, an expression for the complementary energy functional (E∗) for
plane stress and plane strain conditions may be obtained, that results is

E∗ =
∫
εij dσij

=
∫
A

(
(1 + ν)

3 σ2
e + 1− 2ν

6 σ2
kk + α

n+ 1 σn+1
e

)
dA

(2-42)

Derivation of the equation in above is presented in Appendix F.1.
Next, it is assumed that an Airy’s stress function Ψ for the problem

exists and thus, the stress components written in cylindrical coordinates are
expressed by: 

σr = r−1 Ψ,r + r−2Ψ,θθ

σθ = Ψ,θθ

σrθ = −(r−1Ψ,θ),r

(2-43)

For plane stress conditions in cylindrical coordinates, the compatibility
condition is given by [6] the following equation:

r−1(rεθ),rr + r−2(εr),θθ − r−1(εr),r − 2r−2(r · (εrθ),θ),r = 0 (2-44)

Bringing in strain components εr, εθ and εrθ obtained in Appendix F.2
with the stress expressions in eq. (2-43), eq. (2-44) results in the following
partial differential equation governing the stress function: which is explicitly
shown in Appendix F.3.
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∇4Ψ+α

2

{
r−1

[
σn−1
e

(
2rΨ,rr−Ψ,r−r−1Ψ,θθ

)]
,rr

+6r−2
[
σn−1
e r ·

(
r−1Ψ,θ

)
,r

]
,rθ

+ r−1
[
σn−1
e

(
− 2r−1Ψ,r − 2r−2Ψ,θθ + Ψ,rr

)]
,r

+ r−2
[
σn−1
e

(
−Ψ,rr + 2r−1Ψ,r + 2r−2Ψ,θθ

)]
,θθ

}
= 0 (2-45)

with boundary conditions for a stress-free crack on the crack walls as

Ψ(±π) = Ψ,θ(±π) = 0 (2-46)

The results in eqs. (2-45) and (2-46) are explicitly demonstrated in
Appendix F.3.

Solution for the stress function is obtained considering the asymptotic
expansion

Ψ = rsΨ̃1(θ) + rsΨ̃2(θ) + · · · (2-47)

and assuming the first term as dominant, or

Ψ = KrsΨ̃(θ) (2-48)

where K is the amplitude. Thus, stresses are fully determined from Airy’s
function definition in eq. (2-43) (see Appendix F.4) as



σe = Krs−2σ̃e(θ) = Krs−2(σ̃2
r + σ̃2

θ − σ̃rσ̃θ + 3σ̃2
rθ)1/2

σr = Krs−2σ̃r(θ) = Krs−2(sΨ̃ + Ψ̃,θθ)

σθ = Krs−2σ̃θ(θ) = Krs−2s(s− 1)Ψ̃

σrθ = Krs−2σ̃rθ(θ) = Krs−2(1− s)Ψ̃,θ

(2-49)

Rewriting eq. (2-45) and substituting the σe from eq. (2-49). The deriva-
tion is presented in Appendix F.5.

[
n(s− 2)− ∂2

∂θ2

]
·
[
σ̃e

n−1
(
s(s− 3)Ψ̃− 2Ψ̃,θθ

)]

+
(
n(s− 2) + 1

)(
n(s− 2)

)
σ̃e

n−1
(
s(2s− 3)Ψ̃− Ψ̃,θθ

)

+ 6
(
n(s− 2) + 1

)
(s− 1)

[
σ̃e

n−1Ψ̃,θ

]
,θ

= 0 (2-50)

Since the stress values must increase as r decreases, the exponent in
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stress eq. (2-49) must be negative what results in s < 2. Moreover, since the
complementary energy must have a finite value, a chosen sufficiently small
neighbourhood of the crack tip the elastic contribution is a small fraction on
complementary energy front plastic energy. This results in

s >
2n
n+ 1 (2-51)

which proof is presented in Appendix F.6.
As stated earlier, the HRR is a procedure to obtain the stress-strain fields

ahead of a crack tip, and is defined as function of J-integral should evaluated
in what follows.

Considering the close path as shown in figure 2.10, Γ = Γ1−Γ2 + Γ3 + Γ4

which embraces a region that does not contain the crack tip, the following
condition holds

J = J1 − J2 + J3 + J4 = 0 (2-52)

from the first J-integral’s property, presented in section J-integral. And, due
to the traction free condition on path Γ3 and Γ4 we have J3 = J4 = 0.

Figure 2.10: Close path integration used

In computing J1 path integral, Hutchinson initially proposed the use of
a linear elastic solution. From [22], the G is given as following.

G = K2
I

E
(2-53)

for plane stress condition, the Griffth’s energy rate is associated with the SIF,
where, in the case of assuming infinite plate, the SIT is given by eq. (H-1) from
Appendix H.

However, assuming LEFM in this step restricts that the size of the plastic
zone must be considerably small in comparison to the cracked component
dimensions.

Previously proved, J-integral and G are equal and, as consequence (in
dimensionless quantities)∫

Γ1
(W dy + σij nj ui,x ds) = πσ∞ 2 (2-54)
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Alternatively, a more accurate version is to consider J integral of the
respective specimen, not restricting to small size of plastic zone and covering
plastic contribution. Thus, (in dimensionless quantities)∫

Γ1
(W dy + σij nj ui,x ds) = J (2-55)

For path Γ2, J2 is obtained by first considering the work as

W =
∫ εij

0
σij dεij (2-56)

where the elastic contribution is neglected compared to plastic strains contri-
butions near the crack tip, resulting (see Appendix F.7)

W =
∫ εij

0
σij dε

p
ij

= αKn+1 n

n+ 1 r(n+1)(s−2) σ̃n+1
e

(2-57)

Secondly, ur and uθ,θ are obtained by integrating the strain equations, in
cylindrical coordinates, as shown in Appendix F.8. Thus,

ur = α Kn rn(s−2)+1

n(s− 2) + 1 σ̃n−1
e

(
s(3− s)

2 Ψ̃ + Ψ̃,θθ

)
= α Kn rn(s−2)+1 ũr(θ)

(2-58)

and

uθ,θ = α Kn rn(s−2)+1
{
σ̃n−1
e

[
s

(
s− 3

2

)
Φ̃− Φ̃,θθ

2

]
− ũr

}
= α Kn rn(s−2)+1 ũθ,θ

(2-59)

Therefore, we have

σijnjui,x = αKn+1r(n+1)(s−2){sin θ[σ̃r(ũθ − ũr,θ)− σ̃rθ(ũr + ũθ,θ)]

+ (n(s− 2) + 1) cos θ[σ̃rũr + σ̃rθũθ] (2-60)

with a convenient coordinate transformation being applied in the use of chain
rule derivatives.

With eqs. (2-57) and (2-60), obtained in dimensionless form, J2 in the
infinitesimal path t r dθ results
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∫
Γ2

(W dy + σij nj ui,x ds) = α σ0 ε0 K
n+1r

(n+1)(s−2)+1
2 In (2-61)

where In is given by

In =
∫ π

−π

{
n

n+ 1 σ̃
n+1
e cos θ − [sin θσ̃r(ũθ − ũr,θ)− σ̃rθ (ũr + ũθ,θ)

+ (n(s− 2) + 1)(σ̃rũr + σ̃rθũθ) cos θ]
}
dθ (2-62)

For r2 → 0 condition, J must be finite, resulting in the exponent of r2

being zero. Therefore,

(n+ 1)(s− 2) + 1 = 0 ∴ s = 2n+ 1
n+ 1 (2-63)

Solving the differential equation for the stress function in eq. (2-50), with
boundary conditions in eq. (2-46), and using the relation between r and s being
describe as in eq. (2-63), numerical solutions of Ψ̃(θ) are obtained as shown in
figs. 2.7 and 2.8.

Equalling the J-integral of path Γ1 to the Γ2, we have

J = α σ0 ε0 K
n+1 In (2-64)

where, from the relation σ0 = E · ε0, amplitude K can be rewritten as

K =
(

EJ

α σ2
0 In

) 1
n+1

(2-65)

From eq. (2-49), the stresses are then obtained using the relation of r
and s, in eq. (2-63),

σij = K r−
1

n+1 σ̃ij

=
(
Kn+1

r

) 1
n+1

σ̃ij
(2-66)

Note that K is defined such that Kn+1 has dimensions of length. Returning to
its dimension form and employing the result for the amplitude K obtained in
eq. (2-65), one obtains

σij = σ0

(
EJ

α σ2
0 In r

) 1
n+1

σ̃ij (2-67)

while, strains are obtained by bringing eq. (2-67) into the Ramberg-Osgood
hardening condition, eq. (2-29). Thus,
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εij = α σ0

E

(
EJ

α σ2
0 In r

) n
n+1

ε̃ij (2-68)

that match the expressions proposed in eqs. (2-27) and (2-28).

2.4
Plastic Zone Estimations in Size and Shape

Due to the high gradient of stress as approaching to the crack tip, the
becomes as in its plastic behavior, in a region called plastic zone defined by
the sole parameter (pz) which is associated with damage mechanics.

In the following, plastic region size and shape definitions, through the
pz(θ) parameter are numerically obtained using stress components from an-
alytical model considered previously. Of a particular interest is to determine
the transition of elastic to elastoplastic material behavior, using von Mises
condition in the 3D plane state,

σMises =
√
σ2
xx + σ2

yy − σxxσyy + 3σ2
xy (2-69)

2.4.1
Plastic zones estimation for linear elastic stress field

Using Wiliams’ stress field summarized by eq. (2-7) with the addition of
functions fxx(θ), fyy(θ) and fxy(θ) gives,

σxx

σyy

σxy

 = KI√
2πr


fxx(θ)
fyy(θ)
fxy(θ)

 (2-70)

and the von Mises stress measure becomes

σMises(r, θ) = KI√
2πr

√
f 2
xx(θ) + f 2

yy(θ)− fxx(θ) · fyy(θ) + 3f 2
xy(θ) (2-71)

2.4.2
Influence of nominal stress σn on the plastic zone size and shape

Williams’ stress derivations present a KI direct dependence, what pro-
vides a correlation when r →∞ is easily notice that σn → 0.

Supposing in a infinity plate a nominal stress σn in y-direction this limit
condition results in

lim
r→∞

σyy = lim
r→∞

KI√
2πr

fyy(θ) = 0 6= σn (2-72)
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where the boundary condition is not considered and indicating the dependence
of σn/σy in the shape and size of the pz.

Considering the nominal stress, σn can be add into y component to
enforce the boundary condition. Thus

σMises(r, θ) =
√

(κ · fxx)2 + (κ · fyy + σn)2 − (κ · fxx)(κ · fyy + σn) + 3(κ · fxy)2

(2-73)
where κ:

κ := KI√
2πr

(2-74)

Despite this procedure being simplistic for not presenting a rigorous stress
analyses, this approach obey the correct far field boundary condition.

2.4.3
LE plastic zone estimate that considers the equilibrium requirements

Irwin’s estimation of pz size partially considering equilibrium. When
Williams’ stress field is applied, the stress distribution due to singularity
of the model inside pz, without rearranging along residual ligament violates
equilibrium. In Irwin’s model a constant stress is assumed in the plastic zone
σyy(0 6 r 6 pz) = κ · σy, neglecting strain hardening, where κ depends on the
stress state ahead of the crack tip.

Irwin redistributed the stress field outside the pz, by shifting Williams’
stress field. In figure 2.11 a new translated radius defined as rnew = r − r

P

where r
P

is the coordinate that reaches σyy = κ · σy at point P , creates a
second translated curve with point P ′, as long as r > pz.
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Figure 2.11: Irwin’s stress redistribution

To determine the size of pz that represents the assumed stress field
redistribution, the integral of Williams’ stress field, green hatch area must be
equal to the blue hatch area in the graph, which defines the stress distribution
resulting in, mathematically,

∫ ∞
0

σyy(r, θ)dr =
∫ pz(θ)

0
σyy(r = r

P
, θ)︸ ︷︷ ︸

constant in r
dr +

∫ ∞
r
P

(θ)
σyy(r, θ)dr (2-75)

or

pz(θ) = 1
σyy(r = r

P
, θ)

∫ r
P

(θ)

0
σyy(r, θ)dr (2-76)

that is pz, and verifying the equilibrium condition.
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3
Plasticity

In this chapter, elements for the complete definition of a formulation
that represents the nonlinear behavior of materials beyond its linear elastic
regimen are presented. Some basic plasticity equations with the von Mises
criteria formulation are presented.

3.1
Basic Plastic Equations

As in a general case, it must provide (from reference [2]):

– the elastoplastic strain decomposition

– an elastic law

– a yield criterion, stated with the use of a yield function

– a plastic flow rule defining the evolution of the plastic strain

– a hardening law, which characterises the evolution of the material yield
limit

Considering the evolution of strains, at each loading total strains may
be decomposed into two addictive quantities: elastic and plastic strains - each
presenting different behaviors under loading and unloading conditions. Thus,

εεε = εεεe + εεεp (3-1)

where εεε, εεεe and εεεp are the total strains tensor, elastic strain tensor and plastic
strain tensor, respectively. This equation can incrementally be represented as:

∆ε∆ε∆ε = ∆ε∆ε∆εe + ∆ε∆ε∆εp (3-2)

Throughout this study, a linear constitutive relation is considered, in the
form

σσσ = DDDe : εεεe (3-3)

where DDDe is the standard isotropic constitutive elastic tensor.
The Yield function sets an expression for the stress state conditions of

material in plasticity. In general, the yield function is as following:
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Φ(σσσ, εεε, εεεp, ε̄p, α, · · · ) =

6 0→ elastic state

> 0→ elastoplastic state
(3-4)

where α is an internal variable. It also depends on stress tensor state σσσ, strain
state tensor εεε, plastic strain tensor εεεp and the accumulated plastic strain ε̄p

from the uniaxial test, in a correlation of 3D stress state with the uniaxial
constitutive stress-strain relation.

Moreover, the hardening law is incorporated in the equation above, since
the evolution of accumulated plastic strain εp affects Yield function Φ. The
evolution law for the internal variables is defined by the Flow Rule which, in
associative plasticity we use:

ε̇εεp = γ̇
∂Φ
∂σσσ

(3-5)

which, applying Backward Euler for incremental plasticity reduces to:

∆ε∆ε∆εp = ∆γ ∂Φ
∂σσσ

(3-6)

where ∆εεεp is the incremental plastic strain tensor.

3.1.1
Stress Decomposition

The stress tensor additive decomposition in hydrostatic (or also called
volumetric) and deviatoric tensors consists of, in the matrix form.


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =


p 0 0
0 p 0
0 0 p

+


σxx − p σxy σxz

σyx σyy − p σyz

σzx σzy σzz − p

 (3-7)

This decomposition allows reducing the hydrostatic effects, which does
not cause material plasticity, from the total stress tensor, orσ

σσ = σσσv +SSS

SSS = σσσ − σσσv
(3-8)

In eq. (3-8) p is any real value. However, to establish a fixed p in order
to the deviatoric tensor preserves the volumetric deformation, we consider a
cube with initial side lengths l1, l2 and l3 and final side lengths l′1, l

′
2 and l′3.

Initial volume Vo and the final volume Vf areV0 = l1 · l2 · l3
Vf = l

′
1 · l

′
2 · l

′
3

(3-9)
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respectively. Since only large deformations are assumed to occur linear strains
are, as defined, 

εxx = ln l
′
1
l1
∴ l

′
1 = l1 · eεxx

εyy = ln l
′
2
l2
∴ l

′
2 = l2 · eεyy

εzz = ln l
′
3
l3
∴ l

′
3 = l3 · eεzz

(3-10)

Substituting results in eq. (3-10) into Vf results

Vf
V0

= eεxx+εyy+εzz (3-11)

Defining ∆V as the variation of volume V :

∆V = ln Vf
V0

= εxx + εyy + εzz (3-12)

Considering the constitutive linear relations, from continuum mechanics,
we have: 

εxx = 1
E

[σxx − ν(σyy + σzz)]

εyy = 1
E

[σyy − ν(σxx + σzz)]

εzz = 1
E

[σzz − ν(σxx + σyy)]

(3-13)

that brought into eq. (3-12), it results in

∆V = 3(1− 2ν)
E

(
σxx + σyy + σzz

3

)
(3-14)

Equation (3-14) shows that for ν 6= 0.5 volume is preserved only if:

σxx + σyy + σzz = 0 (3-15)

Since volume preservation must be verified on deviatoric tensor SSS, from
eq. (3-15) this condition results in

tr(SSS) = (σxx − p) + (σyy − p) + (σzz − p) = 0 (3-16)

or

p = σxx + σyy + σzz
3 = tr(σσσ)

3 (3-17)

Also defining p as function of strain tensor, requires that eqs. (3-13) are
added, resulting

E · (ε1 + ε2 + ε3) = σ1 + σ2 + σ3 − 2ν(σ1 + σ2 + σ3)

E · tr(εe) = 3 · σ1 + σ2 + σ3

3 − 2ν · 3
(
σ1 + σ2 + σ3

3

)
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E · tr(εεεe) = 3p− 2ν · 3p

tr(εεεe) = p
3(1− 2ν)

E
(3-18)

or

p = K · tr(εεεe) (3-19)

where K = E/(3(1− 2ν)) is the Bulk modulus.
Thus, in short , we have σ

σσv = pIII

SSS = σσσ − pIII
(3-20)

where p = tr(σσσ)
3

p = K · tr(εεεe)
(3-21)

3.1.2
Deviatoric stress

To obtain the deviatoric stress tensor as function of the strain tensor let
start with strain definition from elasticity in index notation

εij = 1 + ν

E
· σij −

ν

E
σkkδij (3-22)

The deviatoric strain tensor is obtained from (εεεd) as:

εεεd = εεε− tr(εεε)
3 III (3-23)

and the volumetric strain tensor is

εεεv = tr(εεε)
3 III (3-24)

Using the definition 3-23

tr(εεε) = εijδij

=
(

1 + ν

E
· σij −

ν

E
σkkδij

)
δij

= 1 + ν

E
· σkk −

ν

E
σkk δijδij︸ ︷︷ ︸

3

= 1− 2ν
E

σkk

(3-25)

deviatoric strain tensor in eq. (3-23) can be expressed as:
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εijd = εij −
1− 2ν

3E σkkδij

= 1 + ν

E
σij −

ν

E
σkkδij −

1− 2ν
3E σkkδij

= 1 + ν

E
σij −

1 + ν

3E σkkδij

= 1 + ν

E

(
Sij + 1

3σkkδij
)
− 1 + ν

3E σkkδij

= 1 + ν

E
· Sij

= Sij
2G

(3-26)

resulting

SSS = 2G · εεεd (3-27)

3.1.3
Deviatoric operator

The deviatoric projection tensor is a fourth-order tensor that projects a
symmetric second-order tensor into the deviatoric subspace, [2].

IIId := IIIS −
1
3 III ⊗ III (3-28)

where IIIS is a fourth-order operator tensor that maps any second-order tensor
into its symmetric. The definition of symmetric operator of a symmetric tensor
σσσ is given by, [2]

IIIS : σσσ = σσσ (3-29)

The definition of symmetric operator is given by

(IS)ijkl = 1
2(δikδjl + δilδjk) (3-30)

or,

IIIS = 1
2(III + IIIT ) (3-31)

where IIIT is the transposition tensor that provides

IIIT : σσσ = σσσ : IIIT = σσσT (3-32)

The definition, in index notation, for transposition tensor is

(IT )ijkl = δilδjk (3-33)

Below the proof of the deviatoric projection tensor is presented. Assuming
a symmetric tensor σσσ, we have
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IIId : σσσ = (Id)ijkl σσσij =
[

1
2(δikδjl + δilδjk)−

1
3 δijδkl

]
σij

= 1
2 (σkl + σlk)−

1
3 tr(σσσ)δkl

= σkl −
1
3 tr(σσσ)δkl

(3-34)

Therefore, from eqs. (3-20) and (3-21) we have

SSS = IIId : σσσ (3-35)

3.2
The von Mises Isotropic 3D Plasticity

This work considers the 3D isotropic plasticity model with von Mises
yield surface, appropriate to represent most metallic materials that only stretch
in the radial direction of the yield surface.

In the numerical simulation presented a mathematical model is employed
to predict the material physical behavior. Plasticity occurs due to dislocations
whose driven forces are the deviatoric stresses. Moreover, for metal materials,
we expect a plasticity model that should be invariant regardless of the
coordinate system used.

In our study the yield function is defined as [2]:

Φ(σσσ, σy) =
√

3J2(SSS(σσσ))− σy (3-36)

where σy = σy(ε̄p) is a function of the accumulated plastic strain in the uniaxial
load.

In eq. (3-36) J2 is the second invariant of stress tensor for the deviatoric
tensor is used.

J2(SSS) ≡ 1
2 ‖S

SS‖2 = 1
2 SSS : SSS = 1

2SijSij (3-37)

In an algorithm procedure, the derivative of the yield function with
respect to the stress tensor, generally referred as the normal tensor,

NNN ≡ ∂Φ
∂σσσ

=
√

3 ∂

∂σσσ
(J2)1/2 − ∂σy

∂σσσ

=
√

3
2
∂‖SSS‖
∂σσσ

(3-38)

or, using the chain rule derivative,

Nij =
√

3
2
∂‖SSS‖
∂Skl

∂Skl
∂σij

(3-39)
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where, the first fraction from equation in above is rewritten considering that
a norm of a tensor TTT is ‖TTT‖ = (TijTij)1/2. Therefore,

∂‖SSS‖
∂Skl

= 1
2(SijSij)−1/2 ∂

∂Skl
(SijSij) (3-40)

and

∂

∂Skl
(SijSij) = ∂Sij

∂Skl
Sij + Sij

∂Sij
∂Skl

= δikδjlSij + Sijδikδjl

= 2Skl

(3-41)

Thus, plugging this in eq. (3-40) results

∂‖SSS‖
∂Skl

= Skl
(SijSij)1/2 = Skl

‖SSS‖
(3-42)

or

∂‖SSS‖
∂SSS

= SSS

‖SSS‖
(3-43)

Moreover, in eq. (3-39) we may also consider from eq. (3-20)

∂Sij
∂σkl

= ∂

∂σkl
(σij − pδij)

= Iijkl −
∂p

∂σkl
δij

(3-44)

that using index contraction, gives

∂p

∂σkl
= 1

3
∂σmm
∂σkl

= 1
3δmkδml = 1

3δkl (3-45)

Substituting the results in eq. (3-43), (3-44) into eq. (3-39) we may obtain

NNN =
√

3
2
∂‖SSS‖
∂SSS

: ∂S
SS

∂σσσ

=
√

3
2
SSS

‖SSS‖
:
(
III − 1

3δ ⊗ δ
)

=
√

3
2
SSS

‖SSS‖

(3-46)

the normal tensor as a function of the deviatoric stress σσσ tensor.
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3.2.1
The plasticity model considered

Since material plasticity is a non-linear phenomena, its numerical model
representation requires procedures with loading and state variable increments
under linear assumptions and, as a consequence, the use of iterative techniques
in order to obtain a numerical solution. In this section an incremental form
of plasticity analysis procedure is presented, assuming small linearised incre-
ments.

First, the incremental strains (∆ε∆ε∆ε), from a time increment n to n+ 1, is
considered in tensor form:

∆ε∆ε∆ε = εεεn+1 − εεεn (3-47)

where is initially computated considering an elastic problem, by this reason,
the concept of a trial state must be introduced.

εεεe trial
n+1 = εεεen + ∆ε∆ε∆ε (3-48)

The trial accumulated plastic strain in tn+1 is defined as being:

ε̄p trial
n+1 = ε̄pn (3-49)

The corresponding trial stress in obtained by:

σσσtrial
n+1 = DDDe : εεεe trial

n+1 (3-50)

or, alternatively, the use of the stress decomposition. From eq. (3-27):

SSStrial
n+1 = 2G · εεεe trial

d n+1 (3-51)

and from eq. (3-19):

ptrial
n+1 = K · tr(εεεe trial

v n+1) (3-52)

The trial yield stress can also be computed as a function of the accumu-
lated plastic strains:

σtrial
y n+1 = σy(ε̄pn) = σyn (3-53)

At this point, plastic admissibility should be checked for the trial stress
(σσσtrial

n+1) being inside the trial yield surface or outside of it:

– In the case, lying inside (see eq. 3-4), we have:

Φ(σσσtrial
n+1, σyn) 6 0 (3-54)

In this case, the obtained trial tensor is the elastic solution at n+ 1:
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εεεen+1 = εεεe trial
n+1

σσσn+1 = σσσtrial
n+1

ε̄pn+1 = ε̄p trial
n+1 = ε̄pn

σy n+1 = σtrial
y n+1 = σy n

(3-55)

– Otherwise, σσσtrial
n+1 representation lies outside the yield surface and a return-

mapping procedure must be performed in order to obtain the correct
state. This is accomplished by forcing σσσtrial

n+1 to lie on the surface.

Under this condition, correct elastic strain state (εεεen+1) is no longer the
trial elastic strain tensor (εεεe trial

n+1 ), but modifying by subtracting it with the
plastic increment (∆εεεpn+1), resulting in

εεεen+1 = εεεe trial
n+1 −∆ε∆ε∆εpn+1 (3-56)

substituting the incremental plastic strain (∆ε∆ε∆εpn+1) with the flow rule from eq.
(3-6) and the derivative of the yield function with respect to the stress from
eq. (3-46) gives:

εεεen+1 = εεεe trial
n+1 −∆γ

√
3
2
SSSn+1

‖SSSn+1‖
(3-57)

moreover, the new cumulative strain must be updated in the form

ε̄pn+1 = ε̄pn + ∆γ (3-58)

where ∆γ is obtained by forcing the stress representation to belong to the yield
surface. Therefore, the following condition must hold√

3J2(SSSn+1)− σy(ε̄pn+1) = 0 (3-59)

This is a nonlinear equation since SSSn+1 and σy are functions of ∆γ. In
order to obtain the explicit relation between SSSn+1 and ∆γ, we make use of
eq. (3-27) and (3-57) by imposing the deviatoric operator and multiplying for
2G. Note that the second term of the right-hand-side of eq. (3-57) is already
deviatoric. Thus we have(

1 +
√

3
2

∆γ 2G
‖SSSn+1‖

)
SSSn+1 = SSStrial

n+1 (3-60)

resulting that SSSn+1 and SSStrialn+1 are collinear, what implies in

SSSn+1

‖SSSn+1‖
= SSStrial

n+1
‖SSStrial

n+1‖
(3-61)

Bringing the above results into eq. (3-60) stress tensor at time n+ 1 may
explicitly be written as
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SSSn+1 =
(

1−
√

3
2

∆γ 2G
‖SSStrial

n+1‖

)
SSStrial
n+1 (3-62)

Defying qtrial
n+1 and using eq. (3-37):

qtrial
n+1 :=

√
3 J2(SSStrial

n+1) =
√

3
2
∥∥∥SSStrial

n+1

∥∥∥ (3-63)

the eq. (3-62) can be rewritten as:

SSSn+1 =
(

1− ∆γ 3G
qtrialn+1

)
SSStrial
n+1 (3-64)

and the yield function can also be rewritten with the explicit relation with ∆γ,
substituting eq. (3-64) and (3-58) into (3-59):

Φ̃(∆λ) =
√

3J2(SSSn+1)− σy(ε̄pn+1) = 0

=
√

3
2‖S
SSn+1‖ − σy(ε̄pn + ∆γ) = 0

=
(

1− ∆γ 3G
qtrialn+1

)
·
√

3
2
∥∥∥SSStrial

n+1

∥∥∥︸ ︷︷ ︸
qtrial
n+1

−σy(ε̄pn + ∆γ) = 0

= qtrialn+1 − 3G∆λ− σy(ε̄pn + ∆γ) = 0

(3-65)

Finally, the above scalar (non-linear) equation is solved for the plastic
multiplier ∆γ by using the Newton-Raphson iterative technique. For this, the
hardening slope H, derivative of σy with respect to ε̄p is defined as following

H = ∂σy
∂ε̄p

∣∣∣∣
ε̄pn+∆γ

(3-66)

It is important to point out that since the non-linearity in eq. (3-65) is due
to σy only, for a bilinear hardening law no numerical algorithm is needed. From
∆γ obtained value, state variables are updated using the corrected deviatoric
stress tensor, resulting

σσσn+1 = SSSn+1 + ptrial
n+1 III (3-67)

Thus, the correct elastic strain tensor results from the addition of the
hydrostatic and deviatoric elastic strain, in eqs. (3-27) and (3-24), respectively,

εεεen+1 = 1
2G SSSn+1 + 1

3 tr(εεεe trial
n+1 ) III (3-68)

These last eqs. (3-67) and (3-68) define stress and strain tensors in
plasticity evolution, resulting in zero value for the yield function considered.

The flowchart that follows presents a step-by-step sequence for the
algorithm numerical implementation as considered in this study.
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Return-mapping Algorithm

– Given a ∆ε∆ε∆ε

εεεe trial
n+1 = εεεen + ∆ε∆ε∆ε

ε̄p trial
n+1 = ε̄pn

ptrialn+1 = K · tr(εεεe trial
v n+1) SSStrial

n+1 = 2G · εεεe trial
d n+1 (3-69)

qtrialn+1 =
√

3
2 SSStrial

n+1 : SSStrial
n+1 (3-70)

– Check plastic admissibility
if ( qtrialn+1 − σy(ε̄

p trial
n+1 ) 6 0) {

εεεen+1 = εεεe trial
n+1 (3-71)

σσσn+1 = σσσtrial
n+1 (3-72)

ε̄pn+1 = ε̄p trial
n+1 = ε̄pn (3-73)

} else {
Return mapping. Solve the equation

Φ(∆γ) = qtrial
n+1 − 3G ∆γ − σy(ε̄pn + ∆γ) = 0 (3-74)

for ∆γ using the Newton-Raphson.

pn+1 = ptrial
n+1 SSSn+1 =

(
1− ∆γ 3G

qtrial
n+1

)
SSStrial
n+1 (3-75)

σσσn+1 = SSSn+1 + pn+1 III (3-76)

εεεen+1 = 1
2G SSSn+1 + 1

3 tr(εεεe trial
n+1 ) III (3-77)

ε̄pn+1 = ε̄pn + ∆γ (3-78)

}

– Exit

The iterative procedure was considered as follows,
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Newton-Raphson Algorithm

– Set initial guess for ∆γ:

∆γ(0) = 0 (3-79)

and calculate the residual (in this case the Yield Function):

Φ̃ = qtrial
n+1 − σy(ε̄pn) (3-80)

– Do the Newton-Raphson iteration

H = ∂σy
∂ε̄p

∣∣∣∣
ε̄pn+∆γ

(hardening slope) (3-81)

d = ∂Φ̃
∂∆γ = −3G−H (residual derivative) (3-82)

∆γ = ∆γ − Φ̃
d

(new guess) (3-83)

– Check for convergence

3.2.2
Geometric interpretation

Under the algebraic point of view, the theory presented so far is estab-
lished on a robust mathematical support with no insight on the geometric
considerations. Nonetheless, visualizing each procedure can give a clear view
to the understanding on how the procedure is performed in solving a plasticity
problem.

The yield function is geometrically represented by a 3D convex surface
in the principal stress components defined space. To von Mises pressure-
insensitive materials, which hydrostatic stresses do not cause plasticity the
yielding function is geometrically represented by a cylindrical surface which
axis is equally apart from reference axis, along with no restriction in plasticity
occurs.

To obtain the equation representing the surface, a rotation from the
principal stress tensor σσσ, to σσσ′′ lies in a special coordinate system known in
literature, composed by the hydrostatic axis and the π-plane. According to [3],
between the principal coordinate axis and the rotated ones we have

σσσ = ABσσσ′′ (3-84)

where A and B are matrix transformations given by:
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A =


√

2
2 0

√
2

2

0 1 0
−
√

2
2 0

√
2

2

 , B =


1 0 0

0
√

2
3

1√
3

0 − 1√
3

√
2
3

 (3-85)

Considering shear stress, since J2 is invariant, the norm of the deviatoric
stress tensor referred to the principal coordinate axis is

‖SSS‖ = 1√
3

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
(3-86)

Applying the transformation defined in eq. (3-84) between normal stress
and plugging in the result in eq. (3-86) results

‖SSS‖ = (σ′′21 + σ′′22 )1/2 (3-87)

The corresponding yield surface (function) equation is

Φ =
√

3
2‖S
SS‖2 − σy = 0

=
√

3
2(σ′′21 + σ′′22 )1/2 − σy = 0

(3-88)

which geometrically describes a cylindrical surface of radius
√

2
3σy which axis

is equally apart from the σ′′1 , σ′′2 and σ′′3 coordinate axis.
Figure 3.1 summarizes the return mapping algorithm used. As shown, the

cylindrical yield surface with hydrostatic axis expands in the radial direction,
depending on σy value. Thus, considering a stress tensor σn, that lies on the
initial yield surface, it can be achieved under two different circumstances. First,
a fully elastic behavior that reaches the maximum admissible value before
yielding or a previous plastic stress state is already corrected by the return-
mapping.

Imposing a ∆ε∆ε∆ε strain increment, the trial stress tensor (σσσtrial
n+1) can be

obtained and is verified if it lies outside the yield surface. In this case, a return
mapping is required. After a new stretched surface is found using the plastic
multiplier (∆γ) as well as the correction of the stress in eq. (3-65) by recapping
to lie on the surface. In the case of a bilinear material, the plastic multiplier
can be obtained in a closed formula and no need for the Newton-Raphson
iteration algorithm and the radial return mapping, as geometrically described
in fig. 3.1.
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σ
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2

σ
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3

n+1

trial

updated
yield surface

initial
yield surface

Nn+1

σn

σn+1

3 p√

Figure 3.1: The implicit elastic predictor,return-mapping scheme for the von
Mises model. Geometric interpretation is in principal stress space. Figure from
[2]

Considering this same geometric procedure, seeing in the π-plane rep-
resentation, the plastic multiplier ∆γ factor for a constant H is observed, as
shown in fig. 3.2.

updated surface
at t

surface at tn

n+1
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Figure 3.2: The implicit elastic predictor,return-mapping scheme considering
the von Mises model. Geometric interpretation in principal stress space. Figure
from [2]
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3.2.3
Consistent Tangent Operator

To evaluate the constitutive relation, that varies in an elastoplastic
problem, the Consistent Tangent Operator(CTO) [2] is a suitable numerical
procedure that derives the analytical expression of the algorithm constitutive
relation.

Recalling the stress tensor decomposition in eq. (3-8), rewriting it for
both the corrected and trial states one obtainsσ

σσn+1 = SSSn+1 + σσσv

σσσtrial
n+1 = SSStrial

n+1 + σσσv
(3-89)

and substituting the unchanged hydrostatic tensor from eq. (3-89), the result
is

σσσn+1 = SSSn+1 −SSStrial
n+1 + σσσtrial

n+1 (3-90)

Bringing in,SSSn+1 from eq. (3-64),SSStrial
n+1, from eq. (3-51) and using the deviatoric

identity operator into eq. (3-90) one ends to

σσσn+1 = −∆γ 3G
qtrial
n+1

2G εεεe trial
d n+1︸ ︷︷ ︸

IIId:εe trial
n+1

+DDDe : εεεe trial
n+1

=
(
DDDe − ∆γ 6G2

qtrial
n+1

IIId

)
: εεεe trial

n+1

(3-91)

which is the constitutive relation between the corrected stress tensor in
respect to the trial elastic strain tensor. In the return-mapping algorithm the
predicted strain remains unchanged while the stress tensor is adjusted to the
correct state. Thus, the algebraically derivation of CTO is obtained from

∂σσσn+1

∂εεεe trial
n+1

= ∂

∂εεεe trial
n+1

[(
DDDe − ∆γ 6G2

qtrial
n+1

IIId

)
: εεεe trial

n+1

]
(3-92)

which results in, since ∆γ and qtrialn+1 are dependable of εεεe trial
n+1 , after

applying the chain rule,

∂σσσn+1

∂εεεe trial
n+1

= DDDe − ∆γ 6G2

qtrial
n+1

IIId −
6G2

qtrial
n+1

(
∂∆γ
∂εεεe trial

n+1
IIId ⊗ εεεe trial

n+1

)

+ 6G2∆γ (qtrial
n+1)−2 ∂q

trial
n+1

∂εεεe trial
n+1

IIId ⊗ εεεe trial
n+1 (3-93)

In eq. (3-93) two derivatives need to be computed. First, considering qtrialn+1

with respect to εεεe trial
n+1 . From the definition of qtrial

n+1 on eq. (3-63) into eq. (3-27)
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gives

qtrial
n+1 = 2G

√
3
2
∥∥∥εεεe trial
d n+1

∥∥∥ (3-94)

and its required derivative is:

∂qtrial
n+1

∂εεεe trial
n+1

= 2G
√

3
2(εεεe trial

d n+1 : εεεe trial
d n+1)1/2

= 2G
√

3
2 ·

1
2(εεεe trial

d n+1 : εεεe trial
d n+1)−1/2

(
∂εεεe trial

d n+1
∂εεεe trial

n+1
: εεεe trial

d n+1 + εεεe trial
d n+1 : ∂ε

εεe trial
d n+1

∂εεεe trial
n+1

)

= 2G
√

3
2 ·

1
�2

1∥∥∥εεεe trial
d n+1

∥∥∥ �2
(
εεεe trial
d n+1 : ∂ε

εεe trial
d n+1

∂εεεe trial
n+1

)

(3-95)

Moreover, eq. (3-95) still requires the following explicit derivative. Thus,
using the definition of deviatoric identity as presented in section 3.1.3

∂εεεe trial
d n+1

∂εεεe trial
n+1

= ∂

∂εεεe trial
n+1

(IIId : εεεe trial
n+1 )

=
(

∂IIId
∂εεεe trial

n+1
: εεεe trial

n+1 + IIId : ∂ε
εεe trial
n+1

∂εεεe trial
n+1︸ ︷︷ ︸
III

)

= IIId

(3-96)

that brought to eq. (3-95) gives

∂qtrial
n+1

∂εεεe trial
n+1

= 2G
√

3
2

1∥∥∥εεεe trial
d n+1

∥∥∥(εεεe trial
d n+1 : IIId)

= 2G
√

3
2
εεεe trial
d n+1∥∥∥εεεe trial
d n+1

∥∥∥
(3-97)

Recalling from eqs. (3-46) and (3-61) that the normal tensorNNNn+1 is also
a function of the deviatoric trial state and, moreover, that from eq. (3-27) the
deviatoric trial state can be expressed as a function of the deviatoric strain,
the following is then observed.

NNNn+1 =
√

3
2
SSStrial
n+1

‖SSStrial
n+1‖

=
√

3
2
εεεe trial
d n+1∥∥∥εεεe trial
d n+1

∥∥∥ (3-98)

Since the above normal tensor NNNn+1 is not a unit vector a convenient
definition can be used.
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N̄NNn+1 =
√

2
3N
NNn+1 = SSStrial

n+1
‖SSStrial

n+1‖
= εεεe trial

d n+1∥∥∥εεεe trial
d n+1

∥∥∥ (3-99)

and eq. (3-97) is rewritten as function of N̄NNn+1 as

∂qtrial
n+1

∂εεεe trial
n+1

= 2G
√

3
2N̄
NNn+1 (3-100)

Also, in eq. (3-93) the derivative of ∂∆γ
∂εεεe trial
n+1

should be evaluated. As in eq.
(3-65), ∆γ results from the solution of the return-mapping algorithm as

Φ = qtrialn+1 − 3G∆γ − σy(ε̄pn + ∆γ) (3-101)

linearising the curve σy in each iteration, using the hardening slope H, defined
in eq. (3-66), we have

Φ = qtrialn+1 − 3G∆γ − σy(ε̄pn)−H∆γ = 0 (3-102)

As a result, isolating ∆γ from the linearised eq. (3-102) gives:

∂∆γ
∂εεεe trial

n+1
= ∂

∂εεεe trial
n+1

(
qtrial
n+1 − σy(ε̄pn)

3G+H

)

= 1
3G+H

∂qtrial
n+1

∂εεεe trial
n+1

= 2G
3G+H

√
3
2N̄
NNn+1

(3-103)

Finaling binging in the results from eqs. (3-100) and (3-103), and substi-
tuting the definition of N̄NNn+1 from eq. (3-99), eq. (3-93) results

∂σσσn+1

∂εεεe trial
n+1

= DDDe − ∆γ6G2

qtrial
n+1

IIId − 6G2
(

��2G
3G+H �

�
��

√
3
2N̄
NNn+1 ⊗

1
��2G
�
��

√
3
2

·

N̄NNn+1︷ ︸︸ ︷
εεεe trial
d n+1∥∥∥εεεe trial
d n+1

∥∥∥
)

+ 6G2∆γ
qtrial
n+1

(
��2G
�
�
��

√
3
2N̄
NNn+1 ⊗

1
��2G
�
��

√
3
2

·
εεεe trial
d n+1∥∥∥εεεe trial
d n+1

∥∥∥︸ ︷︷ ︸
N̄NNn+1

)
(3-104)

which after proper simplifications gives the algorithm for the elastoplastic
constitutive relation, considering softening of the material, in its final and
formal form:
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DDDep = DDDe − ∆γ 6G2

qtrial
n+1

IIId + 6G2
(

∆γ
qtrial
n+1
− 1

3G+H

)
N̄NNn+1 ⊗ N̄NNn+1

(3-105)
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4
The Finite Element Method

Finite elements is a numerical procedure, widely used in structural
analysis, to evaluate and represent an structure capacity to support loading
under prescribed support conditions. Mathematically, the method results from
applying the partial differential equation from elasticity into the Galerkin
method [1]. Alternatively, a simpler and effective derivation can be achieved
by applying the Principle of Virtual (or infinitesimal variation) Displacements,
that states

δU = δW + δQ (4-1)

where U is the system internal energy Q the energy dissipation and W the
work on the system by external loadings. Considering a system with no energy
dissipation, eq. (4-1) reduces to

δU = δW ∴ δ(U −W ) = 0 (4-2)

From the above equation, an energy functional Π may be defined as

Π = U −W / δΠ = 0 (4-3)

In a structural problem where body, surface and concentrated forces are
present, the variation of the energy functional can be written as, [1]

∫
δεεεT ·σσσ dV −

∫
V
δuuuT · fffB dV︸ ︷︷ ︸

body force work

−
∫
S
δuuuT · fffS dv︸ ︷︷ ︸

surface force work

−
n∑
i=1

δuuuTi ·RRRC
i︸ ︷︷ ︸

concentrated force work

= 0 (4-4)

In the equation above a continuum domain is considered. However, to
solve it numerically, the state variable should no longer be continuum but
discretized. In Finite Elements Methods (FEM) discrete displacements are
solved in the nodes of each element m (ûuu(m)) which are interpolated for a
continuum displacement vector (uuu(m)). Thus,

uuu(m) = HHH(m) · ûuu(m) (4-5)

where HHH(m) is, in this particular study, the Lagrange’s functions defined in a
given coordinate system.
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From small strain definitions, strain vectors result from the derivatives of
continuum displacements with respect to the system coordinates. As a result
we have

εεε(m) = BBB(m) · ûuu(m) (4-6)

where BBB(m) is a transformation matrix obtained from derivatives of Lagrange’s
functions interpolation.

For the constitutive stress-strain relation, established from elasticity,
σσσ = DDD · εεε rewritten by considering the discretization in eq. (4-6) and initial
residual stress as (σσσI) we have.

σσσ(m) = σσσ
(m)
I +DDD(m) BBB(m) ûuu (4-7)

Taking the variational after transposing eqs. (4-5), (4-6) and considering
the constitutive eq. (4-7); functional Π in eq. (4-4) is rewritten in elements
contribution as

M∑
m=1

∫
V (m)

δûuuT BBB(m) T (σσσ(m)
I +DDD(m) BBB(m) ûuu) dV (m) =

M∑
m=1

∫
V (m)

δûuuTHHH(m) T fffBdV (m) +
M∑
m=1

∫
S(m)

δûuuTHHH(m) T fffSdS(m)

+
∑
i

δûuuT RRRi
C (4-8)

that provides the stiffness matrix, body forces, surface forces, concentrated
forces and initial internal forces.


M∑
m=1

∫
V (m)

BBB(m) T DDD(m) BBB(m) T dV (m)︸ ︷︷ ︸
KKK(m)

 ûuu =

M∑
m=1

∫
V (m)

HHH(m) T fffB dV (m)︸ ︷︷ ︸
RRR

(m)
B

+
M∑
m=1

∫
S(m)

HHH(m) T fffS dS(m)︸ ︷︷ ︸
RRR

(m)
S

+
∑
i

RRRi
C

−
M∑
m=1

∫
V (m)

BBB(m) T τττ
(m)
I dV (m)︸ ︷︷ ︸

RRR
(m)
I

(4-9)

After assemblage of all element contribution, the global problem results
in
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KKK · ûuu = RRRB +RRRS +RRRC −RRRI (4-10)

where the nodal displacements are state variables to be solved for.

4.1
Small strain plasticity

In the previous section the FEM formulation for a linear elastic problem
was presented and the numerical solution obtained by solving a linear system
of equations.

In this work, the procedure for small strain plasticity in the FEM is added
to the infinitesimal approach, without considering the non-linearities due to
geometry change. In this case, the global stiffness matrix in the structural
discretization remains constant as in linear FEM.

The resulting equilibrium equation to solve presents a constitutive stress
dependent matrix that requires, the use of an iterative algorithm. For this
application, the most popular is the Newton-Raphson algorithm with load
control, which was used throughout this work.

Global Newton-Raphson Algorithm

// Global stiffness
matrix

��

// Local stiffness matrix //DDDep < 1 >

K · du = df

��

// Linear solve // du < 2 >

Calculate stress
and strain tensor

��

// Return mapping < 3 >

Internal forces

��

< 4 >

Residual < 5 >

Similarly, the schematic overview presented in flowchart shows how the
cycle of the iterations is performed. In step < 1 >, the structure global stiffness
matrix is obtained by the regular local element stiffness matrix assemblage. As
already discussed in section 3.2.3, during the material hardening evolution the
constitutive stress-strain relation changes and the derivation of a Consistent
Tangent Operator is required.
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In large scale simulations, the efficiency of employed numerical algorithms
must be of consideration in this regard, the modified Newton-Raphson itera-
tion procedure is preferable because of large computer efforts required in the
assemblage of the total stiffness matrix. However, the use of the CTO signifi-
cantly reduces the number of iterations.

Therefore, for a given external load increment and the obtained global
stiffness matrix, the displacement incremental vector du is obtained by using
a linear solver as in step < 2 > in the flowchart.

Using du vector, strain and stress tensors are obtained. However, as
in this step < 3 >, resides main difference from the elastoplastic analysis
when compared to the regular linear FEM; an additional feature is added in
the algorithm to "correct" the obtained stress and strain tensors - the return-
mapping as described in section 3.2.1.

After the stress tensor compatible with the plasticity theory is obtained,
convergence must be verified by verifying the obtained internal forces as to
applied the external forces. This procedure is explicitly shown in steps < 4 >
and < 5 >. In case of non convergence, a new iteration procedure should be
performed until convergence conditions are satisfied.

4.2
Consistent Tangent Operator

Although the CTO matrix transformation in eq. (3-105) is of a quite
simple implementation, some numerical difficulties related to the return-
mapping and the unloading, since interferes directly in the elastic predictor
and the unload must recover original elastic relation.

To illustrate this difficulty, considering a bilinear σ − ε relation shown
the the stress after applied first load increment is higher than the material
yield stress a stress correction is required and a new stress-strain slope can be
computed, by using CTO. However, as indicated in fig. 4.1, for the next load
increment, the constitutive relation is parallel to the material hardening and
there is no need for the return-mapping to modify the stress tensor. From eq.
(3-65) the dependence on the elastic parameter G, which is a function of E and
ν, causes failure on imposing ∆γ = 0 , since the CTO is no longer proportional
to E. Moreover, in using the return-mapping, the CTO inclination also provides
no accumulated plastic strains, making the change of return-mapping non-
trivial since ∆γ = 0 is expected but accumulated plastic strain still need to be
computed, see eq. (3-58). These are considerations in the loading case.
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Figure 4.1: Unload recovering elastic inclination

On the other hand, when unloading is considered, the slope must be
recovered as in the initial elastic; using the usual CTO procedure as defined,
it results in wrong estimation as shown in fig. 4.2. If for instance, the simple
example of a bar is under uni-axial traction loading and subsequent unloading,
the use of a incorrect constitutive relation may result in a negative remaining
residual strain, fact not physically expected.

Figure 4.2: Unload recovering elastic inclination

To circumvent this difficulty, a check to verify if the stress state reached
inside the yield surface can be carried out confirming if the appropriated elastic
constitutive relation is used. However, this strategy is not computationally
efficient because it must be performed at each evaluation point (integration
points) as required. A more elegant and effective procedure is to use a two
step strategy as follows. In first, the global stiffness matrix with the modified
Newton-Raphson procedure is obtained from the use of CTO, and second,
while computing the internal stresses from the obtained strains to use the
elastic constitutive relation.

With this strategy trial stress tensor components are obtained from an
elastic predictor, being consistent to the projection of the return-mapping.
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This is shown in Figure 4.3 where a trial stress is computed from the elastic
predictions and from the CTO, avoiding changes on the return-mapping.

Figure 4.3: Trial stress

In case of unloading presented in fig. 4.4 the recovery of the elastic con-
stitutive relation is naturally described. Although global stiffness is dependent
of the CTO, the return-mapping is able to adjust to the expected stress value
due to the elastic predictor when computing internal stresses.

Figure 4.4: Unload recovering elastic inclination

The procedure here presented includes the use of CTO in the return-
mapping presented in chapter 3 and the elastic unloading as expected in
plasticity.

It is important to remark that the use of CTO is not mandatory in
an elastoplastic FEM algorithm. However, it drastically reduces the computa-
tional effort involved in performing Newton-Raphson’s required iterative pro-
cedure.
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5
TopSim Programming Details

TopSim, developed for Topology Simulation, is a plugin based numerical
simulation tool developed by the TecGraf Institute of PUC-Rio.

Plugins are software components that allow addictions of new specific
features to an existing computer program. Each plug-in is itself a separate
project, individually compiled, that, in executing time, the TopSim’s kernel,
manages the connections by the use of an interface protocol.

Plug-in 3

Host
(Manager)

Interface A // Plug-in 1 Interface B // Plug-in 2

Interface C
OO

Interface D
��

Plug-in 4

The flowchart above gives an insight into how the structure of the
software works. Each plug-in, whenever an interface is loaded, can connect
to the next plugin passing attributes to a new algorithm.

Applications within the use of plug-in programs are enormous. However,
TopSim has its focus on numerical simulation and in this chapter, their ad-
vantages focused on structural analysis, in particular Finite Elements Method,
are presented.

Complex FEM programs for all sorts of different analyses, such as large
deformations, thermal analysis, and a variety of plasticity and hyperelasticity
models all end up having some difficulties in arranging the application. Usually,
there are two possible solutions. The first is a neutral file setting parameters
to the analysis, which requires pre-existing processing in the reader that
must be able to read all the necessary conditions. Moreover, in every new
implementation, the reader must be adjusted according to the new condition.
Another possibility, very inefficient let say, is the use of a general case that
covers a simple one. A linear elastic problem can be modeled as a large strain
whenever the nonlinear portion is numerically insignificant. Similarly, plasticity
can be removed from the simulation by defining yield stress bigger enough to
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never be reached, as well as imposing a change of temperature being zero in
a thermal problem. Although the results do not present numerical changes,
irrelevant calculations must be performed such as the contribution of large
deformation, the check of plasticity, and a contribution that is zero due to the
temperature change, increasing the time of the simulation.

The Plugin structure allows, in a very simple but elegant way, to organize
a numerical simulation. There is no need for a reader previously to know the
analysis, since a load of a plugin, in execution time, solves the calling of the
respective plug-in through interfaces. Because plugin must be independent,
this allows others to implement new features without having the source code.
When it comes to the second solution, from the paragraph above, a simple
linear FEM case can be run by not linking more complex plug-ins like large
deformations, plasticity, and thermal in the analysis.

The focus of this dissertation is on the implementation and testing of
an additional plugin for the 3D Isotropic von Mises Plasticity. Originally,
any material nonlinearity was implemented in the TopSim. In this work, the
Return-Mapping algorithm and Consistent Tangent Operator are implemented
as previously illustrated in the flow chart of section 4.1. It is important to
remark that other important features are already available on TopSim, such
as large displacement and large deformation analysis compatibilities.

Traceability is an important feature in a large simulation program, in
which every step of an additional model must be validated. In Appendix G
several FEM solutions are presented and evaluated with the corresponding
analytical solutions including the linear elasticity, strain energy calculations,
and elastoplastic problem analysis.
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6
Numerical Results

In this chapter, the simulation of a cracked specimen using the procedures
presented in chapter 4 and employing the finite element modeling discussed
is presented. Details of the implemented model are also discussed to achieve
better and realistic stress and strain fields occurring at the region ahead of the
crack tip.

Regarding the material constitutive behavior in Fracture Mechanics, in
the literature concerning analytical solutions, two approaches are concerned:
the Linear Elastic Fracture Mechanics (LEFM) with theoretical solutions of-
fered in Williams, sec. 2.2.1 and Creager-Paris, sec. 2.2.1.1, and the Elasto-
plastic Fracture Mechanics (EPFM) HRR solutions, published in sec. 2.3.2.

The important hypothesis of each analytical solution has already been
discussed in the respective section over verifying equilibrium, boundary condi-
tion, singularity, and non-singularity and neglecting elastic contribution.

The finite element model employed in the numerical analysis considered:
a) no enrichment in the element’s interpolation function subspace, a procedure
used to represent a possible stress singularity occurrence at the crack tip
where plasticity occurs due to blunting, as loading increases; and b) the use
of material models including plasticity effects to obtain a realistic specimen’s
mechanical behavior, by considering the material peculiarities close to the tip
of the crack.

Due to the occurrence of high-stress component values (stress concentra-
tion) at a short region of the cracked specimen, the material ought to have a
plastic behavior in a plastic zone. The high-stress gradient in this region, re-
quired, in the present analysis discretization, the use of second-order 10-node
tetrahedron elements (T10).

The specimen geometry considered is shown in fig. 6.1. Due to symmetry,
only one-fourth is represented, consisting of a tensioned central cracked plate
under a self-equilibrated, distributed, loading applied in the direction normal
to the crack. Thus, in this case, KI and J are well-known parameters, as shown
in Appendix H and I.
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Figure 6.1: Geometric and physical parameters used in the numerical analysis.
1/4 of the model was considered with thickness t.

The material hardening law employed is described by dimensionless
Ramberg-Osgood, as in eq. (2-29), same as in HRR derivations. Numerical
parameters for this simulation are presented in table 6.1.

Parameters

Variables Num. Values Units

σn 180 · 106 Pa

E 210 · 109 Pa

σy 300 · 106 Pa

α 0.02 · 109 Pa

n 13 −

a 0.025 m

w 0.1 m

t 0.01 m

Table 6.1: Geometric, material and load parameters

In the next sections, different approaches to the problem solution are
presented and the results compared to the classical formulation whenever
applicable. The finite element model employed 51.310 elements with 77.468
nodes resulting in 228.361 active degrees-of-freedoms.
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The result presentation comprises three main objectives: first, the distri-
bution of σyy along the specimen residual ligament is evaluated by comparing
to various other proposed methods; second, the prediction of the plastic zone
shape is evaluated; and, third a plot the σε relation, under monotonic loading
and under cyclic loadings are presented and discussed.

For the analysis result presentation points ahead of the crack, located at
distances from the tip in multiples of the plastic zone length, are considered.
The following fig. 6.2 presents these point locations showing by different colors
the material in two regimens, plastic or elastic. Notice that the mid-section
plastic zone length is used as the reference length of the plastic zone. Thus, in
this regard, as shown in fig. 6.2, point 80%pz on the upper surface is, in fact,
under the elastic regime due to the parabolic-like shape of the plastic zone
throughout the cross-section.

Figure 6.2: Points multiples of the length of plastic zone. Blue elastic and red
plastic

6.1
Residual Ligament Evaluation

In this section, the numerically obtained stresses and strains varying
along the specimen residual ligament are evaluated considering: at full liga-
ment, at the plastic zone, and, finally, close to the crack tip. Over the length
of full ligament, where the material is in the elastic regime since the

pz = 8.06 · 10−3 m (6-1)

the specimen bound is roughly 9 · pz, fig. 6.2. Besides the elastoplastic HRR
field, William and Creager-Paris, linear elastic solution, are also present in the
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comparison.
Concerning Creager-Paris analytical model, the curvature of the blunted

crack is obtained from the finite element analysis considering y-direction
displacements along the length of the crack stress-free face, as in fig. 6.3

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005
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0.03

Present Study

Elliptical Regression

Figure 6.3: Path plot of σyy as function of the residual ligament

From the results close to the crack tip, a regression is performed by
applying an optimization algorithm, a nonlinear least-squares solver, to reduce
the error between FEM data and the equation of an ellipse which obtained
geometric parameters are in the table 6.2.

Ellipse Parameters

Geometric parameters Value Unit

a 3.7401 · 10−4 m

b 1.3070 · 10−5 m

c 3.7378 · 10−4 m

ρ 4.5675 · 10−7 m

Table 6.2: Geometric parameters of the ellipse

Thus, a comparison of numerically obtained results with the solutions
from Williams, eq. (2-7), Creager-Paris, eq. (2-11) and HRR, eq.(2-27) for
stress σyy, in plane-stress conditions, is presented in fig. 6.4
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Figure 6.4: Path plot of σyy/σy as function of the residual ligament

From these results, it may be observed that all three analytical solutions
do not guarantee the correct boundary condition at 9 · pz, as expected by the
applied stress nominal value, indicated the dashed line. On the other hand, this
same condition is adequately satisfied by the FEM solution, with validation of
Saint-Venant’s principle.

As discussed earlier in section 2.2.1, equilibrium is no longer guaranteed
by the analytical solutions once it is only valid at a region close to the crack
tip. From graph 6.4, it can be inferred that the Williams solution is exact to
the numerical in 0.36 · pz. In the case of the HRR field, which uses elasticity
formulation, the solution along the residual ligament is quite different from
what is expected from the numerical analysis, predicting plastic collapse over
the cross-section.

Although the Creager-Paris model provides a non-singular analytical so-
lution because of the assumed curvature at the crack tip, significant differences
to Williams’ solution are observed, reinforcing the use of an elastoplastic be-
haviour, since not only a non-singular approach is necessary.

Restricting our observation of the results in fig. 6.4 to the region about
the plastic zone where FEM and HRR solutions are of significance, which is
shown in fig. 6.5
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Figure 6.5: Path plot of σyy as function of the residual ligament

As shown, discrepancies between the results are quite large in this region,
with an error difference even though elastic contributions have been neglected
in the analytical solution presented.

In evaluating the numerical results very close to the crack tip, solutions
by McMeeking and Parks [30] were used, which presents numerical results using
2D elastoplastic FEM with small and large scale yielding for both stress and
strain plane conditions. As a reference, the geometric and material parameters
for this simulation were adapted for the respective value of the paper [30]. In
this case, only, new geometric and material parameters are present in the table
above.

Parameters

Variables Num. Values Units

σn 180 · 106 Pa

E 120 · 109 Pa

σy 400 · 106 Pa

α 0.02 · 109 Pa

n 10 −

a 0.05 m

w 0.1 m

t 0.01 m

Table 6.3: Geometric, material and load parameters
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Figure 6.6 presents a comparison of normalized stresses as a function of
the normalized position along the residual ligament for three model solutions:
the HRR, the FEM, and the numerical results obtained by McMeeking and
Parks [30], which legends are on table 6.4. The curve in green is a case when
considering small-scale yielding.
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Figure 6.6: Normal stress on plane ahead of crack tip versus distance for center-
cracked panel with σy/E = 1/300 and a/w = 0.5

Numerical Parameters

Symbol w−a
J/σy

� 537

© 286

4 177

× 64

Table 6.4: Legend of graph 6.6 with numerical points from Parks [30]

The curve in blue presents FEM elastoplastic solution in 3D FEM
simulation. Because this 3D solution assumes straining restrictions in the
direction transverse to the specimen plane this results in higher plasticity but
does not smooth stresses as much as a large strain approach. Moreover, the
blue curve has its peak approximately in the same coordinate as the green
curve.

These numerical results are compatible with the dispersed numerical data
from the graph and predict a high error when comparing to HRR at the bottom
right of graph 6.6, also previously noticed in fig. 6.5.
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6.2
The Plastic Zone Identification

Plastic zones (pz) in cracked specimens are associated with damage
mechanics. In this section analytical estimations of shape and size are presented
and compared to the FEM numerical results.

As discussed earlier in chapter 2, section 2.4.1, the material elastoplastic
frontier Williams obtained, using polar coordinates to define the space upfront
the crack tip, a pair of functions r and θ that defines the material in plastic
regime.

The second proposal [5] is partially considered the boundary condition,
by the addition of the nominal stress in y direction into the original Williams’
field. Despite this procedure being simplistic for not presenting a rigorous stress
analysis, this approach obeys the far-field boundary.

When considering a plastic zone by defining the elastoplastic frontier,
the stress inside pz remains unchanged with both procedures above, differently
from a classical perfectly plastic approach that defines a maximum value of
stress. To consider a constant value of stress inside, the stress field must be
rearranged to verify equilibrium. In this case, applying Irwin’s integral, section
2.4.3, a new pz may be defined.

In the fig. 6.7 that follows, these proposed solutions are compared to
obtained finite element results. The material and geometric parameters are in
the original table 6.1 presented.
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Figure 6.7: Plastic zone estimation

Analyzing the graph above, it is noticed that neither Williams nor nom-
inal correction predicts pz size and shape well. Although considering nomi-

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Chapter 6. Numerical Results 76

nal stress is an attempt to enforce the boundary conditions, it automatically
causes disequilibrium. Assuming the FEM solution as a reference, the equi-
librium requirement predicts quite well the size of pz, besides θ close to zero,
while considering the nominal stress the shape of pz. The only solution that
covers simultaneously both of these corrections and prevents singular fields is
the FEM.

An interesting topic that must be pointed out is the use of HRR for
pz prediction. Since the size of the thickness in this 3D simulation is small
in comparison to other dimensions of the specimen, plane stress is assumed.
Combining stresses σyy, σxx and σxy from HRR, it is possible to estimate
the size and shape of pz. However, the high-stress prediction due to plasticity
consideration with the assumption of no transversal stress estimates unrealistic
pz. From fig. 6.4, it is noticed that HRR predicts, along all residual ligament,
σyy bigger than the yield stress. Thus, when bringing the stresses into von
Mises equation, assuming σzz = 0, all residual ligament is considered part of
pz.

In fact, plane stresses are idealization that differs from a realistic 3D
analysis, since, due to plasticity, strain restrictions create residual stress
compression transversal to the cross-section.

6.3
Stress-strain relation in Monotonic Loading

In this section, stress-strain relations are considered, measured at specific
points along the residual ligament. Obtained results for the finite element
numerical solutions and the analytical HRR model solutions, for measurements
at the specimen upper plane and mid surface, are presented in figs. 6.8 and
6.9, respectively. Plot 6.8 corresponds to the results at the specimen surface
where σzz is zero, while plot 6.9 is to the mid surface. In both figures, eleven
point positions are indicated, corresponding to distances to the crack tip as
percentages of the plastic region length pz.
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Figure 6.8: σyy vs εyy in surface section in different points ahead of the crack
tip
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Figure 6.9: σyy vs εyy in middle section in different points ahead of the crack
tip

A comparison of these results show significant differences in εyy and stress
σyy values. However, as previously indicated, with the HRR model results
a singular field in the stresses distribution and a constant tensor normal
to the yield surface in principal coordinates during the loading is assumed.
These conditions quite interfere in the cumulative plastic strain accounted for
the material flow rule, resulting in εyy results with severe distortions when
compared to the numerically obtained solutions.

For instance, close to the crack tip as in point 1 the HRR model pre-
dicts strains three times larger than FEM solutions, compatible with singular
approach solutions when compared to non-singular formulation results. How-
ever, considering the predictions up to the frontier of the pz strain, at points
9− 80%pz, for example, they are compatible with the error presented in graph
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6.5 for the stresses.
In all plots show classical stress-strain relations are indicated, starting

with the linear elasticity when the pair of stress and strain tensor correlates
σyy and εyy are also proportional. Depending on the stress concentration factor,
afterward, the material response is non-linear whenever plasticity is required.

Although it may sound surprising, the derivative of the curve from plots
6.8 and 6.9 (Ey) varies along x-axis or multiples of pz and the behavior can
not be predicted in a simple uniaxial tensile test.

In what follows this phenomenon is illustrated, we establish a linear
relation between y-direction in 3D analysis, where the stress and strain tensor
are linearly related as

σyy = Ey · εyy (6-2)

In 1D analysis, ε and σ are related by the material Young’s Modulus Ey
,in the form,

σyy = Ey ·
[
σyy
E

]
(6-3)

Ey = E (6-4)

Considering a multiaxial problem, this relation becomes

σyy = Ey ·
[
σyy
E
− ν

E
σxx −

ν

E
σzz

]
(6-5)

or

Ey = σyy
σyy
E
− ν

E
σxx − ν

E
σzz

(6-6)

with Ey as a function of normal stress components. Consequently, a change in
one of these parameters causes changes in the Ey which varies with x position
along the cross-section. This fact is illustrated by the simple example shown in
Table 6.5. Here numerically obtained stress components for 0.7pz and 1.25pz
positions in the upper plane are presented with the material still in the linear
elastic regime:

Stresses

pz σxx [Pa] σyy [Pa] σzz [Pa]

70% 6.9456 · 106 1.6248 · 107 −1.4838 · 104

1.25 4.3984 · 106 1.4171 · 107 2.9245 · 103

Table 6.5: Stress components in normal direction for 0.7%pz and 1.25pz
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From the plot:

E0.7pz
y = ∂σyy

∂εyy

∣∣∣∣
elastic

= 240.82 GPa (6-7)

E1.25pz
y = ∂σyy

∂εyy

∣∣∣∣
elastic

= 231.58 GPa (6-8)

and, these results match the obtained values from eq. (6-6), using the numerical
values in table 6.5.

Some comparisons on neglecting elastic contribution in HRR may now
be made. Due to Saint-Venant’s principle and besides the nominal stress being
verified (black dashed line) at point 11 far from the crack tip, the parameter
Ey converges to E value in the same point in the red dashed line, since other
stress components are approximately zero. The same evaluation with the plot
for HRR furnishes that the elastic contribution is neglected.

Also comparing figs. 6.8 and 6.9 the condition of strain restriction along
the thickness is observed, as dispersed values of Ey in the middle section occurs.
As a consequence, since the elastoplastic stress depends on elastic contribution,
the middle section it is noticed a large difference in the stresses between the
curves.

Although the numerical results in both (upper and mid) surface present
considerable differences, the section solutions were employed in comparison to
the HRR results (under plane stress condition).

6.4
Stress-strain Relation in Load and Unloading

Considering the unloading process in a numerical crack problem two
additional features must be considered: firstly, the procedure used for the
nonlinear monotonic incremental elasticity can no longer be used because
plastic residual strains must be continuously evaluated and, secondly, the
numerical procedure shall recognize the plasticity state when in unloading.

In loading conditions, the stress-strain relation is represented by a
monotonically increasing curve which should return to the original linear
constitutive relation as unloading.

In the previous section, the monotonic curve was divided into two stages:
elastic and elastoplastic. Continuing the same procedure as before, when the
specimen unloads, stage three initiates with a linear elastic regime. Next, in
the last stage of this analysis, stage four starts when, during the unload, the
material behaves non-linearly under the plasticity regime.

In figs. 6.10 and 6.11 the unload is performed to a zero nominal stress,
to avoid contact between crack faces.
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Figure 6.10: σyy vs εyy in surface section in different points ahead of the crack
tip considering unload
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Figure 6.11: σyy vs εyy in middle section in different points ahead of the crack
tip considering unload

A very relevant aspect is that linear elastic stress-strain curves may end
up having residual strain, as shown in point 10 in the graphs 6.10 and 6.11.
A solution to a 3D problem depends on the stress field over the full domain.
In the case of point 10, the constitutive relation ∂σ

∂ε
depends on the residual

compression stress and strains, making a coupling problem. In Appendix J,
a simple example of elasticity shows how coupling effects may interfere the
derivative ∂σ

∂ε
in one specific direction.

Compared to the 1D isotropic plastic model, when unloading, the regime
remains elastic until stress reaches −σy crossing the stress axis. However, this
behavior does not occur in 3D models. The yield function in 3D depends on
the norm of the deviatoric stress, a result that is not unique, since multiple
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deviatoric stress tensors may have the same norm; differently, in 1D the stress
applied in the yield function, a scalar, is unique. Due to the complexity of the
3D yield condition, a stress component of the tensor is not guaranteed to be
the same that starts plastic behavior in load or unload.

From the previous analysis, it was presented that a residual stress-strain
relation may appear under elasticity. However, this phenomenon only occurs
when plasticity is required. In graph 6.12 a subsequential load and unload,
preventing plasticity, was performed. In this case, it is possible to see that
coupling will not be noticed since at any point the derivative ∂σ

∂ε
changed.
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Figure 6.12: σyy vs εyy in surface section in different points ahead of the crack
tip considering load and unload under elastic regime
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7
Conclusion

This thesis aims for an evaluation and comparison of classical analytical
procedures available in Fracture Mechanics’ literature to a fully numerical
FEM simulation for predicting material stress and strain distributions around
a specimen crack tip. Linear elastic approaches by Williams, section 2.2.1, and
Creager-Paris, section 2.2.1.1, while the well known HRR field theory for the
elastoplasticity, section 2.3.2, were adopted as main references.

To perform the simulation in this work, a plugin framework called
TopSim, originally with no plasticity model is adopted as a FEM numerical
tool. To consider elastoplasticity, the Return-mapping algorithm with von
Mises yield criterion is implemented, and as a result, the global Newton-
Raphson adapted to take into account this new nonlinearity. Moreover, variable
loads were also considered, especially unload in elastoplastic problems. To
provide efficiency, the variable constitutive relation, CTO, is computed in the
simulation.

A comparison between the numerical and analytical stresses along the
residual ligament ahead of the crack tip was presented and discussed. As
expected, close to the crack tip analytical solutions fail on reproducing the
appropriate numerical results, since boundary and equilibrium conditions
are not verified. McMeeking and Parks [30] elastoplastic numerical solution
considering plane stress state, were used as validation for stress analysis close
to the crack tip.

In addition, a study on the size and shape of the plastic zone (pz) is
presented and discussed. The qualitative analysis of these results enforced
the importance of considering the equilibrium and the appropriate boundary
conditions in the proposed solution analysis.

Finally, the analysis of stress-strain curve relation in the stress y com-
ponent, which is paramount in fatigue analysis. Under loading and unloading,
obtained results at different points along the residual ligament, in the surface
and middle section planes, have shown that the HRR model is not an ap-
propriate analytical solution tool, significantly differing from the numerically
obtained results.

This thesis work provided, with solid arguments, that Williams, Creager-
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Paris, and HRR are inaccurate theoretical models to represent the stresses
and strains fields. Although Thermodynamics’ first law is guaranteed by the
Williams stress field model, equilibrium and boundary conditions are not
verified since the solution is only valid close to the crack tip. Moreover, the
assumption of elastic distribution is of limited value because of the high-stress
concentration factor around crack tips. The same assumptions are followed
by Creager-Paris except that the stress solution may not be singular as
approaching the crack tip.

In the elastoplastic behavior, the HRR model for the stress field assumes
equilibrium and compatibility equation, both derived directly from the Theory
of Elasticity. In addition, the assumed stress function is singular at the crack tip
and, despite considering small range plasticity, the derivations neglect elastic
contributions to obtain stress and strain distributions. As a result, even inside
the pz, region of confidence, HRR models provide solutions with significant
differences when compared to numerical procedure solutions.

7.1
Future Work Proposals

The Material hardening considered for the 3D elastoplastic von Mises
model was assumed isotropic since yield surface stretches occur in the radial
direction only. However, after a large number of load steps, significant loads
may not be considered in the elastoplastic range. To exemplify this fact, in
an isotropic model the step after an overload will only cause plasticity only
for higher loading. As natural progress of the work, the implementation of a
kinematic hardening rule in the numerical procedure should now be considered.

When it comes to modeling solutions where the stress distribution
presents a too steep variation, the finite element procedure requires the use
of domain discretization enrichments by the addition of a significantly large
number of elements. In the present study, this condition arised in the region
around the tip of the crack, making the problem to a large-scale simulation that
for realistic and variable amplitude loads, numerically inefficient. To overcome
this condition an enrichment of the finite element model’ function subspace
considering a nonsingular function could be proposed, similarly as used in
Creager-Paris analytical solutions.

Moreover, an analytical/numerical analysis may be proposed by adapting
the HRR field inspired by the Creager-Paris solution. Translating the singular
field into the crack and rewriting the differential equation in elliptical coor-
dinates, instead of the cylindrical coordinate system, the stress function may
be numerically defined depending on the position angle. Therefore, an elasto-
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plastic nonsingular solution may result and can be used as a reference for the
numerical solution obtained by using the FEM.
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A
Inglis Problem

In 1913, Inglis [17] proposed an analytical solution for the stress concen-
tration factor

Kt = 1 + 2a
b

= 1 + 2
√
a

ρ
(A-1)

occurring in an infinite plate, with an elliptical hole and under a traction
loading as illustrated in figure A.1.

Figure A.1: Ellipse

Beginning from the general theory of curvilinear coordinates, cartesian x
and y are written as function of ξ and ηx = c cosh ξ cos η

y = c sinh ξ sin η
(A-2)

which, by eliminating variable η, reduces to :

x2

c2 cosh2 ξ
+ y2

c2 sinh2 ξ
= 1 (A-3)

For a fixed value of η, the equation in above describes an ellipse in
cartesian coordinates with the geometric parameters shown in fig. A.2
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Figure A.2: Ellipse

where a and b are half axis lengths and c is half of focal distance.
Therefore we have, a = c cosh ξ0

b = c sinh ξ0

(A-4)

and the radius of curvature ρ, a mathematical simplification, define as:

ρ := b2

a
(A-5)

For a general bi-axial load, Inglis proposed an infinite series expansion
for the stresses as

σξξ = 1
[cosh(2ξ)− cos(2η)]2

∑
n

An

{
(n+ 1)e(1−n)ξ cos((n+ 3)η)

+ (n− 1)e−(n+1)ξ cos((n− 3)η)−
[
4e−(n+1)ξ + (n+ 3)e(3−n)ξ

]
cos((n+ 1)η)

+
[
4e(1−n)ξ + (3− n)e−(n+3)ξ

]
cos((n− 1)η)

}
+Bn

{
e−(n+1)ξ

[
n cos((n+ 3)η)

+ (n+ 2) cos((n− 1)η)
]
−
[
(n+ 2)e(1−n)ξ + ne−(n+3)ξ

]
cos((n+ 1)η)

}
(A-6)

σηη = 1
[cosh(2ξ)− cos(2η)]2

∑
n

An

{
(3− n)e(1−n)ξ cos((n+ 3)η)

− (n+ 3)e−(n+1)ξ cos((n− 3)η)−
[
4e−(n+1)ξ − (n− 1)e(3−n)ξ

]
cos((n+ 1)η)

+
[
4e(1−n)ξ + (n+ 1)e−(n+3)ξ

]
cos((n− 1)η)

}
+Bn

{
e−(n+1)ξ

[
n cos((n+ 3)η)

+ (n+ 2) cos((n− 1)η)
]
−
[
(n+ 2)e(1−n)ξ + ne−(n+3)ξ

]
cos((n+ 1)η)

}
(A-7)
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σξη = 1
[cosh(2ξ)− cos(2η)]2

∑
n

An

{
(n− 1)e(1−n)ξ sin(n+ 3)η

+ (n+ 1)e−(n+1)ξ sin(n− 3)η − (n+ 1)e(3−n)ξ sin(n+ 1)η

− (n− 1)e−(n+3)ξ sin(n− 1)η
}

+Bn

{
e−(n+1)ξ

[
n sin(n+ 3)η

+ (n+ 2) sin(n− 1)η
]
−
[
(n+ 2)e(1−n)ξ + ne−(n+3)ξ

]
sin(n+ 1)η

}
(A-8)

where constants An and Bn are constants obtained from boundary
condition verifications. If the case of uniaxial tension σn in y direction, as
presented in figure A.1, the only non-zero constants are as following

A1 = −σn(1+2e2ξ0 )
16

B1 = σne4ξ0
8

A−1 = −σn
16

B−1 = σn(1+cosh(2ξ0))
4

B−3 = −σn
8

(A-9)

corresponding to zero stresses on the ellipse free surface as ξ = ξ0.σξξ(ξ = ξ0) = 0

σξη(ξ = ξ0) = 0
(A-10)

Thus σηη in eq. (A-7) yields to

σηη(ξ = ξ0) = σne
2ξ0

[
(1 + e−2ξ0) sinh(2ξ0)
cosh(2ξ0)− cos(2η) − 1

]
(A-11)

and the maximum value of σηη results from the smallest denominator
value of denominator with cos(2η) = 1. Thus, from eq. (A-11), the stress
concentration factor results in

σMax
ββ

σn
= e2ξ0

[
(1 + e−2ξ0) sinh(2ξ0)

cosh(2ξ0)− 1 − 1
]

(A-12)

From eqs. (A-2) we have

b

a
= tanh ξ0 = eξ0 − e−ξ0

eξ0 + e−ξ0
=

e2ξ0−1
e2ξ0

e2ξ0+1
e2ξ0

= e2ξ0 − 1
e2ξ0 + 1 (A-13)

or

e2ξ0 = a+ b

a− b
(A-14)

Combining the terms of eq. (A-12) on the hyperbolic function basic
definitions with eq. (A-14), after few algebraic manipulations, results in:
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σMax
ββ

σn
= a+ b

a− b


(

1 + a−b
a+b

)
·
(
a+b
a−b −

a−b
a+b

)
1
2(

a+b
a−b −

a−b
a+b

)
1
2 − 1

− 1


= 1 + 2a
b

(A-15)

which is Ingris’ result, presented in eq. (A-1), for the stress concentration factor
occurring in an elliptical hole, in an infinite plate with an elliptical hole, under
traction.
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B
William Solution

In this Appendix equations for plane stress distributions due to a crack,
in a plate loaded for mode I failure are derived, according to Wiliams’ solutions
in

∇4Ψ(r, θ) =
(
∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2

)(
∂2Ψ
∂r2 + 1

r

∂Ψ
∂r

+ 1
r2
∂2Ψ
∂θ2

)
= 0 (B-1)

with the following stress component expressions

σr(r, θ) = 1
r

∂Ψ
∂r

+ 1
r2
∂2Ψ
∂θ2 (B-2)

σθ(r, θ) = ∂2Ψ
∂r2 (B-3)

σrθ(r, θ) = − ∂

∂r

(
1
r

∂Ψ
∂θ

)
(B-4)

In addition, proper boundary conditions must be satisfied as shown in
fig. B.1

For the solution of Ψ it was proposed the following infinite periodic series
expansion function

Ψ(r, θ) = r2 f(r, θ) + g(r, θ) (B-5)

with

f =
∑
n

Anr
n cos(nθ) + Cnr

n sin(nθ) (B-6)

g =
∑
n

Bnr
n+2 cos

[
(n+ 2)θ

]
+Dnr

n+2 sin
[
(n+ 2)θ

]
(B-7)

where An, Bn, Cn and Dn are constants to be defined.
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Figure B.1: Crack coordinates

For mode I type of fracture, symmetry on σθ, imposes the following
condition

σθ(θ) = σθ(−θ) (B-8)

Using Airy’s equation proposed in eq. (B-5) σθ is obtained as follows

σθ = ∂2Ψ
∂r2 = ∂

∂r

[
∂

∂r

(
r2f + g

)]

= 2f + 4r∂f
∂r

+ r2∂
2f

∂r2 + ∂2g

∂r2

(B-9)

where using f and g defined in eqs. (B-6) and (B-7) we have

∂f

∂r
=
∑
n

Annr
n−1 cos(nθ) + Cnnr

n−1 sin(nθ) (B-10)

∂2f

∂r2 =
∑
n

Ann(n− 1)rn−2 cos(nθ) + Cnn(n− 1)rn−2 sin(nθ) (B-11)

∂g

∂r
=
∑
n

Bn(n+ 2)rn+1 cos
[
(n+ 2)θ

]
+Dn(n+ 2)rn+1 sin

[
(n+ 2)θ

]
(B-12)

∂2g

∂r2 =
∑
n

Bn(n+ 2)(n+ 1)rn cos
[
(n+ 2)θ

]
+Dn(n+ 2)(n+ 1)rn sin

[
(n+ 2)θ

]
(B-13)

Thus, resulting in
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σθ = 2
∑
n

Anr
n cos(nθ) + Cnr

n sin(nθ)

+ 4
∑
n

Annr
n cos(nθ) + Cnnr

n sin(nθ)

+
∑
n

Ann(n− 1)rn cos(nθ) + Cnn(n− 1)rn sin(nθ)

+
∑
n

Bn(n+ 2)(n+ 1)rn cos
[
(n+ 2)θ

]
+Dn(n+ 2)(n+ 1)rn sin

[
(n+ 2)θ

]
(B-14)

From the condition of symmetry in eq. (B-8)

Cn = Dn = 0 (B-15)

Resulting f and g, from eqs. (B-6) and (B-7) asf = ∑
nAnr

n cos(nθ)

g = ∑
nBnr

n+2 cos
[
(n+ 2)θ

] (B-16)

and the stress function Ψ as

ΨI = r2∑
n

Anr
n cos(nθ) +

∑
n

Bnr
n+2 cos

[
(n+ 2)θ

]
(B-17)

Finally, back to eq. (B-14), with the result in eq. (B-15), reduces to

σθ =
∑
n

(n+ 2)(n+ 1)rn
[
An cos(nθ) +Bn cos

[
(n+ 2)θ

]]
(B-18)

Similarly, bringing into σr, the Airy’s function as in eq. (B-2), we have

σr = 1
r
· ∂Ψ
∂r

+ 1
r2 ·

∂2Ψ
∂θ2

= 2f + r · ∂f
∂r

+ 1
r
· ∂g
∂r

+ ∂2f

∂θ2 + 1
r2
∂2g

∂θ2

(B-19)

that from eq. (B-16) provides

σr =
∑
n

rn
{
An(n+2−n2) cos(nθ)+Bn

[
(n+2)−(n+2)2

]
cos

[
(n+2)θ

]}
(B-20)

Using the same procedure as before, for σrθ, we have
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σrθ = − ∂

∂r

(
1
r
· ∂ψ
∂θ

)

= −∂f
∂θ
− r · ∂

2f

∂θ∂r
+ 1
r2 ·

∂g

∂θ
− 1
r
· ∂

2g

∂θ∂r

(B-21)

that, from eq. (B-16), gives

σrθ =
∑
n

An(n+ n2)rn sin(nθ) +
∑
n

Bnr
n
[
− (n+ 2) + (n+ 2)2

]
sin

[
(n+ 2)θ

]
=
∑
n

(n+ 1)rn
[
nAn sin(nθ) + (n+ 2)Bn sin[(n+ 2)θ]

]
(B-22)

From eqs. (B-18), (B-20) and (B-22)



σθ = ∑
n(n+ 2)(n+ 1)rn

[
An cos(nθ) +Bn cos

[
(n+ 2)θ

]]

σr = ∑
n r

n

{
An(n+ 2− n2) cos(nθ) +Bn

[
(n+ 2)− (n+ 2)2

]
cos

[
(n+ 2)θ

]}
σrθ = ∑

n(n+ 1)rn
[
nAn sin(nθ) + (n+ 2)Bn sin[(n+ 2)θ]

]
(B-23)

Boundary conditions at the crack faces state that normal and shear
stresses are zero

σθ(θ = ±π) = σrθ(θ = ±π) = 0 (B-24)

what implies, considering the equation for σθ at eq. (B-23).

An cos(nπ) +Bn cos[(n+ 2)π] = 0

An cos(nπ) +Bn cos[nπ + 2π] = 0

From cos addictive property

(An +Bn) cos(nπ) = 0

and, as well for σrθ:

nAn sin(nπ) + (n+ 2)Bn sin[(n+ 2)π] = 0

nAn sin(nπ) + (n+ 2)Bn sin[nπ + 2π] = 0

From sin addictive property
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[nAn + (n+ 2)Bn] sin(nπ) = 0

As a consequence, from eq. (B-24) we have(An +Bn) cos(nπ) = 0

[nAn + (n+ 2)Bn] sin(nπ) = 0
(B-25)

From the first equation in above, at least one of the products must be
zero. So, n = · · · ,−3/2,−1/2, 1/2, 3/2, · · ·

An = −Bn

(B-26)

and, the same for the second equationn = · · · ,−2,−1, 0, 1, 2 · · ·

nAn = −(n+ 2)Bn

(B-27)

In this case some additional conditions must also be verified:

– n must be non-positive n < 0, otherwise the solution gives stress
singularity far from the crack tip. It is expected that higher stresses
occur as approaching to the crack tip.

– On the other hand, n = 0 implies in constant stress values not correct
for stress concentrations, physically expected, nearby to a crack tip.

– thus negative value of n reproduces stress singularity.

Applying the first law of thermodynamics, with finite and positive strain
energy (ES), thus

ES ≈
∫
σε dA =

∫ σ2

E
dA (B-28)

from eq. (B-23), the stress can be represented as a geometric portion depend-
able of θ and a portion of rn

σ = f(θ) · rn (B-29)

rewriting eq. (B-28):

ES =
∫ π

−π
f 2(θ) dθ

∫ R

0
r2nr dr (B-30)

where R is the radius of the circular area centered in the crack. So:

0 <
∫ π

−π
f 2(θ) dθ

∫ R

0
r2nr dr <∞ (B-31)

Note that, since f(θ) has sines and cosines, that are bounded function,
then
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0 <
∫ π

−π
f 2(θ) dθ <∞ (B-32)

The condition of finite and positivity lies on the second part of the eq.
(B-31)

0 <
∫ R

0
r2nr dr = R2n+2

2n+ 2 <∞ ∴ n > −1 (B-33)

From the first law of thermodynamics that provides n > −1 and physical
meaning coverage of n < 0, the only n that verify boundary condition from
eqs. (B-26) and (B-27) is

n = −1
2 (B-34)

that verifies (B-26). For the second case, eq. (B-27), we have

nAn = −(n+ 2)Bn (B-35)

Therefore, assuming A−1/2 function of a constant KI we haveA−1/2 = KI/
√

2π

B−1/2 = A−1/2/3 = KI/3
√

2π
(B-36)

that substituting into eq. (B-23) gives


σxx

σyy

σxy

 = KI√
2πr

cos
(
θ

2

)


1− sin
(
θ
2

)
· sin

(
3θ
2

)
1 + sin

(
θ
2

)
· sin

(
3θ
2

)
sin

(
θ
2

)
· cos

(
3θ
2

)

 (B-37)
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C
Irwin’s Solution

Using the Westergaard stress function [6] - which is a complex analytical
function that represents a stress function, provided the problem boundary
conditions are satisfied - George Rankin Irwin [33] characterized the SIF for
an infinite plate loaded under biaxial nominal stresses σn.

The box in below presents a proof of of this important mathematical
property of Westergaard stress functions

Basically we start with the general form definition of a complex function in
cartesian coordinates

Z(z) = f(x, y) + i · g(x, y) (C-1)

where z = x + i y and Z(z) = Re(z) + i · Im(z) is an analytical form if Z ′

is unique. Thus, for Z(z) be derivable, it must obey the Cauchy-Riemann
condition, given by: 

∂Re(Z)
∂x

= ∂Im(Z)
∂y

= Re(Z ′)
∂Im(Z)
∂x

= ∂Re(Z)
∂y

= Im(Z ′)
(C-2)

or using eq. (C-1) definitions 
∂f
∂x

= ∂g
∂y

∂f
∂y

= − ∂g
∂x

(C-3)

Applying the Laplace operator (∇2 = ∂2/∂x2 +∂2/∂y2) in f and g, we have∇
2f = ∂2f

∂x2 − ∂2g
∂x∂y

+ ∂2f
∂y2 + ∂2g

∂x∂y
= 0

∇2g = − ∂2f
∂x∂y

+ ∂2g
∂y2 + ∂2f

∂x∂y
+ ∂2g

∂x2 = 0
(C-4)

Therefore for a given complex analytical function, Re and Im are harmonic
(obey Laplace equation) and conjugate (for a given f , g is obtained less than
a constant, and vice versa).

∇4Z = ∇2(∇2f︸ ︷︷ ︸
=0

) + i · ∇2(∇2g︸ ︷︷ ︸
=0

) = 0 (C-5)

that concludes the proof sought.
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Thus, Westergaard stress function’s in its general format is:

Ψ(z) = Re( ¯̄Z) + y Im(Z̄) (C-6)

where

Z = ∂Z̄

∂z
, Z̄ = ∂ ¯̄Z

∂z
(C-7)

Applying Airy’s formulation, the stresses are the following

σxx = ∂2φ

∂y2

= ∂

∂y

(
Re( ¯̄Z)
∂y

+ ∂(y Im(Z̄))
∂y

)

= ∂(−Im(Z̄) + Im(Z̄) + y Re(Z))
∂y

= Re(Z)− y Im(Z ′)

(C-8)

σyy = ∂2φ

∂x2

= ∂

∂x

(
Re( ¯̄Z)
∂x

+ ∂(y Im(Z̄))
∂x

)

= ∂(Re(Z̄) + y Im(Z))
∂x

= Re(Z) + y Im(Z ′)

(C-9)

τxy = ∂2φ

∂x∂y

= − ∂

∂x

(
Re( ¯̄Z)
∂y

+ ∂(y Im(Z̄))
∂y

)

= ∂(y Re(Z))
∂x

= −y Re(Z ′)

(C-10)

Considering a crack with 2a in size centered in an infinite plate loaded
under nominal σn biaxial stresses , as proposed by Irwin„ a stress function Z
to solve the stress field around the crack tip is given by

Z = z σ√
z2 − a2

⇒ Z ′ = − σ a2

(z2 − a2)3/2 (C-11)

with the following boundary conditions, in cartesian coordinates,

– σyy = σxy = 0 for −a < x < a and y = 0;
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– σxx = σyy = σn x√
x2−a2 and σxy = 0. with y = 0. As x → ∞, therefore

σxx = σyy = σn

By using polar coordinates centered at the crack tip in the complex plane
representation we have

z = r eiθ + a (C-12)

where

r2 = (x− a)2 + y2 (C-13)

Rewriting eq. (C-11) one may obtain

Z = σn (r eiθ + a)√
(r eiθ + a)2 − a2

=
σn

( ≈0︷︸︸︷
r

a
eiθ + 1

)
a√

r2 eiθ + 2a r eiθ +��a2 −��a2

= σn
√
a�
�
√
a

�
�
√
a
(

r

a︸︷︷︸
≈0

r eiθ + 2�a r

�a
eiθ
)

= σn
√
a√

2reiθ

(C-14)

Z(zt) = σn
√
a√

2
e−iθ = σn

√
a√

2r

[
cos θ2 − i sin θ2

]
(C-15)

where

zt = r eiθ (C-16)

and

Z ′(zt) = −σn
√
a√

2
z
−3/2
t = σn

√
a

2r
√

2r

[
− cos 3θ

2 + i sin 3θ
2

]
(C-17)

Thus expressions for plane stress components are readily obtained

σyy = Re(Z) + yIm(Z ′)

= σn
√
a√

2r
· cos θ2

[
1 + sin θ2 sin 3θ

2

] (C-18)
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σxx = Re(Z)− y Im(Z ′)

= σn
√
a√

2r
· cos θ2

[
1− sin θ2 sin 3θ

2

] (C-19)

σxy = −y Re(Z ′)

= σn
√
a√

2r
· cos θ2 sin θ2 cos 3θ

2
(C-20)

Multiplying eqs. (C-18), (C-19) and (C-20) for
√
π√
π
, factorKI (SIF) results

as obtained for William’s stress field in eq. (2-7),

KI = σn
√
πa (C-21)
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D
Creager-Paris Solution

The proof of the following problem requires additional knowledge of con-
tinuum mechanics and theory of elasticity that will not be fully demonstrated
in this chapter.

Stress functions can be separated into two parts. The harmonic terms
(Ω) and the complex function (χ)

Ψ = Re[Z̄Ω(Z) + χ(Z)] (D-1)

what implies in (see [6] section 58 ):

σxx + σyy = 4Re[Ω′(Z)] (D-2)

σyy − σxx + 2iσxy = 2[Z̄Ω′′(Z) + χ′′(Z)] (D-3)

From The general theory of curvilinear coordinates (section in [6]),
cartesian x and y coordinates relate tox = c cosh ξ cos η

y = c sinh ξ sin η
(D-4)

In complex coordinates one may have:

Z = x+ iy

= c cosh ξ cos η + i · c sinh ξ sin η

= c cosh(ξ + iη)

= c cosh(ζ)

(D-5)

that, by eliminating η, yields:

x2

c2 cosh2 ξ
+ y2

c2 sinh2 ξ
= 1 (D-6)

which, for a fixed value of ξ, describes an ellipse of focal distance 2c and semi-
axis dimensions 2a and 2b, as a = c cosh ξ0

b = c sinh ξ0

(D-7)

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Appendix D. Creager-Paris Solution 103

and curvature radius ρ is mathematically defined by

ρ := b2

a
(D-8)

These geometric parameters are also related as

c2 = a2 − b2

= a2
(

1− 1
a

b2

a

)

= a2
(

1− ρ

a

) (D-9)

Stress components in curvilinear coordinates are set for a rotation angle
γ in the original cartesian coordinates xy to the new curvilinear system ξη. In
[6], section 61 presentsσξξ + σηη = σxx + σyy

σηη − σξξ + 2iσξη = e2iγ(σyy − σxx + 2iσxy)
(D-10)

Timoshenko proposed a solution for an elliptic hole in an infinite plate
under simple tensile stress σn at rotated with an angle of γ above x axis. (see
reference [6] in section number 63).

Figure D.1: Ellipse coordinates for the problem considered

In fig. D.1 the coordinate system xy and the rotated coordinate system is
presented as well as the external load. For this case, the stresses in the rotated
configuration is: σx

′x′ = σn

σy′y′ = σx′y′ = 0
(D-11)

and the stress function to this problem is

4Ω(Z) = σnc[e2ξ0 cos(2γ) cosh(ζ) + (1− e2ξ0+2iγ) sinh(ζ)] (D-12)
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4χ(Z) = −σnc2
[(

cosh(2ξ0)− cos(2γ)
)
ζ + 1

2e
2ξ0 cosh[2(ζ − ξ0− iγ)]

]
(D-13)

Rewriting both stress function above with the explicit dependency of
variable Z, from eq. (D-5), gives:

4Ω(Z) = σn

[
e2ξ0Z cos(2γ) + (1− e2ξ0+2iγ)

√
Z2 − c2

]
(D-14)

and

4χ(Z) = −σnc2
[
[cosh(2ξ0)− cos(2γ)] cosh−1

(
Z

c

)

+ 1
2e

2ξ0

(
cosh[2(ξ0 + iγ)]2Z

2 − c2

c2

− 2 sinh[2(ξ0 + iγ)]Z
√
Z2 − c2

c2

)]
(D-15)

The full derivation is presented in section D.5.
Ω′(Z) and χ′′(Z) are obtained from eqs. (D-2) and (D-3). After some

algebraic manipulations (see section D.6)

Ω′(Z) = dΩ
dZ

= 1
4σn

[
e2ξ0 cos(2γ) + (1− e2ξ0+2iγ) · Z√

Z2 − c2

]
(D-16)

and

χ′′(Z) = σn
4 (Z2 − c2)3/2

[
[cosh(2ξ0)− cos(2γ)] Zc2

+ e2ξ0 sinh[2(ξ0 + iγ)] (2Z3 − 3Zc2)
]

− σn
2 e2ξ0 cosh[2(ξ0 + iγ)] (D-17)

Later, Z̄Ω′′(Z) will be presented.
To obtain the position of a point in relation to the ellipse crack, two

non-dimensional parameters are presented: α and β. In the x axis the distance
is given by the product αρ while in the y axis the product βρ in reference to
the point of the crack tip. Figure above shows the definition of α and β
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Figure D.2: Plastic zone estimation based on Williams’ field

In complex coordinates, Z is defined as function of α and β as:

Z = a

(
1 + α

ρ

a
+ β

ρ

a
i

)
(D-18)

For a crack ρ
a
<< 1 and only the region near to the crack tip is an area

of interest. Thus,

α
ρ

a
<< 1 β

ρ

a
<< 1 (D-19)

resulting in a simplified definition of Z2, highly accurate approximation, as

Z2 = a2
(

1 + 2αρ
a

+ 2β ρ
a
i

)
(D-20)

and

Z2 − c2 = a2
(

1 + 2αρ
a

+ 2β ρ
a
i

)
− a2

(
1− ρ

a

)

= 2a2
(
α + 1

2 + βi

)
ρ

a

(D-21)

As proposed by Creager-Paris, a polar coordinate system is set from the
focus of the ellipse moving ρ/2 the axis r and θ, to inside the notch (see fig.
2.2).

Figure D.3: Plastic

In the cases of using the definition of α and β above, this new coordinates
is obtained by

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Appendix D. Creager-Paris Solution 106

α = −1
2 β = 0 (D-22)

Splitting variable Z into the complex coordinate x and y and rewriting
for cylindrical coordinate provides:

r cos θ =
(
α + 1

2

)
ρ (D-23)

r sin θ = βρ (D-24)

Moreover, rewriting Z2 − c2, from eq. (D-21), with the new coordinate
system

Z2 − c2 = 2a2
(
α + 1

2 + βi

)
ρ

a

= 2a2
[(

α + 1
2

)
ρ︸ ︷︷ ︸

r cos θ

+ βρ︸︷︷︸
r sin θ

i

]
1
a

= 2a2 (cos θ + i sin θ)︸ ︷︷ ︸
eiθ

r

a

= 2a2eiθ
r

a

(D-25)

Back to the derivation of eqs, (D-2) and (D-3), linearisation of variable
e2ξ0 is considered, given by (see section D.7):

e2ξ0 = (a+ b)2

c2 = 1 + 2
√
ρ

a
+ 2ρ

a
+ · · · (D-26)

Another assumption, in the case of Ψ′(Z), is to neglect the term e2ξ0 in
comparison to

√
a
r
, since

e2ξ0 = (a+ b)2

c2 = 1 + 2
(
ρ

a

) 1
2

+ · · · <<
(
a

r

) 1
2

(D-27)

Replacing variable Z, applying eqs. (D-26) and (D-27) and neglecting
higher order then ρ

a
provides:

Ω′(Z) = σn
4

√
a

2r

[
(1− cos 2γ) cos θ2 − sin θ2

+ i

(
sin θ2 − sin θ2 cos 2γ − sin 2γ cos θ2

)]
(D-28)
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Z̄Ω′′(Z) = − σna
3

4 · (Z2 − c2)3/2

[
1 + (α− 1)ρ

a
− β ρ

a
i− cos 2γ

(
1 + 2

√
ρ

a

+ (α + 1)ρ
a
− β ρ

a
i

)
− i sin 2γ

(
1 + 2

√
ρ

a
+ (α + 1)ρ

a
− β ρ

a
i

)
(D-29)

χ′′(Z) = σna
3

4 (Z2 − c2)3/2

[
1 + (α + 1)ρ

a
+ β

ρ

a
i

− cos 2γ
(

1 + 2
√
ρ

a
+ (α + 3)ρ

a
+ β

ρ

a
i

)

− i sin 2γ
(

1 + 2
√
ρ

a
+ (1− 3α)ρ

a
− 3β ρ

a
i

)] (D-30)

For the additional proof, see section D.8.
Substituting equations above into conditions from eqs. (D-2) and (D-3)

we have

σxx + σyy = σn

√
a

2r

[
(1− cos 2γ) cos θ2 − sin 2γ sin θ2

]
(D-31)

σyy − σxx + 2i σxy = σna
3
2 e−

3
2 iθ

2
√

2 r 3
2

[
1 + βi− cos 2γ

(
1 + βi

)
+

i sin 2γ
(

2α + βi

)]
ρ

a

(D-32)

Derived in section D.9.

D.1
Fracture under Mode I

For mode I problem, as loading is perpendicular to the crack face, angle
γ is equal to π

2 . Rewriting eq. (D-31) and comparing to Williams’ solution from
eq. (2-7) provides:

KI = σn
√
πa (D-33)

and

σxx + σyy = 2KI√
2πr

cos θ2 (D-34)

Similarly, for eq. (D-32), imposing γ = π
2 and replacing the definition of

KI gives
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σyy − σxx + 2i σxy = KI e
− 3

2 iθ

√
2πr

[
ρ

r
+ 2i sin θ2 cos θ2

]
(D-35)

Solving the system of equations for three unknown variables, eq. (D-34)
provides one equation while eq. (D-35) two equations, by splitting real and
complex portions results.

σxx = KI√
2πr

cos θ2

[
1− sin θ2 sin 3θ

2

]
− KI√

2πr

[
ρ

2r cos 3θ
2

]
(D-36)

σyy = KI√
2πr

cos θ2

[
1 + sin 3θ

2 sin θ2

]
+ KI√

2πr

[
ρ

2r cos 3θ
2

]
(D-37)

σxy = KI√
2πr

[
sin θ2 cos θ2 cos 3θ

2

]
− KI√

2πr

[
ρ

r
sin 3θ

2

]
(D-38)

The full derivation is presented in section D.10.

D.2
Fracture under Mode II

For mode II case, resultant stresses are obtained by combining the
superposition of a positive load σn in an angle γ = π

4 and a negative load
−σn in γ = 3π

4 . Rewriting eq. (D-31) and comparing to Williams’ solution in
eq. (2-8) provides:

KII = σn
√
πa (D-39)

and

σxx + σyy = −2σn
√
a

2r · sin
θ

2 (D-40)

For eq. (D-32):

σyy − σxx + 2i σxy = KII e
− 3

2 iθ

2
√

2πr r
· 2i[2α + βi]ρ (D-41)

substituting definition from eqs. (D-23) and (D-24) we have

σyy − σxx + 2i σxy = KII e
− 3

2 iθ

√
2πr

·
[
2i cos θ − sin θ − iρ

r

]
(D-42)

Solving system of eqs. (D-40) and (D-42) for σxx, σyy and σxy results

σxx = − KII√
2πr
· sin θ2

[
2 + cos θ2 cos 3θ

2

]
+ KII√

2πr
·
[
ρ

2r sin 3θ
2

]
(D-43)
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σyy = KII√
2πr
·
[

sin θ2 cos θ2 cos 3θ
2

]
− KII√

2πr
·
[
ρ

2r sin 3θ
2

]
(D-44)

σxy = KII√
2πr
· cos θ2

[
1− sin θ2 sin 3θ

2

]
− KII√

2πr
·
[
ρ

2r cos 3θ
2

]
(D-45)

Full derivation is presented in section D.11.

D.3
Fracture under Mode III

The Mode III solution is obtained by subjecting a shear stress ±Sn
loading in z-direction, at y = ±∞. Using the hydrodynamic analogy to torsion
and considering the flow past an elliptical cylinder, from [32], we have

σxz − i σyz = Sn(a+ b)
c

[sinh
(
ζ − ξ0 − iπ

2

)
sinh ζ

]
(D-46)

that, by proceeding some algebraic manipulation, yields on

σxz − i σyz = Sn
1 +

√
ρ
a√

1− ρ
a

· i√
1− ρ

a

[√
ρ

a
− cosh ζ

sinh ζ

]
(D-47)

where

cosh ζ
sinh ζ =

(1 + α ρ
a

+ β ρ
a
i)e− iθ2√

2 r
a

(D-48)

Neglecting the higher order terms in ρ
a
, eq. (D-46) gives

σxz − i σyz = −Sn i√
2

√
a

r
e−

iθ
2 (D-49)

Comparing σxz and σyz from Williams’ stress field, in eq. (2-9), KIII

results in

KIII = Sn
√
πa (D-50)

As a result, the stresses for mode III are as

σxz = − KIII√
2πr
· sin θ2 (D-51)

σyz = KIII√
2πr
· cos θ2 (D-52)

Full derivation is presented in section D.11.
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D.4
Part 1

In this section some basic trigonometric equations are presented for
further use in the problem derivation.

sin−x = − sin x (D-53)

cos−x = cosx (D-54)

sin 2x = 2 sin x cosx (D-55)

eix = cosx+ i sin x (D-56)

cos(x− y) = cos x cos y + sin x sin y (D-57)

sin(x− y) = sin x cos y − cosx sin y (D-58)

sinh(−x) = − sinh x (D-59)

cosh(−x) = cosh x (D-60)

cosh2 x− sinh2 x = 1 (D-61)

cosh(x+ y) = cosh x cosh y + sinh x sinh y (D-62)

sinh(x+ y) = sinh x cosh y + cosh x sinh y (D-63)

sinh(x+ iy) = sinh x cos y + i cosh x sin y (D-64)

cosh(x+ iy) = cosh x cos y + i sinh x sin y (D-65)

sinh 2x = 2 sinh x · cosh x (D-66)

cosh 2x = cosh2 x+ sinh2 x (D-67)

sinh x = ex − e−x

2 (D-68)

cosh x = ex + e−x

2 (D-69)

d

dx
cosh−1 x = 1√

x2 − 1
(D-70)
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D.5
Part 2

Considering the hyperbolic eq. (D-61) and substituting definition from
eq. (D-7), we have:

c cosh2 ζ︸ ︷︷ ︸
Z

−c sinh2 ζ = c ∴ c sinh ζ =
√
Z2 − c2 (D-71)

Therefore, rewriting 4Ω(Z) with results from equation in above and (D-5)

4Ω(Z) = σn[e2ξ0 cos(2γ) c cosh(ζ)︸ ︷︷ ︸
Z

+(1− e2ξ0+2iγ) c sinh(ζ)︸ ︷︷ ︸√
Z2−c2

]

= σn

[
e2ξ0Z cos(2γ) + (1− e2ξ0+2iγ)

√
Z2 − c2

] (D-72)

For the second stress function 4χ(Z), it is convinient to derive some
equations for future use. Applying eqs. (D-66), (D-67) and (D-65)

sinh 2ζ = 2 sinh ζ︸ ︷︷ ︸√
Z2−c2
c

· cosh ζ︸ ︷︷ ︸
Z
c

= 2Z
√
Z2 − c2

c2 (D-73)

cosh 2ζ = (cosh ζ︸ ︷︷ ︸
Z
c

)2 + ( sinh ζ︸ ︷︷ ︸√
Z2−c2
c

)2 = 2Z2 − c2

c2 (D-74)

cosh 2(ζ−ξ0−iγ) = cosh 2ζ ·cosh 2(−ξ0−iγ)+sinh 2ζ ·sinh 2(−ξ0−iγ) (D-75)

simplifying equation in above with properties (D-59) and (D-60)

cosh 2(ζ − ξ0− iγ) = cosh 2ζ · cosh 2(ξ0 + iγ)− sinh 2ζ · sinh 2(ξ0 + iγ) (D-76)

and substituting eqs. (D-73) and (D-74) into equation in above results in

cosh 2(ζ − ξ0− iγ) = cosh 2(ξ0 + iγ) · 2Z
2 − c2

c2 − 2 sinh 2(ξ0 + iγ) · Z
√
Z2 − c2

c2
(D-77)

In addition, from eq. (D-5), ζ is isolated as

ζ = cosh−1 Z

c
(D-78)

By substituting eqs. (D-77), (D-78) into eq. (D-13)
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4χ(Z) = −σnc2
[
[cosh(2ξ0)− cos(2γ)] cosh−1

(
Z

c

)

+ 1
2e

2ξ0

(
cosh[2(ξ0 + iγ)]2Z

2 − c2

c2

− 2 sinh[2(ξ0 + iγ)]Z
√
Z2 − c2

c2

)]
(D-79)
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D.6
Part 3

Taking the derivative of eq. (D-14), we have:

Ω′(Z) = dΩ
dZ

= 1
4σn

[
e2ξ0 cos(2γ) + (1− e2ξ0+2iγ) · Z√

Z2 − c2

]
(D-80)

For the second stress function, taking the first and second derivative of
eq. (D-79) provides

χ′(Z) = − σnc
2

4

{
[cosh(2ξ0)− cos(2γ)] 1√

Z2

c2 − 1
1
c

+ 1
2e

2ξ0

[
cosh[2(ξ0 + iγ)]4Z

c2

− 2 sinh[2(ξ0 + iγ)]
(√

Z2 − c2

c2 + Z

c2
1
�2

(Z2 − c2)−1/2
�2Z
)]}

(D-81)

χ′′(Z) = − σnc
2

4

{
[cosh(2ξ0)− cos(2γ)]

(
− 1
�2

��c3

(Z2 − c2)3/2
�2Z
��c3

)

+ 1
�2
e2ξ0

[
cosh[2(ξ0 + iγ)] �4

2

c2

− �2 sinh[2(ξ0 + iγ)]
(

1
�2c2 (Z2 − c2)−1/2

�2Z + 2Z
c2 (Z2 − c2)−1/2

− 1
�2
Z2

c2 (Z2 − c2)−3/2
�2Z
)]}

= σn
4

{
[cosh(2ξ0)− cos(2γ)] · Zc2

(Z2 − c2)3/2

}
− σn

2 e
2ξ0 cosh[2(ξ0 + iγ)]

+ σn��c
2

4 e2ξ0 sinh[2(ξ0 + iγ)] · (Z2 − c2)−3/2 1
��c2 ·

·
[
Z (Z2 − c2) + 2Z (Z2 − c2)− Z3

]
︸ ︷︷ ︸

2Z3−3Zc2

= σn
4 (Z2 − c2)3/2

[
[cosh(2ξ0)− cos(2γ)] Zc2

+ e2ξ0 sinh[2(ξ0 + iγ)] (2Z3 − 3Zc2)
]
− σn

2 e2ξ0 cosh[2(ξ0 + iγ)]

(D-82)
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D.7
Part 4

From a basic math, e2ξ0 may be written as

e2ξ0 = e2ξ0 − e2ξ0

2 + e2ξ0 + e2ξ0

2 (D-83)

or, from eqs. (D-68) and (D-69)

e2ξ0 = sinh 2ξ0 + cosh 2ξ0 (D-84)

expanding equation above as function of half of the angle, as presented in eqs.
(D-66) and (D-67)

e2ξ0 = 2 sinh ξ0 cosh ξ0 + cosh2 ξ0 + sinh2 ξ0 (D-85)

Rewriting equation in above by replacing definition of sinh ξ0 and cosh ξ0

from eq. (D-7), we have

e2ξ0 = 2b
c

a

c
+ a2

c2 + b2

c2 = (a+ b)2

c2 (D-86)

Substituting c2 from eq. (D-9)

e2ξ0 = a2 + 2ab+ b2

a2(1− ρ
a
)

=
(

1 + 2�a
�a

√
ρ
a︷︸︸︷
b

a
+1
a

ρ︷︸︸︷
b2

a

)
· 1

1− ρ
a

=
1 + 2

√
ρ
a

+ ρ
a

1− ρ
a

(D-87)

e2ξ0 is written as function of
√

ρ
a
. Defining λ as

λ :=
√
ρ

a
(D-88)

and assuming f being the analytical function equal to e2ξ0 , we have

f = 1 + 2λ+ λ2

1− λ2 (D-89)

that, by using Taylor’s series expansion, function f may be approximated as

f = f(λ = 0) + f ′(λ = 0)(λ− 0) + f ′′(λ = 0)
2! (λ− 0)2 + · · · (D-90)

where the derivatives are

f ′ = 2 + 2λ
1− λ2 + 2λ(1 + 2λ+ λ2)

(1− λ)2 (D-91)
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f ′′ = 2
1− λ2 + 2(λ2 + 2λ+ 1)

(λ2 − 1)2 + 4λ(2λ+ 2)
(λ2 − 1)2 −

8λ2(λ2 + 2λ+ 1)
(λ2 − 1)3 (D-92)

Therefore, substituting eqs. (D-91) and (D-92) into (D-90)

e2ξ0 = 1 + 2
√
ρ

a
+ 2ρ

a
+ · · · (D-93)

Following the same procedure, it is convenient to prove the expansion of
the above function for future use

f =
(

1− ρ

a

)−1

(D-94)

using λ as

λ := ρ

a
(D-95)

function f , is rewritten as

f = (1− λ)−1 (D-96)

Since only higher order terms in ρ
a
, we have

f = f(λ = 0) + f ′(λ = 0)(λ− 0) + · · · (D-97)

where

f ′ = (1− λ)−2 (D-98)

Therefore, (
1− ρ

a

)−1

≈ 1 + ρ

a
(D-99)
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D.8
Part 5

Replacing variable Z, defined in eq. (D-18), and result from eq. (D-25),
provides

Ω′(Z) = 1
4σn

[
e2ξ0 cos(2γ) + (1− e2ξ0+2iγ) ·�a

(
1 + α

ρ

a
+ β

ρ

a
i

)
· 1√

2��a2eiθ r
a

]

= 1
4σn

[
e2ξ0 cos(2γ) + (1− e2ξ0+2iγ)√

2

(
1 + α

ρ

a
+ β

ρ

a
i

)
e−

iθ
2

√
a

r

]
(D-100)

As previously presented in eq. (D-27), the first term may be neglected.
Although the first term also depends on cos 2γ, since cosine is a limited
function, it does not affect in our simplification. Thus, replacing the expansion
from D-26, we have

Ω′(Z) = 1
4σn

[
(1− e2ξ0+2iγ)√

2

(
1 + α

ρ

a
+ β

ρ

a
i

)
e−

iθ
2

√
a

r

]

= σn
4

√
a

2r

(
1− e2ξ0 · e2iγ

)(
1 + α

ρ

a
+ β

ρ

a
i

)(
cos θ2 + i sin θ2

)

= σn
4

√
a

2r

[
1−

(
1 + 2

√
ρ

a
+ 2ρ

a

)
· (cos 2γ + i sin 2γ)

]
·

·
[

cos θ2 + i sin θ2 +
(
α
ρ

a
+ iβ

ρ

a

)
·
(

cos θ2 + i sin θ2

)]

= σn
4

√
a

2r

[
1− cos 2γ − i sin 2γ −

(
2
√
ρ

a
+ 2ρ

a

)
· (cos 2γ + i sin 2γ)︸ ︷︷ ︸
∗

]
·

·
[

cos θ2 + i sin θ2 +
(
α
ρ

a
+ iβ

ρ

a

)
·
(

cos θ2 + i sin θ2

)
︸ ︷︷ ︸

∗

]

(D-101)

Note that, from the same reason as presented before (eq. D-27), terms
∗ can be neglected since they are irrelevant in comparison to

√
a
r
. Rewriting

equation in above and splitting the real and complex portions, we have
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Ω′(Z) = σn
4

√
a

2r

(
1− cos 2γ − i sin 2γ

)
·
(

cos θ2 + i sin θ2

)

= σn
4

√
a

2r

(
cos θ2 − cos 2γ cos θ2 − sin 2γ sin θ2 i2︸︷︷︸

−1

+i sin θ2

− i sin θ2 cos 2γ − i sin 2γ cos θ2

)

= σn
4

√
a

2r

[
(1− cos 2γ) cos θ2 − sin θ2

+ i

(
sin θ2 − sin θ2 cos 2γ − sin 2γ cos θ2

)]

(D-102)

Taking the derivative of Ω′(Z), from eq. (D-16), and expanding e2ξ0 as
presented on eq. (D-26), we obtain

Ω′′(Z) = 1
4σn(1− e2iγ · e2ξ0)

[
− 1

2(Z2 − c2)−3/2 · Z2 + (Z2 − c2)1/2
]

= 1
4σn

[
1− e2iγ ·

(
1 + 2

√
ρ

a
+ 2ρ

a

)]
· (Z2 − c2)−3/2

[
−��Z2 + (��Z2 − c2︸︷︷︸

a2(1− ρ
a

)

)
]

= −σna
2

4

(
1− ρ

a

)[
1− e2iγ ·

(
1 + 2

√
ρ

a
+ 2ρ

a

)]
· (Z2 − c2)−3/2

(D-103)

From eq. (D-5), the conjugate of Z, Z̄, is easily obtained as

Z̄ = a

(
1 + α

ρ

a
− β ρ

a
i

)
(D-104)

that, multiplied by Ω′′(Z), substituting eqs. (D-9), (D-26) and ignoring higher
order terms in ρ

a
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Z̄Ω′′(Z) = − σna
2

4 · (Z2 − c2)3/2 ·

Z̄︷ ︸︸ ︷
a

(
1 + α

ρ

a
− β ρ

a
i

)
·
(

1− ρ

a

)[
1− e2iγ ·

(
1 + 2

√
ρ

a
+ 2ρ

a

)]

= − σna
3

4 · (Z2 − c2)3/2

(
1− ρ

a
+ α

ρ

a
− α

(
ρ

a

)2

︸ ︷︷ ︸
≈0

−β ρ
a
i+ β

(
ρ

a

)2

︸ ︷︷ ︸
≈0

i

)
·

[
1− (cos 2γ + i sin 2γ) ·

(
1 + 2

√
ρ

a
+ 2ρ

a

)]

= − σna
3

4 · (Z2 − c2)3/2

[
1 + (α− 1)ρ

a
− β ρ

a
i− (cos 2γ + i sin 2γ)·

·
(

1 + (α− 1)ρ
a
− β ρ

a
i

)
·
(

1 + 2
√
ρ

a
+ 2ρ

a

)]

= − σna
3

4 · (Z2 − c2)3/2

[
1 + (α− 1)ρ

a
− β ρ

a
i− cos 2γ

(
1 + 2

√
ρ

a

+ (α + 1)ρ
a
− β ρ

a
i

)
− i sin 2γ

(
1 + 2

√
ρ

a
+ (α + 1)ρ

a
− β ρ

a
i

)
(D-105)

From eq. (D-15)

χ′′(Z) = σn
4 (Z2 − c2)3/2

[
[cosh(2ξ0)− cos(2γ)] Zc2

+ e2ξ0 sinh[2(ξ0 + iγ)] (2Z3 − 3Zc2)
]
−σn2 e2ξ0 cosh[2(ξ0 + iγ)]︸ ︷︷ ︸

insignificant

(D-106)

Note that the last term from equation above is considered negligible in
comparison to the rest of equation.

Expanding Z3, from eq. (D-18), we have

Z3 =
(

1 + α
ρ

a
+ β

ρ

a

)
·
(

1 + α
ρ

a
+ β

ρ

a

)
·
(

1 + α
ρ

a
+ β

ρ

a

)

=
[
1 + 2αρ

a
+ 2β ρ

a
+
(
α
ρ

a
+ β

ρ

a

)2

︸ ︷︷ ︸
≈0

]
·
(

1 + α
ρ

a
+ β

ρ

a

)

= 1 + 3αρ
a

+ 3β ρ
a

+ 2
(
α
ρ

a
+ β

ρ

a

)2

︸ ︷︷ ︸
≈0

(D-107)

Resulting in
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χ′′(Z) = σn
4 (Z2 − c2)3/2

{
[cosh(2ξ0)− cos(2γ)] a

(
1 + α

ρ

a
+ β

ρ

a
i

)
c2+(

1 + 2
√
ρ

a

)
sinh[2(ξ0 + iγ)]

[
2a3

(
1 + 3αρ

a
+ 3β ρ

a
i

)

− 3a
(

1 + α
ρ

a
+ β

ρ

a
i

)
c2
]}

(D-108)

From eq. (D-64) we have

sinh[2(ξ0 + iγ)] = sinh 2ξ0 cos 2γ + i cosh 2ξ0 sin 2γ (D-109)

from definition of c2 (eq. D-9) and ρ (eq. D-8) eqs. (D-67) and (D-68) are
derived as following

cosh(2ξ0) = (cosh ξ0︸ ︷︷ ︸
a
c

)2 + (sinh ξ0︸ ︷︷ ︸
b
c

)2 = a2 + b2

c2 = a2

c2

(
1 + b2

a︸︷︷︸
ρ

1
a

)
= a2

c2

(
1 + ρ

a

)

(D-110)

sinh(2ξ0) = 2 sinh ξ0︸ ︷︷ ︸
b
c

· cosh ξ0︸ ︷︷ ︸
a
c

= 2ab
c2 = 2a2

c2

√√√√√√ b2

a︸︷︷︸
ρ

1
a

= 2a2

c2

√
ρ

a
(D-111)

Substituting eqs. (D-109), (D-110) and (D-111) into (D-108) provides
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χ′′(Z) = σn
4 (Z2 − c2)3/2

{[
a2

c2

(
1 + ρ

a

)
− cos(2γ)

]
a

(
1 + α

ρ

a
+ β

ρ

a
i

)
c2+(

1 + 2
√
ρ

a
+ 2ρ

a

) [
2a2

c2

√
ρ

a
· cos 2γ + i

a2

c2

(
1 + ρ

a

)
· sin 2γ

]
·

·
[
2a3

(
1 + 3αρ

a
+ 3β ρ

a
i

)
− 3a

(
1 + α

ρ

a
+ β

ρ

a
i

)
c2
]}

= σn
4 (Z2 − c2)3/2

{
a3

��c2

(
1 + ρ

a

)(
1 + α

ρ

a
+ β

ρ

a
i

)
��c2

︸ ︷︷ ︸
I

− cos 2γ a

(
1 + α

ρ

a
+ β

ρ

a
i

) a2(1− ρ
a

)︷︸︸︷
c2

︸ ︷︷ ︸
II

+ cos 2γ
[

2a2

c2

√
ρ

a

(
1 + 2

√
ρ

a
+ 2ρ

a

)
·
(

2a3
(

1 + 3αρ
a

+ 3β ρ
a
i

)
︸

III

−3a
(

1 + α
ρ

a
+ β

ρ

a
i

)
c2
)]
︸

+ i sin 2γ
[
a2

c2

(
1 + ρ

a

)
·
(

1 + 2
√
ρ

a
+ 2ρ

a

)
·
(

2a3
(

1 + 3αρ
a

+ 3β ρ
a
i

)
︸

IV

−3a
(

1 + α
ρ

a
+ β

ρ

a
i

)
c2
)]
︸
}

(D-112)

Due to its size of equation in above, four efferents parts (I, II, III and
IV ) will be derived in bellow. Higher order terms in ρ

a
are neglected.

I = a3
(

1 + ρ

a
+ α

ρ

a
+ α

(
ρ

a

)2

︸ ︷︷ ︸
≈0

+β ρ
a
i+ β

(
ρ

a

)2

︸ ︷︷ ︸
≈0

i

)

= a3
(

1 + ρ

a
+ α

ρ

a
+ β

ρ

a
i

) (D-113)

II = a3
(

1− ρ

a
+ α

ρ

a
− α

(
ρ

a

)2

︸ ︷︷ ︸
≈0

+β ρ
a
i− β

(
ρ

a

)2

︸ ︷︷ ︸
≈0

i

)

= a3
(

1− ρ

a
+ α

ρ

a
+ β

ρ

a
i

) (D-114)
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In parts III and IV , an additional approximation must be considered,
by applying eq. (D-99) gives

III = 2a2

c2

(√
ρ

a
+ 2ρ

a
+ 2ρ

a

√
ρ

a︸ ︷︷ ︸
≈0

)
·
[
2a3

(
1 + 3αρ

a
+ 3β ρ

a
i

)

− 3a
(

1 + α
ρ

a
+ β

ρ

a
i

)
c2
]

= 4a2

c2

(√
ρ

a
+ 2ρ

a

)
·
(

1 + 3αρ
a

+ 3β ρ
a
i

)
a3

− 6a3

��c2

(√
ρ

a
+ 2ρ

a

)
·
(

1 + α
ρ

a
+ β

ρ

a
i

)
��c2

= 4��a2

��a
2

(
1− ρ

a

)−1

︸ ︷︷ ︸
≈(1+ ρ

a
)

[√
ρ

a
+ 2ρ

a
+
(√

ρ

a
+ 2ρ

a

)
·
(

3αρ
a

+ 3β ρ
a
i

)
︸ ︷︷ ︸

≈0

]
a3

− 6a3
[√

ρ

a
+ 2ρ

a
+
(√

ρ

a
+ 2ρ

a

)
·
(
α
ρ

a
+ β

ρ

a
i

)
︸ ︷︷ ︸

≈0

]

= 4a3
[√

ρ

a
+ 2ρ

a
+ ρ

a

(√
ρ

a
+ 2ρ

a

)
︸ ︷︷ ︸

≈0

]
− 6a3

(√
ρ

a
+ 2ρ

a

)

= 4a3
√
ρ

a
+ 8a3ρ

a
− 6a3

√
ρ

a
− 12a3ρ

a

= −2a3
√
ρ

a
− 4a3ρ

a
(D-115)
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IV = a2

c2

(
1 + ρ

a

)
·
(

1 + 2
√
ρ

a
+ 2ρ

a

)
·
[
2a3

(
1 + 3αρ

a
+ 3β ρ

a
i

)

− 3a
(

1 + α
ρ

a
+ β

ρ

a
i

)
c2
]

= a2

c2

[
1 + 2

√
ρ

a
+ 3ρ

a
+ ρ

a

(
2
√
ρ

a
+ 2ρ

a

)
︸ ︷︷ ︸

≈0

]
·
[
2a3

(
1 + 3αρ

a
+ 3β ρ

a
i

)

− 3a
(

1 + α
ρ

a
+ β

ρ

a
i

)
c2
]

= a2

c2

[
1 + 3αρ

a
+ 3β ρ

a
i+ 2

√
ρ

a
+ 3ρ

a
+
(

2
√
ρ

a
+ 3ρ

a

)
·
(

3αρ
a

+ 3β ρ
a
i

)
︸ ︷︷ ︸

≈0

]
2a3

− 3a3

��c2

[
1 + α

ρ

a
+ β

ρ

a
i+ 2

√
ρ

a
+ 3ρ

a
+
(

2
√
ρ

a
+ 3ρ

a

)
·
(
α
ρ

a
+ β

ρ

a
i

)
︸ ︷︷ ︸

≈0

]
��c2

= 2a3 ��a
2

��a
2

(
1− ρ

a

)−1

︸ ︷︷ ︸
≈(1+ ρ

a
)

(
1 + 3αρ

a
+ 3β ρ

a
i+ 2

√
ρ

a
+ 3ρ

a

)

− 3a3
(

1 + α
ρ

a
+ β

ρ

a
i+ 2

√
ρ

a
+ 3ρ

a

)

= 2a3
[
1 + 3αρ

a
+ 3β ρ

a
i+ 2

√
ρ

a
+ 4ρ

a
+ ρ

a

(
3αρ
a

+ 3β ρ
a
i+ 2

√
ρ

a
+ 3ρ

a

)
︸ ︷︷ ︸

≈0

]

− 3a3
(

1 + α
ρ

a
+ β

ρ

a
i+ 2

√
ρ

a
+ 3ρ

a

)

= −a3
(

1− 3αρ
a
− 3β ρ

a
+ 2

√
ρ

a
+ ρ

a

)
(D-116)

Finally, combining the four variables above, we have

χ′′(Z) = σna
3

4 (Z2 − c2)3/2

[
1 + (α + 1)ρ

a
+ β

ρ

a
i

− cos 2γ
(

1 + 2
√
ρ

a
+ (α + 3)ρ

a
+ β

ρ

a
i

)

− i sin 2γ
(

1 + 2
√
ρ

a
+ (1− 3α)ρ

a
− 3β ρ

a
i

)] (D-117)
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D.9
Part 6

Combining eqs. (D-29) and (D-30) to the format of eq. (D-3)

2[Z̄Ψ′′(Z) + χ′′(Z)] = − σna
3

2 · (Z2 − c2)3/2

[
1 + (α− 1)ρ

a
− β ρ

a
i− cos 2γ

(
1 + 2

√
ρ

a

+ (α + 1)ρ
a
− β ρ

a
i

)
− i sin 2γ

(
1 + 2

√
ρ

a
+ (α + 1)ρ

a
− β ρ

a
i

)

+ σna
3

4 (Z2 − c2)3/2

[
1 + (α + 1)ρ

a
+ β

ρ

a
i

− cos 2γ
(

1 + 2
√
ρ

a
+ (α + 3)ρ

a
+ β

ρ

a
i

)

− i sin 2γ
(

1 + 2
√
ρ

a
+ (1− 3α)ρ

a
− 3β ρ

a
i

)]

= σna
3

2 · (Z2 − c2)3/2

[
��−1−

�
��α
ρ

a
+ ρ

a
+ β

ρ

a
i+ �1 +

�
��α
ρ

a
+ ρ

a
+ β

ρ

a
i

− cos 2γ
(
− �1−

�
�
�2

√
ρ

a
−
�
��α
ρ

a
− ρ

a
+ β

ρ

a
i

+ �1 +
�
�
�2

√
ρ

a
+
�
��α
ρ

a
+ 3ρ

a
+ β

ρ

a
i

)

+ i sin 2γ
(
�1 +
�
�
�2

√
ρ

a
+ α

ρ

a
+
�
��
ρ

a
− β ρ

a
i

− �1−
�
�
�2

√
ρ

a
−
�
��
ρ

a
+ 3αρ

a
+ 3β ρ

a
i

)]
(D-118)

Substituting eq. (D-25) into equation in above

2[Z̄Ψ′′(Z) + χ′′(Z)] = σna
3

�2 · (2a�2eiθ r
�a
)3/2

[
�2
ρ

a
+ �2β

ρ

a
i− cos 2γ

(
�2
ρ

a
+ �2β

ρ

a
i

)
+

i sin 2γ
(
�2 2αρ

a
+ �2β

ρ

a
i

)]

= σna
3
2 e−

3
2 iθ

2
√

2r 3
2

[
1 + βi− cos 2γ

(
1 + βi

)
+

i sin 2γ
(

2α + βi

)]
ρ

a

(D-119)

Therefore, substituting this equation into (D-3) provides
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σyy − σxx + 2iσxy = σna
3
2 e−

3
2 iθ

2
√

2r 3
2

[
1 + βi− cos 2γ

(
1 + βi

)
+

i sin 2γ
(

2α + βi

)]
ρ

a

(D-120)
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D.10
Part 7

For fracture under mode I, the angle is

γ = π

2 (D-121)

substituting into eq. (D-31)

σxx + σyy = σn

√
a

2r

[
(1−

−1︷ ︸︸ ︷
cosπ) cos θ2 −

0︷ ︸︸ ︷
sin π sin θ2

]

= 2σn
√
πa√

2πr
cos θ2

(D-122)

Comparing the equation in above with σxx and σyy from William’s stress
field, eq. (2-7), KI is defined as

KI = σn
√
πa (D-123)

Therefore,

σxx + σyy = 2KI√
2πr

cos θ2 (D-124)

Substituting the angle into the second condition for the stress function,
eq. (D-32), we have

σyy − σxx + 2i σxy = σn
√
a a e−

3
2 iθ

2
√

2 r
√
r

√
π√
π

[
1 + βi−

−1︷ ︸︸ ︷
cos π

(
1 + βi

)
+

i

0︷ ︸︸ ︷
sin π

(
2α + βi

)]
ρ

a

=

KI︷ ︸︸ ︷
σn
√
πa �a e−

3
2 iθ

�2
√

2πr r
· �2[1 + βi] ρ

�a

= KI e
− 3

2 iθ

√
2πr

[
ρ

r
+ i

�r

�r sin θ︷︸︸︷
βρ

]
(D-125)

Rewriting (D-125) as function of half of the angle gives

σyy − σxx + 2i σxy = KI e
− 3

2 iθ

√
2πr

[
ρ

r
+ 2i sin θ2 cos θ2

]
(D-126)

Splitting by using Euler’s formula, eq. (D-56)
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σyy−σxx + 2i σxy = KI√
2πr

[
cos

(
− 3θ

2

)
+ i sin

(
− 3θ

2

)]
·
[
ρ

r
+ 2i sin θ2 cos θ2

]
(D-127)

and applying sin and cos properties, from eqs. (D-53) and (D-54)

σyy − σxx + 2i σxy = KI√
2πr

[
cos 3θ

2 − i sin 3θ
2

]
·
[
ρ

r
+ 2i sin θ2 cos θ2

]

= KI√
2πr

[
ρ

r
cos 3θ

2 + 2 sin 3θ
2 sin θ2 cos θ2

+ i

(
2 sin θ2 cos θ2 cos 3θ

2 −
ρ

r
sin 3θ

2

)]
(D-128)

where the complex portion provides

σxy = KI√
2πr

[
sin θ2 cos θ2 cos 3θ

2

]
− KI√

2πr

[
ρ

r
sin 3θ

2

]
(D-129)

while the real portion

σyy − σxx = KI√
2πr

[
ρ

r
cos 3θ

2 + 2 sin 3θ
2 sin θ2 cos θ2

]
(D-130)

Adding eqs. (D-124) and (D-130), we have

2σyy = KI√
2πr

[
2 cos θ2 + 2 sin 3θ

2 sin θ2 cos θ2

]
+ KI√

2πr

[
ρ

r
cos 3θ

2

]
(D-131)

Thus, σyy is given by

σyy = KI√
2πr

cos θ2

[
1 + sin 3θ

2 sin θ2

]
+ KI√

2πr

[
ρ

2r cos 3θ
2

]
(D-132)

Multiplying eq. (D-130) with −1 and adding to eq. (D-124) provides

2σxx = KI√
2πr

[
2 cos θ2 − 2 sin 3θ

2 sin θ2 cos θ2 −
ρ

r
cos 3θ

2

]
(D-133)

Thus, σxx is given by

σxx = KI√
2πr

cos θ2

[
1− sin θ2 sin 3θ

2

]
− KI√

2πr

[
ρ

2r cos 3θ
2

]
(D-134)
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D.11
Part 8

For fracture under mode II, the solution is achieved by superposing a
positive load σn in an angle γ = π

4 (first solution) and a negative load −σn in
γ = 3π

4 (second solution). Rewriting eq. (D-31) for the first solution

σxx + σyy
∣∣∣
γ=π

4
= σn

√
a

2r

[(
1−

0︷ ︸︸ ︷
cos π2

)
cos θ2 −

1︷ ︸︸ ︷
sin π2 sin θ2

]

= σn

√
a

2r

[
cos θ2 − sin θ2

] (D-135)

and for the second solution,

σxx + σyy
∣∣∣
γ= 3π

4
= (−σn)

√
a

2r

[(
1−

0︷ ︸︸ ︷
cos 3π

2

)
cos θ2 −

−1︷ ︸︸ ︷
sin 3π

2 sin θ2

]

= (−σn)
√
a

2r

[
cos θ2 + sin θ2

] (D-136)

Adding eqs. (D-135) and (D-136) results in

σxx + σyy = σn

√
a

2r

[
�
�
�cos θ2 − sin θ2 −�

�
�cos θ2 − sin θ2

]

= −2σn
√
a

2r · sin
θ

2

(D-137)

that, when comparing to σxx and σyy from William’s stress field, on eq. (2-8),
provides

KII = σn
√
πa (D-138)

Therefore,

σxx + σyy = − 2KII√
2πr
· sin θ2 (D-139)

For condition second condition of the stress function, eq. (D-32), the first
solution provides

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Appendix D. Creager-Paris Solution 128

σyy − σxx + 2i σxy
∣∣∣
γ=π

4
= σn

√
a�a e−

3
2 iθ

2
√

2 r
√
r

√
π√
π

[
1 + βi−

0︷ ︸︸ ︷
cos π2

(
1 + βi

)
+

i

1︷ ︸︸ ︷
sin π2

(
2α + βi

)]
ρ

�a

=

KII︷ ︸︸ ︷
σn
√
πa e−

3
2 iθ

2
√

2πr r

[
1 + βi+ i(2α + βi)

]
ρ

(D-140)

while, for the second solution, we have

σyy − σxx + 2i σxy
∣∣∣
γ= 3π

4
= (−σn)

√
a�a e−

3
2 iθ

2
√

2 r
√
r

√
π√
π

[
1 + βi−

0︷ ︸︸ ︷
cos 3π

2

(
1 + βi

)
+

i

−1︷ ︸︸ ︷
sin 3π

2

(
2α + βi

)]
ρ

�a

= −

KII︷ ︸︸ ︷
σn
√
πa e−

3
2 iθ

2
√

2πr r

[
1 + βi− i(2α + βi)

]
ρ

(D-141)

Adding eqs. (D-140) and (D-141) provides

σyy − σxx + 2i σxy = KII e
− 3

2 iθ

2
√

2πr r
· 2i[2α + βi]ρ (D-142)

Isolating α from eq. (D-23)

α = r cos θ
ρ
− 1

2 (D-143)

and substituting into eq. (D-142)

σyy − σxx + 2i σxy = KII e
− 3

2 iθ

�2
√

2πr r
· �2i

[
2
(
r cos θ
ρ
− 1

2

)
+ βi

]
ρ

= KII e
− 3

2 iθ

√
2πr

·
[

2i �r�ρ cos θ
�r �ρ

− �2iρ
�2r
− βρ

r

]

= KII e
− 3

2 iθ

√
2πr

·
[
2i cos θ − iρ

r
− �r sin θ

�r

]

= KII e
− 3

2 iθ

√
2πr

·
[
2i cos θ − sin θ − iρ

r

]
(D-144)
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Splitting by using Euler’s formula, eq. (D-56)

σyy−σxx+2i σxy = KII√
2πr
·
[

cos
(
− 3θ

2

)
+i sin

(
− 3θ

2

)]
·
[
2i cos θ−sin θ−iρ

r

]
(D-145)

and applying sin and cos properties, from eq. (D-53) and (D-54)

σyy − σxx + 2i σxy = KII√
2πr
·
[

cos 3θ
2 − i sin 3θ

2

]
·
[
2i cos θ − sin θ − iρ

r

]

= KII√
2πr
·
[
− sin θ cos 3θ

2 + 2 sin 3θ
2 cos θ − ρ

r
sin 3θ

2

+ 2i cos 3θ
2 cos θ + i sin θ sin 3θ

2 − i
ρ

r
cos 3θ

2

]
(D-146)

where the complex portion provides

2σxy = KII√
2πr
·
[
2 cos 3θ

2 cos θ + sin θ sin 3θ
2 −

ρ

r
cos 3θ

2

]
(D-147)

Rewriting equation above and applying properties (D-57) gives

2σxy = KII√
2πr
·
[

2 cos 3θ
2 cos θ + 2 sin θ sin 3θ

2︸ ︷︷ ︸
2 cos θ2

− sin θ sin 3θ
2 −

ρ

r
cos 3θ

2

]

= KII√
2πr
·
[
2 cos θ2 − 2 sin θ2 cos θ2 sin 3θ

2 −
ρ

r
cos 3θ

2

]
(D-148)

Therefore, σxy is

σxy = KII√
2πr
· cos θ2

[
1− sin θ2 sin 3θ

2

]
− KII√

2πr
·
[
ρ

2r cos 3θ
2

]
(D-149)

The real portion of eq. (D-146) provides

σyy − σxx = KII√
2πr
·
[
− sin θ cos 3θ

2 + 2 sin 3θ
2 cos θ − ρ

r
sin 3θ

2

]
(D-150)

Rewriting equation in above and applying properties (D-58) gives

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Appendix D. Creager-Paris Solution 130

σyy − σxx = KII√
2πr
·
[

2 sin 3θ
2 cos θ − 2 sin θ cos 3θ

2︸ ︷︷ ︸
2 sin θ

2

+ sin θ cos 3θ
2 −

ρ

r
sin 3θ

2

]

= KII√
2πr
·
[
2 sin θ2 + 2 sin θ2 cos θ2 cos 3θ

2 −
ρ

r
sin 3θ

2

]
(D-151)

Adding eqs. (D-137) and (D-151), we have

2σyy = KII√
2πr
·
[
−
�
�
��2 sin θ2 +

�
�
��2 sin θ2 + 2 sin θ2 cos θ2 cos 3θ

2 −
ρ

r
sin 3θ

2

]
(D-152)

Thus, σyy is given by

σyy = KII√
2πr
·
[

sin θ2 cos θ2 cos 3θ
2

]
− KII√

2πr
·
[
ρ

2r sin 3θ
2

]
(D-153)

Multiplying eq. (D-151) with −1 and adding to eq. (D-137) provides

2σxx = KII√
2πr
·
[
− 2 sin θ2 − 2 sin θ2 − 2 sin θ2 cos θ2 cos 3θ

2 + ρ

r
sin 3θ

2

]
(D-154)

Thus, σxx is given by

σxx = − KII√
2πr
· sin θ2

[
2 + cos θ2 cos 3θ

2

]
+ KII√

2πr
·
[
ρ

2r sin 3θ
2

]
(D-155)

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Appendix D. Creager-Paris Solution 131

D.12
Part 9

From eq. (D-46), expanding the sin term using properties from eqs. (D-
64), (D-59) and (D-60)

sinh
(
ζ − ξ0 −

iπ

2

)
= sinh(ζ − ξ0)

0︷ ︸︸ ︷
cos

(
− π

2

)
+i cosh(ζ − ξ0)

−1︷ ︸︸ ︷
sin

(
− π

2

)
= −i cosh(ζ − ξ0)

= −i
[

cosh ζ cosh(−ξ0) + sinh ζ sinh(−ξ0)
]

= −i
[

cosh ζ cosh ξ0 − sinh ζ sinh ξ0

]
(D-156)

Substituting eqs. (D-7) and (D-8) into equation above gives

sinh
(
ζ − ξ0 −

iπ

2

)
= −i

[
a

c
cosh ζ − b

c
sinh ζ

]

= i

c

[
b sinh ζ − a cosh ζ

]

= i

a
√

1− ρ
a

[
b sinh ζ − a cosh ζ

]

= i√
1− ρ

a

[
√

ρ
a︷︸︸︷
b

a
sinh ζ −�a

�a
cosh ζ

]

= i√
1− ρ

a

[√
ρ

a
sinh ζ − cosh ζ

]

(D-157)

From eqs. (D-9) and (D-8)

a+ b

c
= a+ b√

a2(1− ρ
a
)

= a+ b

a
√

1− ρ
a

= 1√
1− ρ

a

[
1 + b

a

] (D-158)

a+ b

c
=

1 +
√

ρ
a√

1− ρ
a

(D-159)
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Therefore, rewriting eq. (D-46) by substituting into eqs. (D-157) and
(D-159) provides

σxz − i σyz = Sn
1 +

√
ρ
a√

1− ρ
a

· i√
1− ρ

a

[√
ρ

a

sinh ζ
sinh ζ −

cosh ζ
sinh ζ

]
(D-160)

where, from eq. (D-5) and (D-71) gives

cosh ζ
sinh ζ = Z√

Z2 − c2
(D-161)

that from eqs. (D-18) and (D-25) is rewritten as function of ρ
a
as

cosh ζ
sinh ζ =

(1 + α ρ
a

+ β ρ
a
i)e− iθ2√

2 r
a

(D-162)

As a result, with algebraic manipulation and considering higher order
terms in ρ

a

σxz − i σyz = σn
1 +

√
ρ
a√

1− ρ
a

· i√
1− ρ

a

[√
ρ

a
−

(1 + α ρ
a

+ β ρ
a
i)e− iθ2√

2 r
a

]

= iσn
1 +

√
ρ
a

1− ρ
a

[ √
ρ

a︸︷︷︸
neglect

−
(1 + α ρ

a
+ β ρ

a
i)e− iθ2√

2

√
a

r

]

= −iσn �
��
�1 +
√

ρ
a

(1−
√

ρ
a
)����

�(1 +
√

ρ
a
)

[
(1 + α ρ

a
+ β ρ

a
i)e− iθ2√

2

√
a

r

]

= −σn i√
2

√
a

r
e−

iθ
2 ·

≈1︷ ︸︸ ︷(
1−

√
ρ

a

)−1

·
(

1 + α
ρ

a
+ β

ρ

a
i

)

(D-163)

provides

σxz − i σyz = −σn i√
2

√
a

r
e−

iθ
2 (D-164)

Expanding the exponential term

σxz − i σyz = − σn√
2

√
a

r
· i
[

cos
(
− θ

2

)
+ i sin

(
− θ

2

)]

= − σn√
2

√
a

r
· i
[

cos θ2 − i sin θ2

]

= − σn√
2

√
a

r
·
[
i cos θ2 + sin θ2

] (D-165)

that when taking the real part of the above equation provides
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σxz = − σn√
2

√
a

r
· sin θ2

= −

KIII︷ ︸︸ ︷
σn
√
πa√

2πr
· sin θ2

= − KIII√
2πr
· sin θ2

(D-166)

while from the complex term

σyz = σn√
2

√
a

r
· cos θ2

=

KIII︷ ︸︸ ︷
σn
√
πa√

2πr
· cos θ2

= KIII√
2πr
· cos θ2

(D-167)
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E
J Properties

First: J = 0 in any closed contour path that does not contain a crack
(first bullet), From the first The Kelvin-Stokes’s theorem a line integral can be
converted into an equivalent area integral. The box in bellow presents a recap
of the theorem.

Recap on Kelvin-Stoke’s theorem:
The formula bellow converts an area integral to a line integral in a vectorial
field FFF ∫

A
(∇×FFF ) dA =

∫
S
FFF ds

where

∇×FFF =
(
∂Fz
∂y
− ∂Fy

∂z

)
î+

(
∂Fx
∂z
− ∂Fz

∂x

)
ĵ +

(
∂Fy
∂x
− ∂Fx

∂y

)
k̂ (E-1)

More explicitly, the equality says that

∫
A

[(
∂Fz
∂y
− ∂Fy

∂z

)
dy dz +

(
∂Fx
∂z
− ∂Fz

∂x

)
dz dx+

(
∂Fy
∂x
− ∂Fx

∂y

)
dx dy

]

=
∫
S
(Fx dx+ Fy dy + Fz dz) (E-2)

J integral can be decomposed by the addition of the following two line
integrals. J1 =

∮
S U dy

J2 =
∮
S Ti

∂ui
∂x

ds
(E-3)

As to J1, imposing FFF having just y component equal to U , eq. (E-2)
provides:

J1 =
∮
S
U dy =

∫
A

∂U

∂x
dA (E-4)

As to J2, can be rewritten as:
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J2 =
∮
S
Ti
∂ui
∂x

ds =
∮
S
σijnj

∂ui
∂x

ds =
∮
S
σi1

∂ui
∂x

n1 ds︸ ︷︷ ︸
dy

+
∫
S
σi2

∂ui
∂x

n2 ds︸ ︷︷ ︸
−dx
(E-5)

where FFF , in eq. (E-2), is

FFF =

−σi2 ∂ui∂x

σi1
∂ui
∂x

 (E-6)

Applying the Kelvin-Stokes’s theorem on eq. (E-5) results

J2 =
∮
S
Ti
∂ui
∂x

ds =
∫
A

∂

∂x1

(
σi1

∂ui
∂x

)
dA+

∫
A

∂

∂x2

(
σi2

∂ui
∂x

)
dA (E-7)

that simplifies to

J2 =
∮
S
Ti
∂ui
∂x

ds =
∫
A

∂

∂xj

(
σij
∂ui
∂x

)
dA (E-8)

Then, combining eqs. (E-4) and (E-8) J integral results

J =
∫
S

[
U dy − Ti

∂ui
∂x

ds

]
=
∫
A

[
∂U

∂x
− ∂

∂xj

(
σij
∂ui
∂x

)]
dA (E-9)

where

∂U

∂x
= ∂U

∂εij︸ ︷︷ ︸
σij

∂εij
∂x

= σij
∂εij
∂x

(E-10)

Moreover, from elasticity, the Green-Lagrange strain tensor is given by:

EEE = 1
2(CCC − III)

= 1
2

[
∂uuu

∂XXX
+
(
∂uuu

∂XXX

)T]
+ 1

2

[(
∂uuu

∂XXX

)T
·
(
∂uuu

∂XXX

)] (E-11)

which, considering small strains only, reduces to

εij = 1
2

[
∂ui
∂xj

+ ∂uj
∂xi

]
(E-12)

because the non-linear term is irrelevant.
Substituting eq. (E-12) into eq. (E-10) and imposing symmetry condition

on the stress tensor we have:
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∂U

∂x
= 1

2 σij

[
∂

∂x

(
∂ui
∂xj

)
+ ∂

∂x

(
∂uj
∂xi

)]

= 1
2

[
σij

∂

∂x

(
∂ui
∂xj

)
+ σji︸︷︷︸

σij

∂

∂x

(
∂uj
∂xi

)]

= σij
∂

∂x

(
∂ui
∂xj

)
(E-13)

Substituting eq. (E-13) into eq. (E-9), results

J =
∫
A

{
σij

∂

∂x

(
∂ui
∂xj

)
−
[
σij

∂

∂xj

(
∂ui
∂x

)
+ ∂σij
∂xj

∂ui
∂xj

]}
dA (E-14)

where from equilibrium ∂σij
∂xj

= 0, resulting in eq. (E-14) being zero. Notice
that, small strain (linear or non-linear) is assumed inside the contour path S
for the proof above.

Second: J is path-independent if the contour path includes traction-free
faces. Considering the figure below E.1 the close contour path is composed by
S = S1 → S2 → S3 → S4 where the J integral, using the proof presents above,
is J = J1 + J2 + J3 + J4 = 0.

Figure E.1: Closed path that does not contain the crack

For the two traction-free crack faces J2 = J4 = 0 because Ti = dy = 0.
So, J1 = −J3, proving a non-dependency, where any (anti-clockwise) path has
the same value of J .

As previously stated, J is defined as being equal to Griffith’s Energy with
a much more complex form, see eq. (2-21). Here It is convenient to prove how
to achieve eq. (2-21) through Griffith’s Energy (last bullet).

First, starting with Griffith’s Energy definition in eq. (2-6), J

J = −∂EP
∂A

= −∂(ES −W )
∂A

(E-15)

where potential energy Ep is dependable on the strain energy and external
work. The strain energy is given by eq. (2-3) while the external work is given
by the integral of the traction vector times the displacement over the boundary.
Therefore,
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EP = ES −W

=
∫∫

A
U dx dy t−

∮
S
Ti ui ds t

(E-16)

The total derivative with respect to the area, in a plane problem with
thickness t is:

d

dA
= 1
t
· d
da

= 1
t

(
∂

∂a
+ ∂

∂x
· ∂x
∂a︸︷︷︸
−1

)
= 1
t

(
∂

∂a
− ∂

∂x

)
(E-17)

Noticed that the crack increment da is associated with the decrement
in dx = −da. The derivative of eq. (E-16) with respect to the crack length a
results in

dEP
da

=
∫∫

A

[
∂U

∂a
− ∂U

∂x

]
dx dy −

∮
S
Ti

[
∂ui
∂a
− ∂ui
∂x

]
ds (E-18)

where applying small strain in Green-Lagrange strain tensor and symmetry
conditions, already discussed, gives:

∂U

∂a
= ∂U

∂εij︸ ︷︷ ︸
σij

·∂εij
∂a

= 1
2σij

∂

∂a

(
∂ui
∂xj

+ ∂uj
∂xi

)

= 1
2
∂

∂a

(
σij

∂ui
∂xj

+ σji
∂uj
∂xi

)

= σij
∂

∂xj

(
∂ui
∂a

)
(E-19)

Substituting eq. (E-19) into eq. (E-18) provides

dEP
da

=
∫∫

A

[
σij

∂

∂xj

(
∂ui
∂a

)
− ∂U

∂x

]
dx dy −

∮
S
Ti

[
∂ui
∂a
− ∂ui
∂x

]
ds (E-20)

Moreover, from the virtual work theorem we have∫∫
A
σij

∂

∂xj

(
∂ui
∂a

)
dx dy =

∮
S
Ti
∂ui
∂a

ds (E-21)

and, substituting the virtual work theorem in eq. (E-21) into eq. (E-20)
gives
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dEP
da

=
��

�
��
�∮

S
Ti
∂ui
∂a

ds−
∫∫

A

∂U

∂x
dx dy −

��
�
��
�∮

S
Ti
∂ui
∂a

ds+
∮
S
Ti
∂ui
∂x

ds

=
∮
S
Ti
∂ui
∂a

ds−
∫∫

A

∂U

∂x
dx dy

(E-22)

Finally, applying the Stoke’s Theorem to the second term of eq. (E-22),
results

−dEP
da

=
∫
S

[
U dy − Ti

∂ui
∂x

ds

]
= J (E-23)
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F.1
Part 1 - Complementary energy

The complementary energy, in eq. (2-42), is evaluated by changing the
coordinates to deviatoric stress tensor SSS, since the strain eq. (2-41) is also a
function of SSS. Thus, using eq. (2-32):

dσij = ∂

∂Spq

(
Spq + 1

3

constant︷︸︸︷
σkk δpq

)
dSij

= ∂Spq
∂Spq

dSij

= dSij

(F-1)

and Replacing the definition of the strain tensor, from eq. (2-41), into
the complementary energy and changing the coordinates result

E∗ =
∫
εij dSij

=
∫ [

(1 + ν) Sij + 1− 2ν
3 σkk δij + 3

2 α σn−1
e Sij

]
dSij

= (1 + ν)
2 SijSij︸ ︷︷ ︸

2
3 σ2

e

+
∫ ∂

∂Sij

(
1− 2ν

6 σ2
kk

)
dSij +

∫ ∂

∂Sij

(
α

n+ 1σ
n+1
e

)
dSij

= (1 + ν)
3 σ2

e + 1− 2ν
6 σ2

kk + α

n+ 1 σn+1
e

(F-2)

where the integrand in the above integral may be expressed as
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∂

∂Sij

(
1− 2ν

6 σ2
kk

)
= 1− 2ν

6 2σkk
∂σpp
∂Sij

= 1− 2ν
3 σkk

∂σpp
∂Sij

= 1− 2ν
3 σkk

∂σpp
∂σij︸ ︷︷ ︸

δipδjp=δij

= 1− 2ν
3 σkk δij

(F-3)

and

∂

∂Sij

(
α

n+ 1σ
n+1
e

)
= α

n+ 1
∂

∂Sij

(
3
2 SpqSpq

)n+1
2

= α

���n+ 1
���n+ 1

2

(
3
2 SpqSpq

)n−1
2

︸ ︷︷ ︸
σn−1
e

∂

∂Sij

(
3
2 SpqSpq

)

= α

�2
σn−1
e

3
2

(
�2
∂Spq
∂Sij︸ ︷︷ ︸
δipδjq

Spq

)

= 3
2ασ

n−1
e Sij

(F-4)

completing the derivation of the complementary energy functional.
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F.2
Part 2 - Strains

Since the cylindrical coordinate system has orthogonal bases, the index
notation of eq. (2-41) is maintained, but using stress in polar coordinates.
Assuming the radial axis r as 1 and θ as 2.

For the radial strain the corresponding index notation is

εr = ε11 (F-5)

from eq. (2-41)

εr = (1 + ν)Sr + 1− 2ν
3 (σr + σθ) + 3

2α σn−1
e Sr (F-6)

where the deviatoric tensor, from eq. (2-32) is

Sr = σr −
1
3(σr + σθ) = 2

3σr −
σθ
3 (F-7)

Thus

εr = (1 + ν)
(

2
3σr −

σθ
3

)
+ 1− 2ν

3 (σr + σθ) + 3
2α σn−1

e

(
2
3σr −

σθ
3

)

= 2(1 + ν) + 1− 2ν
3σ0

· σr + 1− 2ν − 1− ν
3σ0

· σθ + α σn−1
e

(
σr −

1
2σθ

)

= σr − νσθ + α σn−1
e ·

(
σr −

1
2σθ

) (F-8)

For the tangential strain, similarly from procedure above

εθ = (1 + ν)Sθ + 1− 2ν
3 (σr + σθ) + 3

2α σn−1
e Sθ (F-9)

where:
Sθ = σθ −

1
3(σr + σθ) = 2

3σθ −
σr
3 (F-10)

So:

εθ = σrθ − νσr + α σn−1
e ·

(
σθ −

1
2σr

)
(F-11)

For the shear strain:

εrθ = (1 + ν)Sθ + 1− 2ν
3 (σr + σθ) · 0 + 3

2α σn−1
e Srθ (F-12)

where:

Srθ = σrθ (F-13)

As a result

εrθ = (1 + ν)σrθ + 3
2α σn−1

e σrθ (F-14)
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Finally, 
εr = σr − νσθ + α σn−1

e · (σr − 1
2σθ)

εθ = σrθ − νσr + α σn−1
e · (σθ − 1

2σr)

εrθ = (1 + ν)σrθ + 3
2α σn−1

e σrθ

(F-15)
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F.3
Part 3 - Compatibility

From the compatibility eq. (2-44), some parts are derived by substituting
eqs. (2-43) and (F-15). So,

(rεθ),rr =
[
rσθ − νrσr + ασn+1

e r

(
σθ −

1
2σr

)]
,rr

=
[
rΨ,rr − νr(r−1Ψ,r + r−2Ψ,θθ) + ασn+1

e r

(
Ψ,θθ −

r−1Ψ,r

2 − r−2Ψ,θθ

2

)]
,rr

=
(
rΨ,rr − νΨ,r − νr−1Ψ,θθ

)
,rr

+ α

2

[
σn+1
e

(
2rΨ,θθ −Ψ,r − r−1Ψ,θθ

)]
,rr

(F-16)

(εr),θθ =
[
σr − νσθ + ασn+1

e

(
σr −

1
2σθ

)]
,θθ

=
(
r−1Ψ,r + r−2Ψ,θθ − νΨ,rr

)
,θθ

+ α

2

[
σn+1
e

(
2r−1Ψ,r + 2r−2Ψ,θθ −Ψ,rr

)]
,θθ

(F-17)

(εr),r =
(
r−1Ψ,r + r−2Ψ,θθ − νΨ,rr

)
,r

+ α

2

[
σn+1
e

(
2r−1Ψ,r + 2r−2Ψ,θθ −Ψ,rr

)]
,r

(F-18)

(r · (εrθ),θ),r =
{
r ·
[
(1 + ν)σrθ + 3

2ασ
n+1
e σrθ

]
,θ

}
,r

=
{[
− (1 + ν)r(r−1Ψ,θ),r −

3
2ασ

n+1
e r(r−1Ψ,θ),r

]
,θ

}
,r

= −(1 + ν)
[
r(r−1Ψ,θ),r

]
,rθ

− 3
2α
[
σn+1
e r(r−1Ψ,θ),r

]
,rθ

(F-19)

Combining the equations in above into the compatibility equation, we
have:
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r−1
{(

rΨ,rr − νΨ,r − νr−1Ψ,θθ

)
,rr

+ α

2

[
σn+1
e

(
2rΨ,θθ −Ψ,r − r−1Ψ,θθ

)]
,rr

}
+

r−2
{(

r−1Ψ,r + r−2Ψ,θθ− νΨ,rr

)
,θθ

+ α

2

[
σn+1
e

(
2r−1Ψ,r + 2r−2Ψ,θθ−Ψ,rr

)]
,θθ

}

− r−1
{(

r−1Ψ,r + r−2Ψ,θθ−νΨ,rr

)
,r

+ α

2

[
σn+1
e

(
2r−1Ψ,r +2r−2Ψ,θθ−Ψ,rr

)]
,r

}

− 2r−2
{
− (1 + ν)

[
r(r−1Ψ,θ),r

]
,rθ

− 3
2α
[
σn+1
e r(r−1Ψ,θ),r

]
,rθ

}
= 0 (F-20)

that, by expanding, simplify to:

r−1(rΨ,rr),rr((((((
((−νr−1(Ψ,r),rr−νr−1(r−1Ψ,θθ),rr+

α

2 r
−1
[
σn−1
e

(
2rΦ,rr−Ψ,r−r−1Ψ,θθ

)]
,rr

+r−2(r−1Ψ,r),θθ+r−2(r−2Ψ,θθ),θθ−νr−2(Ψ,rr),θθ+
α

2 r
−2
[
σn+1
e

(
2r−1Ψ,r+2r−2Ψ,θθ−Ψ,rr

)]
,θθ

−r−1(r−1Ψ,r),r−r−1(r−2Ψ,θθ),r((((((
((+νr−1(Ψ,rr),r+

α

2 r
−2
[
σn+1
e

(
−2r−1Ψ,r−2r−2Ψ,θθ+Ψ,rr

)]
,r

+ 2r−2(1 + ν)
[
r(r−1Ψ,θ),r

]
,rθ

+ 3r−2α

[
σn+1
e r(r−1Ψ,θ),r

]
,rθ

= 0 (F-21)

Splitting the compatibility equation into elastic (Cel) and plastic (Cp),
we have

Cel = r−1(rΨ,rr),rr − νr−1(r−1Ψ,θθ),rr + r−2(r−1Ψ,r),θθ + r−2(r−2Ψ,θθ),θθ
− νr−2(Ψ,rr),θθ − r−1(r−1Ψ,r),r − r−1(r−2Ψ,θθ),r

+ 2r−2(1 + ν)
[
r(r−1Ψ,θ),r

]
,rθ︸ ︷︷ ︸

∗

(F-22)

Cp = α

2

{
r−1

[
σn−1
e

(
2rΨ,rr−Ψ,r−r−1Ψ,θθ

)]
,rr

+6r−2
[
σn−1
e r ·

(
r−1Ψ,θ

)
,r

]
,rθ

+ r−1
[
σn−1
e

(
− 2r−1Ψ,r − 2r−2Ψ,θθ + Ψ,rr

)]
,r

+ r−2
[
σn−1
e

(
−Ψ,rr + 2r−1Ψ,r + 2r−2Ψ,θθ

)]
,θθ

}
(F-23)

Note that, Cp is already in its final form. Exploring the elastic contribu-
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tion, ∗ is expanded as following

∗ = 2r−2(1 + ν)
[
r(r−1Ψ,θ),r

]
,rθ

= 2r−2(1 + ν)
[
r(r−1Ψ,θθ),r

]
,r

= 2r−2(1 + ν)
[
(r−1Ψ,θθ),r + r(r−1Ψ,θθ),rr

]
= 2r−2(1 + ν)(r−1Ψ,θθ),r + 2r−1(1 + ν)(r−1Ψ,θθ),rr
= 2r−2(r−1Ψ,θθ),r + 2νr−2(r−1Ψ,θθ),r︸ ︷︷ ︸

∗∗

+2r−1(r−1Ψ,θθ),rr + 2νr−1(r−1Ψ,θθ),rr

(F-24)

Manipulating ∗∗, we have

∗∗ = 2νr−2(r−1Ψ,θθ),r
= 2νr−2(−r−2Ψ,θθ + r−1Ψ,rθθ)

= −2νr−4Ψ,θθ + 2νr−3Ψ,rθθ

(F-25)

and, back in ∗, the last portion is rewritten as following

νr−1(r−1Ψ,θθ),rr = νr−1(−r−2Ψ,θθ + r−1Ψ,θθr),r
= νr−1(2r−3Ψ,θθ − r−2Ψ,θθr − r−2Ψ,rθθ + r−1Ψ,θθrr)

= 2νr−4Ψ,θθ − 2νr−3Ψ,θθr + νr−2Ψ,θθrr

(F-26)

As a result, substituting eqs. (F-25) and (F-26) into (F-24)

∗ = 2r−2(r−1Ψ,θθ),r����
���−2νr−4Ψ,θθ��

���
��+2νr−3Ψ,rθθ + 2r−1(r−1Ψ,θθ),rr+

νr−1(r−1Ψ,θθ),rr����
���+2νr−4Ψ,θθ���

���
�

−2νr−3Ψ,θθr + νr−2Ψ,θθrr (F-27)

The elastic contribution is

Cel = r−1(rΨ,rr),rr((((((
((((−νr−1(r−1Ψ,θθ),rr + r−2(r−1Ψ,r),θθ + r−2(r−2Ψ,θθ),θθ

((((
((((−νr−2(Ψ,rr),θθ − r−1(r−1Ψ,r),r − r−1(r−2Ψ,θθ),r + 2r−2(r−1Ψ,θθ),r

+ 2r−1(r−1Ψ,θθ),rr((((((
((((+νr−1(r−1Ψ,θθ),rr����

���+νr−2Φ,θθrr (F-28)

simplifying, we have
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Cel = r−1(rΨ,rr),rr + r−2(r−1Ψ,r),θθ + r−2(r−2Ψ,θθ),θθ − r−1(r−1Ψ,r),r
− r−1(r−2Ψ,θθ),r + 2r−2(r−1Ψ,θθ),r + 2r−1(r−1Ψ,θθ),rr (F-29)

where, manipulating portions of the equation in above we have

r−1(rΨ,rr),rr = r−1(Ψ,rr + rΨ,rrr),r
= r−1Ψ,rrr + r−1(Ψ,rrr + rΨ,rrrr)

= 2r−1Ψ,rrr + Ψ,rrrr

(F-30)

2r−2(r−1Ψ,θθ),r = 2r−1(−r−2Ψ,θθ + r−1Ψ,θθr),r
= −2r−4Ψθθ + 2r−3Ψθθr

(F-31)

2r−1(r−1Ψ,θθ),rr = 2r−1(−r−2Ψθθ + r−1Ψ,θθr),r
= 2r−1(2r−3Ψ,θθ − r−2Ψ,θθr − r−2Ψ,θθr + r−1Ψ,θθrr)

= 4r−4Ψ,θθ − 2r−3Ψθθr − 2r−3Ψ,θθr + 2r−2Ψ,θθrr

(F-32)

Rewriting eq. (F-29) by substituting eqs. (F-30), (F-31) and (F-32)

Cel = 2r−1Ψ,rrr + Ψ,rrrr + r−2(r−1Ψ,r),θθ + r−2(r−2Ψ,θθ),θθ + r−1(r−1Ψ,r),r
− 2r−1(r−1Ψ,r),r + r−1(r−2Ψ,θθ),r − 2r−1(r−2Ψ,θθ),r − 2r−4Ψθθ+

2r−3Ψθθr + 4r−4Ψ,θθ − 2r−3Ψθθr − 2r−3Ψ,θθr + 2r−2Ψ,θθrr (F-33)

As previously done before, two portions of the equation in above are
derived as

−2r−1(r−1Ψ,r),r = −2r−1(−r−2Ψ,r + r−1Ψ,rr)

= 2r−3Ψ,r − 2r−2Ψ,rr

(F-34)

−2r−1(r−2Ψ,θθ),r = −2r−1(−2r−3Ψ,θθ + r−2Ψ,θθr)

= 4r−4Ψ,θθ − 2r−3Ψ,θθr

(F-35)

that, with some mathematical manipulation, yields on
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Cel = 2r−1Ψ,rrr + Ψ,rrrr + r−2(r−1Ψ,r),θθ + r−2(r−2Ψ,θθ),θθ + r−1(r−1Ψ,r),r
2r−3Ψ,r − 2r−2Ψ,rr + r−1(r−2Ψ,θθ),r + 4r−4Ψ,θθ���

���−2r−3Ψ,θθr

− 2r−4Ψθθ���
���+2r−3Ψθθr + 4r−4Ψ,θθ − 2r−3Ψθθr − 2r−3Ψ,θθr + 2r−2Ψ,θθrr (F-36)

Cel = Ψ,rrrr + r−1Ψ,rrr + r−1Ψ,rrr + 2r−3Ψ,r − 2r−2Ψ,rr︸ ︷︷ ︸
(r−1Ψ,r),rr

+r−2(r−1Ψ,r),θθ

+ r−2(r−2Ψ,θθ),θθ + r−1(r−1Ψ,r),r + r−1(r−2Ψ,θθ),r
+ 6r−4Ψ,θθ − 4r−3Ψθθr + r−2Ψ,θθrr︸ ︷︷ ︸

(r−2Ψ,θθ),rr

+r−2Ψ,θθrr (F-37)

Cel = Ψ,rrrr + (r−1Ψ,r),rr(r−2Ψ,θθ),rr + r−1Ψ,rrr + r−1(r−1Ψ,r),r
+ r−1(r−2Ψ,θθ),r + r−2Ψ,θθrr + r−2(r−1Ψ,r),θθ + r−2(r−2Ψ,θθ),θθ (F-38)

Cel = ∇4Ψ (F-39)

This equation express the compatibility in the elastic case.
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F.4
Part 4 - Stresses

The equations for stress definitions are derived using Airy’s function, eq.
(2-43), from the assumed stress function, eq. (2-48).

For the radial stress,

σr = 1
r

∂Ψ
∂r

+ 1
r2
∂2Ψ
∂θ2

= 1
r

(
sKrs−1Ψ̃

)
+ 1
r2

(
KrsΨ̃,θθ

)
= Krs−2sΨ̃ +Krs−2Ψ̃,θθ

= Krs−2 ·
(
sΨ̃ + Ψ̃,θθ

)
= Krs−2 · σ̃r

(F-40)

while, the tangential stress

σθ = ∂2Ψ
∂r2

= Krs−2s(s− 1)Ψ̃

= Krs−2σ̃θ

(F-41)

and for shear stress

σrθ = − ∂

∂r

(
1
r

∂Ψ
∂θ

)

= − ∂

∂r

(
1
r
KrsΦ̃,θ

)

= − ∂

∂r

(
Krs−1Ψ̃,θ

)
= −K(s− 1)rs−2Ψ̃,θ

= Krs−2(1− s)Ψ̃,θ

= Krs−2σ̃rθ

(F-42)
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F.5
Part 5

From obtained stress function in eq. (2-48), compatibility and von Mises
equations can be rewrite. Due to the need of extensive algebraic manipulation,
four individual terms were considered in the compatibility equation as shown
below:

r−1
[
σn−1
e

(
2rΨ,rr −Ψ,r − r−1Ψ,θθ

)]
,rr︸ ︷︷ ︸

I

+ 6r−2
[
σn−1
e r ·

(
r−1Ψ,θ

)
,r

]
,rθ︸ ︷︷ ︸

II

+ r−1
[
σn−1
e

(
− 2r−1Ψ,r − 2r−2Ψ,θθ + Ψ,rr

)]
,r︸ ︷︷ ︸

III

+ r−2
[
σn−1
e

(
−Ψ,rr + 2r−1Ψ,r + 2r−2Ψ,θθ

)]
,θθ︸ ︷︷ ︸

IV

= 0 (F-43)

where I, II, III and IV , expanded using the definitions in eqs. (2-48) and
(2-49) results in

I = r−1
[
Kn−1r(s−2)(n−1)σ̃e

n−1
(

2Ks(s− 1)rs−1Ψ̃−Ksrs−1Ψ̃− r−1KrsΨ̃,θθ

)]
,rr

= r−1
[
Knr(s−2)(n−1)+s−1σ̃e

n−1
(

2s(s− 1)Ψ̃− sΨ̃− Ψ̃,θθ

)]
,rr

= r−1Knσ̃e
n−1

[
r(s−2)(n−1)+s−1

(
s(2s− 3)Ψ̃− Ψ̃,θθ

)]
,rr

= r−1Knσ̃e
n−1

(
s(2s− 3)Ψ̃− Ψ̃,θθ

)
[(s− 2)(n− 1) + s− 1]

(
r(s−2)(n−1)+s−2

)
,r

= r−1Knσ̃e
n−1

(
s(2s− 3)Ψ̃− Ψ̃,θθ

)
[(s− 2)(n− 1) + s− 1]·

[(s− 2)(n− 1) + s− 2]r(s−2)(n−1)+s−3

= r(s−2)(n−1)+s−4Knσ̃e
n−1

(
s(2s− 3)Ψ̃− Ψ̃,θθ

)
[n(s− 2) + 1][n(s− 2)]

(F-44)
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II = 6r−2
[
Kn−1r(s−2)(n−1)σ̃e

n−1r

(
r−1KrsΨ̃,θ

)
,r

]
,rθ

= 6r−2Kn

[
r(s−2)(n−1)+1σ̃e

n−1
(

(s− 1)rs−2Ψ̃,θ

)]
,rθ

= 6r−2Kn(s− 1)
[
r(s−2)(n−1)+s−1σ̃e

n−1Ψ̃,θ

]
,rθ

= 6r−2Kn(s− 1)
[
σ̃e

n−1[(s− 2)(n− 1) + s− 1]r(s−2)(n−1)+s−2Ψ̃,θ

]
,θ

= 6r(s−2)(n−1)+s−4Kn(s− 1)[n(s− 2) + 1]
[
σ̃e

n−1Ψ̃,θ

]
,θ

(F-45)

III = r−1
[
Kn−1r(s−2)(n−1)σ̃e

n−1
(
− 2r−1sKrs−1Ψ̃− 2r−2KrsΨ̃,θθ

+Ks(s− 1)rs−2Ψ̃
)]

,r

= r−1
[
Knr(s−2)(n−1)+s−2σ̃e

n−1
(
− 2sΨ̃− 2Ψ̃,θθ + s(s− 1)Ψ̃

)]
,r

= r−1Knσ̃e
n−1[s(s− 3)Ψ̃− 2Ψ̃,θθ]

[
r(s−2)(n−1)+s−2

]
,r

= r−1Knσ̃e
n−1[s(s− 3)Ψ̃− 2Ψ̃,θθ][(s− 2)(n− 1) + s− 2]r(s−2)(n−1)+s−3

= r(s−2)(n−1)+s−4Knσ̃e
n−1n(s− 2)[s(s− 3)Ψ̃− 2Ψ̃,θθ]

(F-46)

IV = r−2
[
Kn−1r(s−2)(n−1)σ̃e

n−1
(
−Ks(s− 1)rs−2Ψ̃ + 2r−1Ksrs−1Ψ̃

+ 2r−2KrsΨ̃,θθ

)]
,θθ

= r−2
[
Knr(s−2)(n−1)+s−2σ̃e

n−1
(
− s(s− 1)Ψ̃ + 2sΨ̃ + 2Ψ̃,θθ

)]
,θθ

= −r(s−2)(n−1)+s−4Kn

[
σ̃e

n−1
(
s(s− 3)Ψ̃− 2Ψ̃,θθ

)]
,θθ

(F-47)

Substituting the results in above into compatibility condition in eq. (F-
43) we have
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[
n(s− 2)− ∂2

∂θ2

]
·
[
σ̃e

n−1
(
s(s− 3)Ψ̃− 2Ψ̃,θθ

)]

+
(
n(s− 2) + 1

)(
n(s− 2)

)
σ̃e

n−1
(
s(2s− 3)Ψ̃− Ψ̃,θθ

)

+ 6
(
n(s− 2) + 1

)
(s− 1)

[
σ̃e

n−1Ψ̃,θ

]
,θ

= 0 (F-48)
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F.6
Part 6 - Inequality

At the crack tip neighbourhood, only the plastic contribution on the
complementary energy is assumed relevant for stress calculations. Substituting
the definition of σe, from eq. (2-49), into the simplified equation for the
complementary energy we have

E∗p =
∫
A

α

n+ 1(
σe︷ ︸︸ ︷

Krs−2σ̃e)n+1
t r dθ︷︸︸︷
dA

= α

n+ 1K
n+1

∫
r(s−2)(n+1)+1 σ̃n+1

e dθ

= α

n+ 1
Kn+1

(s− 2)(n+ 1) + 2 r(s−2)(n+1)+2
∫
σ̃n+1
e dθ

(F-49)

Different from the stresses that increase as r decreases the energy
increases as the area of interest increases. As a result, r exponent in equation
above must be larger than zero. Thus,

(s− 2)(n+ 1) + 2 > 0 (F-50)

or

s >
2n
n+ 1 (F-51)
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F.7
Part 7 - Work

Neglecting the elastic contributions, the work integral is

W =
∫ εij

0
σij dε

p
ij (F-52)

where the infinitesimal plastic strains, in eq. (2-41) results in

dεpij = 3
2α

∂

∂Spq

(
σn−1
e Spq

)
dSij

= 3
2α

[
∂

∂Spq
(σn−1

e ) Spq + σn−1
e

∂Spq
∂Spq︸ ︷︷ ︸

1

]
dSij

= 3
2α

[
∂

∂Spq

(
3
2 SrsSrs

)n−1
2

Spq + σn−1
e

]
dSij

= 3
2α

[
n− 1

2

(
3
2 SrsSrs

)n−3
2

︸ ︷︷ ︸
σn−3
e

∂

∂Spq

(
3
2 SrsSrs

)
Spq + σn−1

e

]
dSij

= 3
2α

[
n− 1
�2

σn−3
e

3
2

(
�2
∂Srs
∂Spq︸ ︷︷ ︸
δprδqs

Srs

)
Spq + σn−1

e

]
dSij

= 3
2α

[
(n− 1) σn−3

e

3
2 SpqSpq︸ ︷︷ ︸

σ2
e

+σn−1
e

]
dSij

= 3
2α n σn−1

e dSij

(F-53)

or

W =
∫ (

Sij + 1
3 σkkδij

)
3
2α n σn−1

e dSij

=
∫ 3

2α n σn−1
e Sij dSij +

∫ 1
2 α n σkkδij σ

n−1
e dSij

=
∫ ∂

∂Sij

(
α

n

n+ 1 σn+1
e

)
dSij + 0

(F-54)

where the integrand in the above integral may be expressed as
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∂

∂Sij

(
α

n

n+ 1 σn+1
e

)
= α

n

n+ 1
∂

∂Sij

(
3
2SpqSpq

)n+1
2

= α
n

���n+ 1
���n+ 1

2

(
3
2SpqSpq

)n−1
2 ∂

∂Sij

(
3
2SpqSpq

)

= α
n

�2
σn−1
e

3
2

(
�2
∂Spq
∂Sij︸ ︷︷ ︸
δip δjq

Spq

)

= α n σn−1
e

3
2Sij

(F-55)
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F.8
Part 8 - Displacement

Displacements are obtained from integrating the strains, which must be
evaluated by considering that elastic contributions close to the crack tip are
neglected. Thus, From eq. (F-15), linear strain in r direction is

εr = σr − νσθ︸ ︷︷ ︸
neglect

+α σn−1
e

(
σr + 1

2σθ
)

(F-56)

that substituting stress definitions in eq. (2-49) provides

εr = α

(
Krs−2σ̃e

)n−1 [
Krs−2 (s Ψ̃ + Ψ̃,θθ)−

1
2 Krs−2 s(s− 1)Ψ̃

]

= α σ̃n−1
e Kn−1 rn(s−2)−(s−2) K rs−2

(
s Ψ̃ + Ψ̃,θθ −

s(s− 1)
2 Ψ̃

)

= α Kn rn(s−2) σ̃n−1
e

(
s(3− s)

2 Ψ̃ + Ψ̃,θθ

) (F-57)

Radial displacement results from the integration of linear radial strain
definition is polar coordinates as

εr = ∂ur
∂r
→ ur =

∫
εr dr (F-58)

Thus using F-57 we have

ur = α Kn rn(s−2)+1 ũr(θ) (F-59)

Similarly, the displacement in θ direction, strain εθ is as follows (eq. F-15)

εθ = σθ − νσr︸ ︷︷ ︸
neglect

+α σn−1
e

(
σθ −

1
2σr

)
(F-60)

substituting stress definitions in eq. (2-49) results

εθ = α

(
Krs−2σ̃e

)n−1 [
Krs−2 s(s− 1)Ψ̃− 1

2 Krs−2 (s Ψ̃ + Ψ̃,θθ)
]

= αKn−1 rn(s−2)−(s−2) σ̃n−1
e K rs−2

[
s(s− 1)Ψ̃− 1

2 (s Ψ̃ + Ψ̃,θθ)
]

= α Kn rn(s−2) σ̃n−1
e

[
s

(
s− 3

2

)
Ψ̃− Ψ̃,θθ

2

] (F-61)

In polar coordinates , εθ is

εθ = ur
r

+ 1
r

∂uθ
∂θ
→ uθ,θ = r · εθ − ur (F-62)

where uθ,θ are as in eqs. (F-61) and (F-57), therefore,
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uθ,θ = α Kn rn(s−2)+1 σ̃n−1
e

[
s

(
s− 3

2

)
Ψ̃− Ψ̃,θθ

2

]

− α Kn rn(s−2)+1

n(s− 2) + 1 σ̃n−1
e

(
s(3− s)

2 Ψ̃ + Ψ̃,θθ

)

= α Kn rn(s−2)+1
{
σ̃n−1
e

[
s

(
s− 3

2

)
Ψ̃− Ψ̃,θθ

2

]

− 1
n(s− 2) + 1 σ̃

n−1
e

(
s(3− s)

2 Ψ̃ + Ψ̃,θθ

)
︸ ︷︷ ︸

ũr

}

= α Kn rn(s−2)+1
{
σ̃n−1
e

[
s

(
s− 3

2

)
Ψ̃− Ψ̃,θθ

2

]
− ũr

}
︸ ︷︷ ︸

ũθ,θ

(F-63)

Resulting on

uθ,θ = α Kn rn(s−2)+1 ũθ,θ (F-64)

that integrating in θ provides

uθ = α Kn rn(s−2)+1 ũθ (F-65)

DBD
PUC-Rio - Certificação Digital Nº 1912753/CA



Appendix F. HRR Solution 157

F.9
Part 9 - J integral

After obtaining work in section F.7, the second term of J-integral
must be evaluated. From eq. (2-21), J-integral is calculated in the cartesian
coordinates. However, in HRR method derivations polar coordinates were
employed (see figure 2.5). Thus, in cartesian coordinates, displacements relates
to displacements in polar coordinates as

uuuxy =
ux
uy

 = Rz(θ) · uuurθ

=
cos θ − sin θ

sin θ cos θ

 ·
ur
uθ


=
ur cos θ − uθ sin θ
ur sin θ + uθ cos θ


(F-66)

and, as a result, displacement derivatives with respect to r and θ may be
written as 

ux,r = ur,r cos θ − uθ,r sin θ

ux,θ = ur,θ cos θ − ur sin θ − uθ,θ sin θ − uθ cos θ

uy,r = ur,r sin θ + uθ,r cos θ

uy,θ = ur,θ sin θ + ur cos θ + uθ,θ cos θ − uθ sin θ

(F-67)

The traction vector in polar coordinates results in

TTT rθ = σσσrθ · nnn

=
σrr σrθ

σrθ σθθ

 ·
1

0

 =
σrr
σrθ

 (F-68)

where the normal vector nnn is written in a polar coordinate system.
Since the traction vector for the J-integral formula must be written in

cartesian coordinate, a rotation transformation is applied
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TTT xy =
T xyx
T xyy

 = Rz(θ) · TTT rθ

=
cos θ − sin θ

sin θ cos θ

 ·
 σr
σrθ


=
σr cos θ − σrθ sin θ
σr sin θ + σrθ cos θ


(F-69)

Therefore, the second part of J-integral in eq. (2-21) is

Tiui,x = T xyx · ux,x + T xyy · uy,x (F-70)

where, by the chain rule it resultsux,x = dux
dx

= dux
dr

dr
dx

+ dux
dθ

dθ
dx

uy,x = duy
dx

= duy
dr

dr
dx

+ duy
dθ

dθ
dx

(F-71)

The equations in above are functions of dr
dx

and dθ
dx
. From polar coordi-

nates, radius is decomposed in x and y, thus

dr

dx
= d

dx
(x2 + y2)1/2 = 1

2 (x2 + y2)−1/2 2x = x

(x2 + y2)1/2 = r cos θ
r

= cos θ

(F-72)
while, from trigonometry, θ is defined as

cos θ = x

r
= x√

(x2 + y2)1/2
= x · (x2 + y2)−1/2 (F-73)

Taking the derivative if equation in above with respect to θ provides

− sin θ dθ
dx

= (x2 + y2)−1/2 − 1
2 x (x2 + y2)−3/2 2x

= 1
r

(
1− x2

r2

)

= 1
r

(1− cos2 θ)︸ ︷︷ ︸
sin2 θ

(F-74)

Resulting on

dθ

dx
= −sin θ

r
(F-75)

Substituting eqs. (F-72) and (F-75) into eqs. (F-71) provides
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ux,x = dux
dx

= dux
dr

dr

dx
+ dux

dθ

dθ

dx

= (ur,r cos θ − uθ,r sin θ) cos θ
− (ur,θ cos θ − ur sin θ − uθ,θ sin θ − uθ cos θ) r−1 sin θ

= ur,r cos2 θ − uθ,r sin θ cos θ − r−1 ur,θ cos θ sin θ + r−1 ur sin2 θ

+ r−1 uθ,θ sin2 θ + r−1 uθ cos θ sin θ

(F-76)

and also

uy,x = duy
dx

= duy
dr

dr

dx
+ duy

dθ

dθ

dx

= (ur,r sin θ + uθ,r cos θ) cos θ
− (ur,θ sin θ + ur cos θ + uθ,θ cos θ − uθ sin θ) r−1 sin θ

= ur,r sin θ cos θ + uθ,r cos2 θ − r−1 ur,θ sin2 θ − r−1 ur cos θ sin θ
− r−1 uθ,θ cos θ sin θ + r−1 uθ sin2 θ

(F-77)

Therefore, from eqs. (F-69), (F-76) and (F-77), the second part of J-
integral is rewritten as following
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Tiui,x = T xyx · ux,x + T xyy · uy,x
= [σr cos θ − σrθ sin θ] · (ur,r cos2 θ − uθ,r sin θ cos θ − r−1 ur,θ cos θ sin θ

+ r−1 ur sin2 θ + r−1 uθ,θ sin2 θ + r−1 uθ cos θ sin θ)

+ [σr sin θ + σrθ cos θ] · (ur,r sin θ cos θ + uθ,r cos2 θ − r−1 ur,θ sin2 θ

− r−1 ur cos θ sin θ − r−1 uθ,θ cos θ sin θ + r−1 uθ sin2 θ)

= σr cos2 θ cos θ ur,r −((((((
(((σr cos2 θ sin θ uθ,r − r−1 σr cos2 θ sin θ ur,θ

+((((((
((((

(
r−1 σr sin2 θ cos θ ur +((((((

((((σrr sin2 θ cos θ uθ,θ + r−1 σr cos2 θ sin θ uθ
−(((((

((((
(

σrθ cos2 θ sin θ ur,r + σrθ sin2 θ cos θ uθ,r +
((((

((((
((((

r−1 σrθ sin2 θ cos θ ur,θ
− r−1 σrθ sin2 θ sin θ ur − r−1 σrθ sin2 θ sin θ uθ,θ −((((((

((((
(

r−1 σrθ sin2 θ cos θ uθ
+ σr sin2 θ cos θ ur,r +((((((

(((σr cos2 θ sin θ uθ,r − r−1 σr sin2 θ sin θ ur,θ
−(((((

((((
((

r−1 σr sin2 θ cos θ ur −((((((
((((

((
r−1 σr sin2 θ cos θ uθ,θ + r−1 σr sin2 θ sin θ uθ

+((((((
((((σrθ cos2 θ sin θ ur,r + σrθ cos2 θ cos θ uθ,r −((((((

((((
((

r−1 σrθ sin2 θ cos θ ur,θ
− r−1 σrθ cos2 θ sin θ ur − r−1 σrθ cos2 θ sin θ uθ,θ +((((((

(((
((

r−1 σrθ sin2 θ cos θ uθ
= σr(sin2 θ + cos2 θ) cos θ ur,r − r−1 σr(sin2 θ + cos2 θ) sin θ ur,θ

+ r−1 σr(sin2 θ + cos2 θ) sin θ uθ + σrθ(sin2 θ + cos2 θ) cos θ uθ,r
− r−1 σrθ(sin2 θ + cos2 θ) sin θ ur − r−1 σrθ(sin2 θ + cos2 θ) sin θ uθ,θ

= σr cos θ ur,r − r−1 σr sin θ ur,θ + r−1 σr sin θ uθ + σrθ cos θ uθ,r
− r−1 σrθ sin θ ur − r−1 σrθ sin θ uθ,θ

(F-78)

where

r−1 σr sin θ uθ = r−1 Krs−2σ̃r sin θ · αKnrn(s−2)+1 ũθ

= αKn+1r(n+1)(s−2) sin θ σ̃r ũθ
(F-79)

−r−1 σr sin θ ur,θ = −r−1 Krs−2σ̃r sin θ · αKnrn(s−2)+1 ũr,θ

= −αKn+1r(n+1)(s−2) sin θ σ̃r ũr,θ
(F-80)

−r−1 σrθ sin θ uθ,θ = −r−1 Krs−2σ̃rθ sin θ · αKnrn(s−2)+1 ũθ,θ

= −αKn+1r(n+1)(s−2) sin θ σ̃rθ ũθ,θ
(F-81)

−r−1 σrθ sin θ ur = −r−1 Krs−2σ̃rθ sin θ · αKnrn(s−2)+1 ũr

= −αKn+1r(n+1)(s−2) sin θ σ̃rθ ũr
(F-82)
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σr cos θ ur,r = Krs−2σ̃r cos θ · αKn(n(s− 2) + 1)rn(s−2) ũr

= αKn+1r(n+1)(s−2) (n(s− 2) + 1) cos θ σ̃r ũr
(F-83)

σrθ cos θ uθ,r = Krs−2σ̃rθ cos θ · αKn(n(s− 2) + 1)rn(s−2) ũθ

= αKn+1r(n+1)(s−2) (n(s− 2) + 1) cos θ σ̃rθ ũθ
(F-84)

Finally,

σijnjui,x = αKn+1r(n+1)(s−2){sin θ[σ̃r(ũθ − ũr,θ)− σ̃rθ(ũr + ũθ,θ)]

+ (n(s− 2) + 1) cos θ[σ̃rũr + σ̃rθũθ] (F-85)
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G
Program Validations

G.1
Simply supported beam under distributed load

This example is intended to verify the element numerical results in
material only linear and nonlinear analyses. The fig. G.1 below illustrates
the problem of a simply supported rectangular section beam under uniformly
distributed transverse loading.

Figure G.1: Simple supported beam

In the simulation the discretization employed a nonlinear parabolic
tetrahedron element, T10. This higher order is employed to represent the
appropriate displacement distribution over the cross section of the beam due to
bending. Due to symmetry to the z-axis, only half of the beam was represented
in the model.

Material and geometric parameters employed in the analysies are pre-
sented in the table below.
and the obtained displacement field, in the elastic regime, with small displace-
ments, is presented in the fig. G.2.
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Figure G.2: Displacement field in z-direction from TopSim

where the maximum obtained displacement in z-direction is

δnummax = 0.0675 m (G-1)

while the corresponding analytical solution displacement from [35] gives

δmax = 5qL4

384EI = 5 · 1.116 · 105 · 304

384 · 210 · 109 · 1
12

= 0.0673 m (G-2)

where I is the cross section moment of inertia and a 0, 3% of relative error is
obtained.

Notice that the analytical solution does not consider transverse shear
stresses while it is accounted for in the numerical formulation employed as
demonstrated by the larger displacement value obtained in the numerical
solution.

In Prager [31] it is proposed an analytical solution using the 2D state
of stress and strain model from the Theory of Elasticity, in a perfect plastic
material. Two additional parametersq0 := 4

√
3κb

ρ := q
q0

( a
h
)2

(G-3)

were introduced for algebraic simplification, and the expression, in closed form,
for the central deflection is

W0 = a2q0

Ebh

[
1

4
√

3ρ ·sinh-1
√

3ρ− 2
3(1− ρ) +

√
1− ρ

4
√

3ρ
+ 2ρ2 − 1

8 − 3ρ+ 1
ρ
·
√
ρ(3ρ− 2)

3

]
(G-4)

indent The deflection, obtained in equation above, is ploted in fig. G.4
varying ρ.
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For establishing the dividing surface between plasticity and elasticity a
new variable in the z axis was added, ζ. The plastic region for a fixed ρ is
bounded with [−ζ(x), ζ(x)], where 0 < ζ 6 h. Notice that ζ varies along
coordinate x. Equation (G-5) presents the expression to obtain the plastic
surface of the beam as function of ρ.

1
3

(
ζ

h

)2

− ρ
(
x

a

)2

= 1− ρ (G-5)

Figure G.3 plot eq. (G-5) in a beam with h = 1.0 and a = 1.0 for different
values of ρ. Notice that parameter ρ, related to the load, interferes with the
plastic volume in the beam.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 = 1.0

 = 0.9

 = 0.8

 = 0.7

Figure G.3: Plastic evolution as function of ρ

For validation purposes, the analytical central deflection function, pre-
sented in eq. (G-4) is compared with the numerical deflection from the FEM
program. The geometric, load and material parameters is presented in table
below:

For this simulation an incremental-iterative approach on the Newton-
Raphson algorithm is adopted. Using 20 increments of load results in 20 re-
spective ρ. Figure G.4 shows the comparison between analytical and Numerical
results, where both curves have compatible shape. The numerical solution pre-
dicts the analytical solution proposed by Prager.
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0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Analytical

Numerical

Figure G.4: Central displacement of the beam as function of the plastic variable
ρ

To visualize the evolution of the von Mises stress field, 10 increments are
present from figure G.5 to figure G.14:

Figure G.5: t = 0.1s

Figure G.6: t = 0.2s

Figure G.7: t = 0.3s

Figure G.8: t = 0.4s

Figure G.9: t = 0.5s
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Figure G.10: t = 0.6s

Figure G.11: t = 0.7s

Figure G.12: t = 0.8s

Figure G.13: t = 0.9s

Figure G.14: t = 1.0s

G.1.1
Proof

Considering a plane stress state for this formulation and knowing that
just plane xx and xz are non-zero:

σz = σy = σyz = σxz = 0 (G-6)

Simplifying the notation:

σx = σ (G-7)

σzx = τ (G-8)

The stress tensor is given by:

σσσ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =


σ 0 τ

0 0 0
τ 0 0

 (G-9)

and the pressure, from eq. (3-21)
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p = σσσ : III
3 = σ + 0 + 0

3 = σ

3 (G-10)

and the deviatoric stress tensor, eq. (3-20):

SSS = σσσ − p · III

=


σ − τ

0 0 0
τ 0 0

−

σ
3 0 0
0 σ

3 0
0 0 σ

3



=


2σ
3 0 τ

0 −σ
3 0

τ 0 −σ
3



(G-11)

In a plastic problem a yield surface must be adopted, in this case, a von
Mises formulation is considered. Thus, the yield function Φ is defined as:

Φ2 = J2 − κ2 (G-12)

From the definition of J2:

Φ2 = 0 = J2 − κ2

= 1
2

[(
2σ
3

)2

+ σ2

9 + σ2

9 + 2τ 2
]
− κ2

(G-13)

So:

σ2 + 3τ 2 = 3κ2 (G-14)

Assuming that the shear stress is small in comparison to the normal
stress, the eq. (G-14) can be rewritten as:

σ2 = 3κ2 (G-15)

or
|σ| = κ

√
3 (G-16)

As previously defined, ±ζ(x) are the dividing surface between the elastic
and plastic domains. In an elastoplastic cross-section, the upper and lower
portions of the beam behave plastically while the center elastically. the plastic
region presents a constant value of stress, since perfect plasticity is imposed,
while the elastic region, from beam theory, a linear decrease reaching zero at
the neutral fiber. Thus
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σ =


−κ
√

3, for − h 6 z 6 −ζ
κz
√

3
ζ
, for − ζ 6 z 6 ζ

κ
√

3, for ζ 6 z 6 h

(G-17)

Figure G.15 above describes the elastoplastic stress distribution at the
cross section

Figure G.15: Elastoplastic cross section

The internal moment at cross section x is given by eq. (G-18). Figure
G.16 illustrate stress σ acting at cross section.

Figure G.16: Moment calculation at cross section

M(x) =
∫ h

−h
z σ(x, z) 2b dz = 4b

∫ h

0
z σ(x, z) dz (G-18)

Considering elastic and plastic regions, eq. (G-18) may be rewritten as:

M(x) =

elastic︷ ︸︸ ︷
4b
∫ ζ

0
z σ(x, z)︸ ︷︷ ︸

κz
√

3
ζ

dz+

plastic︷ ︸︸ ︷
4b
∫ h

ζ
z σ(x, z)︸ ︷︷ ︸

κ
√

3

dz (G-19)

resulting in
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M(x) = 4bκ
√

3
ζ

∫ ζ

0
z2 dz + 4bκ

√
3
∫ h

ζ
z dz

= 4bκ
√

3
��ζ
· ζ
�32

3 + 4bκ
√

3
(
h2

2 −
ζ2

2

)

= 2bκ
√

3
3 (3h2 − ζ2)

(G-20)

Alternatively, the moment from the external load can also be calculated.
First, the reaction must be computed (see figure G.17).

Figure G.17: Beam reactions

Considering resultant force in z direction being zero:
∑

Fz = 0→ RA
z +RB

z = q · 2a (G-21)

and the resultant moment at point A also being zero:
∑

MA = 0→ −q ·��2a · a+RB
z ·��2a = 0 (G-22)

RB
z = qa (G-23)

Substituting eq. (G-23) into eq. (G-21) provides:

RA
z = qa (G-24)

With RA
z and RB

z found, the moment at cross section x is obtained as
illustrated in figure G.18.
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Figure G.18: Moment at cross section

Thus,

M(x) = −q(a− x) · a− x2 + qa(a− x)

= q

2(a2 − x2)
(G-25)

For the beam be in equilibrium the internal moment, eq. (G-20), and
external moment, eq. (G-25), must be equal. As a result:

2bκ
√

3
3 (3h2 − ζ2) = q

2(a2 − x2) (G-26)

Defying variables q0 and ρ asq0 := 4
√

3κb

ρ := q
q0

( a
h
)2

(G-27)

eq. (G-26) is rewritten as:

2
√

3κb︸ ︷︷ ︸
q0/2

·h2 − 2
√

3κb
3︸ ︷︷ ︸
q0/6

·ζ2 = q

2(a2 − x2) (G-28)

Multiplying for 2/q0 and rearranging

�
�
�q0

q0

1
[
1− 1

3

(
ζ

h

)2]
= q

q0

(
a

h

)2

︸ ︷︷ ︸
ρ

− q

q0

(
x

h

)2

︸ ︷︷ ︸
ρ(x
a

)2

(G-29)

Thus,

1
3

(
ζ

h

)2

− ρ
(
x

a

)2

= 1− ρ (G-30)

The equation above (G-30) defines the boundary surface between elas-
ticity and plasticity. This formulation considers perfect plasticity, an indeter-
minate problem, for a given stress in the hardening curve the correspondent
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strain is not unique. For this reason, the following problem only has a solution
because elasticity is a unique problem and restricts plasticity. In the case of
having fully perfect plasticity in the beam, there is no solution.

As a result, our model has load limitations, since the cross section can
not be under fully plasticity. From eq. (G-30) and fig. G.3 the plastic region is
more intense near x = 0, the critical cross section for this limitation.

In the case of fully elastic beam ζ = h and for x = 0, critical cross section,
from eq. (G-30)

ρ = 2
3 (G-31)

while for fully plasticity ζ = 0, so:

ρ = 1 (G-32)

Consequently, ρ must be a value between both parameters above to be
under elastoplastic behavior and have a solution.

2
3 < ρ < 1 (G-33)

Usually, elastoplastic problem is coupling between elastic and plastic re-
gions. However in the case of perfect plasticity, due to hardening indetermina-
tion, there is no plastic strain restriction and how determines the strain is the
elastic behavior of the beam.

By this reason, the elastic region only depends on itself. From elasticity:

σ = −Ezd
2W

dx2 (G-34)

where in a elastoplastic cross section, the elastic stress from eq. (G-17) provides:

κ�z
√

3
ζ

= −E�z
d2W

dx2 →
d2W

dx2 = −κ
√

3
Eζ

(G-35)

and for fully elastic cross section:

d2W

dx2 = −M
EI

(G-36)

where M(x) is defined in eq. (G-25) and moment of inertia for a rectangular
section is

I = (2b)(2h)3

12 (G-37)

The next step is to combine both the elastoplastic and elastic differential
equations for the whole length of the beam. Figure G.19 illustrates in x axis
which formulation must be applied, where x∗ is the point that divides both
theories.
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Figure G.19: Elastoplastic and elastic behavior in the beam

To determine x∗, eq. (G-30) must be applied. Note that in the following
cross section ζ = h. So:

1
3�
�
��

(
h

h

)2

− ρ
(
x∗

a

)2

= 1− ρ (G-38)

isolation x∗:

x∗
2 = a2

(
1− 2

3ρ

)
= a2

(
3ρ− 2

3ρ

)
→ x∗ = 1√

3
a
√
ρ︸︷︷︸
α√
1−ρ

√
3ρ− 2 (G-39)

defying α as:

α := a
√

1− ρ
√
ρ

(G-40)

x∗ is rewritten as:

x∗ = α

√
3ρ− 2

3(1− ρ) (G-41)

Isolation ζ from eq. (G-30) provides:

ζ =
√

3h
√

1− ρ+ ρ
x2

a2 (G-42)

substituting the equation in above into the elastoplastic differential eq. (G-35)
gives

d2W

dx2 = − κ

Eh

1√
1− ρ+ ρx

2

a2

(G-43)

The box bellow presents the analytical solution of an irrational integral.
Note that our second order differential equation can be integrated to reduce
the order by using the integral bellow that fits into eq. (G-43).
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R =
√
ax2 + bx+ c (G-44)

∫ dx

R
= 1√

a
sinh-1 2ax+ b√

4ac− b2
(G-45)

for a > 0 and 4ac− b2 > 0 (non-zero denominator).

Defying a, b and c to adjust the general integral into our problem. So:
a = ρ

a2

b = 0

c = 1− ρ

(G-46)

Integrating

dW

dx
= − κ

Eh

a
√
ρ

sinh-1 2 ρ
a2x√

4 ρ
a2 (1− ρ)

+ C1

= − κ

Eh

a
√
ρ

sinh-1 �2 ρ

aC2
x

�2
Aa

√
ρ(1− ρ)

+ C1

= − κ

Eh

a
√
ρ

sinh-1 �
�
√
ρ
√
ρx

a�
�
√
ρ
√

(1− ρ)
+ C1

= − κ

Eh

�a

�
�
√
ρ
·

α�
�
√
ρ

�a
√

1− ρ︸ ︷︷ ︸
1

· sinh-1
√
ρ

a
√

1− ρ︸ ︷︷ ︸
1/α

x+ C1

(G-47)

From symmetry, the derivative of the deflection with respect to x must
be zero in x = 0. As a result of this fact,

C1 = 0 (G-48)

Thus,

dW

dx
= − κ

Eh

α√
1− ρ sinh-1 x

α
(G-49)

To obtain the deflection, eq. (G-49) must be integrate.∫ W (x)

W0
dW = − ακ

Eh
√

1− ρ

∫ x

0
sinh-1 x

α
dx (G-50)

The box bellow presents a general analytical solution.

∫
sinh-1 zdz = z sinh-1 z −

√
1 + z2 + C (G-51)
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Letting z be:

z = x

α
→ dz = 1

α
dx ∴ dx = αdz (G-52)

and changing the integral coordinate gives

W −W0 = − α2κ

Eh
√

1− ρ

∫ zf

z0
sinh-1 z dz (G-53)

So, substituting result from eq. (G-51) gives:

W −W0 = − α2κ

Eh
√

1− ρ

[
x

α
sinh-1 x

α
−

√√√√1 +
(
x

α

)2]x=x

x=0

= − α2κ

Eh
√

1− ρ

[
x

α
sinh-1 x

α
−

√√√√1 +
(
x

α

)2

+ 1
] (G-54)

From compatibility, the deflection and the derivative of the elastoplastic
and elastic solution in the interface point x∗ needs to be equal. The deflection
in x∗ is

W (x∗)−W0 = − α2κ

Eh
√

1− ρ

[√
3ρ− 2

3(1− ρ) sinh-1
√

3ρ− 2
3(1− ρ) −

√
1

3(1− ρ) + 1
]

(G-55)
while the derivative from eq. (G-49) at point x∗ is

dW

dx

∣∣∣∣∣
x=x∗

= − ακ

Eh
√

1− ρ sinh-1
√

3ρ− 2
3(1− ρ) (G-56)

Considering the elastic differential eq. (G-36) and substituting the defi-
nition of the moment of inertia for rectangular cross section, eq. (G-37) and
the moment expression, on eq. (G-25), gives:

d2W

dx2 = −3
8
q(a2 − x2)
Ebh3 (G-57)

Integrating the differential equation in above for the domain x∗ 6 x 6 a:

dW

dx

∣∣∣∣∣
x

− dW

dx

∣∣∣∣∣
x=x∗

= − 3qa2x

8Ebh3 + qx3

8Ebh3 + C2 (G-58)

and substituting the value of dW
dx

∣∣∣∣∣
x=x∗

from the elastoplastic eq. (G-56):

dW

dx
= − 3qa2x

8Ebh3 + qx3

8Ebh3 −
ακ

Eh
√

1− ρ sinh-1
√

1
3(1− ρ) + C2 (G-59)

Moreover, the derivative of the deflection with respect to x must also be
equal to eq. (G-56) in the lower bound, point x = x∗. So, equalling equation
in above with (G-56):
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���
���

���
���

���
�

− ακ

Eh
√

1− ρ sinh-1
√

3ρ− 2
3(1− ρ) = − 3q

8Ebh3 ·

α2ρ
1−ρ︷︸︸︷
a2 ·α

√
3ρ− 2

3(1− ρ)

+ q

8Ebh3 α
3
√

3ρ− 2
3(1− ρ)

3ρ− 2
3(1− ρ)︸ ︷︷ ︸

x∗3

−
���

���
���

���
���

ακ

Eh
√

1− ρ sinh-1
√

3ρ− 2
3(1− ρ) + C2 (G-60)

From equation above, the constant C2 is defined as being:

C2 = − 3q
8Ebh3

α2ρ

1− ρα
√

3ρ− 2
3(1− ρ) −

qα3

8Ebh3
3ρ− 2

3(1− ρ)

√
3ρ− 2

3(1− ρ)

= α

Eh
√

1− ρ ·
qα2

8bh2

√
3ρ− 2

3

(
3ρ

1− ρ −
3ρ− 2

3(1− ρ)

)

= α

Eh
√

1− ρ ·
qα2

8bh2

√
3ρ− 2

3 · 2(3ρ+ 1)
3(1− ρ)

= α

Eh
√

1− ρ ·
qα2

12bh2

√
3ρ− 2

3 · 3ρ+ 1
1− ρ

(G-61)

With the definition of constant C2 eq. (G-59) is fully determined.
Integration the following equation, the deflection of the beam is obtained as:

W (x)−W0 = − 3qa2x2

16Ebh3 + qx4

32Ebh3 +
(
dW

dx

∣∣∣∣∣
x=x∗

+ C2

)
x+ C3 (G-62)

where C3 is a constant that needs to be found. As previously presented,
by compatibility the deflection at point x∗, domain of both elastoplastic
and elastic differential equations must have equal deflection at this interface.
Rewriting eq. (G-62) above for x∗ :

W (x∗)−W0 = − 3qa2

16Ebh3 α
2 3ρ− 2

3(1− ρ) + q

32Ebh3 α
4
(

3ρ− 2
3(1− ρ)

)2

− α

EH
√

1− ρ

[
k sinh-1

√
3ρ− 2

3(1− ρ)−
ρα2

12bh2

√
3ρ− 2

3
3ρ+ 1
1− ρ

]
α

√
3ρ− 2

3(1− ρ)︸ ︷︷ ︸
x∗

+C3

(G-63)

From boundary condition, the initial displacement for the elastic differen-
tial equation must be the final displacement from the elastoplastic differential
equation. As a result, equation in above must be equal to eq. (G-55). Thus:
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− 3q
16Ebh3

α2ρ
1−ρ︷︸︸︷
a2 α2 3ρ− 2

3(1− ρ) + q

32Ebh3 α
4
(

3ρ− 2
3(1− ρ)

)2

− α2

Eh
√

1− ρ

√
3ρ− 2

3(1− ρ)

[
���

���
���

�

k sinh-1
√

3ρ− 2
3(1− ρ) −

ρα2

12bh2

√
3ρ− 2

3
3ρ+ 1
1− ρ

]
+ C3

= − α2κ

Eh
√

1− ρ

[
���

���
���

���
���√

3ρ− 2
3(1− ρ) sinh-1

√
3ρ− 2

3(1− ρ) −
√

1
3(1− ρ) + 1

]
(G-64)

Isolating constant C3

C3 = qα4

Ebh3 ·
�3

16 ·
1
�3
· ρ(3ρ− 2)

(1− ρ)2 −
qα4

32 · 32 · Ebh3
9ρ2 − 12ρ+ 4

(1− ρ)2

− α2

Eh

qα2

12bh2

(
1√

1− ρ

)2(√3ρ− 2
3

)2 3ρ+ 1
1− ρ + α2κ

Eh
√

1− ρ

[√
1

3(1− ρ) − 1
]

(G-65)

rearranging equation in above

C3 = qα4

Ebh3

− 9ρ2−4
96(1−ρ)2︷ ︸︸ ︷[

3ρ2 − 2ρ
16(1− ρ)2 −

9ρ2 − 12ρ+ 4
16 · 2 · 9 · (1− ρ)2 −

(3ρ− 2)(3ρ+ 1)
12 · 3 · (1− ρ)2

]

+ α2κ

Eh
√

1− ρ

[√
1

3(1− ρ) − 1
]

(G-66)

so the constant C3 is defined as

C3 = α2κ

Eh
√

1− ρ

[√
1

3(1− ρ) − 1
]
− qα4

96Ebh3 ·
9ρ2 − 4
(1− ρ)2 (G-67)

Substituting all constants from eqs. (G-56), (G-61) and (G-67) into eq.
(G-62) provides the displacement in the elastic portion of the beam

W (x)−W0 = − 3
16

q

Ebh3

(
α2ρ

1− ρx
2 − x4

6

)
− αx

Eh
√

1− ρ

[
κ sinh-1

√
3ρ− 2

3(1− ρ)

− 1
12
qα2

bh2
3ρ+ 1
1− ρ

√
3ρ− 2

3

]
+ α2κ

Eh
√

1− ρ

[√
1

3(1− ρ) − 1
]
− qα4

96Ebh3 ·
9ρ2 − 4
(1− ρ)2

(G-68)
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valid for x∗ 6 x 6 a.
In a differential equation for the complete solution two boundary condi-

tion needs to be imposed. Previously, the derivative of the displacement with
respect to axis x in initial point x∗ provided the definition of constant C3. The
next step is to consider the final point a. In this problem, the deflection of the
beam in the support is zero. As a result,

W (x = a) = 0 (G-69)

Substituting the boundary condition above at point a in eq. (G-68):

W (a)︸ ︷︷ ︸
0

−W0 = − 3
16

q

Ebh3

5a4
6︷ ︸︸ ︷(

α2ρ

1− ρ︸ ︷︷ ︸
a2

a2 − a4

6

)
− αa

Eh
√

1− ρ

[
κ sinh-1

√
3ρ− 2

3(1− ρ)

− 1
12
qα2

bh2
3ρ+ 1
1− ρ

√
3ρ− 2

3

]
+ α2κ

Eh
√

1− ρ

[√
1

3(1− ρ) − 1
]
− qα4

96Ebh3 ·
9ρ2 − 4
(1− ρ)2

(G-70)

Applying the definition of α, from eq. (G-40) and multiplying q0 and
dividing by itself or the definition of q0, from eq. (G-27) gives

W0 = �3
16

q

Ebh3
5a4

�3 · 2

1︷︸︸︷
q0

q0
+

a���
√

1−ρ√
ρ︷︸︸︷
α · a

Eh���
�√

1− ρ

[
�κ ·

1︷ ︸︸ ︷
q0

4
√

3�κb
sinh-1

√
3ρ− 2

3(1− ρ)

− 1
12
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where from the definition of ρ (in eq. G-27) and algebraic manipulation:
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W0 = 5
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(G-72)

so,

W0 = a2q0

Ebh
· 5

32ρ+ a2q0
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· 1
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√

3ρ · sinh-1
√

3ρ− 2
3(1− ρ)
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96ρ (G-73)

Rearranging

W0 = a2q0

Ebh

2ρ2−1
8︷ ︸︸ ︷[

5
32ρ−

1
12ρ + 9ρ2 − 4

96ρ
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4
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12ρ
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3 (G-74)

As a result, W0 can be defined as

W0 = a2q0

Ebh

[
1

4
√

3ρ · sinh-1
√

3ρ− 2
3(1− ρ) +

√
1− ρ

4
√

3ρ
+ 2ρ2 − 1

8 − 3ρ+ 1
12ρ

√
ρ(3ρ− 2)

3

]
(G-75)

Equation in above presents the analytical solution for the deflection of
the beam on his center. For considering the full x axis domain eq. (G-54) must
be use for the elastoplastic regime where 0 6 x 6 x∗ and eq. (G-68) for the
elastic regime with x∗ 6 x 6 a.
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G.2
Multilinear isotropic hardening plasticity under a bar with axial load

In this section, a bar under axial load and unload is performed using
elastoplastic simulation with multilinear isotropic hardening. Since this prob-
lem can only be solved numerically, the commercial software Abaqus is used as
a reference.

In plasticity, the unload is quite different from the load and requires
additional features in the FEM algorithm. To verify residual plastic strain in
the problem a variable load q is assumed as expressed in graph G.20.
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Figure G.20: Variable axial load as function of time

For modeling strain hardening, the yield stress is defined as a function
of the total strain εp as

σy = H0 +H1 · εp + (H∞ −H0) · (1− exp(−b · εp)) (G-76)

In this simulation, the geometric, material and load condition is presented
in the table below

Parameters

Parameter Value Unit

Young’s Modulus (E) 210 · 109 Pa
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Continuation of table G.1

Parameters

Yield stress (σy) 300 · 106 Pa

H0 300 · 106 Pa

H1 30 · 109 Pa

H∞ 390 · 106 Pa

b 2 · 103 -

q 500 · 106 Pa/m2

b 0.5 m

h 0.5 m

a 10 m

Table G.1: Material, geometric and load parameters for the bar under axial
load simulation

Usually, in an elastoplastic FEM problem, the input of the strain curve
is not a function of the total strain ε, but a function of the plastic strain εp,
case of TopSim and Abaqus, making the use of eq. (G-76) convenient since is a
function of the plastic strain. For this problem, the curve below presents the
points used as input in the simulation.
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Figure G.21: Yield stress vs. plastic strain

For this simulation the element Brick with 8 nodes is adopted, where the
mesh is illustrated in the figure below
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Figure G.22: Mesh of the bar

Due to symmetry, all points in FEM model’s domain are subjected to the
same history of load. As a consequence, any path plot in the domain remains
constant, alternatively figs. G.23 to G.26 presents the value of the stress and
strain field of a random gauss point in the model using TopSim simulator.
Similarly, figs. G.27 to G.30 also shows the stress and strain field provided by
Abaqus.

Figure G.23: σxx field at time t = 0.5 in the cross section of the bar from
TopSim
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Figure G.24: εxx field at time t = 0.5 in the cross section of the bar from
TopSim

Figure G.25: σxx field at time t = 1.0 in the cross section of the bar from
TopSim
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Figure G.26: εxx field at time t = 1.0 in the cross section of the bar from
TopSim

Figure G.27: σxx field at time t = 0.5 in the cross section of the bar from
Abaqus
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Figure G.28: εxx field at time t = 0.5 in the cross section of the bar from
Abaqus

Figure G.29: σxx field at time t = 1.0 in the cross section of the bar from
Abaqus

Figure G.30: εxx field at time t = 1.0 in the cross section of the bar from
Abaqus

From the previous figures above, TopSim prediction is numerically equal
to Abaqus when comparing to load and unload condition.
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G.3
Plate with centered hole

In this section, a numerical elastoplastic solution for a centered hole plate
is presented. In this case, there is no analytical procedure for comparison,
alternatively, the commercial software Abaqus is used as reference.

Figure G.31 above illustrate the geometric, load and boundary condition
imposed in the following problem.

Figure G.31: Geometric dimensions and boundary conditions

For the strain hardening, the yield stress is defined as a function of the
total strain εp as

σy = H0 +H1 · εp + (H∞ −H0) · (1− exp(−b · εp)) (G-77)

where the numerical value considered in this problem is presented in the table
above:

Parameters

Parameter Value Unit

Nominal stress (σn) 100 · 106 Pa

Young’s Modulus (E) 210 · 109 Pa

Yield stress (σy) 300 · 106 Pa

α 0.02 · 109 Pa

n 13 −

Radius (R) 0.25 m
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Continuation of table G.2

Parameters

Length (L) 0.5 m

Thickness (t) 0.1 m

Table G.2: Material, geometric and load parameters for the centered hole
simulation

For the FEM, the element Brick of 8 nodes is adopted for this simulation,
which the mesh used is presented in the figure G.32 below.

Figure G.32: Mesh for centered hole in a plate

For the comparison between TopSim and Abaqus, two paths were added
in the Pos-processor for obtaining the stress distribution. The figure below
presents path 1 and 2, as well as the local coordinate system used in which of
them.
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Figure G.33: Coordinates of path 1 and 2

Figure G.34, presents the distribution of stress σyy in path 1.
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Figure G.34: σyy comparison in path 1

while, in the case of the stress σxx along path 2 we have
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Figure G.35: σxx comparison in path 2

From both graphs, we can infer the TopSim is compatible with the
prediction from Abaqus, since the distribution in graphs G.34 and G.35 are
quite similar.
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Table of SIF

H.1
Infinite plate with a crack of size 2a perpendicular to the normal stress σ
(mode I), analytical solution [16]

KI = σ
√
πa (H-1)

Figure H.1: Infinite plate with a crack of size 2a perpendicular to the normal
stress σ (mode I), analytical solution [16]
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Table of J integral

I.1
Tensioned bar with a central crack, plane-σ, [22]

Jpl = a(w − a)
wH1/h

(
PSY
P0

) 1+h
h

h1 (I-1)

Vpl = a

(
SY
H

P

P0

) 1
h

h2 (I-2)

∆pl = a

(
SY
H

P

P0

) 1
h

h3 (I-3)

P0 = 2t(w − a)SY (I-4)

Figure I.1: Tensioned bar with a central crack, plane-σ, [22]
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h

pl-σ a/w 0.500 0.333 0.200 0.143 0.100 0.077 0.063 0.050

h1

0.125 3.57 4.01 4.47 4.65 4.62 4.41 4.13 3.72
0.250 2.97 3.14 3.20 3.11 2.86 2.65 2.47 2.20
0.375 2.53 2.52 2.35 2.17 1.95 1.77 1.61 1.43
0.500 2.20 2.06 1.81 1.63 1.43 1.30 1.17 1.00
0.625 1.91 1.69 1.41 1.22 1.01 0.853 0.712 0.573
0.750 1.71 1.46 1.21 1.08 0.867 0.745 0.646 0.532
0.875 1.57 1.31 1.08 0.972 0.862 0.778 0.715 0.630

h2

0.125 4.09 4.43 4.74 4.79 4.63 4.33 4.00 3.55
0.250 3.29 3.30 3.15 2.93 2.56 2.29 2.08 1.81
0.375 2.62 2.41 2.03 1.75 1.47 1.28 1.13 0.988
0.500 2.01 1.70 1.30 1.07 0.871 0.757 0.666 0.557
0.625 1.46 1.13 0.785 0.617 0.474 0.383 0.313 0.256
0.750 0.970 0.685 0.452 0.361 0.262 0.216 0.183 0.148
0.875 0.485 0.310 0.196 0.157 0.127 0.109 0.0971 0.0842

h3

0.125 0.661 0.997 1.55 2.05 2.56 2.83 2.95 2.92
0.250 1.01 1.35 1.83 2.08 2.19 2.12 2.01 1.79
0.375 1.20 1.43 1.59 1.57 1.43 1.27 1.13 0.994
0.500 1.19 1.26 1.18 1.04 0.867 0.758 0.668 0.560
0.625 1.05 0.970 0.763 0.620 0.478 0.386 0.318 0.273
0.750 0.802 0.642 0.450 0.361 0.263 0.216 0.183 0.149
0.875 0.452 0.313 0.198 0.157 0.127 0.109 0.0973 0.0842
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J
Coupling

In this appendix, the coupling between two body with different Young’s
Modulus will be studied. Let’s consider two bodies are bonded under x and
y direction loadings in a rigid plate connected to the material. The picture
bellow illustrates the problem.

Figure J.1: Coupling problem

To solve the problem, let’s expose internal forces by doing the free-body-
diagram (FBD) in body 1:

Figure J.2: FBD on material 1

From applying the resultant in y-direction equal to zero:

σyy1 = F

A
(J-1)

analogously, for body 2:
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Figure J.3: FBD on material 2

σyy2 = F

A
(J-2)

Strain in y-direction is given by:

εyy = σyy
E
− ν

E
σxx −

ν

E
σzz (J-3)

so, for body number 1:
εyy1 = σyy1

E1
− ν

E1
σxx1 (J-4)

so, for body number 2:
εyy2 = σyy2

E2
− ν

E2
σxx2 (J-5)

Next step is critical to understand why coupling occurs. When applying
the compatibility condition

εyy1 = εyy2 (J-6)

σyy1

E1
= σyy2

E2
(J-7)

Considering the free-body-diagram (FBD) in y-direction:
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Figure J.4: FBD on material 1 and 2

F + σyy1 · A+ σyy2 · A = 0 (J-8)

substituting the result from eq. (J-7) into equation in above

σyy1 = F

A
(
1 + E2

E1

) (J-9)

Considering a elastic problem the relation between stress and strain in
y-direction is linear, so:

σyy1 = Ey1 · εyy1

= Ey1 ·
(
σyy1

E1
− ν

E1
σxx1

)

= Ey1 ·
(

1
E1

F

A
(
1 + E2

E1

) − ν

E1

F

A

)

= Ey1 ·
F

E1A

(
1

1 + E2
E1

− ν
)

(J-10)

Ey1 = σyy1

F
E1A

(
1

1+E2
E1

− ν
) (J-11)

The equation above shows that relation between σyy1 and εyy1 , given by
Ey1 is dependable in both material properties (E1 and E2).
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